#C25.txt: Zero-Knowledge Proofs. April 18, 2024 Help:=proc(): print(`LD(p), RG(n,p), RHG(n,p), ZKP1(n,G,pi,Opt)`): end: with(combinat): #LD(p): inputs a pos. rational number from 0 to 1 and outputs true with prob. p LD:=proc(p) local i:i:=rand(1..denom(p))(): if i<=numer(p) then true:else false:fi:end: #RG(n,p): inputs a pos. integer n and outputs a simple graph on n vertices where the #prob of an edge is p (independetly) RG:=proc(n,p) local i,j,G: G:={}: for i from 1 to n do for j from i+1 to n do if LD(p) then G:=G union {{i,j}}: fi: od: od: G: end: #RHG(n,p): inputs a pos. integer n and outputs a simple HAMILTONIAN graph on n vertices #where the #prob of an edge is p (independetly) together with the Hamiltonian path #The output is a pair [G,permutation] where the permutation of {1,...,n} #is the Hamiltonian cycle that you know and you don't want anyone else to know #BUT you do want to convince them that you DO know RHG:=proc(n,p) local i,j,G,pi: pi:=randperm(n): G:={seq({pi[i],pi[i+1]},i=1..n-1), {pi[n],pi[1]}}: for i from 1 to n do for j from i+1 to n do if LD(p) then G:=G union {{i,j}}: fi: od: od: [G, pi]: end: #ZKP1(n,G,pi,Opt): Does ONE ROUND of the Blum protocol. Inputs a graph n,G, #a Hamiltonian pi, and Opt=1 or 2 Opt=1 you show all the n+binomial(n,2) boxes #Opt2, you show the contents of the n boxes correponsing to the mapping of #your Hamiltonian ZKP1:=proc(n,G,pi,Opt) local B1,B2,i,j,sig: sig:=randperm(n): for i from 1 to n do B1[i]:=sig[i]: od: for i from 1 to n do for j from i+1 to n do if member ({i,j},G) then B2[{sig[i],sig[j]}]:=1: else B2[{sig[i],sig[j]}]:=0: fi: od: od: if Opt=1 then [op(B1),op(B2)]: else {seq(B2[{sig[pi[i]],sig[pi[i+1]]}],i=1..n-1),B2[{sig[pi[n]],sig[pi[1]]}]}: fi: end: