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Preface

The notes that eventually became this book were written between 1977 and 1985
for the course called Constructive Combinatorics at the University of Minnesota. This
is a one-quarter (10 week) course for upper level undergraduate students. The class
usually consists of mathematics and computer science majors, with an occasional
engineering student. Several graduate students in computer science also attend. At
Minnesota, Constructive Combinatorics is the third quarter of a three quarter sequence.
The first quarter, Enumerative Combinatorics, is at the level of the texts by Bogart
[Bo], Brualdi [Br], Liu [Li] or Tucker [Tu] and is a prerequisite for this course. The
second quarter, Graph Theory and Optimization, is not a prerequisite. We assume that
the students are familiar with the techniques of enumeration: basic counting principles,
generating functions and inclusion/exclusion.

This course evolved from a course on combinatorial algorithms. That course
contained a mixture of graph algorithms, optimization and listing algorithms. The
computer assignments generally consisted of testing algorithms on examples. While
we felt that such material was useful and not without mathematical content, we did not
think that the course had a coherent mathematical focus. Furthermore, much of it was
being taught, or could have been taught, elsewhere. Graph algorithms and
optimization, for instance, were inserted into the graph theory course where they
naturally belonged. The computer science department already taught some of the
material: the simpler algorithms in a discrete mathematics course; efficiency of
algorithms in a more advanced course.

We decided to take as our point of view a decidedly modem trend in
combinatorics: the attempt to give algorithmic explanations to combinatorial
phenomena. While the systematization of this point of view is modern, its
mathematical roots are quite deep, dating back to Euler, Cayley and Sylvester. The
resulting course and this book are therefore more mathematically unified and deeper
than the course's precursor. Nevertheless, we still believe that the material in this
book should be of interest to students in computer science, as well as those in
mathematics and other sciences. In fact, this book might provide the jumping-off
point for a deeper investigation of related subjects: linear algebra, computational
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complexity, lattice theory, group theory, representation theory, special functions or
mathematical physics.

In this book we use combinatorial algorithms for two purposes. First, a
constructive proof of a theorem can be an algorithm. These algorithms often describe
a bijection between two finite sets. So we concentrate on interesting mathematical
theorems which are proved by bijections. The other purpose is interactive: use the
algorithms to investigate interesting mathematical examples. Here the examples are
our main focus. An algorithm can be used to generate data related to a problem. It is
then up to the students to study these data, formulate as many conjectures as they can,
and then prove them. They are not told what the theorems are in advance.
Unfortunately, this kind of "research” is usually impossible in most undergraduate
mathematics courses.

The material here is more than what can be covered in a 10 week course. Two
sections of peripheral interest are §§1.4 and 2.4. Moreover, some of the material in
Chapters 3 and 4 (§§3.5-3.7 and §34.5-4.6) could be considered graduate material.
Strictly speaking, each chapter can be presented independently, although we frequently
tie together material from different chapters. There are many other topics which would
have been suitable for inclusion. One such topic we regretted omitting was the
Lagrange inversion formula (see [La] and [Ra]).

The notes are organized in the following way. In Chapter 1 algorithms which
list fundamental combinatorial objects are given. They are written in a shorthand
version of Pascal (no declaration or i/o statements are given). It is assumed that the
students are familiar with a programming language, though not necessarily Pascal. In
Chapter 2, a partially ordered set is defined for each object. We concentrate on the
Boolean algebra. A number of interesting bijections are given in Chapter 3 for these
objects. Finally, we generalize bijections to involutions in Chapter 4. There is some
emphasis on tableaux in these last two chapters. Thus they can serve as a
combinatorial forerunner to the theory of representations of the symmetric group.

‘We have included more complete Pascal programs in the Appendix.
Furthermore, we would be happy to provide disks (Apple Macintosh Pascal® or
Turbo Pasca1©) with source code for these programs to interested readers.

The exercises vary from true exercises to very difficult problems. We have
assigned each exercise a number from one to four, which we believe is some
indication of its difficulty (one is easy, four is hard). Exercises involving a computer
are marked with a "C".

