Solutions to the Attendance Quiz for Lecture 11

1. a) Find an LU decomposition of the following matrix

$$
\left[\begin{array}{ccc}
2 & -1 & 1 \\
4 & -1 & 4 \\
-2 & 1 & 2
\end{array}\right]
$$

Sol. of 1a): We apply the first phase of Gaussian Elimination bringing it to row-echelon form, keeping track of the elementary row operations that we performed.

To make the $(2,1)$-entry be 0 and the $(3,1)$ entry be 0 , we perform

$$
(-2) r_{1}+r_{2} \rightarrow r_{2} \quad, \quad r_{1}+r_{3} \rightarrow r_{3}
$$

Getting

$$
\left[\begin{array}{ccc}
2 & -1 & 1 \\
0 & 1 & 2 \\
0 & 0 & 3
\end{array}\right]
$$

To our great delight this is already in row-echelon form, and this matrix is our U. To get L we look at the above elementary row operations.

Recall that the 'code-name' of the elementary row operation $c r_{j}+r_{i} \rightarrow r_{i}$ is $E(i, j ; c)$, and for each such, $L_{i, j}=-c$.

The 'code-name' of the elementary row operation

$$
(-2) r_{1}+r_{2} \rightarrow r_{2}
$$

$E(2,1 ;-2)$. so $c=-2$ and $L_{2,1}=-c=-(-2)=2$.
The 'code-name' of

$$
r_{1}+r_{3} \rightarrow r_{3}
$$

is $E(3,1 ; 1)$ so $c=1$ and $L_{3,1}=-c=-(1)=-1$.
Since $L_{3,2}$ does not show up (there is no elementary row operation of the form $c r_{2}+r_{3} \rightarrow r_{3}$), we have $L_{3,2}=0$. Of course, all entries on the diagonal are 1 and all the entires above the diagonal are 0. Hence:

$$
L=\left[\begin{array}{ccc}
1 & 0 & 0 \\
2 & 1 & 0 \\
-1 & 0 & 1
\end{array}\right]
$$

Ans. to 1:

$$
L=\left[\begin{array}{ccc}
1 & 0 & 0 \\
2 & 1 & 0 \\
-1 & 0 & 1
\end{array}\right] \quad, \quad U=\left[\begin{array}{ccc}
2 & -1 & 1 \\
0 & 1 & 2 \\
0 & 0 & 3
\end{array}\right]
$$

b) Use the answer to part a) to solve the following system of linear equations:

$$
\begin{gathered}
2 x_{1}-x_{2}+x_{3}=-1 \\
4 x_{1}-x_{2}+4 x_{3}=-2 \\
-2 x_{1}+x_{2}+2 x_{3}=-2
\end{gathered}
$$

Sol. of 1b): In matrix notation, we have to solve the system $A \mathbf{x}=\mathbf{b}$, where

$$
A=\left[\begin{array}{ccc}
2 & -1 & 1 \\
4 & -1 & 4 \\
-2 & 1 & 2
\end{array}\right]
$$

is the matrix of part a), and the right-hand-side vector \mathbf{b} is given by:

$$
\mathbf{b}=\left[\begin{array}{l}
-1 \\
-2 \\
-2
\end{array}\right]
$$

In part a) we found L and U such that $A=L U$, for a certain lower-triangular matrix L, and another upper-triangular matrix U.

So the system $A \mathbf{x}=\mathbf{b}$ can be written as:

$$
L U \mathbf{x}=\mathbf{b}
$$

Now define

$$
\mathbf{y}=U \mathbf{x}
$$

Then we have the two systems

$$
L \mathbf{y}=\mathbf{b} \quad, \quad U \mathbf{x}=\mathbf{y}
$$

This is a two-step process.
We first solve $L \mathbf{y}=\mathbf{b}$ getting the vector \mathbf{y}. In everyday language this is

$$
\begin{gathered}
y_{1}=-1 \\
2 y_{1}+y_{2}=-2 \\
-y_{1}+y_{3}=-2
\end{gathered} .
$$

We use forward-substitution going top-down. From the first equation we immediately know that $y_{1}=-1$. Plugging this information into the second equation we get $2(-1)+y_{2}=-2$ that tells us that $y_{2}=0$. Finally we go to the third equation (that would normally involve both y_{1} and y_{2},
it is a fluke that in this problem y_{2} is absent), and get $-(-1)+y_{3}=-2$ that tells us $1+y_{3}=-2$ so $y_{3}=-3$. So the solution of the first system is

$$
\mathbf{y}=\left[\begin{array}{cc}
-1 & \\
0 & . \\
-3 & .
\end{array}\right]
$$

Now we have to solve the system $U \mathbf{x}=\mathbf{y}$, i.e.

$$
\left[\begin{array}{ccc}
2 & -1 & 1 \\
0 & 1 & 2 \\
0 & 0 & 3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
-1 \\
0 \\
-3
\end{array}\right]
$$

In everyday notation this means

$$
\begin{gathered}
2 x_{1}-x_{2}+x_{3}=-1 \\
x_{2}+2 x_{3}=0 \\
3 x_{3}=-3
\end{gathered}
$$

Now we use back-substitution going bottom-up.

From the last equation we get

$$
x_{3}=-1
$$

Plugging this information into the second equation we get:

$$
x_{2}+2 \cdot(-1)=0
$$

so

$$
x_{2}=2
$$

Plugging the already-known values of x_{3} and x_{2} into the first equation we get

$$
2 x_{1}-2+(-1)=-1
$$

that yields $x_{1}=1$. Hooray we have solved the system. Ans. to 1b):

$$
x_{1}=1 \quad, \quad x_{2}=2 \quad, \quad x_{3}=-1
$$

In vector notation:

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
1 \\
2 \\
-1
\end{array}\right]
$$

You are welcome to check the answer by plugging-in into the system.

