Running Nim2VL(i) for $i=1,2, \ldots, 20$ gives us

$$
\begin{aligned}
& \{[0,0]\} \longrightarrow \text { size } 1 \\
& \{[0,0],[1,2]\} \rightarrow \text { size } 2\} \\
& \{[0,0],[1,2]\} \rightarrow \text { size } 2\} 3 \\
& \{[0,0],[1,2]\} \rightarrow \text { size } \quad 2 \\
& \left.\begin{array}{lll}
\{[0,0],[1,2],[3,5]\} \rightarrow \text { size } & 3 \\
\{[0,0],[1,2],[3,5]\} \rightarrow \text { size } & 3
\end{array}\right\} \\
& \begin{array}{ll}
\{[0,0],[1,2],[3,5],[4,7]\} \rightarrow \text { size } & 4 \\
\{[0,0],[1,2],[3,5],[4,7]\} \rightarrow \text { size } & 4 \\
\{[0,0],[1,2],[3,5][, 7]\} & 3
\end{array} \\
& \{[0,0],[1,2],[3,5],[4,7]\} \rightarrow \text { size } 4] \\
& \{[0,0],[1,2],[3,5],[4,7],[6,10]\} \rightarrow \text { size } 5 \text {, } \\
& \left.\begin{array}{l}
\{[0,0],[1,2],[3,5],[4,7],[6,10]\} \rightarrow \text { size } 5 \\
\{[0,0],[1,2],[3,5],[4,7],[6,10]\} \rightarrow \text { size } 5
\end{array}\right\} \\
& \{[0,0],[1,2],[3,5],[4,7],[6,10],[8,13]\} \rightarrow \text { size } 6\} \\
& \{[0,0],[1,2],[3,5],[4,7],[6,10],[8,13]\} \rightarrow \text { size } 6\} \\
& \{[0,0],[1,2],[3,5],[4,7],[6,10],[8,13],[9,15]\} \rightarrow \text { size } 7\} \\
& \left.\begin{array}{lll}
\{[0,0],[1,2],[3,5],[4,7],[6,10],[8,13],[9,15]\} & \rightarrow \text { size } 7\} \\
\{[0,0],[1,2],[3,5],[4,7],[6,10],[8,13],[9,15]\} & \rightarrow \text { size } 7
\end{array}\right\} \\
& \{[0,0],[1,2],[3,5],[4,7],[6,10],[8,13],[9,15],[11,18]\} \rightarrow \text { size } 8\} \\
& \{[0,0],[1,2],[3,5],[4,7],[6,10],[8,13],[9,15],[11,18]\} \rightarrow \text { size } 8\} 2 \\
& \{[0,0],[1,2],[3,5],[4,7],[6,10],[8,13],[9,15],[11,18],[12,20]\} \rightarrow \text { size } 9
\end{aligned}
$$

The green highlighted numbers represent how many sets have the same size. For instance:

3	sets have size	2
2	sets have size	3
3	sets have size	4
3	sets have size	5
2	sets have size	6
3	sets have size	7
2	sets have size	8

If you keep counting the sizes, we will obtain the following sequence:

$$
\text { (*) } 3,2,3,3,2,3,2,3,3,2,3,3,2 \text {, }
$$ and so on.

This sequence can be found in the OEIS.
This is A076662 but just excluding the first element of $(*)$ since A076662 is:

$$
3,3,2,3,3,2,3,2,3,3,2,3,3,2
$$

\downarrow
this is the extra number that $(*)$ does not have at the beginning.

