Solutions to MATH 250 (1), Dr. Z , Exam 2, Mon., Nov. 15, 2010, 8:40-10:00am, SEC 202

1. (a) (6 points) Find an LU decomposition of the matrix

\[
\begin{bmatrix}
1 & -1 & 2 & 1 & 3 \\
-1 & 2 & 0 & -2 & -2 \\
2 & -1 & 7 & -1 & 1
\end{bmatrix}
\]

Sol. of 1a: We try to bring to row-echelon form, only performing operations of the form \(r_i + cr_j \rightarrow r_i \).

\[
\begin{bmatrix}
1 & -1 & 2 & 1 & 3 \\
-1 & 2 & 0 & -2 & -2 \\
2 & -1 & 7 & -1 & 1
\end{bmatrix}
\]

\[r_2 + r_1 \rightarrow r_2 \]
\[r_3 - 2r_1 \rightarrow r_3 \]

\[
\begin{bmatrix}
1 & -1 & 2 & 1 & 3 \\
0 & 1 & 2 & -1 & -1 \\
0 & 1 & 3 & -3 & -5
\end{bmatrix}
\]

This is \(U \), to get \(L \) we look at the operations:

\[r_2 + r_1 \rightarrow r_2 \text{ implies } L_{2,1} = -1 \]
\[r_3 - 2r_1 \rightarrow r_3 \text{ implies } L_{3,1} = 2 \]
\[r_3 - r_2 \rightarrow r_3 \text{ implies } L_{3,2} = 1 \]

This means that

\[
L = \begin{bmatrix}
1 & 0 & 0 \\
-1 & 1 & 0 \\
2 & 1 & 1
\end{bmatrix}
\]

Ans. to 1a):

\[
L = \begin{bmatrix}
1 & 0 & 0 \\
-1 & 1 & 0 \\
2 & 1 & 1
\end{bmatrix}, \quad \begin{bmatrix}
1 & -1 & 2 & 1 & 3 \\
0 & 1 & 2 & -1 & -1 \\
0 & 0 & 1 & -2 & -4
\end{bmatrix}
\]

(b) (4 points) Use the results of part (a) to solve the system

\[
x_1 - x_2 + 2x_3 + x_4 + 3x_5 = -4 \\
-x_1 + 2x_2 - 2x_4 - 2x_5 = 9 \\
2x_1 - x_2 + 7x_3 - x_4 + x_5 = -2
\]

Sol. of 1b: Out system is \(LUx = b \) where

\[
b = \begin{bmatrix}
-4 \\
9 \\
-2
\end{bmatrix}
\]
We write $U\mathbf{x} = \mathbf{y}$, and first solve $L\mathbf{y} = \mathbf{b}$. In other words we have to solve

$$y_1 = -4 \quad ,$$

$$-y_1 + y_2 = 9 \quad ,$$

$$2y_1 + y_2 + y_3 = -2 \quad .$$

Going from top to bottom we get, of course $y_1 = -4$, then $y_2 = 9 + y_1 = 5$ and finally $y_3 = -2 - 2y_1 - y_2 = -2 - 2(-4) - 5 = 1$. So

$$\mathbf{y} = \begin{bmatrix} -4 \\ 5 \\ 1 \end{bmatrix} \quad .$$

Now we solve $U\mathbf{x} = \mathbf{y}$, getting the system

$$x_1 - x_2 + 2x_3 + x_4 + 3x_5 = -4 \quad ,$$

$$x_2 + 2x_3 - x_4 + x_5 = 5 \quad ,$$

$$x_3 - 3x_4 - 6x_5 = 1 \quad .$$

Going bottom-up, we have:

$$x_3 = 1 + 2x_4 + 6x_5$$

From the second equation we get:

$$x_2 = 5 - 2x_3 + x_4 - x_5 = 5 - 2(1 + 2x_4 + 6x_5) + x_4 - x_5 = 5 - 2 - 4x_4 - 12x_5 + x_4 - x_5 = 3 - 3x_4 - 13x_5 \quad ,$$

From the first equation we get

$$x_1 = -4 + x_2 - 2x_3 - x_4 - 3x_5 = -4 + (3 - 3x_4 - 13x_5) - 2(1 + 2x_4 + 6x_5) - x_4 - 3x_5$$

$$= -4 + 3 - 3x_4 - 13x_5 - 2 - 4x_4 - 12x_5 - x_4 - 3x_5 = -3 - 8x_4 - 28x_5 \quad .$$

