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 ARCHIMEDES THE NUMERICAL ANALYST

 G. M. PHILLIPS

 The Mathematical Institute, University of St. Andrews, St. Andrews, Scotland

 1. Introduction. Let PN and PN denote half the lengths of the perimeters of the inscribed and

 circumscribed regular N-gons of the unit circle. Thus p3 = 3\f- /2, P3= 3 VS, p4= 2V2, and
 P4 = 4. It is geometrically obvious that the sequences {PN} and {PN} are respectively monotonic
 increasing and monotonic decreasing, with common limit 'i. This is the basis of Archimedes'
 method for approximating to 'i. (See, for example, Heath [2].) Using elementary geometrical
 reasoning, Archimedes obtained the following recurrence relation, in which the two sequences
 remain entwined:

 IIP2N = 201/PN + 1/PN) (la)

 P2N= V(P2NPN). (lb)

 We note that these involve the use of the harmonic and geometric means. Beginning with N = 3

 and applying the recurrence formula five times, Archimedes established the inequalities

 3 40 < P96 < 7r < P9 < 34 (2)

 His skill in obtaining rational numbers 3 ? and (the very familiar) 37 so close to the irrational

 numbers P96 and P96 can be more readily appreciated if we display all four numbers to four
 decimal places:

 P96 = 3.1410, 37 = 3.1408

 P96= 3.1427, 3 = 3.1429.

 2. Stability of the Recurrence Relation. In any thorough study of a recurrence relation we
 need to consider the question of numerical stability, that is, whether rounding errors are

 magnified by the recurrence relation. As an example, consider the sequence (an} defined by

 a = | efCosOcos n O dO. (3)

 (The an are the Chebyshev coefficients for ex; see Clenshaw [1].) It is easily verified, on
 integrating (3) by parts, that this sequence satisfies the recurrence relation

 an+l= an-I -2nan' (4)

 In principle, given ao and a,, we may then use (4) to compute the value of any an. In practice,
 the recurrence relation (4) does not provide a satisfactory method of computing this sequence,
 because it is numerically unstable. To illustrate this, suppose we begin with ao = 2.5321 and
 a, = 1.1303, which are correct to 4 decimal places. Using (4) and rounding each an to 4 decimal
 places gives a2= 0.2715, a3= 0.0443, a4 = 0.0057, a5 = -0.0013, and a6= 0.0187. The true
 values, to 4 decimal places, are a2 and a3 as above and a4 = 0.0055, a5 = 0.0005, and

 a6 = 0.0000. We can now see, on re-examining (4), that the error in an+I is approximately (-2 n)
 times the error in an, which shows why (4) is numerically unstable.

 To examine the stability of (1) let us assume that, due to the effect of rounding errors, we
 actually compute numbers P2V and fiN instead of P2N and PN, where
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 166 G. M. PHILLIPS [March

 P2N P2N(1 + 8), (5a)

 fiN =PN(1 + '). (5b)

 We call 8 and c the relative errors in P2N and PN, respectively. To find the relative error in P2N'
 we have

 fP2N V (P2NfiN)* (6)

 Thus fP2N (neglecting the rounding error incurred in evaluating the right side of (6)) is the

 number we would actually obtain, instead of P2N. Substituting (5) into (6), we have

 P2N P2N = (1 + 8)1/2(1 + E) /-2 (7)
 P2N

 as the relative error in P2N. Using binomial expansions in (7) we see that, for small values of 8
 and c,

 ff2N P2N .1( +c) (8)

 P2N

 An analysis of (la) produces a result similar to (8), showing that rounding errors are not
 magnified by the recurrence relation, which is thus stable.

