Solution to Problem 26 in Section 6.2 of "Elementary Linear Algebra" by Spence, Insel, and Friedberg

Problem (a) Find the $Q R$ decomposition of

$$
A=\left[\begin{array}{cc}
1 & 1 \\
-2 & -1 \\
1 & 0
\end{array}\right]
$$

(b) Verify that indeed $A=Q R$.

Solution: First we must find an orthonormal basis for the column space of A. The input is

$$
\mathbf{a}_{\mathbf{1}}=\left[\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right] \quad, \quad \mathbf{a}_{\mathbf{2}}=\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right]
$$

Now

$$
\begin{gathered}
\mathbf{v}_{\mathbf{1}}=\left[\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right], \\
\mathbf{v}_{\mathbf{2}}=\mathbf{\mathbf { a } _ { \mathbf { 2 } }}-\left(\frac{\mathbf{a}_{\mathbf{2}} \cdot \mathbf{v}_{\mathbf{1}}}{\left\|\mathbf{v}_{\mathbf{1}}\right\|^{2}}\right) \mathbf{v}_{\mathbf{1}}
\end{gathered}
$$

We have

$$
\begin{gathered}
\mathbf{a}_{\mathbf{2}} \cdot \mathbf{v}_{\mathbf{1}} \\
=\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right] \cdot\left[\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right] \\
=(1)(1)+(-1)(-2)+(0)(1)=3 \\
\left\|\mathbf{v}_{\mathbf{1}}\right\|^{2}=(1)^{2}+(-2)^{2}+1^{2}=6 .
\end{gathered}
$$

Hence

$$
\begin{aligned}
\mathbf{v}_{\mathbf{2}} & =\mathbf{a}_{\mathbf{2}}-\frac{3}{6} \mathbf{v}_{\mathbf{1}}=\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right]-\frac{1}{2}\left[\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right] \\
& =\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right]-\left[\begin{array}{c}
\frac{1}{2} \\
-1 \\
\frac{1}{2}
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{2} \\
0 \\
-\frac{1}{2}
\end{array}\right] .
\end{aligned}
$$

Hence, an orthogonal set with the same span is

$$
\mathbf{v}_{\mathbf{1}}=\left[\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right] \quad, \quad \mathbf{v}_{\mathbf{2}}=\left[\begin{array}{c}
\frac{1}{2} \\
0 \\
-\frac{1}{2}
\end{array}\right] .
$$

Next we have to find an orthonormal basis, by normailizing $\mathbf{v}_{\mathbf{1}}$ and $\mathbf{v}_{\mathbf{2}}$.

$$
\begin{gathered}
\left\|\mathbf{v}_{\mathbf{1}}\right\|=\sqrt{1^{2}+(-2)^{2}+1^{2}}=\sqrt{6} . \\
\left\|\mathbf{v}_{\mathbf{2}}\right\|=\sqrt{(1 / 2)^{2}+(0)^{2}+(-1 / 2)^{2}}=\frac{1}{\sqrt{2}} .
\end{gathered}
$$

Hence

$$
\begin{aligned}
& \mathbf{w}_{\mathbf{1}}=\frac{1}{\left\|\mathbf{v}_{\mathbf{1}}\right\|} \mathbf{v}_{\mathbf{1}}=\frac{1}{\sqrt{6}}\left[\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right]=\left[\begin{array}{c}
\frac{\sqrt{6}}{6} \\
-\frac{2 \sqrt{6}}{\sqrt{6}} \\
\frac{\sqrt{6}}{6}
\end{array}\right] . \\
& \mathbf{w}_{\mathbf{2}}=\frac{1}{\left\|\mathbf{v}_{\mathbf{2}}\right\|} \mathbf{v}_{\mathbf{2}}=\sqrt{2}\left[\begin{array}{c}
\frac{1}{2} \\
0 \\
-\frac{1}{2}
\end{array}\right]=\left[\begin{array}{c}
\frac{\sqrt{2}}{2} \\
0 \\
-\frac{\sqrt{2}}{2}
\end{array}\right] .
\end{aligned}
$$

So the output for Gram-Schmidt, after the normalizations is:

$$
\mathbf{w}_{\mathbf{1}}=\left[\begin{array}{c}
\frac{\sqrt{6}}{6} \\
-\frac{2 \sqrt{6}}{6} \\
\frac{\sqrt{6}}{6}
\end{array}\right] \quad, \quad \mathbf{w}_{\mathbf{2}}=\left[\begin{array}{c}
\frac{\sqrt{2}}{2} \\
0 \\
-\frac{\sqrt{2}}{2}
\end{array}\right] .
$$

To get Q we just form the matrix whose two columns are $\mathbf{w}_{\mathbf{1}}$ and $\mathbf{w}_{\mathbf{2}}$:

$$
Q=\left[\begin{array}{cc}
\frac{\sqrt{6}}{6} & \frac{\sqrt{2}}{2} \\
-\frac{2 \sqrt{6}}{6} & 0 \\
\frac{\sqrt{6}}{6} & -\frac{\sqrt{2}}{2}
\end{array}\right], \quad .
$$

Now R is the upper triangular matrix

$$
R=\left[\begin{array}{cc}
r_{11} & r_{12} \\
0 & r_{22}
\end{array}\right]
$$

where

$$
r_{11}=\mathbf{w}_{1} \cdot \mathbf{\mathbf { a } _ { 1 }} \quad, \quad r_{12}=\mathbf{w}_{\mathbf{1}} \cdot \mathbf{\mathbf { a } _ { 2 }} \quad, \quad r_{22}=\mathbf{w}_{\mathbf{2}} \cdot \mathbf{\mathbf { a } _ { 2 }}
$$

We have

$$
\begin{gathered}
r_{11}=\left(\frac{\sqrt{6}}{6}\right)(1)+\left(-\frac{2 \sqrt{6}}{6}\right)(-2)+\left(\frac{\sqrt{6}}{6}\right)(1)=\sqrt{6}\left(\frac{1}{6}+\frac{2}{3}+\frac{1}{6}\right)=\sqrt{6} \\
r_{12}=\left(\frac{\sqrt{6}}{6}\right)(1)+\left(-\frac{2 \sqrt{6}}{6}\right)(-1)+\left(\frac{\sqrt{6}}{6}\right)(0)=\sqrt{6}\left(\frac{1}{6}+\frac{1}{3}\right)=\frac{\sqrt{6}}{2} \\
r_{22}=\left(\frac{\sqrt{2}}{2}\right)(1)+(0)(-1)+\left(-\frac{\sqrt{2}}{2}\right)(0)=\frac{\sqrt{2}}{2}
\end{gathered}
$$

Hence

$$
R=\left[\begin{array}{cc}
\sqrt{6} & \frac{\sqrt{6}}{2} \\
0 & \frac{\sqrt{2}}{2}
\end{array}\right]
$$

Answer to the problem: The $Q R$ decomposition of A is

$$
Q=\left[\begin{array}{cc}
\frac{\sqrt{6}}{6} & \frac{\sqrt{2}}{2} \\
-\frac{2 \sqrt{6}}{6} & 0 \\
\frac{\sqrt{6}}{6} & -\frac{\sqrt{2}}{2}
\end{array}\right] \quad, \quad R=\left[\begin{array}{cc}
\sqrt{6} & \frac{\sqrt{6}}{2} \\
0 & \frac{\sqrt{2}}{2}
\end{array}\right]
$$

You are welcome to check that indeed $Q R=A$.

