i

Solutions to Attendance Quiz for Lecture 12

1. Find the dual of the given linear programming problem.

Minimize $9 x_{1}+4 x_{2}+3 x_{3}+9 x_{4}$
subject to

$$
\begin{gathered}
x_{1}+3 x_{2}+x_{3}+x_{4} \geq 5 \quad, \quad 4 x_{1}+x_{2}+6 x_{3}+9 x_{4} \geq 8, \\
x_{1} \geq 0 \quad, \quad x_{2} \geq 0 \quad, \quad x_{3} \geq 0 \quad, \quad x_{4} \geq 0 .
\end{gathered}
$$

First Sol. to 1 (the long way): Let's first convert it to standard form.
Maximize $z=-9 x_{1}-4 x_{2}-3 x_{3}-9 x_{4}$
subject to

$$
\begin{gathered}
-x_{1}-3 x_{2}-x_{3}-x_{4} \leq-5 \quad, \quad-4 x_{1}-x_{2}-6 x_{3}-9 x_{4} \leq-8 \\
x_{1} \geq 0 \quad, \quad x_{2} \geq 0 \quad, \quad x_{3} \geq 0 \quad, \quad x_{4} \geq 0
\end{gathered}
$$

In matrix form the problem is
Maximize $z=\mathbf{c}^{T} \mathbf{x}$ subject to

$$
A \mathbf{x} \leq \mathbf{b} \quad, \quad \mathbf{x} \geq \mathbf{0}
$$

where

$$
\begin{gathered}
\mathbf{c}=\left[\begin{array}{l}
-9 \\
-4 \\
-3 \\
-9
\end{array}\right] \\
\mathbf{b}=\left[\begin{array}{l}
-5 \\
-8
\end{array}\right] \\
A=\left[\begin{array}{llll}
-1 & -3 & -1 & -1 \\
-4 & -1 & -6 & -9
\end{array}\right]
\end{gathered}
$$

The dual problem, still in matrix notation is
Minimize $z^{\prime}=\mathbf{b}^{T} \mathbf{w}$ subject to

$$
A^{T} \mathbf{w} \geq \mathbf{c} \quad, \quad \mathbf{w} \geq \mathbf{0}
$$

where

$$
\mathbf{c}=\left[\begin{array}{l}
-9 \\
-4 \\
-3 \\
-9
\end{array}\right]
$$

$$
\mathbf{b}=\left[\begin{array}{l}
-5 \\
-8
\end{array}\right]
$$

where

$$
A^{T}=\left[\begin{array}{ll}
-1 & -4 \\
-3 & -1 \\
-1 & -6 \\
-1 & -9
\end{array}\right]
$$

This spells out to
Minimize $z^{\prime}=-5 w_{1}-8 w_{2}$ subject to

$$
\begin{aligned}
& -w_{1}-4 w_{2} \geq-9 \\
& -3 w_{1}-w_{2} \geq-4, \\
& -w_{1}-6 w_{2} \geq-3 \\
& -w_{1}-9 w_{2} \geq-9 \\
& w_{1} \geq 0, \quad w_{2} \geq 0
\end{aligned}
$$

Since all the minus signs are annoying, this can be rephrased as follows.
Maximize $z^{\prime}=5 w_{1}+8 w_{2}$ subject to

$$
\begin{array}{r}
w_{1}+4 w_{2} \leq 9 \\
3 w_{1}+w_{2} \leq 4 \\
w_{1}+6 w_{2} \leq 3 \\
w_{1}+9 w_{2} \leq 9 \\
w_{1} \geq 0 \quad, \quad w_{2} \geq 0
\end{array}
$$

Second Sol. to 1 (much faster!). Since the "dual of the dual" is the original, we can just use the "dictionary" $\max \leftrightarrow \min , \geq \leftrightarrow \leq$, 'coefficients of goal functions' \leftrightarrow 'coefficients of constraints' to get immediately

Maximize $z^{\prime}=5 w_{1}+8 w_{2}$ (since 5,8 are on the right side of the constraints) subject to

$$
w_{1}+4 w_{2} \leq 9
$$

(since 9 is the coefficient of x_{1} in the original goal function, and 1,4 are the coefficients of x_{1} in the first and second constrains respectively)

$$
3 w_{1}+w_{2} \leq 4
$$

(since 4 is the coefficient of x_{2} in the original goal function, and 3,1 are the coefficients of x_{2} in the first and second constrains respectively)

$$
w_{1}+6 w_{2} \leq 3
$$

(since 3 is the coefficient of x_{3} in the original goal function, and 1, 6 are the coefficients of x_{3} in the first and second constrains respectively)

$$
w_{1}+9 w_{2} \leq 9
$$

(since 9 is the coefficient of x_{4} in the original goal function, and 1,9 are the coefficients of x_{4} in the first and second constrains respectively)

$$
w_{1} \geq 0 \quad, \quad w_{2} \geq 0
$$

