Solutions to Attendance Quiz for Lecture 10

1. Compute the product of the partitioned matrix using block multiplication.

$$
\left[\begin{array}{cc}
2 & 0 \\
--- & --- \\
3 & 1 \\
-1 & 5 \\
1 & 2
\end{array}\right]\left[\begin{array}{cccc}
-1 & \mid 2 & 3 & 0 \\
2 & \mid 2 & -1 & 2
\end{array}\right]
$$

Sol. of 1 Let's give the blocks names

$$
\left[\begin{array}{l}
A_{1} \\
A_{2}
\end{array}\right]\left[\begin{array}{ll}
B_{1} & B_{2}
\end{array}\right]
$$

Pretending that the blocks are just numbers, we get

$$
\left[\begin{array}{ll}
A_{1} B_{1} & A_{1} B_{2} \\
A_{2} B_{1} & A_{2} B_{2}
\end{array}\right]
$$

Where

$$
A_{1}=\left[\begin{array}{ll}
2 & 0
\end{array}\right] \quad, \quad A_{2}=\left[\begin{array}{cc}
3 & 1 \\
-1 & 5 \\
1 & 2
\end{array}\right] \quad, \quad B_{1}=\left[\begin{array}{c}
-1 \\
2
\end{array}\right] \quad, \quad B_{2}=\left[\begin{array}{ccc}
2 & 3 & 0 \\
2 & -1 & 2
\end{array}\right] .
$$

Now do the four matrix-multiplications:

$$
\begin{aligned}
& A_{1} B_{1}=\left[\begin{array}{ll}
2 & 0
\end{array}\right]\left[\begin{array}{c}
-1 \\
2
\end{array}\right]=(2)(-1)+(0)(2)=[-2] \\
& A_{1} B_{2}=\left[\begin{array}{ll}
2 & 0
\end{array}\right]\left[\begin{array}{ccc}
2 & 3 & 0 \\
2 & -1 & 2
\end{array}\right]=[(2)(2)+0(2) \quad(2)(3)+(0)(-1) \quad(2)(0)+(0)(2)]=\left[\begin{array}{lll}
4 & 6 & 0
\end{array}\right] \\
& A_{2} B_{1}=\left[\begin{array}{cc}
3 & 1 \\
-1 & 5 \\
1 & 2
\end{array}\right]\left[\begin{array}{c}
-1 \\
2
\end{array}\right]=\left[\begin{array}{c}
(3)(-1)+(1)(2) \\
(-1)(-1)+(5)(2) \\
(1)(-1)+(2)(2)
\end{array}\right]=\left[\begin{array}{c}
-1 \\
11 \\
3
\end{array}\right]= \\
& A_{2} B_{2}=\left[\begin{array}{cc}
3 & 1 \\
-1 & 5 \\
1 & 2
\end{array}\right]\left[\begin{array}{ccc}
2 & 3 & 0 \\
2 & -1 & 2
\end{array}\right]=\left[\begin{array}{ccc}
(3)(2)+(1)(2) & (3)(3)+(1)(-1) & (3)(0)+(1)(2) \\
(-1)(2)+(5)(2) & (-1)(3)+(5)(-1) & (-1)(0)+(5)(2) \\
(1)(2)+(2)(2) & (1)(3)+(2)(-1) & (1)(0)+(2)(2)
\end{array}\right]=\left[\begin{array}{ccc}
8 & 8 & 2 \\
8 & -8 & 10 \\
6 & 1 & 4
\end{array}\right]
\end{aligned}
$$

Putting it altogether we have

$$
\left[\begin{array}{cccc}
-2 & 4 & 6 & 0 \\
-1 & 8 & 8 & 2 \\
11 & 8 & -8 & 10 \\
3 & 6 & 1 & 4
\end{array}\right]
$$

This is the answer.
Comments: About $\% 60$ of the students got it compeletely. The others messed up to varying degrees.

