
Dr. Z’s Introduction to Linear Algebra Notes for Understanding the Basic Concepts (and using Maple)

By Doron Zeilberger

NOT responsible for any errors. The first finder of any error will get a dollar.

All the references are to the textbook used in this class

“Elementary Linear Algebra, a Matrix Approach”, 2e, by L.E. Spence, A. J. Insel, and A. H.

Friedberg .

Note: These short notes are meant to solidify the most important concepts so that you will see

the Forest (in addition to seeing the trees), and don’t confuse related but different concepts. Also,

since I am a Maple person, and not a MatLab person, I will describe how to do problems, whenever

possible, with the simpler Maple package linalg. There is a more complicated package called

LinearAlegbra, that sometimes is needed, but whenever possible, I prefer linalg, and all (the

computational, of course, not the conceptual) problems can be done with Maple. Of course, in the

tests you can not use Maple, but it is great for checking the homework problems (the book only

gives the final answers, not the intermediate step), and for solidifying the concepts.

If you are a Rutgers students, you can freely download Maple to your laptop (or desktop). All the

Rutgers computer Labs (I think) have Maple (at any rate ARC does).

WARNING: These notes are not instead of the book! Their purpose to emphasize the basic

concepts, remove some of the confusing things in the book (for example, where they make you

work harder than necessary by telling you to do ‘reduced row-echelon form’ where the easier task

of ‘row-echelon form’ (sometimes) suffices), and to tell you how to use Maple (using Maple will also

clarify the concepts!).

Note: The part about Maple commands is optional. People who do not like programming, or

Maple, can safely ignore them. However, I believe that doing the problems in Maple (in addition

to doing it the traditional way, by paper-and-pencil) will enhance your understanding.

Basic Concept 1: One Equation in One Unknown (Variable)

An equation is a puzzle but not every puzzle is an equation.

For example:

Puzzle (Spoken): What is black and white and red [read] all-over?

First Answer: Newspaper. Second Answer: A sun-burned zebra.

Here there are (at least!, you are welcome to come up with more) answers. But the answers are

not numbers.
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Another example:

Another Puzzle In a certain village the (only) barber shaves all those men who do not shave

themselves. Can you find someone who shaves himself?

Ans. No solutions.

An equation (in one variable) is a puzzle whose answers are numbers.

For example, the equation

2x + 1 = 5 ,

is a puzzle. ‘I am a number, if you multiply me by 2 and add 1 you would get 5, who am I’.

In this case is is easy to solve, and get x = 2.

Sometimes it is not so easy, for example

x5 + x = 2 ,

is also such a puzzle. Once someone tells you to check whether a proposed solution is indeed a

solution, it is very easy, just plug-it in. For example, to check whether x = 2 is a solution, you ask

yourself whether

25 + 2 = 2 ,

but 34 = 2 is wrong, so x = 2 is not a solution. On the other hand, if I propose x = 1 you get

15 + 1 = 2 ,

and this is a true statement, so x = 1 is a solution.
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How to solve one equation in Maple?

Maple has a nice command called solve. The syntax is

solve(eq,var) ;

For example, to solve the equation x5 + 1 = 2 you do

solve(x**5+1=2,x);

Maple convention: Instead of doing

solve(eq=0,x);

one can simply type:

solve(eq,x);

In other words, if Maple does not see an equal sign (it automatically thinks that the right side is

0).

Basic Concept 2: One Linear Equation in One Unknown

The equation x2 − 3x + 1 = 0 in the unknown x is not, linear (it is quadratic). Neither is the

equation x3 + x− 5 = 0 (it is cubic), neither is the equation cosx + ex = 1 (it is transcendental).

One linear equation in one unknown (usually called x, but you can use any letter), is extremely

simple, it has the form

a x = b ,

where a and b are numbers, and it has exactly one solution x = b/a, unless a = 0, and b 6= 0, in

which case it has no solutions, or a = 0 and b = 0 in which case it has infinitely many solutions,

all x. (This is a bit confusing since in the equation ‘0 = 0’, the variable, x, does not show up, but

the answer to the problem: ‘Solve the equation 0 = 0 for the unknown x’ is:

{x | −∞ < x <∞} .

i.e. every real number is a solution.

Basic Concept 3: System of Equations in Several variables

Problem: Solve the system of equations

{x2 + xy + y2 = 1, x3 + xy + y3 = 3} ,

in the unknowns (alias variables) x, y. Don’t worry, in this class you will never have to do such

problems since these equations are non-linear. Nevertheless, Maple can do it. The command is

solve( {x**2+x*y+y**2=3,x**3+x*y+y**3=3 },{ x ,y});
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and Maple will give you {x = 1, y = 1}, as well as other (complex-numbers) solutions.

Basic Concept 4: System of LINEAR Equations in Several variables

One linear equation in the variables x, y has the format

ax + by = c ,

where a, b, c are numbers. a and b are the coefficients, and c is the right hand side .

One linear equation in three variables x, y, z has the format

ax + by + cz = d ,

where a, b, c, d are numbers. a and b and c are the coefficients, and d is the right hand side.

In general, one linear equation in k variables, x1, . . . , xk has the format

a1 x1 + a2 x2 + . . . + akxk = b ,

where a1, . . . , ak are numbers called the coefficients and b is a number called the ‘right hand side’.

A system of m linear equations in n unknowns x1, . . . , xk has the format

a11x1 + a12x2 + . . . + a1kxk = b1

. . .

am1x1 + am2x2 + . . . + amkxk = bm .

Maple can always solve such a system without linear-algebra, using the ‘high-school algorithm’

(elimination and back-substitution), essentially as I did here

http://sites.math.rutgers.edu/~zeilberg/LinAlg18/Sol.txt .

