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 Abstract. The article decomposes the Shapley value into a value matrix which
 gives the value of every player to every other player in rc-person games. Ele-
 ment &ij{v) in the value matrix is positive, zero, or negative, dependent on
 whether row player i is beneficial, has no impact, or is not beneficial for
 column player y . The elements in each row and in each column of the value
 matrix sum up to the Shapley value of the respective player. The value matrix
 is illustrated by the voting procedure in the European Council of Ministers
 1981-1995.

 1 Introduction

 In this article the Shapley (1953) value is decomposed into a value matrix of
 which the elements can be interpreted as the value of every player i to every
 other player y, i,y = 1, . . . ,/i. The Shapley value <P,-(i?) has traditionally been
 given many different interpretations. Four examples are his expected marginal
 contribution, the weighted average of his marginal contributions to the coali-
 tion of all n players involved, what player / can "reasonably" command to
 himself, or player z's "fair share" in the game (see e.g. Roth 1988:6). One
 interpretation of the Shapley value matrix [Oij(v)' to be developed here is that
 it quantifies the value of player /'s expected marginal contribution to player j,

 We would like to thank Manfred Holler, two anonymous referees, and the editor of
 this journal for helpful comments.
 Article presented at the James Coleman Memorial Conference, the Reimers Stiftung,
 Bad Homburg, Germany, October 31 -November 2, 1996, and presented at Hamburg
 University December 10, 1996.
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 466 K. Hausken, M. Mohr

 í, y = 1, ...,/!. Player i makes an expected marginal contribution 0¡(v) - the
 Shapley value - which is divided into n x n components <Pij(v), each of which
 gives the value of row player /' s expected marginal contribution <P¡(v) to every
 column player j, ij = 1, . . . ,n. We show that player fs marginal contribu-
 tions to all players (including himself) sum up to *,-(i?). Hence player y is able
 to determine not only how valuable a game is to himself, but also how valu-
 able each player / in the game is to himself. This allows player j to rank the
 value or importance of every player i (including himself) to himself in an n-
 component ranking list.1 If player i is of a certain value to player y, then player
 j may have a certain interest in player i. Hence the value matrix can also be
 interpreted as an interest matrix.2 Furthermore, if player j is interested in
 player i, this gives the possibility for player / to have power over player y.
 More specifically, if player y has a high interest in player i, while player i has a
 low interest in player y, then player i can be said to have power over player y.
 Hence the value matrix can also be interpreted as a power matrix.3

 2 The value of a player to another player in an /i-person game

 Shapley (1953) proposed the following value 0¡(v) to a player i, i = 1, ...,«,
 in an «-person game {v(S), S ^ N} where N is the set of players, S is one of
 the 2" subcoalitions of N, including the empty set, v(S) is the characteristic
 function which assigns a value to every coalition S, and s is the number of
 players in 5, i.e. s = |5| and n = 'N':

 *i{v,N) = ^{S~iy^~S)l(v(S) - v(S'{i}). (2.1)
 Ssi

 Summing over all the coalitions S to which player i belongs, &i(v) is player z"s
 marginal contribution to coalition S, multiplied with the (s- 1)! different
 permutations of the members of coalition S aside from player /, multiplied

 1 The value matrix implicitly involves defining a player /'s "value to himself." A 100%
 "self-sufficient" player / has a value to himself equal to the Shapley value &ü(v) =
 #/(t?), with no additional value of the other players. A 100% "other-dependent" player
 /, who is 0% "self-sufficient", has a value &u(v) = 0 to himself, where the value of the
 other players to himself sum up to the Shapley value &i(v). In most games player / has
 an "intermediate value to himself," which is interpreted as an interpolation between
 these two extremes.

 2 This implies defining a 100% "self-sufficient" player as having 100% "interest" in
 himself and "no interest" in other players. Conversely a 100% "other-dependent"
 player is defined to have "no interest in himself" (w.r.t. the game being played) and
 100% interest in the other players.
 3 This implies defining a 100% "self-sufficient" player i as having 100% power "over
 himself" where no other players have "power over" player i. Conversely a 100%
 "other-dependent" player i has no power "over himself" while the other players
 together have 100% "power over" player i.
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 Value of a player 467

 with the (n - s)' different permutations of the players not being members of
 coalition S, divided by the n' different permutations of all the players in the
 grand coalition N.
 We can analogously calculate player f s fair share in every subcoalition S,

 assuming that only the members of S are taking part in the subgame
 {v(R),R<=,S},S^N:

 */(», S) = £ (r"1)'('"r)! (v(R) - v(R'{i}). (2.2)
 RciS ò'
 Rii

 For convenience, let us write <P,-(i;, S) = 0¡(S). We define the value of player i
 to player y as

 0¡j{N) = £ ("-^-1)» ms) _ 0j{S'm. (2.3)
 ijeS

 Since 0j(S) is the share of v(S) player y can command for himself in the game
 {v(R),R Ç S}, <Pij(S) is the weighted sum of fs marginal contributions toy's
 share of v(S) in every S ç N.