Exercises labeled 3C or 4C might be suitable for a term project. We feel
strongly that anyone using this book as a text should assign one or more of these
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exercises. They give the student a chance to use the computer in a non-routine way
and to engage in the excitement of mathematical investigation.

We would like to thank the following people who have helped in various ways
in the development of this book: David Bressoud, Adriano Garsia, Ira Gessel, Jay
Goldman, Jim Joichi, Jeff Remmel, Richard Stanley, Gerard Viennot, Herb Wilf, Gill
Williamson and Doron Zeilberger. Finally, we wish to thank the many students who
took the courses upon which this material is based. They were our guinea pigs and
their feedback has been an important source of direction for us.

This book was prepared using MacWrite©, MacPaint®, MacDraw® and
Macintosh Pascal® on our Apple Macintosh® computers, and was printed on an Apple
Laserwriter® printer. While the Macintosh gave us a wonderful environment to
incorporate text, programs and drawings into a single entity, we cannot say that Apple
supports, in an adequate way, mathematical text preparation.

Minneapolis, Minnesota Dennis W. Stanton
US.A. Dennis E. White



Table of Contents

1 Listing Basic Combinatorial Objects

1.1
1.2
13
14
1.5

Permutations
Subsets

Integer Partitions
Product Spaces
Set Partitions
Notes

Exercises

2 Partially Ordered Sets

21
22
23
24

Six Posets

Matching the Boolean Algebra
The Littlewood-Offord Problem
Extremal Set Theory

Notes

Exercises

3 Bijections

3.1
3.2
33
3.4
3.5
3.6
3.7

The Catalan Family

The Priifer Correspondence

Partitions

Permutations

Tableaux

The Schensted Correspondence

Properties of the Schensted Correspondence

11
15
18
22
22

26

26
33
39
43
50
50

57

59

69
73
81
85
93



Notes
Exercises

4 Involutions

4.1
42
43
44
45
4.6

The Euler Pentagonal Number Theorem
Vandermonde's Determinant

The Cayley-Hamilton Theorem

The Matrix-Tree Theorem

Lattice Paths

The Involution Principle

Notes

Exercises

Bibliography

Appendix

Al
A2
A3
A4
AS
A6
AT
A8
A9

Permutations

Subsets

Set Partitions

Integer Partitions

Product Spaces

Match to First Available

The Schensted Correspondence
The Priifer Correspondence
The Involution Principle

Index

102
102

110

111
114
120
125
130
141
147
148

156

159

159
162
164
166
167
169
171
176
178

180



CHAPTER 1

Listing Basic Combinatorial Objects

At a basic level, one would expect that constructive combinatorics would
address the question of how one constructs the fundamental objects in combinatorics.
In fact, "constructing” these objects could mean providing an algorithm for listing all
of them, or it could mean generating one of them at random. While both questions are
of interest, we shall concentrate on the first.

It is frequently useful in combinatorics to have such listing algorithms. The
most obvious application is to use the algorithms to produce computer programs which
test conjectures and theorems for combinatorial objects. Better yet, conjectures might
be discovered in the resulting data. In another direction, the algorithm itself could be
of mathematical interest. The algorithm might be a proof of a theorem. For instance,
the existence of an algorithm which lists permutations by transposing adjacent objects
proves that any permutation can be written as a product of adjacent transpositions.

Any such list of objects gives the objects a linear order. This means that if a
and b are objects, then we can say that a<b if a precedes b on the list. This
linear order clearly gives a ranking function on the objects. One might expect that the
first object has rank one, and so on. However, we shall find it more useful to define
the Rank of an object as the number of objects in the list which precede it. Soif a is
first, Rank(a)=0. If the list has N objects, the function Rank must map these
objects to the set {0, 1,...,N-1}.

While the theoretical definition of Rank is obvious, it is often not at all clear how
to construct Rank without listing all of the objects. In fact, algorithms to rank objects
(find Rank(a)) and unrank integers (find Unrank(i) = Rank™1(i),
ie {0,1,...,N-1}) often give great insight into the algorithm.

