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 Annals of Mathematics, 142 (1995), 443-551

 Modular elliptic curves
 and

 Fermat's Last Theorem

 By ANDREW WILES*

 For Nada, Clare, Kate and Olivia

 Cubum autem in duos cubos, aut quadratoquadratum in duos quadra-
 toquadratos, et generaliter nullam in infinitum ultra quadratum

 potestatem in duos ejusdem nominis fas est dividere: cujus rei
 demonstrationem mirabilem sane detexi. Hanc marginis exiguitas
 non caperet.

 Pierre de Fermat

 Introduction

 An elliptic curve over Q is said to be modular if it has a finite covering by

 a modular curve of the form Xo(N). Any such elliptic curve has the property
 that its Hasse-Weil zeta function has an analytic continuation and satisfies a

 functional equation of the standard type. If an elliptic curve over Q with a

 given j-invariant is modular then it is easy to see that all elliptic curves with

 the same j-invariant are modular (in which case we say that the j-invariant
 is modular). A well-known conjecture which grew out of the work of Shimura
 and Taniyama in the 1950's and 1960's asserts that every elliptic curve over Q

 is modular. However, it only became widely known through its publication in a

 paper of Weil in 1967 [We] (as an exercise for the interested reader!), in which,
 moreover, Weil gave conceptual evidence for the conjecture. Although it had

 been numerically verified in many cases, prior to the results described in this

 paper it had only been known that finitely many j-invariants were modular.

 In 1985 Frey made the remarkable observation that this conjecture should

 imply Fermat's Last Theorem. The precise mechanism relating the two was

 formulated by Serre as the E-conjecture and this was then proved by Ribet in

 the summer of 1986. Ribet's result only requires one to prove the conjecture

 for semistable elliptic curves in order to deduce Fermat's Last Theorem.

 *The work on this paper was supported by an NSF grant.
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 444 ANDREW WILES

 Our approach to the study of elliptic curves is via their associated Galois

 representations. Suppose that pp is the representation of Gal(Q/Q) on the
 p-division points of an elliptic curve over Q, and suppose for the moment that
 p3 is irreducible. The choice of 3 is critical because a crucial theorem of Lang-

 lands and Tunnell shows that if p3 is irreducible then it is also modular. We

 then proceed by showing that under the hypothesis that p3 is semistable at 3,

 together with some milder restrictions on the ramification of p3 at the other
 primes, every suitable lifting of p3 is modular. To do this we link the problem,
 via some novel arguments from commutative algebra, to a class number prob-

 lem of a well-known type. This we then solve with the help of the paper [TW].

 This suffices to prove the modularity of E as it is known that E is modular if

 and only if the associated 3-adic representation is modular.

 The key development in the proof is a new and surprising link between two

 strong but distinct traditions in number theory, the relationship between Galois

 representations and modular forms on the one hand and the interpretation of

 special values of L-functions on the other. The former tradition is of course

 more recent. Following the original results of Eichler and Shimura in the

 1950's and 1960's the other main theorems were proved by Deligne, Serre and

 Langlands in the period up to 1980. This included the construction of Galois

 representations associated to modular forms, the refinements of Langlands and

 Deligne (later completed by Carayol), and the crucial application by Langlands
 of base change methods to give converse results in weight one. However with

 the exception of the rather special weight one case, including the extension by

 Tunnell of Langlands' original theorem, there was no progress in the direction

 of associating modular forms to Galois representations. From the mid 1980's

 the main impetus to the field was given by the conjectures of Serre which

 elaborated on the -conjecture alluded to before. Besides the work of Ribet and

 others on this problem we draw on some of the more specialized developments

 of the 1980's, notably those of Hida and Mazur.

 The second tradition goes back to the famous analytic class number for-

 mula of Dirichlet, but owes its modern revival to the conjecture of Birch and

 Swinnerton-Dyer. In practice however, it is the ideas of Iwasawa in this field on

 which we attempt to draw, and which to a large extent we have to replace. The

 principles of Galois cohomology, and in particular the fundamental theorems

 of Poitou and Tate, also play an important role here.

 The restriction that p3 be irreducible at 3 is bypassed by means of an

 intriguing argument with families of elliptic curves which share a common

 P5. Using this, we complete the proof that all semistable elliptic curves are
 modular. In particular, this finally yields a proof of Fermat's Last Theorem. In

 addition, this method seems well suited to establishing that all elliptic curves

 over Q are modular and to generalization to other totally real number fields.

 Now we present our methods and results in more detail.
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 MODULAR ELLIPTIC CURVES AND FERMAT'S LAST THEOREM 445

 Let f be an eigenform associated to the congruence subgroup r1 (N) of

 SL2(Z) of weight k > 2 and character X. Thus if Tn is the Hecke operator
 associated to an integer n there is an algebraic integer c(n, f) such that Tnf =

 c(n, f)f for each n. We let Kf be the number field generated over Q by the

 {c(nr, f)} together with the values of X and let Of be its ring of integers.
 For any prime A of Of let Of,> be the completion of Of at A. The following
 theorem is due to Eichler and Shimura (for k = 2) and Deligne (for k > 2).

 The analogous result when k = 1 is a celebrated theorem of Serre and Deligne

 but is more naturally stated in terms of complex representations. The image

 in that case is finite and a converse is known in many cases.

 THEOREM 0.1. For each prime p E Z and each prime A I p of Of there
 is a continuous representation

 pf ,\: G al(QQ A GL2 (Of ,X)

 which is unramified outside the primes dividing Np and such that for all primes

 q t Np,

 trace pf,A (FRob q) = c(q, f), det pf,A (Frob q) = X(q)qk-l

 We will be concerned with trying to prove results in the opposite direction,

 that is to say, with establishing criteria under which a A-adic representation

 arises in this way from a modular form. We have not found any advantage

 in assuming that the representation is part of a compatible system of A-adic

 representations except that the proof may be easier for some A than for others.
 Assume

 po: Gal(Q/Q) - GL2 (Fp)

 is a continuous representation with values in the algebraic closure of a finite

 field of characteristic p and that det po is odd. We say that po is modular
 if po and pfA mod A are isomorphic over Fp for some f and A and some
 embedding of Of /A in Fp. Serre has conjectured that every irreducible po of
 odd determinant is modular. Very little is known about this conjecture except

 when the image of po in PGL2(Fp) is dihedral, A4 or S4. In the dihedral case
 it is true and due (essentially) to Hecke, and in the A4 and S4 cases it is again
 true and due primarily to Langlands, with one important case due to Tunnell

 (see Theorem 5.1 for a statement). More precisely these theorems actually
 associate a form of weight one to the corresponding complex representation

 but the versions we need are straightforward deductions from the complex

 case. Even in the reducible case not much is known about the problem in

 the form we have described it, and in that case it should be observed that

 one must also choose the lattice carefully as only the semisimplification of

 PfA = PfA mod A is independent of the choice of lattice in KA.
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 446 ANDREW WILES

 If 0 is the ring of integers of a local field (containing Qp) we will say that
 p: Gal(Q/Q) - GL2(0) is a lifting of po if, for a specified embedding of the
 residue field of (9 in Fp, 1p and po are isomorphic over FP. Our point of view
 will be to assume that po is modular and then to attempt to give conditions
 under which a representation p lifting po comes from a modular form in the

 sense that p - pfa, over Kf,A for some f, A. We will restrict our attention to
 two cases:

 (I) po is ordinary (at p) by which we mean that there is a one-dimensional
 subspace of P , stable under a decomposition group at p and such that
 the action on the quotient space is unramified and distinct from the

 action on the subspace.

 (II) po is flat (at p), meaning that as a representation of a decomposition
 group at p, po is equivalent to one that arises from a finite flat group

 scheme over Zp, and det po restricted to an inertia group at p is the
 cyclotomic character.

 We say similarly that p is ordinary (at p) if, viewed as a representation to QP,
 there is a one-dimensional subspace of Q2 stable under a decomposition group
 at p and such that the action on the quotient space is unramified.

 Let e: Gal(Q/Q) -* denote the cyclotomic character. Conjectural
 converses to Theorem 0.1 have been part of the folklore for many years but

 have hitherto lacked any evidence. The critical idea that one might dispense

 with compatible systems was already observed by Drinfeld in the function field

 case [Dr]. The idea that one only needs to make a geometric condition on the
 restriction to the decomposition group at p was first suggested by Fontaine and

 Mazur. The following version is a natural extension of Serre's conjecture which

 is convenient for stating our results and is, in a slightly modified form, the one

 proposed by Fontaine and Mazur. (In the form stated this incorporates Serre's

 conjecture. We could instead have made the hypothesis that po is modular.)

 CONJECTURE. Suppose that p: Gal(Q/Q) - GL2(0) is an irreducible

 lifting of po and that p is unramified outside of a finite set of primes. There
 are two cases:

 (i) Assume that po is ordinary. Then if p is ordinary and det p = ek-1X for
 some integer k > 2 and some X of finite order, p comes from a modular
 form.

 (ii) Assume that po is flat and that p is odd. Then if p restricted to a de-
 composition group at p is equivalent to a representation on a p-divisible

 group, again p comes from a modular form.
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 MODULAR ELLIPTIC CURVES AND FERMAT'S LAST THEOREM 447

 In case (ii) it is not hard to see that if the form exists it has to be of

 weight 2; in (i) of course it would have weight k. One can of course enlarge

 this conjecture in several ways, by weakening the conditions in (i) and (ii), by

 considering other number fields in place of Q and by considering groups other

 than GL2.

 We prove two results concerning this conjecture. The first includes the

 hypothesis that PO is modular. Here and for the rest of the paper we will
 assume that p is an odd prime.

 THEOREM 0.2. Suppose that PO is irreducible and satisfies either (I) or
 (II) above. Suppose also that PO is modular and that

 (i) PG is absolutely irreducible when restricted to Q ( (-1)Tp).

 (ii) If q - modp is ramified in PO then either POIDq is reducible over
 the algebraic closure where Dq is a decomposition group at q or polIq is
 absolutely irreducible where Iq is an inertia group at q.

 Then any representation p as in the conjecture does indeed come from a mod-

 ular form.

 The only condition which really seems essential to our method is the re-

 quirement that PO be modular.
 The most interesting case at the moment is when p = 3 and PO can be de-

 fined over F3. Then since PGL2(F3) - S4 every such representation is modular

 by the theorem of Langlands and Tunnell mentioned above. In particular, ev-

 ery representation into GL2(Z3) whose reduction satisfies the given conditions
 is modular. We deduce:

 THEOREM 0.3. Suppose that E is an elliptic curve defined over Q and

 that PO is the Galois action on the 3-division points. Suppose that E has the
 following properties:

 (i) E has good or multiplicative reduction at 3.

 (ii) P0 is absolutely irreducible when restricted to Q (\-).

 (iii) For any q -1 mod 3 either POIDq is reducible over the algebraic closure
 or POIIq is absolutely irreducible.

 Then E is modular.

 We should point out that while the properties of the zeta function follow

 directly from Theorem 0.2 the stronger version that E is covered by Xo(N)
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 448 ANDREW WILES

 requires also the isogeny theorem proved by Faltings (and earlier by Serre when

 E has nonintegral j-invariant, a case which includes the semistable curves).

 We note that if E is modular then so is any twist of E, so we could relax

 condition (i) somewhat.

 The important class of semistable curves, i.e., those with square-free con-

 ductor, satisfies (i) and (iii) but not necessarily (ii). If (ii) fails then in fact po
 is reducible. Rather surprisingly, Theorem 0.2 can often be applied in this case

 also by showing that the representation on the 5-division points also occurs for

 another elliptic curve which Theorem 0.3 has already proved modular. Thus

 Theorem 0.2 is applied this time with p = 5. This argument, which is explained

 in Chapter 5, is the only part of the paper which really uses deformations of

 the elliptic curve rather than deformations of the Galois representation. The

 argument works more generally than in the semistable case but in this setting

 we obtain the following theorem:

 THEOREM 0.4. Suppose that E is a semistable elliptic curve defined over

 Q. Then E is modular.

 More general families of elliptic curves which are modular are given in Chap-
 ter 5.

 In 1986, stimulated by an ingenious idea of Frey [Fr], Serre conjectured

 and Ribet proved (in [Ril]) a property of the Galois representations associated

 to modular forms which enabled Ribet to show that Theorem 0.4 implies 'Fer-

 mat's Last Theorem'. Frey's suggestion, in the notation of the following theo-

 rem, was to show that the (hypothetical) elliptic curve y2 = X(X + UP) (X - VP)
 could not be modular. Such elliptic curves had already been studied in [He]

 but without the connection with modular forms. Serre made precise the idea

 of Frey by proposing a conjecture on modular forms which meant that the rep-

 resentation on the p-division points of this particular elliptic curve, if modular,

 would be associated to a form of conductor 2. This, by a simple inspection,

 could not exist. Serre's conjecture was then proved by Ribet in the summer

 of 1986. However, one still needed to know that the curve in question would

 have to be modular, and this is accomplished by Theorem 0.4. We have then

 (finally!):

 THEOREM 0.5. Suppose that uP+vP+wP = O with u,v,w E Q andp > 3,

 then uvw = 0.

 The second result we prove about the conjecture does not require the

 assumption that po be modular (since it is already known in this case).
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 MODULAR ELLIPTIC CURVES AND FERMAT'S LAST THEOREM 449

 THEOREM 0.6. Suppose that po is irreducible and satisfies the hypotheses
 of the conjecture, including (I) above. Suppose further that

 (i) po = IndQ Ko for a character Ko of an imaginary quadratic extension L
 of Q which is unramified at p.

 (ii) det po I P = .

 Then a representation p as in the conjecture does indeed come from a modular

 form.

 This theorem can also be used to prove that certain families of elliptic

 curves are modular. In this summary we have only described the principal

 theorems associated to Galois representations and elliptic curves. Our results

 concerning generalized class groups are described in Theorem 3.3.

 The following is an account of the origins of this work and of the more

 specialized developments of the 1980's that affected it. I began working on

 these problems in the late summer of 1986 immediately on learning of Ribet's

 result. For several years I had been working on the Iwasawa conjecture for

 totally real fields and some applications of it. In the process, I had been using

 and developing results on ?-adic representations associated to Hilbert modular

 forms. It was therefore natural for me to consider the problem of modularity

 from the point of view of ?-adic representations. I began with the assumption

 that the reduction of a given ordinary ?-adic representation was reducible and

 tried to prove under this hypothesis that the representation itself would have

 to be modular. I hoped rather naively that in this situation I could apply the

 techniques of Iwasawa theory. Even more optimistically I hoped that the case

 e = 2 would be tractable as this would suffice for the study of the curves used

 by Frey. From now on and in the main text, we write p for e because of the

 connections with Iwasawa theory.

 After several months studying the 2-adic representation, I made the first

 real breakthrough in realizing that I could use the 3-adic representation instead:

 the Langlands-Tunnell theorem meant that p3, the mod 3 representation of any

 given elliptic curve over Q, would necessarily be modular. This enabled me

 to try inductively to prove that the GL2 (Z/3n Z) representation would be

 modular for each n. At this time I considered only the ordinary case. This led

 quickly to the study of Hz(Gal(Fx/Q), Wf) for i = 1 and 2, where Fx is the
 splitting field of the m-adic torsion on the Jacobian of a suitable modular curve,

 m being the maximal ideal of a Hecke ring associated to p3 and Wf the module
 associated to a modular form f described in Chapter 1. More specifically, I

 needed to compare this cohomology with the cohomology of Gal(QE/Q) acting
 on the same module.

 I tried to apply some ideas from Iwasawa theory to this problem. In my

 solution to the Iwasawa conjecture for totally real fields [Wi4], I had introduced
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 450 ANDREW WILES

 a new technique in order to deal with the trivial zeroes. It involved replacing

 the standard Iwasawa theory method of considering the fields in the cyclotomic

 Zp-extension by a similar analysis based on a choice of infinitely many distinct
 primes qi _ 1 mod pfi with ni -* oo as i -* oo. Some aspects of this method
 suggested that an alternative to the standard technique of Iwasawa theory,

 which seemed problematic in the study of Wf, might be to make a comparison
 between the cohomology groups as E varies but with the field Q fixed. The

 new principle said roughly that the unramified cohomology classes are trapped

 by the tamely ramified ones. After reading the paper [Grel], I realized that the

 duality theorems in Galois cohomology of Poitou and Tate would be useful for

 this. The crucial extract from this latter theory is in Section 2 of Chapter 1.

 In order to put these ideas into practice I developed in a naive form the

 techniques of the first two sections of Chapter 2. This drew in particular on

 a detailed study of all the congruences between f and other modular forms

 of differing levels, a theory that had been initiated by Hida and Ribet. The

 outcome was that I could estimate the first cohomology group well under two

 assumptions, first that a certain subgroup of the second cohomology group

 vanished and second that the form f was chosen at the minimal level for m.

 These assumptions were much too restrictive to be really effective but at least

 they pointed in the right direction. Some of these arguments are to be found

 in the second section of Chapter 1 and some form the first weak approximation

 to the argument in Chapter 3. At that time, however, I used auxiliary primes

 q -1 modp when varying E as the geometric techniques I worked with did

 not apply in general for primes q _ 1 mod p. (This was for much the same

 reason that the reduction of level argument in [Ril] is much more difficult

 when q -1 mod p.) In all this work I used the more general assumption that

 pp was modular rather than the assumption that p = 3.
 In the late 1980's, I translated these ideas into ring-theoretic language. A

 few years previously Hida had constructed some explicit one-parameter fam-

 ilies of Galois representations. In an attempt to understand this, Mazur had

 been developing the language of deformations of Galois representations. More-

 over, Mazur realized that the universal deformation rings he found should be

 given by Hecke rings, at least in certain special cases. This critical conjecture

 refined the expectation that all ordinary liftings of modular representations

 should be modular. In making the translation to this ring-theoretic language

 I realized that the vanishing assumption on the subgroup of H2 which I had
 needed should be replaced by the stronger condition that the Hecke rings were

 complete intersections. This fitted well with their being deformation rings

 where one could estimate the number of generators and relations and so made

 the original assumption more plausible.

 To be of use, the deformation theory required some development. Apart

 from some special examples examined by Boston and Mazur there had been
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 MODULAR ELLIPTIC CURVES AND FERMAT'S LAST THEOREM 451

 little work on it. I checked that one could make the appropriate adjustments to

 the theory in order to describe deformation theories at the minimal level. In the

 fall of 1989, I set Ramakrishna, then a student of mine at Princeton, the task

 of proving the existence of a deformation theory associated to representations

 arising from finite flat group schemes over Zp. This was needed in order to
 remove the restriction to the ordinary case. These developments are described

 in the first section of Chapter 1 although the work of Ramakrishna was not

 completed until the fall of 1991. For a long time the ring-theoretic version

 of the problem, although more natural, did not look any simpler. The usual

 methods of Iwasawa theory when translated into the ring-theoretic language

 seemed to require unknown principles of base change. One needed to know the

 exact relations between the Hecke rings for different fields in the cyclotomic

 Zp-extension of Q, and not just the relations up to torsion.
 The turning point in this and indeed in the whole proof came in the

 spring of 1991. In searching for a clue from commutative algebra I had been

 particularly struck some years earlier by a paper of Kunz [Ku2]. I had already

 needed to verify that the Hecke rings were Gorenstein in order to compute the

 congruences developed in Chapter 2. This property had first been proved by

 Mazur in the case of prime level and his argument had already been extended

 by other authors as the need arose. Kunz's paper suggested the use of an

 invariant (the 77-invariant of the appendix) which I saw could be used to test

 for isomorphisms between Gorenstein rings. A different invariant (the p/p2_
 invariant of the appendix) I had already observed could be used to test for

 isomorphisms between complete intersections. It was only on reading Section 6

 of [Ti2] that I learned that it followed from Tate's account of Grothendieck

 duality theory for complete intersections that these two invariants were equal

 for such rings. Not long afterwards I realized that, unlikely though it seemed at

 first, the equality of these invariants was actually a criterion for a Gorenstein

 ring to be a complete intersection. These arguments are given in the appendix.

 The impact of this result on the main problem was enormous. Firstly, the

 relationship between the Hecke rings and the deformation rings could be tested

 just using these two invariants. In particular I could provide the inductive ar-

 gument of Section 3 of Chapter 2 to show that if all liftings with restricted

 ramification are modular then all liftings are modular. This I had been trying

 to do for a long time but without success until the breakthrough in commuta-

 tive algebra. Secondly, by means of a calculation of Hida summarized in [Hi2]
 the main problem could be transformed into a problem about class numbers

 of a type well-known in Iwasawa theory. In particular, I could check this in

 the ordinary CM case using the recent theorems of Rubin and Kolyvagin. This

 is the content of Chapter 4. Thirdly, it meant that for the first time it could

 be verified that infinitely many j-invariants were modular. Finally, it meant

 that I could focus on the minimal level where the estimates given by my earlier
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 452 ANDREW WILES

 Galois cohomology calculations looked more promising. Here I was also using

 the work of Ribet and others on Serre's conjecture (the same work of Ribet

 that had linked Fermat's Last Theorem to modular forms in the first place) to

 know that there was a minimal level.

 The class number problem was of a type well-known in Iwasawa theory

 and in the ordinary case had already been conjectured by Coates and Schmidt.

 However, the traditional methods of Iwasawa theory did not seem quite suf-

 ficient in this case and, as explained earlier, when translated into the ring-

 theoretic language seemed to require unknown principles of base change. So

 instead I developed further the idea of using auxiliary primes to replace the

 change of field that is used in Iwasawa theory. The Galois cohomology esti-

 mates described in Chapter 3 were now much stronger, although at that time

 I was still using primes q -1 modp for the argument. The main difficulty

 was that although I knew how the q7-invariant changed as one passed to an
 auxiliary level from the results of Chapter 2, I did not know how to estimate

 the change in the p/p2-invariant precisely. However, the method did give the
 right bound for the generalised class group, or Selmer group as it is often called

 in this context, under the additional assumption that the minimal Hecke ring

 was a complete intersection.

 I had earlier realized that ideally what I needed in this method of auxiliary

 primes was a replacement for the power series ring construction one obtains in

 the more natural approach based on Iwasawa theory. In this more usual setting,

 the projective limit of the Hecke rings for the varying fields in a cyclotomic

 tower would be expected to be a power series ring, at least if one assumed

 the vanishing of the a-invariant. However, in the setting with auxiliary primes

 where one would change the level but not the field, the natural limiting process

 did not appear to be helpful, with the exception of the closely related and very

 important construction of Hida [Hil]. This method of Hida often gave one step

 towards a power series ring in the ordinary case. There were also tenuous hints

 of a patching argument in Iwasawa theory ([Scho], [Wi4, ?10]), but I searched
 without success for the key.

 Then, in August, 1991, I learned of a new construction of Flach [Fl] and
 quickly became convinced that an extension of his method was more plausi-

 ble. Flach's approach seemed to be the first step towards the construction of

 an Euler system, an approach which would give the precise upper bound for

 the size of the Selmer group if it could be completed. By the fall of 1992, I

 believed I had achieved this and began then to consider the remaining case

 where the mod3 representation was assumed reducible. For several months I

 tried simply to repeat the methods using deformation rings and Hecke rings.

 Then unexpectedly in May 1993, on reading of a construction of twisted forms

 of modular curves in a paper of Mazur [Ma3], I made a crucial and surprising
 breakthrough: I found the argument using families of elliptic curves with a
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 MODULAR ELLIPTIC CURVES AND FERMAT'S LAST THEOREM 453

 common p5 which is given in Chapter 5. Believing now that the proof was

 complete, I sketched the whole theory in three lectures in Cambridge, England

 on June 21-23. However, it became clear to me in the fall of 1993 that the con-

 struction of the Euler system used to extend Flach's method was incomplete

 and possibly flawed.

 Chapter 3 follows the original approach I had taken to the problem of

 bounding the Selmer group but had abandoned on learning of Flach's paper.

 Darmon encouraged me in February, 1994, to explain the reduction to the com-

 plete intersection property, as it gave a quick way to exhibit infinite families

 of modular j-invariants. In presenting it in a lecture at Princeton, I made,

 almost unconsciously, a critical switch to the special primes used in Chapter 3

 as auxiliary primes. I had only observed the existence and importance of these

 primes in the fall of 1992 while trying to extend Flach's work. Previously, I had

 only used primes q -1 modp as auxiliary primes. In hindsight this change

 was crucial because of a development due to de Shalit. As explained before, I

 had realized earlier that Hida's theory often provided one step towards a power

 series ring at least in the ordinary case. At the Cambridge conference de Shalit

 had explained to me that for primes q -1 mod p he had obtained a version of

 Hida's results. But except for explaining the complete intersection argument

 in the lecture at Princeton, I still did not give any thought to my initial ap-

 proach, which I had put aside since the summer of 1991, since I continued to

 believe that the Euler system approach was the correct one.

 Meanwhile in January, 1994, R. Taylor had joined me in the attempt to

 repair the Euler system argument. Then in the spring of 1994, frustrated in

 the efforts to repair the Euler system argument, I began to work with Taylor

 on an attempt to devise a new argument using p = 2. The attempt to use p = 2

 reached an impasse at the end of August. As Taylor was still not convinced that

 the Euler system argument was irreparable, I decided in September to take one

 last look at my attempt to generalise Flach, if only to formulate more precisely

 the obstruction. In doing this I came suddenly to a marvelous revelation: I

 saw in a flash on September 19th, 1994, that de Shalit's theory, if generalised,

 could be used together with duality to glue the Hecke rings at suitable auxiliary

 levels into a power series ring. I had unexpectedly found the missing key to my

 old abandoned approach. It was the old idea of picking qi's with qi- 1 mod pfi
 and ni -x oc as i -* oc that I used to achieve the limiting process. The switch
 to the special primes of Chapter 3 had made all this possible.

 After I communicated the argument to Taylor, we spent the next few days

 making sure of the details. The full argument, together with the deduction of

 the complete intersection property, is given in [TW].
 In conclusion the key breakthrough in the proof had been the realization

 in the spring of 1991 that the two invariants introduced in the appendix could

 be used to relate the deformation rings and the Hecke rings. In effect the 71-
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 invariant could be used to count Galois representations. The last step after the

 June, 1993, announcement, though elusive, was but the conclusion of a long

 process whose purpose was to replace, in the ring-theoretic setting, the methods

 based on Iwasawa theory by methods based on the use of auxiliary primes.

 One improvement that I have not included but which might be used to

 simplify some of Chapter 2 is the observation of Lenstra that the criterion for

 Gorenstein rings to be complete intersections can be extended to more general

 rings which are finite and free as ZP-modules. Faltings has pointed out an
 improvement, also not included, which simplifies the argument in Chapter 3

 and [TW]. This is however explained in the appendix to [TW].

 It is a pleasure to thank those who read carefully a first draft of some of this

 paper after the Cambridge conference and particularly N. Katz who patiently

 answered many questions in the course of my work on Euler systems, and

 together with Illusie read critically the Euler system argument. Their questions

 led to my discovery of the problem with it. Katz also listened critically to my

 first attempts to correct it in the fall of 1993. I am grateful also to Taylor for

 his assistance in analyzing in depth the Euler system argument. I am indebted

 to F. Diamond for his generous assistance in the preparation of the final version

 of this paper. In addition to his many valuable suggestions, several others also

 made helpful comments and suggestions especially Conrad, de Shalit, Faltings,

 Ribet, Rubin, Skinner and Taylor. Finally, I am most grateful to H. Darmon

 for his encouragement to reconsider my old argument. Although I paid no heed

 to his advice at the time, it surely left its mark.
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 Chapter 1

 This chapter is devoted to the study of certain Galois representations.

 In the first section we introduce and study Mazur's deformation theory and

 discuss various refinements of it. These refinements will be needed later to

 make precise the correspondence between the universal deformation rings and

 the Hecke rings in Chapter 2. The main results needed are Proposition 1.2

 which is used to interpret various generalized cotangent spaces as Selmer groups

 and (1.7) which later will be used to study them. At the end of the section we

 relate these Selmer groups to ones used in the Bloch-Kato conjecture, but this

 connection is not needed for the proofs of our main results.

 In the second section we extract from the results of Poitou and Tate on

 Galois cohomology certain general relations between Selmer groups as E varies,

 as well as between Selmer groups and their duals. The most important obser-

 vation of the third section is Lemma 1.10(i) which guarantees the existence of

 the special primes used in Chapter 3 and [TW].

 1. Deformations of Galois representations

 Let p be an odd prime. Let E be a finite set of primes including p and

 let Qs be the maximal extension of Q unramified outside this set and oc.

 Throughout we fix an embedding of Q, and so also of Qy, in C. We will also
 fix a choice of decomposition group Dq for all primes q in Z. Suppose that k

 is a finite field of characteristic p and that

 (1.1) Po: Gal(Q/Q) -* GL2(k)

 is an irreducible representation. In contrast to the introduction we will assume

 in the rest of the paper that po comes with its field of definition k. Suppose
 further that det po is odd. In particular this implies that the smallest field of
 definition for po is given by the field ko generated by the traces but we will not
 assume that k = ko. It also implies that po is absolutely irreducible. We con-
 sider the deformations [p] to GL2(A) of po in the sense of Mazur [Mal]. Thus
 if W(k) is the ring of Witt vectors of k, A is to be a complete Noetherian local

 W(k)-algebra with residue field k and maximal ideal m, and a deformation [p]

 is just a strict equivalence class of homomorphisms p: Gal(Qr/Q) -* GL2(A)
 such that p mod m = po, two such homomorphisms being called strictly equiv-
 alent if one can be brought to the other by conjugation by an element of

 ker: GL2(A) -* GL2(k). We often simply write p instead of [p] for the
 equivalence class.
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 We will restrict our choice of po further by assuming that either:

 (i) po is ordinary; viz., the restriction of po to the decomposition group Dp
 has (for a suitable choice of basis) the form

 (1.2) PO (? X *)

 where Xi and X2 are homomorphisms from Dp to k* with X2 unramified.
 Moreover we require that Xi #4 X2. We do allow here that POIDP be
 semisimple. (If Xi and X2 are both unramified and POIDp is semisimple
 then we fix our choices of Xi and X2 once and for all.)

 (ii) po is flat at p but not ordinary (cf. [Sel] where the terminology finite is
 used); viz., POIDP is the representation associated to a finite flat group
 scheme over Zp but is not ordinary in the sense of (i). (In general when we
 refer to the flat case we will mean that po is assumed not to be ordinary

 unless we specify otherwise.) We will assume also that det po0 Iip = w
 where Ip is an inertia group at p and w is the Teichmiiller character
 giving the action on pth roots of unity.

 In case (ii) it follows from results of Raynaud that POIDP is absolutely
 irreducible and one can describe P0IIP explicitly. For extending a Jordan-Holder
 series for the representation space (as an Ip-module) to one for finite flat group
 schemes (cf. [Rayl]) we observe first that the trivial character does not occur on

 a subquotient, as otherwise (using the classification of Oort-Tate or Raynaud)
 the group scheme would be ordinary. So we find by Raynaud's results, that

 Po IIP 0 k - b1 ? 02 where b1 and 02 are the two fundamental characters of
 k

 degree 2 (cf. Corollary 3.4.4 of [Rayl]). Since b1 and 02 do not extend to
 characters of Gal(Qp/Qp), PoIDP must be absolutely irreducible.

 We will sometimes wish to make one of the following restrictions on the

 deformations we allow:

 (i) (a) Selmer deformations. In this case we assume that po is ordinary, with no-
 tation as above, and that the deformation has a representative

 p: Gal(Q/Q) -* GL2(A) with the property that (for a suitable choice
 of basis)

 with 52 unramified, X2 X2 mod m, and det PI ip = Fw 1X1X2 where
 e is the cyclotomic character, E: Gal(Qr/Q) -* Zp, giving the action
 on all p-power roots of unity, w is of order prime to p satisfying w _ E

 modp, and Xi and X2 are the characters of (i) viewed as taking values in
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 (i) (b) Ordinary deformations. The same as in (i) (a) but with no condition on

 the determinant.

 (i) (c) Strict deformations. This is a variant on (i) (a) which we only use when

 POIDP is not semisimple and not flat (i.e. not associated to a finite flat
 group scheme). We also assume that XiX-1 = w in this case. Then a
 strict deformation is as in (i)(a) except that we assume in addition that

 (X1 /X2) IDP = E.