 Theorem 2.1. The sum over allj, j = 1, . . .,n,ofthe value &i¡(N) of player i io
 each player j equals the Shapley value &¡(N) of player i, that is

 Proof: Since the Shapley value is efficient, it follows that

 ±*yW = t E (B"^J'1)! (»;(*) - */s'«))
 ijeS

 = E ("~^~1)!(K5) - r(S'{/})) = <P,(JV). (2.5)

 &y(N) can be written as (the proof is given in Appendix 1)

 *»W = E(r~1)liW~r)W) - KÄ'{y}))
 REA! "•

 -(p(/î'{i})-»(A{'-,y})))Ê-- (2-6)
 It follows immediately that 0y(N) = &ß(N). Hence the matrix [$ij(N)],
 which denotes the value of row player / to column player j, is symmetric.
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 468 K. Hausken, M. Mohr

 Inserting i =j into (2.3) or (2.6), where <P,-(iS'{i'}) = 0, gives

 MN)=^-^-iy-^S), n' (2.7) S<=:N n'
 ieS

 which represents the value of player i to himself. &u(N) is the weighted sum of
 the Shapley values <Pi(S) of player i in all subcoalitions S.

 &ij(N) is similar to

 RsN "•

 x ((v(R) - v(R'{j})) - (v(R'{i}) - v(R'{i, ;}))), (2.8)

 n J n
 which is easier to interpret since the weight ^ - is absent. ^ ^ does not add

 s=rs i=l

 up to v(N), but rather to ¿ V¡ = n • i>(#) - ¿ i>(#'{0)> and ^ is not a
 1=1 i=i

 decomposition of the Shapley value. The ^-Matrix, briefly discussed in
 Appendix 2, is introduced to help us interpret (2.6).

 Example 2.1. Consider the game with JV = {1,2,3} where i;(l) = 180, v(2) =
 u(3) = »(2,3) = 0, »(1,2) = 360, t>(l,3) = t?(l,2,3) = 540. The Shapley value
 given by (2.1) is 0(v, {1,2,3}) = (390 30 120) T, where T means transposed.
 The value matrix [<Pfy({l,2,3})] giving the value of row player / to column
 player j is

 "295 25 70 -

 0ij= 25 25 -20 . (2.9)
 L 70 -20 70 .

 The elements in each row and in each column of the value matrix [<Pfy] in (2.8)
 sum up to the Shapley value of the respective player. A negative value indi-
 cates that / imposes costs on y as y would be better off if i did not take part in
 the game. <£# can be negative since a player may benefit from removing an-
 other player from the game. Hence in (2.9), player 2 benefits from removing
 player 3, player 3 benefits from removing player 2, while all the other rela-
 tionships between the players are mutually beneficial. To determine how a
 player's power is affected by the removal of another player, the Shapley values
 for the games with and without the other player present need to be calculated.
 Removing player 3 from the game in (2.9) gives TV = {1,2}, v(l) = 180, v(2)
 = 0, i?(l,2) = 360, which implies &x = 270 and &2 = 90. The power or fair
 share of player 2 thus increases by 60, while the power of player 1 decreases by
 120, as is also indicated by the positive <Pi' in (2.9). Note that &a < ®h
 i = 1, 2, 3, in (2.9). Although this is not generally the case, it happens in (2.9)
 since players 2 and 3 are only mildly antagonistic and the other relationships
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 Value of a player 469

 are mutually beneficial. We suggest interpreting #/,• < <P,- as there being syn-
 ergy present, in the sense that each player has a lower value to himself when
 he cannot rely on the synergy flowing from the joint operation with the other
 players, than the Shapley value which represents his fair share in the game,
 what he can reasonably command. <Pff > <P,- means that player i to a larger
 extent prefers operating alone, and that he has a very negative impact on at
 least one other player in the game.
 The notion of the value of a player to another player is to our

 knowledge absent in the literature, though Owen (1972:76) proposes that
 his second order cross-derivatives f¡¡ = S2f/ôxl Sxj "can be thought of as
 measuring, in some sense, the value of player y to player z'."4 Owen defines

 f{xu. . . ,xn) = ^ScN{]'jeSXjY[jts(l - xj)}v(s) as the multilinear exten-
 sion of v(S) which can be thought of as "the expected value of the (as yet
 unformed) coalition," where x¡ may be interpreted as the probability that
 player /joins the coalition S (p. 64). Hence/ is "the expected marginal value
 of player i to the coalition which he will join, given that player j has proba-
 bility Xj of being in the coalition, and assuming independence" (pp. 72-73).
 Integrating fy along the main diagonal, Owen (1972:77) calculates the co-
 value