For example, let’s use Maple to solve exercise 4 in section 1.4 (p. 52). It is a system of two linear

equations in the three variables x1, x2, x3.

x1 − x2 − 3x3 = 3

2x1 + x2 − 3x3 = 0

In Maple, you would do

solve( { x1-x2-3*x3=3,2*x1+x2-3*x3=0 },{x1,x2,x3});

getting
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x1 = 1 + 2 x3, x2 = -2 - x3, x3 = x3

Whenever you have something in the form x3=x3 it means that x3 is a free variable.

Moral: You don’t need this class to solve systems of linear equations! This class teaches you more

efficient ways, and other things (the abstract theory of matrices and suspaces of Rn), but just for

solving systems of linear equations, you don’t need matrices, and fancy stuff. The Maple command

solve (or my home-made code S(eq,var) ), can handle it.

How to Solve a system of Linear Equations using Matrices and Gaussian Elimination?

Do not confuse the hammer with the nail! If you want to nail a nail into a piece of wood, using a

hammer is only one way of doing it. You can also use a shoe, or a heavy book, or any flat heavy

object. Using a hammer is just the most efficient way.

The usual way to solve a system of linear equations is via an algorithm called Gaussian Elimination.

Warning: Gaussian Elimination is good for other things too. For example to find the rank of a

matrix (and hence the nullity: ‘number of columns minus the rank’), and to find out whether

or not its columns are linearly independent. Some people get confused between the tasks (e.g. to

decide whether a system is consistent, and finding the rank). These are two different problems,

and the book is confusing that it introduced Gaussian elimination in the context of whether a

system is consistent or inconsistent, and then solving it. This is only one application.

Writing a system of linear equations in matrix notation

The matrix notation for the system

a11x1 + a12x2 + . . . + a1kxk = b1 ,

. . .

am1x1 + am2x2 + . . . + amkxk = bm .

is 
a11 a12 . . . a1k
a21 a22 . . . a2k
. . . . . . . . . . . .
am1 am2 . . . amk



x1

x2

. . .
xk

 =


b1
b2
. . .
bk

 .

Or, for short

Ax = b ,

where A is the matrix of coefficients,

A =


a11 a12 . . . a1k
a21 a22 . . . a2k
. . . . . . . . . . . .
am1 am2 . . . amk

 ,
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x is the (column) vector of variables (unknowns)

x =


x1

x2

. . .
xk

 ,

b is the (column) vector of the right side

b =


b1
b2
. . .
bk

 .

Note: This started out as shorthand but it can also be used to define the ‘matrix times (column)

vector’ operation.

An even shorter shorthand is not to mention the variable names x1, . . . , xk explicitly, and form the

augmented matrix

Ab ,

i.e. 
a11 a12 . . . a1k b1
a21 a22 . . . a2k b2
. . . . . . . . . . . .
am1 am2 . . . amk bm

 .

First application of Gaussian Elimination: Deciding whether a system is consistent

Bring the augmented matrix to row-echelon form

(Warning: to find whether a system is consistent or not you don’t need to do reduced row-echelon

form, that takes longer).

If you get a row of the form (after you applied row-echelon form)

0000 . . . NotZero ,

then the system is inconsistent. If you don’t have this scenario (it is OK to have all zeros rows!)

then the system is consistent.

Second application of Gaussian Elimination: Deciding whether a system is consistent

AND Solving it

First you do row-echelon form. If you are lucky and you find out (as above), that the system is

inconsistent, do not waste time to bring it to reduced row-echelon form, the answer is no solution

(alias inconsistent). If you are not lucky, and the system is consistent, you must go all the way to

6



reduced row-echelon form (see section 1.4). Once you get it, you find the general solution as

in section 1.3 .

How to represent vectors and matrices in Maple

A (row) vector is represented as a list, a matrix is a list of lists. For example, the (row) vector

[1, 2, 3] is represented in Maple

[1,2,3] .

A matrix is represented as a list of lists. For example, the augmented matrix

x1 − 2x2 − 3x3 = 3

2x1 + x2 − 3x3 = 0

is represented in Maple as

[[1,-2,-3,3],[2,1,-3,0]].

How to compute Reduced-Row-Echelon Form in Maple?

Maple does not have a command for just row echelon form, since computers do not mind working

harder. Of course, it does not hurt to have reduced-row-echelon form (if the computer does it), the

command is

rref(matrix);

but you must first type:

with(linalg): .

For example

with(linalg): rref( [[1,-1,-3,3],[2,1,-3,0]]);

outputs [
1 0 −2 1
0 1 1 −2

]

Basic Concept 5: Pivot

Already with row-echelon form you can find out the pivot entries, they are the first non-zero entries

in the not-all-zeros rows of the row-echelon form (also of the reduced row-echelon form).

A pivot row is a row with a pivot, alias a not-all-zero row.

A pivot column is a column with a pivot.
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Warning: The notion of ‘pivot’ only makes sense for matrices that are already in row-echelon-form.

It does not make sense for other matrices.

Later (section 2.3) it would make sense, using the correspondence principle. A column in the

original matrix is called a ‘pivot column’ if its corresponding column, in the reduced-row-echelon

form, is a pivot column. But everything is determined by the reduced-row-echelon form (and in

fact, already by the row-echelon form, since pivots stay pivots).

Note the notion of ‘pivot column’ makes sense for any matrix, (since it hinges on the notion of

‘pivot column’ for the reduced-row-echelon form. But the notion of ‘pivot’ itself only makes sense

for matrices in reduced-row-echelon form (or row-echelon form).

Warning: Every row has at most one pivot. the number of pivots is the number of not-all zero

rows.