 (ii) Flat (at p) deformations. We assume that each deformation p to GL2(A)

 has the property that for any quotient A /a of finite order PIDP mod a
 is the Galois representation associated to the Qp-points of a finite flat
 group scheme over Zp.

 In each of these four cases, as well as in the unrestricted case (in which we

 impose no local restriction at p) one can verify that Mazur's use of Schlessinger's
 criteria [Sch] proves the existence of a universal deformation

 p: Gal(Q/Q) -* GL2(R).

 In the ordinary and unrestricted case this was proved by Mazur and in the

 flat case by Ramakrishna [Ram]. The other cases require minor modifications

 of Mazur's argument. We denote the universal ring RE in the unrestricted
 case and Rs, Rrd, Rstr, Rf in the other four cases. We often omit the E if the
 context makes it clear.

 There are certain generalizations to all of the above which we will also

 need. The first is that instead of considering W(k) -algebras A we may consider

 0-algebras for 0 the ring of integers of any local field with residue field k. If

 we need to record which 0 we are using we will write RE,0 etc. It is easy to
 see that the natural local map of local 0-algebras

 RE,0- RE ?0 0
 W(k)

 is an isomorphism because for functorial reasons the map has a natural section

 which induces an isomorphism on Zariski tangent spaces at closed points, and

 one can then use Nakayama's lemma. Note, however, that if we change the
 residue field via i: k ,-* k' then we have a new deformation problem associated

 to the representation p0 = i o po. There is again a natural map of W(k')-
 algebras

 R(pO) -* R C W(k')
 W(k)

 which is an isomorphism on Zariski tangent spaces. One can check that this

 is again an isomorphism by considering the subring R1 of R(pO) defined as the
 subring of all elements whose reduction modulo the maximal ideal lies in k.

 Since R(pO) is a finite Rl-module, R1 is also a complete local Noetherian ring
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 with residue field k. The universal representation associated to pO is defined

 over R1 and the universal property of R then defines a map R -* R1. So we
 obtain a section to the map R(p') -* R 0 W(k') and the map is therefore

 0 W(k)
 an isomorphism. (I am grateful to Faltings for this observation.) We will also

 need to extend the consideration of 0-algebras to the restricted cases. In each

 case we can require A to be an 0-algebra and again it is easy to see that

 R'_ Rj 0 O in each case. E'0 E W(k)
 The second generalization concerns primes q #& p which are ramified in PO.

 We distinguish three special cases (types (A) and (C) need not be disjoint):

 (A) POIDq = ( *) for a suitable choice of basis, with Xi and X2 unramified,

 Xi X2-1 = w and the fixed space of Iq of dimension 1,

 (B) POIIq = ?),Xq X7# 1, for a suitable choice of basis,

 (C) H1(Qqi WA) = 0 where WA is as defined in (1.6).

 Then in each case we can define a suitable deformation theory by imposing

 additional restrictions on those we have already considered, namely:

 (A) PIDq = ( 1) for a suitable choice of basis of A2 with 41 and 02 un-
 ramified and b10'41 = E;

 (B) PIIq = (Xq f) for a suitable choice of basis (Xq of order prime to p, so the
 same character as above);

 (C) detplIq = detpolIq, i.e., of order prime to p.

 Thus if M is a set of primes in E distinct from p and each satisfying one of

 (A), (B) or (C) for Po, we will impose the corresponding restriction at each
 prime in M.

 Thus to each set of data D = {., E, 0, M} where is Se, str, ord, flat or

 unrestricted, we can associate a deformation theory to Po provided

 (1.3) po: Gal(Q/Q) -* GL2(k)

 is itself of type D and 0 is the ring of integers of a totally ramified extension

 of W(k); Po is ordinary if . is Se or ord, strict if . is strict and flat if . is fl
 (meaning flat); PO is of type M, i.e., of type (A), (B) or (C) at each ramified
 prime q #& p, q E M. We allow different types at different q's. We will refer

 to these as the standard deformation theories and write RD for the universal
 ring associated to D and p-D for the universal deformation (or even p if D is
 clear from the context).

 We note here that if D = (ord, E, 0, M) and V' = (Se, E, 0, M) then

 there is a simple relation between RD and Rn'. Indeed there is a natural map
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 RD-* R-D by the universal property of RD, and its kernel is a principal ideal
 generated by T = 6-1(-y) det pv(-y) - 1 where -y E Gal(Q/Q) is any element

 whose restriction to Gal(QOO/Q) is a generator (where QO is the Zp-extension
 of Q) and whose restriction to Gal(Q((Np)/Q) is trivial for any N prime to p
 with (N E Qs, C(N being a primitive Nth root of 1:

 (1.4) R-DIT -_R-D.

 It turns out that under the hypothesis that po is strict, i.e. that POIDP
 is not associated to a finite flat group scheme, the deformation problems in

 (i)(a) and (i)(c) are the same; i.e., every Selmer deformation is already a strict

 deformation. This was observed by Diamond. The argument is local, so the

 decomposition group Dp could be replaced by Gal(QP/Qp).

 PROPOSITION 1.1 (Diamond). Suppose that 7r:Dp -* GL2(A) is a con-
 tinuous representation where A is an Artinian local ring with residue field k, a

 finite field of characteristic p. Suppose ir e (OX"F*) with Xi and X2 unramified
 and X1 #4 X2. Then the residual representation -r is associated to a finite flat
 group scheme over Zp.

 Proof (taken from [Dia, Prop. 6.1]). We may replace 7r by 7r 0 X2-1 and
 we let p = XX2-1. Then 7r -( t 1) determines a cocycle t: Dp -* M(1) where
 M is a free A-module of rank one on which Dp acts via A. Let u denote the
 cohomology class in H1 (Dp, M(1)) defined by t, and let uo denote its image
 in H1(Dp,Mo(1)) where MO = M/mM. Let G = kerr and let F be the fixed
 field of G (so F is a finite unramified extension of Qp). Choose n so that pnA
 = 0. Since H2(G, ppr) -+ H2(G, lps) is infective for r < s, we see that the
 natural map of A[Dp/G]-modules H1(G, 1upn) ?zp M - H1(G,M(l)) is an

 isomorphism. By Kummer theory, we have H1 (G, M(1)) Fx /(FX )Px 0zpM
 as Dp-modules. Now consider the commutative diagram

 H1 (G, M(l))DP -+((Fxl(Fx )pn &Zp M)Dp ) MDP

 H1(GI MoI()) (Fx/(Fx)P) IFp MO ) MO

 where the right-hand horizontal maps are induced by vip Fx -* Z. If fp # 1,

 then MDp C mM, so that the element resuo of H1(G, Mo(1)) is in the image

 of (OFx/(OFx)P) ?Fp Mo. But this means that 7r is "peu ramifie& in the sense of
 [Se] and therefore t comes from a finite flat group scheme. (See [El, (8.2)].)

 Remark. Diamond also observes that essentially the same proof shows

 that if 7r: Gal(Qq/Qq) -* GL2(A), where A is a complete local Noetherian
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 ring with residue field k, has the form lrIIq - (0 *) with -r ramified then 7r is
 of type (A).

 Globally, Proposition 1.1 says that if po is strict and if D = (Se, A, (9, M)
 and 7' = (str, A, (9, M) then the natural map RD -* R-D is an isomorphism.

 In each case the tangent space of RD may be computed as in [Mal]. Let
 A be a uniformizer for (9 and let UA , k2 be the representation space for po.
 (The motivation for the subscript A will become apparent later.) Let VA be the

 representation space of Gal(Qr/Q) on Adpo = Homk(UA, UA) -- M2(k). Then
 there is an isomorphism of k-vector spaces (cf. the proof of Prop. 1.2 below)

 (1.5) Homk(mvD/(m 2, A), k) Hv HD(Q/QVA)

 where HD,(Q/Q, VA) is a subspace of H1 (Q/Q, VA) which we now describe
 and my is the maximal ideal of RD. It consists of the cohomology classes
 which satisfy certain local restrictions at p and at the primes in M. We call

 mv/(m%,2 A) the reduced cotangent space of RD.
 We begin with p. First we may write (since p 5$ 2), as k[Gal(Qr/Q)]-

 modules,

 (1.6) VA=WA k, whereWA = {ff eHomk(UA,UA):tracef=0}

 ~ (Sym2? det-1)po

 and k is the one-dimensional subspace of scalar multiplications. Then if po
 is ordinary the action of Dp on UA induces a filtration of UA and also on WA

 and VA. Suppose we write these 0 C UCO c UA, 0 c WA? C WA C WA1 and
 0 C VA? c VA C VA. Thus UA? is defined by the requirement that Dp act on it
 via the character Xi (cf. (1.2)) and on UA/UA? via X2. For WA the filtrations
 are defined by

 WA = {f E WA: f(U?) c UA},

 WA = {EfWeWA: f=0onUA?},

 and the filtrations for VA are obtained by replacing W by V. We note that

 these filtrations are often characterized by the action of Dp. Thus the action

 of Dp on WA? is via Xl/x2; on WA/WA? it is trivial and on WA/WA it is via
 X2/xl. These determine the filtration if either X1/x2 is not quadratic or POIDP
 is not semisimple. We define the k-vector spaces

 VA rd f E VA :f= in Hom(UA/UAUA/U?)},

 Hse(Qp, VA) = ker{H1(Qp,VA,-), Hl(Qunr, V/W?)}

 Hord(Qp, VA) = ker{H1(Qp, VA) Hl(Q nr VA Vord)}

 Hstr(Qp, VA) = ker{H1(Qp,VA) Hl (QpWA/WA?)?DHl (Qunr k)}.
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 In the Selmer case we make an analogous definition for Hl,(QP, WA) by
 replacing VA by WA, and similarly in the strict case. In the flat case we use
 the fact that there is a natural isomorphism of k-vector spaces

 H1(Qp, VA) -? Extk[D](UA UA)

 where the extensions are computed in the category of k-vector spaces with local

 Galois action. Then Hi (Qp, VA) is defined as the k-subspace of H1 (Qp, VA)
 which is the inverse image of Ext1 (G, G), the group of extensions in the cate-

 gory of finite flat commutative group schemes over Zp killed by p, G being the
 (unique) finite flat group scheme over Zp associated to UA. By [Rayl] all such
 extensions in the inverse image even correspond to k-vector space schemes. For

 more details and calculations see [Ram].

 For q different from p and q E M we have three cases (A), (B), (C). In

 case (A) there is a filtration by Dq entirely analogous to the one for p. We

 write this 0 c W q cWq c WA and we set
 A AWanwee
 Iker: H1(Qq, VA)

 H1(Qq WA/W ' ) ? H1(Qunr k) in case (A)
 Hhq(QqVA>) =

 V ker: H1(Qq, VA)

 -* Hl(Qunr, VA) in case (B) or (C).

 Again we make an analogous definition for Hh (Qq, WA) by replacing VA
 by WA and deleting the last term in case (A). We now define the k-vector

 space Hi (QE/Q, VA) as

 Hb(Q/Q, VA) = {a e H1(Q/Q, VA): aq E HDq(Qq, VA) for all q E M,

 oap E H1 (Qp, VA)}

 where * is Se, str, ord, fl or unrestricted according to the type of D. A similar

 definition applies to Hi,(Qr/Q, WA) if* is Selmer or strict.
 Now and for the rest of the section we are going to assume that po arises

 from the reduction of the A-adic representation associated to an eigenform.

 More precisely we assume that there is a normalized eigenform f of weight 2

 and level N, divisible only by the primes in E, and that there is a prime A

 of Of such that po = Pf,A mod A. Here Of is the ring of integers of the field
 generated by the Fourier coefficients of f so the fields of definition of the two

 representations need not be the same. However we assume that k D (9f,A/A
 and we fix such an embedding so the comparison can be made over k. It will

 be convenient moreover to assume that if we are considering po as being of
 type D then D is defined using 0-algebras where (9 D Of,A is an unramified
 extension whose residue field is k. (Although this condition is unnecessary, it

 is convenient to use A as the uniformizer for 0.) Finally we assume that pf,A,
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 itself is of type D. Again this is a slight abuse of terminology as we are really

 considering the extension of scalars Pf,A X0 0 and not PfA itself, but we will
 OfA\

 do this without further mention if the context makes it clear. (The analysis of

 this section actually applies to any characteristic zero lifting of po but in all
 our applications we will be in the more restrictive context we have described

 here.)

 With these hypotheses there is a unique local homomorphism RD -* (9
 of 0-algebras which takes the universal deformation to (the class of) pf,A. Let
 pD = ker: RD -* 0. Let K be the field of fractions of 0 and let Uf = (K/0)2
 with the Galois action taken from Pf,A> Similarly, let Vf = Ad Pif,A (o K/O
 (K/O)4 with the adjoint representation so that

 Vf -- Wf ( K/0

 where Wf has Galois action via Sym2 pf,A 0 det p7en and the action on the
 second factor is trivial. Then if po is ordinary the filtration of Uf under the
 Ad p action of Dp induces one on Wf which we write 0 C WC C W1 C Wf.
 Often to simplify the notation we will drop the index f from We, Vf etc. There

 is also a filtration on WAn = {ker An: Wf ) Wf } given by Wn = WAn n WI
 (compatible with our previous description for n = 1). Likewise we write VAn
 for {ker An: Vf ) Vf}.

 We now explain how to extend the definition of HD, to give meaning to
 H9,(Q/Q, VAn) and H-j,(Q/Q, V) and these are O/An and 0-modules, re-

 spectively. In the case where po is ordinary the definitions are the same with
 VAn or V replacing VA and O/An or K/O replacing k. One checks easily that
 as 0-modules

 (1.7) H-,(QE/Q, VAn) H-,(QE/QV)An1
 where as usual the subscript An denotes the kernel of multiplication by An.

 This just uses the divisibility of H0(Qr/Q, V) and HO(Qp, W/W0) in the
 strict case. In the Selmer case one checks that for m > n the kernel of

 Hl(Qunr, VAn/WAn ) - Hl(Qunr VAm /WAm )

 has only the zero element fixed under Gal(Qunr/Qp) and the ord case is similar.
 Checking conditions at q E M is done with similar arguments. In the Selmer

 and strict cases we make analogous definitions with WAn in place of VAn and

 W in place of V and the analogue of (1.7) still holds.

 We now consider the case where po is flat (but not ordinary). We claim
 first that there is a natural map of 0-modules

 (1.8) H1(Qp, VAn) -* Ext,[D ](U' m, UAn)
 for each m > n where the extensions are of 0-modules with local Galois

 action. To describe this suppose that ar E H1 (Qp, VAn). Then we can asso-
 ciate to ar a representation pa: Gal(Qp/Qp) -* GL2(0(n[e]) (where On[-E] =
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 (9[e]/(An7e, e2)) which is an 0-algebra deformation of po (see the proof of Propo-
 sition 1.1 below). Let E = On0[E]2 where the Galois action is via p,. Then
 there is an exact sequence

 0 -) E/Am -E/Am - (E/e)/Am ) 0

 UAn UAM

 and hence an extension class in Ext1(UAM, UAn). One checks now that (1.8)

 is a map of 0-modules. We define Hf (Qp, VAn) to be the inverse image of
 Ext1 (UAn, UAn) under (1.8), i.e., those extensions which are already extensions

 in the category of finite flat group schemes Zp. Observe that Ext' (UAn, UAn) n

 ExtO[Dp] (UAn, UAn) is an 0-module, so Hf' (Qp, VAn) is seen to be an 0-sub-
 module of H1 (Qp, VAn). We observe that our definition is equivalent to requir-
 ing that the classes in Hf (Qp, VAn) map under (1.8) to Ext i(UAm, UAn) for all
 m > n. For if em is the extension class in Ext1 (UAMi, UAn) then em - en E UAm
 as Galois-modules and we can apply results of [Rayl] to see that em comes

 from a finite flat group scheme over Zp if en does.
 In the flat (non-ordinary) case polip is determined by Raynaud's results as

 mentioned at the beginning of the chapter. It follows in particular that, since

 POID is absolutely irreducible, V(Qp) = Ho (Qp, V) is divisible in this case
 (in fact V(Qp) i K/0). Thus H1 (Qp, VAn) _- H1 (Qp, V)An and hence we can
 define

 00

 Hf (QpV) = U Hf (Qp, VAn)
 n_1

 and we claim that Hf (Qp, V)An - Hf1 (Qp, VAn). To see this we have to compare
 representations for m > n,

 pn,m: Gal(Qp/Qp) -?GL2(On [e]/Am)

 f m,n

 pm,m: Gal(Qp/Qp) )GL2(Om [e]/Am)

 where Pn,m and Pm,m are obtained from an e H1(Qp, VAn) and im(an) E
 H'(Qp, yAm) and V-mn: a+be a+Am2be. By [Ram, Prop 1.1 and Lemma
 2.1] if Pn,m comes from a finite flat group scheme then so does Pm,m. Conversely

 SPm,n is injective and so Pn,m comes from a finite flat group scheme if Pm,m does;

 cf. [Rayl]. The definitions of HD,(Q/Q, VAn) and H-D(QE/Q, V) now extend
 to the flat case and we note that (1.7) is also valid in the flat case.

 Still in the flat (non-ordinary) case we can again use the determination

 of Po I' to see that H1(Qp, V) is divisible. For it is enough to check that
 H2(Qp, VA) = 0 and this follows by duality from the fact that H?(Qp, V*) = 0
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 where V* = Hom(VX, tip) and lp is the group of pth roots of unity. (Again
 this follows from the explicit form of P?jD ) Much subtler is the fact that

 Hf (Qp, V) is divisible. This result is essentially due to Ramakrishna. For,
 using a local version of Proposition 1.1 below we have that

 Homrn (PR/Pt, K/O) - Hf (Qp, V)

 where R is the universal local flat deformation ring for POIDP and 0-algebras.
 (This exists by Theorem 1.1 of [Ram] because PoIDp is absolutely irreducible.)
 Since R - Rfl (9 where Rfl is the corresponding ring for W(k)-algebras

 W(k)

 the main theorem of [Ram, Th. 4.2] shows that R is a power series ring and

 the divisibility of Hf (Qp, V) then follows. We refer to [Ram] for more details
 about RM.

 Next we need an analogue of (1.5) for V. Again this is a variant of standard

 results in deformation theory and is given (at least for D = (ord, E, W(k), q)

 with some restriction on X1, X2 in i(a)) in [MT, Prop 25].

 PROPOSITION 1.2. Suppose that pf,A, is a deformation of po of type
 D = (-,E,O,M) with 0 an unramified extension of (Of,A,. Then as O-modules

 Home)(pDlp2,KIO) - H.D (QF/QV)

 Remark. The isomorphism is functorial in an obvious way if one changes

 D to a larger D'.

 Proof. We will just describe the Selmer case with M =4 as the other

 cases use similar arguments. Suppose that a is a cocycle which represents a

 cohomology class in HSe(Q,/Q, VAn). Let O4e] denote the ring 0[e]/(AnF, e2).
 We can associate to a a representation

 p,: Gal(Q/Q) -+ GL2(O0n[E])

 as follows: set p, (g) = a(g)pf,A(g) where pf,A(g), a priori in GL2 (0), is viewed
 in GL2 (On [E]) via the natural mapping 0 -e On [e]. Here a basis for 02
 is chosen so that the representation pf,> on the decomposition group Dp C
 Gal(QE/Q) has the upper triangular form of (i)(a), and then a(g) E V,\n is
 viewed in GL2(046[e]) by identifying

 V,\n _{( ZE t X = {ker: GL2 (On[e]) - GL2(O)}.

 Then

 =? { (1 XE )}
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 W.n {= ( jey6)}

 =n { (1 e : 6yZ) }

 and

 VXn = tE )

 One checks readily that pa is a continuous homomorphism and that the defor-
 mation [p,>] is unchanged if we add a coboundary to a.

 We need to check that [p,>] is a Selmer deformation. Let 7Y =
 Gal(Qp/Qunr) and g = Gal(Qunr/Qp). Consider the exact sequence of (9[g]-
 modules

 0 -) (V- 1 ) (VAn/Wn)o - X - 0

 where X is a submodule of (VAn/Vln)7H. Since the action of Dp on VXn/V~n is
 via a character which is nontrivial mod A (it equals X2X1 1 mod A and X1 # X2),
 we see that Xg = 0 and H1(g, X) = 0. Then we have an exact diagram of
 0-modules

 'I H'(91 (V1 0 "LI)1) - H'(9, (V~n/WA~)t

 H1 (Qp, VAn /Wn)

 H 1(Qpunr, Vn/Xn )

 By hypothesis the image of a is zero in H1(Qq'Tnrh V nf/jW>). Hence it
 is in the image of H1(g, (VXn/Wo~)7H). Thus we can assume that it is rep-
 resented in H1(QpV~n/W>?) by a cocycle, which maps g to Vn/W~n; i.e.,
 f(Dp) C VA n /WAn f(Ip) = 0. The difference between f and the image of a is
 a coboundary {la i-- - i} for some u e VAn. By subtracting the coboundary
 {f F-* oU - u} from a globally we get a new a such that a = f as cocycles
 mapping g to VXn/W Thus a(Dp) C V1,n, oa(Ip) C W\n and it is now easy
 to check that [p,] is a Selmer deformation of po.

 Since [p,] is a Selmer deformation there is a unique map of local (9-
 algebras is,>: Rz -* On [E] inducing it. (If M $ q we must check the
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 466 ANDREW WILES

 other conditions also.) Since p =_pf,A mod E we see that restricting ip, to PD
 gives a homomorphism of 0-modules,

 mu,: PD -- FO/A n

 such that ('' (P2) - 0. Thus we have defined a map p: a - ,,

 y(p: H~e (Qs/Q, VAn) - Hom e(PD/PD,(9/Afl)

 It is straightforward to check that this is a map of 0-modules. To check the

 injectivity of (p suppose that .p,(pD) == 0. Then , factors through R/p-D - (9
 and being an 0-algebra homomorphism this determines ,>. Thus [pfA] = [paC].
 If A-'pA = pf,A, then A mode is seen to be central by Schur's lemma and so
 may be taken to be I. A simple calculation now shows that a is a coboundary.

 To see that p is surjective choose

 ' E Homo(pP)/p2, 0/An).

 Then pT: Gal(QE/Q) -- GL2(Rv/(p2, ker I)) is induced by a representative
 of the universal deformation (chosen to equal pf,A when reduced mod PD) and
 we define a map aog: Gal(Qr/Q) -+ VAn by

 { 1 + pD/(p2, ker I) pD/(p2, ker I) 1
 () PT (g) pf, (g)1 E VAn

 pv /(p 2, ker I) 1 + pD/(p2, ker I) J

 where pfA(g) is viewed in GL2(RD/(pD, ker I)) via the structural map 0
 RD (RD being an (9-algebra and the structural map being local because of
 the existence of a section). The right-hand inclusion comes from

 PD/ PD, ker T) )/A n ((D/AnE
 1 1 ) E.

 Then ca is readily seen to be a continuous cocycle whose cohomology class

 lies in HSe(QE/Ql VA\n). Finally (p(aT) = T. Moreover, the constructions are
 compatible with change of n, i.e., for VA\n ' + V,+i and A: /D 0/An+l. E

 We now relate the local cohomology groups we have defined to the theory
 of Fontaine and in particular to the groups of Bloch-Kato [BK]. We will dis-

 tinguish these by writing HF for the cohomology groups of Bloch-Kato. None
 of the results described in the rest of this section are used in the rest of the

 paper. They serve only to relate the Selmer groups we have defined (and later

 compute) to the more standard versions. Using the lattice associated to pf,A we
 obtain also a lattice T - (94 with Galois action via Ad pf,A. Let V = T Oz QP
 be the associated vector space and identify V with V/T. Let pr: V -* V be
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 MODULAR ELLIPTIC CURVES AND FERMAT'S LAST THEOREM 467

 the natural projection and define cohomology modules by

 Hk(Qp, V) = ker: H1(QpV) -+ H1(Qp, V 0 Bcrys), F ~~~~~~~~~QP

 Hk(Qp, V) = pr %H4(Qp, V)) C H1(Qp, V),

 HF(Qp, V~n) = (jn) (HF(Qp, V)) C H1(Qp, Vsn),

 where jn: VXn - V is the natural map and the two groups in the definition

 of HF(Qp, V) are defined using continuous cochains. Similar definitions apply

 to V* = HomQP (V, Qp(1)) and indeed to any finite-dimensional continuous
 p-adic representation space. The reader is cautioned that the definition of

 HF(Qp, VAn) is dependent on the lattice T (or equivalently on V). Under
 certain conditions Bloch and Kato show, using the theory of Fontaine and

 Lafaille, that this is independent of the lattice (see [BK, Lemmas 4.4 and
 4.5]). In any case we will consider in what follows a fixed lattice associated to

 p = PfA, Ad p, etc. Henceforth we will only use the notation H1(QP, -) when
 the underlying vector space is crystalline.

 PROPOSITION 1.3. (i) If po is flat but not ordinary and pf,A is associated
 to a p-divisible group then for all n

 Hf (QpV>,n) = HF (QpVAn)).

 (ii) If pf,A is ordinary, det pfA |I = E and pf,A is associated to a p-divisible
 group, then for all n,

 HF (QpV,\n) C HSe(QpVn).

 Proof. Beginning with (i), we define Hf(QpV) = {E e H1(QpV)
 s(a/An) E Hf (Qp, V) for all n} where K : H1(Qp, V) H1 (Qp, V). Then
 we see that in case (i), Hf (Qp, V) is divisible. So it is enough to show that

 Hk(QP, V) = Hfl (Qp IV).

 We have to compare two constructions associated to a nonzero element a of

 H1 (Qp, V). The first is to associate an extension

 (1.9) 0 -- V -- E -6 K -O 0

 of K-vector spaces with commuting continuous Galois action. If we fix an e

 with 8(e) = 1 the action on e is defined by oe = e + &(of) with & a cocycle
 representing a. The second construction begins with the image of the subspace

 (a) in H1 (Qp, V). By the analogue of Proposition 1.2 in the local case, there
 is an 0-module isomorphism

 H1 (QP, V) c Homo (PR/p2, K/()
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 468 ANDREW WILES

 where R is the universal deformation ring of po viewed as a representation

 of Gal(Qp/Qp) on 0-algebras and PR is the ideal of R corresponding to pD
 (i.e., its inverse image in R). Since a $& 0, associated to (a) is a quotient

 PR/(PR, a) of PR/pi which is a free 0-module of rank one. We then obtain a

 homomorphism

 Pa: Gal(Qp/Qp) -) GL2 (R/(iR, a))

 induced from the universal deformation (we pick a representation in the uni-

 versal class). This is associated to an 0-module of rank 4 which tensored with

 K gives a K-vector space E' (K)4 which is an extension

 (1.10) 0 -? U -E -? U -? 0

 where U - K2 has the Galois representation pf,A (viewed locally).
 In the first construction a E HF(QP, V) if and only if the extension (1.9) is

 crystalline, as the extension given in (1.9) is a sum of copies of the more usual

 extension where Qp replaces K in (1.9). On the other hand (a) C Hf (Qp,, V) if
 and only if the second construction can be made through Rfl, or equivalently if

 and only if E' is the representation associated to a p-divisible group. (A priori,

 the representation associated to p, only has the property that on all finite
 quotients it comes from a finite flat group scheme. However a theorem of

 Raynaud [Rayl] says that then p, comes from a p-divisible group. For more
 details on Rfl, the universal flat deformation ring of the local representation

 po, see [Ram].) Now the extension E' comes from a p-divisible group if and
 only if it is crystalline; cf. [Fo, ?6]. So we have to show that (1.9) is crystalline
 if and only if (1.10) is crystalline.

 One obtains (1.10) from (1.9) as follows. We view V as HomK(U, U) and
 let

 X = ker: {HomK(UU ) OU - U}

 where the map is the natural one f 0 w | - f(w). (All tensor products in this

 proof will be as K-vector spaces.) Then as K[Dp]-modules

 E' (E ? U)/X.

 To check this, one calculates explicitly with the definition of the action on E

 (given above on e) and on E' (given in the proof of Proposition 1.1). It follows

 from standard properties of crystalline representations that if E is crystalline,

 so is E 0 U and also E'. Conversely, we can recover E from E' as follows.

 Consider E' 0 U - (E 0 U 0 U)/(X 0 U). Then there is a natural map
 up: E 0 (det) -- E' 0 U induced by the direct sum decomposition U 0 U
 (det) ED Sym2U. Here det denotes a 1-dimensional vector space over K with
 Galois action via det pf,A,. Now we claim that p is injective on V 0 (det). For
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 MODULAR ELLIPTIC CURVES AND FERMAT'S LAST THEOREM 469

 if f E V then p(f) = f 0 (Wi 0 w2 - W2 Owl) where W1, W2 are a basis for U
 for which W1AW2 = 1 in det K. So if p(f) E X 0 U then

 f(Wl)08)w2-f(w2)08)W1 =0 in U X U.

 But this is false unless f(wi) = f(w2) = 0 whence f = 0. So o is injective
 on V 0 det and if 'p itself were not injective then E would split contradicting

 a 7& 0. So 'p is injective and we have exhibited E0 (det) as a subrepresentation

 of E' 0 U which is crystalline. We deduce that E is crystalline if E' is. This

 completes the proof of (i).

 To prove (ii) we check first that HSe(QP, VAn) - jn1 (H7e(QP, V)) (this

 was already used in (1.7)). We next have to show that H (Qp, V) C H~e(QP, V)
 where the latter is defined by

 HSe(QP ,V) = ker: H1 (Qp IV) -) H1 (Qunr, V/VO)

 with V0 the subspace of V on which Ip acts via E. But this follows from the
 computations in Corollary 3.8.4 of [BK]. Finally we observe that

 pr (HSe (QP V)) C HSe (QP 7 V)

 although the inclusion may be strict, and

 pr (Hk(QP, V)) = Hk(QP, V)

 by definition. This completes the proof. C1

 These groups have the property that for s > r,

 (1.11) H1(Qp, VVr HF7 ( s)) = HF(Qp, VAr)

 where ir,s: V,\r -) Vs is the natural injection. The same holds for V* and
 V* in place of V\r and V1\A where V)*r is defined by

 V*r = Hom(V\r q lpr)

 and similarly for V*. Both results are immediate from the definition (and
 indeed were part of the motivation for the definition).

 We also give a finite level version of a result of Bloch-Kato which is easily

 deduced from the vector space version. As before let T C V be a Galois stable

 lattice so that T - 04. Define

 HI (Q T) = i 1 (H (Q7 V))

 under the natural inclusion i: T --+ V, and likewise for the dual lattice T* =

 Homzp(V, (Qp/Zp)(1)) in V*. (Here V* = Hom(V, Qp(l)); throughout this
 paper we use M* to denote a dual of M with a Cartier twist.) Also write
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 470 ANDREW WILES

 prn: T -- T/A' for the natural projection map, and for the mapping it
 induces on cohomology.

 PROPOSITION 1.4. If pf,A, is associated to a p-divisible group (the ordi-
 nary case is allowed) then

 (i) prr (H1 (Qp, T)) - HF1 (Qp, T/An) and similarly for T*, T*/An.

 (ii) HF(Qp, VAn) is the orthogonal complement of HF(Qp, VAhn) under Tate
 local duality between H1 (Qp, VAn) and H1 (Qp, VAin) and similarly for WAn

 and WA*n replacing Vxn and VA*n.

 More generally these results hold for any crystalline representation V' in

 place of V and A' a uniformizer in K' where K' is any finite extension of Qp
 with K' C EndGal(V/Q)V.

 Proof. We first observe that prn (HF(Qp, T)) C HF(Qp, T/An). Now
 from the construction we may identify T/An with VAn. A result of Bloch-

 Kato ([BK, Prop. 3.8]) says that HF (Qp, V) and HF(Qp, V*) are orthogonal
 complements under Tate local duality. It follows formally that HF(QP, V*n)
 and prn (HFk(Qp, T)) are orthogonal complements, so to prove the proposition
 it is enough to show that

 (1.12) # HF(Qp, VA'n) # HFp(Qp, VAn) = # H1(Qp VAn).

 Now if r = dimK Hk(Qp, V) and s = dimK HF(Qp, V*) then

 (1.13) r + s = dimK HO(Qp, V) + dimK HO(Qp, V*) + dimK V.

 From the definition,

 (1.14) # HF (Qpa VAn) =# (Q/)Any) #ker{H1 (Qp, VAn) > H1 (Qp, V)}.

 The second factor is equal to # {V (Qp)/An V (Qp)}. When we write V (Qp)div
 for the maximal divisible subgroup of V (Qp) this is the same as

 # (V(Q )/V(Q )div)/An = # (V(QP)/V(Qp)diV)An

 = # V(Qp)An/# (V(Qp)div )An.

 Combining this with (1.14) gives

 (1.15) # HF(Qp, VAn) = # (O/Afn)y

 # H0(Q VAn) / # (Q/An)dimKHO(Qp, V)

 This, together with an analogous formula for # HF(Qp, Vi*n) and (1.13), gives

 # H (QP, VAn) # H4(Q Van) = # (O/A )4.#H0(Qp, VAin) # H0(Qp, VAn).
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 MODULAR ELLIPTIC CURVES AND FERMAT'S LAST THEOREM 471

 As #Ho (Qp, V*) = # H2 (Qp, VAn) the assertion of (1.12) now follows from
 the formula for the Euler characteristic of Vain.

 The proof for Warn, or indeed more generally for any crystalline represen-
 tation, is the same. R

 We also give a characterization of the orthogonal complements of

 Hie(Qp, WAn) and H"e(QpS I/n), under Tate's local duality. We write these
 duals as H e* (Qp Wan) and H e* (Qp, Vn) respectively. Let

 :p H1 (Qp W~n) H'(Qp, W~n/(W~n) )

 be the natural map where (W~n)i is the orthogonal complement of W%-T in

 WAn, and let Xni be defined as the image under the composite map

 i = im: Z /(ZX)pn (- O/An H1(Q tpn (9/An)

 H (Qp7 WA~n/(WA~n) )

 where in the middle term tLpn 0 O/An is to be identified with (W~n)1/(W~n)0.

 Similarly if we replace W*n by Vn we let o be the image Of ZX/(ZX )Pn 0
 (O/An)2 in H1 (Qp, V*'n/(W~n)0), and we replace ,ow by the analogous map (pv.

 PROPOSITION 1.5.

 HA *(QpWX*n) = -1 (Xni)
 Hse*(QpV>*n) = f01 (yni)

 Proof. This can be checked by dualizing the sequence

 o Hstr(Qp, WArn) -4 HSe(QP7 W~n)

 ker: {H1(Qp, W\n/(W\n) ) - H(Qunr, WAn/(WAn)},

 where Hltr(Qp, WAn) = ker: H1(Qp, W\n) -- H1(Qp, WAn/(W~n)0) The
 first term is orthogonal to ker: H1 (Qp, Wn) - H1 (Qp, Win /(W*n)1). By the
 naturality of the cup product pairing with respect to quotients and subgroups

 the claim then reduces to the well known fact that under the cup product
 pairing

 H1(Qp, ipn) x H1(Qp, Z/pn) _+ Z/pn

 the orthogonal complement of the unramified homomorphisms is the image of
 the units ZpX/(Z X)pn 4 H1 (Qp, Ippn). The proof for VAn is essentially the
 same. 0

This content downloaded from 
�������������128.6.45.205 on Wed, 06 Apr 2022 13:33:34 UTC�������������� 

All use subject to https://about.jstor.org/terms



 472 ANDREW WILES

 2. Some computations of cohomology groups

 We now make some comparisons of orders of cohomology groups using
 the theorems of Poitou and Tate. We retain the notation and conventions of

 Section 1 though it will be convenient to state the first two propositions in a
 more general context. Suppose that

 L = JJLq C I7 H1(QqX)
 qes

 is a subgroup, where X is a finite module for Gal(Qr/Q) of p-power order.
 We define L* to be the orthogonal complement of L under the perfect pairing
 (local Tate duality)

 7 H1(QqX) X 7 Hl(QqX*) QP/ZP
 qEF2 qEF2

 where X* = Hom(X, pp.). Let

 Ax: H1(Q/QX) -- JJ H1(QqX)
 qEF,

 be the localization map and similarly Ax* for X*. Then we set

 HL(Q/QX) = A-1(L), HL*(Q/QX*) =AX1*(L*).

 The following result was suggested by a result of Greenberg (cf. [Grel]) and
 is a simple consequence of the theorems of Poitou and Tate. Recall that p is
 always assumed odd and that p E E.

 PROPOSITION 1.6.

 #HL(Q/QX) / #HL *(QE/QX*) = hoo fJ hq
 qEF

 where
 hq = #HO(Qq,X*)/[Hl(Qq,X):Lq]

 {ho = #H0(R, X*) #HO(QX)/#HO(QX*).

 Proof. Adapting the exact sequence of Poitou and Tate (cf. [Mi2, Th. 4.20])
 we get a seven term exact sequence

 0 HLj(Q/QX) , H1(Q/QX) Hj H1(QqX)/Lq
 qEF,

 H H2(Qq X) H2(Q/QX) HL*(QE/QX*))
 qEF

 L+ HO(Q/Q, X*)A - 0,
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 MODULAR ELLIPTIC CURVES AND FERMAT'S LAST THEOREM 473

 where MA = Hom(M, Qp/Zp). Now using local duality and global Euler char-
 acteristics (cf. [Mi2, Cor. 2.3 and Th. 5.1]) we easily obtain the formula in the

 proposition. We repeat that in the above proposition X can be arbitrary of

 p-power order. []

 We wish to apply the proposition to investigate HDi. Let D = ( I, , (9, M)
 be a standard deformation theory as in Section 1 and define a corresponding

 group Ln = LDn by setting

 H1(Qq, Vn) forq p and qf M

 Ln~q = HDq(Qq, van) for q 5 p and q E M
 H.1(Qp , 1Vn) for q = p.

 Then HID(QE/Q, Vain) = HLn (Q /Q, Vain) and we also define

 HD*(Q/Q V*,Vn) = HL.(QE/Q, V*)
 We will adopt the convention implicit in the above that if we consider A' D E

 then HE,(QE//Q, VAn) places no local restriction on the cohomology classes at
 primes q E A'-S. Thus in HD* (Q//Q, V\n) we will require (by duality) that
 the cohomology class be locally trivial at q E -E.

 We need now some estimates for the local cohomology groups. First we

 consider an arbitrary finite Gal(QE/Q)-module X:

 PROPOSITION 1.7. If q V E, and X is an arbitrary finite Gal(QE/Q)-
 module of p-power order,

 #HL, (QEuq/QX)/#HL(Q/QX) ? #H0(QqX*)

 where L' = Le for ? E E and L- = H1 (Qq ,X).

 Proof. Consider the short exact sequence of inflation-restriction:

 0 HHL(QE/QX) - HLj,(QEuq/QX) -- Hom(Ga1(QEUq/QE), X)Gal(QF/Q)

 H1(Qunr, X)Ga1(Q nr/Qq) H1(Qunr X)Ga1(Q nr/Qq)

 The proposition follows when we note that

 #H0(Qq, X*) = #H1 (Qunr, X)Gal(Qunr/

 Now we return to the study of Vain and Wan.

 PROPOSITION 1.8. If q E M (q 7& p) and X = VAin then hq = 1.
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 474 ANDREW WILES

 Proof. This is a straightforward calculation. For example if q is of type

 (A) then we have

 Lnq = ker{H1 (Qq, Vain) - H1 (Qq, W\n/W2?n) E H1(Qnr, O/A>n)}.

 Using the long exact sequence of cohomology associated to

 0 > Wa n - W rn -> W,) 0/Wn O
 one obtains a formula for the order of Lnq in terms of #Ht(Qq, WAn),

 #Hi (QqI WAn /WAC ) etc. Using local Euler characteristics these are easily re-
 duced to ones involving HO(Qq, WAgn) etc. and the result follows easily. M

 The calculation of hp is more delicate. We content ourselves with an
 inequality in some cases.

 PROPOSITION 1.9. (i) If X = VAn then

 hp ho = # (O/A)3n # Ho (QpVA*n)/ # Ho (QV)*n)

 in the unrestricted case.

 (ii) If X = VAXn then

 hp ho < # (0/A)n # H0(Qp, (Vord)*)/#Ho(Q,W;n)

 in the ordinary case.

 (iii) If X = VAn or WArn then hp hoo < #IHI(QpI (W n)*)/ #Ho(Q Wan)
 in the Selmer case.

 (iv) If X = VAn or WAn then hp hco = 1 in the strict case.
 (v) If X = V,\n then hp ho, = 1 in the flat case.

 (vi) If X = VAn or WArn then hp hoo = / #Ho (Q, Vv*\n) if Ln -
 HF(Qp,X) and pf,A arises from an ordinary p-divisible group.

 Proof. Case (i) is trivial. Consider then case (iii) with X = V n. We have
 a long exact sequence of cohomology associated to the exact sequence:

 (1.16) 0 -> Wn - Vxn -> V,\n/WOn O-.

 In particular this gives the map u in the diagram

 H 1(Qp, VAn)

 \6

 1 -) Z=Hl(Qpnr/Qp, (VAn/W~n)H) ) H1(Qp, VXn/WXn) ~~Hl(Qpnr, VXn/WXn)g 1~

 where g = Gal(Qpnr/Qp),7- = Gal(Qp/Qunr) and 6 is defined to make the

 triangle commute. Then writing hi(M) for #HI(Qp, M) we have that #Z =
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 MODULAR ELLIPTIC CURVES AND FERMAT'S LAST THEOREM 475

 ho(V n/W0) and #im6 > (#imu)/(#Z). A simple calculation using the
 long exact sequence associated to (1.16) gives

 (1.17) #imu = h1(VW? )h2(V n)
 h2(WA~h2(V,\n/IW5~)

 Hence

 [H1 (Qp, VAn): Ln,p] = #im6 ? #(O/A)3nho(V*,\n)/ho(WXn*).

 The inequality in (iii) follows for X = VAn and the case X = WAn is similar.

 Case (ii) is similar. In case (iv) we just need # imu which is given by (1.17)

 with WAn replacing V\n. In case (v) we have already observed in Section 1 that
 Raynaud's results imply that #Ho(Qp, V*n) = 1 in the flat case. Moreover
 #Hf (Qp, Vn) can be computed to be #(Q/A)2n from

 Hf (Qv, VAn) Hf (Qp , V)An Homo(PR/PR , K/O)An

 where R is the universal local flat deformation ring of po for 0-algebras. Using
 the relation R _R RXl (9 where Rfl is the corresponding ring for W(k)-

 W(k)

 algebras, and the main theorem of [Ram] (Theorem 4.2) which computes Rfl,
 we can deduce the result.

 We now prove (vi). From the definitions

 # HF4(Qp V) { (#O/Al)r #H0(Qp, WAn) if Pf,AIDp does not split
 ,\n (#O/An')r if PfAID~ Splits

 where r = dimK HF(Qp, V). This we can compute using the calculations in
 [BK, Cor. 3.8.4]. We find that r = 2 in the non-split case and r = 3 in the

 split case and (vi) follows easily. E

 3. Some results on subgroups of GL2(k)

 We now give two group-theoretic results which will not be used until
 Chapter 3. Although these could be phrased in purely group-theoretic terms

 it will be more convenient to continue to work in the setting of Section 1, i.e.,

 with po as in (1.1) so that impo is a subgroup of GL2(k) and det po is assumed
 odd.

 LEMMA 1.10. If impo has order divisible by p then:

 (i) It contains an element 'Yo of order m > 3 with (m,p) = 1 and 'Yo trivial

 on any abelian quotient of impo.
 (ii) It contains an element po(G) with any prescribed image in the Sylow

 2-subgroup of (impo)/(impo)' and with the ratio of the eigenvalues not equal
 to w(of). (Here (impo)' denotes the derived subgroup of (impo).)
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 476 ANDREW WILES

 The same results hold if the image of the projective representation po as-
 sociated to po is isomorphic to A4, S4 or A5.

 Proof. (i) Let G = im po and let Z denote the center of G. Then we
 have a surjection G' - (G/Z)' where the ' denotes the derived group. By
 Dickson's classification of the subgroups of GL2(k) containing an element of
 order p, (G/Z) is isomorphic to PGL2(k') or PSL2(k') for some finite field k' of

 characteristic p or possibly to A5 when p = 3, cf. [Di, ?260]. In each case we can

 find, and then lift to G', an element of order m with (m, p) = 1 and m > 3,
 except possibly in the case p - 3 and PSL2(F3) - A4 or PGL2(F3) S4.
 However in these cases (G/Z)' has order divisible by 4 so the 2-Sylow subgroup
 of G' has order greater than 2. Since it has at most one element of exact order

 2 (the eigenvalues would both be -1 since it is in the kernel of the determinant

 and hence the element would be -I) it must also have an element of order 4.

 The argument in the A4, S4 and A5 cases is similar.

 (ii) Since po is assumed absolutely irreducible, G = im po has no fixed line.
 We claim that the same then holds for the derived group G'. For otherwise

 since G' < G we could obtain a second fixed line by taking (gv) where (v) is the
 original fixed line and g is a suitable element of G. Thus G' would be contained

 in the group of diagonal matrices for a suitable basis and either it would be

 central in which case G would be abelian or its normalizer in GL2(k), and
 hence also G, would have order prime to p. Since neither of these possibilities
 is allowed, G' has no fixed line.

 By Dickson's classification of the subgroups of GL2(k) containing an el-

 ement of order p the image of impo in PGL2(k) is isomorphic to PGL2(k')
 or PSL2(k') for some finite field k' of characteristic p or possibly to A5 when
 p = 3. The only one of these with a quotient group of order p is PSL2(F3)

 when p = 3. It follows that p t [G: G'] except in this one case which we treat
 separately. So assuming now that p t [G: G'] we see that G' contains a non-
 trivial unipotent element u. Since G' has no fixed line there must be another

 noncommuting unipotent element v in G'. Pick a basis for POIG' consisting
 of their fixed vectors. Then let r be an element of Gal(Qr/Q) for which the
 image of po(r) in G/G' is prescribed and let Po(T) = (a d). Then

 (a b )(1sax)(

 has det(6) = det po(r) and trace 6 = sa (ra/3 + c) + br/3 + a + d. Since p > 3
 we can choose this trace to avoid any two given values (by varying s) unless
 r a3 + c = 0 for all r. But ra/3 + c cannot be zero for all r as otherwise
 a = c = 0. So we can find a 6 for which the ratio of the eigenvalues is not
 w(T), det(6) being, of course, fixed.
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 MODULAR ELLIPTIC CURVES AND FERMAT'S LAST THEOREM 477

 Now suppose that im po does not have order divisible by p but that the
 associated projective representation po has image isomorphic to S4 or A5, so
 necessarily p 7& 3. Pick an element r such that the image of po(r) in G/G' is
 any prescribed class. Since this fixes both det po(r) and w(r) we have to show
 that we can avoid at most two particular values of the trace for 'r. To achieve

 this we can adapt our first choice of r by multiplying by any element of G'. So

 pick a E G' as in (i) which we can assume in these two cases has order 3. Pick

 a basis for po, by extending scalars if necessary, so that a -+ (a a- ). Then one
 checks easily that if Po(r) = (c d) we cannot have the traces of all of T, ar and
 a2 lying in a set of the form {Tt} unless a = d = 0. However we can ensure

 that po(r) does not satisfy this by first multiplying r by a suitable element of
 G' since G' is not contained in the diagonal matrices (it is not abelian).

 In the A4 case, and in the PSL2(F3) - A4 case when p = 3, we use a
 different argument. In both cases we find that the 2-Sylow subgroup of G/G'

 is generated by an element z in the centre of G. Either a power of z is a suitable

 candidate for po(a) or else we must multiply the power of z by an element of
 G', the ratio of whose eigenvalues is not equal to 1. Such an element exists

 because in G' the only possible elements without this property are {TI} (such

 elements necessarily have determinant 1 and order prime to p) and we know

 that #G' > 2 as was noted in the proof of part (i). L

 Remark. By a well-known result on the finite subgroups of PGL2 (Fp) this
 lemma covers all po whose images are absolutely irreducible and for which -5
 is not dihedral.

 Let K1 be the splitting field of po. Then we can view WA and W* as

 Gal(K1((p)/Q)-modules. We need to analyze their cohomology. Recall that
 we are assuming that po is absolutely irreducible. Let -5 be the associated
 projective representation to PGL2(k).

 The following proposition is based on the computations in [CPS].

 PROPOSITION 1.1 1. Suppose that po is absolutely irreducible. Then

 H1 (K1 ((p)/Q1 WA*) = 0.

 Proof. If the image of po has order prime to p the lemma is trivial. The
 subgroups of GL2 (k) containing an element of order p which are not contained
 in a Borel subgroup have been classified by Dickson [Di, ?260] or [Hu, II.8.27]

 Their images inside PGL2(k') where k' is the quadratic extension of k are
 conjugate to PGL2(F) or PSL2(F) for some subfield F of k', or they are
 isomorphic to one of the exceptional groups A4, S4, A5.

 Assume then that the cohomology group H1(Ki((p)/Q, WA) $ 0. Then
 by considering the inflation-restriction sequence with respect to the normal
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 subgroup Gal(Ki ((p)/KI) we see that (p E K1. Next, since the representation
 is (absolutely) irreducible, the center Z of Gal(Ki/Q) is contained in the

 diagonal matrices and so acts trivially on WA. So by considering the inflation-

 restriction sequence with respect to Z we see that Z acts trivially on (p (and
 on We). So Gal(Q((p)/Q) is a quotient of Gal(Ki/Q)/Z. This rules out all
 cases when p # 3, and when p = 3 we only have to consider the case where the

 image of the projective representation is isomorphic as a group to PGL2(F)

 for some finite field of characteristic 3. (Note that S4 - PGL2(F3).)
 Extending scalars commutes with formation of duals and H1, so we may

 assume without loss of generality F C k. If p = 3 and #F > 3 then

 H1(PSL2(F), WA) = 0 by results of [CPS]. Then if p5 is the projective

 representation associated to po suppose that g-1 im p g = PGL2(F) and let

 H = g PSL2(F)g-1. Then WA WA over H and

 (1.18) H1 (H WA)(F F H (g- Hg, g A1(WA F)) = 0.
 F F

 We deduce also that H1(impo, WA) = 0.
 Finally we consider the case where F = F3. I am grateful to Taylor for the

 following argument. First we consider the action of PSL2(F3) on WA explicitly
 by considering the conjugation action on matrices {A E M2(F3): trace A = 0}.

 One sees that no such matrix is fixed by all the elements of order 2, whence

 H1(PSL2(F3), WA) - H1(Z/3, (W,)C2xc2) = 0

 where C2 x C2 denotes the normal subgroup of order 4 in PSL2 (F3) - A4. Next
 we verify that there is a unique copy of A4 in PGL2 (F3) up to conjugation.
 For suppose that A, B E GL2(F3) are such that A2 = B2 = I with the images
 of A, B representing distinct nontrivial commuting elements of PGL2(F3). We

 can choose A = (O _0) by a suitable choice of basis, i.e., by a suitable conju-
 gation. Then B is diagonal or antidiagonal as it commutes with A up to a

 scalar, and as B, A are distinct in PGL2(F3) we have B = (? -') for some
 a. By conjugating by a diagonal matrix (which does not change A) we can
 assume that a = 1. The group generated by {A, B} in PGL2(F3) is its own

 centralizer so it has index at most 6 in its normalizer N. Since N/ (A, B) - S3
 there is a unique subgroup of N in which (A, B) has index 3 whence the image
 of the embedding of A4 in PGL2(F3) is indeed unique (up to conjugation). So

 arguing as in (1.18) by extending scalars we see that H1 (im po, WA*) = 0 when
 F = F3 also. O

 The following lemma was pointed out to me by Taylor. It permits most

 dihedral cases to be covered by the methods of Chapter 3 and [TW].

 LEMMA 1.12. Suppose that po is absolutely irreducible and that

 (a) po is dihedral (the case where the image is Z/2 x Z/2 is allowed),
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 MODULAR ELLIPTIC CURVES AND FERMAT'S LAST THEOREM 479

 (b) PoK is absolutely irreducible where L = Q (A(-1)(P1)/2P).

 Then for any positive integer n and any irreducible Galois stable subspace X

 of WA 0 k there exists an element a E Gal(Q/Q) such that

 (i) f3o(a) $ 1,

 (ii) a fixes Q((pn),

 (iii) a has an eigenvalue 1 on X.

 Proof. If fio is dihedral then po X k = IndH X for some H of index 2 in G,
 where G = Gal(Ki/Q). (As before, K1 is the splitting field of po.) Here H
 can be taken as the full inverse image of any of the normal subgroups of index

 2 defining the dihedral group. Then WA X k b 80 IndG(X/X') where 6 is the
 quadratic character G -* C/H and X' is the conjugate of X by any element of
 G - H. Note that X 54 X' since H has nontrivial image in PGL2(k).

 To find a a such that 8(cr) = 1 and conditions (i) and (ii) hold, observe

 that M((pn) is abelian where M is the quadratic field associated to 8. So
 conditions (i) and (ii) can be satisfied if fio is non-abelian. If fio is abelian (i.e.,
 the image has the form Z/2 x Z/2), then we use hypothesis (b). If IndG(X/X')
 is reducible over k then WA 0 k is a sum of three distinct quadratic characters,
 none of which is the quadratic character associated to L, and we can repeat

 the argument by changing the choice of H for the other two characters. If

 X = IndG (x/x') ? k is absolutely irreducible then pick any a E G - H. This
 satisfies (i) and can be made to satisfy (ii) if (b) holds. Finally, since a G C -H
 we see that a has trace zero and o2 = 1 in its action on X. Thus it has an

 eigenvalue equal to 1.

 Chapter 2

 In this chapter we study the Hecke rings. In the first section we recall

 some of the well-known properties of these rings and especially the Goren-

 stein property whose proof is rather technical, depending on a characteristic

 p version of the q-expansion principle. In the second section we compute the

 relations between the Hecke rings as the level is augmented. The purpose is to

 find the change in the r7-invariant as the level increases.

 In the third section we state the conjecture relating the deformation rings

 of Chapter 1 and the Hecke rings. Finally we end with the critical step of

 showing that if the conjecture is true at a minimal level then it is true at

 all levels. By the results of the appendix the conjecture is equivalent to the
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 equality of the 71-invariant for the Hecke rings and the p/p2-invariant for the

 deformation rings. In Chapter 2, Section 2, we compute the change in the

 7a-invariant and in Chapter 1, Section 1, we estimated the change in the p/p2_
 invariant.

 1. The Gorenstein property

 For any positive integer N let Xj (N) = X1 (N)/Q be the modular curve
 over Q corresponding to the group rl(N) and let J1(N) be its Jacobian. Let
 T1 (N) be the ring of endomorphisms of J1 (N) which is generated over Z by the

 standard Hecke operators {Ti = Tl* for 1 t N, Uq = Uq* for q j N, (a) = (a)*
 for (a, N) = 1}. For precise definitions of these see [MW1, Ch. 2, ?5]. In

 particular if one identifies the cotangent space of Ji (N) (C) with the space of

 cusp forms of weight 2 on rF (N) then the action induced by T1 (N) is the usual

 one on cusp forms. We let A = { (a) : (a, N) = 1}.

 The group (Z/NZ)* acts naturally on X1 (N) via A and for any sub-

 group H C (Z/NZ)* we let XH(N) = XH(N)/Q be the quotient X1(N)/H.

 Thus for H = (Z/NZ)* we have XH(N) = Xo(N) corresponding to the group

 ro (N). In Section 2 it will sometimes be convenient to assume that L decom-
 poses as a product H = HI Hq in (Z/NZ)* -_f (Z/qrZ)* where the product
 is over the distinct prime powers dividing N. We let JH(N) denote the Ja-

 cobian of XH(N) and note that the above Hecke operators act naturally on

 JH(N) also. The ring generated by these Hecke operators is denoted TH(N)
 and sometimes, if H and N are clear from the context, we abbreviate this

 to T.

 Let p be a prime > 3. Let m be a maximal ideal of T = TH(N) with

 p E m. Then associated to m there is a continuous odd semisimple Galois

 representation pm,

 (2.1) pm: Gal(Q/Q) -- GL2(T/m)

 unramified outside Np which satisfies

 trace pm(Frob q) = Tq, det pm(Frob q) = (q)q

 for each prime q t Np. Here Frobq denotes a Frobenius at q in Gal(Q/Q).
 The representation pm is unique up to isomorphism. If p t N (resp. p I N) we
 say that m is ordinary if Tp ? m (resp. Up ? m). This implies (cf., for example,
 theorem 2 of [Wil]) that for our fixed decomposition group Dp at p,

 P D(O X 2) Dp I 0 X2

 for a suitable choice of basis, with X2 unramified and X2(Frobp) = Tp mod
 m (resp. equal to Up). In particular Pm is ordinary in the sense of Chapter 1
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 MODULAR ELLIPTIC CURVES AND FERMAT'S LAST THEOREM 481

 provided Xi 54 X2- We will say that m is Dp-distinguished if m is ordinary and
 Xi 5 X2. (In practice Xi is usually ramified so this imposes no extra condition.)
 We caution the reader that if Pm is ordinary in the sense of Chapter 1 then we

 can only conclude that m is Dp-distinguished if p t N.
 Let Tm denote the completion of T at m so that Tm is a direct factor of the

 complete semi-local ring Tp = T X Zp. Let D be the points of the associated
 m-divisible group

 D = JH(N) (Q)m - JH(N) (Q)poo (0 Tm.
 Tp

 It is known that D = HomzP(D, Qp/Zp) is a rank 2 Tm-module, i.e., that

 D 0 Qp - (Tm 0 Qp)2. Briefly it is enough to show that H1(XH(N), C) is
 zp zp

 free of rank 2 over T 0 C and this reduces to showing that S2 (rH(N), C),

 the space of cusp forms of weight 2 on rH(N), is free of rank 1 over T 0 C.

 One shows then that if {fi, ... , f4} is a complete set of normalized newforms

 in S2(rH(N), C) of levels mj,...,m, then if we set di = N/mi, the form
 f = E fi(diz) is a basis vector of S2(rH(N), C) as a T 0 C-module.

 If m is ordinary then Theorem 2 of [Wil], itself a straightforward gener-

 alization of Proposition 2 and (11) of [MW2], shows that (for our fixed de-

 composition group Dp) there is a filtration of D by Pontrjagin duals of rank 1
 Tm-modules (in the sense explained above)

 (2.2) 0 Do D __DE _0

 where Do is stable under Dp and the induced action on DE is unramified with
 Frobp = Up on it if p I N and Frobp equal to the unit root of x2 -Tpx + p(p)
 - 0 in Tm if p t N. We can describe Do and DE as follows. Pick a of E
 Ip which induces a generator of Gal (Qp((Npoo)/Qp((Np)). Let e:Dp 14 Z- x
 be the cyclotomic character. Then DO = ker (oa _ E(a))diV, the kernel being
 taken inside D and 'div' meaning the maximal divisible subgroup. Although

 in [Wil] this filtration is given only for a factor Af of Ji (N) it is easy to
 deduce the result for JH (N) itself. We note that this filtration is defined

 without reference to characteristic p and also that if m is Dp-distinguished, DO
 (resp. DE) can be described as the maximal submodule on which o - 1(of)
 is topologically nilpotent for all of E Gal(Qp/Qp) (resp. quotient on which
 f- X2(07) is topologically nilpotent for all of E Gal(Qp/Qp)), where %i(of) is
 any lifting of Xiy(o) to Tm.

 The Weil pairing ( , ) on JH(N)(Q)pM satisfies the relation (tx,y) =
 (x, t*y) for any Hecke operator t. It is more convenient to use an adapted

 pairing defined as follows. Let w(, for C a primitive Nth root of 1, be the
 involution of Xi (N)/Q(() defined in [MW1, p. 235]. This induces an involution
 of XH(N)/Q(() also. Then we can define a new pairing [ , ] by setting (for a
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 fixed choice of ()

 (2.3) [x,Iy] = (x, wy).

 Then [tx, y] = [x, ty] for all Hecke operators t. In particular we obtain an

 induced pairing on Dpa.
 The following theorem is the crucial result of this section. It was first

 proved by Mazur in the case of prime level [Ma2]. It has since been generalized

 in [Til], [Ril] [M Ri], [Gro] and [El], but the fundamental argument remains
 that of [Ma2]. For a summary see [E1, ?9]. However some of the cases we need

 are not covered in these accounts and we will present these here.

 THEOREM 2.1. (i) If p t N and Pm is irreducible then

 JH(N) (Q) [m] --(T/M)2.

 (ii) If p t N and Pm is irreducible and m is Dp-distinguished then

 JH (Np) (Q) [m] (T/)2 .

 (In case (ii) m is a maximal ideal of T = TH(Np).)

 COROLLARY 1. In case (i), JH(N)(Q)m. T2 and Tam (JH(N)(Q)>
 T2m TM.

 In case (ii), JH(Np)(Q)m - T. and Tam (JH(Np) (Q)) T. (where
 Tm = TH(NP)m)

 COROLLARY 2. In either of cases (i) or (ii) Tm is a Gorenstein ring.

 In each case the first isomorphisms of Corollary 1 follow from the theorem

 together with the rank 2 result alluded to previously. Corollary 2 and the

 second isomorphisms of corollary 1 then follow on applying duality (2.4). (In
 the proof and in all applications we will only use the notion of a Gorenstein

 Zp-algebra as defined in the appendix. For finite flat local Zp-algebras the
 notions of Gorenstein ring and Gorenstein Zp-algebra are the same.) Here

 Tam (JH(N) (Q)) = Tap (JH(N) (Q)) 0 Tm is the m-adic Tate module of

 JH(N).
 We should also point out that although Corollary 1 gives a representation

 from the m-adic Tate module

 P = PTm: Gal(Q/Q) -* GL2 (Tm)

 this can be constructed in a much more elementary way. (See [Ca3] for another
 argument.) For, the representation exists with Tm 0 Q replacing Tm when we

 use the fact that Hom(Qp/Zp,D) 0 Q was free of rank 2. A standard argument
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 MODULAR ELLIPTIC CURVES AND FERMAT'S LAST THEOREM 483

 using the Eichler-Shimura relations implies that this representation p' with

 values in GL2(Tm 0 Q) has the property that

 trace p'(Frob e) = Te, det p'(Frob e) = f(f)

 for all e t Np. We can normalize this representation by picking a complex
 conjugation c and choosing a basis such that p'(c) = (' _), and then by picking

 a r for which p'(r) = (a br) with b, c, # 0(m) and by resealing the basis so
 that b, = 1. (Note that the explicit description of the traces shows that if Pm

 is also normalized so that pm(c) = (o _) then b1c1 mod m = brmCrm where
 P.m(T)= (lrm dbrn,). The existence of a r such that b~c, 0 0(m) comes from
 the irreducibility of pm.) With this normalization one checks that p' actually

 takes values in the (closed) subring of Tm generated over Zp by the traces.
 One can even construct the representation directly from the representations in

 Theorem 0.1 using this ring which is reduced. This is the method of Carayol

 which requires also the characterization of p by the traces and determinants

 (Theorem 1 of [Ca3]). One can also often interpret the Uq operators in terms

 of p for q I N using the 7rq 7r(gq) theorem of Langlands (cf. [Cal]) and the
 Up operator in case (ii) using Theorem 2.1.4 of [Wil].

 Proof (of theorem). The important technique for proving such multiplicity-

 one results is due to Mazur and is based on the q-expansion principle in char-

 acteristic p. Since the kernel of JH (N) (Q) -* Ji (N) (Q) is an abelian group on
 which Gal(Q/Q) acts through an abelian extension of Q, the intersection with
 ker m is trivial when pm is irreducible. So it is enough to verify the theorem
 for J1(N) in part (i) (resp. Ji(Np) in part (ii)). The method for part (i) was

 developed by Mazur in [Ma2, Ch. II, Prop. 14.2]. It was extended to the case

 of Fo(N) in [Ril, Th. 5.2] which summarizes Mazur's argument. The case of

 F1(N) is similar (cf. [El, Th. 9.2]).

 Now consider case (ii). Let A(p) = {(a): a l(N)} C A\. Let us first
 assume that A(p) is nontrivial modm, i.e., that 6-1 m for some 6 E A(p). This
 case is essentially covered in [Til] (and also in [Gro]). We briefly review the

 argument for use later. Let K = Qp((p), (p being a primitive pth root of unity,
 and let 0 be the ring of integers of the completion of the maximal unramified

 extension of K. Using the fact that A(p) is nontrivial mod m together with

 Proposition 4, p. 269 of [MW1] we find that

 J (Np)m/tO (Fp) - (Pic? E0t X Pico E1)m (Fp)

 where the notation is taken from [MW1] loc. cit. Here E't and El, are the
 two smooth irreducible components of the special fibre of the canonical model

 of X1(Np)l0 described in [MW1, Ch. 2]. (The smoothness in this case was
 proved in [DR].) Also Jl (Np)6t1 denotes the canonical etale quotient of the
 r-divisible group over 0. This makes sense because J1(Np)m does extend to
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 a p-divisible group over (9 (again by a theorem of Deligne and Rapoport [DR]

 and because A(p) is nontrivial mod m). It is ordinary as follows from (2.2) when
 we use the main theorem of Tate ([Ta]) since 'Do and 'DE clearly correspond
 to ordinary p-divisible groups.

 Now the q-expansion principle implies that dimp X [m'] < 1 where
 p

 X = {Ho (EP, Q1 ) e Ho (EtI Q1)}

 and m' is defined by embedding T/m - Fp and setting m' = ker: T Fp -Fp
 under the map t 0 a - at mod m. Also T acts on Pico EA x Pico Et, the

 abelian variety part of the closed fibre of the Neron model of J1(Np) IO, and
 hence also on its cotangent space X. (For a proof that X[m'] is at most one-

 dimensional, which is readily adapted to this case, see Lemma 2.2 below. For

 similar versions in slightly simpler contexts see [Wi3, ?6] or [Gro, ?12].) Then

 the Cartier map induces an injection (cf. Prop. 6.5 of [Wi3])

 6: {Pic0 im x Pico E6t}[] (p) 0 Ip C 4 X.

 The composite 6 o wa can be checked to be Hecke invariant (cf. Prop. 6.5 of

 [Wi3]. In checking the compatibility for Up use the formulas of Theorem 5.3
 of [Wi3] but note the correction in [MW1, p. 188].) It follows that

 J,(Np)m/0 (Fp) [m] T/ra
 as a T-module. This shows that if H is the Pontrjagin dual of

 H = Ji(Np)m10(Fp) then H - Tm since H/m - T/m. Thus

 Ji (Np)m1(Fp) [p] Z Hom(Tm/p, Z/pZ)

 Now our assumption that m is Dp-distinguished enables us to identify

 'Do= J, (Np)m 0 (Qp) XDE = j, (Np)6t (
 For the groups on the right are unramified and those on the left are dual to

 groups where inertia acts via a character of finite order (duality with respect

 to Hom( , Qp/Zp(l))). So

 'Do[p] Tm/p, DE[p] Hom (T./p, Z/pZ)

 as Tm-modules, the former following from the latter when we use duality under

 the pairing [,]. In particular as m is Dp-distinguished,

 (2.4) 'D[p] - Tm/p G Hom (T./p, Z/pZ).

 We now use an argument of Tilouine [Til]. We pick a complex conjugation

 T-. This has distinct eigenvalues ?1 on Pm so we may decompose D[p] into
 eigenspaces for -r:

 D[p] = D[p]+ D[p]-.
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 MODULAR ELLIPTIC CURVES AND FERMAT'S LAST THEOREM 485

 Since Tm/p and Hom (Tm/p, Z/pZ) are both indecomposable Hecke-modules,
 by the Krull-Schmidt theorem this decomposition has factors which are iso-

 morphic to those in (2.4) up to order. So in the decomposition

 D[m] = D[m]+ GDD[m]

 one of the eigenspaces is isomorphic to T/m and the other to (Tm/p)[m]. But

 since Pm is irreducible it is easy to see by considering D[m] G Hom(D [m], det Pm)

 that ir has the same number of eigenvalues equal to +1 as equal to -1 in D[m],

 whence #(Tm/p) [m] = #(T/m). This shows that D[m]+ A D[m]- T/m as
 required.

 Now we consider the case where \(p) is trivial mod m. This case was
 treated (but only for the group Fo(Np) and Pm 'new' at p-the crucial re-

 striction being the last one) in [M Ri]. Let Xl (N, p)/Q be the modular curve
 corresponding to I1 (N) n Fo(p) and let Ji(N,p) be its Jacobian. Then since

 the composite of natural maps J1 (N, p) -) Ji (Np) -+ Ji (N, p) is multiplication

 by an integer prime to p and since A(p) is trivial mod m we see that

 J, (N. p) m(Q) -_J, (Np) m (Q)

 It will be enough then to use J1 (N, p), and the corresponding ring T and ideal
 m.

 The curve X1(N,p) has a canonical model X1(N,p)z which over Fp
 consists of two smooth curves SEt and E2 intersecting transversally at the
 supersingular points (again this is a theorem of Deligne and Rapoport; cf.
 [DR, Ch. 6, Th. 6.9], [KM] or [MW1] for more details). We will use the models

 described in [MW1, Ch. II] and in particular the cusp ox will lie on E?. Let

 Q denote the sheaf of regular differentials on X1(N,P)/FP (cf. [DR, Ch. 1 ?2],

 [M Ri, ?7]). Over Fp, since X1 (N, p) j; has ordinary double point singularities,
 the differentials may be identified with the meromorphic differentials on the

 normalization X1 (N, p)j = SEt U EA which have at most simple poles at the

 supersingular points (the intersection points of the two components) and satisfy

 resxj + resX2 = 0 if x1 and x2 are the two points above such a supersingular
 point. We need the following lemma:

 LEMMA 2.2. dimT/.HO(X1(N,p)/FpA) [m] = 1.

 Proof. First we remark that the action of the Hecke operator Up here is
 most conveniently defined using an extension from characteristic zero. This is

 explained below. We will first show that dimT/. HO (Xi (N, P)/Fp i Q) [m] < 1,

 this being the essential step. If we embed T/m - Fp and then set
 m' = ker: T 0 Fp - Fp (the map given by t 0 a - atmodim) then it is
 enough to show that dimpp HO(X1 (N, p)/li, Q) [m'] < 1. First we will suppose
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 that there is no nonzero holomorphic differential in Ho (Xi (N, p)/F Q)[i'],
 i.e., no differential form which pulls back to holomorphic differentials on E'

 and EJ. Then if wi and W2 are two differentials in Ho(Xi (N, p)/, -,) [n'],
 the q-expansion principle shows that ,uW1 - AW2 has zero q-expansion at oo for

 some pair (,u, A) $& (0, 0) in F2 and thus is zero on EyL* As ,uwl - AW2 = 0 on
 EY it is holomorphic on Eet. By our hypothesis it would then be zero which

 shows that wi and W2 are linearly dependent.

 This use of the q-expansion principle in characteristic p is crucial and due

 to Mazur [Ma2]. The point is simply that all the coefficients in the q-expansion

 are determined by elementary formulae from the coefficient of q provided that

 w is an eigenform for all the Hecke operators. The formulae for the action of

 these operators in characteristic p follow from the formulae in characteristic

 zero. To see this formally (especially for the Up operator) one checks first
 that Ho(Xi (N, p)/zp, Q), where Q denotes the sheaf of regular differentials on

 Xi(N,p)lzp, behaves well under the base changes Zp -* Fp and Zp - Qp;
 cf. [Ma2, ?11.3] or [Wi3, Prop. 6.1]. The action of the Hecke operators on

 J1 (N, p) induces an action on the connected component of the Neron model of

 J1 (N, P)/QP, so also on its tangent space and cotangent space. By Grothendieck
 duality the cotangent space is isomorphic to H0(Xj(N,p)1ZPQ); see (2.5)
 below. (For a summary of the duality statements used in this context, see

 [Ma2, ?II.3]. For explicit duality over fields see [AK, Ch. VIII].) This then

 defines an action of the Hecke operators on this group. To check that over Qp
 this gives the standard action one uses the commutativity of the diagram after

 Proposition 2.2 in [Mil].

 Now assume that there is a nonzero holomorphic differential in

 H?(Xi(N.p)1V' 7 Q) [in'].

 We claim that the space of holomorphic differentials then has dimension 1 and

 that any such differential w :$ 0 is actually nonzero on EY. The dimension
 claim follows from the second assertion by using the q-expansion principle. To

 prove that w :$ 0 on EA we use the formula

 Up*(x,y) = (Fx, y')

 for (x, y) E (Pico YE x Pico E)(Fp), where F denotes the Frobenius endo-
 morphism. The value of y' will not be needed. This formula is a variant
 on the second part of Theorem 5.3 of [Wi3] where the corresponding re-

 sult is proved for Xi (Np). (A correction to the first part of Theorem 5.3

 was noted in [MW1, p. 188].) One checks then that the action of Up on
 Xo = Ho (EI, IQ71) E Ho (YEt, Q 1) viewed as a subspace of HO (Xi (N, p)/ F ,
 is the same as the action on Xo viewed as the cotangent space of Pico Ell x
 Pic? SEt. From this we see that if w = 0 on EA then Upw = 0 on E't. But Up
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 acts as a nonzero scalar which gives a contradiction if w :$ 0. We can thus as-

 sume that the space of m'-torsion holomorphic differentials has dimension 1 and

 is generated by w. So if W2 is now any differential in HO(X1 (N, p)/P, Q) [m']
 then W2 - Aw has zero q-expansion at oX for some choice of A. Then W2 - Aw = 0

 on EA whence W2 - Aw is holomorphic and so W2 = Aw. We have now shown

 in general that dim(HO (Xi(N,p)1F , Q) [m']) < 1.

 The singularities of X1(N,p)lZP at the supersingular points are formally
 isomorphic over Zunr to Zunr [[X, Y]] /(XY -k) with k = 1, 2 or 3 (cf. [DR,

 Ch. 6, Th. 6.9]). If we consider a minimal regular resolution M1(Np)1ZP
 then H0(M1(NP)/Fp, 7) HO(X1(N.P)/FP, 7) (see the argument in [Ma2,
 Prop. 3.4]), and a similar isomorphism holds for HO (Ml (N, p)/ZP, Q)

 As M1(N,P)/ZP is regular, a theorem of Raynaud [Ray2] says that the
 connected component of the Neron model of J1(N,P)/QP is Ji(N,P)5/z

 PicO(M1(N,p)1zP). Taking tangent spaces at the origin, we obtain

 (2.5) Tan(Ji (N, p)?Z ) H1 (Ml (N. p)1ZP, OM1 (N,p)) )
 Reducing both sides modp and applying Grothendieck duality we get an iso-

 morphism

 (2.6) Tan(J1(Np)5/F) Hom(H0(Xl(NP)/FP, I Fp).
 (To justify the reduction in detail see the arguments in [Ma2, ?II. 3]). Since

 Tan(J1 (N, p)?Z ) is a faithful T 0 Zp-module it follows that

 H? (Xi (N. A)/FPi Q) [ml

 is nonzero. This completes the proof of the lemma. OI

 To complete the proof of the theorem we choose an abelian subvariety

 A of J1 (N, p) with multiplicative reduction at p. Specifically let A be the
 connected part of the kernel of J1 (N, p) -* J1 (N) x J1 (N) under the natural
 map f described in Section 2 (see (2.10)). Then we have an exact sequence

 0 *A -* J1(N,P) -*B O*

 and J1(N,p) has semistable reduction over Qp and B has good reduction.
 By Proposition 1.3 of [Ma3] the corresponding sequence of connected group
 schemes

 0 -' A[p]ZP] J1 (N. p) [p]/Z B[IZP -o 0
 is also exact, and by Corollary 1.1 of the same proposition the corresponding

 sequence of tangent spaces of Neron models is exact. Using this we may check

 that the natural map

 (2.7) Tan(J1(N,p)[p]t ) 0 Tm Tan(J(Np) ) 0 Tm
 TP Ta(l N P) TP
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 is an isomorphism, where t denotes the maximal multiplicative-type subgroup

 scheme (cf. [Ma3, ?1]). For it is enough to check such a relation on A and B
 separately and on B it is true because the r-divisible group is ordinary. This

 follows from (2.2) by the theorem of Tate [Ta] as before.

 Now (2.6) together with the lemma shows that

 Tan(Ji(Np))/zP (0 Tm Tm.
 Tp

 We claim that (2.7) together with this implies that as Tm-modules

 V := Ji(N,p) [p]t(Q,)m - (Tm/p).

 To see this it is sufficient to exhibit an isomorphism of Fp-vector spaces

 (2.8) Tan(G/f ) G(Qp) 0 Fp

 for any multiplicative-type group scheme (finite and flat) GIzp which is killed
 by p and moreover to give such an isomorphism that respects the action of

 endomorphisms of Glzp. To obtain such an isomorphism observe that we have
 isomorphisms

 (2.9) Hom-, (lp, G) X9 Fp Hompp (lp, G) (9 Fp

 Hom (Tan(tip/. P) Tan(G/V ))

 where HomQ denotes homomorphisms of the group schemes viewed over Qp

 and similarly for HomF . The second isomorphism can be checked by reducing
 p

 to the case G = lip. Now picking a primitive pth root of unity we can iden-
 tify the left-hand term in (2.9) with G(Qp) 0 Fp. Picking an isomorphism of

 Fp

 Tan(,ip/l;) with Fp we can identify the last term in (2.9) with Tan(G/y ).
 Thus after these choices are made we have an isomorphism in (2.8) which

 respects the action of endomorphisms of G.

 On the other hand the action of Gal(Qp/Qp) on V is ramified on every
 subquotient, so V C 'DQ[p]. (Note that our assumption that A(p) is trivial
 mod m implies that the action on V0 [p] is ramified on every subquotient and
 on DyE[p] is unramified on every subquotient.) By again examining A and B
 separately we see that in fact V = ZDo[p]. For A we note that A[p]/A[p]t is
 unramified because it is dual to A[p]t where A is the dual abelian variety. We

 can now proceed as we did in the case where A(p) was nontrivial mod m. E
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 2. Congruences between Hecke rings

 Suppose that q is a prime not dividing N. Let IF(N, q) = P1(N) n 1o(q)
 and let Xi (N, q) = X1 (N, q)/Q be the corresponding curve. The two natural

 maps X1 (N, q) -- Xi (N) induced by the maps z -- z and z -- qz on the

 upper half plane permit us to define a map Ji (N) x J1 (N) -- Ji (N, q). Using
 a theorem of Ihara, Ribet shows that this map is injective (cf. [Ri2, Cor. 4.2]).
 Thus we can define p by

 (2.10) 0 - Ji (N) x J, (N) J1 (N, q)

 Dualizing, we define B by

 0 -+B B- Ji(N, q) - Ji(N) x Ji(N) -+0.

 Let T1 (N, q) be the ring of endomorphisms of Ji (N, q) generated by the
 standard Hecke operators {T1* for I; Nq, Ul* for I | Nq, (a) = (a)* for
 (a, Nq) = 1}. One can check that Uq preserves B either by an explicit calcu-
 lation or by noting that B is the maximal abelian subvariety of J1 (N, q) with
 multiplicative reduction at q. We set J2 = Ji (N) x Ji (N).

 More generally, one can consider JH (N) and JH (N, q) in place of J1 (N)
 and J1(N, q) (where JH(N, q) corresponds to X1(N, q)/H) and we write TH(N)
 and TH(N, q) for the associated Hecke rings. In this case the corresponding
 map p may have a kernel. However since the kernel of JH (N) -+ J1 (N) does
 not meet ker m for any maximal ideal m whose associated Pm is irreducible,
 the above sequences remain exact if we restrict to M(q)-divisible groups, M(q)
 being the maximal ideal associated to m of the ring T (q)(N,q) generated by
 the standard Hecke operators but omitting Uq. With this minor modifica-
 tion the proofs of the results below for H #& 1 follow from the cases of full
 level. We will use the same notation in the general case. Thus 0 is the map

 J2 = JH(N)2 --+ JH(N, q) induced by z -- z and z -- qz on the two factors,
 and B = ker . (B will not be an abelian variety in general.)

 The following lemma is a straightforward generalization of a lemma of
 Ribet ([Ri2]). Let nq be an integer satisfying nq q(N) and nq 1(q), and
 write (q) = (nq) E TH(Nq).

 LEMMA 2.3 (Ribet). 4'(B) n PO(J2).(q) = sc(J2) [Uq - (q)]M(q) for irre-
 ducible Pm.

 Proof. The left-hand side is (im o n ker 3), so we compute p1 (im of n
 ker )= ker( o p).

 An explicit calculation shows that

 Woc~o=[ F q+ I -qi1 onJ2
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 where T= Tq (q)'. The matrix action here is on the left. We also find that

 on J2

 (2.11) q [~~~~~ q Tq ]
 whence

 (U2-(q))o = ? -(q) ] ?( ? )

 Now suppose that m is a maximal ideal of TH(N), p E m and Pm is

 irreducible. We will now give a slightly stronger result than that given in the

 lemma in the special case q = p. (The case q $ p we will also strengthen but

 we will do this separately.) Assume then that p 1 N and Tp ? m. Let ap be
 the unit root of x2 - Tpx + p(p) = 0 in TH(N)m. We first define a maximal
 ideal mp of TH (N, p) with the same associated representation as m. To do this
 consider the ring

 S1 = TH(N)[Ul]/(U2 - TpUl + p(p)) C End(JH(N)2)

 where U1 is the endomorphism of JH(N)2 given by the matrix

 Tp -(Pj

 It is thus compatible with the action of Up on JH(N, p) when compared using

 A. Now -p = (i, Ui- ) is a maximal ideal of S1 where ap is any element
 of TH(N) representing the class aip e TH(N)m/m - TH(N)/m. Moreover
 Si,mi - TH(N)m and we let mp be the inverse image of ml in TH(N,p) under
 the natural map TH(N, p) -* S1. One checks that mp is Dp-distinguished. For
 any standard Hecke operator t except Up (i.e., t = TI, Uqi for q' :$ p or (a)) the
 image of t is t. The image of Up is U1.

 We need to check that the induced map

 a: TH(NP)m -+ Silmi TH(N)m

 is surjective. The only problem is to show that Tp is in the image. In the present
 context one can prove this using the surjectivity of A in (2.12) and using the
 fact that the Tate-modules in the range and domain of A are free of rank 2 by

 Corollary 1 to Theorem 2.1. The result then follows from Nakayama's lemma as
 one deduces easily that TH(N)m is a cyclic TH(N, p)m-module. This argument

 was suggested by Diamond. A second argument using representations can be
 found at the end of Proposition 2.15. We will now give a third and more direct

 proof due to Ribet (cf. [Ri4, Prop. 2]) but found independently and shown to
 us by Diamond.
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 MODULAR ELLIPTIC CURVES AND FERMAT'S LAST THEOREM 491

 For the following lemma we let TM, for an integer M, denote the subring of

 End (S2(rF (N))) generated by the Hecke operators Tn for positive integers n

 relatively prime to M. Here S2 (I1 (N)) denotes the vector space of weight 2

 cusp forms on IF (N). Write T for T'. It will be enough to show that Tp is
 a redundant operator in T', i.e., that TP = T. The result for TH(N)m then
 follows.

 LEMMA (Ribet). Suppose that (M,N) = 1. If M is odd then TM = T.

 If M is even then TM has finite index in T equal to a power of 2.

 As the rings are finitely generated free Z-modules, it suffices to prove that

 TM 0 F1 -- T 0 F1 is surjective unless 1 and M are both even. The claim
 follows from

 1. TM OF1 -- TM/P OF1 is surjective if p I M and p t IN.

 2. T' 0 F1 -+ T 0 F1 is surjective if 1 t 2N.

 Proof of 1. Let A denote the Tate module Tal(Ji(N)). Then R = TM/PO

 Zj acts faithfully on A. Let R' = (R 0 Ql) n Endz, A and choose d so that
 Zl

 ldR' C iR. Consider the Gal(Q/Q)-module B = Jl(N)[1d] x uN~d. By
 Cebotarev density, there is a prime q not dividing MNl so that Frob p = Frob q
 on B. Using the fact that Tr = Frobr + (r)r(Frobr)'- on A for r = p and

 r = q, we see that Tp = Tq on J1 (N) [Id]. It follows that Tp - Tq is in ld Endz, A
 and therefore in idR' c iR. a

 Proof of 2. Let S be the set of cusp forms in S2 (r1 (N)) whose q-expansions
 at oo have coefficients in Z. Recall that S2(rF (N)) = SoC and that S is stable

 under the action of T (cf. [Shl, Ch. 3] and [Hi4, ?4]). The pairing T 0 S-+ Z
 defined by T 0 f | 4 a, (Tf) is easily checked to induce an isomorphism of
 T-modules

 S Homz (T, Z).

 The surjectivity of T'/lT' -+ T/lT is equivalent to the injectivity of the dual
 map

 Hom(T, Fj) -* Hom(T1, Fj).

 Now use the isomorphism S/iS Hom(T, Fj) and note that if f is in the
 kernel of S -- Hom(T1, Fj), then an(f) = al(Tnf) is divisible by l for all n
 prime to 1. But then the mod l form defined by f is in the kernel of the operator
 q d , and is therefore trivial if I is odd. (See Corollary 5 of the main theorem
 of Ka].) Therefore f is in IS.

 Remark. The argument does not prove that TMd = Td if (d, N) $& 1.
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 We now return to the assumptions that Pm is irreducible, p t N and

 Tp ? m. Next we define a principal ideal (Lxp) of TH(N)m as follows. Since
 TH(N, p)mp and TH(N)m are both Gorenstein rings (by Corollary 2 of Theo-
 rem 2.1) we can define an adjoint a^ to

 a: TH(NPp)m - Siml - TH(N)m

 in the manner described in the appendix and we set ?p = (a o a^)(1). Then
 (zAp) is independent of the choice of (Hecke-module) pairings on TH(N, p),,

 and TH(N)m. It is equal to the ideal generated by any composite map

 TH(N)m TH(NP)nvp TH(N)m

 provided that /3 is an injective map of TH (N, p)mp -modules with Zp torsion-free
 cokernel. (The module structure on TH(N)m is defined via a.)

 PROPOSITION 2.4. Assume that m is Dp-distinguished and that Pm is
 irreducible of level N with p t N. Then

 (Ap) = (T2 (p)(1 +p)2) = (a2 - (p)).

 Proof. Consider the maps on p-adic Tate-modules induced by o and A':

 Tap (JH (N) 2) Tap (JH (N, p)) Tap (JH (N) 2

 These maps commute with the standard Hecke operators with the exception

 of Tp or Up (which are not even defined on all the terms). We define

 S2 = TH(N)[U2]/(U22 - Tp U2 +p(p)) C End (JH(N)2)

 where U2 is the endomorphism of JH(N)2 defined by (? j(P)). It satisfies

 (O U2 = Upo. Again m2 = (m, U2 - p) is a maximal ideal of S2 and we have,
 on restricting to the ml, mp and m2-adic Tate-modules:

 Tam2 (JHN2) ( Tamp (JH(N,p)) -Tam, (JH(N)2)

 (2.12) T I V2 T I vl

 Tam (JH (N)) Tam (JH (N))

 The vertical isomorphisms are defined by v2: x - (-(p)x, apx) and vi: x -
 (apx, px). (Here ap E TH(N)m can be viewed as an element of TH(N)p
 HITH(N)n where the product is taken over the maximal ideals containing

 p. So vi and v2 can be viewed as maps to Tap (JH(N)2) whose images are

 respectively Tam, (JH(N)2) and Tam2 (JH(N)2).)
 Now ' is surjective and p is injective with torsion-free cokernel by the re-

 sult of Ribet mentioned before. Also Tam (JH(N)) TH(N)2 and
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 MODULAR ELLIPTIC CURVES AND FERMAT'S LAST THEOREM 493

 Ta,,p (JH(N, p)) p TH(N, p)2 by Corollary 1 to Theorem 2.1. So as I,
 are maps of TH(N, p),p-modules we can use this diagram to compute Lp as
 remarked just prior to the statement of the proposition. (The compatibility

 of the Up actions requires that, on identifying the completions S1iml and S2,M2
 with TH(N)m, we get U1 = U2 which is indeed the case.) We find that

 VT11 = 1 ( 2 (p)) (Z). =

 We now apply to J1 (N, q2) (but q # p) the same analysis that we have just
 applied to J1(N, p). Here Xi(A, B) is the curve corresponding to F1(A)nro(B)
 and J1 (A, B) its Jacobian. First we need the analogue of Ihara's result. It is

 convenient to work in a slightly more general setting. Let us denote the maps

 Xi(Nqr-lqr) X(Nqr'-1) induced by z -- z and z -- qz by 7lrl, and 7r2,r
 respectively. Similarly we denote the maps Xi (Nqr, qr+l) - X1 (Nqr) induced
 by z -+ z and z -? qz by 7r3,r and 7r4,r respectively. Also let ir: Xi (Nqr) -
 X1 (Nqr-l, qr) denote the natural map induced by z -- z.

 In the following lemma if m is a maximal ideal of Tl(Nqr-1) or T1(Nqr)

 we use M(q) to denote the maximal ideal of Ti (Nqr, qr+l) compatible with
 m, the ring T(q) (Nqr, qr+l) c T, (Nqr, qr+l) being the subring obtained by
 omitting Uq from the list of generators.

 LEMMA 2.5. If q $& p is a prime and r > 1 then the sequence of abelian
 varieties

 0 -O Ji(Nqr-l) 1 J(Nqr) x J1(Nq) ) J1(Nq " qr+l)

 where 6i = ((irr o 7r)*, - (7r2,r o 7r)*) and (? = (7r*r, 7r*,r) induces a corre-
 sponding sequence of p-divisible groups which becomes exact when localized at

 any M(q) for which Pm is irreducible.

 Proof. Let Fl(Nqr) denote the group a d E P1(N): a = d = l(qr),

 C O(qr-1), b O(q)}. Let Bi and B1 be given by

 B1 = Fl(Nqr) jFi(Nqr) n r(q), B1 = f1(Nqr)/F (Nq r) n )

 and let Aq = Fi(Nqr-l)/ri(Nqr) n r(q). Thus Aq ~ SL2 (Z/q) if r = 1 and
 is of order a power of q if r > 1.

 The exact sequences of inflation-restriction give:
 A1

 H1 (Fi (Nqr) Q /Z)-*H1 (r1(Nqr) n F(q), Qp/Zp)B1

 together with a similar isomorphism with A1 replacing A1 and B1 replacing B1.
 We also obtain

 H1 (F1 (Nq r-l), Q /Z ) -H1 (F1 (Nqr) n F(q), QP/ZP)Aq.
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 The vanishing of H2(SL2(Z/q), Qp/Zp) can be checked by restricting to the
 Sylow p-subgroup which is cyclic. Note that im A1,nim Al C H1 (Fl (N qr)nr(q),
 Qp/Zp)~'q since B1 and B1 together generate Aq. Now consider the sequence

 (2.13) 0 - H1(Fl(Nqr-l), Q /Z)

 Hl (Fl (Nqr , Qp/Zp)EDHl (rl (Nqr , Qp/Zp)

 >> , Hl (F1 (Nqr) n F(q), Qp/Zp).

 We claim it is exact. To check this, suppose that A1(x) = -A1(y). Then

 Al(X) E Hl(Fi(Nqr) n F(q),QP/ZP)Aq. So Al(x) is the restriction of an
 x' E Hl (IF(Nqr-l), Qp/Zp) whence x - resi(x') E kerAl = 0. It follows
 also that y =-res1 (x').

 Now conjugation by the matrix (O ?) induces isomorphisms

 rl(Nqr) -_ F(Nqr), r F(Nqr) nfF(q) - Fi(Nqr, qr+l).

 So our sequence (2.13) yields the exact sequence of the lemma, except that we
 have to change from group cohomology to the cohomology of the associated

 complete curves. If the groups are torsion-free then the difference between

 these cohomologies is Eisenstein (more precisely T1 - I -1 for 1 _ 1 mod Nqr+l
 is nilpotent) so will vanish when we localize at the preimage of M(q) in the

 abstract Hecke ring generated as a polynomial ring by all the standard Hecke

 operators excluding Tq. If M < 3 then the group r1(M) has torsion. For
 M = 1,2,3 we can restrict to F(3), F(4), F(3), respectively, where the co-
 homology is Eisenstein as the corresponding curves have genus zero and the

 groups are torsion-free. Thus one only needs to check the action of the Hecke

 operators on the kernels of the restriction maps in these three exceptional cases.

 This can be done explicitly and again they are Eisenstein. This completes the

 proof of the lemma. E

 Let us denote the maps X1 (N, q) -* X1 (N) induced by z -* z and z -* qz
 by 7r1 and 7r2 respectively. Similarly we denote the maps X1 (N, q2) -* X1 (N, q)
 induced by z -* z and z -* qz by 7r3 and 7r4 respectively.

 From the lemma (with r = 1) and Ihara's result (2.10) we deduce that
 there is a sequence

 (2.14) 0 -* J1(N) x J1(N) x J1(N) , Ji(Nq2)

 where = (7rl o 7r3)* x (7r2 0 13)* x (7r2 0 14)* and that the induced map of p-
 divisible groups becomes injective after localization at M(q) 's which correspond
 to irreducible pm's. By duality we obtain a sequence

 J1(Nq2) - J1(N)3 -* 0

 which is 'surjective' on Tate modules in the same sense. More generally we
 can prove analogous results for JH(N) and JH(N, q2) although there may be
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 MODULAR ELLIPTIC CURVES AND FERMAT'S LAST THEOREM 495

 a kernel of order divisible by p in JH (N) -* Ji (N). However this kernel will
 not meet the M(q)-divisible group for any maximal ideal m(q) whose associated

 Pm is irreducible and hence, as in the earlier cases, will not affect the results if
 after passing to p-divisible groups we localize at such an m(q). We use the same

 notation in the general case when H $& 1 so ( is the map JH(N)3 -* JH(N, q2).
 We suppose now that m is a maximal ideal of TH(N) (as always with p E

 m) associated to an irreducible representation and that q is a prime, q { Np.
 We now define a maximal ideal mq of TH(N, q2) with the same associated
 representation as m. To do this consider the ring

 Si = TH(N)[Ui]/Ul(U?2-Tq U1 ? q(q)) C End (JH(N)3)

 where the action of U1 on JH(N)3 is given by the matrix

 Tq -(q) 0

 q 0 0

 L q Oj
 Then U1 satisfies the compatibility

 0 Uq = Ul 0

 One checks this using the actions on cotangent spaces. For we may identify
 the cotangent spaces with spaces of cusp forms and with this identification any

 Hecke operator t. induces the usual action on cusp forms. There is a maximal

 ideal ml = (U1, m) in Si and Slmi TH(N)m. We let mq denote the reciprocal
 image of ml in TH(N, q2) under the natural map TH(N, q2) -* S1.

 Next we define a principal ideal (A') of TH(N)m using the fact that

 TH(N, q2)m, and TH(N)m are both Gorenstein rings (cf. Corollary 2 to The-
 orem 2.1). Thus we set (A') = (a' o ') where

 a': TH(N, q2 )mq - Slm l TH(N)m
 is the natural map and a" is the adjoint with respect to selected Hecke-module

 pairings on TH(N, q2)mq and TH(N)m. Note that a' is surjective. To show
 that the Tq operator is in the image one can use the existence of the associated

 2-dimensional representation (cf. ?1) in which Tq = trace(Frobq) and apply
 the Cebotarev density theorem.

 PROPOSITION 2.6. Suppose that m is a maximal ideal of TH(N) associ-
 ated to an irreducible Pm. Suppose also that q { Np. Then

 (A') = (q - 1) (T2 - (q)(1 + q)2).

 Proof. We prove this in the same manner as we proved Proposition 2.4.

 Consider the maps on p-adic Tate-modules induced by ( and (:

 (2.15) Tap (JH (N)) Tap (JH (N, q2)) A Tap (JH (N)3)
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 These maps commute with the standard Hecke operators with the exception
 of Tq and Uq (which are not even defined on all the terms). We define

 S2 = TH(N)[U2]/U2(U22-Tq U2 + q(q)) C End (JH(N)3)

 where U2 is the endomorphism of JH(N)3 given by the matrix

 q 0 -(q) .
 0 q Tq

 Then Uq ( = ( U2 as one can verify by checking the equality ( o0) U2 = U1 ( o )

 because ( o ( is an isogeny. The formula for ( o ( is given below. Again
 m2 = (i, U2) is a maximal ideal of S2 and S2,m2 Z TH(N)m. On restricting
 (2.15) to the M2, Mq and m1-adic Tate modules we get

 Tam2(JH(N)3) >Tamq(JH (N, q2) > Tam, (JH(N) 3)

 (2.16) U2 TU1

 Tam(JH(N)) Tam(JH(N)).

