NAME: (print!) _____

E-Mail address: _____ SCC: (please circle): Yes/No

MATH 250 (2), Dr. Z. , Final Exam , Tue., Dec. 18, 2018, TIL-258, 12:00-3:00pm

WRITE YOUR FINAL ANSWER TO EACH PROBLEM IN THE INDI-CATED PLACE (right under the question) Show all your work! No calculators, no cheatsheets CHECK ALL YOUR ANSWERS! (whenever applicable). Do not write below this line

- 1. (out of 10)
- $2. \qquad (\text{out of } 10)$
- $3. \qquad (out of 10)$
- $4. \qquad (\text{out of } 10)$
- 5. (out of 10)
- 6. (out of 10)
- 7. (out of 10)
- $8. \qquad (out of 10)$
- 9. (out of 10)
- 10. (out of 10)
- 11. (out of 10)
- 12. (out of 10)
- 13. (out of 10)
- 14. (out of 10)
- 15. (out of 10)
- 16. (out of 10)
- 17. (out of 10)
- 18. (out of 10)
- 19. (out of 10)
- 20. (out of 10)

tot. (out of 200)

Reminders: Least Squares: $y = a_0 + a_1 x$

$$\begin{bmatrix} a_0 \\ a_1 \end{bmatrix} = (C^T C)^{-1} C^T \mathbf{y} \quad , \quad C = \begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ \cdot & \cdot \\ \cdot & \cdot \\ \cdot & \cdot \\ 1 & x_n \end{bmatrix} \quad , \quad \mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \cdot \\ \cdot \\ \cdot \\ y_n \end{bmatrix}$$

•

Gram-Schmidt: If $\{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k\}$ is a basis for a subspace W, an orthogonal basis $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ is as follows:

$$\begin{aligned} \mathbf{v}_1 &= \mathbf{u}_1 \quad , \\ \mathbf{v}_2 &= \mathbf{u}_2 - \frac{\mathbf{u}_2 \cdot \mathbf{v}_1}{||\mathbf{v}_1||^2} \mathbf{v}_1 \quad , \\ \mathbf{v}_3 &= \mathbf{u}_3 - \frac{\mathbf{u}_3 \cdot \mathbf{v}_1}{||\mathbf{v}_1||^2} \mathbf{v}_1 - \frac{\mathbf{u}_3 \cdot \mathbf{v}_2}{||\mathbf{v}_2||^2} \mathbf{v}_2 \quad , \end{aligned}$$

etc.

Orthonormal basis: $\mathbf{w}_i = rac{\mathbf{v}_i}{||\mathbf{v}_i||}$

QR: $Q = [\mathbf{w}_1 \quad \mathbf{w}_2 \quad \mathbf{w}_3 \quad \cdots],$

$$R = \begin{bmatrix} r_{11} & r_{12} & r_{13} & \dots \\ 0 & r_{22} & r_{23} & \dots \\ 0 & 0 & r_{33} & \dots \\ \dots & & & & \end{bmatrix}$$

where

$$r_{ij} = \mathbf{w_i} \cdot \mathbf{a_j}$$

 $1^{2} = 1,2^{2} = 4,3^{2} = 9,4^{2} = 16,5^{2} = 25,6^{2} = 36,7^{2} = 49,8^{2} = 64,9^{2} = 81,\ 10^{2} = 100$ $11^{2} = 121,12^{2} = 144,13^{2} = 169,14^{2} = 196,15^{2} = 225,16^{2} = 256,17^{2} = 289,18 = 324,19^{2} = 361,\ 20^{2} = 200$ 1. (10 points) Find the least-square line that best fits the following set of points

 $\{(0,0),(1,0),(2,6)\}$

2. (10 points) Find the QR decomposition of the matrix \mathbf{I}

$$\begin{bmatrix} 5 & 22 \\ -12 & -19 \end{bmatrix}$$

•

Ans.: Q = R =

 ${\bf 3}$ (10 points) Use the LU method (no credit for other methods!) to solve the following system of linear equations:

$$x_1 + x_2 + x_3 + x_4 = 4$$

$$x_1 + 2x_2 + 2x_3 + 2x_4 = 7$$

$$x_1 + 2x_2 + 3x_3 + 3x_4 = 9$$

$$x_1 + 2x_2 + 3x_3 + 4x_4 = 10$$

Ans.: $x_1 = x_2 = x_3 = x_4 =$

4. (10 points) By viewing the two 6×6 matrices below as 3×3 block matrices whose entries are certain 2×2 matrices, (that you have to decide on), use the method of partitioning (No credit for other methods!) to do the following matrix product. Explain everything!

Γ1	1	1	1	1	٦1	ſ	-1	0	1	0	1	ך 0	
1	0	1	0	1	0		1	1	1	1	1	1	
1	1	1	1	1	1		1	0	1	0	1	0	
1	0	1	0	1	0		1	1	1	1	1	1	
1	1	1	1	1	1		1	0	1	0	1	0	
$\lfloor 1$	0	1	0	1	0		_1	1	1	1	1	1	

5. (10 points) Suppose that \mathbf{u}, \mathbf{v} are vectors in \mathbb{R}^{1001} such that

$$||\mathbf{u}|| = 1$$
 , $||\mathbf{v}|| = 1$,
 $\mathbf{u} \cdot \mathbf{v} = -\frac{1}{6}$,

Compute:

$$||\mathbf{u} + 3\mathbf{v}||$$
 .

6. (10 points) Find, if possible, an invertible matrix P and a diagonal matrix D such that

$$PDP^{-1} = \begin{bmatrix} -2 & 2\\ -10 & 7 \end{bmatrix}$$

,

or explain why it is not possible.