Also every column has at most one pivot. In the application to solving a system of linear equation,

a column with a pivot corresponds to a basic variable, and a column that does not have a pivot

corresponds to a free variable.

Basic Concept 6: Rank

The notion of rank is an attribute of any matrix (not necessarily an augmented matrix). To find it

you also use Gaussian Elimination, but it is another use of it.

Find the row-echelon form of the matrix, and count the pivots, in other words, the number of rows

that are not all-zero.

Important Fact: The rank of an m× n matrix is at most m. If it is exactly m, it means that its

n columns (that are vectors in Rm) form a generating set of Rm.

Maple command:

rank(matrix); .

For example, to do exercise 39 of section 1.4 (p. 53), do

rank([[1,1,1,1],[1,2,4,2],[2,0,-4,1]]);

getting 3. The nullity is the number of columns, n, minus the rank, so the nullity, in this case is

4− 3 = 1.

Basic Concept 7: Linear Combination

A specific linear combination of a set of vectors {u1 . . . ,uk} is any contraption of the form

c1u1 + c2u2 + . . . + ckuk ,
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where c1 . . . , ck are any numbers. For example, if the set is

S = {
[

1
2

]
,

[
−1
3

]
} ,

then one specific linear combination is

3

[
1
2

]
+ 2

[
−1
3

]
=

[
3
6

]
+

[
−2
6

]
=

[
1
12

]
.

How to find whether a certain vector is a linear combination of a given set of vectors?

The input is a set of vectors (in Rm) , S = {u1,u2, . . . ,uk} and another vector in Rm , v. In order

to find out whether v is a linear combination of the vectors in S you ask whether you can come up

with some numbers c1, . . . , ck such that

v = c1u1 + . . . + ckuk .

You can (in simple cases) spell-it out and get a system of linear equations in c1 , . . . , ck and try to

solve them (using the high-school way), or use Gaussian elimination (sections 1.4 and 1.3) to solve

the system

[u1 . . .uk] [c1, . . . , ck]T = v ,

whose augmented matrix is

[u1 . . .uk v] .

Basic Concept 8: Span

The set of all possible linear combinations of a finite set of vectors S = {u1,u2, . . . ,uk} is the

infinite set, called the span of S, and denoted by Span(S),

{c1u1 + . . . + . . . ckuk | −∞ < c1 <∞, . . . ,−∞ < ck <∞} .

Important Fact: Every member of S also belongs to Span(S), since, for example

u1 = 1 · u1 + 0 · u2 + . . . + 0 · uk ,

so u1 is a linear combination of the members of S. Similarly

u2 = 0 · u1 + 1 · u2 + 0 · u3 + . . . + 0 · uk ,

etc. Since every member of S belongs to Span(S), it follows that S is a (tiny!) subset of the huge

(infinite!) set Span(S).

How to kick out superfluous members of a set and still have the same Span?
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• The all-zero vector 0 can always be kicked out!

• If one vectors is a (non-zero) multiple of another one, one of them (but not both!) can be kicked

out of the set without shrinking the span.

• If one of the vector is sum of two (or more) or more generally, any linear combination of other

vectors, it can be kicked out.

Basic Concept 8’: Generating Set

If the span of a set of vectors in Rm is the whole Rm it is called a generating set of Rn. The

simplest generating set of Rm is the set of standard vectors, {e1, . . . , em}.

Basic Concept 9: Linear Dependence and Independence

A set of vector S = {u1,u2, . . . ,uk} , in Rm is linearly dependent if you can come up with

numbers c1, . . . , ck not all zero, such that

c1u1 + . . . + ckuk = 0 .

If you can’t, i.e. the only possibility is the obvious solution c1 = 0, c2 = 0, . . . , ck = 0 then the set

is linearly independent.

How to decide whether a given set is linearly dependent by Inspection?

Same as how to decide whether you can kick out some vectors from a generating set (see above).

Warning: If you have a set of two vectors, then a quick way to find out whether the set is linearly

dependent or linearly independent is to find out whether one is a multiple of the other. But if the

set has more than two members, then if you can find two vectors that are multiples of each other,

then you know for sure that the set is linearly dependent, but if you can’t find such two vectors, do

not jump to conclusions. It may be linearly dependent for other reasons. for example if one of the

vectors is a sum of two (or three or whatever) other ones, or, more generally a linear combination

of other ones. In that case you can’t use inspection, and do it the ‘official way’.

The Official Way to Decide whether a set of vectors in Rm is linearly independent

Given a set S = {u1,u2, . . . ,un} , in Rm form the matrix whose columns are the members of S

[u1 u2 . . . un] ,

and find its rank! If the rank is n (the number of vectors, alias number of columns) then they are

linearly independent. If it is less (it is never more!) then they are linearly dependent.

To summarize:

If the rank of the matrix [u1 u2 . . . un] is m then it is a generating set (of Rm), if it is n then

the set is linearly independent.
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(Note: often it is neither. If m = n and the rank is n then it is both a generating set and linearly

independent. Such a set is called a basis).

Important special case

If m = n, and the set {u1,u2, . . . ,un} is both a generating set and linearly independent (i.e. they

form a basis) , then the reduced-row-echelon-form is the identity matrix In.

Important Fact: The rank of an m× n matrix is at most n (it is also at most m (see above)). If

it is exactly n, it means that its n columns (that are vectors in Rm) are linearly independent.

Important Operation: Matrix Multiplication

Warning 1: If A and B are matrices, their product is not always defined. It is only defined if

the number of columns of A is exactly the same as the number of rows of B.

Warning 2: When the product is defined, order (usually) matters. Usually AB and BA are very

different. If A is an m×n matrix and B is an n×m matrix (when m 6= n), then AB and BA even

have different sizes! Namely m×m and n×n respectively. When they are both square matrices of

the same size, n× n, then AB and BA are both n× n, but usually completely different matrices.

