1. (4 points) A matrix A is given. Find, if possible, an invertible matrix P and a diagonal matrix D such that $A = PDP^{-1}$. Otherwise explain why A is not diagonalizable.

$$A = \begin{bmatrix} 1 & 5 \\ -1 & -1 \end{bmatrix},$$

2. (4 points) Use 1 to compute A^4 (No credit for other methods!)

Reminder 1: $5^4 = 625$

Reminder 2 The quickest way to find the inverse of a 2×2 matrix is to use the formula:

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}.$$

3. (1 point each). True or False. Explain briefly!

(a) Every diagonalizable 4×4 matrix has 4 distinct eigenvalues.

(b) A diagonal matrix is diagonalizable.