Attendance Quiz for Lecture 24 (Review Session)

NAME: (print!)	Section:
E-MAIL ADDRESS: (print!)	
1. Complete the following sentences	
a : A vector u in \mathbb{R}^n is a linear combination of the set $\mathcal{S} = \{\mathbf{u_1}, $	$\ldots \ , \ \mathbf{u_k} \} \ \mathrm{if} \ \ldots$
b: A set of vectors $\mathcal{S} = \{u_1 \ , \ \ldots \ , \ u_k\}$ is linearly independe	nt if
$\mathbf{c} \colon \mathrm{A} \ \mathrm{set} \ \mathrm{of} \ \mathrm{vectors} \ \mathcal{S} = \{\mathbf{u_1} , \ldots , \mathbf{u_k}\} \ \mathrm{is} \ \mathrm{a} \ \mathbf{generating} \ \mathbf{set} \ \mathrm{for}$	a subspace V of \mathbb{R}^n if

d: A set of vectors $S = \{\mathbf{u_1}, \ldots, \mathbf{u_k}\}$ is a **basis** for a subspace V of \mathbb{R}^n if ...

e: An eigenvalue of a square $(n \times n)$ matrix A, is a number t such that ...

f: An **eigenvector** of a square $(n \times n)$ matrix A is a vector **x** in \mathbb{R}^n such that ...

g: A **pivot entry** in the row-echelon (or reduced-row-echelon) form of matrix is an entry that is \dots

h: An **elementary row operation** is one of the following operations involving either one or two rows of a matrix: ...