In this chapter we give listing algorithms for these combinatorial objects:
permutations, subsets of a set, integer partitions, set partitions and product spaces.
Each algorithm will be based upon a recursive formula for the number of objects
listed. For example, subsets may be listed by using the combinatorial interpretation of
Pascal's triangle.

The most important ranking function will use "lexicographic” ordering. It can
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be used for virtually any combinatorial object. We shall see in Chapter 2 that it also
has many remarkable and surprising theoretical properties.

§1.1 Permutations

A permutation of n distinct objects of length k is an ordered arrangement of
any k of the objects. For instance, the permutations of {a,b,c,d} of length two
are ab, ac, ad, ba, bc, bd, ca, cb, cd, da, db and dc. The next proposition is
clear.

PROPOSITION 1.1 The number of permutations of n objects of length k is
n(n-1) - (n—k+1).

Sometimes we shall write (n), (called the falling factorial) for
n(n-1) - (n—k+1).

A permutation of n objects of length n is frequently called a permutation of n
objects (or simply a permutation of n). It is clear that we can take the set [n] =
{1,2,...,n} forthe n objects. We shall frequently use this notation. Proposition
1.1 shows that the number of permutations of n is (n), =nl

Perhaps the most natural ordering of the permutations of n is lexicographic
(lex) order. We say that © precedes o in lex order, if, for some i, the first i
entries of T and o are the same, and the (i+1)th entry of 7 is less than the (i+1)th
entry of 6. The lex list of the permutations of 3 is 123, 132, 213, 231, 312 and
321. This ordering is quite simple. You are asked to consider it in Exercises 2 and 3.
We shall return to lex order in §1.2.

We consider instead an algorithm to list all permutations of n that is due to
Johnson [Joh] and Trotter [T]. It is based on a "combinatorial proof” of n! =
n(n-1)!: for each of the (n—1)! permutations of [n—1], there are n "positions" into
which n may be inserted. The algorithm has the property that each permutation
differs from its predecessor by only a transposition of adjacent symbols. The lex list
does not have this property.

How does the algorithm work? Suppose we have the list for permutations of
n-1]: =@, @, .... Then we construct the list for permutations of [n] by
inserting n into each of the n possible positions of each n. The insertions go
from left to right if i is odd and right to left if i is even. Thelists for n=1, 2, 3
and 4 are given below with the recursive structure indicated.



- 1234
- 1243

123 1 1423
| 4123
[ 4132

1432

1342
[ 1324
- 3124

3142
L 312 | 3412
| 4312
1 - 4321
] 3421
321 | 3241
| 3214
- 2314

2341
| 21 231 | 2431
| 4231
- 4213

2413
- 213 | 2143
| 2134

[ 12 132

The Johnson-Trotter algorithm is listed in Algorithm 1. The permutations 7
are given by 7 =(n[1],...,xn[n]). (Usually we will write ® as (x;,...,7,) butin
algorithms we will sometimes use [] instead of subscripts.) The inverse of the
permutation 7 is also used, so w[n~ 1m]] = m. In order to keep track of which digits
are moving, we use the set of active digits, A. Initially all digits > 1 are active. Ifa
digit i comes to a boundary, it becomes passive (is deleted from A ), and all digits >
i become active. The directions that the digits are moving are given by the direction
vector (d[1],...,d[n]); d[i]=1 is to the right and d[i] = -1 is to the left. Initially,
each d[i] is -1 and (%[1],...,%[n]) =(1,2,...,n). The variables n[0] and
n[n+1] are used for "the boundary positions" and are fixed at n+1. The algorithm
ends when A is empty.

ALGORITHM 1: Permutation List

begin
for i1 ton+1 do
n[i] «i
T[] i
dli] « -1
n[0] «n+1
Ae{2,...,n}



Done « false
while not Done do
Print(m)
if A= then
m « max{i:ieA}
j &l [m]
7fj] « =fj +d[m]]
n[j+d[m]] & m
7![m] < n~![m] + d[m]
o nf]]
if m < n[j +2:d[m]] then
d[m] « —d[m]
A« A-{m}

A—«Au{m+1,...,n}
else

Done « true
end.

