Solutions to Dr. Z.'s Math 250 REAL Quiz #1

1. (3 pts.) Compute the matrix-vector product

$$\begin{bmatrix} 2 & -3\\ -4 & 5\\ 11 & -1\\ 0 & 1 \end{bmatrix} \begin{bmatrix} a\\ 2a \end{bmatrix} \quad ,$$

where a is a real number.

Solution

$$\begin{bmatrix} 2 & -3\\ -4 & 5\\ 11 & -1\\ 0 & 1 \end{bmatrix} \begin{bmatrix} a\\ 2a \end{bmatrix} = a \begin{bmatrix} 2\\ -4\\ 11\\ 0 \end{bmatrix} + 2a \begin{bmatrix} -3\\ 10\\ -1\\ 1 \end{bmatrix} = \begin{bmatrix} 2a\\ -4a\\ 11a\\ 0 \end{bmatrix} + \begin{bmatrix} -6a\\ 10a\\ -2a\\ 2a \end{bmatrix}$$
$$= \begin{bmatrix} 2a - 6a\\ -4a + 10a\\ 11a - 2a\\ 0 + 2a \end{bmatrix} = \begin{bmatrix} -4a\\ 6a\\ 9a\\ 2a \end{bmatrix} .$$

Ans. to 1:

$$\begin{bmatrix} -4a\\ 6a\\ 9a\\ 2a \end{bmatrix} \quad .$$

2. (3 pts.) If possible, write the vector

$$\mathbf{u} = \begin{bmatrix} 1\\1\\1 \end{bmatrix} \quad ,$$

as a linear combination of the vectors in $\mathcal S,$ where

$$\mathcal{S} = \left\{ \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \begin{bmatrix} 3\\4\\5 \end{bmatrix} \right\} \quad .$$

Sol. of 2: We are looking for numbers c_1 and c_2 such that

$$\begin{bmatrix} 1\\1\\1 \end{bmatrix} = c_1 \begin{bmatrix} 1\\2\\3 \end{bmatrix} + c_2 \begin{bmatrix} 3\\4\\5 \end{bmatrix} .$$

Spelling it out:

$$\begin{bmatrix} 1\\1\\1 \end{bmatrix} = \begin{bmatrix} c_1 + 3c_2\\2c_1 + 4c_2\\3c_1 + 5c_2 \end{bmatrix}$$

This means that we have to solve the system of three equations with two unknowns, c_1, c_2

$$(i) c_1 + 3c_2 = 1$$
 , $(ii) 2c_1 + 4c_2 = 1$, $(iii) 3c_1 + 5c_2 = 1$

From the first equation, $c_1 = 1 - 3c_2$. Plugging into the second, we get $2(1 - 3c_2) + 4c_2 = 1$, so $2 - 6c_2 + 4c_2 = 1$ so $-2c_2 = -1$ giving $c_2 = \frac{1}{2}$. Pluging into $c_1 = 1 - 3c_2$ we get $c_1 = 1 - 3 \cdot \frac{1}{2} = -\frac{1}{2}$. We have to make sure that (iii) is correct, but it is. Indeed

$$3(-\frac{1}{2}) + 5(\frac{1}{2}) = 1$$
.

So $c_1 = -\frac{1}{2}$ and $c_2 = \frac{1}{2}$.

Ans. to 2:

$$\begin{bmatrix} 1\\1\\1 \end{bmatrix} = \frac{-1}{2} \begin{bmatrix} 1\\2\\3 \end{bmatrix} + \frac{1}{2} \begin{bmatrix} 3\\4\\5 \end{bmatrix}$$

3. True or False (Explain when appropriate)

(a) (1 pt.) The coefficients in a linear combination can always be chosen to be positive numbers.

Ans. to 3(a): False. They are often negative. For example the only way to express

$$\begin{bmatrix} 1\\ -1 \end{bmatrix} ,$$

as a linear combination of $\begin{bmatrix} 1\\ 0 \end{bmatrix}$ and $\begin{bmatrix} 0\\ 1 \end{bmatrix}$ is

$$\begin{bmatrix} 1\\ -1 \end{bmatrix} = 1 \begin{bmatrix} 1\\ 0 \end{bmatrix} + (-1) \begin{bmatrix} 0\\ 1 \end{bmatrix}$$

Here one of the coefficients is negative.

Even worse: The only way to express

$$\begin{bmatrix} -1\\ -1 \end{bmatrix}$$

,

as a linear combination of $\begin{bmatrix} 1\\ 0 \end{bmatrix}$ and $\begin{bmatrix} 0\\ 1 \end{bmatrix}$ is

$$\begin{bmatrix} 1 \\ -1 \end{bmatrix} = (-1) \begin{bmatrix} 1 \\ 0 \end{bmatrix} + (-1) \begin{bmatrix} 0 \\ 1 \end{bmatrix} \quad .$$

Here both of the coefficients are negative.

(b) (1 pt.) If A is an m×n matrix, then the only vector u in Rⁿ such that Au = 0 is u = 0.
Ans. to 3(b): False. For example, if

$$A = \begin{bmatrix} 1 & -1 \\ 2 & -2 \end{bmatrix}$$
$$\mathbf{u} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

 $A\mathbf{u} = \mathbf{0}$ and \mathbf{u} is **not** $\mathbf{0}$.