Combining, we get that the general solution of the system is

$$x_1 = -3 - 8x_4 - 28x_5 \quad ,$$

$$x_2 = 3 - 3x_4 - 13x_5 \quad ,$$

$$x_3 = 1 + 2x_4 + 6x_5 \quad ,$$

$$x_4 = x_4 \quad (\text{free}),$$

$$x_5 = x_5 \quad (\text{free}).$$
2. (10 points) Compute the determinant by using elementary row operations (no credit for other methods)

\[
\begin{bmatrix}
1 & -1 & 2 & 1 \\
2 & -1 & -1 & 4 \\
-4 & 5 & -10 & -6 \\
3 & -2 & 10 & -1
\end{bmatrix}
\]

Sol. to 2:

\[
\begin{bmatrix}
1 & -1 & 2 & 1 \\
2 & -1 & -1 & 4 \\
-4 & 5 & -10 & -6 \\
3 & -2 & 10 & -1
\end{bmatrix}
\rightarrow
\begin{bmatrix}
1 & -1 & 2 & 1 \\
0 & 1 & -5 & 2 \\
0 & 0 & 3 & -4 \\
0 & 0 & 0 & 6
\end{bmatrix}
\]

Now this matrix is upper-triangular, so its determinant is the product of the diagonal entries: \((1)(1)(3)(6)\). Since we only used row operation of the kind \(r_i + cr_j \rightarrow r_i\), the determinant of the original matrix is exactly the same.

Ans. of 2: 18.
3. (10 points) For what values of c is the given matrix not invertible.

\[
\begin{bmatrix}
-1 & 1 & 1 \\
3 & -2 & -c \\
0 & c & -10
\end{bmatrix}
\]

Sol. of 2: We first compute the determinant. The easiest is via *first-column* cofactor expansion:

\[
\det \begin{bmatrix}
-1 & 1 & 1 \\
3 & -2 & -c \\
0 & c & -10
\end{bmatrix}
= (-1) \cdot \det \begin{bmatrix}
-2 & -c \\
c & -10
\end{bmatrix} - (3) \cdot \det \begin{bmatrix}
1 & 1 \\
c & -10
\end{bmatrix} + 0 \cdot \det \begin{bmatrix}
1 & 1 \\
0 & c
\end{bmatrix}
\]

\[
= (-1)((-2)(-10) - (-c)(c)) - 3((1)(-10) - (1)(c))
\]

\[
= (-1)(20 + c^2) - 3(-10 - c) = -20 - c^2 + 30 + 3c = -c^2 + 3c + 10 = -(c^2 - 3c - 10)
\]

To find out when the matrix is not invertible, you set it equal to 0:

\[-(c^2 - 3c - 10) = 0 ,
\]

and solve for c. Factoring gives

\[-(c - 5)(c + 2) = 0 ,
\]

whose solutions are $c = 5$ and $c = -2$.

Ans. to 3: The matrix is not invertible when $c = 5$ and the matrix is not invertible when $c = -2.$
4. Explain why the following set is a subspace of \mathbb{R}^4 and find a basis for it.

\[
\begin{bmatrix}
 r + s + 2t \\
r - s \\
3r + 2s + 5t \\
-2r + 3s + t
\end{bmatrix} \in \mathbb{R}^4: r, s, \text{ and } t \text{ are scalars}
\]

Sol. of 4: By separating the r, s, and t contributions, we can write this set as

\[
\begin{bmatrix}
 r \\
 \frac{1}{3} \\
-2
\end{bmatrix} + s
\begin{bmatrix}
 1 \\
-\frac{1}{2} \\
 2
\end{bmatrix} + t
\begin{bmatrix}
 2 \\
 0 \\
 5
\end{bmatrix} : r, s, \text{ and } t \text{ are scalars}
\]

\[
= \text{Span}\left\{ \begin{bmatrix}
 1 \\
-\frac{1}{3} \\
-2
\end{bmatrix}, \begin{bmatrix}
 1 \\
-1 \\
 3
\end{bmatrix}, \begin{bmatrix}
 0 \\
 2 \\
 5
\end{bmatrix} \right\}
\]

Being a span of a finite set of vectors, this is automatically a subspace, and the set of these three vectors forms a generating set. To find a basis, we use Gaussian elimination on the matrix whose columns are these three vectors.

\[
\begin{bmatrix}
 1 & 1 & 2 \\
 1 & -1 & 0 \\
 3 & 2 & 5 \\
-2 & 3 & 1
\end{bmatrix}
\]

Doing $r_2 - r_1 \rightarrow r_1, r_3 - 3r_1 \rightarrow r_3, r_4 + 2r_1 \rightarrow r_4$ we get:

\[
\begin{bmatrix}
 1 & 1 & 2 \\
 0 & -2 & -2 \\
 0 & -1 & -1 \\
 0 & 5 & 5
\end{bmatrix}
\]

Doing: $-\frac{1}{2}r_2 \rightarrow r_2, -r_3 \rightarrow r_3$, and $-\frac{1}{5}r_4 \rightarrow r_4$ gives:

\[
\begin{bmatrix}
 1 & 1 & 2 \\
 0 & 1 & 1 \\
 0 & 1 & 1 \\
 0 & 1 & 1
\end{bmatrix}
\]

