NAME: (print!) \_\_\_\_\_

E-Mail address: \_\_\_\_\_

MATH 354 (3), Dr. Z., Exam 2, Mon. Nov. 27, 2023, 10:25-11:35am, TIL-246

## FRAME YOUR FINAL ANSWER(S) TO EACH PROBLEM

**No Calculators! No books! No Notes!** To ensure maximum credit, organize your work neatly and be sure to show all your work. Do not write below this line

\_\_\_\_\_

- $1. \qquad (out of 10)$
- 2. (out of 10)
- $3. \qquad (out of 10)$
- 4. (out of 10)
- 5. (out of 10)
- 6. (out of 10)
- 7. (out of 10)
- 8. (out of 10)
- 9. (out of 20)

tot.: (out of 100)

Reminder from Linear Algebra:

The inverse of an  $n \times n$  matrix  $A = [a_{ij}]$  is

$$\frac{1}{\det(A)} [A_{ij}]^T \quad ,$$

where  $A_{ij}$  is  $(-1)^{i+j}$  times the determinant of the (i, j) minor, which is the  $(n-1) \times (n-1)$  matrix obtained by removing the *i*-th row and the *j*-th column.

Another way to find the inverse  $A^{-1}$  of an  $n \times n$  matrix, A, is to stick the identity matrix  $I_n$  right after it, getting  $[A|I_n]$ , perform Gauss-Jordan elimination to get A to be the identity matrix, and whatever emerges to its right is the matrix  $A^{-1}$ .

1. (10 points) Consider the initial simplex tableau

| BASIC |   | $x_1$ | $x_2$ | $x_3$ | $x_4$ | $x_5$ | z |   | RHS |  |
|-------|---|-------|-------|-------|-------|-------|---|---|-----|--|
| $x_3$ |   | 1     | 2     | 1     | 0     | 0     | 0 |   | 4   |  |
| $x_4$ | İ | 2     | 3     | 0     | 1     | 0     | 0 | İ | 9   |  |
| $x_5$ | Í | 8     | 4     | 0     | 0     | 1     | 0 | Ì | 16  |  |
|       |   | -2    | -3    | 0     | 0     | 0     | 1 |   | 0   |  |

Ans. entering variable: ; departing variable: ; BASIC column of new tableau:  $[ ]^T$ ;

Bottom line of next tableau:

(i) (1 point) What is the entering variable? Explain!

(ii) (2 points) What is the departing variable? Explain

- (iii) (1 point): What is the BASIC column of the next tableau?
- (iv) (6 points): What is the bottom (aka objective) line of the next tableau?

**2**. (10 points) If the initial simplex tableau was:

| BASIC |   | $x_1$ | $x_2$ | $x_3$ | $x_4$ | $x_5$ | z | $\mid RHS$ |
|-------|---|-------|-------|-------|-------|-------|---|------------|
| $x_3$ |   | 1     | 2     | 1     | 0     | 0     | 0 | 4          |
| $x_4$ | İ | 2     | 3     | 0     | 1     | 0     | 0 | 9          |
| $x_5$ |   | 8     | 4     | 0     | 0     | 1     | 0 | 16         |
|       |   | -2    | -3    | 0     | 0     | 0     | 1 | <br>  0    |
|       | 1 |       |       |       |       |       |   |            |

.

and currently the BASIC column is

 $\begin{bmatrix} x_2 \\ x_5 \\ x_1 \end{bmatrix}$ 

What is the  $x_3$  column (including the entry at the bottom line, i.e. what used to be 0) of the current tableau? (Explain!)

Ans.: The  $x_3$  column of the current tableau is:

**3**. (10 points) A certain linear programming problem with three variables  $x_1, x_2, x_3$ , and three constraints, has an optimal solution  $x_1 = 0, x_2 = 1, x_3 = 10$ , yielding the optimal value 101.

You are also told that its first constraint is **not tight**, i.e. if you plug-in the values of the optimal solution into the first constraint you get a **strict** inequality < (they are **not** equal). Calling the dual variables corresponding to the first, second, and third constraints,  $w_1, w_2, w_3$  respectively, you are also told that the dual constraints are

 $w_1 + w_2 + w_3 \ge 3$  ,  $w_1 + 2w_2 + 3w_3 \ge 13$  ,  $w_1 + 2w_2 + w_3 \ge 7$  .

