Dr. Z.'s Math 250(1), (Fall 2010, RU) SOLUTIONS to the REAL Quiz \#2 (Sept. 23, 2010)

1. (4 pts.) Determine whether the given system is consistent, and if so, find its general solution.

$$
\begin{gathered}
x_{1}-x_{2}+x_{4}=-4 \\
x_{1}-x_{2}+2 x_{4}+2 x_{5}=-5 \\
3 x_{1}-3 x_{2}+2 x_{4}-2 x_{5}=-11
\end{gathered}
$$

Sol. of 1: The augmented matrix of the system is (with variables $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}$) is

$$
\left[\begin{array}{cccccc}
1 & -1 & 0 & 1 & 0 & -4 \\
1 & -1 & 0 & 2 & 2 & -5 \\
3 & -3 & 0 & 2 & -2 & -11
\end{array}\right] .
$$

We must bring it first to row echelon form. If we are lucky we'll get a row of 0 's except for a non-zero entry at the end, and we would conclude that the system is inconsistent. If we are lucky, and we won't get such a scenario, then we must go on to phase II and get it in reduced row echelon form, so that we can find the general solution.

Doing $r_{2}-r_{1} \rightarrow r_{2}$ and $r_{3}-3 r_{1} \rightarrow r_{3}$ yields

$$
\left[\begin{array}{cccccc}
1 & -1 & 0 & 1 & 0 & -4 \\
0 & 0 & 0 & 1 & 2 & -1 \\
0 & 0 & 0 & -1 & -2 & 1
\end{array}\right]
$$

the pivot on the second row is at column 4 (the (2,4) entry) and we want to make 0 everything below it. Doing $r_{2}+r_{3} \rightarrow r_{3}$ gives

$$
\left[\begin{array}{cccccc}
1 & -1 & 0 & 1 & 0 & -4 \\
0 & 0 & 0 & 1 & 2 & -1 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

This is in row-echelon form, and since we don't have an all-0-row-followed-by-non-zero (we have a complete 0 row, but that's OK), we conclude that the system is consistent, and unfortunately, we must proceed to the next phase.

Doing $r_{1}-r_{2} \rightarrow r_{1}$ yields

$$
\left[\begin{array}{cccccc}
1 & -1 & 0 & 0 & -2 & -3 \\
0 & 0 & 0 & 1 & 2 & -1 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

This is in reduced-row-echelon form. In everyday language this means

$$
\begin{gathered}
x_{1}-x_{2}-2 x_{5}=-3 \\
x_{4}+2 x_{5}=-1
\end{gathered}
$$

The basic variables (corresponding to the pivot columns 1 and 4) are x_{1} and x_{4} and the free variables are the remaining variables x_{2}, x_{3}, x_{5}. The general solution is

$$
\begin{gathered}
x_{1}=-3+x_{2}+2 x_{5} \quad, \quad x_{2}=x_{2} \quad, \quad x_{3}=x_{3}, \\
x_{4}=-1-2 x_{5} \quad, \quad x_{5}=x_{5} .
\end{gathered}
$$

Comments: About $\% 40$ of the people got it completely right. Many people knew how to do it but messed up sooner or later (they got lots of partial credit). Quite a few people wrote $x_{3}=0$. This is wrong, $x_{3}=x_{3}$ is a free variable, and can be anything. It is true that it never shows up, but this means that it is free to be anything it wants, not that it is 0 .
2. (4 pts.) Find a subset of the following set \mathcal{S} of vectors in R^{3} with the same span as \mathcal{S} that is as small as possible.

$$
\mathcal{S}=\left\{\left[\begin{array}{c}
1 \\
-1 \\
2
\end{array}\right] \quad, \quad\left[\begin{array}{c}
2 \\
-3 \\
0
\end{array}\right] \quad, \quad\left[\begin{array}{c}
3 \\
-4 \\
2
\end{array}\right]\right\}
$$

Sol. of 2: By inspection the third vector is the sum of the first two, so we can kick-out the third vector leaving us with the smaller set

$$
\left\{\left[\begin{array}{c}
1 \\
-1 \\
2
\end{array}\right], \quad\left[\begin{array}{c}
2 \\
-3 \\
0
\end{array}\right]\right\}
$$

Since the two surviving vectors are not multiples of each other, we can't kick-out any more vectors, so this is the answer.

Comment: About $\% 50$ of the people got it right. Quite a few people didn't understand what they had to do, and did something completely different (like trying to solve a system of equations).
3. True or False (Explain when appropriate)
(a) (1 pt.) The number of pivot columns of a matrix equals its rank.

Sol. of 3a): True (by definition, pivot columns correspond to pivot entries, and their number is the number of non-zero rows in the reduced row echelon form.)
(b) (1 pt.) Every finite subset of R^{n} is contained in its span.

Sol. of 3b): True. Every vector of the set can be written as linear combination with coefficient 1 for that vector and coefficient 0 for the other guys.

For example: if $S=\{\mathbf{u}, \mathbf{v}\}$,

$$
\begin{aligned}
& \mathbf{u}=1 \cdot \mathbf{u}+0 \cdot \mathbf{v} \\
& \mathbf{v}=0 \cdot \mathbf{u}+1 \cdot \mathbf{v}
\end{aligned}
$$