 3. Rate of Convergence. We have a great advantage over Archimedes in being able to express

 PN and PN in terms of circular functions. It is easily verified that

 PN = N sin(Q7f/fN) (9)

 and

 PN= N tan( fT/N). (10)

 From (9) and (10) we can justify that (la) and (lb) are indeed correct and, further, from our
 familiarity with the Maclaurin series for sin 0 and tan 0, we can establish the rate of convergence
 of the sequences {PNI and {PN}. Considering PN first, we have from (9)

 PN =N[(N) (3 + S(N) ] (11)

 so that, for large N,

 1 3 112 ~TPN 6 N2 (12)

 We could give a more precise form of (12) by writing down the first two terms of the series (11)
 plus a remainder term. We can now see from (8) that the error in P2N is approximately
 one-quarter of the error in PN. More precisely, we have

 lim XT P2N = 1 (13)
 N--w XT -PN 4

 By considering the series for tan(Qr/N), we see that the errors in the sequence {PN} decrease at
 the same rate. An inspection of the values of PN and PN in Table 1 shows that one might guess
 this result. (An explanation of the last column of this table follows later.) Given the superb
 numerical skills of Archimedes, one is sorely tempted to conjecture that he must have been
 aware of the rate of convergence of his sequences.

 4. "Faster" Convergence. We have just seen that the convergence of the sequences {PN} and

 {PNI is very slow, and it is interesting to consider how to improve on this. First we expand (10)
 in a Maclaurin series to give

 PN = NU( v + 2 ( xr) + 1< ( xr) + 1 (14)
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 19811 ARCHIMEDES THDE NUMERICAL ANALYST 167

 TABLE 1. The first few values of PN I PN, and UN -

 N PN PN UN

 3 2.598076 5.196152 3.464102
 6 3.000000 3.464102 3.154701
 12 3.105829 3.215390 3.142349
 24 3.132629 3.159660 3.141639
 48 3.139350 3.146086 3.141596
 96 3.141032 3.142715 3.141593
 192 3.141452 3.141873 3.141593

 We may now eliminate the terms in 1/N2 between (1 1) and (14) by writing

 1 i~~~~~ T5
 UN = 3 (2PN + PN) = + 20 N4 (15)

 so that

 UN -'I _ 4 (16)

 and UN converges to yr faster than PN or PN. The first few values of UN are given in Table 1. If we
 re-calculate the numbers in Table 1 to greater accuracy, we find that u96 gives an approximation
 to XT which is more accurate, by a factor greater than 1000, than either of Archimedes'
 approximations p96 and P%6.

 The technique of eliminating the term in 1/N2 could also have been done between PN and
 P2N (or, equally, between PN and P2N). Thus, similarly to (16), we can show that, say,

 VN - 7rT = (4P2N - PN) - 7T

 also behaves like a multiple of 1/N4 for large N. This process is called extrapolation to the limit.
 (See, for example, Phillips and Taylor [3].) This process can be repeated; that is, we can
 eliminate the term in 1/N4 between VN and V2N . In Table 2 we show the dramatic effect of
 repeated extrapolation to the limit. Note that the last two numbers in the final column of Table
 2 give 1T correct to 9 decimal places, although it is only the effect of rounding error which has
 prevented us from achieving agreement to twice as many places of decimals. If we re-calculate
 the numbers PN in Table 2 to 20 decimal places and carry out five extrapolations (rather than
 three given in the table), we obtain an approximation which differs from iT by less than 10-I18 It
 is remarkable that such accuracy can be extracted from Archimedes' raw material.

 TABLE 2. The effect of repeated extrapolation to the limit.

 Extrapolated Values

 N PN VN Repeated Extrapolation
 3 2.598 076 211

 6 3.000 000 000 3.133 974 596

 12 3.105 828 541 3.141 104 721 3.141 580 063
 24 3.132 628 613 3.141 561 970 3.141 592 454 3.141 592 650
 48 3.139 350 203 3.141 590 733 3.141 592 651 3.141 592 654
 96 3.141 031 951 3.141 592 534 3.141 592 654 3.141 592 654

 5. Analysis of Convergence. In this final section we analyze the behavior of the recurrence
 relation (1) with arbitrary positive starting values. In divorcing (1) from its geometrical context,
 we shall change the notation and rewrite (1) in the form

 1 /QN+= V( 1 QN + I /qN) (17a)

 qN+ I = /( QN+ I qN ) ( 17b)
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 168 G. M. PHILLIPS [March

 beginning with arbitrary qo, Qo > 0. We examine separately the two cases 0 < qo < QO and
 0 < QO< qo.