 The vertical isomorphisms are induced by u2: z - ((q)z, -Tqz, qz) and
 ui: z > (0, 0, z). Now a calculation shows that on JH(N)3

 q(q + 1) Tq * q Tq2-(q)(1 + q)
 0o f = Tq* - q q(q+ 1) Tq - q

 Tq*2 - (q)-'l ( + q) Tq* * q q(q + 1 q~~~~~~qq1

 where Tq*= (q)-1Tq.
 We compute then that

 (U1 o 2)=(q-l)(q 1) (Tq-(q)(1 + q))

 Now using the surjectivity of ( and that ( has torsion-free cokernel in (2.16)

 (by Lemma 2.5) and that Tam (JH(N)) and Tam (JH(N, q2)) are each free of

 rank 2 over the respective Hecke rings (Corollary 1 of Theorem 2.1), we deduce
 the result as in Proposition 2.4. [1

 There is one further (and completely elementary) generalization of this
 result. We let ir: XH(Nq,q2) -* XH(N,q2) be the map given by z -* z.
 Then lr*: JH(N, q2) -* JH(Nq, q2) has kernel a cyclic group and as before
 this will vanish when we localize at M(q) if m is associated to an irreducible

 representation. (As before the superscript q denotes the omission of Uq from
 the list of generators of TH (Nq, q2) and M(q) denotes the maximal ideal of

 T(q) (Nq, q2) compatible with m.)
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 MODULAR ELLIPTIC CURVES AND FERMAT'S LAST THEOREM 497

 We thus have a sequence (not necessarily exact)

 -* JH(N)3 -)JH(Nq q) ) Z 0
 where i = lr* o ( which induces a corresponding sequence of p-divisible groups
 which becomes exact when localized at an m(q) corresponding to an irreducible

 Pm. Here Z is the quotient abelian variety JH(Nq, q2)/ im s. As before there
 is a natural surjective homomorphism

 a: TH(Nq, q )mq - Si)me TH(N)m
 where mq is the inverse image of ml in TH(Nq, q2). (We note that one can
 replace TH(Nq, q2) by TH(Nq2) in the definition of a and Proposition 2.7

 below would still hold unchanged.) Since both rings are again Gorenstein we

 can define an adjoint a' and a principal ideal

 (Aq) = (a o a')

 PROPOSITION 2.7. Suppose that m is a maximal ideal of T = TH(N)

 associated to an irreducible representation. Suppose that q { Np. Then

 (Aq) = (q - 1)2 (T2 - (q)(1 + q)2))

 The proof is a trivial generalization of that of Proposition 2.6.

 Remark 2.8. We have included the operator Uq in the definition of Tmq =

 TH(Nq, q2)mq as in the application of the q-expansion principle it is important
 to have all the Hecke operators. However Uq = 0 in Tmq. To see this we recall

 that the absolute values of the eigenvalues c(q, f ) of Uq on newforms of level

 Nq with q { N are known (cf. [Li]). They satisfy c(q, f )2 = (q) in Of (the
 ring of integers generated by the Fourier coefficients of f ) if f is on Fl (N, q),
 and c(q, f)I = q1/2 if f is on rF(Nq) but not on r1(N, q). Also when f is
 a newform of level dividing N the roots of x2 - c(q, f )x + q xf (q) = 0 have
 absolute value q1/2 where c(q, f) is the eigenvalue of Tq and Xf (q) of (q). Since
 for f on r1(Nqq2), Uqf is a form on Fr(Nq) we see that

 Uq(Uq2 - (q)) JJ (Uq - c(qf)) f (u - c(q, f)Uq + q(q)) = 0
 fESl fES2

 in TH(Nq, q2) 0 C where Si is the set of newforms on Ii (Nq) which are not

 on IF (N, q) and S2 is the set of newforms of level dividing N. In particular as

 Uq is in mq it must be zero in Tmq

 A slightly different situation arises if m is a maximal ideal of T = TH(N, q)
 (q $ p) which is not associated to any maximal ideal of level N (in the sense of

 having the same associated Pm). In this case we may use the map 3 = (r4, 7r)
 to give

 (2.17) JH(N, q) x JH(N, q) JH(Nfq) - JH(N,q) x JH(N,q).
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 Then (3 o (3 is given by the matrix

 q Uq]

 LUq qj

 on JH(N, q)2, where Uq* = Uq(q)1- and TT2 = (q) on the m-divisible group. The
 second of these formulae is standard as mentioned above; cf. for example [Li,

 Th. 3], since Pm is not associated to any maximal ideal of level N. For the first

 consider any newform f of level divisible by q and observe that the Petersson

 inner product ((UUq - l)f(rz), f(mz)) is zero for any r, m I (Nq/ level f)
 by [Li, Th. 3]. This shows that Uq*Uqf(rz), a priori a linear combination of
 f(miz), is equal to f(rz). So Uq*Uq = 1 on the space of forms on rH(N,q)
 which are new at q, i.e. the space spanned by forms {f(sz)} where f runs

 through newforms with q I level f. In particular Uq* preserves the m-divisible
 group and satisfies the same relation on it, again because Pm is not associated

 to any maximal ideal of level N.

 Remark 2.9. Assume that Pm is of type (A) at q in the terminology of
 Chapter 1, ?1 (which ensures that Pm does not occur at level N). In this
 case Tm = TH(N, q)m is already generated by the standard Hecke operators

 with the omission of Uq. To see this, consider the GL2 (Tm) representation of

 Gal(Q/Q) associated to the m-adic Tate module of JH(N, q) (cf. the discussion
 following Corollary 2 of Theorem 2.1). Then this representation is already

 defined over the ZP-subalgebra Tt' of Tm generated by the traces of Frobenius
 elements, i.e. by the Te for e { Nqp. In particular (q) E Tt'. Furthermore, as
 Tt' is local and complete, and as TT2 = (q), it is enough to solve X2 = (q)

 in the residue field of Tt'. But we can even do this in ko (the minimal field
 of definition of Pm) by letting X be the eigenvalue of Frobq on the unique

 unramified rank-one free quotient of ko and invoking the lrq 7r(aq) theorem
 of Langlands (cf. [Cal]). (It is to ensure that the unramified quotient is free
 of rank one that we assume Pm to be of type (A).)

 We assume now that Pm is of type (A) at q. Define Si this time by setting

 Si = TH(N, q)[Ui]/Ui(Ui- Uq) C End (JH(N, q)2) where U1 is given by the matrix

 (2.18) U, =

 on JH(N, q)2. The map (3 is not necessarily surjective and to remedy this we

 introduce M(q) = m n T (q) (N, q) where T(q) (N, q) is the subring of TH (N, q)
 generated by the standard Hecke operators but omitting Uq. We also write M(q)
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 MODULAR ELLIPTIC CURVES AND FERMAT'S LAST THEOREM 499

 for the corresponding maximal ideal of T )(Nq, q2). Then on M(q)-divisible
 groups, 3 and (3 o 7r* are surjective and we get a natural restriction map of

 localizations TH(Nq, q2)(m(q)) I Sl(m(q)). (Note that the image of Uq under
 this map is U1 and not Uq.) The ideal ml = (m, U1) is maximal in S1 and so also

 in Si,(m(q)) and we let mq denote the inverse image of ml under this restriction
 map. The inverse image of mq in TH(Nq, q2) is also a maximal ideal which we

 again write mq. Since the completions TH(Nq, q2)mq and Si,m, - TH(N, q)m
 are both Gorenstein rings (by Corollary 2 of Theorem 2.1) we can define a

 principal ideal (Aq) of TH(N, q)m by

 (Aq) = (a o )

 where a: TH(Nq, q2)mq _*Sl,ml - TH(N, q)m is the restriction map induced
 by the restriction map on M(q)-localizations described above.

 PROPOSITION 2.10. Suppose that m is a maximal ideal of TH(N, q)

 associated to an irreducible m of type (A). Then

 (Aq) = (q - 1)2 (q + 1).

 Proof. The method is a straightforward adaptation of that used for Propo-

 sitions 2.4 and 2.6. We let S2 = TH(N, q)[U2]/U2(U2 - Uq) be the ring of

 endomorphisms of JH(N, q)2 where U2 is given by the matrix

 [Uq qg]

 This satisfies the compatibility 43U2 = Uq 43. We define m2 = (m, U2) in S2
 and observe that S2, m2 - TH(N, q)m.

 Then we have maps

 1ro0 /30-r
 Tam2 (JH(N, q)2) Tanmq (JH(Nq, q2)) Tam,(JH (Nt q) )

 T I V2 T I vi

 Tam (JH(N, q)) Tam(JH(N, q)).

 The maps vi and v2 are given by v2: z -* (-qz, aqz) and vi: z -* (z, 0)
 where Uq = aq in TH(N, q)m. One checks then that v1 o0(c3o7r*)o(7r*oc3)ov2
 is equal to -(q - 1) (q2 - 1) or -2(q - 1)(q2 _ 1).

 The surjectivity of $3 o7r* on the completions is equivalent to the statement
 that

 JH (Nq, q 2) [p]mq JH (Nj q) 2[P] ml

 is surjective. We can replace this condition by a similar one with M(q) substi-
 tuted for mq and for ml, i.e., the surjectivity of

 JH(Nq, q 2)[P]m(q) ) JH(N, q)2 [P]m(q)
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 By our hypothesis that Pm be of type (A) at q it is even sufficient to show that

 the cokernel of JH(Nq, q2)[p] (? Fp- JH(N, q)2[p] ?& Fp has no subquotient as
 a Galois-module which is irreducible, two-dimensional and ramified at q. This

 statement, or rather its dual, follows from Lemma 2.5. The injectivity of 7r* 063
 on the completions and the fact that it has torsion-free cokernel also follows

 from Lemma 2.5 and our hypothesis that Pm be of type (A) at q. E

 The case that corresponds to type (B) is similar. We assume in the anal-

 ysis of type (B) (and also of type (C) below) that H decomposes as HI Hq as
 described at the beginning of Section 1. We assume that m is a maximal ideal

 of TH(Nqr) where H contains the Sylow p-subgroup Sp of (Z/qrZ)* and that

 (2.19) Pm (Xq 1)

 for a suitable choice of basis with Xq $& 1 and cond Xq = qr. Here q { Np and
 we assume also that Pm is irreducible. We use the sequence

 (7r/) * 06 r r~~l ~2O07r' xJHN JH(Nq') x JH(Nqr ) I* JH,(Nqrq r+l) J ) Jx J(

 defined analogously to (2.17) where 62 was as defined in Lemma 2.5 and where
 H' is defined as follows. Using the notation H = rH H1 as at the beginning of

 Section 1 set Hl = H1 for 1 $& q and Hq x Sp = Hq. Then define H'= rl Hl and
 let ir' XHi(Nqr, qr+l) -+ XH(Nqr, qr+l) be the natural map z z. Using
 Lemma 2.5 we check that 62 is injective on the M(q)-divisible group. Again we
 set S1 = TH(Nqr) [Ul]/Ul (U1 - Uq) C End(JH(Nqr)2) where U1 is given by
 the matrix in (2.18). We define ml = (m, U1) and let mq be the inverse image

 of ml in T.H(Nqr, qr+l). The natural map (in which Uq -+ Ui)

 a: TH,(Nqr, qr+ )m q iSiml ~ TH(Nqr)m

 is surjective by the following remark.

 Remark 2.11. When we assume that Pm is of type (B) then the Uq operator
 is redundant in Tm = TH(Nqr)m. To see this, first assume that Tm is reduced
 and consider the GL2(Tm) representation of Gal(Q/Q) associated to the m-
 adic Tate module. Pick a aq E Iq, the inertia group in Dq in Gal(Q/Q), such

 that Xq (aq) $& 1. Then because the eigenvalues of Uq are distinct mod m we can
 diagonalize the representation with respect to aq. If Frob q is a Frobenius in Dq,

 then in the GL2 (Tm) representation the image of Frob q normalizes Iq and we
 can recover Uq as the entry of the matrix giving the value of Frob q on the unit

 eigenvector for aq. This is by the lrq X (iq) theorem of Langlands as before
 (cf. [Cal]) applied to each of the representations obtained from maps Tm

 (9f,A. Since the representation is defined over the Zp-algebra Ttr generated by
 the traces, the same reasoning applied to TM shows that Uq E Tm.
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 If Tm is not reduced the above argument shows only that there is an

 operator vq E Ttr such that (Uq - vq) is nilpotent. Now TH(Nqr) can be
 viewed as a ring of endomorphisms of S2(FH(Nqr)), the space of cusp forms

 of weight 2 on FH(Nqr). There is a restriction map TH(Nqr) -? TH(Nqr)new
 where TH(Nqr)new is the image of TH(Nqr) in the ring of endomorphisms of

 S2(FH(Nqr))/S2(FH(Nqr))old, the old part being defined as the sum of two
 copies of S2(Fr(Nqr-l)) mapped via z -? z and z -? qz. One sees that on
 m-completions Tm - (TH(Nqr)new)m since the conductor of Pm is divisible by
 qr. It follows that Uq E Tm satisfies an equation of the form P(Uq) = 0 where

 P(x) is a polynomial with coefficients in W(km) and with distinct roots. By

 extending scalars to (9 (the integers of a local field containing W(km)) we can

 assume that the roots lie in T -i Tm 0 (9.
 W(km)

 Since (Uq - vq) is nilpotent it follows that P(vq)r = 0 for some r. Then

 since vq E Ttr which is reduced, P(vq) = 0. Now consider the map T -? HT(p)
 where the product is taken over the localizations of T at the minimal primes

 p of T. The map is injective since the associated primes of the kernel are all

 maximal, whence the kernel is of finite cardinality and hence zero. Now in

 each T(p), Uq = ai and Vq = aj for roots aj, aj of P(x) = 0 because the roots
 are distinct. Since Uq - Vq E p for each p it follows that ai = aj for each p
 whence Uq = Vq in each T(p). Hence Uq = Vq in T also and this finally shows
 that Uq E Ttr in general.

 We can therefore define a principal ideal

 (Lq) = (a o

 using, as previously, that the rings TH' (Nqr, qr+l)M and TH(Nqr)m are Goren-
 stein. We compute (Aq) in a similar manner to the type (A) case, but using

 this time that Uq* Uq = q on the space of forms on FH(Nqr) which are new at
 q, i.e., the space spanned by forms {f(sz)} where f runs through newforms

 with qr I level f . To see this let f be any newform of level divisible by qr and
 observe that the Petersson inner product ((UUq - q)f (rz), f (mz)) = 0 for

 any m I (Nqr/ level f ) by [Li, Th. 3(ii)]. This shows that (Uq*Uq - q) f (rz),
 a priori a linear combination of {f(miz)}, is zero. We obtain the following
 result.

 PROPOSITION 2.12. Suppose that m is a maximal ideal of TH(Nqr)
 associated to an irreducible Pm of type (B) at q, i.e., satisfying (2.19) including

 the hypothesis that H contains Sp. (Again q t Np.) Then

 (LAq) = ((q - 1)2 ).

 Finally we have the case where Pm is of type (C) at q. We assume then

 that m is a maximal ideal of TH(Nqr) where H contains the Sylow p-subgroup
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 Sp of (Z/q'Z)* and that

 (2.20) H1(Qqi WA) = 0

 where WA is defined as in (1.6) but with Pm replacing pO, i.e., WA = ado Pm.
 This time we let mq be the inverse image of m in THI (Nqr) under the

 natural restriction map THI (Nqr) ) TH(Nqr) with H' defined as in the
 case of type B. We set

 (Aq) = (a(o&)

 where a: TH' (Nq')m TH(Nq') is the induced map on the completions,
 which as before are Gorenstein rings. The proof of the following proposition

 is analogous (but simpler) to the proof of Proposition 2.10. (Notice that the

 proposition does not require the condition that Pm satisfy (2.20) but this is the

 case in which we will use it.)

 PROPOSITION 2.13. Suppose that m is a maximal ideal of TH(Nqr) asso-
 ciated to an irreducible Pm with H containing the Sylow p-subgroup of (Z/qrZ)*.
 Then

 (Aq) = (q- 1).

 Finally, in this section we state Proposition 2.4 in the case q ? p as this

 will be used in Chapter 3. Let q be a prime, q { Np and let Si denote the ring

 (2.21) TH(N)[Ul] /{U2 - TqUi + (q)q} C End(JH(N)2)

 where ): JH(N, q) -- JH(N)2 is the map defined after (2.10) and Ui is the
 matrix

 Tq - (q)

 L q ? i

 Thus, 'Uq = U1. Also (q) is defined as (nq) where nq _ q(N), nq l(q).
 Let ml be a maximal ideal of Si containing the image of m, where m is a

 maximal ideal of TH(N) with associated irreducible Pm. We will also assume
 that pm(Frobq) has distinct eigenvalues. (We will only need this case and
 it simplifies the exposition.) Let mq denote the corresponding maximal ide-
 als of TH(N, q) and TH(Nq) under the natural restriction maps TH(Nq)

 TH(N, q) -- SI. The corresponding maps on completions are

 (2.22) TH(Nq)m, A TH(N, q)m,

 Siml - TH(N)m 0 W(k )
 W(km)

 where k+ is the extension of km generated by the eigenvalues of {pm(Frob q)}.
 Thus k+ is either equal to km or its quadratic extension. The maps A, a are
 surjective, the latter because Tq is a trace in the 2-dimensional representation
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 MODULAR ELLIPTIC CURVES AND FERMAT'S LAST THEOREM 503

 to GL2(TH(N)m) given after Theorem 2.1 and hence is 'redundant' by the

 Cebotarev density theorem. The completions are Gorenstein by Corollary 2 to
 Theorem 2.1 and so we define invariant ideals of Si,m1

 (2.23) (A) = (aU o &), (A') = (aU of6) o (C O,().

 Let aq be the image of U1 in TH(N)m 09 W(k+) under the last isomorphism
 W(km)

 in (2.22). The proof of Proposition 2.4 yields

 PROPOSITION 2.4'. Suppose that Pm is irreducible where m is a maximal

 ideal of TH(N) and that pm(iFrob q) has distinct eigenvalues. Then

 (A) = (agq-(a2 - )X
 (A/) = (c(2 _ (q))(q - 1).

 Remark. Note that if we suppose also that q 1(p) then (i\) is the unit
 ideal and a is an isomorphism in (2.22).

 3. The main conjectures

 As we suggested in Chapter 1, in order to study the deformation-theory

 of po in detail we need to assume that it is modular. That this should always
 be so for det po odd was conjectured by Serre. Serre also made a conjecture
 (the 'e'-conjecture) making precise where one could find a lifting of po once
 one assumed it to be modular (cf. [Se]). This has now been proved by the

 combined efforts of a number of authors including Ribet, Mazur, Carayol,

 Edixhoven and others. The most difficult step was to show that if po was
 unramified at a prime 1 then one could find a lifting in which 1 did not divide

 the level. This was proved (in slightly less generality) by Ribet. For a precise
 statement and complete references we refer to Diamond's paper [Dia] which
 removed the last restrictions referred to in Ribet's survey article [Ri3]. The

 following is a minor adaptation of the epsilon conjecture to our situation which
 can be found in [Dia, Th. 6.4]. (We wish to use weight 2 only.) Let N(po) be
 the prime to p part of the conductor of po as defined for example in [Se].

 THEOREM 2.14. Suppose that po is modular and satisfies (1.1) (so in
 particular is irreducible) and is of type VD = (.,2,O,M) with. = Se, str or fl.

 Suppose that at least one of the following conditions holds (i) p > 3 or (ii) po
 is not induced from a character of Q(V'/=). Then there exists a newform f

 of weight 2 and a prime A of Of such that pf,> is of type V' = (,EO',M)
 for some O', and such that (pf,A mod A) - po over Fp. Moreover we can
 assume that f has character Xf of order prime to p and has level N(po)p6(PO)
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 where b(Po) = 0 if POIDp is associated to a finite flat group scheme over Zp

 and det po = aw, and 6(po) = 1 otherwise. Furthermore in the Selmer case

 we can assume that ap(f) X2(FRobp) mod A in the notation of (1.2) where
 ap(f) is the eigenvalue of Up.

 For the rest of this chapter we will assume that po is modular and that
 if p = 3 then po is not induced from a character of Q(j/=S). Here and in the
 rest of the paper we use the term 'induced' to signify that the representation

 is induced after an extension of scalars to the algebraic closure.

 For each D = {., E, (, M} we will now define a Hecke ring TD except
 where is unrestricted. Suppose first that we are in the flat, Selmer or strict

 cases. Recall that when referring to the flat case we assume that po is not

 ordinary and that detpolI = W. Suppose that E {qj} and that N(po) =
 H qi with si > 0. If UA, - k2 is the representation space of po we set nq =
 dimk(U>,)Iq where Iq is the inertia group at q. Define MO and M by

 (2.24) MO= N(po) 11 qj* 1 qi, M =Mzp(PO)
 nqi=l nq =2

 qj FMU{p}

 where r(po) = 1 if po is ordinary and r(po) = 0 otherwise. Let H be the
 subgroup of (Z/MZ)* generated by the Sylow p-subgroup of (Z/qiZ)* for each
 qi E M as well as by all of (Z/qiZ)* for each qi E M of type (A). Let T/(M)
 denote the ring generated by the standard Hecke operators {T1 for 1 t Mp, (a)
 for (a, Mp) = 1}. Let m' denote the maximal ideal of T'(M) associated to the

 f and A given in the theorem and let kmi be the residue field T'(M)/m'. Note
 that m' does not depend on the particular choice of pair (f, A) in theorem 2.14.

 Then km_ '- ko where ko is the smallest possible field of definition for po because
 kmi is generated by the traces. Henceforth we will identify ko with km'. There

 is one exceptional case where po is ordinary and POIDp is isomorphic to a sum
 of two distinct unramified characters (X1 and X2 in the notation of Chapter 1,

 ?1). If po is not exceptional we define

 (2.25(a)) YD = T (M)m' 0 (9.
 W(ko)

 If po is exceptional we let T4(M) denote the ring generated by the operators

 {T1 for 1 t Mp, (a) for (a, Mp) = 1, Up}. We choose m" to be a maximal
 ideal of TV(M) lying above m' for which there is an embedding kmno e 4 k (over

 ko = kmi) satisfying Up -- X2(Frobp). (Note that X2 is specified by D.) Then
 in the exceptional case km"e is either ko or its quadratic extension and we define

 (2.25(b)) Tv= T(M)mi 0 (9.
 The o soW(k) .. f

 The omission of the Hecke operators Uq for q I MO ensures that TD is reduced.
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 We need to relate TD to a Hecke ring with no missing operators in order
 to apply the results of Section 1.

 PROPOSITION 2.15. In the nonexceptional case there is a maximal ideal

 m for TH(M) with m n T' (M) = m' and ko = km,) and such that the natural
 map T' (M)m, > TH(M)m is an isomorphism, thus giving

 TD2 TH(M)m 0 (9O
 W(ko)

 In the exceptional case the same statements hold with m" replacing m', TV (M)

 replacing T'(M) and kint replacing ko.

 Proof. For simplicity we describe the nonexceptional case indicating where

 appropriate the slight modifications needed in the exceptional case. To con-

 struct m we take the eigenform fo obtained from the newform f of Theorem 2.14

 by removing the Euler factors at all primes q E - {M U p}. If po is ordinary
 and f has level prime to p we also remove the Euler factor (1 - .p p-s) where
 3p is the non-unit eigenvalue in (Of,,. (By 'removing Euler factors' we mean
 take the eigenform whose L-series is that of f with these Euler factors re-

 moved.) Then fo is an eigenform of weight 2 on FH(M) (this is ensured by the

 choice of f) with Of,, coefficients. We have a corresponding homomorphism
 lrf0: TH(M) -* O9f,A and we let m = 7r-i(A).

 Since the Hecke operators we have used to generate T'(M) are prime to
 the level there is an inclusion with finite index

 T' (M)c+fl O9g

 where g runs over representatives of the Galois conjugacy classes of newforms

 associated to FH(M) and where we note that by multiplicity one O., can also be
 described as the ring of integers generated by the eigenvalues of the operators

 in T'(M) acting on g. If we consider TH(M) in place of T'(M) we get a
 similar map but we have to replace the ring 0g by the ring

 Sg = 09g[Xql ..., Xqr, XP]/{Yi, zp}tj1

 where {p, qj,... , qr } are the distinct primes dividing Mp. Here

 ( Xqr2i = f (Xqj - qi (g)) (Xqi - qi (9()) if qj t level(g)

 Xqrii (Xqi -aqi(g)) if qi I level(g),

 where the Euler factor of g at qj (i.e., of its associated L-series) is

 (1-Oqi (g)qTS) (1- !q (g)q S) in the first case and (1- aqj (g)qi-S) in the second
 case, and qijll (M/ level(g)). (We allow aqi(g) to be zero here.) Similarly Zp is
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 defined by

 J Xp2- ap(g)XXp + pXg(P) if p M, p t level(g)

 Zp = Xp-ap(g) ifp{M

 1 Xp- ap(g) if plevel(g),
 where the Euler factor of g at p is (1 - ap(g)p-8 + Xg(p) pl-2.) in the first
 two cases and (1 - ap(g)p-8) in the third case. We then have a commutative

 diagram

 T',(M) C0 H Og

 (2.27) f f

 TH(M) C r HSg = 09g[Xql ,***Xqr, Xp]/{Yi, Zp}1
 9 9

 where the lower map is given on {Uqi, Up or Tp} by Uq% o Xqj, Up or
 Tp ) Xp (according as p I M or p t M). To verify the existence of such
 a homomorphism one considers the action of TH(M) on the space of forms of

 weight 2 invariant under rH(M) and uses that I>r=1 gj(mjz) is a free gener-
 ator as a TH(M) 0 C-module where {gj} runs over the set of newforms and
 mj = M/level(gj).

 Now we tensor all the rings in (2.27) with Zp. Then completing the top
 row of (2.27) with respect to m' and the bottom row with respect to m we get
 a commutative diagram

 T' (M)mi 5 0 ( r U))m 9

 (2.28) { { I

 TH(M)m C ( Sg) ( H(Sg)m.

 Here IL runs through the primes above p in each 0g for which m' IL under
 TH'(M) X)9. Now (Sg)m is given by

 (2.29) (Sg 0 Zp)m - ((Og 0 Zp) [Xq I... *Xqr X Xp] /{YiX Zp}i )m

 \ilp Jm

 where A9,j denotes the product of the factors of the complete semi-local ring

 Qgqs[Xq1,. X ***Xqr, Xp]/{Yi, Zp};r1 in which Xqj is topologically nilpotent for
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 qj V M and in which Xp is a unit if we are in the ordinary case (i.e., when
 p I M). This is because Uqj E m if qj V M and Up is a unit at m in the ordinary
 case.

 Now if m' -u then in (Ag-,,)m we claim that Yi is given up to a unit by
 Xqi - bi for some bi E 0g,,, with bi = 0 if qj V M. Similarly Zp is given up to a
 unit by Xp - ap(g) where ap(g) is the unit root of x2 -ap(g)x + PXg(P) = 0 in

 0g,4 if p t level g and p I M and by Xp - ap(g) if p level g or p t M. This
 will show that (Ag,,)m - (g,ji when m' --+ IL and (Ag,,i)m = 0 otherwise.

 For qi E M and for p, the claim is straightforward. For qj V M, it amounts
 to the following. Let Ugly denote the 2-dimensional Kg,'vector space with

 Galois action via pgq and let nqi (g, ,u) = dim(Ug,,,)'qi. We wish to check that
 Yj = unit. Xqj in (Ag,,i)m and from the definition of Yi in (2.26) this reduces
 to checking that ri = nqi (g, ,u) by the lrq - ir(oq) theorem (cf. [Cal]). We use
 here that cxq2 (9), /qj (g) and aqi (g) are p-adic units when they are nonzero since
 they are eigenvalues of Frob qi. Now by definition the power of qi dividing M

 is the same as that dividing N(po)qji (cf. (2.21)). By an observation of Livne
 (cf. [Liv], [Ca2, ?1]),

 (2.30) ordqi (level g) = ordqi (N(po)qini fqi (q,))

 As by definition qir II(M/ level g) we deduce that ri = nqi (g, I) as required.
 We have now shown that each Ag, - 09g,4 (when m' -* iL) and it follows

 from (2.28) and (2.29) that we have homomorphisms

 T1 (M)mt C TH(M)m J )9gj

 where the inclusions are of finite index. Moreover we have seen that Uqi = 0
 in TH(M)m for qj V M. We now consider the primes qi E M. We have
 to show that the operators Uq for q E M are redundant in the sense that

 they lie in T' (M)m', i.e., in the ZP-subalgebra of TH(M)m generated by the

 {Ti: 1 t Mp, (a): a E (Z/MZ)*}. For q E M of type (A), Uq E T' (M)m'
 as explained in Remark 2.9 and for q E M of type (B), Uq E T/(M)m' as
 explained in Remark 2.11. For q E M of type (C) but not of type (A), Uq = 0

 by the lrq - ir(aq) theorem (cf. [Cal]). For in this case nq = 0 whence also
 nq(g, ,) = 0 for each pair (g, 1L) with m' -+ IL. If po is strict or Selmer at p then
 Up can be recovered from the two-dimensional representation p (described after
 the corollaries to Theorem 2.1) as the eigenvalue of Frobp on the (free, of rank

 one) unramified quotient (cf. Theorem 2.1.4 of [Wil]). As this representation

 is defined over the Zp-subalgebra generated by the traces, it follows that Up
 is contained in this subring. In the exceptional case Up is in TV4(M)mtt by
 definition.

 Finally we have to show that Tp is also redundant in the sense explained
 above when p { M. A proof of this has already been given in Section 2 (Ribet's
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 lemma). Here we give an alternative argument using the Galois representa-

 tions. We know that Tp E m and it will be enough to show that Tp E (m2, p).
 Writing km for the residue field TH(M)m/m we reduce to the following situa-

 tion. If Tp V (mi2, p) then there is a quotient

 TH(M)m/(m , P)+km[E] = TH(M)m/a

 where km[E] is the ring of dual numbers (so E2 = 0) with the property that

 Tp As with A $& 0 and such that the image of T' (M)m, lies in km. Let G/Q
 denote the four-dimensional km-vector space associated to the representation

 Pe: Gal(Q/Q) ) GL2 (km[6])

 induced from the representation in Theorem 2.1. It has the form

 G/Q c?GO/Q ED GO/Q

 where GO is the corresponding space associated to po by our hypothesis that
 the traces lie in km. The semisimplicity of G/Q here is obtained from the main

 theorem of [BLR]. Now G/QP extends to a finite flat group scheme GIZP.
 Explicitly it is a quotient of the group scheme JH(M)m[p]/Zp. Since extensions
 to Zp are unique (cf. [Rayl]) we know

 G/ZP -G/Z e Go/Z
 Now by the Eichler-Shimura relation we know that in JH(M)/F

 Tp = F + (p)F

 Since Tp E m it follows that F + (p)FT = 0 on Go/F and hence the same holds

 on G/FP. But Tp is an endomorphism of G/ZP which is zero on the special
 fibre, so by [Rayl, Cor. 3.3.6], Tp = 0 on G/ZP. It follows that Tp = 0 in km[E]
 which contradicts our earlier hypothesis. So Tp E (m2,p) as required. This
 completes the proof of the proposition. Oi

 FRom the proof of the proposition it is also clear that m is the unique max-
 imal ideal of TH(M) extending m' and satisfying the conditions that Uq E m

 for q e E - {M U p} and Up V m if po is ordinary. For the rest of this chapter
 we will always make this choice of m (given po).