The fancy name for this is that matrix multiplication is non-commutative.

Some exceptions: One of them is the all-zero matrix. Another one is a when one is a multiple of

the other. Yet another case where A and B commute is when one of them is the identity matrix.

Yet another one exception is when A is a power of B (or vice vesra). But these are exceptions.

Thank God Matrix multiplication is not commutative

Quantum mechanics, that makes sure that matter is stable, uses this property, where A and B are

matrices that correspond to observables. For example, position and momentum (and time and

energy).

How to use Maple to multiply matrices

First go into Maple, and type

with(linalg); .

Suppose that you want to do exercise #11 in section 2.1 of the book. Type:

A:=matrix([[1,-2],[3,4]]);

B:=matrix([[7,4],[1,2]]);

then to do AB, you type
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C:=multiply(A,B); .

Later on, to see the product, C, you type

evalm(C); .

To do powers, for example A5, you type

evalm(A**5) .

To get the (i, j) entry of a matrix A, you type:

evalm(A)[i,j]; .

For example to get the (1, 2) entry of A type

evalm(A)[1,2];

Important concept: Invertible matrix

A square matrix A is invertible, if you can come up with a square matrix of the same size, let’s

call it B, such that AB and BA are both the identity matrix of that size. In fact, it is enough to

come up with either of them, and the other one will automatically also be true.

Important Operation: Inverse of a matrix

When A is invertible, i.e. A is square and there is a matrix B such that AB is the identity matrix,

then B is called the inverse of A.

Important Notation:

The inverse of A (when it exists) is denoted by A−1.

Important fact: If A is an invertible n× n matrix, then

AA−1 = In , A−1 A = In .

How to find the inverse of a matrix in Maple

The command is

inverse(A); .

For example, to do #9 in 2.4 type

with(linalg): A:=matrix([[1,1,2],[2,-1,1],[2,3,4]]); inverse(A);
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Important Object: Elementary Matrix

An elementary matrix is one that is obtained from the identity matrix by performing one elementary

operation. The justification for the algorithm for computing the inverse of the matrix (described in

section 2.4 of the book), uses Gaussian elimination. It gets the inverse as a product of the elementary

matrices corresponding to the elementary row operations used in bringing A to reduced-row-echelon

form. Of course, when you (or the computer) perform the algorithm, you don’t need to know that,

but this is the justification for the validity of the algorithm.

important Operation and Concept: Partitioning a matrix into blocks

You can break up a matrix into blocks and give them each a name. If you do it for two matrices

A and B and the partitioning is compatible (see section 2.5), then you can do AB pretending the

blocks are numbers (but be careful not to change the order).

If many blocks are zero or identity matrices, this could be a major time-saving device.

Note:

• If you partition an m× n matrix into mn 1× 1 blocks, then it is essentially doing nothing.

• The other extreme, partitioning an m× n matrix into one block of size m× n is also essentially

doing nothing.

The Maple package LinearAlgebra

For many things in Linear Algebra, the older package linalg suffices, but for the more advanced

topics, for example, that of Lecture 11 (section 2.6 in the book), the LU Decomposition, the

newer package LinearAlgebra is needed.

The first thing you need to do, once you have a Maple window is type

with(LinearAlgebra);

To define a matrix you use the command Matrix (with CAPITAL M) . For example, if

A =

[
1 3
4 5

]
,

you type

A:=Matrix([[1,3],[4,5]]);

Suppose that

B =

[
11 3
14 5

]
,

you tell Maple this by typing:
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B:=Matrix([[11,3],[14,5]]);

To get their product you type

evalm(A&*B);

(Note that evalm stands for ‘evaluate matrix’).

You can also do matrix multiplication without naming them. For example, to compute the matrix

product

[
1 3
4 5

] [
11 3
14 5

]
,

you type:

evalm(Matrix([[1,3],[4,5]])&*Matrix([[11,3],[14,5]])); .

To get the k-th power of a matrix A you type evalm(A&^k). For example to compute[
1 3
4 5

]4
,

you type

evalm(Matrix([[1,3],[4,5]])&^4); .

This even works for inverses. To get the inverse of the matrix A you type evalm(A&(̂-1)). For

example

evalm(Matrix([[1,3],[4,5]])&^(-1)); .

If the matrix does not have an inverse (i.e. is not invertible), e.g.

evalm(Matrix([[1,3],[1,3]])&^(-1));

you get an error message.

To get the reduced row echelon form of a matrix, you type

ReducedRowEchelonForm(A);

For example,

ReducedRowEchelonForm(Matrix([[1,3],[1,3]]));

Important Algorithm: The LU Decomposition
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The input is any kind of matrix (does not have to be a square matrix), say an m × n matrix and

the output (if lucky) are two matrices L and U such that

LU = A .

L is an m ×m unit lower-triangular matrix and U is an m × n upper triangular matrix

(usually not unit, i.e. the diagonal does not have to be all 1).

To get it, you transform it to row-echelon from (NOT reduced echelon form!) and hope that

you never have to resort to swapping (recall that in the first phase of Gaussian elimination, scaling

is optional. Right now (for the LU problems), it is forbidden.). You are only allowed to use the

elementary row operations of the type called E(i, j; c), i.e. the operation ‘crj + ri → ri’).

The U is just the row-echelon form that you got. The L is obtained by first writing down the m×m

identity matrix, and looking at the elementary row operations that showed up and for each such

E(i, j; c) you put Li,j = −c. Everything else below and above the diagonal stays the same).

If there is a need to do one or more swapping operations, then there is a so-called permutation

matrix (see the book), P , such that

LU = PA .

(Note: in this class we will not deal with this more general case.)

