
Dr. Z.’s Overview of the Various methods for solving Linear Programming Problems

By Doron Zeilberger

Version of March 30, 2019 (correcting a typo pointed out by William Wong (he won a dollar),

and correcting a more serious error, (how to get the RHS at the reconstructive surgery problem)

pointed out by Amber Rawson (who won five dollars).

The general linear programming problem is

{Maximize, Minimize} Some LINEAR expression in a set of variables,

subject to a set of ‘≤’ and/or ‘≤’ and/or ‘=’ constraints.

(Usually, and definitely in standard form, you insist that all the variables are ≥ 0, but sometimes

they are ‘unrestricted’.)

If there are only two variables, then the quickest way is to use the graphical method. Each

inequality

ax+ by ≤ c OR ax+ by ≥ c

gives rise to a line in the xy plane, ax+ by = c, and the region corresponding to the set of points

satisfying the inequality is on one of the half planes that the line borders.

To find out which, just pick a random point on either side and see whether the inequality is satisfied.

The intersection (common region) of these half-planes is always a convex polygon (usually

inside the positive quadrant, i.e. in the region where x ≥ 0, y ≥ 0). Its vertices are the extreme

points. There are only finitely many of them (usually not too many).

These points are the finalists. Once you have found them, you plug into the goal function

and whoever gives the maximal (or minimal, as the case may be) value, produces the optimal

solution, and the value at that record is the optimal value.

If the number of variables is three, then you can still do it graphically, with planes, bordering half-

spaces that reside in 3D space, but you need a good 3D vision, and I don’t recommend it (unless

you are requested to do it.)

The graphical method is described in section 1.4 of the textbook (Beck and Kolman, ”Introduction

to Linear Programming”.)

Another method that always works, but is not very efficient, is the algebraic method of section

1.5. Like in the simplex algorithm, you must first bring it to canonical form by creating slack

variables, and insisting that all the variables are non-negative (by doing the ‘pre-processing’: if

the condition is xi ≤ 0 make a change of variable xi → −xi, if the condition is ‘xi unrestricted’,

replace xi by two new variables, and write xi = x′i − x′′i ).



Once you do it, the problem is

Maximize or Minimize cTx subject to Ax = b and x ≥ 0, where A is an m × s matrix, c and x

are s× 1 column vectors and b is a m× 1 column vector.

Since, by a general theorem, an optimal solution is always an extreme point, and an extreme

point always has at least s −m zeros, the ‘haystack’ is finite, and this gives rise to the algebraic

algorithm.

It goes as follows.

• list all
(
s
m

)
possible m-element subsets of the set of variables {x1, . . . , xs}. For each such choice,

find its complement (this set is called the set of non-basic variables). Now, for each such choice

(there are
(
s
m

)
of them) in your system of equations, set all the s − m non-basic variables to 0,

getting a system of m equations for the remaining m basic variables. Solve the system. Each such

solution is called a basic solution. Then see whether there are negative numbers among them. If

there are, then it is an infeasible basic solution, and you kick it out. The survivors are the set

of basic feasible solutions, and as before you do the final contest, and plug-in the goal function

(this works also for minimization).

A very simple example of using the algebraic method

Maximize z = x1 + x2 + x3 subject to the constraints

x1 + 2x2 − 3x3 = 6 , x1 ≥ 0 , x2 ≥ 0 , x3 ≥ 0 .

Solution using the algebraic approach (section 1.5): There are 3 variables and one equality,

hence s = 3 and m = 1 and there are
(
3
1

)
= 3!

1!2! = 3 possibilities.

• Basic {x1}, Non Basic {x2, x3}. Plugging-in x2 = 0, x3 = 0 we get the ‘system of equations’ {x1 =

6} in the ‘set of variables’ {x1} whose solution is x1 = 6. Hence a basic solution is (x1, x2, x3) =

(6, 0, 0). This is feasible. since everything is non-negative.

• Basic {x2}, Non Basic {x1, x3}. Plugging-in x1 = 0, x3 = 0 we get the ‘system of equations’

{2x2 = 6} in the ‘set of variables’ {x2} whose solution is x2 = 3. Hence a basic solution is

(x1, x2, x3) = (0, 3, 0). This is feasible. since everything is non-negative.

• Basic {x3}, Non Basic {x1, x2}. Plugging-in x1 = 0, x2 = 0 we get the ‘system of equations’

{−3x3 = 6} in the ‘set of variables’ {x3} whose solution is x3 = −2. Hence a basic solution is

(x1, x2, x3) = (0, 0,−2). This is not feasible. since one of the coordinates is negative.

Hence the set of finalists is {(6, 0, 0), (0, 3, 0)}. Now we examine them

z(6, 0, 0) = 6 + 0 + 0 = 6,

z(0, 3, 0) = 0 + 3 + 0.



Since 6 is the largest, the optimal solution is (x1, x2, x3) = (6, 0, 0) and the optimal value is 6.

The Amazing Simplex Algorithm

The above algorithm is effective (it always terminates) but is not efficient (when s and m are

large s!/(m!(s − m)!) are usually [unless s is close to m] very large). The reason that it is so

inefficient is that we always stick to the same problem. When we solve a system of linear equations

in linear algebra, we use the Gauss-Jordan algorithm, to transform a complicated system to simpler

and simpler systems, until the system is so simple that we can solve it by glancing. That the point of

the three elementary row operations. In the simplex algorithm we use a similar approach, but now

we have an extra complication with maximizing z, the goal function. We also have the important

notion of basic variables.

Each of these intermediate problems are “encoded” using simplex tableaux, staring with the

initial simplex tableau.

The first thing to do if the goal function is

z = c1x1 + . . .+ csxs ,

is write it as

−c1x1 − . . .− csxs + z = 0 .

You treat z as an equal-rights variable.

The simplex algorithm is very fussy, it requires that

• The numbers in the right hand sides are all non-negative

• Each and every equality has a variable that only shows up in it and nowhere else (including

not showing up in the objective row!)

That special variable, is called the basic variable for that row ( alias equality).

• The coefficient of that basic variable is positive (so it can be made 1 by rescaling, i.e. dividing

by it), since it is positive, the RHS will not get ruined.

Correction to what I said in class: In class, when I said that it is stupid to introduce artificial

variables if you don’t have to, I gave an example of the following kind:

Maximize z = x1 + x2 + x3 subject to the following constraints

x1 + 2x2 = 4 ,

x1 + 2x2 + x3 = 5 ,

x1 ≥ 0 , x2 ≥ 0 , x3 ≥ 0 .



I said (wrongly!) that since x3 only shows up in the second equation it can be taken as the basic

variable for that equation. This is NONSENSE. It is true that x3 does not show up in the first

equation, but it does show up in the goal equation, so we need to introduce artificial variables for

both equalities, and use the big-M method with two artificial variables.

On the other hand, if the problem would have been

Maximize z = x1 + x2 subject to

x1 + 2x2 = 4 ,

x1 + 2x2 + x3 = 5 ,

x1 ≥ 0 , x2 ≥ 0 , x3 ≥ 0 ,

then it would have been OK to take x3 to be the basic variable of the second equation, since it

shows up neither in the first equation nor in the equation for z = x1 + x2.

Once you write the system in the tableau format, then a basic variable should be all 0 in its column

except for 1 at the row for which it serves as the basic variable. At any step, you should check that

the current simplex tableau has the property that each row has an entry that is 1 and all the other

entries in its column are 0.

The reason that we often do not need to introduce artificial variables is that in real life, the problems

thar are inputted into the simplex algorithm came from a linear programming problem in standard

form

Ax ≤ b , x ≥ 0.

Using the method of transforming it to canonical form, by introducing slack variables, we get

automatically that the slack variables (by construction!) may serve as basic variables for the

initial tableau, since each equation has its own slack variable (that is not shared with the other

equations, and of course, is not part of the goal expression).

But watch out, this is true only if the entries of the RHS vector, b, are all positive entries. Whenever

bi is positive, indeed, you should take the slack variable as the basic variable for that row, but if bi

happens to be negative, too bad. In addition to the slack variable that is already there, you need

a brand-new artificial variable.

An example of using the big-M method

Consider the problem:

Maximize z = x1 + 2x2 subject to

x1 + x2 ≤ 2 ,

x1 + 2x2 ≥ 4 ,

x1 ≥ 0 , x2 ≥ 0 .



Before we can use the simplex method, we must introduce slack variables, x3 and x4, and write it

as

Maximize z = x1 + 2x2 subject to

x1 + x2 + x3 = 2 ,

x1 + 2x2 − x4 = 4 .

x1 ≥ 0 , x2 ≥ 0 , x3 ≥ 0 , x4 ≥ 0 .

Note that x4, in the second equation, has a minus sign, since it came from a ≥ inequality.

Since x3 only shows up in the first equation, and it is neither in the second, nor in the goal equation,

it may serve as the basic variable of the first equation, since its coefficient is positive (namey 1).

On the other hand, the variable x4 may not serve as the basic variable of the second equation,

even though it is exclusive to the second equation, since its coefficient is negative, hence we need

to introduce an artificial variable for the second equation, let’s call it y1.

Using the big-M method, our new problem is

Maximize z = x1 + 2x2 −My1 subject to

x1 + x2 + x3 = 2 ,

x1 + 2x2 − x4 + y1 = 4 .

x1 ≥ 0 , x2 ≥ 0 , x3 ≥ 0 , x4 ≥ 0 , y1 ≥ 0 .

Since y1 is going to be the basic variable of the second equation, it may not show up in the goal

equation, so the first thing to do is get rid of it, by using

y1 = 4− x1 − 2x2 + x4 .

We get

z = x1 + 2x2 −My1 = x1 + 2x2 −M(4− x1 − 2x2 + x4) = x1 + 2x2 − 4M +Mx1 + 2Mx2 −Mx4

= (M + 1)x1 + (2M + 2)x2 − 4M + 0 · x3 −Mx4 ,

Moving everything, except for the number (−4M) to the left, we get

−(M + 1)x1 − (2M + 2)x2 + 0 · x3 +Mx4 + z = −4M .

Now we are ready to set-up the initial tableau



BASIC | x1 x2 x3 x4 y1 z | RHS
| |

x3 | 1 1 1 0 0 0 | 2
y1 | 1 2 0 −1 1 0 | 4

| |
| −(M + 1) −(2M + 2) 0 M 0 1 | −4M

.

Now we use the simplex algorithm, keeping in mind that M is a HUGE (but fixed!) number.

The most negative entry at the bottom row is −(2M + 2), belonging to the x2 column. Hence

the entering variable is x2. To decide on the departing variable we form the θ−ratios, 2/1 = 2

and 4/2. They are both the same, so we can take either x3 or y1 as the departing variables. Let’s

take x3. The pivot entry is the (1, 2) entry, and since it is 1 it needs no scaling. Putting arrows we

have

BASIC | x1 x↓2 x3 x4 y1 z | RHS
| |

←x3 | 1 1 1 0 0 0 | 2
y1 | 1 2 0 −1 1 0 | 4

| |
| −(M + 1) −(2M + 2) 0 M 0 1 | −4M

.

To make x2 a basic variable, we have to make the (2, 2) and (3, 2) entries 0. To that end we perform

the elementary row operations

r2 − 2r1 → r2 and r3 + (2M + 2)r1 → r3 getting the new simplex tableau

BASIC | x1 x2 x3 x4 y1 z | RHS
| |

x2 | 1 1 1 0 0 0 | 2
y1 | −1 0 −2 −1 1 0 | 0

| |
| (M + 1) 0 2M + 2 M 0 1 | 4

.

In the new tableau there are no more negative entries, hence it is the final tableau, and the

optimal solution is x2 = 2 and y1 = 0, and of course x1 = 0, x3 = 0 and x4 = 0 (since x1, x3, x4

are non-basic variables). Note that at the end, the artificial variable, y1 is 0 (as it should!, if that

does not happen, you messed up). Going back to the original problem, before we introduced slack

and artificial variables, we only care about x1 and x2, hence the optimal solution to the original

problem is x1 = 0, x2 = 2, and the optimal value is 4.



How to Reconstruct the Simplex Tableau at ANY stage (inluding the final one) From

the Initial Tableau?

Consider the initial tableau (Tableau 2.13 in the Kolman-Beck book, page 124)

BASIC | x1 x2 x3 x4 x5 z | RHS
|

x3 | 1 −1 1 0 0 0 | 2
x4 | 2 1 0 1 0 0 | 4
x5 | −3 2 0 0 1 0 | 6

| |
| −5 −3 0 0 0 1 | 0

.

Suppose that at the final (or any intermediate) stage the BASIC column is something, in that order

xi1 , xi2 , . . . , xim .