 Next we define TD in the case when D = (ord, ,Q,M). If n is any

 ordinary maximal ideal (i.e. Up V n) of TH(Np) with N prime to p then Hida
 has constructed a 2-dimensional Noetherian local Hecke ring

 Too = e TH(Np')n:= lim e TH(Npr)nr

 which is a A = ZpJ[T-algebra satisfying TO/T - TH(Np)n. Here nr is the
 inverse image of n under the natural restriction map. Also T = lim(1 + Np) -1
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 MODULAR ELLIPTIC CURVES AND FERMAT'S LAST THEOREM 509

 and e = lim U!. For an irreducible po of type D we have defined TpD in
 r

 (2.25(a)), where D' = (Se , (IM), by

 YD TH(MOP)m 0 (9,
 W(km)

 the isomorphism coming from Proposition 2.15. We will define TD by

 (2.31) YD = eTH(MOPc?)m 0 (9)
 W(km)

 In particular we see that

 (2.32) YDIT TD ',

 i.e., where D' is the same as D but with 'Selmer' replacing 'ord'. Moreover if

 q is a height one prime ideal of TD containing ((1 + T)P' - (1 + NP)Pn(k-2))
 for any integers n > 0 k > 2, then TD/q is associated to an eigenform in a
 natural way (generalizing the case n = 0, k = 2). For more details about these

 rings as well as about A-adic modular forms see for example [Wil] or [Hil].

 For each n > 1 let Tn = TH(Mopl),n. Then by the argument given
 after the statement of Theorem 2.1 we can construct a Galois representation Pn

 unramified outside Mp with values in GL2(Tn) satisfying trace p (Frob 1) = T1,

 detp, (Frobl) = 1(1) for (1, Mp) = 1. These representations can be patched
 together to give a continuous representation

 (2.33) p = limp,: Gal(Q/Q) - GL2(TD)

 where 3 is the set of primes dividing Mp. To see this we need to check the

 commutativity of the maps

 Rs-> Tn

 Tn-1

 where the horizontal maps are induced by Pn and Pn-1 and the vertical map is

 the natural one. Now the commutativity is valid on elements of RE, which are
 traces or determinants in the universal representation, since trace (Frob 1) |-4 T1

 under both horizontal maps and similarly for determinants. Here RE is the
 universal deformation ring described in Chapter 1 with respect to po viewed
 with residue field k = km. It suffices then to show that RE is generated (topo-
 logically) by traces and this reduces to checking that there are no nonconstant

 deformations of po to k [E] with traces lying in k (cf. [Mal, ?1.8]). For then if Rtr

 denotes the closed W(k)-subalgebra of RE generated by the traces we see that
 Rtr --(RE/m2) is surjective, m being the maximal ideal of RE, from which
 we easily conclude that Rtr = RE. To see that the condition holds, assume
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 that a basis is chosen so that po(c) = (1 _0) for a chosen complex conjugation

 c and poG(o) with b = 1 and c, 54 0 for some a. (This is possible
 because po is irreducible.) Then any deformation [p] to k[e] can be represented
 by a representation p such that p(c) and p(or) have the same properties. It

 follows easily that if the traces of p lie in k then p takes values in k whence

 it is equal to po. (Alternatively one sees that the universal representation can
 be defined over Rtr by diagonalizing complex conjugation as before. Since the

 two maps Rt-+ Tn_- induced by the triangle are the same, so the associ-
 ated representations are equivalent, and the universal property then implies

 the commutativity of the triangle.)

 The representations (2.33) were first exhibited by Hida and were the orig-

 inal inspiration for Mazur's deformation theory.

 For each D = {., 3, 0, M} where is not unrestricted there is then a
 canonical surjective map

 Wp : RD YTD

 which induces the representations described after the corollaries to Theorem 2.1

 and in (2.33). It is enough to check this when (9 = W(ko) (or W(km,,) in the

 exceptional case). Then one just has to check that for every pair (g, pa) which
 appears in (2.28) the resulting representation is of type D. For then we claim

 that the image of the canonical map RpD TO = II 0g9,, is TD where here
 denotes the normalization. (In the case where * is ord this needs to be checked

 instead for T, 0 (9 for each n.) For this we just need to see that RD is
 W(ko)

 generated by traces. (In the exceptional case we have to show also that Up is
 in the image. This holds because it can be identified, using Theorem 2.1.4 of

 [Wil], with the image of u E RD where u is the eigenvalue of Frobp on the

 unique rank one unramified quotient of RD with eigenvalue X2 (Frob p) which
 is specified in the definition of D.) But we saw above that this was true for

 RE. The same then holds for RD as RE - RD is surjective because the map
 on reduced cotangent spaces is surjective (cf. (1.5)). To check the condition

 on the pairs (g, Iu) observe first that for q E M we have imposed the following
 conditions on the level and character of such g's by our choice of M and H:

 q of type (A): qI Ilevelg, detpg,|I = 1,

 q of type (B): condXqlI levelg, detpg,| I = Xq,

 q of type (C): det pg,tI is the Teichmiiller lifting of det po I.

 In the first two cases the desired form of PgqDi then follows from the

 1rq 'K(0q) theorem of Langlands (cf. [Cal]). The third case is already of
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 MODULAR ELLIPTIC CURVES AND FERMAT'S LAST THEOREM 511

 type (C). For q = p one can use Theorem 2.1.4 of [Wil] in the ordinary case,

 the flat case being well-known.

 The following conjecture generalizes a fundamental conjecture of Mazur

 and Tilouine for V = (ord, A, W(ko), 0); cf. [MT].

 CONJECTURE 2.16. FpD is an isomorphism.

 Equivalently this conjecture says that the representation described after

 the corollaries to Theorem 2.1 (or in (2.33) in the ordinary case) is the universal

 one for a suitable choice of H, N and m. We remind the reader that throughout

 this section we are assuming that if p = 3 then po is not induced from a
 character of Q(+-/=).

 Remark. The case of most interest to us is when p = 3 and po is a rep-
 resentation with values in GL2(F3). In this case it is a theorem of Tunnell,

 extending results of Langlands, that po is always modular. For GL2(F3) is a
 double cover of S4 and can be embedded in GL2(Z[VA/=]) whence in GL2(C);

 cf. [Se] and [Tu]. The conjecture will be proved with a mild restriction on po
 at the end of Chapter 3.

 Remark. Our original restriction to the types (A), (B), (C) for po was
 motivated by the wish that the deformation type (a) be of minimal conduc-

 tor among its twists, (b) retain property (a) under unramified base changes.

 Without this kind of stability it can happen that after a base change of Q to an

 extension unramified at A, po 0 ' has smaller 'conductor' for some character

 A. The typical example of this is where Po D = IndQ (x) with q -I(p) and

 X is a ramified character over K, the unramified quadratic extension of Qq.
 What makes this difficult for us is that there are then nontrivial ramified local

 deformations (IndQPXf for ( a ramified character of order p of K) which we
 cannot detect by a change of level.

 For the purposes of Chapter 3 it is convenient to digress now in order to

 introduce a slight variant of the deformation rings we have been considering

 so far. Suppose that D = ( *, (9, M) is a standard deformation problem

 (associated to po) with * = Se, str or fl and suppose that H, MO, M and m
 are defined as in (2.24) and Proposition 2.15. We choose a finite set of primes

 Q = {q1, ... , qr} with qi { Mp. Furthermore we assume that each qi _ 1(p)

 and that the eigenvalues {ci, /i} of po(Frobqi) are distinct for each qi E Q.
 This last condition ensures that po does not occur as the residual representation

 of the A-adic representation associated to any newform on FH(M, q..qr)
 where any qi divides the level of the form. This can be seen directly by looking

 at (Frob qi) in such a representation or by using Proposition 2.4' at the end of
 Section 2. It will be convenient to assume that the residue field of (9 contains

 si, /3i for each qi.
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 512 ANDREW WILES

 Pick ai for each i. We let DQ be the deformation problem associated to
 representations p of Gal(QsuQ/Q) which are of type D and which in addition

 satisfy the property that at each qj E Q

 (2.34) P X _,( X Xlqi )

 with X2,qi unramified and X2,qi (Frob qj) -i mod m for a suitable choice of
 basis. One checks as in Chapter 1 that associated to DQ there is a universal

 deformation ring RQ. (These new conditions are really variants on type (B).)

 We will only need a corresponding Hecke ring in a very special case and it

 is convenient in this case to define it using all the Hecke operators. Let us now

 set N = N(po)p6(Po) where 6(po) is as defined in Theorem 2.14. Let mo denote

 a maximal ideal of TH(N) given by Theorem 2.14 with the property that

 pmo PO over Fp relative to a suitable embedding of kM0 -+ k over ko. (In the
 exceptional case we also impose the same condition on mo about the reduction

 of Up as in the definition of TD in the exceptional case before (2.25)(b).) Thus
 pmo pf,A, mod A over the residue field of OfA, for some choice of f and A
 with f of level N. By dropping one of the Euler factors at each qj as in the

 proof of Proposition 2.15, we obtain a form and hence a maximal ideal mQ of

 TH(Nql ... qr) with the property that pmQ PO over Fp relative to a suitable
 embedding kmQ -+ k over kM0. The field kmQ is the extension of ko (or kmin in
 the exceptional case) generated by the caj, fi. We set

 (2.35) TQ = TH(Nql ... qr).Q 0 (9.
 W(k-Q)

 It is easy to see directly (or by the arguments of Proposition 2.15) that

 TQ is reduced and that there is an inclusion with finite index

 (2.36) TQ >TQ = J 09g,1

 where the product is taken over representatives of the Galois conjugacy classes

 of eigenforms g of level Nqj ... q. with mQ -4 pi. Now define DQ using the
 choices ai for which Uq, -+ ai under the chosen embedding kQ -- k. Then
 each of the 2-dimensional representations associated to each factor Ogt is of

 type DQ. We can check this for each q E Q using either the Wq - 7r(q)
 theorem (cf. [Cal]) as in the case of type (B) or using the Eichler-Shimura

 relation if q does not divide the level of the newform associated to g. So we get
 a homomorphism of (9-algebras RQ -+ TQ and hence also an 0-algebra map

 (2.37) (oQ: RQ- TQ

 as RQ is generated by traces. This is not an isomorphism in general as we

 have used N in place of M. However it is surjective by the arguments of

 Proposition 2.15. Indeed, for q I N(po)p, we check that Uq is in the image of
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 MODULAR ELLIPTIC CURVES AND FERMAT'S LAST THEOREM 513

 (pQ using the arguments in the second half of the proof of Proposition 2.15.
 For q E Q we use the fact that Uq is the image of the value of X2,q (Frob q)
 in the universal representation; cf. (2.34). For q I M, but not of the previous
 types, Tq is a trace in PTQ and we can apply the Cebotarev density theorem

 to show that it is in the image of ,oQ.

 Finally, if there is a section a: TQ -+ 0, then set pQ = ker 7r and let pp de-
 note the 2-dimensional representation to GL2 (0) obtained from PTQ mod pQ.
 Let V = Ad pp 0 K/c where K is the field of fractions of 0. We pick a basis

 0

 for PP satisfying (2.34) and then let

 (2.38) {( g a )}

 CAdpOK/O = {( b):a~b~cdE0}?K/0
 - P() c d ) ' ' '

 and let V(qi) = V/V(qi). Then as in Proposition 1.2 we have an isomorphism

 (2.39) Hom0(pRQ/p1Q2K/O) HEQ (QEuQ/QIV)

 where PRQ = ker(ir o FQ) and the second term is defined by

 (2140) HDQ (QEUQ/Q, V) = ker: H1/(Q/ uQ/Q1 V) H (Qunr, v (2.40) ~~~~~~~~~~~~~~q (qi)
 i=1

 We return now to our discussion of Conjecture 2.16. We will call a de-
 formation theory D minimal if E = M U {p} and . is Selmer, strict or flat.
 This notion will be critical in Chapter 3. (A slightly stronger notion of mini-

 mality is described in Chapter 3 where the Selmer condition is replaced, when

 possible, by the condition that the representations arise from finite flat group

 schemes-see the remark after the proof of Theorem 3.1.) Unfortunately even

 up to twist, not every po has an associated minimal D even when po is flat or
 ordinary at p as explained in the remarks after Conjecture 2.16. However this

 could be achieved if one replaced Q by a suitable finite extension depending
 on po.

 Suppose now that f is a (normalized) newform, A is a prime of Of above p
 and PfA a deformation of po of type D where D = (., Z, (Of,A, M) with . = Se,
 str or fl. (Strictly speaking we may be changing po as we wish to choose its
 field of definition to be k = Of,A/A.) Suppose further that level(f) I M where
 M is defined by (2.24).

 Now let us set 0 = OfA for the rest of this section. There is a homomor-
 phism

 (2.41) r = rD,f: T-D 40
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 whose kernel is the prime ideal PT,f associated to f and A. Similarly there is
 a homomorphism

 Rv - C0

 whose kernel is the prime ideal PR,f associated to f and A and which factors

 through lrf. Pick perfect pairings of 0-modules, the second one TD-bilinear,

 (2.42) 0 X 0 -0, (, ): Tv x Tv O.

 In each case we use the term perfect pairing to signify that the pairs of induced

 maps ( --) Homo (0, 0) and Tv -* Homo (Tv, 0) are isomorphisms. In
 addition the second one is required to be Tv-linear. The existence of the second

 pairing is equivalent to the Gorenstein property, Corollary 2 of Theorem 2.1,

 as we explain below. Explicitly if h is a generator of the free TV-module

 Homo(TD, 0) we set (tl, t2) = h(tit2).
 A priori TH(M)m (occurring in the description of Tv in Proposition 2.15)

 is only Gorenstein as a Zp-algebra but it follows immediately that it is also a
 Gorenstein W(km)-algebra. (The notion of Gorenstein 0-algebra is explained
 in the appendix.) Indeed the map

 Homw(k.) (TH(M)m, W(km)) Homzp (TH(M)m, Zp)
 given by 'p F trace of is easily seen to be an isomorphism, as the reduction
 modp is injective and the ranks are equal. Thus Tv is a Gorenstein 0-algebra.

 Now let *: 0 -- Tv be the adjoint of ir with respect to these pairings.

 Then define a principal ideal (71) of Tv by

 (10 = OqDj) = (* (1)).

 This is well-defined independently of the pairings and moreover one sees that

 TvD/71 is torsion-free (see the appendix). From its description (71) is invariant
 under extensions of 0 to 0' in an obvious way. Since Tv is reduced r(r1) + 0.

 One can also verify that

 (2.43)

 up to a unit in 0.

 We will say that Di D V if we obtain Di by relaxing certain of the
 hypotheses on D, i.e., if 19= (., E, 0, M) and Di = (, 0iOi, M1) we allow

 that El D E, any O1, M D M1 (but of the same type) and if is Se or str
 in D it can be Se, str, ord or unrestricted in Di, if . is fl in Di it can be fl
 or unrestricted in 1i. We use the term restricted to signify that is Se, str,

 fl or ord. The following theorem reduces conjecture 2.16 to a 'class number'

 criterion. For an interpretation of the right-hand side of the inequality in

 the theorem as the order of a cohomology group, see Proposition 1.2. For an

 interpretation of the left-hand side in terms of the value of an inner product,

 see Proposition 4.4.
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 THEOREM 2.17. Assume, as above, that pf,A is a deformation of po of
 type 19 = (E, A, 0 = O9f,), M) with = Se, str or fl. Suppose that

 #0/l(mDf) > #PR,f/IRf

 Then

 (i) pD1,:RD1 _ TM1 is an isomorphism for all (restricted) Di D 1.

 (ii) TD1 is a complete intersection (over 01 if. is Se, str or fl) for all re-
 stricted D, D D.

 Proof. Let us write T for TD, PT for PTf, PR for PRf and 71 for ?D,f.
 Then we always have

 (2.44) #//p ? #1'T/1T
 (Here and in what follows we sometimes write q for ir(r) if the context makes
 this reasonable.) This is proved as follows. T/rq acts faithfully on PT. Hence
 the Fitting ideal of PT as a T/rq-module is zero. The same is then true of
 /p2 as an X)7 = (T/71)/pT-module. So the Fitting ideal of PT/p2 as an

 0-module is contained in (r1) and the conclusion is then easy. So together with

 the hypothesis of the theorem we get inequalities (and hence equalities)

 #0e/7r(7) > #PR/PR >- #PT/PT - c/(1
 By Proposition 2 of the appendix T is a complete intersection over (9. Part (ii)
 of the theorem then follows for D. Part (i) follows for D from Proposition 1 of

 the appendix.

 We now prove inductively that we can deduce the same inequality

 (2.45) # 01/1"1,f > #PRi,f /PRI1,f
 for D, D 9D and R1 = RD1. The above argument will then prove the theorem
 for V1. We explain this first in the case D, = 1Dq where 1Dq differs from D only

 in replacing E by E U {q}. Let us write Tq for TDq, PR,q for PRJf with R = RDq
 and rq for 7Pqfj We recall that Uq = 0 in Tq.

 We choose isomorphisms

 (2.46) T Homo (T, (9), Tq Homo (Tq, (9)

 coming from the fact that each of the rings is a Gorenstein 0-algebra. If

 aq: Tq -- T is the natural map we may consider the element Aq = aqo &q E T
 where the adjoint is with respect to the above isomorphisms. Then it is clear

 that

 (2.47) (q(q)) = (JAq)

 as principal ideals of T. In particular 7r(rq) = Ir(? Aq) in (.
 Now it follows from Proposition 2.7 that the principal ideal (Aq) is given by

 (2.48) (Aq) = ((q - 1)2(T2 - (q)(1 + q)2))
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 In the statement of Proposition 2.7 we used Zp-pairings

 T - HomZ, (T, Zp), Tq - Homzp (Tq, Zp)
 to define (LAq) = (aqo &q). However, using the description of the pairings

 as W(km)-algebras derived from these Zp-pairings in the paragraph following
 (2.42) we see that the ideal (Aq) is unchanged when we use W(km)-algebra

 pairings, and hence also when we extend scalars to ( as in (2.42).

 On the other hand

 #PR~q/PR7q < #PR/R # {O/(q-1)2 (T, - (q)(1 + q2)}

 by Propositions 1.2 and 1.7. Combining this with (2.47) and (2.48) gives (2.45).

 If M $ 0 we use a similar argument to pass from D to Dq where this time
 Dq signifies that D is unchanged except for dropping q from M. In each of

 types (A), (B), and (C) one checks from Propositions 1.2 and 1.8 that

 #PR~ /p2 < #PR/p2 * #H?(Qqi V*).

 This is in agreement with Propositions 2.10, 2.12 and 2.13 which give the

 corresponding change in r1 by the method described above.

 To change from an (9-algebra to an (91-algebra is straightforward (the
 complete intersection property can be checked using [Kul, Cor. 2.8 on p. 209]),

 and to change from Se to ord we use (1.4) and (2.32). The change from str

 to ord reduces to this since by Proposition 1.1 strict deformations and Selmer

 deformations are the same. Note that for the ord case if R is a local Noetherian

 ring and f E R is not a unit and not a zero divisor, then R is a complete

 intersection if and only if R/f is (cf. [BH, Th. 2.3.4]). This completes the
 proof of the theorem. -1

 Remark 2.18. If we suppose in the Selmer case that f has level N with

 p t N we can also consider the ring TH(MO)mo (with Mo as in (2.24) and mo
 defined in the same way as for TH(M)). This time set

 To = TH(MO)no 0 (9, T = TH(M)m 0 (9.
 W(km.0) W(krn)

 Define r10, rj, Po and p with respect to these rings, and let (Ap) = oo &p where
 OP: T - To and the adjoint is taken with respect to (-pairings on T and To.
 We then have by Proposition 2.4

 (2.49) (rjp) = (n . Ap) = (T-(p)(l ?p)2)) = (22 (a2 _ (p))

 as principal ideals of T, where ap is the unit root of X2 -Tpx + p(p) = 0.

 Remark. For some earlier work on how deformation rings change with E
 see [Bo].
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 Chapter 3

 In this chapter we prove the main results about Conjecture 2.16. We

 begin by showing that the bound for the Selmer group to which it was reduced

 in Theorem 2.17 can be checked if one knows that the minimal Hecke ring

 is a complete intersection. Combining this with the main result of [TW] we

 complete the proof of Conjecture 2.16 under a hypothesis that ensures that a

 minimal Hecke ring exists.

 Estimates for the Selmer group

 Let po: Gal(Q/Q) -- GL2(k) be an odd irreducible representation which
 we will assume is modular. Let V be a deformation theory of type (-, A, (9, M)

 such that po is type D, where is Selmer, strict or flat. We remind the
 reader that k is assumed to be the residue field of (. Then as explained in

 Theorem 2.14, we can pick a modular lifting pf,A of po of type D (altering
 k if necessary and replacing ( by a ring containing Of,A,) provided that po
 is not induced from a character of Q (V'Z3) if p = 3. For the rest of this
 chapter, we will make the assumption that po is not of this exceptional type.
 Theorem 2.14 also specifies a certain minimum level and character for f and

 in particular ensures that we can pick f to have level prime to p when PO IDP
 is associated to a finite flat group scheme over Zp and det poIP = W.

 In Chapter 2, Section 3, we defined a ring To associated to D. Here we

 make a slight modification of this ring. In the case where is Selmer and

 POIDP is associated to a finite flat group scheme and det po I = W we set

 (3.1) TDo = T'H (MO)' W/0

 with Mo as in (2.24), H defined following (2.24) (it is actually a subgroup
 of (Z/Mo Z)*) and m' the maximal ideal of T' (Mo) associated to po. The
 same proof as in Proposition 2.15 ensures that there is a maximal ideal mo of

 TH(MO) with mo n T1 (Mo) = m' and such that the natural map

 (3.2) TDo = T'(Mo)ma ?(9 -)X TH(MO) (9 HW(ko) W(ko)

 is an isomorphism. The maximal ideal mo which we choose is characterized by

 the properties that pnlo = po and Uq e mo for q e - M U {p}. (The value of
 Tp or of Uq for q e M is determined by the other operators; see the proof of
 Proposition 2.15.) We now define TDO in general by the following:
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 TDO is given by (3.1) if. is Se and POIDP is associated
 to a finite flat group scheme over Zp and
 detpolip = W;

 (3.3)

 TDO = TD if is str or fl, or POIDP is not associated
 to a finite flat group scheme over Zp, or

 det POIIP $w W.

 We choose a pair (f, A) of minimum level and character as given by Theo-
 rem 2.14 and this gives a homomorphism of (9-algebras

 irf: T0o -> (9 D of"Ad

 We set PT,f = ker 7rf and similarly we let PRf denote the inverse image of PTJf
 in RD. We define a principal ideal (rTif) of TDo by taking an adjoint #'f of lrf
 with respect to pairings as in (2.42) and write

 n1T,f = ( f (l)).

 Note that PT f/ is finite and 7rf (IT, ) $ 0 because Tpo is reduced. We
 also write Trf for 1rf (irTf) if the context makes this usage reasonable. We let
 Vf = Ad pp 09 K/c) where pp is the extension of scalars of pf,A to (.

 0

 THEOREM 3.1. Assume that V is minimal, i.e., a, = M U {p}, and that

 PO is absolutely irreducible when restricted toQ ( ) ). Then

 (i) #HD1(QE/QVf) < #(PT~f/PTf) #OT

 where cp = #(9/U?2 - (p)) < o0 when Po is Selmer and POID, is associated to
 a finite flat group scheme over Zp and det POIIJ = w, and cp = 1 otherwise;

 (ii) if TD0 is a complete intersection over ( then (i) is an equality, RV
 To and TD is a complete intersection.

 In general, for any (not necessarily minimal) D of Selmer, strict or flat

 type, and any pf,A of type D, #HD,(Qz/Q,Vf) < oo if po is as above.

 Remarks. The finiteness was proved by Flach in [Fl] under some restric-

 tions on f, p and D by a different method. In particular, he did not consider

 the strict case. The bound we obtain in (i) is in fact the actual order of

 H,(QE/Q, Vf/) as follows from the main result of [TW] which proves the hy-
 pothesis of part (ii). Then applying Theorem 2.17 we obtain the order of this

 group for more general D's associated to Po under the condition that a minimal
 D exists associated to po. This is stated in Theorem 3.3.
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 MODULAR ELLIPTIC CURVES AND FERMAT'S LAST THEOREM 519

 The case where the projective representation associated to po is dihedral
 does not always have the property that a twist of it has an associated minimal

 D. In the case where the associated quadratic field is imaginary we will give a

 different argument in Chapter 4.

 Proof. We will assume throughout the proof that D is minimal, indicating

 only at the end the slight changes needed for the final assertion of the theorem.

 Let Q be a finite set of primes disjoint from E satisfying q- 1(p) and po (Frob q)
 having distinct eigenvalues for each q E Q. For the minimal deformation

 problem 'D = (., A, (9, M), let VQ be the deformation problem described before
 (2.34); i.e., it is the refinement of (., E U Q, (9, M) obtained by imposing the
 additional restriction (2.34) at each q E Q. (We will assume for the proof that

 (9 is chosen so (9/A = k contains the eigenvalues of po(Frob q) for each q E Q.)

 We set

 T = TDO , R = RD

 and recall the definition of TQ and RQ from Chapter 2, ?3 (cf. (2.35)). We

 write V for Vf and recall the definition of V(q) following (2.38). Also remember

 that mQ is a maximal ideal of TH(Nql ... q,) as in (2.35) for which pmQ po
 over Fp (recall that this uses the same choice of embedding kmQ - k as in
 the definition of TQ). We use mQ also to denote the maximal ideal of TQ if
 the context makes this reasonable.

 Consider the exact and commutative diagram

 o -0 H~D(QE/QV) - HD'Q(QEUQ/QV) -Q JJ H(Qunrv(q))Ga (Q nr/Qq)
 qEQ

 I It

 T T

 0 - T (PT/P ) (PTQ/PTQ) QS. KQ -O

 where KQ is by definition the cokernel in the horizontal sequence and * denotes

 Homo( , K/O) for K the field of fractions of (. The key result is:

 LEMMA 3.2. The map LQ is injective for any finite set of primes Q
 satisfying

 q_ 1(p),T (q) (1 +q)2modm for all eQ.

 Proof. Note that the hypotheses of the lemma ensure that po(Frob q) has

 distinct eigenvalues for each q E Q. First, consider the ideal aQ of RQ defined
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 by

 (3.4) aQ={ai-1,bicidi-1: ( ac i b(i) with vi C Iqqi C Q

 Then the universal property of RQ shows that RQ/aQ R. This permits us
 to identify (PR/P2)* a

 (PR/P2) = {f E (PRQ/ipQ)* : f(aQ) = 0}.

 If we prove the same relation for the Hecke rings, i.e., with T and TQ replacing

 R and RQ then we will have the injectivity of LQ. We will write aQ for the
 image of aQ in TQ under the map CpQ of (2.37).

 It will be enough to check that for any q E Q', Q' a subset of Q, TQ//-aq
 TQ,_{q} where aq is defined as in (3.4) but with Q replaced by q. Let

 N' = N (po) p'(PO) * rlqiEQ'-{q} qi where 6(po) is as defined in Theorem 2.14.
 Then take an element a E Iq C Gal(Qq/Qq) which restricts to a generator
 of Gal(Q((Nfq)/Q((N/)). Then det(a) = (tq) e TQ/ in the representation to
 GL2(TQ/) defined after Theorem 2.1. (Thus tq 1(N') and tq is a primitive
 root mod q.) It is easily checked that

 (3.5) JH(N' q)mQ (Q) JH(N'q)mQ, (Q) [(tq) - 1]

 Here H is still a subgroup of (Z/MoZ)*. (We use here that po is not reducible
 for the injectivity and also that po is not induced from a character of Q(Vz/3)
 for the surjectivity when p = 3. The latter is to avoid the ramification points of

 the covering XH(N'q) -4 XH(N', q) of order 3 which can give rise to invariant
 divisors of XH(N'q) which are not the images of divisors on XH(N', q).)

 Now by Corollary 1 to Theorem 2.1 the Pontrjagin duals of the modules

 in (3.5) are free of rank two. It follows that

 (3.6) (TH(N'q)mQ,)2/((tq) - 1) -_ (TH(N' ,q)mQ,)2.

 The hypotheses of the lemma imply the condition that po (Frob q) has distinct
 eigenvalues. So applying Proposition 2.4' (at the end of ?2) and the remark
 following it (or using the fact remarked in Chapter 2, ?3 that this condition

 implies that po does not occur as the residual representation associated to any
 form which has the special representation at q) we see that after tensoring over

 W(kmQ/) with (, the right-hand side of (3.6) can be replaced by TQ,{q} thus
 giving

 TQ, aq -T Q'-fq} '

 since (tq) -1 E dq. Repeated inductively this gives the desired relation

 TQ/aQ _ T, and completes the proof of the lemma. F1
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 MODULAR ELLIPTIC CURVES AND FERMAT'S LAST THEOREM 521

 Suppose now that Q is a finite set of primes chosen as in the lemma. Recall

 that from the theory of congruences (Prop. 2.4' at the end of ?2)

 71TQf/1Tf = 17 (q -1),
 qEQ

 the factors (a2- (q)) being units by our hypotheses on q E Q. (We only need
 that the right-hand side divides the left which is somewhat easier.) Also, from

 the theory of Fitting ideals (see the proof of (2.44))

 #(PT/PT) ? #(O/1TTf)

 #(PTQ/PTQ) > #(0O7/TQf).
 We deduce that

 #KQ > 0 rJ/ (q -1)

 where t = #(PT/P2)/#(O/Tf). Since the range of LQ has order given by

 we compute that the index of the image of LQ is < t as LQ is injective.

 Keeping our assumption on Q from Lemma 3.2, consider the kernel of AM

 applied to the diagram at the beginning of the proof of the theorem. Then

 with M chosen large enough so that AM annihilates PT/P4 (which is finite

 because T is reduced) we get:

 o )~ HD,(QE/QV[,XM]) -~ HIQ(QSuQ/QSV[AM]) B J7J H1(Qunr, V(q)[AM])Ga1(Qu"/Qq)
 qEQ

 T T 4Q T LQ

 ? (PT /p2) (PTQ/PTQ/p )*[AM] KQ[AM] `(PT-/p

 See (1.7) for the justification that AM can be taken inside the parentheses in

 the first two terms. Let XQ = 'bQ((PTQ/pTQ)* [AM]). Then we can estimate
 the order of 5Q(XQ) using the fact that the image of LQ has index at most t.
 We get

 (3.7) #6Q(XQ) > (II #O/(AM q - 1)) (t) (1/#(PTPT))
 qEQ

 Now we choose Q to be a set of primes with the property that

 (3.8) EQ : HV1* (QE/Q VAM) - H1 (Qq7 VAqM)
 qEQ
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 is injective. We also keep the condition that LQ is injective by only allowing

 Q to contain primes of the form given in the lemma. In addition, we require

 these q's to satisfy q =_ 1(pM).

 To see that this can be done, suppose that x E kereQ and Ax = 0 but
 x 5$ 0. We have a commutative diagram

 H'(QE/Q, V;M) [A] Q II H'(Qq, V;M) [A]
 qEQ

 HI(Q/QV*) fJ II H'(QqV;)
 qEQ

 the right-hand isomorphisms coming from our particular choices of q's and the

 left-hand isomorphism from our hypothesis on po. The same diagram will hold

 if we replace Q by Qo = Q U {qo} and we now need to show that we can choose

 qO so that 6Qo(X) 5# 0.
 The restriction map

 H' (Q~/Q, V ) - Hom(Gal(Q/Ko((p)), V)Ga1(KO(7P)/Q)

 has kernel H'(Ko((p)/Q, k(1)) by Proposition 1.11 where here Ko is the split-
 ting field of po. Now if x E H'(Ko((p)/Q, k(1)) and x 5$ 0 then p = 3 and x
 factors through an abelian extension L of Q((3) of exponent 3 which is non-
 abelian over Q. In this exceptional case, L must ramify at some prime q of

 Q((3), and if q lies over the rational prime q 54 3 then the composite map

 HI (K ((3) /Q Ik (1)) H'(Qunr, k(l)) H'(Qunr, ((q/Am)(1))
 is nonzero on x. But then x is not of type D* which gives a contradiction. This

 only leaves the possibility that L = Q((3, 3V1) but again this means that x is
 not of type 'D* as locally at the prime above 3, L is not generated by the cube

 root of a unit over Q3((3). This argument holds whether or not D is minimal.
 So x, which we view in kereQ, gives a nontrivial Galois-equivariant ho-

 momorphism f., E Hom(Gal(Q/Ko((p)), V*) which factors through an abelian
 extension M. of Ko((p) of exponent p. Specifically we choose M, to be the
 minimal such extension. Assume first that the projective representation pj3
 associated to po is not dihedral so that Sym2 po is absolutely irreducible. Pick
 a a E Gal(Mx ((pM)/Q) satisfying

 (3.9) (i) po(a) has order m > 3 with (m,p) = 1,

 (ii) a fixes Q(detpo) (4pM),

 (iii) fx(orm) 7+ Ok

 To show that this is possible, observe first that the first two conditions can

 be achieved by Lemma 1.10(i) and the subsequent remark. Let al be an el-
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 ement satisfying (i) and (ii) and let a1 denote its image in Gal(Ko((p)/Q).
 Then (&1) acts on G = Gal(Mx/Ko((p)) and under this action G decom-
 poses as G G1 ED Gi where al acts trivially on G1 and without fixed points
 on G'. If X is any irreducible Galois stable k-subspace of f (G) ?Fp k then
 ker(al - 1) I x 0 since Sym2 po is assumed absolutely irreducible. So also
 ker(a - 1)If(G) 5$ 0 and thus we can find r E G1 such that f,(r) ? 0.
 Viewing r as an element of G we then take

 At = r x 1 E Gal(Mx((pM)/Ko((p)) - G x Gal(Ko((pM)/Ko((p))
 (This decomposition holds because Mx is minimal and because Sym2 po and
 4p are distinct from the trivial representation.) Now rT commutes with a1 and
 either fx ((ri al)m) # 0 or fx(af') # 0. Since po(Tiai) = po(ai) this gives
 (3.9) with at least one of a = r1al or a = al. We may then choose q0 so that
 Frob q0 = a and we will then have eQ0 (x) 54 0. Note that conditions (i) and (ii)
 imply that q =_ 1(p) and also that po (a) has distinct eigenvalues, thus giving
 both the hypotheses of Lemma 3.2.

