Solutions to the Attendance Quiz for Lecture 3

1. Perform the indicated elementary operation on

$$
A=\left[\begin{array}{ccc}
2 & -3 & 1 \\
-4 & 5 & 0 \\
3 & -1 & 2 \\
4 & 11 & -2
\end{array}\right]
$$

(i) Interchange rows 2 and 4 .

Sol. to 1(i):

$$
A=\left[\begin{array}{ccc}
2 & -3 & 1 \\
4 & 11 & -2 \\
3 & -1 & 2 \\
-4 & 5 & 0
\end{array}\right]
$$

(ii) Multiply row 3 by -3 .

Sol. to 1(ii):

$$
\left[\begin{array}{ccc}
2 & -3 & 1 \\
-4 & 5 & 0 \\
-9 & 3 & -6 \\
4 & 11 & -2
\end{array}\right]
$$

Comments: Everyone got it right!
2. The reduced row echelon form of a certain system of linear equations is:

$$
\left[\begin{array}{cccc}
1 & -2 & 0 & 4 \\
0 & 0 & 1 & 3 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Determine whether this system is consistent, and if so, find its general solution. In addition, write the solution in vector form.

Sol. to 2: In everyday notation (using as variable names x_{1}, x_{2}, x_{3}), we have:

$$
x_{1}-2 x_{2}=4 \quad, \quad x_{3}=3 \quad, \quad 0=0 .
$$

x_{1}, x_{3} are the basic variables, and x_{2} is the free variable. Expressing the basic variables in terms of the free variable(s) (in this example, we only have one free variable), we have:

$$
x_{1}=4+2 x_{2} \quad, \quad x_{2}=x_{2}(\text { free }) \quad, \quad x_{3}=3
$$

So this system is consistent and this is the general solution. To get it in vector form, we have:

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
4+2 x_{2} \\
x_{2} \\
3
\end{array}\right]=\left[\begin{array}{l}
4 \\
0 \\
3
\end{array}\right]+x_{2}\left[\begin{array}{l}
2 \\
1 \\
0
\end{array}\right] .
$$

Comments: About 70\% of the people got it completely right. Some people didn't give the vector forms. Some people got confused and thoughts that there are four variables. Remember this is an augmented matrix and the number of variables is the number of columns take away one (the last column corresponds to the right hand side of the system of equations).
3. The reduced row echelon form of a certain system of linear equations is:

$$
\left[\begin{array}{ccc}
1 & -3 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right] .
$$

Determine whether this system is consistent, and if so, find its general solution. In addition, write the solution in vector form.

Sol. of 3: Here we see a row (in this example the second row) with all zeroes except the rightmost one, (1 in this case). This is saying $0=1$, and this is inconsistent (nonsense!).

Ans. System is inconsistent since it has a row of all zeroes except for the rightmost entry that is non-zero.

Comment: About 90% of the people got it right.