 9v= 'fij{t,...,t)dt
 Jo

 ScN;iJeS

 Note that/, = 0 = #,,, which means that a player has no value to himself in
 Owen's formalization. Owen's and our approaches are built on different phil-
 osophical foundations which are not directly comparable. Owen dérivâtes a
 multilinear extension first w.r.t to the probability that player /joins a coalition
 and then w.r.t. to player y joining a coalition (which in some joint sense means
 determining the expected marginal value of players i and j to the coalition),
 and then intergrates along the main diagonal (which means, we believe,
 assigning equal probabilities x¡ = xj = t to the players joining coalition S in
 the integration). On the other hand, our approach specifies neither marginal
 values nor equal probabilities of joining a coalition, but sums up what hap-
 pens in all coalitions S where players / and y are jointly present, and compares
 this with what happens when player i is removed from the coalition. Owen
 presents three examples which we analyze using the approach in this article,
 thus comparing the two approaches through their applications.

 Example 2.2. Consider the symmetric 3-person majority game [2; 1,1,1],
 i.e. i7(l) = i7(2) = i7(3) = 0, i?(l,2) = i7(l,3) = i;(2,3) = i7(l,2,3) = l. The

 4 We would like to thank an anonymous referee of this journal for pointing this out
 to us.
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 470 K. Hausken, M. Mohr

 Shapley value given by (2.1) is 4>(v, {1, 2, 3}) = (1/3 1/3 1/3) T, and the value
 matrix [*iy({l, 2, 3})] giving the value of row player i to column player y is

 "0.2778 0.02778 0.02778"

 0ij= 0.02778 0.2778 0.02778 (2.10)
 [ 0.02778 0.02778 0.2778 _

 Observe that the players have a low but positive value to each other and a
 larger value to themselves. In contrast, Owen (1972:77) determines the co-
 values qij = 0, which he interprets "so on the average no pair of players help
 or hinder each other."

 Example 2.3. Consider the 3-person market game with one seller (player 1)
 and two buyers (players 2 and 3), i.e. [3; 2, 1, 1], i.e. v(l) = v(2) = v(3) =
 i?(2,3) = 0, !?(1,2) = »(1,3) = i;(l,2,3) = 1. The Shapley value given by (2.1)
 is tf(i?,{l,2,3}) = (2/3 1/6 l/6)r. The value matrix [#^-({1,2,3})] giving the
 value of row player i to column player y is

 ■0.3889 0.1389 0.1389 ■

 0ij= 0.1389 0.1389 -0.1111 . (2.11)
 L0.1389 -0.1111 0.1389 _

 As we expect players 2 and 3's antagonism gets represented by the negative
 &23 = 032 = -0. 1111. Note that player 2 sees a larger value by player 1 being
 present (#12 = 0.1389) than he sees a disvalue by player 3 being present
 (&32 = -0.1 1 11). This is because player 2 cannot buy the good without player
 1 selling, while player 2 may still buy the good if also player 3 is buying. Note
 that Owen determines the co-values qn = qn = 1/2 and #23 = - 1/2 for this
 game.

 Example 2.4. Consider the 4-person simple game with one strong player (2-
 person coalitions S win if 1 e S; all 3-person coalitions win), i.e. [3; 2, 1, 1, 1],
 i.e. i?(l) = v(2) = v(3) = v(4) = i;(2, 3) = t>(2,4) = *(3,4) = 0, i;(l,2) =
 ü(l,2,3) = i;(l,2,4) = ü(1,3,4) = i;(2,3,4) = i?(l,2,3,4) = 1. The Shapley
 value given by (2.1) is ^(17, {1,2, 3,4}) = (1/2 1/6 1/6 l/6)r, and the value
 matrix [<Pij({ 1 , 2, 3})] giving the value of row player 1 to column player y is

 "0.4167 0.0278 0.0278 0.0278"

 0.0278 0.1389 0 0

 ij~ 0.0278 0 0.1389 0 ■ ' j
 0.0278 0 0 0.1389

 For this game player 1 is equally valuable to any other player 2, 3, or 4, and
 values 2, 3, and 4 equally, since only such a 2-person coalition gives payoff 1.
 On the other hand, players 2, 3, 4 assign value 0 to each other, since they are
 neither beneficial nor unbeneficial to each other. In contrast, Owen's co-values

 for this game are qy = 0.
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 Value of a player 471

 3 The value of a player in simple games: An empirical example

 Define a simple game as G = {q; w' , w2, . . . , wn}: The value of a coalition S in
 simple games is one if the weak inequality

 £>>«? (3.1)
 165

 is satisfied, in which case S qualifies for a majority, and zero otherwise. A
 player / is decisive in S if ie S and S satisfies (3.1), while S'{i} does not
 satisfy (3.1).

