Solutions to Dr. Z.'s Math 250(2), (Fall 2010, RU) REAL Quiz \#7 (Nov. 4, 2010)

1. (5 points) Find a basis for the null space of the matrix

$$
\left[\begin{array}{ccc}
1 & 2 & 0 \\
0 & -1 & 1 \\
1 & 0 & 2
\end{array}\right]
$$

Sol. of 1: We find the reduced row echelon form of the matrix:

$$
\begin{gathered}
{\left[\begin{array}{ccc}
1 & 2 & 0 \\
0 & -1 & 1 \\
1 & 0 & 2
\end{array}\right] \xrightarrow{r_{3}-r_{1} \rightarrow r_{3}}\left[\begin{array}{ccc}
1 & 2 & 0 \\
0 & -1 & 1 \\
0 & -2 & 2
\end{array}\right] \xrightarrow{r_{3}-2 r_{2} \rightarrow r_{3}}} \\
{\left[\begin{array}{ccc}
1 & 2 & 0 \\
0 & -1 & 1 \\
0 & 0 & 0
\end{array}\right] \xrightarrow{-r_{2} \rightarrow r_{2}}\left[\begin{array}{ccc}
1 & 2 & 0 \\
0 & 1 & -1 \\
0 & 0 & 0
\end{array}\right] \xrightarrow{r_{1}-2 r_{2} \rightarrow r_{1}\left[\begin{array}{ccc}
1 & 0 & 2 \\
0 & 1 & -1 \\
0 & 0 & 0
\end{array}\right]}}
\end{gathered}
$$

In everyday notation the system $R \mathbf{x}=\mathbf{0}$ is

$$
\begin{gathered}
x_{1}+2 x_{3}=0 \\
x_{2}-x_{3}=0 \\
0=0
\end{gathered}
$$

Solving we get:

$$
\begin{gathered}
x_{1}=-2 x_{3} \\
x_{2}=x_{3} \\
x_{3}=x_{3} \quad(\text { free })
\end{gathered}
$$

In vector notation this is:

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
-2 x_{3} \\
x_{3} \\
x_{3}
\end{array}\right]=x_{3}\left[\begin{array}{c}
-2 \\
1 \\
1
\end{array}\right]
$$

Since there is only one free variable $\left(x_{3}\right)$, the dimension of the null space (alias the nullity of A) is 1 and a basis is:

$$
\left\{\left[\begin{array}{c}
-2 \\
1 \\
1
\end{array}\right]\right\}
$$

2. (5 points, 1 each) Deteremine whether the following statements are True or False. Give a short expalanation (or an example or counter-example) in each case. (No credit without explanation).
(a) The subspace $\{\mathbf{0}\}$ is called the null-space.

Sol. of 2a): False. It is called the zero-space.
(b) If \mathcal{S} is a linearly independent subset and Span $\mathcal{S}=\mathrm{V}$, then \mathcal{S} is a generating set for V.

Sol. of 2b): True. It sure is. It is enough that Span $\mathcal{S}=\mathrm{V}$ to make \mathcal{S} a generating set, so the fact that it is linearly independent is irrelevant.
(c) R^{3} contains at least three different subspaces.

Sol. of 2c): True. 3 is a very gross underestimate! It has infinitely many subspaces.
(d) A vector \mathbf{v} is in $\operatorname{Col} A$ if and only if $A \mathbf{x}=\mathbf{v}$ is consistent.

Sol. of 2d): True. If a vector \mathbf{v} is in $\operatorname{Col} A$ it means that it is a linear combination of its columns, that means that it can be expressed in the form $A \mathbf{x}$ for some vector of numbers \mathbf{x} which means that the system of equations $A \mathbf{x}=\mathbf{v}$ has a solution, which means that the system of equations $A \mathbf{x}=\mathbf{v}$ is consistent.
(e) The pivot columns of the matrix A (i.e. the columns corresponding to the pivot columns of the reduced-row-echelon form R, but those of A, not of R) always form a basis for its column space.

Sol. of $2 \mathbf{2 e}$): True. By the column correspondence property. The pivot columns of R obviously form a basis for its own column space (not to be confused with the column space of A that is (usually) entirely different). By the column correspondence property it follows that the correponding columns in A form a basis for the column space of A.

