Solutions Attendance Quiz for Lecture 24 (Review Session)

1. Complete the following sentences
a: A vector \mathbf{u} in R^{n} is a linear combination of the set $\mathcal{S}=\left\{\mathbf{u}_{\mathbf{1}}, \ldots, \quad \mathbf{u}_{\mathbf{k}}\right\}$ if \ldots

Ans. to a: there exist real numbers $c_{1}, \ldots c_{k}$ such that $\mathbf{u}=c_{1} \mathbf{u}_{\mathbf{1}}+c_{2} \mathbf{u}_{\mathbf{2}}+\ldots+c_{k} \mathbf{u}_{\mathbf{k}}$.
b: A set of vectors $\mathcal{S}=\left\{\mathbf{u}_{\mathbf{1}}, \ldots, \quad \mathbf{u}_{\mathbf{k}}\right\}$ is linearly independent if \ldots

Ans. to \mathbf{b} : the only choice of real numbers $c_{1}, \ldots c_{k}$ for which $\mathbf{0}=c_{1} \mathbf{u}_{\mathbf{1}}+c_{2} \mathbf{u}_{\mathbf{2}}+\ldots+c_{k} \mathbf{u}_{\mathbf{k}}$, is the obvious choice of all the c_{i} being 0 , in other words $c_{1}=0, c_{2}=0, \ldots, c_{k}=0$.

Or, more succinctly: $\left[\mathbf{u}_{\mathbf{1}} \ldots \mathbf{u}_{\mathbf{k}}\right] \mathbf{c}=\mathbf{0} \Rightarrow \mathbf{c}=\mathbf{0}$
c: A set of vectors $\mathcal{S}=\left\{\mathbf{u}_{\mathbf{1}}, \quad \ldots \quad, \quad \mathbf{u}_{\mathbf{k}}\right\}$ is a generating set for a subspace V of R^{n} if \ldots

Ans. to c: every member of V is a linear combination of the members of \mathcal{S}
\mathbf{d} : A set of vectors $\mathcal{S}=\left\{\mathbf{u}_{\mathbf{1}}, \ldots, \quad \mathbf{u}_{\mathbf{k}}\right\}$ is a basis for a subspace V of R^{n} if \ldots

Ans. to d: \mathcal{S} is both a generating set and a linearly independent set.
e: An eigenvalue of a square $(n \times n)$ matrix A, is a number t such that \ldots

Ans. to e: there exists a non-zero vector $\mathbf{x} \in R^{n}$ such that $A \mathbf{x}=t \mathbf{x}$.
Or:
if there exists a non-zero vector $\mathbf{x} \in R^{n}$ such that $\left(A-t I_{n}\right) \mathbf{x}=0$.
Or:
If t is a root of the characteristic equation $\operatorname{det}\left(A-t I_{n}\right)=0$.
f: An eigenvector of a square $(n \times n)$ matrix A is a vector \mathbf{x} in R^{n} such that \ldots

Ans. to $\mathbf{f}: \mathbf{x} \neq \mathbf{0}$ and $A \mathbf{x}$ is a scalar multiple of \mathbf{x}, i.e. there exists a real number t such that $A \mathrm{x}=t \mathrm{x}$ (BTW: t is called the eigenvalue corresponding to the eigenvector $\mathbf{x})$.
g: A pivot entry in the row-echelon (or reduced-row-echelon) form of matrix is an entry that is ...

Ans. to g: the leftmost non-zero entry in its row. (BTW, by construction, it is also the bottommost non-zero entry in its column, i.e. all the entries below it must be 0).
h : An elementary row operation is one of the following operations involving either one or two rows of a matrix: ...

Ans. to h:

- $k r_{i} \rightarrow r_{i}$ (In English: replace the i-th row by k times itself)
- $r_{i} \leftrightarrow r_{j}$ (In English: Interchange row i and row j).
- $k r_{j}+r_{i} \leftrightarrow r_{i}$ (In English: replace the i-th row by itself plus k times row j)