 In simple games (2.6) can be interpreted as follows: The value of / to j
 is the weighted sum &¿j of all coalitions S in which y is decisive if and only if /
 is a member of S, minus the weigthed sum 0Jj of all coalitions S in which y is
 decisive if and only if / is not a member of S. Hence the value of a player to
 another player can be decomposed into the difference of the two weigthed
 sums

 R^N,Rsi,j n' s=r ò
 j decisive in R,

 j not decisive in R'{i)

 R^N;R3i,j n' s=r ò
 j not decisive in R,
 j decisive in R'{i}

 The weighted sums &¿j and <Pjj can be interpreted as "positive" and "nega-
 tive" power, respectively. Positive power accounts for all cases where i makes
 j decisive, and negative power accounts for all cases where ; prevents j from
 being decisive, which represents the power of player i to block (i.e. to obstruct)
 player/ Hence 0y is positive if and only if i"s power of making y decisive is
 larger than /'s power of blocking/

 Note that 0~¡ = 0, hence &iï = &t. From 0¡j = &ß it follows that the
 Shapley value of player i can be written as the sum of three components:

 0i = 0u^iZ0ß-E0ß- (3-3)
 j=' j='

 These three components are the weighted fair share #,-,• of player i, plus the
 voting power he can exert conditional on the presence of other players, minus
 the voting power he is prevented from exerting due to the presence of other
 players.

 Let us analyze how the values of the members of the European Union
 changed in the European Council of Ministers after the enlargements of the
 Union in 1973, 1981, 1986, and 1995, respectively. Table 3.1 shows the mem-
 bers, the weights wi9 the Shapley values #/(r), and the quorum for a qualified
 majority vote.
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 472 K. Hausken, M. Mohr

 Table 3.1. Votes and Shapley values in the European Council of
 Ministers 1981-1995

 1981 1985 1986 1995

 Member w¡ <P¡% w¡ 0¡% w¡ 0¡% w¡ #,%

 D 10 17.86 10 17.38 10 13.42 10 11.67

 F 10 17.86 10 17.38 10 13.42 10 11.67

 I 10 17.86 10 17.38 10 13.42 10 11.67

 GB 10 17.86 10 17.38 10 13.42 10 11.67

 E 8 11.13 8 9.55

 B 5 8.10 5 7.14 5 6.37 5 5.52

 G - - 5 7.14 5 6.37 5 5.52

 P - 5 6.37 5 5.52

 NL 5 8.10 5 7.14 5 6.37 5 5.52

 DK 3 5.71 3 3.02 3 4.26 3 3.53

 IRL 3 5.71 3 3.02 3 4.26 3 3.53

 LUX 2 0.95 2 3.02 2 1.18 2 2.07

 AU 4 4.54

 S 4 4.54

 FI 3 3.53

 SUM 58 100 63 100 76 100 87 100

 Quorum 41 45 54 62

 Tables 3.2-3.5 show the value of row member i with 10, 5, 3, or 2 votes to
 column member y with 10, 5, 3, or 2 votes. The diagonal values represent the
 value of a player with w votes to another player with the same number of
 votes, where the value &„ of player / to himself is given in the second column
 from the right.
 The tables show that the Shapley value for players with 10 and 5 votes

 declined from 1981 to 1995. The largest players thus lost voting power.
 Observe that the relative importance among the smaller countries with 3 or
 2 votes was changing during the period. Between 1981 and 1985, the two
 countries with three votes - Denmark and Ireland - blocked those with five
 votes in the sense that the presence of the former prevented the latter from
 exercising voting power, as indicated by the negative entry (-0.0055) in the
 [#/y]-matrix in Table 3.2. Since the matrix is symmetric, the 5-vote countries
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 Value of a player 473

 Table 3.2. Power matrix of the European Council of Ministers 1981

 1981, ^-matrix

 10 5 3 2 4>u 4>i

 10 0.0204 0.0119 0.0089 0.0029 0.0729 0.1786

 5 0.0119 0.0048 -0.0055 0.0032 0.0366 0.0810

 3 0.0089 -0.0055 0.0136 -0.0071 0.0262 0.0571

 2 0.0029 0.0032 -0.0071 - 0.0055 0.0095

 Positive power matrix

 10 5 3 2 4>¿ <P?
 10 0.0567 0.0277 0.0200 0.0044 0.0729 0.3427

 5 0.0277 0.0250 0.0147 0.0043 0.0366 0.2061

 3 0.0200 0.0147 0.0207 0.0000 0.0262 0.1561

 2 0.0044 0.0043 0.0000 - 0.0055 0.0319

 Negative power matrix

 10 5 3 2 0¿ 4>r

 10 0.0363 0.0159 0.0111 0.0015 0.0000 0.1641

 5 0.0159 0.0202 0.0202 0.0011 0.0000 0.1251

 3 0.0111 0.0202 0.0071 0.0071 0.0000 0.0989

 2 0.0015 0.0011 0.0071 - 0.0000 0.0224

 likewise blocked the 3-vote countries. Furthermore, the two 5-vote countries
 Belgium and the Netherlands were of positive value to each other. The addi-
 tional 5-vote country Greece, entering in 1985, partly changed this picture.
 The value of Denmark and Ireland to the Netherlands, Belgium, and Greece,
 turned positive, whereas the importance of the 5-vote countries to each other
 turned negative. The reason for this was that the blocking capacity among the
 5-vote countries increased by 0.0026 whereas the positive power for each
 country within this group declined from 0.0250 to 0.0195.

