
NAME: (print!)

E-Mail address: SCC: (please circle): Yes/No

MATH 250 (2), Dr. Z. , Final Exam , Tue., Dec. 18, 2018, TIL-258, 12:00-
3:00pm

WRITE YOUR FINAL ANSWER TO EACH PROBLEM IN THE INDI-
CATED PLACE (right under the question)

Show all your work! No calculators, no cheatsheets

CHECK ALL YOUR ANSWERS! (whenever applicable) .

Do not write below this line
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15. (out of 10)

16. (out of 10)

17. (out of 10)

18. (out of 10)

19. (out of 10)

20. (out of 10)

tot. (out of 200)



Reminders:
Least Squares: y = a0 + a1x

[
a0
a1

]
= (CTC)−1CTy , C =


1 x1
1 x2
. .
. .
. .
1 xn

 , y =


y1
y2
.
.
.
yn

 .

Gram-Schmidt: If {u1,u2, . . . ,uk} is a basis for a subspace W , an orthogonal basis
{v1,v2, . . . ,vk} is as follows:

v1 = u1 ,

v2 = u2 −
u2 · v1

||v1||2
v1 ,

v3 = u3 −
u3 · v1

||v1||2
v1 −

u3 · v2

||v2||2
v2 ,

etc.

Orthonormal basis: wi = vi

||vi||

QR: Q = [w1 w2 w3 · · · ],

R =


r11 r12 r13 . . .
0 r22 r23 . . .
0 0 r33 . . .
. . .


where

rij = wi .aj

12 = 1,22 = 4,32 = 9,42 = 16,52 = 25,62 = 36,72 = 49,82 = 64,92 = 81, 102 = 100

112 = 121,122 = 144,132 = 169,142 = 196,152 = 225,162 = 256,172 = 289,18 = 324,192 =
361, 202 = 200



1. (10 points) Find the least-square line that best fits the following set of points

{(0, 0), (1, 0), (2, 6)}

Ans.:



2. (10 points) Find the QR decomposition of the matrix[
5 22
−12 −19

]
.

Ans.: Q = R =



3 (10 points) Use the LU method (no credit for other methods!) to solve the following
system of linear equations:

x1 + x2 + x3 + x4 = 4

x1 + 2x2 + 2x3 + 2x4 = 7

x1 + 2x2 + 3x3 + 3x4 = 9

x1 + 2x2 + 3x3 + 4x4 = 10

Ans.: x1 = x2 = x3 = x4 =



4. (10 points) By viewing the two 6×6 matrices below as 3×3 block matrices whose entries
are certain 2 × 2 matrices, (that you have to decide on), use the method of partitioning
(No credit for other methods!) to do the following matrix product. Explain everything!

1 1 1 1 1 1
1 0 1 0 1 0
1 1 1 1 1 1
1 0 1 0 1 0
1 1 1 1 1 1
1 0 1 0 1 0




1 0 1 0 1 0
1 1 1 1 1 1
1 0 1 0 1 0
1 1 1 1 1 1
1 0 1 0 1 0
1 1 1 1 1 1



Ans.:



5. (10 points) Suppose that u,v are vectors in R1001 such that

||u|| = 1 , ||v|| = 1 ,

u · v = −1

6
,

Compute:
||u + 3v|| .

Ans.:



6. (10 points) Find, if possible, an invertible matrix P and a diagonal matrix D such that

PDP−1 =

[
−2 2
−10 7

]
,

or explain why it is not possible.

Ans.: D = P =



7. (10 points, 2.5 each) Complete the following sentences
a: A vector u in Rn is a linear combination of the set S = {u1 , . . . , uk} if . . .

b: A set of vectors S = {u1 , . . . , uk} is linearly independent if . . .

c: A set of vectors S = {u1 , . . . , uk} is a generating set for a subspace V of Rn

if . . .

d: A set of vectors S = {u1 , . . . , uk} is a basis for a subspace V of Rn if . . .



8. (10 points) Show that λ = 2 is an eigenvalue of the matrix 5 3 9
3 5 9
−3 −3 −7


and determine a basis for its eigenspace.

Ans.:



9. (10 points, 2.5 each) Complete the following sentences
a: An eigenvalue of a square (n× n) matrix A, is a number t such that . . .

b: An eigenvector of a square (n× n) matrix A is a vector x in Rn such that . . .

c: A pivot entry in the row-echelon (or reduced-row-echelon) form of matrix is an entry
that is . . .

d: An elementary row operation is one of the following operations involving either one
or two rows of a matrix: . . .



10. (10 points) Find a basis for the null space of the 2× 5 matrix[
1 1 1 1 1
0 1 1 1 1

]
.

Ans.:



11. (10 points altogether, 2 each) Determine whether the following statements are True
or False. In case it is false, give a corrected version.

(a) The subspace {0} is called the null-space.

(b) If S is a linearly independent subset and Span S=V, then S is a basis for V .

(c) R9 contains exactly nine different subspaces.

(d) A vector v is in ColA if and only if Ax = v is consistent.

(e) The pivot columns of the matrix A (i.e. the columns corresponding to the pivot columns
of the reduced-row-echelon form R, but those of A, not of R) always form a basis for its
column space.



12. (10 points) Suppose that A and B are square matrices such that

detA = 2 , detB = −1 .

Find det (A3B−100A−2 ).

Ans.:



13. (10 points) For what value(s) of c is the following matrix c 1 1
1 c 1
1 1 c


is not invertible.

Ans.:



14. (10 points)
Determine whether the following matrix, A, is invertible, and if it is, find its inverse.

A =

 1 0 0
0 2 1
0 3 2

 .

Ans.: A−1 =



15. (10 points) Determine whether the given system is consistent, and if so, find its general
solution, expressed in vector form.

x1 − x2 + x4 = −4 ,

x1 − x2 + 2x4 + 2x5 = −5 ,

3x1 − 3x2 + 2x4 − 2x5 = −11 .

Ans.: 
x1
x2
x3
x4
x5

 =



16. (10 points) Find an elementary matrix E such that EA = B, where A and B are as
follows:

A =

 1 2 −2
3 −1 0
−1 1 6

 and B =

 1 2 −2
3 −1 0
0 3 4

 .

Ans.: E =



17. (10 points) Find the inverse of the following matrix, or explain why it does not exist.
1 1 1 1
1 1 1 2
1 1 1 3
3 3 3 6

 .

Ans.:



18. (10 points)
Compute the matrix-vector product

1 −1 −1 1
1 0 −2 −1
−1 1 2 0
1 2 −1 −1



a+ b+ d
a− d

a+ c+ b
a− d

 ,

where a, b, c, and d are real numbers.

Ans.:



19. (10 points) Find a subset of the following set S of vectors in R4 with the same span
as S that is as small as possible.

S =




1
1
1
1

 ,


2
3
4
5

 ,


1
2
3
4

 ,


3
4
5
6


 .

Ans.:



20. (10 points) The reduced row echelon form of a certain system of linear equations is: 1 −3 2 4 0 | 2
0 0 0 0 1 | 3
0 0 0 0 0 | 0

 .

Determine whether this system is consistent, and if so, find its general solution. In addition,
write the solution in vector form.

Ans.:


