Attendance Quiz for Lecture 13

NAME: (print!) ARAV SANWAL

E-MAIL ADDRESS: (print!) ajs732@scarletmail. rutgers. edu

1. State and prove Euler's formula relating the number of vertices, edges, and faces, of a planar graph.

Euler's formula is N-M+f=2 for n vertices, m edges, f faces We will prove this by induction:

Base case (m=0): We have a planar graph with 0 edges, and it must have 1 vertex, and 1 face (infinite face) if it is planar.

So $n-m+f=2 \rightarrow 1-0+1=2 \rightarrow .2=2 \rightarrow Formula holds for base case.$

Inductive Hypothesis: Let G be a graph with n vertices, k edges, and f faces. G is planar, and assume that n-k+f=2 is true.

Inductive Step: Remove an edge from G. Then the new graph will have K'=k-1 edges, D'=D vertices, and f'=f-1 faces, as temoving an edge will merge 2 faces into 1, or disconnect it.

So we can see that $D'-K'+f'=h_F(K-1)+(f-1)$

= h - k + f

And according to Inductive Hypothesis this is equal to 2.

So n'-k'+f'=2. Hence we proved n-m+f=2 for planar graphs by induction