Comments: What we have here is an algorithm that have

inputs

• The initial tableau

• The righmost column of the current tableau

Output

• the full current tableau

(Note that the ‘current tableau’ may be the final tableau, but this algorithm applies to any inter-

mediate tableau (and even to the initial tableau, but then there is nothing to do)

In other words, you are told (that’s part of the input) that the left-most “BASIC” column of the

current tableau is

BASIC | x1 x2 x3 x4 x5 z | RHS
|

xi1 | 0 |
xi2 | 0 |
xi3 | 0 |

| |
| 1 |

.

and you have to reconstruct this tableau without actually peforming the simplex algorithm , only

using linear algebra.

We call the columns A1, A2, A3, A4, A5, . . ..



Step 1: Form the m×m B matrix consising, in that order, of columns Ai1, . . . , Aim

B = Ai1 . . .Aim

Also from the m× 1 column vector (gotten from c)

cB =


ci1

·
·
·
cim

 .

First, you must use linear algebra to find B−1. Now you can resconstuct all the columns of the

current tableau.

To get tj , the j-th column of the current tableau you do

tj = B−1Aj .

To get the current RHS, you do

B−1b ,

And finally to get the j-th entry at the bottom line you do

cTBtj − cj

(recall that the original entries at the bottom line were −cj).

Let’s reconstuct tableau 2.15a (p. 125) using this method, by only looking at the BASIC column.

BASIC | x1 x2 x3 x4 x5 z | RHS
|

x3 | 0 |
x1 | 0 |
x2 | 0 |

| |
| 1 |

.

It is x3x1
x2


Note: One student asked me ”how come you knew the basic variables column”?, I did not! This

is part of input for this problem. It so happened that I ”stole” it from the book, and it happens to

be a final tableau, but this fact is irrelevant.



The matix B is the matrix consisting, in that order, of the third, first and second columns of the

initial tableau. So

B =

 1 1 −1
0 2 1
0 −3 2


Using linear algebra (you do it!) we get

B−1 =
1

7

 7 1 3
0 2 −1
0 3 2


We also need, for later.

cB =

 0
5
3


We now have

t1 = B−1A1 =
1

7

 7 1 3
0 2 −1
0 3 2

 1
2
−3

 =

 0
1
0



t2 = B−1A2 =
1

7

 7 1 3
0 2 −1
0 3 2

−1
1
2

 =

 0
0
1



t3 = B−1A3 =
1

7

 7 1 3
0 2 −1
0 3 2

 1
0
0

 =

 1
0
0



t4 = B−1A4 =
1

7

 7 1 3
0 2 −1
0 3 2

 0
1
0

 =

 1
7
2
7
3
7



t5 = B−1A5 =
1

7

 7 1 3
0 2 −1
0 3 2

 0
0
1

 =

 3
7
− 1

7
2
7



The new RHS is (the original RHS is b =

 2
4
6

)

B−1b =
1

7

 7 1 3
0 2 −1
0 3 2

 2
4
6

 =

 36
7
2
7
24
7





Finally, the entries at the bottom (objective) row, in order, are

cTBt1 − c1 = [ 0 5 3 ]

 0
1
0

− c1 = 5− 5 = 0

cTBt2 − c2 = [ 0 5 3 ]

 0
0
1

− c2 = 3− 3 = 0

cTBt3 − c3 = [ 0 5 3 ]

 1
0
0

− c3 = 0− 0 = 0

cTBt4 − c4 = [ 0 5 3 ]

 1
7
2
7
3
7

− c4 =
19

7
− 0 =

19

7

cTBt5 − c5 = [ 0 5 3 ]

 3
7
− 1

7
2
7

− c5 =
1

7
− 0 =

1

7

Finally, calling the rightmost column of the current tableau xB (RHS) , the value of the objec-

tive function (the bottom-right number) is

cTBxB = [ 0 5 3 ]

 36
7
2
7
24
7

 =
82

7
.

Putting everything together, we have that the current (that happens to be the final, but the same

method works in general) tableau is

BASIC | x1 x2 x3 x4 x5 z | RHS
| |

x3 | 0 0 1 1
7

3
7 0 | 36

7
x1 | 1 0 0 2

7 − 1
7 0 | 2

7
x2 | 0 1 0 3

7
2
7 0 | 24

7
| |
| 0 0 0 19

7
1
7 1 | 82

7

.