Ans.:
$$D = P =$$

- 7. (10 points, 2.5 each) Complete the following sentences
- **a**: A vector **u** in \mathbb{R}^n is a **linear combination** of the set $\mathcal{S} = \{\mathbf{u_1}, \ldots, \mathbf{u_k}\}$ if ...

b: A set of vectors $\mathcal{S} = \{\mathbf{u_1} \ , \ \ldots \ , \ \mathbf{u_k}\}$ is linearly independent if \ldots

c: A set of vectors $S = {\mathbf{u_1} , \ldots , \mathbf{u_k}}$ is a **generating set** for a subspace V of \mathbb{R}^n if ...

d: A set of vectors $S = \{\mathbf{u_1}, \ldots, \mathbf{u_k}\}$ is a **basis** for a subspace V of \mathbb{R}^n if ...

8. (10 points) Show that $\lambda = 2$ is an eigenvalue of the matrix

$$\begin{bmatrix} 5 & 3 & 9 \\ 3 & 5 & 9 \\ -3 & -3 & -7 \end{bmatrix}$$

and determine a basis for its eigenspace.

9. (10 points, 2.5 each) Complete the following sentences

a: An **eigenvalue** of a square $(n \times n)$ matrix A, is a number t such that ...

b: An **eigenvector** of a square $(n \times n)$ matrix A is a vector **x** in \mathbb{R}^n such that ...

c: A **pivot entry** in the row-echelon (or reduced-row-echelon) form of matrix is an entry that is \dots

d: An elementary row operation is one of the following operations involving either one or two rows of a matrix: ...

10. (10 points) Find a basis for the null space of the 2×5 matrix

$$\begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 \end{bmatrix} \quad .$$

11. (10 points altogether, 2 each) Determine whether the following statements are True or False. In case it is false, give a corrected version.

(a) The subspace $\{0\}$ is called the null-space.

(b) If \mathcal{S} is a linearly independent subset and Span $\mathcal{S}=V$, then \mathcal{S} is a basis for V.

(c) \mathbb{R}^9 contains exactly nine different subspaces.

(d) A vector \mathbf{v} is in *ColA* if and only if $A\mathbf{x} = \mathbf{v}$ is consistent.

(e) The pivot columns of the matrix A (i.e. the columns corresponding to the pivot columns of the reduced-row-echelon form R, but those of A, not of R) always form a basis for its column space.

12. (10 points) Suppose that A and B are square matrices such that

$$\det A = 2 \quad , \quad \det B = -1$$

•

Find det $(A^3 B^{-100} A^{-2}).$

13. (10 points) For what value(s) of c is the following matrix

$$\begin{bmatrix} c & 1 & 1 \\ 1 & c & 1 \\ 1 & 1 & c \end{bmatrix}$$

is **not** invertible.

14. (10 points) Determine whether the following matrix, A, is invertible, and if it is, find its inverse.

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 3 & 2 \end{bmatrix}$$

•

Ans.: $A^{-1} =$

15. (10 points) Determine whether the given system is consistent, and if so, find its general solution, expressed in **vector form**.

$$x_1 - x_2 + x_4 = -4 ,$$

$$x_1 - x_2 + 2x_4 + 2x_5 = -5 ,$$

$$3x_1 - 3x_2 + 2x_4 - 2x_5 = -11 .$$

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} =$$

16. (10 points) Find an elementary matrix E such that EA = B, where A and B are as follows: $\begin{bmatrix} 1 & 2 & -2 \end{bmatrix} \begin{bmatrix} 1 & 2 & -2 \end{bmatrix}$

$$A = \begin{bmatrix} 1 & 2 & -2 \\ 3 & -1 & 0 \\ -1 & 1 & 6 \end{bmatrix} \quad and \quad B = \begin{bmatrix} 1 & 2 & -2 \\ 3 & -1 & 0 \\ 0 & 3 & 4 \end{bmatrix} \quad .$$

Ans.: E =

17. (10 points) Find the inverse of the following matrix, or explain why it does not exist.

$$\begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 2 \\ 1 & 1 & 1 & 3 \\ 3 & 3 & 3 & 6 \end{bmatrix}$$

•

18. (10 points) Compute the matrix-vector product

$$\begin{bmatrix} 1 & -1 & -1 & 1 \\ 1 & 0 & -2 & -1 \\ -1 & 1 & 2 & 0 \\ 1 & 2 & -1 & -1 \end{bmatrix} \begin{bmatrix} a+b+d \\ a-d \\ a+c+b \\ a-d \end{bmatrix}$$

where a, b, c, and d are real numbers.

19. (10 points) Find a subset of the following set S of vectors in \mathbb{R}^4 with the same span as S that is as small as possible.

$$\mathcal{S} = \left\{ \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix} \quad , \quad \begin{bmatrix} 2\\3\\4\\5 \end{bmatrix} \quad , \quad \begin{bmatrix} 1\\2\\3\\4 \end{bmatrix} \quad , \quad \begin{bmatrix} 3\\4\\5\\6 \end{bmatrix} \right\}$$

•

20. (10 points) The reduced row echelon form of a certain system of linear equations is:

$$\begin{bmatrix} 1 & -3 & 2 & 4 & 0 & | & 2 \\ 0 & 0 & 0 & 0 & 1 & | & 3 \\ 0 & 0 & 0 & 0 & 0 & | & 0 \end{bmatrix}$$

•

Determine whether this system is consistent, and if so, find its general solution. In addition, write the solution in *vector form*.