Solutions to the Attendance Quiz for Lecture 20

1. Consider the vectors \mathbf{u} and \mathbf{v} :

$$
\mathbf{u}=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right] \quad, \quad \mathbf{v}=\left[\begin{array}{c}
-11 \\
4 \\
1
\end{array}\right]
$$

(a) Prove that \mathbf{u} and \mathbf{v} are orthogonal to each other.

Sol. of 1a):

$$
\mathbf{u} \cdot \mathbf{v}=(1)(-11)+(2)(4)+(3)(1)=-11+8+3=0 .
$$

Since the dot-product of \mathbf{u} and \mathbf{v} is 0 , it follows that they are orthogonal.
(b) Compute the quantities $\|\mathbf{u}\|^{2},\|\mathbf{v}\|^{2}$ and $\|\mathbf{u}+\mathbf{v}\|^{2}$. Use your results to illustrate the Pythagorean theorem.

Sol. of 1b): First, let's compute $\mathbf{u}+\mathbf{v}$:

$$
\mathbf{u}+\mathbf{v}=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]+\left[\begin{array}{c}
-11 \\
4 \\
1
\end{array}\right]=\left[\begin{array}{c}
-10 \\
6 \\
4
\end{array}\right]
$$

Now:

$$
\begin{gathered}
\|\mathbf{u}\|^{2}=(1)^{2}+(2)^{2}+(3)^{2}=1+4+9=14 \\
\|\mathbf{v}\|^{2}=(-11)^{2}+(4)^{2}+(1)^{2}=121+16+1=138 \\
\|\mathbf{u}+\mathbf{v}\|^{2}=(-10)^{2}+(6)^{2}+(4)^{2}=100+36+16=152 .
\end{gathered}
$$

Since $14+138=152$, Pythagoras was proven right! (at least in this case).
2. Suppose that $\mathbf{u}, \mathbf{v}, \mathbf{w}$ are vectors in R^{n} such that $\mathbf{u} \cdot \mathbf{v}=2, \mathbf{u} \cdot \mathbf{w}=3$, and $\mathbf{v} \cdot \mathbf{w}=-2$. Compute $(\mathbf{u}+\mathbf{w}) \cdot \mathbf{v}$

Sol. of 2: Using the distributive property of the dot-product, we have

$$
(\mathbf{u}+\mathbf{w}) \cdot \mathbf{v}=\mathbf{u} \cdot \mathbf{v}+\mathbf{w} \cdot \mathbf{v}
$$

By the commutative property we have that $\mathbf{w} \cdot \mathbf{v}=\mathbf{v} \cdot \mathbf{w}$, so we have

$$
(\mathbf{u}+\mathbf{w}) \cdot \mathbf{v}=\mathbf{u} \cdot \mathbf{v}+\mathbf{w} \cdot \mathbf{v}=\mathbf{u} \cdot \mathbf{v}+\mathbf{v} \cdot \mathbf{w} .
$$

Now use the data of the problem to get that this equals:

$$
2+(-2)=0
$$

Ans. to 2: 0 .

