Solutions to the Attendance Quiz for Lecture 21

1. (a) Apply the Gram-Schmidt process to replace the given linearly independent set \mathcal{S} by an orthogonal set of non-zero vectors with the same span.

$$
\mathcal{S}=\left\{\left[\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right] \quad, \quad\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right]\right\}
$$

Sol. of 1: The data is

$$
\mathbf{u}_{\mathbf{1}}=\left[\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right] \quad, \quad \mathbf{u}_{\mathbf{2}}=\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right]
$$

Gram-Schmidt says

$$
\begin{gathered}
\mathbf{v}_{\mathbf{1}}=\mathbf{u}_{\mathbf{1}} . \\
\mathbf{v}_{\mathbf{2}}=\mathbf{u}_{\mathbf{2}}-\frac{\mathbf{u}_{2} \cdot \mathbf{v}_{1}}{\left\|\mathbf{v}_{\mathbf{1}}\right\|^{2}} \mathbf{v}_{\mathbf{1}} .
\end{gathered}
$$

So

$$
\mathbf{v}_{\mathbf{1}}=\left[\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right]
$$

We have

$$
\mathbf{u}_{\mathbf{2}} \cdot \mathbf{v}_{\mathbf{1}}=\left[\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right] \cdot\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right]=(1)(1)+(-2)(-1)+(1)(0)=1+2+0=3
$$

and

$$
\left\|\mathbf{v}_{\mathbf{1}}\right\|^{2}=(1)^{2}+(-2)^{2}+(1)^{2}=6
$$

Putting it together, we have:

$$
\mathbf{v}_{\mathbf{2}}=\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right]-\frac{3}{6}\left[\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right]=\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right]-\frac{1}{2}\left[\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right]=\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right]-\left[\begin{array}{c}
\frac{1}{2} \\
-1 \\
\frac{1}{2}
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{2} \\
0 \\
-\frac{1}{2}
\end{array}\right]
$$

Ans. to 1a: An orthogonal basis for the span of \mathcal{S} is:

$$
\left\{\left[\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right], \quad\left[\begin{array}{c}
\frac{1}{2} \\
0 \\
-\frac{1}{2}
\end{array}\right]\right\}
$$

(b) Obtain an orthonormal set with the same span as \mathcal{S}.

Sol. of 1b): We divide these two vectors by their norms. We have

$$
\begin{gathered}
\left\|\mathbf{v}_{\mathbf{1}}\right\|=\sqrt{1^{2}+(-2)^{2}+1^{2}}=\sqrt{6} \\
\left\|\mathbf{v}_{\mathbf{2}}\right\|=\sqrt{\left(\frac{1}{2}\right)^{2}+(0)^{2}+\left(\frac{1}{2}\right)^{2}}=\frac{\sqrt{2}}{2}
\end{gathered}
$$

So

$$
\begin{aligned}
& \mathbf{w}_{\mathbf{1}}=\frac{\mathbf{v}_{1}}{\left\|\mathbf{v}_{\mathbf{1}}\right\|}=\frac{1}{\sqrt{6}}\left[\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right]=\left[\begin{array}{c}
\frac{\sqrt{6}}{6} \\
-\frac{2 \sqrt{6}}{6} \\
\frac{\sqrt{6}}{6}
\end{array}\right] \\
& \mathbf{w}_{\mathbf{2}}=\frac{\mathbf{v}_{\mathbf{2}}}{\left\|\mathbf{v}_{\mathbf{2}}\right\|}=\sqrt{2}\left[\begin{array}{c}
\frac{1}{2} \\
0 \\
-\frac{1}{2}
\end{array}\right]=\left[\begin{array}{c}
\frac{\sqrt{2}}{2} \\
0 \\
-\frac{\sqrt{2}}{2}
\end{array}\right]
\end{aligned}
$$

Ans. to 1b: An orthonormal basis for the span of \mathcal{S} is:

$$
\left\{\left[\begin{array}{c}
\frac{\sqrt{6}}{6} \\
-\frac{2 \sqrt{6}}{6} \\
\frac{\sqrt{6}}{6}
\end{array}\right], \quad\left[\begin{array}{c}
\frac{\sqrt{2}}{2} \\
0 \\
-\frac{\sqrt{2}}{2}
\end{array}\right]\right\}
$$

