Solutions to REAL Quiz #5 (Dr. Z., Math 250)

1. a) (5 points) Find an LU decomposition of the following matrix

$$\begin{bmatrix} 2 & 1 & 2 \\ 4 & 3 & 7 \\ 6 & 7 & 17 \end{bmatrix}$$

Sol. of 1a): You use the first phase of Gaussian elimination, but only using the elementary row operations of the type $cr_j + r_i \rightarrow r_i$, whose code-name is E(i, j; c) until you get an upper triangular matrix U, taking careful record of these elementary row operations.

Here goes:

$$\begin{bmatrix} 2 & 1 & 2 \\ 4 & 3 & 7 \\ 6 & 7 & 17 \end{bmatrix} \xrightarrow{-2r_1 + r_2 \to r_2} -3r_1 + r_3 \to r_3 \begin{bmatrix} 2 & 1 & 2 \\ 0 & 1 & 3 \\ 0 & 4 & 11 \end{bmatrix} \xrightarrow{-4r_2 + r_3 \longrightarrow r_3} \begin{bmatrix} 2 & 1 & 2 \\ 0 & 1 & 3 \\ 0 & 4 & 11 \end{bmatrix}$$

This is U. To get L we form a 3×3 matrix with 1's on the diagonal, 0 above the diagonal, and

- $L_{2,1} = 2$ (because we used the elementary-row-operation E(2,1;-2) (i.e. $-2r_1 + r_2 \rightarrow r_2$)
- $L_{3,1} = 3$ (because we used the elementary-row-operation E(3,1;-3) (i.e. $-3r_1 + r_3 \rightarrow r_3$)

• $L_{3,2} = 4$ (because we used the elementary-row-operation E(3,2;-4) (i.e. $-4r_2 + r_3 \rightarrow r_3$)

So we have

$$L = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 4 & 1 \end{bmatrix}$$

Ans. to 1a):

$$L = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 4 & 1 \end{bmatrix} \quad . \quad , \quad U = \begin{bmatrix} 3 & 1 & 2 \\ 0 & 1 & 3 \\ 0 & 0 & -1 \end{bmatrix} \quad .$$

b) (3 points) Use the answer to part a) to solve the following system of linear equations:

$$2x_1 + x_2 + 2x_3 = 5$$
$$4x_1 + 3x_2 + 7x_3 = 14$$
$$6x_1 + 7x_2 + 17x_3 = 30$$

Sol. of 1b): We have to solve $A\mathbf{x} = \mathbf{b}$ where

$$A = \begin{bmatrix} 2 & 1 & 2 \\ 4 & 3 & 7 \\ 6 & 7 & 17 \end{bmatrix} \quad , \quad \mathbf{b} = \begin{bmatrix} 5 \\ 14 \\ 30 \end{bmatrix}$$

We now know that A = LU so we have to solve $LU\mathbf{x} = \mathbf{b}$. Putting $\mathbf{y} = U\mathbf{x}$, we have $L\mathbf{y} = \mathbf{b}$. So we first have to solve

$$L\mathbf{y} = \mathbf{b}$$
 .

In everyday notation this is

$$y_1 = 5$$
 ,
 $2y_1 + y_2 = 14$,
 $3y_1 + 4y_2 + y_3 = 30$.

We get $y_1 = 5$ for free. Plugging-into the second equation we get $2(5) + y_2 = 14$ so $y_2 = 14 - 2 \cdot 5 = 14 - 10 = 4$ and finally $3(5) + 4(4) + y_3 = 30$ gives $y_3 = 30 - 15 - 16 = -1$. So

$$\begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} 5 \\ 4 \\ -1 \end{bmatrix} .$$

Now we are ready to solve $U\mathbf{x} = \mathbf{y}$. (Using the y_1, y_2, y_3 that we have just found). In everyday notation this is:

$$2x_1 + x_2 + 2x_3 = 5$$

 $x_2 + 3x_3 = 4$
 $-x_3 = -1$.

Going **bottom up**, we have $x_3 = 1$, $x_2 = 4 - 3x_3 = 4 - 3 \cdot 1 = 4 - 3 = 1$, $2x_1 = 5 - x_2 - 2x_3 = 5 - 1 - 2 \cdot 1 = 2$ and so $x_1 = 1$.

Ans. to 1b):

$$x_1 = 1$$
 , $x_2 = 1$, $x_3 = 1$.