 If on the other hand po is dihedral then we pick a's satisfying

 (i) 3o (a) $ 1,

 (ii) a fixes Q(4PM),

 (iii) fx (am) 54 0,

 with m the order of po (a) (and p t m since jo is dihedral). The first two condi-
 tions can be achieved using Lemma 1.12 and, in addition, we can assume that

 a takes the eigenvalue 1 on any given irreducible Galois stable subspace X

 of Wx 0 k. Arguing as above, we find a r E G1 such that fx(r) $ 0 and
 we proceed as before. Again, conditions (i) and (ii) imply the hypotheses of
 Lemma 3.2. So by successively adjoining q's we can assume that Q is chosen

 so that eQ is injective.

 We have thus shown that we can choose Q = {q1,... , qI} to be a finite
 set of primes qj i-=(pM) satisfying the hypotheses of Lemma 3.2 as well as the

 injectivity of FQ in (3.8). By Proposition 1.6, the injectivity of FQ implies that

 (3.10) #HD(QEuQ/Q, Vf [AM]) = ho. IJ hq.
 qEEUQ

 Here we are using the convention explained after Proposition 1.6 to define HD1.
 Now, as D was chosen to be minimal, hq = 1 for q E EI -{p} by Proposi-

 tion 1.8. Also, hq = #(O/AM)2 for q E Q. If . is str or fl then hoohp = 1
 by Proposition 1.9 (iv) and (v). If * is Se, hochp < cp by Proposition 1.9 (iii).
 (To compute this we can assume that Ip acts on WA via w, as otherwise we
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 get hwhp < 1. Then with this hypothesis, (Won)* is easily verified to be un-
 ramified with Frobp acting as U2(p)-l by the description of Pf,A DI in [Wil,
 Th. 2.1.4].) On the other hand, we have constructed classes which are ramified

 at primes in Q in (3.7). These are of type DQ. We also have classes in

 Hom(Gal(QsuQ/Q), 0/AM) = H1(QruQ/Q, 0/AM) H1(Q uQ/Q, VAm)

 coming from the cyclotomic extension Q(Cql ... (qr). These are of type D and
 disjoint from the classes obtained from (3.7). Combining these with (3.10)

 gives

 #Hv(QE/Ql Vf [Am]) < t # P/p2 * @

 as required. This proves part (i) of Theorem 3.1.

 Now if we assume that T is a complete intersection we have that t = 1

 by Proposition 2 of the appendix. In the strict or flat cases (and indeed in

 all cases where cp = 1) this implies that RD -_ TD by Proposition 1 of the
 appendix together with Proposition 1.2. In the Selmer case we get

 (3.11) #(wr/PT) (PT = # (O/1,TJ)cp = #(01/7T,,f) < # (PT,/T')

 where the central equality is by Remark 2.18 and the right-hand inequality

 is from the theory of Fitting ideals. Now applying part (i) we see that the

 inequality in (3.11) is an equality. By Proposition 2 of the appendix, TD is
 also a complete intersection.

 The final assertion of the theorem is proved in exactly the same way on

 noting that we only used the minimality to ensure that the hq 's were 1. In
 general, they are bounded independent of M and easily computed. (The only

 point to note is that if pf,A is of multiplicative type at q then pfAIDq does not
 split.) D

 Remark. The ring TDO defined in (3.1) and used in this chapter should
 be the deformation ring associated to the following deformation problem Do.
 One alters D only by replacing the Selmer condition by the condition that the
 deformations be flat in the sense of Chapter 1, i.e., that each deformation p

 of po to GL2(A) has the property that for any quotient A/a of finite order,
 PIDP mod a is the Galois representation associated to the Qp-points of a finite
 flat group scheme over Zp. (Of course, po is ordinary here in contrast to our
 usual assumption for flat deformations.)

 From Theorem 3.1 we deduce our main results about representations by

 using the main result of [TW], which proves the hypothesis of Theorem 3.1
 (ii), and then applying Theorem 2.17. More precisely, the main result of [TW]

 shows that T is a complete intersection and hence that t = 1 as explained

 above. The hypothesis of Theorem 2.17 is then given by Theorem 3.1(i),
 together with the equality t = 1 (and the central equality of (3.11) in the
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 MODULAR ELLIPTIC CURVES AND FERMAT'S LAST THEOREM 525

 Selmer case) and Proposition 1.2. Strictly speaking, Theorem 1 of [TW] refers

 to a slightly smaller class of D's than those covered by Theorem 3.1 but up to

 a twist every such D is covered. It is straightforward to see that it is enough

 to check Theorem 3.3 for po up to a suitable twist.

 THEOREM 3.3. Assume that po is modular and absolutely irreducible

 when restricted to Q ( 1 p) . Assume also that po is of type (A), (B)

 or (C) at each q : p in S. Then the map WE): RE ) TE of Conjecture 2.16
 is an isomorphism for all D associated to po, i.e., where D = (.,E,Y,M) with
 * = Se, str, fl or ord. In particular if . = Se, str or fl and f is any newform

 for which pf,A is a deformation of po of type D then

 #H1(QE/Q, Vf) = #(01/iD,f) < 00

 where 71D,f is the invariant defined in Chapter 2 prior to (2.43).

 The condition at q : p in E ensures that there is a minimal D associated

 to po. The computation of the Selmer group follows from Theorem 2.17 and
 Proposition 1.2. Theorem 0.2 of the introduction follows from Theorem 3.3,

 after it is checked that a twist of a po as in Theorem 0.2 satisfies the hypotheses
 of Theorem 3.3.

 Chapter 4

 In this chapter we give a different (and slightly more general) derivation

 of the bound for the Selmer group in the CM case. In the first section we

 estimate the Selmer group using the main theorem of [Ru 4] which is based on
 Kolyvagin's method. In the second section we use a calculation of Hida to relate

 the rj-invariant to special values of an L-function. Some of these computations
 are valid in the non-CM case also. They are needed if one wishes to give the

 order of the Selmer group in terms of the special value of an L-function.

 1. The ordinary CM case

 In this section we estimate the order of the Selmer group in the ordinary

 CM case. In Section 1 we use the proof of the main conjecture by Rubin to
 bound the Selmer group in terms of an L-function. The methods are standard

 (cf. [de Sh]) and some special cases have been described elsewhere (cf. [Guo]).
 In Section 2 we use a calculation of Hida to relate this to the rj-invariant.

 We assume that

 (4.1) P = IndQ i,: Gal(Q/Q) -* GL2(0)
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 is the p-adic representation associated to a character ai: Gal(L/L) Ox of
 an imaginary quadratic field L. We assume that p is unramified in L and that i

 factors through an extension of L whose Galois group has the form A - Zp ET
 where T is a finite group of order prime to p. The ring ( is assumed to be the

 ring of integers of a local field with maximal ideal A and we also assume that

 p is a Selmer deformation of po = p mod A which is supposed irreducible with

 det polII, = w. In particular it follows that p splits in L, p = po say, and that
 precisely one of a, a* is ramified at p (K* being the character r - 1
 for any a representing the nontrivial coset in Gal(Q/Q)/ Gal(Q/L)). We can

 suppose without loss of generality that i is ramified at p.

 We consider the representation module V - (K/O)4 (where K is the field

 of fractions of 0) and the representation is via Ad p. In this case V splits as

 V - Y ED (KIO) (0) ED KIO

 where b is the quadratic character of Gal(Q/Q) associated to L. We let E

 denote a finite set of primes including all those which ramify in p (and in

 particular p). Our aim is to compute Hs e(Q/Q, V). The decomposition of
 V gives a corresponding decomposition of H1(Qr/Q, V) and we can use it to

 define Hs e(Q/Q, Y). Since W0 c Y (see Chapter 1 for the definition of Wo)
 we can define HSle(QF/Q, Y) by

 HSe(Q/Q, Y) = ker{H1 (Q/Q, Y) - H1 (Qunr Y/Wo)}.

 Let Y* be the arithmetic dual of Y, i.e., Hom(Y, ppoo) 0 Qp/Zp. Write
 v for Ke/K* and let L(v) be the splitting field of v. Then we claim that

 Gal(L(v)/L) - Zp E T' with T' a finite group of order prime to p. For this
 it is enough to show that X = KK*/e factors through a group of order prime
 to p since v = 82X-1' Suppose that X has order m = mopr with (mop) = 1.
 Then xmo extends to a character of Q which is then unramified at p since the
 same is true of X. Also it factors through an abelian extension of L with Galois
 group isomorphic to Z2 since X factors through such an extension with Galois
 group isomorphic to Z E T1 with T1 of order prime to p (the composite of the
 splitting fields of n and a*). It follows that xm0 is also unramified outside p,
 whence it is trivial. This proves the claim.

 Over L there is an isomorphism of Galois modules

 Y *- (KIO) (v) ED (KIO) (v-162).

 In analogy to the above we define HSe(QF/Ql Y*) by

 HSe(QF/Q, Y*) = ker{H1 (Qr/Q, Y*) -? H1 (Qunr, (Wo)*)}.

 Analogous definitions apply if Y* is replaced by Yv*nL. Also we say informally
 that a cohomology class is Selmer at p if it vanishes in H1 (Qunr, (WO)*) (resp.

This content downloaded from 
�������������128.6.45.205 on Wed, 06 Apr 2022 13:33:34 UTC�������������� 

All use subject to https://about.jstor.org/terms



 MODULAR ELLIPTIC CURVES AND FERMAT'S LAST THEOREM 527

 Hl(Qunr, (WOn)*)). Let Moo be the maximal abelian p-extension of L(v) un-
 ramified outside p. The following proposition generalizes [CS, Prop. 5.9].

 PROPOSITION 4.1. There is an isomorphism

 Hunr(QF/Q, Y*) A Hom (Gal(Moo/L(v)), (K/O)(V))Ga1(L(v)/L)

 where Hlnr denotes the subgroup of classes which are Selmer at p and unram-
 ified everywhere else.

 Proof. The sequence is obtained from the inflation-restriction sequence as

 follows. First we can replace H1(Qr/Q, Y*) by

 {H1 (QF/L, (K/()(v)) E H1 (Q/L, (K/9)(v-162))}

 where A = Gal(L/Q). The unramified condition then translates into the
 requirement that the cohomology class should lie in

 {Hunr in E-p(Qr2/L, (K/c)(v)) E Hunr in p* (Qr/L, (K/O)(v162))}

 Since A interchanges the two groups inside the parentheses it is enough to

 compute the first of them, i.e.,

 (4.2) H jnr in _p (Qr/L, K/O(v)).

 The inflation-restriction sequence applied to this gives an exact sequence

 (4.3) 0 - Hlnr in U-p (L(v)/L, (K/O)(v))

 Hunr in Up (Qr/L, (K/O)(v))

 -? Hom (Gal(Mco/L(v))I (K/Q)(V))Gal(L(v)/L)

 The first term is zero as one easily checks using the divisibility of (K/O)(v).

 Next note that H2 (L(v)/L, (K/Q)(v)) is trivial. If v 0 1(A) this is straight-
 forward (cf. Lemma 2.2 of [Rul]). If v =1(A) then Gal (L(v)/L) - Zp and so
 it is trivial in this case also. It follows that any class in the final term of (4.3)

 lifts to a class c in H1 (QE/L, (K/Q)(v)). Let Lo be the splitting field of Y*.
 Then MooLo/Lo is unramified outside p and Lo/L has degree prime to p. It
 follows that c is unramified outside p. LI

 Now write Hltr(QF/Q, 1n*) (where Yn* = Y\' and similarly for Y,) for
 the subgroup of Hunr(QF/Q, Yn*) given by

 Hstr(QE/Q YEn) = E Hlnr(QF/Q, Yn) op = 0 in H1(Qp, Yn*/(Yn)O)}

 where (Yn*)0 is the first step in the filtration under Dp, thus equal to (Yn/yn?)*
 or equivalently to (Y*)%n where (Y*)O is the divisible submodule of Y* on
 which the action of Ip is via 9. (If p $& 3 one can characterize (Yn)0 as the
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 maximal submodule on which Ip acts via E2.) A similar definition applies with
 Y, replacing Y?n*. It follows from an examination of the action of Ip on Y), that

 (4.4) Hstr(QE/Ql Yn) = Hunr(QE/Q, Yn).

 In the case of Y* we will use the inequality

 (4.5) # H1tr(QF/Q, Y*) < # Hunr(QF/Qi Y*).

 We also need the fact that for n sufficiently large the map

 (4.6) Hstr(Q/Qi Yn*) Hstr(Q/Qi Y*)

 is infective. One can check this by replacing these groups by the subgroups
 of H1(L, (K/O)(V)An) and H1(L, (K/O)(v)) which are unramified outside p

 and trivial at p*, in a manner similar to the beginning of the proof of Proposi-
 tion 4.1. The above map is then injective whenever the connecting homomor-

 phism

 Ho (Lp*, (K/O) (v)) -+ H1 (Lp*, (K/Q) (V)An)

 is infective, which holds for sufficiently large n.
 Now, by Proposition 1.6,

 7 #Hr(Q/Q, Yn) Ho (Q (Yn)*)#H (Q. Yn) #Hsltr(QE/Q, Y*) HQ () #HO (Q, Yn*)

 Also, HO (Q, Yn) = 0 and a simple calculation shows that

 # H (Q. En) = i{ f #(C)/l-I/(q)) if v-=I1mod A
 1 otherwise

 where q runs through a set of primes of OL prime to p cond(v) of density one.

 This can be checked since Y* = IndQ (v) 0 K/c. So, setting

 (4.8) t infq #(O/(1-v(q))) if vmodA=1
 -~~~ 1 ~~~if vmodA #,41

 we get

 (4.9)

 # HSe(Q/Q, Y) < - I q # Hom (Gal (Moo/L(v)), (KI 0)(v
 I q()

 where ?q = # HO(Qq, Y*) for q :& p, ip = lim # HO(Qp, (Yn?)*). This follows
 from Proposition 4.1, (4.4)-(4.7) and the elementary estimate

 (4.10) #(HSle(Qr/Ql Y)/Hulnr(QE/Ql Y)) < 1I fqi
 qEE-{p}

 which follows from the fact that #H1 (Qunr, y)Ga1(Qunr/Qq) = e
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 Our objective is to compute H'e(Qr/Q, V) and the main problem is to es-
 timate H e(Q-/Q, Y). By (4.5) this in turn reduces to the problem of estimat-

 ing

 # Hom(Gal(MOO/L(v)), (K/O)(V))Ga1(L(v)/L)). This order can be computed
 using the 'main conjecture' established by Rubin using ideas of Kolyvagin. (cf.

 [Ru2] and especially [Ru4]. In the former reference Rubin assumes that the

 class number of L is prime to p.) We could now derive the result directly from
 this by referring to [de Sh, Ch. 3], but we will recall some of the steps here.

 Let Wf denote the number of roots of unity ( of L such that ( _ 1 mod J
 (J an integral ideal of OL). We choose an f prime to p such that Wf = 1.
 Then there is a grossencharacter W of L satisfying s((a)) = a for a 1 mod J
 (cf. [de Sh, II.1.4]). According to Weil, after fixing an embedding Q Qp we
 can associate a p-adic character Wp to s (cf. [de Sh, II.1.1 (5)]). We choose
 an embedding corresponding to a prime above p and then we find sp = K * X
 for some X of finite order and conductor prime to p. Indeed Wp and i are
 both unramified at p* and satisfy WpIi, = KII = e where e is the cyclotomic
 character and I. is an inertia group at p. Without altering f we can even choose
 s so that the order of X is prime to p. This is by our hypothesis that i factored
 through an extension of the form Zp E T with T of order prime to p. To see
 this pick an abelian splitting field of Wp and i whose Galois group has the form
 G E G' with G a pro-p-group and G' of order prime to p. Then we see that

 WPIG has conductor dividing fp'. Also the only primes which ramify in a Zp-
 extension lie above p so our hypothesis on K ensures that KIG has conductor

 dividing fp'. The same is then true of the p-part of X which therefore has
 conductor dividing f. We can therefore adjust s so that X has order prime
 to p as claimed. We will not however choose s so that X is 1 as this would
 require fp? to be divisible by condx. However we will make the assumption,

 by altering f if necessary, but still keeping f prime to p, that both v and Wp
 have conductor dividing fp '. Thus we replace fp ? by l.c.m.{f, cond v }.

 The grossencharacter y (or more precisely so o NF/L) is associated to a
 (unique) elliptic curve E defined over F = L(f), the ray class field of conductor
 f, with complex multiplication by CL and isomorphic over C to CIOL (cf.
 [de Sh, II. Lemma 1.4]). We may even fix a Weierstrass model of E over OF

 which has good reduction at all primes above p. For each prime X3 of F above

 p we have a formal group ET, and this is a relative Lubin-Tate group with
 respect to FT3 over Lp (cf. [de Sh, Ch. II, ?1.10]). We let A = ASE be the
 logarithm of this formal group.

 Let UOO be the product of the principal local units at the primes above p

 of L(fpoo); i.e.,

 Uo=fJ uCo where Uoo,q=limUn,T,
 q3lp
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 530 ANDREW WILES

 each Un't being the principal local units in L(fpn)qp. (Note that the primes
 of L(f) above p are totally ramified in L(fpoo) so we still call them {q3}.) We
 wish to define certain homomorphisms bk on Up. These were first introduced

 in [CW] in the case where the local field Fsp is Qp.

 Assume for the moment that Fq3 is Qp. In this case Eq is isomorphic to
 the Lubin-Tate group associated to 7rx + xP where 7r = ~p(p). Then letting wn

 be nontrivial roots of [7rn] (x) = 0 chosen so that [ir] (an) = wi~n-1 it was shown

 in [CW] that to each element u = limun E UOq there corresponded a unique
 power series fu(T) e Zj[T X such that fu(wn) = Un for n > 1. The definition
 of 6ke (k > 1) in this case was then

 k,9(U)= A'(T) dT logfu (T)
 T=O

 It is easy to see that 6k,q3 gives a homomorphism: Uoo Uoo,-- (9w satisfying

 skq3(e) = 09(0)k k,(6) where 9: Gal (FIF) Ox is the character giving
 the action on E[p'].

 The construction of the power series in [CW] does not extend to the case
 where the formal group has height > 1 or to the case where it is defined over

 an extension of Qp. A more natural approach was developed by Coleman [Co]
 which works in general. (See also [Iwi].) The corresponding generalizations of

 6k were given in somewhat greater generality in [Ru3] and then in full generality
 by de Shalit [de Sh]. We now summarize these results, thus returning to the

 general case where Fq is not assumed to be Qp.
 To an element u = limun E UOO we can associate a power series fuv,(T) E

 O,3[[T]] x where OC3 is the ring of integers of Few; see [de Sh, Ch. II ?4.5]. (More
 precisely fuqp(T) is the q3-component of the power series described there.) For
 X3 we will choose the prime above p corresponding to our chosen embedding

 Q c* Qp. This power series satisfies Undo = (fu,)(wn) for all n > 0, n= 0(d)
 where d = [Fqe: L.] and {wn} is chosen as before as an inverse system of irn
 division points of Em. We define a homomorphism 6k: Uoo -- () by

 (4.11) Sk(U) = 6k, p(U) =d logfu'(T)
 ET ~~~~T=O

 Then

 (4.12) 5k (UT) = 9(Q)kSk(U) for r E Gal(F/F)

 where 0 again denotes the action on E[p']. Now 0 = pp on Gal(F/F). We
 actually want a homomorphism on UO, with a transformation property corre-
 sponding to v on all of Gal(L/L). Observe that v = 2 on Gal(F/F). Let S

This content downloaded from 
�������������128.6.45.205 on Wed, 06 Apr 2022 13:33:34 UTC�������������� 

All use subject to https://about.jstor.org/terms



 MODULAR ELLIPTIC CURVES AND FERMAT'S LAST THEOREM 531

 be a set of coset representatives for Gal(L/L)/ Gal (LIF) and define

 (4.13) dI2(U) = Z v-1(of)62(uU) E Oq3[v].
 dES

 Each term is independent of the choice of coset representative by (4.8) and it

 is easily checked that

 (2(U') = V(Of)4D2(U).

 It takes integral values in (9q [v]. Let UO (v) denote the product of the groups
 of local principal units at the primes above p of the field L(v) (by which we
 mean projective limits of local principal units as before). Then 12 factors

 through UO (v) and thus defines a continuous homomorphism

 (D2: UOO,,(VJ) -+CP I

 Let COO be the group of projective limits of elliptic units in L(v) as defined

 in [Ru4]. Then we have a crucial theorem of Rubin (cf. [Ru4], [Ru2]), proved

 using ideas of Kolyvagin:

 THEOREM 4.2. There is an equality of characteristic ideals as A =

 Zp[[Gal(L(v)/L)]] -modules:

 charA (Gal (Moo/L(v))) = charA(UO (v)/CJ,).

 Let vo = v mod A. For any Zp[Gal(L(vo)/L)]-module X we write X(vO)
 for the maximal quotient of X 0 (9 on which the action of Gal(L(vo)/L) is via

 zp

 the Teichmiiller lift of vo. Since Gal(L(v)/L) decomposes into a direct product
 of a pro-p group and a group of order prime to p,

 Gal (L(v)IL) Gal (L(v)IL(vo)) x Gal(L(vo)IL),

 we can also consider any Zp[[Gal(L(v)/L)]]-module also as a Zp[Gal(L(vo)/L)]-
 module. In particular X(vO) is a module over Zp[Gal(L(vo)/L)](v0) O 0. Also
 A(vO) -- [[T]].

 Now according to results of Iwasawa ([1w2, ?12], [Ru2, Theorem 5.1]),

 UOO(v)(vO) is a free A(vO)-module of rank one. We extend (2 0-linearly to
 Uoo(v) Ozp (9 and it then factors through Uoo(v)(v?). Suppose that u is a

 generator of UO (v) (vO) and ,3 an element of C( ?). Then f (y- 1)u = fi for some
 f (T) E 0[[T]] and -y a topological generator of Gal (L(v)/L(vo)). Computing

 (2 on both u and ,3 gives

 (4.14) f (v(-y) - 1) = (2(0)/P2(U)-

 Next we let e(a) be the projective limit of elliptic units in limLpn for

 a some ideal prime to 6fp described in [de Sh, Ch. II, ?4.9]. Then by the
 proposition of Chapter II, ?2.7 of [de Sh] this is a 12th power in lim L xn We
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 532 ANDREW WILES

 let 31i = !3(a)1/12 be the projection of e(a)1/12 to UOO and take ,3 = Normol3
 where the norm is from Lfpo to L(v). A generalization of the calculation in
 [CW] which may be found in [de Sh, Ch. II, ?4.10] shows that

 (4.15) (D2 (3) = (root of unity) Q-2 (Na - v(a)) Lf (2, i) E OT9[v]

 where Q is a basis for the (9L-module of periods of our chosen Weierstrass model

 of E/F. (Recall that this was chosen to have good reduction at primes above p.
 The periods are those of the standard Neron differential.) Also v here should

 be interpreted as the grossencharacter whose associated p-adic character, via

 the chosen embedding Q )-k QP, is v, and vP is the complex conjugate of v.
 The only restrictions we have placed on f are that (i) f is prime to p;

 (ii) wf = 1; and (iii) cond v fpv . Now let fop' be the conductor of v with to
 prime to p. We show now that we can choose f such that Lf(2, -P)/Lf0 (2, vP) is
 a p-adic unit unless vo = 1 in which case we can choose it to be t as defined

 in (4.4). We can clearly choose Lf(2,y)/Lf(2,17) to be a unit if vo #4 1, as
 -P(q)v(q) = Normq2 for any ideal q prime to fop. Note that if vo = 1 then also

 p = 3. Also if vo = 1 then we see that

 inf# {O/{JLoq(21P)/Lfo(2P)}} = t

 since PF-2 =-

 We can compute (D2(u) by choosing a special local unit and showing that

 (D2(U) is a p-adic unit, but it is sufficient for us to know that it is integral. Then
 since Gal (Moo/L(v)) has no finite A-submodule (by a result of Greenberg; see

 [Gre2, end of ?4]) we deduce from Theorem 4.2, (4.14) and (4.15) that

 #Hom(Gal (Moo/1L(v)),I (K/c)) (z,))Ga1(L(v)1L)

 < #O/Q-2Lfo (2, I) if vo 7& 1
 ?l (#O/Q-2Lfo (2,v)) t if vo = 1.

 Combining this with (4.9) gives:

 # HSe(QE/Ql Y) < # (O/Q-2Lfo(2, v)) . fJ q
 qEE

 where 4 # HI(Qq, Y*) (for q 4 p), tp - # HO (Qp, (YO)*).
 Since V - Y E (K/O)(f ) ED K/(9 we need also a formula for

 # ker{H1(QE/Q, (K/O)(0) E K/c) -- Hl(Qunr, (K/( )(0) ED K/()}

 This is easily computed to be

 (4.16) #(O/hL)- J 4q
 qEE-{p}
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 MODULAR ELLIPTIC CURVES AND FERMAT'S LAST THEOREM 533

 where 4 = #H0(Qq, ((K/O)(0) E K/O)*) and hL is the class number of OL.
 Combining these gives:

 PROPOSITION 4.3.

 #HSe(QE/QV) ? #(9/Q2L10(2,v)) #(O(/hL) J 4q
 qEE

 where 4 H = OH(Qq,V*) (for q #4 p), tp = #HO(Qp,(YO)*)-

 2. Calculation of rq

 We need to calculate explicitly the invariants rD,f introduced in Chapter 2,

 ?3 in a special case. Let po be an irreducible representation as in (1.1). Suppose
 that f is a newform of weight 2 and level N, A a prime of Of above p and pf,A a
 deformation of po. Let m be the kernel of the homomorphism T1 (N) -* Of /A
 arising from f. We write T for Tl(N)m 0 (9, where (9 = Qf,A and km is

 W(km,)

 the residue field of m. Assume that p t N. We assume here that k is the
 residue field of ( and that it is chosen to contain km. Then by Corollary 1 of
 Theorem 2.1, T1 (N)m is Gorenstein and it follows that T is also a Gorenstein

 O-algebra (see the discussion following (2.42)). So we can use perfect pairings
 (the second one T-bilinear)

 OxO -, (,): TxT -O

 to define an invariant rj of T. If 7r: T (9 is the natural map, we set
 (r7) = (*ir(1)) where *- is the adjoint of 7r with respect to the pairings. It is
 well-defined as an ideal of T, depending only on 7r. Furthermore, as we noted
 in Chapter 2, ?3, 7r(r) = (?7, 77) up to a unit in 0 and as noted in the appendix
 77 = Ann p = T[[p] where p = ker 7r. We now give an explicit formula for 77
 developed by Hida (cf. [Hi2] for a survey of his earlier results) by interpreting
 (, ) in terms of the cup product pairing on the cohomology of X1 (N), and

 then in terms of the Petersson inner product of f with itself. The following

 account (which does not require the CM hypothesis) is adapted from [Hi2] and
 we refer there for more details.

 Let

 (4.17) ( ):H1 (Xi(N), IOf) x H1 (Xi(N), I) O Of

 be the cup product pairing with Of as coefficients. (We sometimes drop the

 C from X1(N)IC or Ji(N)IC if the context makes it clear that we are re-
 ferring to the complex manifolds.) In particular (tx,y) = (x,t*y) for all
 x, y and for each standard Hecke correspondence t. We use the action of t on

 H1 (Xi (N), Of) given by x - t*x and simply write tx for t*x. This is the same
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 as the action induced by t* E T1(N) on H1(Jl(N),Of) H'(Xi(N), Of
 Let pf be the minimal prime of T1 (N) 0 Of associated to f (i.e., the kernel of
 T1(N) 0 Of -- Of given by t1 0 f H-* /ctt(f) where tf = ct(f)f), and let

 Lf = H1 (X1 (N), Of) [pf].

 If f = Eanqn let fP = Eanqn. Then fP is again a newform and we define
 LfP by replacing f by fP in the definition of Lf. (Note here that Of = OfP
 as these rings are the integers of fields which are either totally real or CM by

 a result of Shimura. Actually this is not essential as we could replace Of by
 any ring of integers containing it.) Then the pairing (, ) induces another by
 restriction

 (4.18) (,): Lf X LfP Of.

 Replacing Of (and the Of-modules) by the localization of Of at p (if necessary)
 we can assume that Lf and Lfp are free of rank 2 and direct summands as

 Of-modules of the respective cohomology groups. Let 61, 62 be a basis of Lf.
 Then also 61, 62 is a basis of Lfp = Lf. Here complex conjugation acts on

 H1(Xi(N), Of) via its action on Of. We can then verify that

 (6, 6) :=det(bi, Ej)

 is an element of Of (or its localization at p) whose image in Of,> is given by
 r(q2) (unit). To see this, consider a modified pairing ( , ) defined by

 (4.19) (x, y) = (x, way)

 where wC is defined as in (2.4). Then (tx, y) = (x, ty) for all x, y and Hecke
 operators t. Furthermore

 det(bi, 6j) = det(6i, w 6j) = cdet(6i, 6j)

 for some p-adic unit c (in Of). This is because wC(LfP) = Lf and wC (Lf) =
 Lf p. (One can check this, for example, using the explicit bases described
 below.) Moreover, by Theorem 2.1,

 H (X1(N), Z) ft1(N) mlf~m ~ T1N2

 H1(Xi(N), Of) ?Tl(N)?of T - T2.

 Thus (4.18) can be viewed (after tensoring with Of,, and modifying it as in
 (4.19)) as a perfect pairing of T-modules and so this serves to compute ir(iq2)
 as explained earlier (the square coming from the fact that we have a rank 2
 module).

 To give a more useful expression for (6, 6) we observe that f and fP can be
 viewed as elements of H1 (X1 (N), C) HN), C) via f (z)dz, fP I
 fPdz. Then {If, fP} form a basis for Lf Oof C. Similarly {If, fP} form a basis
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 MODULAR ELLIPTIC CURVES AND FERMAT'S LAST THEOREM 535

 for Lfp ?Of C. Define the vectors wi = (ffP), W2 = (f, fP) and write
 W1 = C6 and W2 = C6 with C E M2(C). Then writing fi = If, f2 = fP we set

 (W Ia) :=det((fi, If)) = (6,6) det(CC).

 Now (w, c) is given explicitly in terms of the (non-normalized) Petersson inner
 product (,):

 (W, c') = -4(f, f)2

 where (f, f) = fs/r1(N) ffdxdy.
 To compute det(C) we consider integrals over classes in H1 (Xi(N), Of).

