
Solutions to MATH 437 Exam I for Dr. Z.’s Math History Course Fall 2021, Oct. 27,

2021

1. (10 pts.) Prove that there are infinitely many primes.

Sol. Suppose that there are only finitely many of them, say k of them, and let’s call them p1, . . . , pk.

Let’s create a brand-new integer

P = p1 · p2 · · · pk + 1 .

P , being a positive integer, must be either a prime itself, or divisibile by at least one prime.

Note that

• It is not divisible by p1, since when you divide P by p1 you get remainder 1

• It is not divisible by p2, since when you divide P by p2 you get remainder 1

. . .

• It is not divisible by pk, since when you divide P by pk you get remainder 1

So it must be divisible (or be itself) by yet another prime none of the above. So we found

another prime! This contradicts the assumption that p1, . . . , pk are the only primes in the world.

So whenever you think that you have found all the primes, you can always come up with yet-

another-one, hence there are infinitely many of them.

2. (10 pts.) Prove that
√

29 is irrational.

Sol.

We first prove a

Lemma: If n2 is divisible by 29 then also n must be divisible by 29.

Proof of Lemma: By the fundamental theorem of arithmetics any positive integer can be

written (uniquely) as a product of prime powers

n = pm1
1 . . . pmk

k .

Hence, squaring

n2 = p2m1
1 . . . p2mk

k .

If 29 were not divisible by n2, then obviously 29 can not show up in the prime decomposition of n2,

so if it does show up then (it has an even exponent) and it must show up in the prime decomposition

of n. Hence n is divisible by 29.

Proof that
√

29 is irrational:
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Suppose, for the sake of argument, that
√

29 can be written as

√
29 =

m

n
,

where m and n are both positive integers. If m and n are both divisible by 29, we can cancel out

29 until at least one of them is not divisible by 29.

So if there exists a pair of positive integers m and n such that
√

29 = m
n , then there also exists a

pair of integers (let’s call them again m and n) such that
√

29 = m
n , and m and n are not both

divisible by 29.

Squaring both sides

29 =
m2

n2
.

By algebra

m2 = 29n2 .

Hence m2 is divisible by 29, it follows from the lemma that m is divisible by 29, hence we can write

m = 29a ,

for some positive integer a.

Hence

(29 a)2 = 29n2 .

By algebra

292 a2 = 29n2 ,

More algebra

n2 = 29 a2 ,

hence, n2 is a multiple of 29, and by the lemma, also n is divisible by 29. So both m and n are

divisibile by 29, contradictiong the assumption that m are not both divisible by 29. Hence we have

to renounce the assertion that
√

29 can be written as m
n for positive integers m and n. This means

that
√

29 is irrational.

3. (10 pts) Derive (from scratch, only using geometric series and calculus) the Taylor series around

x = 0 of the function

arctan x3 .

Explain!

Sol.
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By calculus, (arctanx)′ = 1
1+x2 , hence

arctanx =

∫ x

0

1

1 + t2
dt .

Recall the famous infinite geometric series (valid for |w| < 1)

1

1− w
=

∞∑
n=0

wn .

Plugging-in w = −t2, we get

1

1 + t2
=

∞∑
n=0

(−t2)n =

∞∑
n=0

(−1)nt2n .

Integrating, term-by-term

arctanx =

∞∑
n=0

(−1)n
∫ x

0

t2n =

∞∑
n=0

(−1)n
(
t2n+1

2n+ 1

) ∣∣∣x
0

=

∞∑
n=0

(−1)n
x2n+1

2n+ 1
.

Finally we replace x by x3 getting

Final answer:

arctan x3 =

∞∑
n=0

(−1)n
x3 (2n+1)

2n+ 1
.

4. (10 pts. altogether) Prove that

n∑
k=0

k(k − 1)(k − 2) =
(n+ 1)n(n− 1)(n− 2)

4
,

(i) (5 points): The Dr. Z. way (verifying it for sufficiently many special cases, explain how many

you need)

The summand, k(k − 1)(k − 2), is a polynomial of degree 3, hence the sum on the left side is a

polynomial of degree 4. The right side is also a polynomial of degree 4, hence to prove that both

sides are always the same (i.e. for every positive integer), it suffices to check 5 different special

cases. The easiest are n = 0, 1, 2, 3, 4.

Calling the left side L(n), and the right side, R(n), obviously

L(0) = R(0)(= 0) , L(1) = R(1)(= 0) , L(2) = R(2)(= 0) ,
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Now

L(3) = 1 · 2 · 3 = 6 , R(3) =
(3 + 1) · 3 · 2 · 1

4
= 6 ,

L(4) = 1 · 2 · 3 + 2 · 3 · 4 = 30 , R(4) =
(4 + 1) · 4 · 2 · 2

4
= 30 .

