
SOLUTIONS to MATH 250 (2), Dr. Z. , Exam 1, Thurs., Oct. 14, 2010, 10:20-11:40am,
ARC 204

1. (10 pts. altogether)
(a) ( 7 pts.) Determine if the given system is consistent, and if so, find its general solution.

2x1 − 2x2 + 4x3 = 1 ,

−4x1 + 4x2 − 8x3 = −2 .

Sol. of 1(a): The system in matrix notation is[
2 −2 4
−4 4 −8

] [
x1

x2

]
=

[
1
−2

]
.

The augmented matrix is: [
2 −2 4 1 1
−4 4 −8 −2

]
Doing Gaussian elemination gives:[

2 −2 4 1 1
−4 4 −8 −2

]
r2 + 2r1 → r2

→

[
2 −2 4 1 1
0 0 0 0

]
(1/2)r1 → r1

→

[
1 −1 2 1 1/2
0 0 0 0

]
.

This is in reduced row echelon form.

There is only one pivot column, the first, making x1 a basic variable. Columns 2 and
3 are free columns, making x2, x3 free variables.

In everyday language this means:

x1 − 2x2 + 2x3 = 1/2 .

Solving for the basic variable x1, we get x1 = 1/2 + x2 − 2x3, and for the free variables
(since they free to do what they want) x2 = x2, x3 = x3. So the general solution in
high-school notation is:

x1 = 1/2 + x2 − 2x3

x2 = x2

x3 = x3

(b) (3 points) Express the general solution of part a) in vector notation.

Sol. of 1(b): Using the general solution above we havex1

x2

x3

 =

 1/2 + x2 − 2x3

x2

x3

 =

 1/2
0
0

 + x2

 1
1
0

 + x3

−2
0
1

 .

Ans. to 1b): x1

x2

x3

 =

 1/2
0
0

 + x2

 1
1
0

 + x3

−2
0
1

 .



2. (10 pts.) Let

S = {

 1
2
3

 ,

 2
3
4

 ,

 3
5
7

},
determine whether the set S is linearly independent or linearly dependent. In case it is

linearly dependent, write the zero vector

 0
0
0

 explicitly as a non-trivial linear combination

of the vectors in S.

Sol. of 2): The easiest way to do this is by inspection. The third vector is the sum of
the first two:  3

5
7

 =

 1
2
3

 +

 2
3
4

 .

This automatically means that S is linearly dependent (since you can express one of
its members as a linear combination of other members). For getting the desired explicit
relation, we move everthing to the right getting: 0

0
0

 = (1)

 1
2
3

 + (1)

 2
3
4

 + (−1)

 3
5
7

 .

Ans. to 2: S is linearly dependent and the explicit expression of 0 as a non-trivial linear
combination of the vectors in S is: 0

0
0

 = (1)

 1
2
3

 + (1)

 2
3
4

 + (−1)

 3
5
7

 .

Note: In this problem we got lucky. In general we have to use Gaussian elimination to
get it to reduced row echelom form. If you do it (you do it!) you would get

R =

 1 0 1
0 1 1
0 0 0

 .

So the rank is 2 (less than 3), or equivalenty, we have an all-zeros-row, this means that
the members of S are linearly dependent. Also from R we see that the third column is the
sum of the first two. By the column-correspondence property the same is true for the
original matrix whose columns were the given vectors in S.



3. (10 pts altogether) Let

A =

 1 0 1
0 1 0
1 0 0

 , B =

 1 0
0 1
1 0

 , C =
[

1 1
−1 1

]

Calculate the following matrix products, if they are defined, or explain why they don’t
make sense.

(a) (4 points) BBT

Sol. to 3a):

BBT =

 1 0
0 1
1 0

[
1 0 1
0 1 0

]
=

 1 0 1
0 1 0
1 0 1


(b) (3 points) BA

Sol. to 3b): B is a 3 × 2 matrix and A is a 3 × 3 matrix. You can’t do (3 × 2)(3 × 3)
since 2 6= 3.

Ans. to 3b): undefined.
(c) (3 points) C3

Sol. to 3c):

C2 =
[

1 1
−1 1

] [
1 1
−1 1

]
=

[
0 2
−2 0

]
C3 =

[
1 1
−1 1

] [
0 2
−2 0

]
=

[
−2 2
−2 −2

]
.

Ans. to 3c):

C3 =
[
−2 2
−2 −2

]



4. (10 pts.) For the matrix

A =

 1 0 0
0 −1 0
0 0 1


compute the matrix A17.