Warning about LU

When you do things by hand, you are not allowed to use scaling in the reduction to row-echelon

form. Recall that, in general, scaling is optional, but never crucial, but in the context of LU, it is

forbidden.

Also row-interchange that is sometimes needed when you bring a matrix to row-echelon form, is

forbidden. If you need to resort to row-interchange, it means that there is no LU decomposition.

Sanity Check: Check that in your answers, L is indeed lower-triangular (in fact it is unit lower-

triangular, i.e. the diagonal entries are all 1). Also check that U is indeed upper-triangular

(but usually not unit, and it may even some zero entries on the diagonal, sometimes).

How to use LU to solve a system

If you have a system Ax = b, and A = LU , then you write it as

LUx = b .

Then make a change of variable

y = Ux .
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Then

Ly = b .

Then you transcribe it into every-day notation, and use high-school methods to find y, by forward

substitution. Having found y, you solve

Ux = y ,

also by transcribing it, and use the high-school way.

LU Decomposition in Maple

First type:

with(LinearAlgebra);

Then type:

LUDecomposition(A);

For example, to do #8 in section 2.6 (p. 164) you type:

LUDecomposition(Matrix([[-1,2,1,-1,3],[1,-4,0,5,-5],[-2,6,-1,-5,7], [-1,-4,4,11,-2]]));

• The first output is the permutation matrix P (that in all of your homework problems (i.e. section

2.6 , problems 1-8) should be the identity matrix)

• The second output is L

• The third output is U

It is always good to check. If you type

evalm(%[2]&*%[3]);

you would get A back.

For the more general case, where it is not possible to find an LU decomposition, the first output is

a permutation matrix (see the book), such that PA = LU .

For example, to do #18 of section 2.6 (NOT required for this class),

LUDecomposition(Matrix([[0,2,-1],[2,6,0],[1,3,-1]]));

gives you

P =

 0 1 0
1 0 0
0 0 1

 ,
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L =

 1 0 0
1 1 0
1
2 0 1

 ,

U =

 2 6 0
0 2 −1
0 0 −1

 .

You are welcome to check that

PA = LU .

Important Operation: Determinant

If A is a square matrix, then there is an important number called the determinant of A written,

det(A) ,

and sometimes, in the stupid notation |A| (that has nothing to do with ‘absolute value’).

The determinant determines whether the matrix is invertible. If det(A) 6= 0 then it is invertible.

If det(A) = 0 then it is not invertible.

How to compute a determinant

A 2× 2 matrix is really easy

det

[
a b
c d

]
= ad − bc .

For a 3× 3 matrix, you do cofactor expansion (see the book), and you can use any row, and any

column.

Remember:

• for an odd-numbered row (i.e. the first and third row if we are talking about 3× 3 matrices) the

signs are plus, minus, plus

• for an even-numbered row (i.e. the second row if we are talking about 3× 3 matrices ) the signs

are minus, plus, minus

So computing a 3× 3 determinants requires computing three 2× 2 determinants, and doing some

more calculations.

Similarly for column expansions .

You can also do a 4 × 4 determinant this way, reducing it to computing four 3 × 3 determinants

plus more tedious calculations, but it is not recommended. It takes for ever.

17



The efficient way is to use the simplification rules gotten by the elementary row operations,

except that now you can also operate with columns, in other words, you are welcome to also use

elementary column operations.

• krj + ri → ri (or kcj + ci → ci) does not change the determinant

• kri → ri (or kci → ci ) You ‘factor out’ k. The answer is k times the determinant of the matrix

obtained by dividing the given row (or column) by k.

• ri ↔ rj (or ci ↔ cj ) multiplies the determinant by −1.

Important Property of determinant

det(AB) = det(A) det(B) .

If A is invertible:

det(A−1) =
1

det(A)
.

When are these useful?

• Suppose that you are given two matrices A and B for which it is easy to find their determinants.

For example, either upper-triangular or lower-triangular, for which the determinant is simply the

product of the diagonal entries. Then you are asked to find det(AB). You would be stupid to first

compute AB and then take the determinant. It would be much more efficient to compute det(A)

and det(B) and then use the above fact that det(AB) = det(A).det(B).

• Suppose that you are a given a matrix A and you have to find det(A−1). You could, of course,

first find A−1, and then compute det(A−1), but it would be much more efficient to compute det(A),

and then take the reciprocal.

How to compute determinants in Maple

In the simpler Maple package, linalg, the command is det(A).

For example, to do

det

 1 2 3
3 4 7
13 14 17

 ,

in linalg you type

with(linalg): det(matrix([[1,2,3],[3,4,7],[13,14,17]]));

With the more advanced package, LinearAlgebra, you type

with(LinearAlgebra): Determinant(Matrix([[1,2,3],[3,4,7],[13,14,17]]));
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Very Important Concept: Subspace

A subset V , of Rn is a subspace if it satisfies the following three ‘axioms’

(i) 0 ∈ V [In plain English: the zero vector belongs to V ]

(ii) u, v ∈ V ⇒ u + v ∈ V [In plain English: the sum of any two members of V is yet another

member of V ]

(iii) u ∈ V and k ∈ R ⇒ k u ∈ V [if you multiply any member of V by any real number, you would

get yet another member of V ]

How to prove that a candidate subset of Rn is a subspace?

You have to show, logically, that the three axioms (properties) are all satisfied.

Problem: Prove (logically) that the following set

V = {


c
2c
−3c
5c

 ; −∞ < c <∞} ,

is a subspace of R4 .

Solution: First note that the members of V are vectors with four components, hence they all

belong to R4. Hence V is a subset of R4. To prove that it is also a subspace of R4 we have to

prove that the three axioms are true.