Since L(n) = R(n) for the five different arguments n = 0, n = 1, n = 2, n = 3 , n = 4, it follows

that L(n) = R(n) for all non-negative integers n

(ii) (5 points): The traditional way, using complete mathematical induction.

The base case n = 0 is obviously true.

Let’s call the statement S(n). We need to prove for all integers n ≥ 0,

So we have to prove the statement S(n), namely:

n∑
k=0

k(k − 1)(k − 2) =
(n+ 1)n(n− 1)(n− 2)

4
.

S(0) is obviously true (both sides are 0), S(n) would follow for all n ≥ 0, if we can prove

S(n− 1) IMPLIES S(n) .

S(n − 1) is called the inductive hypothesis. It is obtained by doing a ‘global replace’ of n by

n− 1. In other words it is

n−1∑
k=0

k(k − 1)(k − 2) =
n(n− 1)(n− 2)(n− 3)

4
.

Next we look at the left side of S(n) and ‘pull out’ the last term

L(n) =

n∑
k=0

k(k − 1)(k − 2) =

(
n−1∑
k=0

k(k − 1)(k − 2)

)
+ n(n− 1)(n− 2) .

By the inductive hypothesis this equals

n(n− 1)(n− 2)(n− 3)

4
+ n(n− 1)(n− 2) = n(n− 1)(n− 2)

(
n− 3

4
+ 1

)

= n(n− 1)(n− 2)

(
n− 3 + 4

4

)
= n(n− 1)(n− 2)

n+ 1

4
,

but this is exactly the right side of S(n). QED.

5. (10 points) Construct a seven by seven Magic Square.
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Ans. to 5:

4 35 10 41 16 47 22
29 11 42 17 48 23 5
12 36 18 49 24 6 30
37 19 43 25 7 31 13
20 44 26 1 32 14 38
45 27 2 33 8 39 21
28 3 34 9 40 15 46

6. (10 points) Arrange the following people according to their year-of-birth, from oldest to youngest.

Newton, Archimedes, Gallileo, Euler, Gauss, Zeilberger, Euclid, Thales, Brahmagupta, Fibonacci.

For each person, state their century of birth.

Ans. to 6:

Thales: sixth century BC

Euclid: fourth century BC

Archimedes: third century BC (more precisely 287 BC)

Brahmagupta: seventh century

Fibonacci: late 12th century

Galilleo: late 16th

Newton: 17th century (1642)

Euler: 18th century

Gauss: late 18th

Zeilberger: 20th century (more precisely, July 2, 1950).

7. (10 points). What is an Egyptian fraction? Express 5
6 as an Egyptian fraction

Ans. to 7: Expressing a fraction as a sum of different unit fractions (pure reciprocals). 1
2 + 1

3 .

8. (10 points) What is the difference between Ionian (Greek) mathematics and ancient Babylonian

and Chinese mathematics? Who was the traditional father of Greek mathematics?

Ans. to 8: The former was pure the latter was ‘applied’, practical, and not proof-based. Thales

of Milete.
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9. (10 points) What book, except for the bible, was the most reproduced and studied in the Western

world? Who was its author?

Ans. to 9: ‘The Elements’, by Euclid.

10. (10 points) In a closed polyhedron, what is a relation between V , the number of vertices, E,

the number of edges, and F , the number of faces? Who is it due to?

Ans. to 10: V − E + F = 2. It is due to Euler.

11. (10 points) What is the name, of the following constant:

lim
n→∞

(
1

1
+

1

2
+ . . .+

1

n
− log n

)
.

What is its approximate value?

Ans. to 11: Euler’s constnant γ = 0.57721 . . ..

12. (10 points) Using the beginning of the famous Taylor expansion, about x = 0 for sinx, namely

sin(x) = x− 1

6
x3 + . . . ,

find the beginning (up to term x3) of the Taylor series, about x = 0 of

f(x) = sin sin sinx ,

in the form

a0 + a1x+ a2x
2 + a3x3 + . . .

Sol. of 12:

We first need the first few terms (up to and including x3) of sin sinx

sin sinx = sin(x− 1

6
x3 + . . .) = (x− 1

6
x3 + . . .)− 1

6
(x− 1

6
x3 + . . .)3

= x− 1

6
x3 − 1

6
x3 + . . . = x− 1

3
x3 + . . .

(since we can safely discard powers higher than x3). Finally

sin sin sin x = sin(sin sin x) = (sin sinx)− 1

6
(sin sinx)3 + . . . .

Using what we know so far this is

(x− 1

3
x3)− 1

6
(x− 1

3
x3)3 + . . .
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= x− 1

3
x3 − 1

6
x3 + . . . .

(since we can safely discard powers higher than x3), and this equals

x− 1

2
x3 + . . . .

Ans.:

a0 = 0; a1 = 1; a2 = 0; a3 = −1

2
.
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