Sol. to 4): A2 = I3, so A16 = I8
3 = I3 and A17 = I3A = A.

Ans. to 4):

A17 =

 1 0 0
0 −1 0
0 0 1

 .



5. (10 pts.) For the following matrix A finds its reduced-row-echelon form, R, and
find an invertible matrix P such that PA = R .

A =

 1 0 1
0 1 1
1 1 2



Sol. of 5: We first bring the matrix to reduced row echelon form, taking careful note
of the elementary row operations: 1 1 3

0 1 1
1 0 2

 r3 − r1 → r3

→

 1 1 3
0 1 1
0 −1 −1

 r3 + r2 → r3

→

 1 1 3
0 1 1
0 0 0

 r1 − r2 → r1

→

 1 0 2
0 1 1
0 0 0

 .

Now it is in reduced-row-echelon form. This is the first part of the answer, R. To get P
we apply the above elementary row operations to the identity matrix: 1 0 0

0 1 0
0 0 1

 r3 − r1 → r3

→

 1 0 0
0 1 0
−1 0 1

 r3 + r2 → r3

→

 1 0 0
0 1 0
−1 1 1

 r1 − r2 → r1

→

 1 −1 0
0 1 0
−1 1 1

 .

Ans. to 5:

R =

 1 0 2
0 1 1
0 0 0

 , P =

 1 −1 0
0 1 0
−1 1 1


Note: Since A is not invertible (R is not I3), there are more than one correct P . The R
is always the same, regadless of the choice of the order of elementary row operations, but
the P may be different. That’s why it is good to check that PA = R, becuase there is
more than one correct P that makes it come true.



6. (10 pts. altogether) In each case below, give an m× n matrix R in reduced row echelon
form satisfying the given condition, or explain why it is impossible to do so.

(a)(4 pts) m = 2, n = 3 and the equation Rx = c has a solution for all c.

(b) (4 pts) m = 3, n = 2 and the equation Rx = c has a unique solution for all c.

(c) (2 pts) m = 3, n = 3 and the equation Rx = 0 has a unique solution.

Sol. to 6a): There are many “correct solutions”. One of them is:

R =
[

1 0 2
0 1 3

]

Explanation: The system Rx = c, in high-school language is:

x1 + 2x3 = c1 ,

x2 + 3x3 = c2 .

Obviously you can solve it for any choice of real numbers c1, c2. x3 is a free variable, and
the general solution is x1 = c1 − 2x3, x2 = c2 − 3x3, x3 = x3, so in this system there are

infinitely many solutions for all c =
[

c1

c2

]
, but this is besides the point. The question

demanded there is at least one solution for any choice of c and of course this is true in
this case.

(b) (4 pts) m = 3, n = 2 and the equation Rx = c has a unique solution for all c.

Sol. to 6b): Impossible.

Explanation: Since the rank is ≤ 2 there must be (at least) one all-zeros row, and the
matrix looks like

R =

 1 0
0 1
0 0


The system Rx = c in everyday notation is

x1 = c1

x2 = c2

0 = c3 .



Whenever c3 6= 0 we get nonsense , i.e. the system is inconsistent, i.e. it has no
solutions. So forget about “unique” solution. For many choices fo c (namely whenever
c3 6= 0 ) it has no solutions!

(c) (2 pts) m = 3, n = 3 and the equation Rx = 0 has a unique solution.

Sol. to 6c):

R =

 1 0 0
0 1 0
0 0 1


Explanation: The system Rx = 0, in high-school language is:

x1 = 0 ,

x2 = 0 ,

x3 = 0 .

This system is its own solution, and obviously has a unique solution 0.



7. (10 pts.) Without first computing A−1, find A−1B, if

A =

 1 1 0
0 1 0
0 1 1

 , B =

 1 1 1 1
1 0 0 1
−1 −1 0 1



Sol. of 7: We first use Gaussian elimination and bring A to reduced-row-echelon-
form. If this would not be I3 it would mean that the problem is a bad one, since then A−1

would not make sense (since then A will not be invertible). So if we trust the problem,
then we already know that we should get R = I3. But we need more than R, we need the
sequence of elementary row operations that got us there. 1 1 0

0 1 0
0 1 1

 r3 − r2 → r3

→

 1 1 0
0 1 0
0 0 1

 r1 − r2 → r1

→

 1 0 0
0 1 0
0 0 1

 .