(i) The choice c = 0 yields the zero vector. Since 0 is a real number, 0, alias [0, 0, 0, 0]T belongs to

V .

(ii) Take any two members of V , let’s call them u and v. This means that

u =


c1
2c1
−3c1
5c1

 ,

for some specific number c1. Similarly

v =


c2
2c2
−3c2
5c2

 ,

for another specific number c2. Adding them up, we have

u + v =


c1
2c1
−3c1
5c1

 +


c2
2c2
−3c2
5c2

 =


(c1 + c2)
2(c1 + c2)
−3(c1 + c2)
5(c1 + c2)

 .
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Calling c1 +c2 = c3, c3 is, of course, also a number, so u+v can be expressed in the format required

to grant membership of V with the choice c = c1 + c2.

(iii) Take any member of V , let’s call it u, and any number k. u has the form

u =


c1
2c1
−3c1
5c1

 ,

for some number c1. Multiply by k, and get:

ku =


(kc1)
2(kc1)
−3(kc1)
5(kc1)

 ,

so it has the right format for membership in V with the choice c = kc1.

How to prove that a candidate subset of V is NOT a subspace

This is usually easier and faster. All you need is to come up with one of the three axioms that is

violated.

Example: Prove that the set

V = {


1 + c
2 + c
3 + c
5 + c

 ; −∞ < c <∞} ,

is not a subspace of V .

Solution: We claim that 0 6∈ V . Suppose that it is. Then there must be a number c such that
1 + c
2 + c
3 + c
5 + c

 =


0
0
0
0

 .

Spelling it out, we must have

1 + c = 0 , 2 + c = 0 ,

and two more such equations (c + 3 = 0 and c + 5 = 0, but they are not needed right now). So

we get that c = −1 and c = −2. This is a contradiction, there can’t be such a c, hence the

assumption that 0 belonged to V lead to nonsense, hence axiom (i) is violated, hence V is not a

subspace of R4.

(Note that it is not necessary to look at the other two axioms, once something is bad for one reason,

you don’t have to find other reasons why it is bad).
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Another Example: Prove that the set

V = {


c
2c
3c
5c

 ; 0 ≤ c <∞} ,

is not a subspace of V .

Solution: Note that axioms (i) and (ii) are satisfied. But axiom (iii) is not. Take any member of

V , say when c = 1

u =


1
2
3
5

 .

Now multiply it by −1 (or any negative number for that matter)

(−1)u =


−1
−2
−3
−5

 .

But this is not a member of V , since the c is negative.

Important Concept: Generating set of a subspace V .

Recall that a (usually finite) subset of Rn, let’s call it S, is a generating set of Rn if its span

Span(S) is the whole of Rn. This definition extends to any subspace of Rn .

Important definition; S is a generating set of V if Span(S) = V .

Recall that the Span of a set S is the set of all linear combinations of the members of S.

Easy but important fact:

A generating set of a subspace of the form

Span(S) ,

is S.

Recall that a set of vectors in Rn is linearly independent if none of its members is a linear

combination of other members (or equivalently, that 0 can never be expressed as a non-trivial

linear combination of its members). In other words, each of its members is crucial for its span not

to change. No vector can’t be kicked out.

Important Concept: Basis
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A (finite) set of vectors S is a basis of a subspace V if:

• S is a generating set for V , i.e. SpanS = V

• S is linearly independent

important Fact: Every subspace (except the trivial zero subspace) has many different bases, in

fact, infinitely many of them. but they all have the same number of elements. That common

number is called the Dimension.

Since the standard basis of Rn {e1, e2, . . . , en}, is indeed a basis (it is both linearly independent

and a generating set) the dimension of Rn is indeed n (as it should be by common sense). Hence

every basis of Rn must have n members.

Quick way to show that a proposed set S is NOT a basis of Rn

If its number of elements is not n, then forget it! There is no way that it can be a basis.

Example; Explain why

{

 2
3
5

 ,

 4
1
7

} ,

is not a basis of R3

Solution: Any basis of R3 must have three members. Since S only has two members, there is no

way that it can be a basis.

Another Example; Explain why

{

 2
3
5

 ,

 4
1
7

 ,

 14
11
27

 ,

 44
11
47

} ,

is not a basis of R3

Solution: Any basis of R3 must have three members. Since S has four members, there is no way

that it can be a basis.

A not so Quick way to show that a proposed set S is NOT a basis of Rn

If the set S has exactly n members, then the algorithmic way to prove that it is a basis for Rn is

to form the n × n matrix whose columns are the members of S, and find its rank. If the rank is

n then it is a basis, otherwise (i.e. if the rank is less than n, it can never be more) it is not. But

sometimes, by inspection, you can spot that the set is not linearly independent, and in that case

you can immediately disqualify it from being a basis. This also applies to subspaces of Rn
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Example Explain why S

S = {


2
3
5
7

 ,


4
11
−5
−7

 ,


6
14
0
0


can not be a basis of the subspace Span(S).

Solution: Obviously S is a generating set of Span(S) (this is always true), but by inspection the

last vector is the sum of the first two, hence the set S is not linearly independent. Hence it is not

a basis.

Algorithmic way to find a basis of Span(S)

If S is a set of n vectors in Rm, form the m×n matrix consisting of the vectors of S, let’s call it A,

then perform the ‘Forward pass’ (first-phase) of Gaussian elimination to find out the pivots, and

hence the pivot columns of the row-echelon form. The corresponding numbered columns in A, a

certain subset of S, is a basis of Span(S).

In particular the rank of A is the dimension of Span(S) (alias column-space of A).

Algorithmic way to find a basis for the Null Space of A

This is more time-consuming. If you want to find a basis for the null-space of A, you have to solve

the system

Ax = 0 ,

as was done in chapter 1. In other words, find the reduced-row-echelon form of the augmented

matrix [A0]. Then decide who are the basic variables (corresponding to the pivot columns), and

who are the free variables (corresponding to the other columns). Express everything in terms of

the free variables (and for any free variable, write xi = xi), then write it in vector notation, then

extract the free variables, and the set of vectors multiplied by those free variables is a basis.

For an example, see Attendance quiz 15

http://sites.math.rutgers.edu/~zeilberg/LinAlg18/p15S.pdf .

WARNING: A basis is always a set. Don’t forget the {} or you would get no credit!

The Four Subspaces associated with an m× n matrix A

• Col(A), the column space of A, alias the span of its set of columns, a certain subspace of Rm.

Its dimension equals the rank of A .

• Null(A), the nullspace of A, Null(A), a certain subspace of Rn, defined as the set of vectors

∈ Rn such that Ax = 0 . Its dimension is the nullity of A, alias n− rank(A).

• Row(A), the row space of A, alias the span of its set of rows, a certain subspace of Rn. Its
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dimension also equals the rank of A .

• Null(AT ), the nullspace of AT , Null(AT ), a certain subspace of Rm, defined as the set of (row)

vectors x ∈ Rm such that xA = 0T . Its dimension is m− rank(A).

Important Objects: Eigenvalue and Eigenvector

eigenvector:

Given a square n×n, matrix A, a non-zero vector x is an eigenvector of A if , for some (possibly

zero) number, t,

Ax = tx .

t is the eigenvalue corresponding to the eigenvector x.

(Note that for each eigenvector there is a unique eigenvalue).

eigenvalue:

Given a square n× n, matrix A, a number t is an eigenvalue if there exists a non-zero vector x

such that

Ax = tx .

x is an eigenvector corresponding to t.

(Note that for each eigenvalue, there are infinitely many eigenvectors corresponding to it, since

once you have an eigenvector, so is any non-zero multiple of it, and if you have two eigenvectors

corresponding to the same eigenvalue so is their sum. In fact, for any given eigenvalue the set of

eigenvectors corresponding to it is a subspace of Rn, called the eigenspace. It is the nullspace

of A − tIn).

How to find eigenvalues of a matrix A?

First you find the determinant of A− t In,

det(A − t In) .

This is called the characteristic equation. Then you solve it, getting possibly multiple roots,

and possibly complex roots. These are the eigenvalues.

How to find a basis for the eigenspace of an eigenvalue t of matrix A

You solve the system

(A− tIn)x = 0,
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either by the ‘high-school way’ (if it is a 2× 2 matrix, and even the 3× 3 case) or by the Gaussian

elimination way.

WARNING: An eigenvector is NEVER the zero-vector. If the only answer that you get is 0 it

means that the proposed eigenvalue is not actually an eigenvalue, and you messed up, when you

found the eigenvalues. If anyone on the Final Exam will return, for example, {
[

0
0

]
}, as a basis to

the eigensapce, or

[
0
0

]
as an eigenvector, he or she will FAIL this class, even if everything else is

perfect.

How to find eigenvalues in the Maple package linalg ?

For example to find the eigenvalues of the matrix 3 1 1
1 3 1
1 1 3


You type

with(linalg):eigenvalues([[3,1,1],[1,3,1],[1,1,3]]);

getting

5, 2, 2 .

How to find eigenvalues and eigenvectors in the Maple package linalg?

For the above matrix, you type:

with(linalg):eigenvectors([[3,1,1],[1,3,1],[1,1,3]]); ,

getting

[2, 2, {[-1, 0, 1], [-1, 1, 0] }], [5, 1, {[1, 1, 1]}] ,

which means that 2 is an eigenvalue with multiplicity 2, whose eigenspace has basis {[−1, 0, 1], [−1, 1, 0]},
(that is two-dimensional) and an eigenvalue 5 with multiplicity 1, whose eigenspace is the one-

dimensional subspspace with basis {[1, 1, 1]} .

Important Concept: ‘Diagonalizable’

A square matrix A, of size n× n, is diagonalizable if there exists an invertible matrix P (of the

same size, n× n, of course), and a diagonal (n× n) matrix, D such that

A = PDP−1 .
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Equivalently,

A square matrix A, of size n × n, is diagonalizable if there exists an invertible matrix P such

that

P−1AP ,

is a diagonal matrix (called D).

The diagonal matrix, D is called the diagonalization of A.

Notes: 1.Every diagonal matrix is considered diagonalizable, just take P to be the identity matrix.

2. Most, but not all square matrices are diagonalizable. The simplest example that is not diagonl-

izable is [
0 1
0 0

]
.

Important Process: Diagonalization

Input: A squre-matrix A, of size n× n, say.

Output: a diagonal matrix D, and an invertible matrix P , such that A = PDP−1, if they exist,

or ‘does not exist.’

Description:

Step 1: Find the eigenvalues of A, by first finding det(A − tIn), setting it equal to zero, and

solving, getting, if lucky, n distinct roots. (if real) Order them in increasing order (or any order,

but you have to stick to the order). You are not supposed to get complex roots in this class, but

in general, you would have to include them.

Step 2: For each eigenvalue ti, find a corresponding eigenvector, i.e. a non-zero vector pi such

that

Api = tiA .

If all the eigenvalues are distinct (i.e. multiplicity 1) then D is the diagonal matrix whose diagonal

entries are (in that order) t1, t2, etc. (of course, all other entries are 0), and P is the matrix whose

columns are (in that order) p1,p2 etc.

(If n = 2 then delete the ‘etc.’)

If you have an eigenvalue with multiplicity larger than one, find a basic for the eigenspace. If the

dimension of the eigenspace equals the multiplicity, then line them up as above, if it is less, the

answer is ‘does not exist’.
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Optional (but Recommended) Important Final Step: Check!

