#OK to post homework #GLORIA LIU, Apr 9 2024, Assignment 22 read `C22.txt`: #=====================================# #1. Read and understand the wikipedia article on solar eclipse #Done #=====================================# #2. Read and understand the wikipedia article on Tidal force and convince youself that the tidal strenth of the heavenly body on the earth is #proportional to the mass divided by the cube of the distance to the earth from that object. Explain how this fact, combined with the fact #that the apparent sizes of the moon and the sun to an observer on Earth is about the same (making at total #eclipse possible, but just #barely) combined with the known fact that the lunar tide is much stronger #than the solar tide, proves that the density (mass per volume) of #the moon is significantly greater #than that of the sun. #Let vm, vs be the volume of the moon and sun respectively, and rm and rs be the radius of the moon and sun respectively #Let mm, ms be the mass of the moon and sun, dm and ds be the distance from the earth to the moon and sun respectively #We want to find the relation between mm/vm and ms/vs, and show that mm/vm is significantly greater than ms/vs. #The formula for the volume of a sphere is (4/3)*Pi*r^3 where r is the radius of the sphere. In our case, we will be looking at the volume #of two spheres, so we could just look at the radius cubed, as the constants will not affect the ratio of mm/vm to ms/vs. #From the possibility of the eclipse, we have that roughly, rs/ds = rm/dm. So ds is roughly equal to (rs*dm)/rm. #From the strength of the tidal forces, we have mm/(dm^3) is significantly greater than ms/(ds^3). #Substituting in ds=(rs*dm)/rm in the tidal forces equation we obtain mm/(dm^3) >> ms*(rm/(rs*dm))^3, #Equivalently mm/(dm^3) >> (ms*rm^3)/(rs^3*dm^3), which is equivalent to mm/(rm^3) >> ms/(rs^3), which implies that mm/vm >> ms/vs. #So the density of the moon is significantly greater than that of the sun. #=====================================# #3. Start working on your chosen class final project and report the progress so far #Progress: met with Dr. Z during office hours and learned how to use the Maple package to find recurrence formula. #=====================================# #4. Complete procedure SE(SunCenter,SunRadius,MoonCenter,MoonRadius,EarthCenter,EarthRadius) (that we barely started in C22.txt , to draw a #diagram similar to the one in the "Geometry" section of the wikipedia article on solar eclipse with(geometry): #with(Student:-Precalculus): with(plottools): with(plots): ###Important!!! Please restart maple environment if you want to use this process more than once### SEgl:=proc(SunCenter,SunRadius,MoonCenter,MoonRadius,EarthCenter,EarthRadius) local P,t,Dse,Dem,simCoord,inSimCoord,exSimCoord,eTL1,eTL2,solsEMTL1,solsEMTL2,solsESTL1,solsESTL2,iTL1,iTL2,solsIMTL1,solsIMTL2,solsISTL1,solsISTL2,solsPen1,solsPen2,penRadius: geometry[point](A,SunCenter[1],SunCenter[2]), geometry[point](B,MoonCenter[1],MoonCenter[2]), geometry[point](C,EarthCenter[1],EarthCenter[2]): if not AreCollinear(A,B,C) then RETURN(FAIL): fi: #Plot the sun P:=plot([SunCenter[1]+SunRadius*cos(t),SunCenter[2]+SunRadius*sin(t),t=0..2*Pi],axes=none,filled=true,color=yellow): #Earth orbit plot Dse:=Student[Precalculus][Distance](SunCenter,EarthCenter): P:=P,plot([SunCenter[1] + Dse*cos(t), SunCenter[2] + Dse*sin(t), t=-Pi/6..2*Pi/3], color=blue, thickness=1): #Moon orbit plot Dem:=Student[Precalculus][Distance](EarthCenter,MoonCenter): P:=P,plot([EarthCenter[1] + Dem*cos(t), EarthCenter[2] + Dem*sin(t), t=0..2*Pi], color=green, thickness=1): #Plot the moon and earth. Unfortunately even plotting after orbits, the planets do not cover their orbit lines. P:=P,plot([MoonCenter[1]+MoonRadius*cos(t),MoonCenter[2]+MoonRadius*sin(t),t=0..2*Pi],axes=none,filled=true,color="LightGray"): P:=P,plot([EarthCenter[1]+EarthRadius*cos(t),EarthCenter[2]+EarthRadius*sin(t),t=0..2*Pi],axes=none,filled=true,color=blue): #Find similitude points _EnvHorizontalName := 'x': _EnvVerticalName := 