The proof that Algorithm 1 works is inductive. It is clear that it will cause n to
sweep back and forth across the permutation, and, at each boundary, construct a new
permutation of [n—1]. As n sweeps across, no d[i] changes. Thus the only
changes in (d[1],...,d[n-1]) occur when n reaches a boundary. These are
precisely the changes that would be encountered in the permutation list for [n—1].

The function Rank for Algorithm 1 can now be given. Clearly,
Rank(1,2,...,n)=0. Let ®=(n[1],...,n[n]) be a permutation of n, andlet =
be the permutation of [n—1] whichis © with n deleted. Note that n has made
Rank(nt) complete sweeps. Its last incomplete sweep is right to left if Rank(rn') is
even and left to right if Rank(n) is odd. If n occupies position j in m (thatis,
n[j] = n), we find

j—1 if Rank(n') is odd

(L) Rank(®) = nRank(w) + {17  Rankte
n-j ank(n') is even.

For example, suppose = = (5,1,6,2,3,7,4). Then (1), (1,2), (1,2,3)
and (1,2,3,4) all have rank 0. So

Rank(5,1,2,3,4) =50+ (5—1) =4 since 0 is even,
Rank(5, 1, 6,2, 3,4) = 64 + (6 — 3) = 27 since 4 is even, and
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Rank(5,1,6,2,3,7,4) =727+ (6-1) = 194.

ALGORITHM 2: Rank Permutation
begin
Re0O
for i1 to n do
Moves « |{j:j<i and n1[j] < [}
if R odd then

remainder <~ Moves
else

remainder « i — 1 —Moves
R « i'R + remainder
Rank(m) « R
end.

To unrank M, the algorithm is reversed.

ALGORITHM 3: Unrank Permutation

begin
for j<1 to n do
n[j] <0
PeM;
for j<n downto 1 do
R&«P mod j
Pe|P/j]
if P odd then
ke0
Dir«1
else
ken+1
Dir « -1
Ce0
repeat
k « k + Dir
if nt[k] =0 then
CeC+1
until C=R+1
n[k] «j



UnrankM) <=
end.

In fact, Algorithms 2 and 3 have a theoretical consequence.

THEOREM 1.2 Every integer k satisfying 0 <k <n!—1 can be uniquely

represented as

n
k = X ()b

i=1
where b; satisfies 0<b,<i-1.

Proof Algorithms 2 and 3 establish a one-to-one correspondence between
permutations of n and sequences (b,,...,b;) where 0 <b,<i. Iterating the
recurrence relation (1.1) for Rank(r) gives the theorem.

Permutations of n can be thought of as one-to-one functions from the set [n] =
{1,2,...,n} toitself. Recall that the product of two permutations of n is their
composition as functions on [n]. Soif n= (5,4,1,3,2) and pu=(3,5,1,4,2),
then o =(1,2,5,3,4) because

w
la
—

wm oA W N
l:i:i:itir
la = |2 =
B T )

Any permutation of [n] can be written as a product of disjoint cycles in cycle
notation. For = (3,5,1,4,2), we have ©t = (13)(25)(4). Note that any
1-cycle (acycle of length one in w) corresponds to a fixed point of x. In the
example 7(4) =4 is a fixed point. A transposition is a permutation with exactly two
points that are not fixed. Thus a transposition fixes all but two points, say j and k,
which form a two cycle (jk) of ®. An adjacent transposition is a transposition of the
form (jj+1). We now note that Algorithm 1 also has a theoretical consequence.
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THEOREM 1.3 Every permutation can be written as a product of adjacent
transpositions.

Proof This follows from Algorithm 1, in which each permutation is obtained from its
predecessor by an adjacent transposition.

