Solutions to the Attendance Quiz for Dec. 2, 2010

1. (a) Apply the Gram-Schmidt process to replace the given linearly independent set S by an orthogonal set of non-zero vectors with the same span.

$$S = \left\{ \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} \right\}$$

Sol. of 1: The data is

$$u_1 = \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}, \quad u_2 = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$$

Gram-Schmidt says

$$v_1 = u_1$$

$$v_2 = u_2 - \frac{u_2 \cdot v_1}{||v_1||^2} v_1.$$

So

$$v_1 = \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}.$$

We have

$$u_2 \cdot v_1 = \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} = (1)(1) + (-2)(-1) + (1)(0) = 1 + 2 + 0 = 3,$$

and

$$||v_1||^2 = (1)^2 + (-2)^2 + (1)^2 = 6.$$

Putting it together, we have:

$$v_2 = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} - \frac{3}{6} \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} - \frac{1}{2} \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} - \begin{bmatrix} 1 \\ 0 \\ \frac{1}{2} \end{bmatrix} = \begin{bmatrix} 0 \\ -1 \\ -\frac{1}{2} \end{bmatrix}.$$

Ans. to 1a: An orthogonal basis for the span of S is:

$$\left\{ \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ -\frac{1}{2} \end{bmatrix} \right\}.$$

Comments: About 60% of the people did it perfectly. Another 20% did it the right way, but messed up the calculations.
(b) Obtain an orthonormal set with the same span as \(S \).

Sol. of 1b): We divide these two vectors by their norms. We have
\[
||v_1|| = \sqrt{1^2 + (-2)^2 + 1^2} = \sqrt{6},
\]
\[
||v_2|| = \sqrt{\left(\frac{1}{2}\right)^2 + (0)^2 + \left(\frac{1}{2}\right)^2} = \frac{\sqrt{2}}{2}.
\]
So
\[
w_1 = \frac{v_1}{||v_1||} = \frac{1}{\sqrt{6}} \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix} = \begin{bmatrix} \frac{\sqrt{6}}{6} \\ -\frac{2\sqrt{6}}{6} \\ \frac{\sqrt{6}}{6} \end{bmatrix},
\]
\[
w_2 = \frac{v_2}{||v_2||} = \sqrt{2} \begin{bmatrix} \frac{1}{2} \\ 0 \\ -\frac{1}{2} \end{bmatrix} = \begin{bmatrix} \frac{\sqrt{2}}{2} \\ 0 \\ -\frac{\sqrt{2}}{2} \end{bmatrix}.
\]

Ans. to 1b: An orthonormal basis for the span of \(S \) is:
\[
\begin{bmatrix}
\frac{\sqrt{6}}{6} & \frac{\sqrt{2}}{2} \\
-\frac{2\sqrt{6}}{6} & 0 \\
\frac{\sqrt{6}}{6} & -\frac{\sqrt{2}}{2}
\end{bmatrix}.
\]

Comments: About \(\%50 \) of the people did it perfectly. Another \(\%20 \) did it the right way, but messed up the calculations.

Note: I didn’t have a chance to teach the topic of the second problem, below, but it is very important. I will cover it at the beginning of next class. Nevertheless, please read the question and the solution carefully, so you will be prepared to absorb it quickly when I teach it on Monday.

2. (a) Let \(A \) be the matrix whose columns are the vectors in \(S \) in the above problem. Use the answer to that problem to determine the matrices \(Q \) and \(R \) in a QR factorization of \(A \).

Sol. of 2: The \(Q \) part is immediate, it is the matrix whose two columns are \(w_1 \) and \(w_2 \). So
\[
Q = \begin{bmatrix}
\frac{\sqrt{6}}{6} & \frac{\sqrt{2}}{2} \\
-\frac{2\sqrt{6}}{6} & 0 \\
\frac{1}{\sqrt{6}} & -\frac{\sqrt{2}}{2}
\end{bmatrix}.
\]
To get the \(R \) part, we write
\[
a_1 = r_{11}w_1
\]
\[
a_2 = r_{12}w_1 + r_{22}w_2
\].
So

\[r_{11} = a_1 \cdot w_1 = \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix} \cdot \begin{bmatrix} \frac{\sqrt{6}}{6} \\ \frac{-\sqrt{6}}{\sqrt{6}} \end{bmatrix} = \sqrt{6} \]

\[r_{12} = a_2 \cdot w_1 = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} \cdot \begin{bmatrix} \frac{\sqrt{6}}{6} \\ \frac{-\sqrt{6}}{\sqrt{6}} \end{bmatrix} = (1)\left(\frac{\sqrt{6}}{6}\right) + (-1)(\frac{-2\sqrt{6}}{6}) + (0)(\frac{\sqrt{6}}{6}) = \frac{\sqrt{6}}{2} \]

\[r_{22} = a_2 \cdot w_2 = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} \cdot \begin{bmatrix} \frac{\sqrt{2}}{2} \\ 0 \\ -\frac{\sqrt{2}}{2} \end{bmatrix} = (1)(\frac{\sqrt{2}}{2}) + (-1)(0) + (0)(\frac{-\sqrt{2}}{2}) = \frac{\sqrt{2}}{2} \]

So we have

\[R = \begin{bmatrix} r_{11} & r_{12} \\ 0 & r_{22} \end{bmatrix} = \begin{bmatrix} \sqrt{6} & \frac{\sqrt{6}}{2} \\ 0 & \frac{\sqrt{2}}{2} \end{bmatrix} \]

Ans. to 2a):

\[Q = \begin{bmatrix} \frac{\sqrt{6}}{6} & \frac{\sqrt{2}}{2} \\ \frac{-2\sqrt{6}}{\sqrt{6}} & 0 \\ \frac{\sqrt{6}}{\sqrt{6}} & \frac{-\sqrt{2}}{2} \end{bmatrix}, \quad R = \begin{bmatrix} \sqrt{6} & \frac{\sqrt{6}}{2} \\ 0 & \frac{\sqrt{2}}{2} \end{bmatrix} \]

(b) Verify that indeed \(A = QR \).

Sol. to 2b): You do it!