After you found D and P , make sure that, indeed

A = PDP−1

Warning: If you get the wrong answer, due to a careless computational error, and do not check

you will get no partial credit. If you check and realize that you messed up, and say so, you may

get up to one half partial credit.

Important Shortcut for the inverse of a 2× 2 matrix

[
a b
c d

]−1

=
1

ad− bc

[
d −b
−c a

]
.

Reminder: For any scalar k, kA is the matrix obtained by multiplying every entry of A by k.

Important Operation: Dot Product

Given two vectors with the same number of components, i.e. both in Rn for some n,

u =


u1

u2

. . .
un

 , v =


v1
v2
. . .
vn


The dot product is

u.v = u1v1 + u2v2 + . . . + unvn .

Note: u.v = uT v.

How To Compute Dot Product in Maple

First type

with(LinearAlgebra), then, after you defined the vectors u and v, you type

DotProduct(u,v) ;

Important Concept: Orthogonality

Two vectors, u and v, are orthogonal if their dot product is 0, i.e. if

u.v = 0 .

Important Operation: Norm
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The norm of a vector u,denoted by ||u||, is
√

u.u, in other words:

||


u1

u2

. . .
un

 || =
√
u2
1 + u2

2 + . . . + u2
n .

Important Operation: Normalization: The normalization of a vector u is obtained by dividing

it by its norm. i.e. u/||u||. Note that it is a unit vector, i.e. has norm 1.

Important Concept: An orthogonal set of vectors in Rn is a set where every pair in the set is

orthogonal.

Important Concept: An orthonormal set of vectors in Rn is an orthogonal set (see above),

with the additional property that every member has norm 1.

Important Property of an Orthogonal (and hence also Orthonormal) Set:

It is always linearly indpenendent, hence forms a basis for the subspace spanned by it.

Given an orthonormal basis, let’s call it {u1, . . .uk}, for some subspace of Rn, it is very easy to

express any vector, v, in that subspace, as a linear combination of the mebers of the basis (Recall

that,in general, it is a big pain. It requires solving a system of equations [u1, . . .uk][c1, . . . , ck]T = v,

that is very tedious thing to do).

v = (v.u1)u1 + . . . + (v.uk)uk ,

In other words, to find the respective coefficients, all you need is take dot products, no need to

solve a tedious system of equations.

Important Algorithm: Gram-Schmidt (w/o Normalization)

Input: A linearly independent set of vetors in Rn

Output: An orthogonal set with the same span.

How to do it: See Theorem 6.6 in the book (p. 378).

Important Algorithm: Gram-Schmidt (with Normalization)

Once you have an orthogonal set (done as above), to get an orthonormal set, you divide each and

every member by its respective norm.

Gram-Schmidt in Maple

The command
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(once you typed with(LinearAlgebra): ), is:

GramSchmidt([w1,w2,w3, ...]) ;

where w1, w2, w3, are the vectors.

For example, to do problem 14 in section 6.2, type

GramSchmidt([<1,-1,0,2>,<1,1,1,3>,<3,1,1,5>]);

To get an orthonormal set type

GramSchmidt([w1,w2,w3, ...], normalized=true);

For example, to do the second part of problem 14 in section 6.2, type

GramSchmidt([<1,-1,0,2>,<1,1,1,3>,<3,1,1,5>],normalized=true);

Important Algorithm: The QR Decomposition

Given an m× n matrix A with linearly independent columns it can always be written as

A = QR ,

where

• Q is an m× n matrix whose set of columns form an orthonormal set

• R is an n× n upper triangular matrix.

How to find it?: See the book, pp. 381-383.

The command

(after you typed with(LinearAlgebra):) , is:

QRDecomposition(A);

where A is the matrix. For example, to do exercise 28 in section 6.2 (p. 385) in the book, type

QRDecomposition(<<-1,3,4>|<-7,11,3>>); .

Very Important Algorithm: The Least Square Line

If you have n data points

(x1, y1), . . . , (xn, yn)

the least-square line y = a0 + a1x is computed as follows.
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The formula (that you should memorize, it is SO IMPORTANT) is:

[
a0
a1

]
= (CTC)−1CTy ,

where

C =


1 x1

1 x2

. .

. .

. .
1 xn

 , y =


y1
y2
.
.
.
yn

 .

Here is how to actually do it.

Step 1: Set-up the n×2 matrix, whose first column is all 1 and its second column is [x1, . . . , xn]T ,

in other words

C =


1 x1

1 x2

. .

. .

. .
1 xn


Step 2: Set up the column-vector, y

y =


y1
y2
.
.
.
yn

 .

Step 3: Compute the 2× 2 matrix CTC

Step 4: Compute the inverse of CTC, (CTC)−1. Since CTC is 2× 2 you can use the shortcut[
a b
c d

]−1

=
1

ad− bc

[
d −b
−c a

]
.

Step 5: Compute the 2× 1 column vector

CTy .

Step 6: Compute [
a0
a1

]
= (CTC)−1CTy ,

30



and write down y = a0 + a1x .

How to do LeastSquares in Maple

It is a bit complicated, since you need to do some preprocessing. Luckily, you can use the following

Maple code:

http://sites.math.rutgers.edu/~zeilberg/LinAlg18/LS.txt

Copy-and-paste (from the web-browser), this file, onto a Maple window.

Given a list of points, L, just type

LS(L);.

For example, to solve ex. 2 of section 6.4 of the book (p.409), type:

LS([[1,30],[2,27],[4,21],[7,14]],x);

To see a scatter-plot, and the line, type:

PLS([[1,30],[2,27],[4,21],[7,14]]);
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