So far we have used two representations of permutations: one-line notation T =
(3,5,1,4,2) and cycle notation T = (1 3)(25) (4). Another notation is two-line
notation

12345
35142

which lists 7; under i. There are several other ways of identifying permutations.
One example, which will be considered in Chapter 2, is the inversion sequence of T.
Let ©=(x,,...,m,). The inversion sequence of &, (a;,...,a,), is defined by a
=|{j:j<i and > m;}|. In the example above, the inversion sequence is
0,0,2,1,3). Clearly 0<a<i-1. In Exercise 7 you are asked to reconstruct w

from its inversion sequence. We shall return to this statistic on permutations in
Chapters 2 and 3.

§1.2 Subsets

One of the fundamental building blocks of combinatorics is the binomial
coefficient. Recall that the number of k-element subsets of the set [n] =
{1,2,...,n} is the binomial coefficient

( ) k! (n— k)v

Recall also that the binomial theorem is

@1 x+y)" = Z ( )k nk

where n is a non-negative integer and x and y are complex numbers.
There are many formulas relating binomial coefficients. Frequently these
formulas have combinatorial interpretations as bijections. A bijection between two sets
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A and B is a function f: A — B which is one-to-one and onto. Clearly if there is a
bijection between two finite sets, those two sets contain the same number of elements.
In fact, we have already seen a bijection: the Rank function in §1.1. The symmetry
relation

e () = (alv)

can easily be shown by a bijection. Let A be the set of k-element subsets of [n] and
let B be the set of (n—k)-element subsets of [n]. Complementation is a bijection
from A to B, and (2.2) is established.

In this section we shall use the Pascal triangle property of the binomial
coefficients to list all k-element subsets of [n]. Itis

ey (1) = 2D+ (6D,

A bijective proof of (2.3) is easy. Split the set of k-subsets of [n] into two sets:
those containing 1 and those not containing 1.

A k-element subset of [n] is a k-tuple (v}, V,,...,Vv,) where v;<v,<...
<v,. Our listing uses lexicographic (dictionary) order on such k-tuples. We say that
(V1> Vg5 ..., V) is before (w;, w,, ..., w,) inlexicographic order if, for some
This is the
same ordering that words with distinct letters have in a dictionary. So the 3-element
subsets of [6] in lex order are 123, 124, 125, 126, 134, 135, 136, 145, 146,
156, 234, 235, 236, 245, 246, 256, 345, 346, 356 and 456. The first 10
subsets on this list begin with a 1. They are listed according to lex order of the two
element subsets of {2,3,4,5,6}. The remaining sets are listed in lex order for the
three-element subsets of {2, 3, 4, 5, 6}. Thus the lex list is given exactly by the
combinatorial proof of (2.3).

There is another order closely related to lex order, called colexicographic (colex)
order. This order is defined by reading the k-tuple (vy,V,, ..., V,) from right to left
instead of left to right. The colex list for 3-element subsets of [6] is 123, 124,

134, 234, 125, 135, 235, 145, 245, 345, 126, 136, 236, 146, 246, 346,

156, 256, 356 and 456. Itis clear that this list is just the colex list for 3-element
subsets of [5], followed by the colex list of 2-element subsets of [5], with 6
adjoined. Again itis a version of (2.3). In fact, the lex list can be found from the
colex list (see Exercise 10).

1<j<k-1, (vl,vz,...,vj)=(w1,w2,...,wj) and Vi1 < Wi
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The algorithm for the colex list is based upon a successor algorithm. The subset
which follows (v, v,, ..., V) in colex order is obtained by finding the smallest j

such that v +1<v,

i1 (or j=k if there is no such j), replacing v; by v;+1,

and replacing (v{, vy, ... ,vj_l) by (1,2,...,j-1).

ALGORITHM 4: Subset List
begin
for i1 to k do
v i
Vi Entl
Done « false
while not Done do
Print(v)
if vy<n-k+1 then
j&eo0
repeat
jej+1
until Vi >Vt 1
Vi €V +1
for ie—1to j—1 do
v i
else
Done ¢ true
end.