'y': geometry[circle](sun, [geometry[point](A,SunCenter[1],SunCenter[2]),SunRadius]), geometry[circle](moon, [geometry[point](B,MoonCenter[1],MoonCenter[2]) ,MoonRadius]), geometry[circle](earth, [geometry[point](C,EarthCenter[1],EarthCenter[2]),EarthRadius]): similitude(objSim,sun,moon): simCoord:=map(coordinates,objSim): inSimCoord:=simCoord[1]: exSimCoord:=simCoord[2]: #Find and graph external tangents to moon and sun geometry[point](ISC, inSimCoord[1], inSimCoord[2]), geometry[point](ESC, exSimCoord[1], exSimCoord[2]): TangentLine(objTL,ESC,moon,[lE1,lE2]): eTL1:=solve(Equation(lE1),y): eTL2:=solve(Equation(lE2),y): solsEMTL1:=solve({Equation(lE1), (x-MoonCenter[1])^2 + (y-MoonCenter[2])^2 = (MoonRadius^2) + 0.0001}, {x,y}): solsEMTL2:=solve({Equation(lE2), (x-MoonCenter[1])^2 + (y-MoonCenter[2])^2 = (MoonRadius^2) + 0.0001}, {x,y}): P:=P,plot(eTL1,x=rhs(solsEMTL1[1][1])..exSimCoord[1],color=gray): P:=P,plot(eTL2,x=rhs(solsEMTL2[1][1])..exSimCoord[1],color=gray): solsESTL1:=solve({Equation(lE1), (x-SunCenter[1])^2 + (y-SunCenter[2])^2 = (SunRadius^2) + 0.0001}, {x,y}): solsESTL2:=solve({Equation(lE2), (x-SunCenter[1])^2 + (y-SunCenter[2])^2 = (SunRadius^2) + 0.0001}, {x,y}): P:=P,plot(eTL1,x=rhs(solsESTL1[1][1])..rhs(solsEMTL1[1][1]),color=yellow): P:=P,plot(eTL2,x=rhs(solsESTL2[1][1])..rhs(solsEMTL2[1][1]),color=yellow): #Find and graph internal tangents to moon and sun TangentLine(objTL2,ISC,moon,[lI1,lI2]): iTL1:=solve(Equation(lI1),y): iTL2:=solve(Equation(lI2),y): solsIMTL1:=solve({Equation(lI1), (x-MoonCenter[1])^2 + (y-MoonCenter[2])^2 = (MoonRadius^2) + 0.0001}, {x,y}): solsIMTL2:=solve({Equation(lI2), (x-MoonCenter[1])^2 + (y-MoonCenter[2])^2 = (MoonRadius^2) + 0.0001}, {x,y}): solsISTL1:=solve({Equation(lE1), (x-SunCenter[1])^2 + (y-SunCenter[2])^2 = (SunRadius^2) + 0.0001}, {x,y}): solsISTL2:=solve({Equation(lE2), (x-SunCenter[1])^2 + (y-SunCenter[2])^2 = (SunRadius^2) + 0.0001}, {x,y}): P:=P,plot(iTL1,x=rhs(solsISTL1[1][1])..rhs(solsIMTL1[1][1]),color=yellow): P:=P,plot(iTL2,x=rhs(solsISTL2[1][1])..rhs(solsIMTL2[1][1]),color=yellow): PerpendicularLine(lp,ESC,lI1): solsPen1:=solve({Equation(lp), Equation(lI1)},{x,y}): PerpendicularLine(lp2,ESC,lI2): solsPen2:=solve({Equation(lp2), Equation(lI2)},{x,y}): P:=P,plot(iTL1,x=rhs(solsIMTL1[1][1])..rhs(solsPen1[1]),color=gray): P:=P,plot(iTL2,x=rhs(solsIMTL2[1][1])..rhs(solsPen2[1]),color=gray): #Graph penumbra and umbra penRadius:=geometry[distance](ESC,lI1): P:=P,plot([exSimCoord[1]+penRadius*cos(t), exSimCoord[2]+penRadius*sin(t),t=0..2*Pi],axes=none,filled=true,color=black): P:=P,plottools[point](exSimCoord,color=black,symbol=solidcircle): #Graph text labels and lines pointing to penumbra/umbra P:=P,textplot([exSimCoord[1]-Dem-.8, exSimCoord[2]+.5, "Penumbra"], font=["times","roman",bold,10],color=black,axes=none): P:=P,textplot([exSimCoord[1]-Dem-.8, exSimCoord[2], "Umbra"], font=["times","roman",bold,10],color=black,axes=none): P:=P,textplot([EarthCenter[1], EarthCenter[2]+Dem+.2, "Orbit of the Moon"], font=["times","roman",bold,10],color=green,axes=none): P:=P,textplot([SunCenter[1], SunCenter[2]+Dse-.3, "Orbit of the Earth"], font=["times","roman",bold,10],color=blue,axes=none): P:=P,textplot([SunCenter[1]-SunRadius-.5, SunCenter[2], "Sun"], font=["times","roman",bold,10],color="Gold",axes=none): P:=P,plottools[line]([exSimCoord[1]-Dem-.4, exSimCoord[2]], exSimCoord,color=black): P:=P,plottools[line]([exSimCoord[1]-Dem-.2, exSimCoord[2]+.5], [rhs(solsPen1[1]) + .1,rhs(solsPen1[2])],color=black): display(P); end: #Try: SEgl([0, 0], 1, [4, 4], 0.2, [5, 5], 0.8) (best results when the line from sun to moon points to the upper right) #=====================================# #5. Use the animate function in the plots package of Maple to illustrate the earth moving around the sun (where the orbit is drawn, but a #point labeled E is moving around the sun). #If possible also have the moon going around the earth. The input parameters should be an abitrary year length (365.5 for us) and lunar #sideral period (27.32 for us), as well as the center of the sun, and the distance of the sun to the earth. You can assume that it is a #circular orbit. #Skipped