## Solutions to Attendance Quiz for Lecture 10

1. Set up the initial simplex tableau for solving the following linear programming problem using the big- $M$ method.

Minimize $x_{1}+x_{2}$ subject to the constraints

$$
\begin{gathered}
2 x_{1}+x_{2} \geq 2 \\
x_{1}+2 x_{2} \geq 2 \\
x_{1} \geq 0 \quad, \quad x_{2} \geq 0
\end{gathered}
$$

Sol. of 1: We first convert the problem to canonical form. Instead of minimizing $x_{1}+x_{2}$ we maximize $-x_{1}-x_{2}$ and we introduce the two slack variables $x_{3}$ and $x_{4}$, to get the following Linear Programming problem in canonical form.

Maximize $z=-x_{1}-x_{2}$ subject to the constraints

$$
\begin{gathered}
2 x_{1}+x_{2}-x_{3}=2 \\
x_{1}+2 x_{2}-x_{4}=2, \\
x_{1} \geq 0 \quad, \quad x_{2} \geq 0 \quad, \quad x_{3} \geq 0 \quad, \quad x_{4} \geq 0 .
\end{gathered}
$$

(Note that the $-x_{3}$ and $-x_{4}$ in the equations since they came from $\geq$ inequalities).
Next we introduce two artificial variables, $y_{1}, y_{2}$ and a symbol $M$ denoting a HUGE positive number (for example a googolplex). At the end of the day, we want the values of $y_{1}$ and $y_{2}$ to be 0 , so the new goal function is $z=-x_{1}-x_{2}-M y_{1}-M y_{2}$ and the new equations are obtained by adding $y_{1}$ and $y_{2}$ to the two constraints.

Our new (but equivalent) optimization problem is
Maximize $z=-x_{1}-x_{2}-M y_{1}-M y_{2}$ subject to the constraints

$$
\begin{gathered}
2 x_{1}+x_{2}-x_{3}+y_{1}=2 \\
x_{1}+2 x_{2}-x_{4}+y_{2}=2, \\
x_{1} \geq 0 \quad, \quad x_{2} \geq 0 \quad, \quad x_{3} \geq 0 \quad, \quad x_{4} \geq 0 \quad, \quad y_{1} \geq 0 \quad, \quad y_{2} \geq 0
\end{gathered}
$$

Our next goal in life is the rather tedious task to express $z$ without $y_{1}$ and $y_{2}$, i.e. only in terms of the 'natural' variables, $x_{1}, x_{2}, x_{3}, x_{4}$. To that end, we first use the two equations to express $y_{1}$ and $y_{2}$ in terms of the natural variables $x_{1}, x_{2}, x_{3}, x_{4}$.

We get

$$
y_{1}=2-2 x_{1}-x_{2}+x_{3},
$$

$$
y_{2}=2-x_{1}-2 x_{2}+x_{4} .
$$

Since the goal equation is

$$
x_{1}+x_{2}+M y_{1}+M y_{2}+z=0,
$$

we get

$$
\begin{gathered}
x_{1}+x_{2} \\
+M\left(2-2 x_{1}-x_{2}+x_{3}\right) \\
+M\left(2-x_{1}-2 x_{2}+x_{4}\right) \\
+z=0 .
\end{gathered}
$$

Opening up parantheses, this is

$$
\begin{gathered}
x_{1}+x_{2} \\
+2 M-2 M x_{1}-M x_{2}+M x_{3} \\
+2 M-M x_{1}-2 M x_{2}+M x_{4} \\
+z=0 .
\end{gathered}
$$

Collecting terms we get the goal equation

$$
4 M+(1-3 M) x_{1}+(1-3 M) x_{2}+M x_{3}+M x_{4}+z=0 .
$$

Moving the $4 M$ to the right hand side, we get

$$
(1-3 M) x_{1}+(1-3 M) x_{2}+M x_{3}+M x_{4}+z=-4 M .
$$

Our problem is now the following.
Maximize $z$ subject to

$$
\begin{gathered}
2 x_{1}+x_{2}-x_{3}+y_{1}=2, \\
x_{1}+2 x_{2}-x_{4}+y_{2}=2, \\
(1-3 M) x_{1}+(1-3 M) x_{2}+M x_{3}+M x_{4}+z=-4 M . \\
x_{1} \geq 0 \quad, \quad x_{2} \geq 0 \quad, x_{3} \geq 0 \quad, \quad x_{4} \geq 0 \quad, \quad y_{1} \geq 0 \quad, \quad y_{2} \geq 0 .
\end{gathered}
$$

Now, and only now, we are ready to set up the initial tableau.
The initial tableau is:

|  | $x_{1}$ | $x_{2}$ | $x_{3}$ | $x_{4}$ | $y_{1}$ | $y_{2}$ | $z$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - | - | - | - | - | - | - | - | - |
| $y_{1}$ | 2 | 1 | -1 | 0 | 1 | 0 | 0 | 2 |
| $y_{2}$ | 1 | 2 | 0 | -1 | 0 | 1 | 0 | 2 |
| - | - | - | - | - | - | - | - | - |
|  | $1-3 M$ | $1-3 M$ | $M$ | $M$ | 0 | 0 | 1 | $-4 M$ |

Now we are ready to apply the simplex algorithm as usual, but keeping in mind that $M$ is a FIXED big number.

WARNING: $M$ is fixed number, it is NOT infinity. So it is wrong, for example, to replace $2 M$ by $M$. In computer implementation, you can take $M$ to be $10^{100}$.

