Solutons to the REAL Quiz \#4 (Dr. Z., Math 250)

1. (3 pts.) Find an elemenary matrix E such that $E A=B$, where A and B are as follows:

$$
A=\left[\begin{array}{ccc}
1 & 2 & -2 \\
3 & -1 & 0 \\
-1 & 1 & 6
\end{array}\right] \quad \text { and } \quad B=\left[\begin{array}{ccc}
1 & 2 & -2 \\
3 & -1 & 0 \\
0 & 3 & 4
\end{array}\right]
$$

Sol. of 1: We have to decide which elementary row operation, when applied to A yields B. The first two rows are exatly the same, so this means that r_{3} has been changed. Obviously the new r_{3} is not a multiple of the old one, so this means that the new r_{3} is the old r_{3} plus (or minus) a multiple of either r_{1} or r_{2}. Since the difference between the new r_{3} and the old r_{3} is $[1,2,-2]$, that is exactly r_{1}, the elementary row operation that we need is $r_{3}+r_{1} \rightarrow r_{3}$.

Now we apply this very same elementary row operation to the identity matrix, getting

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \underset{r_{3}+r_{1} \rightarrow r_{3}}{\rightarrow}\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
1 & 0 & 1
\end{array}\right] .
$$

This is the desired matrix E. You are welcome to check, by doing the matrix multiplication, that indeed $E A=B$.

Ans.:

$$
E=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
1 & 0 & 1
\end{array}\right]
$$

Comment: About $\% 70$ of the people got it right. The rest did a much more difficult problem converting A to reduced-row-echelon-form. PLEASE read the question!
2. (3 pts .) Determine whether the following matrix is invertible, and if it is, finds its inverse

$$
\left[\begin{array}{ll}
2 & 3 \\
3 & 5
\end{array}\right]
$$

Sol. of 2: We first bring it to row-echelon form.

$$
\left[\begin{array}{ll}
2 & 3 \\
3 & 5
\end{array}\right] \underset{\rightarrow}{r_{2}-(3 / 2) r_{1} \rightarrow r_{2}}\left[\begin{array}{cc}
2 & 3 \\
0 & 1 / 2
\end{array}\right]
$$

So we know that it is invertible, and we must go on, all the way. Continuing

$$
\left[\begin{array}{ll}
2 & 3 \\
3 & 5
\end{array}\right] \underset{\rightarrow}{r_{2}-(3 / 2) r_{1} \rightarrow r_{2}}\left[\begin{array}{cc}
2 & 3 \\
0 & 1 / 2
\end{array}\right] \underset{\rightarrow}{r_{1}-6 r_{2} \rightarrow r_{1}}\left[\begin{array}{cc}
2 & 0 \\
0 & 1 / 2
\end{array}\right] \stackrel{(1 / 2) r_{1} \rightarrow r_{1}, 2 r_{2} \rightarrow r_{2}}{\rightarrow}\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] .
$$

Now we have to mimick the same sequence operations starting with the identity matrix, I_{2} :

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \underset{\rightarrow}{r_{2}-(3 / 2) r_{1}} \rightarrow r_{2}\left[\begin{array}{cc}
1 & 0 \\
-3 / 2 & 1
\end{array}\right] \underset{\rightarrow}{r_{1}-6 r_{2} \rightarrow r_{1}}\left[\begin{array}{cc}
10 & -6 \\
-3 / 2 & 1
\end{array}\right] \underset{(1 / 2) r_{1} \rightarrow r_{1}, 2 r_{2} \rightarrow r_{2}}{\rightarrow}\left[\begin{array}{cc}
5 & -3 \\
-3 & 2
\end{array}\right]
$$

This is the ans..

Ans. to 2: The matrix is invertible, and its inverse is:

$$
\left[\begin{array}{cc}
5 & -3 \\
-3 & 2
\end{array}\right]
$$

Comment: About $\% 80$ of the people got it right completely.
3. True or False (Explain when appropriate)
(a) (1 pt.) If a square matrix has a column consisting of all zeros, then it must be invertible.

Sol. of 3(a): False. If it has a column of all zeroes, then it is never invertible (For an $n \times n$, the rank is less than n, so its reduced row echelon form will never be I_{n}).
(b) (1 pt.) The pivot columns of a matrix are linearly independent.

Sol. of 3(b): True. The pivot columns of the reduced-row-echelon-form are (different) standard vectors, and obviously linearly independent. By the column-correspondence property the same applies to the pivot columns of the original matrix.

