1. Solve the following linear programming problem, using the big M method. (No credit for using the graphical, or any other method). Explain everything.

Maximize $x_{1}+5 x_{2}$, subject to the restrictions

$$
x_{1}+2 x_{2}=3 \quad, \quad 2 x_{1}-x_{2}=1 \quad, \quad x_{1} \geq 0 \quad, \quad x_{2} \geq 0 .
$$

2. Solve the following linear programming problem, using the bit M method. (No credit for using the graphical, or any other method). Explain everything.

Minimize $x_{1}+3 x_{2}$, subject to the restrictions

$$
x_{1}+2 x_{2} \geq 6 \quad, \quad 2 x_{1}+x_{2} \geq 6 \quad, \quad x_{1} \geq 0 \quad, \quad x_{2} \geq 0 .
$$

3. Solve the following linear programming problem, using the big M method. (No credit for using the graphical, or any other method). Explain everything.

Maximize $z=x_{1}+10 x_{2}$, subject to the restrictions

$$
x_{1}+x_{2} \geq 3 \quad, \quad x_{1}+4 x_{2} \leq 6 \quad, \quad x_{1} \geq 0 \quad, \quad x_{2} \geq 0 .
$$

Ans. 1. $\left(x_{1}, x_{2}\right)=(1,1)$, optimal value $=6$;
2. $\left(x_{1}, x_{2}\right)=(6,0)$, optimal value $=6$;
3. $\left(x_{1}, x_{2}\right)=(2,1)$, optimal value $=12$.