 Another interesting feature of the [<P,y] matrix is the ranking of the players
 by their importance to another player, which differs from the ranking by
 weights. E.g., consider Table 3.4. Luxemburg with two votes was more im-
 portant for 10-vote countries than member states with 3 votes, which indicates
 that Luxemburg contributed more to the voting power of 10-vote countries
 than Ireland or Denmark. Likewise, in 1995, the importance of the new 4-vote
 countries to Spain (8 votes) surmounted the importance of the five-vote
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 474 K. Hausken, M. Mohr

 Table 3.3. Power matrix of the European Council of Ministers 1985

 1985, ^-matrix

 10 5 3 2 *ä 4>i

 10 0.0181 0.0111 0.0057 0.0057 0.0692 0.1738

 5 0.0111 -0.0033 0.0005 0.0005 0.0323 0.0714

 3 0.0057 0.0005 -0.0044 -0.0044 0.0147 0.0302

 2 0.0057 0.0005 -0.0044 - 0.0147 0.0302

 Positive power matrix

 10 5 3 2 0t 0+

 10 0.0539 0.0247 0.0113 0.0113 0.0692 0.3392

 5 0.0247 0.0195 0.0091 0.0091 0.0323 0.1975

 3 0.0113 0.0091 0.0074 0.0074 0.0147 0.1019

 2 0.0113 0.0091 0.0074 - 0.0147 0.1019

 Negative power matrix

 10 5 3 2 &¿ <Pf

 10 0.0358 0.0137 0.0056 0.0056 0.0000 0.1653

 5 0.0137 0.0228 0.0086 0.0086 0.0000 0.1261

 3 0.0056 0.0086 0.0118 0.0118 0.0000 0.0718

 2 0.0056 0.0086 0.0118 - 0.0000 0.0718

 countries by 0.0013, and Luxemburg was almost as important for Spain as the
 five-vote countries. Hence, although the Shapley value tf>,- is always larger
 than <Pj if Wi > Wj, the value 0^ of player i to player k may be smaller than
 &jk, even when w¡ > Wj.

 It is interesting to consider which countries prefer which other countries to
 be present or not present in the EU. As for enlarging the EU beyond 15
 members, the Amsterdam IGC (see doc. CONF/38 15/97) hypothesizes the
 votes Poland (8), Romania (6), Czech Republic (5), Hungary (5), Bulgaria (4),
 Slovakia (3), Lithuania (3), Latvia (3), Slovenia (3), Estonia (3), Cypris (2),
 Malta (2) in a linear extrapolation to 27 member states.5 We propose the fol-
 lowing procedure for enlargement. Table 3.6 shows the ^-Matrix for the

 5 Norway would get 3 votes.
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 Value of a player 475

 Table 3.4. Power matrix of the European Council of Ministers 1986

 1986, ^-matrix

 10 8 5 3 2 4>u *i

 10 0.0144 0.0105 0.0053 0.0022 0.0031 0.0520 0.1342

 8 0.0105 - 0.0029 0.0085 -0.0031 0.0435 0.1113

 5 0.0053 0.0029 0.0031 0.0016 0.0017 0.0256 0.0637

 3 0.0022 0.0085 0.0016 0.0068 -0.0049 0.0173 0.0426

 2 0.0031 -0.0031 0.0017 -0.0049 - 0.0056 0.0118

 Positive power matrix

 10 8 5 3 2 0t <p+

 10 0.0407 0.0334 0.0193 0.0126 0.0047 0.0520 0.3150

 8 0.0334 - 0.0183 0.0142 0.0025 0.0435 0.2815

 5 0.0193 0.0183 0.0174 0.0115 0.0040 0.0256 0.2005

 3 0.0126 0.0142 0.0115 0.0132 0.0016 0.0173 0.1430

 2 0.0047 0.0025 0.0040 0.0016 - 0.0056 0.0462

 Negative power matrix

 10 8 5 3 2 G- <Pr

 10 0.0264 0.0229 0.0140 0.0105 0.0016 0.0000 0.1808

 8 0.0229 - 0.0154 0.0057 0.0057 0.0000 0.1702

 5 0.0140 0.0154 0.0143 0.0100 0.0023 0.0000 0.1367

 3 0.0105 0.0057 0.0100 0.0065 0.0065 0.0000 0.1004

 2 0.0016 0.0057 0.0023 0.0065 - 0.0000 0.0343

 adoption of one 16th country carrying 8, 6, 5, 4, 3, 2 votes respectively, where
 the quorum is determined so that the minimum percentage of votes for quali-
 fied majority is as close to the range from 70.69% to 71.43% (evidenced from
 Table 3.1) as possible.