Doing $r_3 - r_2 \rightarrow r_3, r_4 - r_2 \rightarrow r_4$ gives

\[
\begin{bmatrix}
 1 & 1 & 2 \\
 0 & 1 & 1 \\
 0 & 0 & 0 \\
 0 & 0 & 0
\end{bmatrix}
\]

This is in row-echelon form (no need to go all the way). The first two columns happen to be pivot columns, so by the column-correspondence property the first two columns of the original matrix, form a basis.
Ans. to 4): This set of vectors is a subspace since it is the span of the above three vectors, and a basis for that subspace is

\[
\begin{bmatrix}
1 \\
1 \\
3 \\
-2
\end{bmatrix},
\begin{bmatrix}
1 \\
-1 \\
2 \\
3
\end{bmatrix},
\begin{bmatrix}
1 \\
-1 \\
2 \\
3
\end{bmatrix}
\].

Note: In this problem, you can also note by inspection that the third vector is a sum of the first two vectors, so it can be kicked-out. Since the remaining two vectors are not multiples of each other, they are linearly independent, and hence form a basis.
5. Explain why the following sets in \mathbb{R}^3 are \textbf{not} subspaces

(a) (5 points)
\[
\begin{cases}
 r \\
 2r \\
 3r
\end{cases} \in \mathbb{R}^3 : r \geq 0
\]

\textbf{Sol. of 5a):} All we need is to find an example where one of the subspace properties is violated. Taking $r = 1$ shows that the vectors \[
\begin{bmatrix}
1 \\
2 \\
3
\end{bmatrix}
\] belongs to our set. But multiplying it by any negative number, for example by -1 will give the vector \[
\begin{bmatrix}
-1 \\
-2 \\
-3
\end{bmatrix},
\]
that is definitely \textbf{not} in our set, since all components of all vectors in the set have \textbf{non-negative} components, so there is no way that it can belong.

(b) \[
\begin{cases}
 1 + r \\
 2 + r \\
 3 + r
\end{cases} \in \mathbb{R}^3 : \text{r is a scalar}
\]

\textbf{Sol. of 5b):} This is even easier. The zero-vector $0 = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$ does \textbf{not} belong to our set, since if it did we would have to come up with a number r such that
\[
\begin{bmatrix}
1 + r \\
2 + r \\
3 + r
\end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}
\]
Spelling it out we need an r such that
\[
1 + r = 0,
\]
\[
2 + r = 0,
\]
\[
3 + r = 0,
\]
and clearly there is no such r, because according to the first equation, $r = -1$, according to the second, $r = -2$ and according to the third, $r = -3$, and this is clearly \textbf{impossible}. So already the first property of a subspace that 0 belongs to it is violated.
6. Let

\[V = \left\{ \begin{bmatrix} \nu_1 \\ \nu_2 \end{bmatrix} \in \mathbb{R}^2 : \nu_1 = 0 \right\} \]

\[W = \left\{ \begin{bmatrix} \nu_1 \\ \nu_2 \end{bmatrix} \in \mathbb{R}^2 : \nu_2 = 0 \right\} \]

(a) (5 points) Prove (using the definition of subspace) that \(V \) is a subspace of \(\mathbb{R}^2 \) and that \(W \) is a subspace of \(\mathbb{R}^2 \).

Sol. of 5a): To prove that \(V \) is a subspace, in plain English, \(V \) is the set of all vectors in \(\mathbb{R}^2 \) whose first component is 0. we check the three properties of the subspace.

(i) \(0 = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \) belongs to \(V \) because its first component is 0.

(ii) A constant multiple of any vector whose first component is zero still has that property.

(iii) The sum of two vectors whose first component is 0 still has that property since 0+0 = 0.

The proof for \(W \) is similar with “first” replaced by “second”.

(b) Show that \(V \cup W \) is not a subspace of \(\mathbb{R}^2 \).

Sol. of 5b): Proof by contradiction. Suppose that \(V \cup W \) is a subspace.

Since \(\begin{bmatrix} 0 \\ 1 \end{bmatrix} \in V \) it is also true that \(\begin{bmatrix} 0 \\ 1 \end{bmatrix} \in V \cup W \)

Since \(\begin{bmatrix} 1 \\ 0 \end{bmatrix} \in W \) it is also true that \(\begin{bmatrix} 1 \\ 0 \end{bmatrix} \in V \cup W \)

If \(V \cup W \) would have been a subspace, than the sum of these vectors \(\begin{bmatrix} 1 \\ 1 \end{bmatrix} \) would belong to \(V \cup W \), but this is not true! This vector belongs to neither \(V \) (since its first component is not 0) nor to \(W \) (since its second component is not 0), so it can’t belong to \(V \cup W \). QED.
7. (10 points) Explain why

\[
\left\{ \begin{bmatrix} 1 \\ -1 \\ 2 \\ 1 \end{bmatrix}, \begin{bmatrix} 2 \\ -3 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ -2 \\ 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 5 \\ -11 \\ 4 \\ 1 \end{bmatrix}, \begin{bmatrix} 9 \\ -11 \\ 13 \\ 22 \end{bmatrix} \right\}
\]

is not a basis for \(\mathbb{R}^4 \).