Find (i) ( 8 points) the optimal solution of the dual problem. (ii) ( 2 points) the value of the goal function at that optimal solution of the dual problem

Ans.: The optimal solution of the dual problem is

 $w_1 = \qquad \qquad w_2 = \qquad \qquad w_3 =$ 

The value of the goal function at that optimal solution of the dual problem is:

## **4**. (10 points)

For the following transportation problem, find the initial basic feasible solution, M, using the **Minimal Cost Rule**. Also find the cost of that solution.

$$\mathbf{C} = \begin{bmatrix} 12 & 5 & 3 \\ 3 & 5 & 7 \\ 7 & 12 & 12 \end{bmatrix} , \quad \mathbf{s} = \begin{bmatrix} 30 \\ 31 \\ 11 \end{bmatrix} , \quad \mathbf{d} = \begin{bmatrix} 22 \\ 28 \\ 22 \end{bmatrix}$$

•

Ans.

$$\mathbf{M} = \begin{bmatrix} & & \\ & & \\ & & \\ & & \end{bmatrix}$$

 $\operatorname{cost} =$ 

## **5**. (10 points)

For the following transportation problem, find the initial basic feasible solution, M, using **Vogel's Rule**. Also find the cost of that solution.

$$\mathbf{C} = \begin{bmatrix} 12 & 5 & 3 \\ 3 & 5 & 7 \\ 7 & 12 & 12 \end{bmatrix} , \quad \mathbf{s} = \begin{bmatrix} 30 \\ 31 \\ 11 \end{bmatrix} , \quad \mathbf{d} = \begin{bmatrix} 22 \\ 28 \\ 22 \end{bmatrix}$$

•

Ans.

$$\mathbf{M} = \begin{bmatrix} & & \\ & & \\ & & \\ & & \end{bmatrix}$$

 $\operatorname{cost} =$ 

**6**. (10 points) Find the permutation matrix, P, that solves the following assignment problem with four employees and four jobs, where C is the cost matrix whose (i, j) entry is the cost of assigning employee i to job j.

$$C = \begin{bmatrix} 6 & 4 & 1 & 5 \\ 2 & 7 & 4 & 8 \\ 2 & 2 & 2 & 2 \\ 13 & 17 & 10 & 18 \end{bmatrix}$$

Ans.:

$$P = \begin{bmatrix} & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &$$

**7**. (10 points) In a certain transportation problem with four factories and four stores, the current basic feasible solution is

$$M = \begin{bmatrix} 0 & 21 & 0 & 11 \\ 0 & 0 & 34 & 0 \\ 25 & 12 & 13 & 0 \\ 0 & 4 & 0 & 0 \end{bmatrix}$$

•

•

It was found out that the **entering variable** is  $x_{34}$ . find a cheaper solution, M', by performing the relevant step in the Transportation Problem algorithm.

Ans:.

$$M' = \begin{bmatrix} & & \\ & & \\ & & \end{bmatrix}$$

**8**. (10 points) In the course of solving an assignment problem with four employees and four jobs, the following partial solution was arrived at:

$$\begin{bmatrix} 0^* & 1 & 2 & 0 \\ 3 & 0 & 4 & 0^* \\ 0 & 5 & 0^* & 4 \\ 2 & 1 & 0 & 3 \end{bmatrix}$$

find the permutation matrix that is the final solution.

Ans.

9. (20 points altogether) For the following transportation problem.

$$\mathbf{C} = \begin{bmatrix} 6 & 5 & 4 \\ 3 & 3 & 3 \\ 5 & 6 & 6 \end{bmatrix} , \quad \mathbf{s} = \begin{bmatrix} 14 \\ 16 \\ 12 \end{bmatrix} , \quad \mathbf{d} = \begin{bmatrix} 15 \\ 16 \\ 11 \end{bmatrix}$$

(i) (2 points) Explain why the following solution

$$\begin{bmatrix} 0 & 3 & 11 \\ 15 & 1 & 0 \\ 0 & 12 & 0 \end{bmatrix}$$

is a **basic feasible solution**. Also find its cost.

(ii) (18 points) Starting with the above basic feasible solution as the initial basic feasible solution, find the optimal solution, and the **minimal cost**.

Ans.:

