
MATH 437 Solutions to Exam II for Dr. Z.’s, Fall 2021, Dec. 6, 2021 Exam

1. (10 pts.) Give two proofs of the Pythagorean theorem.

Sol.

First proof: Consider an (a+ b)× (a+ b) square, and drawing four right-angled triangles
with base a, height b and hypotenuse c, in such a way that each side of the rectangle has
one a and one b. Then the emerging square at the middle is a c× c square, whose area is
c2, and hence the total area of the large square is c2 + 4 · (ab/2) = c2 + 2ab. On the other
hand, the area of the big square is (a + b)2 = a2 + 2ab + b2 so

a2 + 2ab + b2 = c2 + 2ab .

Subtracting 2ab from both sides of the above equation, we get a2 + b2 = c2.

Second Proof: (Similar triangles). Let ABC be a right-angled triangle with the angle at
C being the right-angle. Let C ′ be the projection of C on AB. Then the three triangles
• ACC ′ (with hypotenuse-size |AC| = b),
• CBC ′ (with hypotenuse-size |CB| = a),
• ABC (with hypotenuse-size |AB| = c),
are similar (they have the same angles), hence there is a non-zero constant k (whose exact
value does not matter) such that the area of triangle ACC ′ is kb2, the area of triangle ABC ′

is ka2 and the area of triangle ABC is kc2. But of course

Area(ACC ′) + Area(ABC ′) = Area(ABC) ,

so
ka2 + kb2 = kc2 .

Dividing by k gives
a2 + b2 = c2 .

2. (10 pts.) Prove that 7
√

3 is irrational.

Proof: We need the obvious lemma that for every integer N all the expoonents of N7 in
its prime decomposition are divisible by 7.

Assume that 7
√

3 is rational. This means that there exist positive integers m and n such
that

7
√

3 =
m

n
.

Raise everything to the seventh-power

3 =
m7

n7
.



Transposing:
m7 = 3n7 .

The left side as all the exponents of the primes, including the exponent of 3, a multiple of
7, but the exponent of 3 on the right side has the form 7a + 1 (i.e. it gives reamiander 1
when divided by 7). By the uniqueness of the prime decomposition, this is a contradiction.
QED.

3. (10 pts. total) (a) (5 points) Construct the Pascal triangle mod 2 Fractal using the
first 7 rows (i.e, row 0 through row 7). Highlight the middle 0 section, and show that the
remaining part consists of three identical triangles with 4 rows,

Ans.
1

11

101

1111

10001

110011

1010101

1111111

(b) (5 points) Define the Feigenbaum constant. Explain everything!

Ans. It turns out that that the mapping from [0, 1] to itself,x→ rx(1−x) repeated many
times, for very small r (r < 1) always go to 0, no matter what the starting number, x0

is . Later on, until r = 3 it goes to some other fixed point, but only one, but starting at
r1 = 3, for example, r = 3.1, the limiting behavior vacillates between two limiting points.
Eventually, at r2, the limiting behavior vacillates between four limiting points. Soon later
at r3 , the limiting behavior vacillates between eight limiting points. It is always a power
of 2, and the cut-off places in the parameter r when it goes from a limiting orbit of 2n−1

to a limiting orbit of 2n are called rn.
Michell Feigenbaum proved that

lim
n→∞

rn − rn−1
rn+1 − rn

,

tends to a fixed constant, about 4.66 . . . and it is called the Feigenbaum constant.



4. (10 points altogether)
(a) (2 points) Define a Platonic soild
(b) (2 points) Let a be the number of edges meeting each vertex, and let b be the number
of edges surrounding each face. Express V (the number of vertices) and F (the number of
faces) in terms of E (the number of edges), and a and b.
(c) (2 points) Find an expressions for F , in terms of a and b.
(d) (4 points) Obviously both a and b must be at least 3, and F (and hence V and E) must
be positive. It is easy to see (you don’t have to do it) that a, b must be both between 3 and
5, leaving 9 potential scenarios. Find those values of a and b that make sense, and thereby
prove that there are exactly 5 Platonic solids. For each of them, find F (the number of
faces) and give the name of the corresponding Platonic solid.
Sol.
(a) A platonic solid is a polyhedron (a solid body with finitely many faces) where all the
faces are identical, and every vertex has the same number of edges coming out of it.
(b) Each of the V vertices have a edges meeting it, hence there are altogether aV edges.
But every edge has exactly 2 vertices, so aV is a double count hence

a V = 2E .

Also very face as b edges around it, so the total number of edges is bF . Once again, every
edge belongs to exactly two faces, so the above is a double-count. Hence

b F = 2E .

Hence, using algebra

V =
2E

a
, F =

2E

b
.

(c) Using Euler’s famous V − E + F = 2, we get

2E

a
− E +

2E

b
= 2 .

Hence

E =
2

2
a − 1 + 2

b

=
2ab

2a + 2b− ab
.

We also have (from the above expression, F = 2E
b )

F =
4a

2a + 2b− ab
.