To find Rank(v,, v,, ... , V;), note that (v, v,, ... , V) is preceded by all
k-element subsets of [v, — 1], and by all k-element subsets (\71, ;2, ey ;k ),
where (;1, ;2, vees ;k_l) precedes (v, Vy, ..., Vy_y) inthe colex list of

(k—1)-element subsets and ;k =v,. Thisis
-1
24)  Rank(Vpes vy) = (ka ) + Rank(v,..., Vi ).

For example, if (v{, vy, ..., V) =(3,4,7) c[7], Rank(3, 4, 7) = 25 since itis
preceded by



10

123
456

127
237

147
247

} 3-element subsets of [6]
} 2-element subsets of [3]

} 1-element subsets of [2]

()-()-()-

ALGORITHM 5: Rank Subset

begin
Re0
forie— 1tokdo

R<R+ (Vii"l)

Rank(v) «R
end.

Algorithm 5 shows that Rank is a bijection from (v, v,, ..., v;) with
1<vi<vy<...<v <n totheset [N-1] U {0},

N- (k)

so that we have proved the following theorem.

THEOREM 2.1 Any integer m satisfying

osms( ) -1

can be uniquely expressed as
k
n- 2 ("7)
i=1 1

for some positive integers satisfying 1<v, <v,<... <V <n.
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To find Unrank(m) for a given k and find the largest binomial coefficient (})
thatis <m. Then put v, =i+ 1, subtract that binomial coefficient from m, and

repeat with k replaced by k — 1.

ALGORITHM 6: Unrank Subset
begin
Réem
for i <k downto 1 do
pei-1
repeat
pep+l1

until (11)) >R

ReR- (7] 1)
Vv, D
Unrank(m) « v
end.

Note that the condition 1 <v, <v,<...<v,<n is not immediately obvious

from Algorithm 6. We know that it holds because Unrank is the inverse function of
Rank. You are asked to verify this condition in Exercise 11.

§1.3 Integer Partitions

The third combinatorial object we consider is a partition of an integer. A
k-tuple of positive integers A = (A,, ..., A,) is an integer partition of n if A, + A,
+...+A =n and A, 2 A, 2... 2\ 21. The number of parts of A is k. An
example of a partition of 12 into 6 partsis A =(4,2,2,2,1,1). Alternatively, we
can completely describe A by giving the number of times that a part i occurs, called
the multiplicity of i. In this notation A = 4! 23 12, because A hasone 4, three 2's
and two 1's.

A useful way of picturing a partition is an array of squares, or cells, left
justified, in decreasing order. For example, 4! 2312 is given by
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Such diagrams are called Young diagrams or Ferrers diagrams.

The conjugate partition of A, denoted A, is the partition obtained from A by
interchanging the rows and columns of the Ferrers diagram of A. In other words, just
transpose the Ferrers diagram of A. For A =4123 12, A'= 6! 4! 12. Itis clear that
the map conj: A — A' gives the following theorem.

THEOREM 3.1 The number of partitions of n with k parts is equal to the number of
partitions of n whose largest part is k.

Proof The map conj takes the first column of A to the firstrow of A'. Soif A has
k parts, the largest part of A' is k. Because two applications of conj yields the
identity map, conj is a bijection.

The listing algorithm for partitions uses reverse lex order. Given A=
Ay 5h) and p=(H), Ky, ..., Hy), Wesay A precedes | if, upon reading
left to right, the first entry i for which 7Li # |, satisfies li > I, . Thus, the reverse

lex listfor n=7 is

61
52
512
43
421
413
321
322
3212
314
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21
2213
21°
1.

Algorithm 7 uses the multiplicities (m;, m,, ..., m,) of the parts
(®15P ---»Py) todescribe the partition A. We require that m;#0 and that p, > p,
>...>p,. Thus, the vectors (m;, m,, my, m,)=(2, 1,4, 1) and (p;, Py, P3, P4) =
(6,3,2,1) correspond to 623124 11, apartition of 24. The number of parts of the
partition is kept in the variable r.

