Solution to Attendance Quiz for Lecture 16

1. Perform one iteration in solving the following transportation problem, where \mathbf{s} is the supply vector, \mathbf{d} is the demand vector, and \mathbf{C} is the cost matrix between the supply sites and the demand sites.

$$
\mathbf{C}=\left[\begin{array}{llll}
5 & 2 & 3 & 6 \\
2 & 7 & 7 & 4 \\
1 & 3 & 6 & 9
\end{array}\right] \quad, \quad \mathbf{s}=\left[\begin{array}{c}
100 \\
80 \\
140
\end{array}\right] \quad, \quad \mathbf{d}=\left[\begin{array}{c}
60 \\
60 \\
80 \\
120
\end{array}\right]
$$

starting from the following basic feasible solution obtained by Vogel's method (last time)

$$
\left[\begin{array}{cccc}
0 & 20 & 80 & 0 \\
0 & 0 & 0 & 80 \\
60 & 40 & 0 & 40
\end{array}\right]
$$

Sol. 1: The set of basic variables, corresponding to the positive entries in the above matrix is

$$
\text { Basic }=\left\{x_{12}, x_{13}, x_{24}, x_{31}, x_{32}, x_{34}\right\},
$$

the set of non-basic variables correspond to the entries that are zero.

$$
\text { NonBasic }=\left\{x_{11}, x_{14}, x_{21}, x_{22}, x_{23}, x_{33}\right\} .
$$

We introduce $3+4=7$ variables $v_{1}, v_{2}, v_{3}, w_{1}, w_{2}, w_{3}, w_{4}$, and have to solve the system $v_{i}+w_{j}=c_{i j}$ for each basic variable $x_{i j}$. There are six equations:

$$
\begin{array}{ccc}
x_{12}: v_{1}+w_{2}=2 \quad, & x_{13}: v_{1}+w_{3}=3 \quad, & x_{24}: v_{2}+w_{4}=4 \\
x_{31}: v_{3}+w_{1}=1 & , \quad x_{32}: v_{3}+w_{2}=3 \quad, & x_{34}: v_{3}+w_{4}=9 .
\end{array}
$$

Since there are six equations and seven variables, one of these variables is set to 0 . Since v_{3} shows up in three of them it is easiest to make $v_{3}=0$. After that it is easy to get the solution. It is

$$
\begin{gathered}
v_{1}=-1 \quad, \quad v_{2}=-5 \quad, \quad v_{3}=0 \\
w_{1}=1 \quad, \quad w_{2}=3 \quad, \quad w_{3}=4 \quad, \quad w_{4}=9 .
\end{gathered}
$$

In order to find the entering variable we must compute $v_{i}+w_{j}-c_{i j}$ for all non-basic variables.

$$
\begin{gathered}
x_{11}: v_{1}+w_{1}-c_{11}=-1+1-5=-5 \quad, \quad x_{14}: v_{1}+w_{4}-c_{14}=-1+9-6=2, \\
x_{21}: v_{2}+w_{1}-c_{21}=-5+1-2=-6 \quad, \quad x_{22}: v_{2}+w_{2}-c_{22}=-5+3-7=-9, \\
x_{23}: v_{2}+w_{3}-c_{23}=-5+4-7=-8 \quad, \quad x_{33}: v_{3}+w_{3}-c_{33}=0+4-6=-2 .
\end{gathered}
$$

The largest value corresponds to x_{14}, and this is the entering variable.

We need to find an alternating horizontal-vertical path starting at cell $[1,4]$ and traveling via basic cells, returning back to $[1,4]$. The only such path is

$$
[1,4] \rightarrow[1,2] \rightarrow[3,2] \rightarrow[3,4] \rightarrow[1,4] .
$$

The even locations are $[1,2]$ and $[3,4]$. We have, currently $x_{12}=20$ and $x_{34}=40$. The smaller value is 20 , hence x_{12} is the departing variable, and we update

$$
x_{14}=0+20=20 \quad, \quad x_{12}=20-20=0 \quad, \quad x_{32}=40+20=60 \quad, \quad x_{34}=40-20=20 .
$$

All the other values of $x_{i j}$ stay the same. The new feasible solution is

$$
\left[\begin{array}{cccc}
0 & 0 & 80 & 20 \\
0 & 0 & 0 & 80 \\
60 & 60 & 0 & 20
\end{array}\right]
$$

Its cost is

$$
80 \cdot 3+20 \cdot 6+80 \cdot 4+60 \cdot 1+60 \cdot 3+20 \cdot 9=1100 .
$$

Recall that the cost of the initial feasible solution was 1140.
Note: If you try to apply one more iteration, you would get that all the values are non-positive, and you would realize that this is the final solution. Please do it!