Hooray we got I3. Now we mimick the same sequence of operations starting with B. 1 1 1 1
1 0 0 1
−1 −1 0 1

 r3 − r2 → r3

→

 1 1 1 1
1 0 0 1
−2 −1 0 0

 r1 − r2 → r1

→

 0 1 1 0
1 0 0 1
−2 −1 0 0

 .

Ans. to 7:

A−1B =

 0 1 1 0
1 0 0 1
−2 −1 0 0

 .



8. (10 pts. altogether , 2 each) True or False? Give a short explanation!
(a) Every system of linear equations has at least one solution.

Sol. to 8a): False. It may be inconsisent (have no solution). For example

x1 = 1

x1 = 2 .

(b) If a matrix is in row-echelon form then the pivot entry of each pivot-column must be 1

Sol. to 8b): False. This is only a requirement for reduced row-echelon form.

(c) If A is an m× n matrix, then Ax = b is consistent for every b in Rm if and only if the
rank of A is n.

Sol. to 8c): False. To make it true replace “rank of A is n” by “rank of A is m”.

(d) If A and B are invertible n× n matrices then A + B is invertible.

Sol. to 8d): False. For example take A = I2 and B = −I2.

(e) Every column of a matrix is a linear combination of its pivot columns.

Sol. to 8e): True. This follows from the column-correspondence property.



9. (10 pts.) Let u1,u2, . . .uk be vectors in Rn . Prove that the span of {u1,u2, . . .uk} is
the same as the span of {u1 + 2u2,u2, . . .uk}.

Sol. of 9: The span of u1,u2, . . .uk consists of all linear combinations of u1,u2, . . .uk,
while the span of u1+2u2,u2, . . .uk consists of all linear combinations of u1+2u2,u2, . . .uk.

We have to prove that every vector in the first set also belongs to the second set, and vice
versa.

It is easier to prove the second statment first. A member of the second set has the following
format:

c1(u1 + 2u2) + c2u2 + c3u3 + . . . + ckuk ,

for some k real numbers c1, c2, . . . , ck. Using the algebra of vectors (opening-up parentheses
and then collecting terms), this equals

c1u1 + 2c1u2 + c2u2 + c3u3 + . . . + ckuk = c1u1 + (2c1 + c2)u2 + c3u3 + . . . + ckuk .

But this is the right format for the first set, since whenever c1, c2 are real numbers, so is
2c1 + c2, so this is a legitimate member of the first set.

In order to prove the first statement we use a trick. Write u1 as

u1 = (u1 + 2u2)− 2u2 .

Any linear combination
c1u1 + c2u2 + . . . + ckuk

can be written as

c1[(u1 + 2u2)− 2u2] + c2u2 + . . . + ckuk = c1(u1 + 2u2) + (c2 − 2c1)u2 + . . . + ckuk ,

and the latter is a member of the second set.

Since every vector of the second set also belongs to the first set, and vice versa, this means
that these two sets are the same. QED.

Note: Very few people got it comletely. Quite a few people were on the right track. The
above proof is only one correct way.



10. Compute the product of the partitioned matrix using block multiplication.
1 −1

−−− −−−
3 1
−1 5
1 2


[

1 |2 3 0
−1 |2 −1 2

]

Sol. of 10: We view the matrices as matrices of blocks and give them names:[
A1

A2

]
[B1 B2 ]

Where
A1 = [ 1 −1 ]

A2 =

 3 1
−1 5
1 2


B1 =

[
1
−1

]
B2 =

[
2 3 0
2 −1 2

]
.

We first do the matrix-product (of a 2× 1 matrix times a 1× 2 matrix, getting a 2× 2
matrix (symbolically): [

A1

A2

]
[B1 B2 ] =

[
A1B1 A1B2

A2B1 A2B2

]
.

Now we have to do four matrix-products:

A1B1 = [ 1 −1 ]
[

1
−1

]
= [(1)(1) + (−1)(−1)] = [2] .

A1B2 = [ 1 −1 ]
[

2 3 0
2 −1 2

]
= [ 0 4 −2 ]

A2B1 =

 3 1
−1 5
1 2

[
1
−1

]
=

 2
−6
−1


A2B2 =

 3 1
−1 5
1 2

[
2 3 0
2 −1 2

]
=

 8 8 2
8 −8 10
6 1 4

 =

Now we place everything on top getting
2 0 4 −2
2 8 8 2
−6 8 −8 10
−1 6 1 4

 .

This is the answer.


