Homework for Lecture 11 (Due March 7, 2019) of Linear Optiomization (Math 354), Spring 2019 (Dr. Z.)

Corrected version thanks to Amber Rawson (who won a dollar). [The previous version of problem 2 did not need the big M-method].

1. Solve the following linear programming problem, using the big M method. (No credit for using the graphical, or any other method). Explain everything.

Maximize $x_1 + 5x_2$, subject to the restrictions

$$x_1 + 2x_2 = 3$$
 , $2x_1 - x_2 = 1$, $x_1 \ge 0$, $x_2 \ge 0$.

2. Solve the following linear programming problem, using the bit M method. (No credit for using the graphical, or any other method). Explain everything.

Minimize $x_1 + 3x_2$, subject to the restrictions

$$x_1 + 2x_2 \ge 6$$
 , $2x_1 + x_2 \ge 6$, $x_1 \ge 0$, $x_2 \ge 0$.

3. Solve the following linear programming problem, using the big M method. (No credit for using the graphical, or any other method). Explain everything.

Maximize $z = x_1 + 10 x_2$, subject to the restrictions

$$x_1 + x_2 \ge 3$$
 , $x_1 + 4x_2 \le 6$, $x_1 \ge 0$, $x_2 \ge 0$.

Ans. 1. $(x_1, x_2) = (1, 1)$, optimal value= 6;

2.(Corrected March 5, 2019, thanks to Madara Dias, who won 5 dollars) $(x_1, x_2) = (6, 0)$, optimal value= 6;

3. $(x_1, x_2) = (2, 1)$, optimal value= 12.