Given A, what is its successor? Find the smallest part p of A whichisnota
1. Then use p and all of the 1's to create as many parts of size (p—1) as possible.
The "leftovers" become one part. For 54214, p=4 and we change 4 14 to 322.
So 54322 follows 54214,

ALGORITHM 7: Integer Partition List
begin
p;<n
m; « 1
re1
Done « false
while not Done do
Print(A)
if p.>1 or r>1 then
if p,=1 then
S &Py +my
ker-1
else
S & p,
ker
wep—1
u ¢« Ls/wJ
vés mod w
m, < m, —1
if m, =0 then
kl «k
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else
klek+1
m, <u
pkl «—w
if v=0 then
rekl
else
My, &1

Py €V
rekl+1
else
Done - true
end.

One can ask how to construct the Rank and Unrank functions and if they give
explicit representation theorems, such as Theorems 1.2 and 2.1. Since the list is
reverse lex, it might make sense to count the partitions which follow the given partition
and subtract that number from p(n), the total number of partitions of n. Let S(A)
denote the number of partitions which follow A. Certainly all partitions of n whose
largest part is less than 7\.1 will follow A. Let p(n, k) denote the number of

partitions of n whose largest partis <k. Then
(3.1) SO =p(n, &) + SAY)

where

(32 A= Ay M.

Iterating (3.1) gives the following theorem.

THEOREM 3.2 Any integer i satisfying 0 <i<p(n)—1 can be uniquely
represented by

k
i= 'Zl P(nj, }\'])
j=

for some sequence of positive integers n2A 2,2 ... 2\, 21, where n; =

n—(x1+x2+...+xj_l), n,=n
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Unfortunately, there are no simple closed formulas for p(n) or p(n, k).
However, the p(n, k) can be computed via a recursion, as can p(n). In Exercises 13
and 14 we ask you to give these recursions and the Rank and Unrank algorithms.

In §4.1 we shall give a more efficient method for computing p(n). In §3.3 we
give bijective proofs of several partition theorems. There are also a number of
exercises in this chapter and Chapter 3 concerning partitions.

§1.4 Product Spaces

Suppose we need a list of all of the subsets of [n], not just the k-element
subsets. We could use Algorithm 4 for k=0, 1, ..., n and paste the lists together.
In this section we shall give a more natural listing using product spaces. The number
of subsets of [n] is 27, which is the size of the n-fold Cartesian product {0, 1}°=
{0,1} x... x {0, 1}. The reason is clear. There is a bijection between all subsets
A c[n] and all n-tuples of O's and 1's. For example, {3, 4, 6, 8} — [9]
corresponds to the 9-tuple (0,0,1,1,0,1,0,1,0).

A Gray code G is alist of the elements of {0, 1} such that two adjacent
n-tuples differ in exactly one component, including the first and last n-tuples.
Another description of a Gray code is a Hamiltonian cycle in the n-dimensional cube.
From the bijection, a Gray code is equivalent to a list of the subsets of [n], where two
adjacent subsets differ by only one element. For n =3 an example of such a code is

0,0,0)
0,0,1)
©,1,1)
0,1,0)
(1,1,0)
1,1,1)
(1,0,1)
(1,0,0).

A Gray code can be constructed inductively. Suppose G(n) is one such code
for [n]. To construct G(n+1), inserta O before each of the n-tuples on the list
G(n). Follow this list by G(n) backwards, with 1 inserted before each n-tuple.
The example above is G(3) with the initial condition G(1) =0, 1.

More generally, we shall give an algorithm for the n-tuples in
{0,1,...,m-1}x{0, 1, ... ,my~-1} x ... x {0, 1, ... , m_—1}, for positive
integers (m;, m,,..., m ). Again two adjacent n-tuples will differ in exactly one
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component.

The main idea for Algorithm 8 is the same as Algorithm 1. This time component
i of the n-tuple (v;) will increase and decrease from 0 to m; — 1. We use the set A
to indicate which components are changing. The "direction" vector d,d,, ..., d)
indicates whether a component is increasing or decreasing. The largest active
component is used, just as in Algorithm 1 the largest active digit is used. The set B
keeps track of those i such that m, = 1. This set is made permanently passive.