 Case 1. For 0 < qo < Qo we shall write

 ?= COS 0, a = qQ (18)
 Q~-osO, (Q2 2-/2

 so that

 QO = a tanO, qo = a sin O. (19)

 Substituting (15) into (13), we easily obtain

 Q, = 2atan 'O, q1= 2asin 'O. (20)

 It follows that

 QN = 2N a tan( 0/2N), qN = 2 a sin(0/2 ), (21)

 and hence the sequences (QNI and (qN} converge to the common limit

 a= q=Q0 Cos'(q /Q?). (22)
 (Q - qo)1

 The "Archimedes case" corresponds to qo = 3V-/2, Qo = 3V3.

 Case 2. For 0 < Qo < qo we write

 Qo = coshO, a-( 2-Q (23)

 so that

 QO = a tanh O, qo = a sinh O. (24)

 Substituting (24) into (17), we obtain

 Q1 = 2a tanh 'O, q1 = 2a sinh 'O.

 It follows that

 QN = 2 Na tanh(0/2 N), qN = 2 Na sinh(0/2 N),

 and hence the sequences (QNI and (qN} again converge to a common limit which, in this
 case, is

 aO q _ coshQ'(q/QQ). (25)
 (qo -

 As an amusing application of this last result, let us choose

 Qo=2t, qo=t2+I

 for any positive t # 1. Then from (25) the sequences (QN} and (qN} have common hmit

 2t(t2 + 1) logt.
 (t2- 1)

 This gives a simple method for evaluating logt and repeated extrapolation may be used to
 accelerate convergence. However, this is not proposed as a practical algorithm for computing
 log t.

 Acknowledgments. I am indebted to my colleagues J. M. Howie and J. J. O'Connor for interesting discussions
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 A BRIEF HISTORY AND SURVEY OF THE CATENARY CHAIN
 CONJECTURES

 L. J. RATLIFF, JR.

 Department of Mathematics, University of California, Riverside, CA 92521

 1. Introduction and Some Terminology. There is a collection of problems in commutative
 algebra known as the catenary chain conjectures. These conjectures, some of which have their
 origins in W. Krull's foundational work in 1937, are concerned with the extent to which certain
 useful properties hold in the integral closure of a Noetherian domain. The purpose of this article
 is to tell what the most important of these conjectures say, where they came from, and what their
 current status is.

 A very brief summary of these conjectures is that they are concerned with maximal chains of
 prime ideals in integral extension domains of Noetherian domains. This summary will be made

 considerably more specific in Sections 2-7, but since some of the terminology in the preceding
 sentence may not be familiar to the reader, the remainder of this section will be devoted to

 explaining some of the relevant definitions and giving some examples to illustrate them. (Other
 definitions will be given when they are needed in later sections of the paper.)

 The conjectures and related results are a small but well-defined and important area in the
 study of Noetherian rings-those rings R which are commutative, have an identity 1 0, and
 for which every ideal is finitely generated or, equivalently, that satisfy the ascending chain
 condition (that is, every strictly ascending chain of ideals of R is finite). These rings are named

 after Emmy Noether, who, in 1921 in a very important paper [27], was the first to recognize their
 importance. They have been extensively studied ever since, and many very important and
 interesting theorems concerning them have been discovered. They are now clearly one of the

 basic structures in all of mathematics.
 Actually, most of the conjectures and problems in this area can be reduced to local

 considerations; that is, it is sufficient to restrict attention to Noetherian rings with a unique
 maximal ideal. Such rings are called local rings, and they arise naturally in algebraic geometry
 (in studying the geometry on an algebraic variety in the neighborhood of a point) and in
 algebraic number theory (in solving Diophantine problems). (The reduction from the global
 conjectures [for Noetherian rings in general] to their local versions is readily accomplished by
 localizing at maximal ideals of R. The method of reducing global problems to local ones is
 standard in commutative algebra and need not be considered here.) Local rings are topological
 rings, the topology being given by using the set of powers of the maximal ideal M as the

 The author received his Ph.D. at the State University of Iowa under H. T. Muhly in 1961. He was a lecturer at
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