 By Poincare duality there exist classes C1,C2 in Hl(Xi(N), Of) such that
 det (f 60) is a unit in Of. Hence det C generates the same Of-module as

 is generated by {det (fc f)} for all such choices of classes (Cl, C2) and with

 {fi, f2} = {f, fI}. Letting uf be a generator of the Of-module {det (fc fi)}
 we have the following formula of Hida:

 PROPOSITION 4.4. 7r(iR2) = (f, f)2/Uf f x (unit in Of,,A).

 Now we restrict to the case where po = IndQ sio for some imaginary
 quadratic field L which is unramified at p and some kX-valued character so

 of Gal(L/L). We assume that Po is irreducible, i.e., that so 5$ ",, where
 KO'a(b) = Ko(aT-lb6) for any o representing the nontrivial coset of
 Gal(L/Q)/ Gal(L/L). In addition we wish to assume that Po is ordinary and
 det Po I p = w. In particular p splits in L. These conditions imply that, if p is a
 prime of L above p, soi(a) = a-1 mod p on U. after possible replacement of svo
 by Ivoa Here the U. are the units of L. and since svo is a character, the restric-
 tion of svo to an inertia group I. induces a homomorphism on U.. We assume
 now that p is fixed and so chosen to satisfy this congruence. Our choice of
 so will imply that the grossencharacter introduced below has conductor prime
 to p.

 We choose a (primitive) grossencharacter p on L together with an em-

 bedding Q c-* Qp corresponding to the prime p above p such that the induced
 p-adic character fpp has the properties:

 (i) pp modp = so (p = maximal ideal of Qp).

 (ii) fpp factors through an abelian extension isomorphic to Zp e T with T of
 finite order prime to p.

 (iii) p((a)) = a for a _1 (f) for some integral ideal f prime to p.

 To obtain p it is necessary first to define pp. Let Mo denote the maximal
 abelian extension of L which is unramified outside p. Let 0: Gal(Mx/L) -+

 QpX be any character which factors through a Zp-extension and induces the
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 homomorphism a | - a-1 on U, --* Gal(M,,/L) where Up,1 = {u E Up: u
 l(p)}. Then set ',p = 'coO, and pick a grossencharacter p such that ((p)p = (np.
 Note that our choice of p here is not necessarily intended to be the same as

 the choice of grossencharacter in Section 1.

 Now let f, be the conductor of p and let F be the ray class field of con-
 ductor . Then over F there is an elliptic curve, unique up to isomorphism,

 with complex multiplication by OL and period lattice free, of rank one over OL
 and with associated grossencharacter ip o NF/L. The curve E/F is the extension

 of scalars of a unique elliptic curve E/F+ where F+ is the real subfield of F of
 index 2. (See [Shl, (5.4.3)].) Over F+ this elliptic curve has only the p-power
 isogenies of the form ?pm for m E Z. To see this observe that F is unramified

 at p and po is ordinary so that the only isogenies of degree p over F are the
 ones that correspond to division by ker p and ker p' where pp' = (p) in L. Over
 F+ these two subgroups are interchanged by complex conjugation, which gives

 the assertion. We let E/O9F+ (p) denote a Weierstrass model over OF+,(p), the
 localization of OF+ at p, with good reduction at the primes above p. Let WE

 be a Neron differential of E/OF+<( ) Let Q be a basis for the OL-module of
 periods of WE. Then Q = u Q for some p-adic unit in FX.

 According to a theorem of Hecke, p is associated to a cusp form fAl in such
 a way that the L-series L(s, cp) and L(s, fg) are equal (cf. [Sh4, Lemma 3]).
 Moreover since p was assumed primitive, f = fgs is a newform. Thus the

 integer N = cond f = IAL/Q I NormL/Q (cond cp) is prime to p and there is a
 homomorphism

 'Of: Ti(N)-4?Rf C Of C 0cp

 satisfying of (Tl) = (p(c) + (P(C) if 1 = cc in L, (I t N) and o)f ((Ti) = 0 if 1 is inert

 in L (1 t N). Also of ((l(l)) = (p((l))?o (l) where / is the quadratic character
 associated to L. Using the embedding of Q in Qp chosen above we get a
 prime A of Of above p, a maximal ideal m of T1 (N) and a homomorphism
 Tl(N), ) Of,- , such that the associated representation pf,A reduces to
 po mod A.

 Let po = kerf f: T1 (N) -+ Of and let

 Af = Ji (N)/poJ1 (N)

 be the abelian variety associated to f by Shimura. Over F+ there is an isogeny

 Af /F+ (E/F+ )d

 where d = [Of: Z] (see [Sh4, Th. 1]). To see this one checks that the p-adic Ga-
 lois representations associated to the Tate modules on each side are equivalent

 to (Ind ,op) Ozp Kf,p where Kf,p = Of 0 Qp and where (pr: Gal(F/F) * Z x
 is the p-adic character associated to p and restricted to F. (One compares

 trace (Frob ?) in the two representations for ? t Np and ? split completely in
 F+; cf. the discussion after Theorem 2.1 for the representation on Af.)
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 MODULAR ELLIPTIC CURVES AND FERMAT'S LAST THEOREM 537

 Now pick a nonconstant map

 7r: X1 (N) IF+ -+ EIF+

 which factors through Af/F+. Let M be the composite of F+ and the nor-

 mal closure of Kf viewed in C. Let WE be a Neron differential of E/OF+(p).
 Extending scalars to M we can write

 ir*WE = E aawfa a, E M
 aEHom(Kf ,C)

 00

 where wfu = E an(fo)qfln for each a. By suitably choosing 7r we can assume
 n=l

 that aid =$ 0. Then there exist Ai E OM and ti E T1(N) such that

 Z Aiti-7r*WE = ClWf for some Cl E M.

 We consider the map

 (4.20) 7r: Hi (Xi (N)/C, Z) 0 O9M,(p) - Hi (E/C, Z) 0 O9M,(p)

 given by 7r' = E Ai(7r o i). Even if 7r' is not surjective we claim that the image

 of 7r' always has the form Hi(EIC, Z) 0 aOM,(p) for some a E OM* This is
 because tensored with Zp 7r' can be viewed as a Gal(Q/F+)-equivariant map

 of p-adic Tate-modules, and the only p-power isogenies on E/F+ have the form

 ?pm for some m E Z. It follows that we can factor 7r' as (1 0 a) o a for some

 other surjective a

 a: Hi(Xi(N)/C, Z) 0 Om -+ H (E/C, Z) 0) OM,

 now allowing a to be in OM,(p) . Now define a* on QE by a* = a-lAiti o r*

 where -*QE/C QJ1(N)/C is the map induced by 7r and ti has the usual

 action on QJ1(N)C Then a*(WE) = CWf for some c E M and

 (4.21) Ja*(wE)= JWE
 Y a(y)

 for any class y e Hi(Xi(N)/C, OM). We note that a (on homology as in
 (4.20)) also comes from a map of abelian varieties a: J1(N)/F+ 'z OM

 E/F+ ?Z OM although we have not used this to define a**.
 We claim now that c E OM,(p). We can compute a*(WE) by considering

 a**(WE 01) = ,Ztlr* 0 a-'Ai on QE0F+ 0 OM and then mapping the image in

 Q0 OM to QJ1(N)/F+ OF+ OM = QJ1 (N)/M Now let us write O1 for
 9F+,(p). Then there are isomorphisms

 8f )/c~lecv2 Hom~c)M, Q11(N) ) Q1 Q3 -82

 ii(N)1,1-0 Hom(OM, J1 (N)101) N)1~0 6
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 where 6 is the different of M/Q. The first isomorphism can be described as

 follows. Let e(-y): J1(N) -+ J1(N) 0 Opm for -y E OM be the map x | > x 0 'y.
 Then ti(w)(-y) = e(-y)*w. Similar identifications occur for E in place of Ji(N).
 So to check that a* (WE 0 1) E Q1 0 OM it is enough to observe that by

 its construction a comes from a homomorphism J1 (N)/01 0 Om -k E101 0 OM.
 It follows that we can compare the periods of f and of WE.

 For fP we use the fact that fly fPdz = fCY f dz where c is the OM-linear
 map on homology coming from complex conjugation on the curve. We deduce:

 PROPOSITION 4.5. Uf = 4 Q2.(1/(p-adic integer)).

 We now give an expression for (f,, f,) in terms of the L-function of p.

 This was first observed by Shimura [Sh2] although the precise form we want

 was given by Hida.

 PROPOSITION 4.6.

 (ft2'fib =16 3 2 I (1-- } 27 X) LN(1,4)

 where X is the character of fig and X its restriction to L;
 b is the quadratic character associated to L;

 LN( ) denotes that the Euler factors for primes dividing N have been
 removed;

 S. is the set of primes q I N such that q = qq' with q t cond W and q,q'
 primes of L, not necessarily distinct.

 Proof. One begins with a formula of Petersson that for an eigenform of

 weight 2 on F1(N) says

 (f, f) = (47)-2 F (2) (1) 7r [SL2(Z): Ii(N) (+1)] . Res8=2 D(s, f, fP)

 where D(s, f, fP) = E Ian 2n-s if f = E anqn (cf. [Hi3, (5.13)]). One checks
 n=1 n=1

 that, removing the Euler factors at primes dividing N,

 DN(S, f, fP) = LN(S, p2k) LN(S - 1, 0k)(QN(s - 1)/(QN(2s - 2)

 by using Lemma 1 of [Sh3]. For each Euler factor of f at a q I N of the form
 (1- aq q-8) we get also an Euler factor in D(s, f, fP) of the form (1- qaq q -q8).
 When f = fl this can only happen for a split prime q where q' divides the
 conductor of p but q does not, or for a ramified prime q which does not divide

 the conductor of Ap. In this case we get a term (1 - ql-8) since I9 (q)12 = q.
 Putting together the propositions of this section we now have a formula for

 7r(?7) as defined at the beginning of this section. Actually it is more convenient
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 MODULAR ELLIPTIC CURVES AND FERMAT'S LAST THEOREM 539

 to give a formula for 7r(?JM), an invariant defined in the same way but with

 Ti(M)ml 0 (9 replacing Tl(N)m 0 (9 where M = pMo with p t MO

 and M/N is of the form

 lb IJ q2.
 qESW q f N qI M0

 Here ml is defined by the requirements that Pm1 = po, Uq E m if q I M (q $ p)

 and there is an embedding (which we fix) km1 ) k over ko taking Up -ap
 where ap is the unit eigenvalue of Frobp in pfLA. So if f is the eigenform
 obtained from f by 'removing the Euler factors' at q I (M/N) (q $ p) and
 removing the non-unit Euler factor at p we have AM = *(1) where 7w: T, =
 T1 (M)ml 0 (9 - (9 corresponds to f' and the adjoint is taken with respect

 W(km1 )

 to perfect pairings of T1 and (9 with themselves as 0-modules, the first one

 assumed Ti-bilinear.

 Property (ii) of fp ensures that M is as in (2.24) with D = (Se, A, 0, q)

 where E is the set of primes dividing M. (Note that S. is precisely the set of
 primes q for which nq = 1 in the notation of Chapter 2, ?3.) As in Chapter 2,

 ?3 there is a canonical map

 (4.22) RV 4 TV Z Ti(M)ml 0 0
 W(km1 )

 which is surjective by the arguments in the proof of Proposition 2.15. Here

 we are considering a slightly more general situation than that in Chapter 2,

 ?3 as we are allowing po to be induced from a character of Q(i/=3). In this
 special case we define TD to be T, (M)m, 0( 0. The existence of the map

 W(km1,)

 in (4.22) is proved as in Chapter 2, ?3. For the surjectivity, note that for each

 q I M (with q $ p) Uq is zero in TV as Uq E m1 for each such q so that we
 can apply Remark 2.8. To see that Up is in the image of Rv we use that it
 is the eigenvalue of Frobp on the unique unramified quotient which is free of

 rank one in the representation p described after the corollaries to Theorem 2.1

 (cf. Theorem 2.1.4 of [Wil]). To verify this one checks that TV is reduced
 or alternatively one can apply the method of Remark 2.11. We deduce that

 E T, the W(kmi)-subalgebra of T1(M)mi generated by the traces, and it
 follows then that it is in the image of RV. We also need to give a definition of
 TV where D = (ord, A, 0), ) and po is induced from a character of Q(V/=3).
 For this we use (2.31).

 Now we take

 M=Np fJ q.
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 540 ANDREW WILES

 The arguments in the proof of Theorem 2.17 show that

 ir(,M) is divisible by ir(r/)(a2 - (p)) 171 (q - 1)
 qESFp

 where ap is the unit eigenvalue of Frobp in Pf,A\. The factor at p is given by
 remark 2.18 and at q it comes from the argument of Proposition 2.12 but with

 H = H' = 1. Combining this with Propositions 4.4, 4.5, and 4,6, we have that

 (4.23) lr(r7M) is divisible by Q2LN 2, X) () -(p)) 171 (q- 1).
 qIN

 We deduce:

 THEOREM 4.7. #(O/r(?JM)) = #Hs

 Proof. As explained in Chapter 2, ?3 it is sufficient to prove the inequality

 #((9/lr(?JM)) > #HSe(Qr/Q7 V) as the opposite one is immediate. For this it
 suffices to compare (4.23) with Proposition 4.3. Since

 LN(2, FI) = LN(2, v) = LN(2, 92X)
 (note that the right-hand term is real by Proposition 4.6) it suffices to pair up

 the Euler factors at q for q I N in (4.23) and in the expression for the upper

 bound of # Hse(Q/Q, V). L

 We now deduce the main theorem in the CM case using the method of
 Theorem 2.17.

 THEOREM 4.8. Suppose that po as in (1.1) is an irreducible represen-

 tation of odd determinant such that po = Ind? so for a character so of an
 imaginary quadratic extension L of Q which is unramified at p. Assume also

 that:

 (i) detpo =W;
 'p

 (ii) po is ordinary.

 Then for every 7D = (-,E,0,0) such that po is of type VD with = Se or ord,

 Rv - Tvz

 and TD is a complete intersection.

 COROLLARY. For any po as in the theorem suppose that

 p: Gal(Q/Q) -) GL2(0)

 is a continuous representation with values in the ring of integers of a local

 field, unramified outside a finite set of primes, satisfying p ~ po when viewed
 as representations to GL2((Fp). Suppose further that:
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 MODULAR ELLIPTIC CURVES AND FERMAT'S LAST THEOREM 541

 (i) P D is ordinary;

 (ii) detp = Xek- with X of finite order, k > 2.

 Then p is associated to a modular form of weight k.

 Chapter 5

 In this chapter we prove the main results about elliptic curves and espe-

 cially show how to remove the hypothesis that the representation associated

 to the 3-division points should be irreducible.

 Application to elliptic curves

 The key result used is the following theorem of Langlands and Tunnell,

 extending earlier results of Hecke in the case where the projective image is

 dihedral.

 THEOREM 5.1 (Langlands-Tunnell). Suppose that p: Gal(Q/Q)
 GL2(C) is a continuous irreducible representation whose image is finite and

 solvable. Suppose further that det p is odd. Then there exists a weight one

 newform f such that L(s,f) = L(s,p) up to finitely many Euler factors.

 Langlands actually proved in [La] a much more general result without

 restriction on the determinant or the number field (which in our case is Q).

 However in the crucial case where the image in PGL2(C) is S4, the result was

 only obtained with an additional hypothesis. This was subsequently removed

 by Tunnell in [Tu].

 Suppose then that

 po: Gal(Q/Q) -- GL2(F3)

 is an irreducible representation of odd determinant. We now show, using

 the theorem, that this representation is modular in the sense that over F3,

 po - pg,j, mod gL for some pair (g, I-) with g some newform of weight 2 (cf. [Se,

 ?5.3]). There exists a representation

 i: GL2(F3) -* GL2 (Z [VZ]) c GL2(C).

 By composing i with an automorphism of GL2(F3) if necessary we can assume

 that i induces the identity on reduction mod (1 + vi2). So if we consider

This content downloaded from 
�������������128.6.45.205 on Wed, 06 Apr 2022 13:33:34 UTC�������������� 

All use subject to https://about.jstor.org/terms



 542 ANDREW WILES

 i 0PO: Gal(Q/Q) -+ GL2 (C) we obtain an irreducible representation which is
 easily seen to be odd and whose image is solvable. Applying the theorem we

 find a newform f of weight one associated to this representation. Its eigenvalues

 lie in Z [VA/]. Now pick a modular form E of weight one such that E -1(3).
 For example, we can take E = 6 El, where E1, x is the Eisenstein series with
 Mellin transform given by ((s) ((s, X) for X the quadratic character associated
 to Q(VA/=). Then fE f mod 3 and using the Deligne-Serre lemma ([DS,
 Lemma 6.11]) we can find an eigenform g' of weight 2 with the same eigenvalues
 as f modulo a prime pu' above (1 + X/=2). There is a newform g of weight 2

 which has the same eigenvalues as g' for almost all T1's, and we replace (9', eu')
 by (g, ,u) for some prime 1I- above (1 + j/2). Then the pair (g, ,u) satisfies our
 requirements for a suitable choice of ,u (compatible with ps').

 We can apply this to an elliptic curve E defined over Q by considering

 E[3]. We now show how in studying elliptic curves our restriction to irreducible

 representations in the deformation theory can be circumvented.

 THEOREM 5.2. All semistable elliptic curves over Q are modular.

 Proof. Suppose that E is a semistable elliptic curve over Q. Assume

 first that the representation -E,3 on E[3] is irreducible. Then if Po = PE,3
 restricted to Gal(Q/Q (vZ/=)) were not absolutely irreducible, the image of the
 restriction would be abelian of order prime to 3. As the semistable hypothesis

 implies that all the inertia groups outside 3 in the splitting field of Po have

 order dividing 3 this means that the splitting field of Po is unramified outside
 3. However, Q(V/Z3) has no nontrivial abelian extensions unramified outside 3
 and of order prime to 3. So Po itself would factor through an abelian extension
 of Q and this is a contradiction as Po is assumed odd and irreducible. So

 Po restricted to Gal(Q/Q(VE/=)) is absolutely irreducible and PE,3 is then
 modular by Theorem 0.2 (proved at the end of Chapter 3). By Serre's isogeny

 theorem, E is also modular (in the sense of being a factor of the Jacobian of a
 modular curve).

 So assume now that PE,3 is reducible. Then we claim that the represen-

 tation P-E,5 on the 5-division points is irreducible. This is because Xo(15) (Q)
 has only four rational points besides the cusps and these correspond to non-

 semistable curves which in any case are modular; cf. [BiKu, pp. 79-80]-. If we

 knew that -E,5 was modular we could now prove the theorem in the same way

 we did knowing that PE,3 was modular once we observe that PE,5 restricted to
 Gal(Q/Q(x/5)) is absolutely irreducible. This irreducibility follows a similar
 argument to the one for -E,3 since the only nontrivial abelian extension of

 Q (Vs) unramified outside 5 and of order prime to 5 is Q((5) which is abelian
 over Q. Alternatively, it is enough to check that there are no elliptic curves

 E for which PE,5 is an induced representation over Q(v/5) and E is semistable
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 MODULAR ELLIPTIC CURVES AND FERMAT'S LAST THEOREM 543

 at 5. This can be checked in the supersingular case using the description of

 PE,5 ID5 (in particular it is induced from a character of the unramified quadratic
 extension of Q5 whose restriction to inertia is the fundamental character of
 level 2) and in the ordinary case it is straightforward.

 Consider the twisted form X(p)lQ of X(5)/Q defined as follows. Let
 X(5)/Q be the (geometrically disconnected) curve whose non-cuspidal points

 classify elliptic curves with full level 5 structure and let the twisted curve be

 defined by the cohomology class (even homomorphism) in

 H1(Gal(L/Q), Aut X(5)/L)

 given by PE,5: Gal(L/Q) - GL2(Z/5Z) C Aut X(5)/L where L denotes the
 splitting field of PE,5. Then E defines a rational point on X(p)/Q and hence
 also of an irreducible component of it which we denote C. This curve C is

 smooth as X(p)lQ = X(5)/Q is smooth. It has genus zero since the same is
 true of the irreducible components of X(5)-Q.

 A rational point on C (necessarily non-cuspidal) corresponds to an elliptic
 curve E' over Q with an isomorphism E'[5] - E[5] as Galois modules (cf. [DR,

 VI, Prop. 3.2]). We claim that we can choose such a point with the two
 properties that (i) the Galois representation PE',3 is irreducible and (ii) E' (or
 a quadratic twist) has semistable reduction at 5. The curve E' (or a quadratic
 twist) will then satisfy all the properties needed to apply Theorem 0.2. (For the
 primes q : 5 we just use the fact that E' is semistable at q == > # E-,5(Iq) I 5.)

 So E' will be modular and hence so too will PE',5
 To pick a rational point on C satisfying (i) and (ii) we use the Hilbert irre-

 ducibility theorem. For, to ensure condition (i) holds, we only have to eliminate

 the possibility that the image of PE',3 is reducible. But this corresponds to E'
 being the image of a rational point on an irreducible covering of C of degree

 4. Let Q(t) be the function field of C. We have therefore an irreducible poly-
 nomial f(x, t) E Q (t) [x] of degree > 1 and we need to ensure that for many
 values to in Q, f(x, to) has no rational solution. Hilbert's theorem ensures
 that there exists a t1 such that f(x, ti) is irreducible. Then we pick a prime

 P1 $ 5 such that f(x, t1) has no root mod P1. (This is easily achieved using the
 Cebotarev density theorem; cf. [CF, ex. 6.2, p. 362].) So finally we pick any
 to E Q which is pl-adically close to t1 and also 5-adically close to the original
 value of t giving E. This last condition ensures that E' (corresponding to to)
 or a quadratic twist has semistable reduction at 5. To see this, observe that

 since JE $A 0, 1728, we can find a family E(j): y2 = X3- 92(j)x - 93(j) with
 rational functions 92(ij, 93(j) which are finite at jE and with the j-invariant of
 E(jo) equal to jo whenever the gi(jo) are finite. Then E is given by a quadratic
 twist of E(jE) and so after a change of functions of the form 92(i) F u2g2(j),
 93(j) F U3g3(j) with u E Qx we can assume that E(jE) = E and that the
 equation E(jE) is minimal at 5. Then for j' E Q close enough 5-adically to jE
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 the equation E(j') is still minimal and semistable at 5, since a criterion for this,

 for an integral model, is that either ord5(A(E(j'))) = 0 or ord5(c4(E(j'))) = 0.
 So up to a quadratic twist E' is also semistable.

 This kind of argument can be applied more generally.

 THEOREM 5.3. Suppose that E is an elliptic curve defined over Q with

 the following properties:

 (i) E has good or multiplicative reduction at 3, 5,

 (ii) For p = 3,5 and for any prime q -1 mod p either 1E,p IDq is reducible

 over F or PEIpIIq is irreducible over FP.

 Then E is modular.

 Proof. The main point to be checked is that one can carry over condi-

 tion (ii) to the new curve E'. For this we use that for any odd prime p A q$

 PEXp I Dq is absolutely irreducible and -EXP IIq is absolutely reducible

 and 3 t #PE)p(Iq)

 E acquires good reduction over an abelian 2-power extension of

 Qqnr but not over an abelian extension of Qq.

 Suppose then that q _-1(3) and that E' does not satisfy condition (ii) at

 q (for p = 3). Then we claim that also 3 t #PE',3(Iq). For otherwise PEj,3(Iq)
 has its normalizer in GL2(F3) contained in a Borel, whence -El,3(Dq) would
 be reducible which contradicts our hypothesis. So using the above equivalence

 we deduce, by passing via -E',5 PE,5, that E also does not satisfy hypothesis
 (ii) at p = 3.

 We also need to ensure that PE',3 is absolutely irreducible over Q(VW3).
 This we can do by observing that the property that the image of -E',3 lies in the

 Sylow 2-subgroup of GL2(F3) implies that E' is the image of a rational point
 on a certain irreducible covering of C of nontrivial degree. We can then argue

 in the same way we did in the previous theorem to eliminate the possibility

 that -E',3 was reducible, this time using two separate coverings to ensure that

 the image of -E',3 is neither reducible nor contained in a Sylow 2-subgroup.

 Finally one also has to show that if both PE,5 is reducible and PE,3 is

 induced from a character of Q (v/Z3) then E is modular. (The case where
 both were reducible has already been considered.) Taylor has pointed out
 that curves satisfying both these conditions are classified by the non-cuspidal

 rational points on a modular curve isomorphic to Xo(45)/Wg, and this is an
 elliptic curve isogenous to Xo(15) with rank zero over Q. The non-cuspidal
 rational points correspond to modular elliptic curves of conductor 338. El
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 Appendix

 Gorenstein rings and local complete intersections

 PROPOSITION 1. Suppose that 0 is a complete discrete valuation ring

 and that p: S -+ T is a suriective local 0-algebra homomorphism between com-
 plete local Noetherian 0-algebras. Suppose further that PT is a prime ideal of

 T such that T/PT ' 0 and let Ps = W-1(PT). Assume that

 (i) T - O(X1, ... ,Xr1/(fi, .. ,fr-u) where r is the size of a minimal set of
 0-generators of PT/PT,

 (ii) o induces an isomorphism ps/p2 PT/P2 and that these are finitely
 generated 0-modules whose free part has rank u.

 Then o is an isomorphism.

 Proof. First we consider the case where u = 0. We may assume that the

 generators x1,. . ., Xr lie in PT by subtracting their residues in T/PT ) 0. By
 (ii) we may also write

 S - (9JX1,. * Xrll(gl,* v9,)

 with s > r (by allowing repetitions if necessary) and Ps generated by the

 images of {x1,.. .,Xr}. Let p = (X1,... ,Xr) in 0Jx1,. .xr] Writing fi
 Eaijxj mod p2 with aij E 0, we see that the Fitting ideal as an 0-module of
 PT/PT is given by

 F (PT/Pp) = det(aij) E 0

 and that this is nonzero by the hypothesis that u = 0. Similarly, if each

 gi =Ebijxj mod p2, then

 Fo(ps/p2) = {det(bij): i E I, #I=r, I C {1, ...,

 By (ii) again we see that det(aij) = det(bij) as ideals of 0 for some choice Io
 of I. After renumbering we may assume that Io = {1, . , r} Then each gi

 (i = 1,... ,r) can be written gi = Erijfi for some rij E 0x1,.. .,Xr]J and we
 have

 det(bij) _ det(rij) det(aij) mod p.

 Hence det(rij) is a unit, whence (rij) is an invertible matrix. Thus the fi's can
 be expressed in terms of the gi's and so S _ T.

 We can extend this to the case u $& 0 by picking X1,.. , Xr-u so that they

 generate (pT/p2)tors. Then we can write each fi = Er-u aIj x mod p2 and
 likewise for the gi's. The argument is now just as before but applied to the
 Fitting ideals of (pT/p2)tors. L
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 For the next proposition we continue to assume that 0 is a complete

 discrete valuation ring. Let T be a local 0-algebra which as a module is finite

 and free over (9. In addition, we assume the existence of an isomorphism of

 T-modules T --0 Homr (T, 0). We call a local 0-algebra which is finite and
 free and satisfies this extra condition a Gorenstein 0-algebra (cf. ?5 of [Til]).

 Now suppose that p is a prime ideal of T such that T/p _ X.

 Let o3: T -- Tlp - 0 be the natural map and define a principal ideal of T
 by

 (AT) = C3(1))

 where 3: ( --) T is the adjoint of /3 with respect to perfect 0-pairings on 0
 and T, and where the pairing of T with itself is T-bilinear. (By a perfect

 pairing on a free 0-module M of finite rank we mean a pairing M x M -( 0
 such that both the induced maps M -) Homo(M, 0) are isomorphisms. When
 M = T we are thus requiring that this be an isomorphism of T-modules also.)

 The ideal (AT) is independent of the pairings. Also T/TT is torsion-free as an

 0-module, as can be seen by applying Hom ( , 0) to the sequence

 0 -+ p -T --+ 0 -+0,

 to obtain a homomorphism T/T/T Hom(p, 0). This also shows that (OT) =
 Ann p.

 If we let l(M) denote the length of an 0-module M, then

 I (P/P ) > 1(0/t)

 (where we write 7T- for /3(qT)) because p is a faithful T/IqT-module. (For a
 brief account of the relevant properties of Fitting ideals see the appendix to

 [MW1].) Indeed, writing FR(M) for the Fitting ideal of M as an R-module,
 we have

 FT/1T (P) = 0 X FT(P) C (r/T) E FT/p,(P/P2) C (AT)

 and we then use the fact that the length of an 0-module M is equal to the

 length of 09/FO(M) as 0 is a discrete valuation ring. In particular when p/p2
 is a torsion 0-module then 77T $ 0.

 We need a criterion for a Gorenstein 0-algebra to be a complete inter-
 section. We will say that a local 0-algebra S which is finite and free over
 0 is a complete intersection over 0 if there is an 0-algebra isomorphism

 S _ Oj[xi,. * ., Xrj/(fi *... , fr) for some r. Such a ring is necessarily a Goren-
 stein 0-algebra and {fi, .. , fir} is necessarily a regular sequence. That (i) =X
 (ii) in the following proposition is due to Tate (see A.3, conclusion 4, in the

 appendix in [M Ro].)

 PROPOSITION 2. Assume that 0 is a complete discrete valuation rmng

 and that T is a local Gorenstein 0-algebra which is finite and free over 0 and
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 that PT is a prime ideal of T such that T/PT _ 0 and PT/PT is a torsion

 0-module. Then the following two conditions are equivalent:

 (i) T is a complete intersection over 0.

 (ii) l(PT/PT) = 1(0//7T-) as 0-modules.

 Proof. To prove that (ii) =X (i), pick a complete intersection S over 0 (so

 assumed finite and flat over 0) such that a: S-ET and such that ps/p2 , PT/P2
 where Ps = r-1 (PT). The existence of such an S seems to be well known
 (cf. [Ti2, ?6]) but here is an argument suggested by N. Katz and H. Lenstra

 (independently).

 Write T = 0[xi,. ..,xr]/(fl,.. .,f) with PT the image in T of p =
 (Xi, ... , Xr). Since T is local and finite and free over 0 , it follows that also

 T - (90X1 X * X ,Xr]j/(fi, X * X ,fs)). We can pick 91,..., gr such that gi = Eaijf;
 with aij E (9 and such that

 (fiI. ..- f8,p2) = (9gi.. igrp2).

 We then modify gi, ... , gr by the addition of elements {&I} of (f, .. ., f8)2 and
 set (gj = gi + a1,,..., gr = gr + ar). Since T is finite over 0, there exists an N
 such that for each i, xjv can be written in T as a polynomial hi (Xi . ... X sr) of
 total degree less than N. We can assume also that N is chosen greater than

 the total degree of gi for each i. Set ai = (x' - hi(xi, ...,x))2. Then set
 S = (9 X ... X Xr]/(g1 .(.g . , g). Then S is finite over X by construction and also
 dim(S) < 1 since dim(S/A) = 0 where (A) is the maximal ideal of 0. It follows

 that {9g, . . . , g9} is a regular sequence and hence that depth(S) = dim(S) = 1.
 In particular the maximal 0-torsion submodule of S is zero since it is also a

 finite length S-submodule of S.

 Now 0/(i-s) - 0/(ft), since l(01/(7s)) = l(ps/p2) by (i) X, (ii) and
 I(0/(ftr)) = l(PT/p2) by hypothesis. Pick isomorphisms

 T _ Homo (T, (), S - Homo (S, 0)

 as T-modules and S-modules, respectively. The existence of the latter for

 complete intersections over 0 is well known; cf. conclusion 1 of Theorem A.3

 of [M Ro]. Then we have a sequence of maps, in which & and ,3 denote the

 adjoints with respect to these isomorphisms:

 oA T S T 2-0.

 One checks that & is a map of S-modules (T being given an S-action via a)
 and in particular that a o & is multiplication by an element t of T. Now

 (,3 0,L) = (ft7) in O and (,3 o a) o ( o a) = (vs) in (9. As (as) = (NT) in C, we
 have that t is a unit mod PT and hence that a o & is an isomorphism. It follows
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 548 ANDREW WILES

 that S z- T, as otherwise S _ ker a $ im a is a nontrivial decomposition as
 S-modules, which contradicts S being local. [1

 Remark. Lenstra has made an important improvement to this proposi-

 tion by showing that replacing -ZT by /3(ann p) gives a criterion valid for all

 local (9-algebras which are finite and free over (9, thus without the Gorenstein

 hypothesis.
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