Solutions to the Attendance Quiz for Lecture 20

1. Consider the vectors ${\bf u}$ and ${\bf v}:$

$$\mathbf{u} = \begin{bmatrix} 1\\2\\3 \end{bmatrix} \quad , \quad \mathbf{v} = \begin{bmatrix} -11\\4\\1 \end{bmatrix}$$

(a) Prove that \mathbf{u} and \mathbf{v} are orthogonal to each other.

Sol. of 1a):

$$\mathbf{u} \cdot \mathbf{v} = (1)(-11) + (2)(4) + (3)(1) = -11 + 8 + 3 = 0.$$

Since the dot-product of \mathbf{u} and \mathbf{v} is 0, it follows that they are orthogonal.

(b) Compute the quantities $||\mathbf{u}||^2$, $||\mathbf{v}||^2$ and $||\mathbf{u}+\mathbf{v}||^2$. Use your results to illustrate the Pythagorean theorem.

Sol. of 1b): First, let's compute $\mathbf{u} + \mathbf{v}$:

$$\mathbf{u} + \mathbf{v} = \begin{bmatrix} 1\\2\\3 \end{bmatrix} + \begin{bmatrix} -11\\4\\1 \end{bmatrix} = \begin{bmatrix} -10\\6\\4 \end{bmatrix}$$

Now:

$$||\mathbf{u}||^{2} = (1)^{2} + (2)^{2} + (3)^{2} = 1 + 4 + 9 = 14$$
$$||\mathbf{v}||^{2} = (-11)^{2} + (4)^{2} + (1)^{2} = 121 + 16 + 1 = 138$$
$$\mathbf{u} + \mathbf{v}||^{2} = (-10)^{2} + (6)^{2} + (4)^{2} = 100 + 36 + 16 = 152$$

Since 14 + 138 = 152, Pythagoras was proven right! (at least in this case).

2. Suppose that $\mathbf{u}, \mathbf{v}, \mathbf{w}$ are vectors in \mathbb{R}^n such that $\mathbf{u} \cdot \mathbf{v} = 2$, $\mathbf{u} \cdot \mathbf{w} = 3$, and $\mathbf{v} \cdot \mathbf{w} = -2$. Compute $(\mathbf{u} + \mathbf{w}) \cdot \mathbf{v}$.

Sol. of 2: Using the *distributive property* of the dot-product, we have

$$(\mathbf{u} + \mathbf{w}) \cdot \mathbf{v} = \mathbf{u} \cdot \mathbf{v} + \mathbf{w} \cdot \mathbf{v}$$

By the *commutative property* we have that $\mathbf{w} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{w}$, so we have

$$(\mathbf{u} + \mathbf{w}) \cdot \mathbf{v} = \mathbf{u} \cdot \mathbf{v} + \mathbf{w} \cdot \mathbf{v} = \mathbf{u} \cdot \mathbf{v} + \mathbf{v} \cdot \mathbf{w}$$

Now use the **data** of the problem to get that this equals:

$$2 + (-2) = 0$$

Ans. to 2: 0.