Sol. of 7: A basis of \(\mathbb{R}^4 \) must have exactly 4 elements, and this set has five, so there is no way that it could be basis.
8. (10 points, 2.5 points each) Determine the dimensions of (a) \text{Col } A \text{ (b) } \text{Null } A \text{ (c) } \text{Row } A \text{ and (d) } \text{Null } A^T, \text{ if}

\[A = \begin{bmatrix} 0 & -1 & 1 \\ 1 & 2 & -3 \\ 3 & 1 & -2 \\ -1 & 0 & 4 \end{bmatrix} \]

\text{Sol. of 8:} \text{ We first find the rank by doing row-operations. Doing } r_2 \leftrightarrow r_1 \text{ we get:}

\[\begin{bmatrix} 1 & 2 & -3 \\ 0 & -1 & 1 \\ 3 & 1 & -2 \\ -1 & 0 & 4 \end{bmatrix} \]

Doing \(r_3 - 3r_1 \rightarrow r_3, r_4 + r_1 \rightarrow r_4 \) gives:

\[\begin{bmatrix} 1 & 2 & -3 \\ 0 & -1 & 1 \\ 0 & 5 & 7 \\ 0 & 2 & 1 \end{bmatrix} \]

Doing \(r_3 - 5r_2 \rightarrow r_3 \) and \(r_4 + 2r_2 \rightarrow r_4 \) gives

\[\begin{bmatrix} 1 & 2 & -3 \\ 0 & -1 & 1 \\ 0 & 0 & 2 \\ 0 & 0 & 3 \end{bmatrix}. \]

This is in row-echelon form and we see that each column has a pivot, so the rank is 3.

Since this is a 4 × 3 matrix, \(m = 4, n = 3 \). Now we can answer all four questions

(a) Dimension of \text{Col } A \text{ is the rank, so it is 3.}
(b) Dimension of \text{Null } A \text{ is } n - \text{rank} = 3 - 3 = 0.
(c) Dimension of \text{Row } A \text{ is the same as the dimension of } \text{Col } A, \text{ alias the rank, so it is 3.}
(d) The dimension of \text{Null } A^T \text{ is } m - \text{rank} = 4 - 3 = 1.
9. (10 ponts. 2.5 each) Classify each statement as true or false and give a brief justification of your answer.

(a) If $A\mathbf{x} = \mathbf{0}$ has a unique solution then the nullspace of A is empty.

Sol. of 9a): False. The corrected statement is

“If $A\mathbf{x} = \mathbf{0}$ has a unique solution then the nullspace of A is the zero-subspace.”

which is “almost empty” but does contain one element, the zero-vector $\mathbf{0}$.

(b) If \mathbf{u} and \mathbf{v} belongs to a subspace W of \mathbb{R}^n then $5\mathbf{u} + 11\mathbf{v}$ also belongs to W.

Sol. of 9b): True. By the property of subspace, since $5\mathbf{u} + 11\mathbf{v}$ is a linear combination of \mathbf{u} and \mathbf{v}.

(c) A square matrix is invertible if and only of $\det A = 0$.

Sol. of 9c): False. The corrected statement is:

“A square matrix is invertible if and only of $\det A \neq 0$.

(d) If A is a 10×13 matrix, then the nullspace of A is not $\{\mathbf{0}\}$.

Sol. of 9d): True. The nullity is at least 3 so the dimension of the nullspace is at least 3.
10. (10 points) Prove that if λ is an eigenvalue of the matrix A, then λ^2 is an eigenvalue of the matrix A^2.

Sol. of 10: By definition of eigenvalue, there exists a vector, called **eigenvector**, let’s denote it by v, such that

$$Av = \lambda v$$

Left-multiplying this equation by A we get a new equation:

$$AAv = A(\lambda v)$$

Since $AA = A^2$ and matrices commute with scalars ($A\lambda = \lambda A$) we have

$$A^2v = \lambda(Av)$$

Using the top equation $Av = \lambda v$ one more time (on the right side) we get

$$A^2v = \lambda(\lambda v)$$

which means:

$$A^2v = \lambda^2 v$$

This means that λ^2 is an eigenvalue of A^2 (with the same eigenvector!). QED.