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1. (a) (6 points) Find an LU decomposition of the matrix 1 −1 2 1 3
−1 2 0 −2 −2
2 −1 7 −1 1



(b) (4 points) Use the results of part (a) to solve the system

x1 − x2 + 2x3 + x4 + 3x5 = −4

−x1 + 2x2 − 2x4 − 2x5 = 9

2x1 − x2 + 7x3 − x4 + x5 = −2



2. (10 points) Compute the determinant by using elementary row operations (no credit
for other methods) 

1 −1 2 1
2 −1 −1 4
−4 5 −10 −6
3 −2 10 −1





3. (10 points) For what values of c is the given matrix not invertible.−1 1 1
3 −2 −c
0 c −10





4. Explain why the following set is a subspace of R4 and find a basis for it.


r + s + 2t
r − s

3r + 2s + 5t
−2r + 3s + t

 ∈ R4 : r, s, and t are scalars





5. Explain why the following sets in R3 are not subspaces
(a) ( 5 points) 

 r
2r
3r

 ∈ R3 : r ≥ 0



(b) 
 1 + r

2 + r
3 + r

 ∈ R3 : r is a scalar





6. Let

V =
{[

ν1

ν2

]
∈ R2 : ν1 = 0

}
W =

{[
ν1

ν2

]
∈ R2 : ν2 = 0

}
(a) ( 5 points) Prove (using the definition of subspace) that V is a subspace of R2 and that
W is a subspace of R2.

(b) Show that V ∪W is not a subspace of R2.



7. (10 points) Explain why


1
−1
2
1

 ,


2
−3
1
1

 ,


1
−2
1
2

 ,


5
−11
4
1

 ,


9
−11
13
22




is not a basis for R4.



8. (10 points, 2.5 points each) Determine the dimensions of (a) Col A (b) Null A (c)
Row A and (d) Null AT , if

A =


0 −1 1
1 2 −3
3 1 −2
−1 0 4





9. (10 ponts. 2.5 each) Classify each statement as true or false and give a brief justification
of your answer.

(a) If Ax = 0 has a unique solution than the nullspace of A is empty.

(b) If u and v belongs to a subspace W of Rn then 5u + 11v also belongs to W .

(c) A square matrix is invertible if and only of det A = 0 .

(d) If A is a 10× 13 matrix, then the nullspace of A is not {0}.



10. (10 points) Prove that if λ is an eigenvalue of the matrix A, then λ2 is an eigenvalue
of the matrix A2.


