Attendance Quiz for Lecture 24 (Review Session)

NAME: (print!) \qquad Section: \qquad

E-MAIL ADDRESS: (print!) \qquad

1. Complete the following sentences
a: A vector \mathbf{u} in R^{n} is a linear combination of the set $\mathcal{S}=\left\{\mathbf{u}_{\mathbf{1}}, \ldots, \quad \mathbf{u}_{\mathbf{k}}\right\}$ if \ldots
b: A set of vectors $\mathcal{S}=\left\{\mathbf{u}_{\mathbf{1}}, \ldots, \quad \mathbf{u}_{\mathbf{k}}\right\}$ is linearly independent if \ldots
c: A set of vectors $\mathcal{S}=\left\{\mathbf{u}_{\mathbf{1}}, \ldots, \quad \mathbf{u}_{\mathbf{k}}\right\}$ is a generating set for a subspace V of R^{n} if \ldots
\mathbf{d} : A set of vectors $\mathcal{S}=\left\{\mathbf{u}_{\mathbf{1}}, \ldots, \quad \mathbf{u}_{\mathbf{k}}\right\}$ is a basis for a subspace V of R^{n} if \ldots
e: An eigenvalue of a square $(n \times n)$ matrix A, is a number t such that \ldots
f: An eigenvector of a square $(n \times n)$ matrix A is a vector \mathbf{x} in R^{n} such that \ldots
g: A pivot entry in the row-echelon (or reduced-row-echelon) form of matrix is an entry that is
h: An elementary row operation is one of the following operations involving either one or two rows of a matrix: ...
