- 1. (a) What does it mean to say that the vectors $\mathbf{u}_1, \ldots, \mathbf{u}_k$ in \mathbb{R}^n are linearly independent? Give the precise definition in one or more full sentences.
- (b) Are the vectors $\mathbf{u}_1 = \begin{bmatrix} 1 \\ 3 \\ -2 \end{bmatrix}$, $\mathbf{u}_2 = \begin{bmatrix} 3 \\ 5 \\ -3 \end{bmatrix}$, and $\mathbf{u}_3 = \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$ linearly independent? Justify your answer in terms of the definition you gave in (a)
- 2. (a) What is meant by the span of a set of vectors $S = \{\mathbf{u}_1, \dots, \mathbf{u}_k\}$? Give the precise definition in one or more full sentences.
- (b) Suppose that $\mathbf{u}_1 = \begin{bmatrix} 1 \\ 3 \\ -2 \end{bmatrix}$, $\mathbf{u}_2 = \begin{bmatrix} 3 \\ 5 \\ -3 \end{bmatrix}$, and $\mathbf{u}_3 = \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix}$. Is the span of the set of vectors

 $S = \{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ all \mathbb{R}^3 ? Justify your answer in terms of the definition you gave in (a).

- 3. In (a)-(c) below we suppose that we have been given a system of equations $A\mathbf{x} = \mathbf{b}$ and that we have already reduced the augmented matrix $[A \ \mathbf{b}]$ to the reduced row-echelon form $[R \ \mathbf{c}]$ given. In each case, determine (i) whether the original equations have a solution; (ii) if they do have a solution, whether or not it is unique; and (iii) if it is not unique, on how many free parameters there are in the solution. Then write the solution explicitly as a fixed vector plus a linear combination of other vectors, with coefficients the free variables.
- (a) $[R \mathbf{c}] = \begin{bmatrix} 1 & 5 & 0 & 2 & 8 & 0 \\ 0 & 0 & 1 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$

- 4. In each part below, give a $m \times n$ matrix R in reduced row-echelon form satisfying the given condition, or explain briefly why it is impossible to do so.
- (a) m = 3, n = 4, and the equation $R\mathbf{x} = \mathbf{c}$ has a solution for all \mathbf{c} .
- (b) m=3, n=4, and the equation $R\mathbf{x}=\mathbf{0}$ has a unique solution.
- (c) m = 4, n = 3, and the equation $R\mathbf{x} = \mathbf{c}$ has a solution for all \mathbf{c} .
- (d) m = 4, n = 3, and the equation $R\mathbf{x} = \mathbf{0}$ has a unique solution.
- (e) m = 4, n = 4, and the equation $R\mathbf{x} = \mathbf{0}$ has no solution.
- (f) m = 4, n = 4, and the equation $R\mathbf{x} = \mathbf{0}$ has a nontrivial solution.
- (g) m = 4, n = 4, and for every **c** the equations $R\mathbf{x} = \mathbf{c}$ have a solution containing a free parameter.
- 5. (a) Suppose that **u** and **v** are solutions of the system of equations $A\mathbf{x} = \mathbf{0}$. Show that $c\mathbf{u} + d\mathbf{v}$ is also a solution, for any scalars c and d.
- (b) Why does the above conclusion not hold (in general) if the system of equations is $A\mathbf{x} = \mathbf{b}$ with **b** a nonzero vector?

6. Suppose that

$$A = \begin{bmatrix} 1 & 3 \\ -1 & 2 \end{bmatrix}, \quad B = \begin{bmatrix} 3 & 2 & -1 \\ -1 & 2 & 0 \end{bmatrix}, \quad C = \begin{bmatrix} -2 & 3 \\ 3 & -3 \\ 4 & 1 \end{bmatrix}, \quad \text{and} \quad D = \begin{bmatrix} 0 & 6 & 2 \\ -3 & 0 & 4 \end{bmatrix}.$$

Which of the following quantities are defined? Calculate those that are.

- (a) AB,

- (b) AD^T (c) 3D 2B (d) BAC (e) CAB (f) C + 2A (g) C^TC .

7. Let A be an $m \times n$ matrix of rank r. What can you conclude about m, n, and r (other than r < m and r < n, always true) if the equation $A\mathbf{x} = \mathbf{b}$ has

- (a) exactly one solution for some **b** and no solution for other **b**?
- (b) infinitely many solutions for all **b**?
- (c) exactly one solution for every **b**?
- (d) infinitely many solutions for some b and no solutions for other **b**?
- (e) exactly one solution when $\mathbf{b} = \mathbf{0}$?

8. (a) Suppose that A and B are 4×5 matrices and that B is obtained from A by the row operation given below. In each case give an elementary matrix E such that B = EA.

(i)
$$\mathbf{r}_1 \leftrightarrow \mathbf{r}_4$$
, (ii) $\mathbf{r}_3 + 3\mathbf{r}_2 \rightarrow \mathbf{r}_3$.

(b) Give the inverses of the elementary matrices found in (i) and (ii) above. (You can do this without calculation; think about reversing the corresponding row operations.)

9. A certain 3×3 matrix A has reduced row echelon form $R = \begin{bmatrix} 1 & 0 & -3 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix}$. Find explicitly a

nontrivial linear relation on the columns of A, that is, a relation $c_1 \mathbf{a}_1 + c_2 \mathbf{a}_2 + c_3 \mathbf{a}_3 = \mathbf{0}$ with c_1 , c_2 , and c_3 not all zero.

10. (a) Suppose that A is a square matrix. What does it mean to say that A is invertible? (Give the definition, not one of the many equivalent conditions in Theorem 2.6.)

(b) Suppose that A and B are invertible $n \times n$ matrices. Show that $(AB)^{-1} = B^{-1}A^{-1}$.

(c) Suppose that A is an $n \times n$ matrix. A left inverse for A is an $n \times n$ matrix B with $BA = I_n$; a right inverse for A is an $n \times n$ matrix C with $AC = I_n$. Show that if A has both a right and left inverse then A is invertible and $B=C=A^{-1}$. (Hint: follow the proof from the book or class that the matrix inverse is unique.)

11. Show that the matrix $\begin{bmatrix} 0 & 2 & -1 \\ 1 & -1 & 2 \\ 2 & -1 & 3 \end{bmatrix}$ is invertible, and find its inverse.

12. Let $A = \begin{bmatrix} 1 & -1 & -3 & 4 \\ -2 & 1 & 5 & 0 \\ 4 & -2 & -10 & 1 \end{bmatrix}$ and $\mathbf{b} = \begin{bmatrix} 0 \\ -4 \\ 5 \end{bmatrix}$. Solve $A\mathbf{x} = \mathbf{b}$ by Gaussian elimination

and write the solution explicitly as a fixed vector plus a linear combination of other vectors, with coefficients the free variables.

13. Do all the True-False questions from Sections 1.1–1.4, 1.6, 1.7, 2.1, 2.3, and 2.4.