 Table 3.6 shows 1. The Shapley value of Luxemburg increases through the
 adoption of a 2-vote or 3-vote country. 2. The Shapley values of large coun-
 tries decline through adoption. 3. The value of the largest countries to each
 other decline through the adoption of additional countries. Table 3.6 is
 equivalently set up for the adoption of an arbitrary number of countries car-
 rying an arbitrary number of votes. This allows each country to assess the

This content downloaded from 
�������������128.6.45.205 on Thu, 24 Feb 2022 18:38:41 UTC�������������� 

All use subject to https://about.jstor.org/terms



 476 K. Hausken, M. Mohr

 Table 3.5. Power matrix of the European Council of Ministers 1995

 1995, ^-matrix

 10 8 5 4 3 2 <t>ü 4>i

 10 0.0111 0.0074 0.0046 0.0031 0.0018 0.0012 0.0447 0.1167

 8 0.0074 - 0.0028 0.0041 0.0024 0.0026 0.0367 0.0955

 5 0.0046 0.0028 0.0020 0.0013 0.0008 0.0007 0.0221 0.0552

 4 0.0031 0.0041 0.0013 -0.0010 0.0024 -0.0006 0.0181 0.0454

 3 0.0018 0.0024 0.0008 0.0024 0.0013 0.0012 0.0139 0.0353

 2 0.0012 0.0026 0.0007 -0.0006 0.0012 - 0.0083 0.0207

 Positive power matrix

 10 8 5 4 3 2 0t <p+

 10 0.0349 0.0281 0.0167 0.0135 0.0102 0.0062 0.0447 0.3083

 8 0.0281 - 0.0159 0.0135 0.0101 0.0063 0.0367 0.2763

 5 0.0167 0.0159 0.0151 0.0123 0.0094 0.0057 0.0221 0.2083

 4 0.0135 0.0135 0.0123 0.0113 0.0098 0.0052 0.0181 0.1805

 3 0.0102 0.0101 0.0094 0.0098 0.0093 0.0056 0.0139 0.1463

 2 0.0062 0.0063 0.0057 0.0052 0.0056 - 0.0083 0.0890

 Negative power matrix

 10 8 5 4 3 2 0Ü ®r

 10 0.0238 0.0207 0.0121 0.0104 0.0084 0.0050 0.0000 0.1916

 8 0.0207 - 0.0131 0.0094 0.0077 0.0037 0.0000 0.1808

 5 0.0121 0.0131 0.0130 0.0109 0.0086 0.0050 0.0000 0.1532

 4 0.0104 0.0094 0.0109 0.0123 0.0074 0.0058 0.0000 0.1352

 3 0.0084 0.0077 0.0086 0.0074 0.0080 0.0044 0.0000 0.1110

 2 0.0050 0.0037 0.0050 0.0058 0.0044 - 0.0000 0.0684

 value of each other country with a given number of votes in every conceivable
 adoption scenario. It is too space-consuming to set up all scenarios in this
 article. The challenge for each country is to assess which scenarios are most
 realistic, set up the analog of Table 3.6 for that scenario, and produce policy
 recommendations for alternative scenarios of adoption evaluated to be more
 beneficial.
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 Value of a player 477

 Table 3.6. ^-Matrix with one adopted 16th country carrying 8, 6, 5, 4, 3, 2 votes
 respectively

 ^-Matrix with adopted 16th 8-vote country,
 sum = 95, quorum = 68; 71.58% majority

 10 8 5 4 3 2 Va 4>i

 10 0.0087 0.0064 0.0038 0.0032 0.0023 0.0020 0.0406 0.1100

 8 0.0064 0.0053 0.0030 0.0025 0.0017 0.0004 0.0323 0.0856

 5 0.0038 0.0030 0.0015 0.0013 0.0009 0.0007 0.0199 0.0515

 4 0.0032 0.0025 0.0013 -0.0027 0.0006 -0.0001 0.0145 0.0366

 3 0.0023 0.0017 0.0009 0.0006 0.0003 0.0000 0.0119 0.0302

 2 0.0020 0.0004 0.0007 -0.0001 0.0000 - 0.0073 0.0192

 ^-Matrix with adopted 16th 6-vote country,
 sum = 93, quorum = 66; 70.97% majority