Hence we have an expression for E in terms of a and b. Of course a ≥ 3 and b ≥ 3. So
one has to try out the 9 cases a ∈ {3, 4, 5}, a ∈ {3, 4, 5}. Only (a, b) = (3, 3),(a, b) =
(3, 4),(a, b) = (4, 3),(a, b) = (3, 5),(a, b) = (5, 3) give values of E that are positive inetgers.
• a = 3, b = 3

F =
4(3)

2(3) + 2(3)− (3)(3)
=

12

3
= 4



This gives the tetrahedron (four faces).
• a = 3, b = 4

F =
4(3)

2(3) + 2(4)− (3)(4)
=

12

2
= 6

This gives the hexahedron (six faces), more commontly called the cube.
• a = 3, b = 5

F =
4(3)

2(3) + 2(5)− (3)(5)
=

12

1
= 12

This gives the dodacahedron (twelve faces).
• a = 4, b = 3

F =
4(4)

2(4) + 2(3)− (4)(3)
=

16

2
= 8

This gives the octahedron (eight faces).
• a = 5, b = 3

F =
4(5)

2(5) + 2(3)− (5)(3)
=

20

1
= 20

This gives the icasahedron (twenty faces).

5. (10 points)

Prove Lagrange’s theorem that if H is any subgroup of a group G, and |H| and |G| are
their number of elements, respectively, then |G|/|H| is always an integer.

Sol. Let the number of elements of G be n and the number of elements of H be m.
Let’s write

H = {h1, . . . , hm} ,

where, of course, h1, h2, . . . , hm are all different.
If G = H then we are done and n/m = 1.
Otherwise, there exist a g1 ∈ G not in H. Consider the set (called “coset”)

g1H = {g1h1, . . . , g1hm} ,

The elements of g1H are all different, since if not there would have been for some 1 ≤
i < j ≤ m g1hi = g1hj . Multiplying both sides, from the left by g−11 would give hi = hj ,
a contradiction.
Also g1H and H have no elements in common. Suppose that they did, then there is an hi
and and hj , both in H such that

g1hi = hj .

Multiplying both sides, from the right by h−1i gives

g1hih
−1
i = hjh

−1
i .



So
g1 = hjh

−1
i .

Since H is a group, g1 ∈ H, a contradiction. If G = H ∪ g1H then we are done. Otherwise
we can find g2 ∈ G such that g2 6∈ H and g2 6∈ g1H. By the same argument the elements
of g2H are all distinct, and they have no overlap with H, and g1H. Continuing this way,
finally we arrive at g1, . . . , gr−1 such that

G = H ∪ g1H ∪ g2H ∪ . . . ∪ gr−1H ,

each of them has m elements, and they don’t overlap, so n = mr, hence r = n/m is an
integer.

6. (10 points) What is the name of the following famous equation-pair?

ux = vy , uy = −vx ,

or, in fuller notation
∂u

∂x
=

∂v

∂y
,

∂u

∂y
= −∂v

∂x
.

What is special about the function u(x, y)+ iv(x, y) where u(x, y), v(x, y) satisfy the above
system of two equations?

Ans. The Cauchy-Riemann Equations. u(x, y) + iv(x, y) is a(complex)-analytic function,
i.e. of the form F (x + iy).
Comment: As pointed out by Sarah C., this material was in the part of the book that I
did not ask you to read. People who got this problem right anyway, would get the full ten
points, but anyone else, this problem would not count. I will add-up your score, divide by
110 and multiply by 120.

7. (10 points) Who discovered the quaternions? What city did that person live in?

Ans. William Rowan Hamilton. Dublin.

8. (10 points) What is Heron’s formula, what century did Heron live in?

Ans. A =
√

s(s− a)(s− b)(s− c), where A is the area of a triangle, and a, b, c are the
lengths of its sides. First-century AD.

9. (10 points) Where did Isaac Newton study? Who was his teacher? What unusual
action did that teacher do? What was Newton’s position after he left Cambridge?

Ans. Cambridge University, England. Barrow. Barrow gave up his professorship so that
Newton can have it. Master of the Mint.



10. (10 points) In what city was Leibnitz born? Where did he spend most of his life?
What King of England was once the employer of Leibnitz?.

Ans. Leipzig. Court of Hanover. George I.

11. (10 points total)
(a) (5 points) State Viète’s infinite product for 2

π .
Ans.
See wikipedia.

(b) ( 5 points) State the names of two people who initiated the use of logarithms

Ans. Napier and Briggs.
12. (10 points altogether) (a) (3 points) Define a Eulerian path in a graph.

(b) (3 points) State the necessary condition for a graph to have a Eulerian path

(c) (4 points) Prove (or explain in your own words) why the condition in (b) is necessary.
Sol. (a) A Eulerian path in a graph is a path that starts at some vertex and ends at either
the same vertex or a different vertex, and such that every edge is visited exactly once.

(b) Every vertex must have an even number of edges coming out of it, except two of them.
The two exceptions, signal the starting and ending vertices (or vice-versa).

(c) If such a path exists, except for the first and last vertices, whenever you enter a vertex,
you must leave it. Since one is not allowed to use the same edge twice, the number of
edges incident to any such vertex (except the first and the last) is even, since they come in
pairs. If the first and last vertices are the same (then it is called a Eulerian cycle), then
these two also have even degrees, otherwise the starting and ending vertices have both odd
degrees.