 10 0.0092 0.0065 0.0039 0.0033 0.0022 0.0021 0.0424 0.1122

 8 0.0065 - 0.0030 0.0028 0.0020 0.0003 0.0337 0.0874

 5 0.0039 0.0030 0.0017 0.0014 0.0009 0.0008 0.0208 0.0527

 4 0.0033 0.0028 0.0014 -0.0009 0.0009 0.0002 0.0159 0.0394

 3 0.0022 0.0020 0.0009 0.0009 0.0006 -0.0006 0.0122 0.0304

 2 0.0021 0.0003 0.0008 0.0002 -0.0006 - 0.0080 0.0192

 ^-Matrix with adopted 16th 5-vote country,
 sum = 92, quorum = 65; 70.65% majority

 10 0.0094 0.0068 0.0039 0.0032 0.0023 0.0024 0.0436 0.1138

 8 0.0068 - 0.0030 0.0032 0.0018 0.0001 0.0347 0.0889

 5 0.0039 0.0030 0.0017 0.0014 0.0010 0.0009 0.0214 0.0534

 4 0.0032 0.0032 0.0014 -0.0035 0.0013 -0.0073 0.0156 0.0381

 3 0.0023 0.0018 0.0010 0.0013 0.0003 -0.0006 0.0127 0.0312

 2 0.0024 0.0001 0.0009 -0.0073 -0.0006 - 0.0080 0.0188
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 Table 3.6. (continued)

 ^-Matrix with adopted 16th 4- vote country,
 sum = 91, quorum = 65; 71.43% majority

 10 0.0100 0.0072 0.0042 0.0030 0.0022 0.0019 0.0426 0.1142

 8 0.0072 - 0.0030 0.0019 0.0027 0.0004 0.0336 0.0884

 5 0.0042 0.0030 0.0017 0.0013 0.0010 0.0008 0.0210 0.0537

 4 0.0030 0.0019 0.0013 -0.0025 0.0004 0.0011 0.0167 0.0428

 3 0.0022 0.0027 0.0010 0.0004 0.0011 -0.0007 0.0121 0.0305

 2 0.0019 0.0004 0.0008 0.0011 -0.0007 - 0.0082 0.0202

 ^-Matrix with adopted 16th 3-vote country,
 sum = 90, quorum = 64; 71.11% majority

 10 0.0100 0.Ó072 0.0042 0.0032 0.0024 0.0017 0.0436 0.1152

 8 0.0072 - 0.0031 0.0019 0.0021 0.0008 0.0342 0.0884

 5 0.0042 0.0031 0.0017 0.0014 0.0011 0.0006 0.0214 0.0541

 4 0.0032 0.0019 0.0014 0.0051 0.0003 0.0016 0.0180 0.0457

 3 0.0024 0.0021 0.0011 0.0003 0.0006 0.0001 0.0122 0.0303

 2 0.0017 0.0008 0.0006 0.0016 0.0001 - 0.0088 0.0217

 ^-Matrix with adopted 16th 2-vote country,
 sum = 89, quorum = 63; 70.79% majority

 10 0.0103 0.0074 0.0042 0.0033 0.0024 0.0015 0.0447 0.1166

 8 0.0074 - 0.0032 0.0013 0.0028 0.0008 0.0353 0.0902

 5 0.0042 0.0032 0.0019 0.0014 0.0011 0.0006 0.0219 0.0548

 4 0.0033 0.0013 0.0014 0.0036 -0.0002 0.0018 0.0176 0.0439

 3 0.0024 0.0028 0.0011 -0.0002 0.0013 -0.0001 0.0128 0.0313

 2 0.0015 0.0008 0.0006 0.0018 -0.0001 0.0002 0.0087 0.0214

 Appendix 1:
 Decomposition of the Shapley value: The ^-Matrix

 Define #,•(£) as/s Shapley value given the set S of all players and the re-
 spective characteristic function v(R) defined over all R^ S. We define the
 value of player i to player y as
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 %=E(''~?"')W)-*;(s'{.m (ad
 ijeS

 Denote the marginal contribution of player j to v(S) as Mj(S) = v(S) -

 v(S'{j}) and À(N, S) = fr"1)1^-*)1 as the shapley factor Hence

 i,jeS

 xlj2*(S,R)-Mj(R)- Y, ¿(S'{i},R)-Mj(R)' (A2)
 'RsS RzS'{¡} )

 = ¿2l(N,S)^2i(S,R)-Mj(R)
 S^N R^S

 s^n R^s'{i}
 ijeS

 = ¿2 W, S) Y ¿(S, R) ■ Mj(R) + Y A(N, S) J2 HS, R) • Mj(R)
 S^N R^S S^N R^S
 ijeS ieR ¡jeS i$R

 -E^'5) E KS'{i',R)-Mj{R). (A3)

 Observe the two stages in the selection of the coalitions R. First, S is selected
 from all subsets of N including both i andy. From every S, the subsets R are
 taken, but the selection of the R in the first sum differs from the selections in
 the second and third sums. In the first sum the subsets R include all subsets
 of S which have i as a member and only such subsets. In the second and
 third sums only such subsets are chosen from every 5 which do not have i
 as a member. The two stage selection of R^ S implies that every set R is

 n / Yi - y'
 accounted for more than once. There are YL ( possibilities for a coali-

 s=r's-r)
 tion of size r to appear in the first sum, depending on the respective coalition

 n ( n _ r _ 1 '
 S c TV selected in the first stage. Respectively, we have Y* I

 possibilities for a coalition of size r to appear in the second or the third sum.
 Hence
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 *,=EÊ("-^-'i;ri)!('-f)!(r;H R^N s=r nò' 'S~rJ R^N s=r nò' 'S~rJ
 ieR

 + E¿ (-,)■(,-.)■(,- nS] ms-r, h-r- A R^N^t' nS] 'S-r-lJ

 V ^ (« -^)!(^ - l)!(r- !)!(.- 1-r)! /«-r-1 Y

 R^N n' s=r ò
 ieR

 ■ ^ (,_,),(, -y. _,_,), ^ (A5)

 -£É'"""7r-"!w

 _(,-,),(.-,), n' ^i S R^N n' s=r S
 ieR

 + E(f-,)!( „,M^)¿ (A6)
 itR

 _E(f-,)!(„ r-,)V;W(B_r)

 ieR

 _(f-, ),(.-r), "* £l S ÄcA^ "* s=r S
 ieR
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 - E(r""Ii""r)!ww - *««'w))¿i. (A.0)
 This is equivalent to

 «>-£('-*-r)l(W«)-WU)))

 -W*'{<})-»(Jl'{/,;})))¿-. (All)

 Appendix 2:
 The marginal contribution of a player: The !F-Matrix

 tf^ is defined as follows:

 n = E (r~1)'!W"r)!((^) - f(A{y})) - (v(R'{i}) - p(ä'{i,7})))

 = E (r~1)^"~r)! (^/(Ä) - Mj(R'{i})). (A12)

 In Vi, the term (M;(Ä) - Mj(R'{i})) is not weighted by ¿-which is the only
 s=rs

 difference to #/,. Observe that the [<P,y] -matrix is constructed by accounting for
 /'s marginal contributions to player y's fair share or voting power in all pos-
 sible subgames {v(R), R^S},S <=N, whereas [ÎP^] accounts only for the case
 S = N.We now show that ^ = ^(A^) - &j(N'{i}).

 ij ~ ^ 7fl

 x ((v(R) - v(R'{j})) - (v(R'{i}) - v(R'{iJ}))) (A13)

 = Y^ W,R)Mj(R) - Y, ¿(N,R)Mj(R'{i})
 R^N Rœn
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 = Yíw>r)már)- E w'{i},R)r-Mj(R)
 XS/f RZN'{i]

 = "£l(N,R)Mj(R)- £ X(N'{i},R)^Afj{R)
 RZN RSN'{¡]
 R*J Rsj

 - E W'{i},R)r-Mj(R)
 RsN'{i}

 R3j

 = J2X(N,R)Mj(R)
 Rzj

 - E ¿(^'{0,Ä)^ATy(Ä)+ n E W'W,R)r-Mj(R)' n 'RSN'{Í) n R^N'{i) n I

 = J2*(n>rWj(R)- E ^N'{í}9R)Mj(R). (A14)
 R^N RçN'{i'
 **U RBj

 Henee

 Vf, = <Pj{N) - <Pj{N'{i}).

 Wij is the difference between the Shapley value <Pj{N) of player y in the game
 played by all players in N and the Shapley value @j(N'{i}) of player y in the
 game played by all players except i. Hence W[j may be interpreted as player z's
 marginal contribution to player /s fair share in the game {v(S),S £ N}. In
 simple games this may be referred to as player z's marginal contribution to

 n

 player y's voting-power. From efficiency of &j it follows that Yt = ]C ^(/ =

 v(N)-v(N'{i}):

 ¿^ = ¿(0y(iV)-^(7V'{O))
 y=l j='

 = v(N)-J20j(N'{i})
 7=1

 = v(N) -¿T0j(N'{i}) - 0i(N'{i})
 j*i

 = v(N)-J¿0j(N'{i}) (A15)
 7=1
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 Hence,

 ¥i = v(N)-v{N'{i}).

 It follows that

 ¿ ÎPi = « • »(AT) - ¿ r(AT'{i}). (A16)
 1=1 í=l

 Hence the sum of the ÎP^-'s is the marginal contribution of player / to the value
 of the grand coalition N. Obviously, the matrix [Wy] is symmetric. Further-
 more, observe that for the diagonal elements *Fu = &¡(N). The marginal
 contribution of a player to himself is equal to his Shapley value.
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