ALGORITHM 8: Product Space List
begin
for i1 to n do
v; <0
de1
A« B°
Done « false
while not Done do
Print(v)
if A#Q then
Done « false
p « max{i:ieA}
VeVt dp
if vp=mp—1 or vp=0 then

dp‘_‘dp
A< A-{p}
A«<Au({p+1,...,n}NB)
else '
Done « true
end.

It is clear that Algorithm 8 will list all (0, v,, ..., v,) and then change v;=0
to v; =1 when A ={1}. The next part of the list (for v, = 1) will be the v, = 0
list backwards. The algorithm continues in this way. For m; =m,=...=m, = 2,
Algorithm 8 gives the Gray code G(n).

There is an unexpected bonus from Algorithm 8. If we take m; =1, the product
space will have n! elements. This list is precisely the inversion sequence list of the
permutations in Algorithm 1.
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The Rank algorithm is very similar to Algorithm 2. Let
“4.1) r, = Rank(v, ..., v).

This time the "clumps" have size m,, from the last component v, ranging in
O<v,sm, -1. So (vj,...,v,) has m r,_, n-tuples in clumps preceding it. The
direction d for the clump of (v, ..., v,) depends upon the parity of r,_;. We
have

m v, -1ifr , isodd

“4.2) r,=mr ,+

Vo if r | iseven.

ALGORITHM 9: Rank Product Space

begin
RO
for i< 1 to n do
if R odd then
Cem—v—-1
else
Cevy
Re&mR+C
Rank(v) «R
end

ALGORITHM 10: Unrank Product Space
begin
S«R

for i «<n downto 1 do
vi(—S mod m,

S | S/my|
if S odd then
viem—v,—1
Unrank(R) < v
end.
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§1.5 Set Partitions

A set partition is analogous to an integer partition. Instead of writing the integer
n as a sum of positive integers, we write the set [n] as a disjoint union of subsets.
These disjoint subsets of [n] are called blocks of the set partition. There are 15 set
partitions of [4]. They are

1234 12-34 14-2-3
123-4 13-24 23-1-4
124-3 14-23 24-1-3
134-2 12-3-4 34-1-2
234-1 13-2-4 1-2-3-4.

The number of set partitions of [n] is called the Bell number B,. The number
of set partitions of [n] with k blocks is called the Stirling number of the second kind
S(n, k). (We shall discuss the Stirling number of the first kind in §3.4.) So we see
that B, =15 and S4,1)=1, S(4,2)=7, S(4,3)=6 and S(4,4) =1.

There is an analogue to Pascal's triangle (2.3) for the Stirling numbers of the
second kind. Itis

(5.1) S, k) =S —-1,k-1)+kSh - 1, k).

The bijective proof of (5.1) is easy. If ne [n] lies in a block by itself, the remaining
blocks form a set partition of [n—1]. Otherwise n lies in one of the k blocks of a set
partition of [n-1].

We shall use another bijection to list all set partitions of [n]. A restricted
growth function on [n] (or RG function) is a vector (v}, vy, ..., Vy) satisfying v,

=1 and v;<max{v;,..., v, ;}+1. The 15 RG functions on [4] are

1111 1211 1223
1112 1212 1231
1121 1213 1232
1122 1221 1233
1123 1222 1234.

THEOREM 5.1 There is a bijection between RG functions on [n] and set partitions
of [n].

Proof Let A be the set of all RG functions on [n], and let B be the set of all set
partitions of [n]. We define a map @ : A —» B which is the required bijection. Put
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D((vy, Vg, -5 V) =S, US, U...US,, where §;={j: vj= i}. The map @
certainly maps A to B. We must verify that it is one-to-one and onto. To do this,
we explicitly construct the inverse functionto @, @ : B — A.

Let S, US,U...US, € B be aset partition. Assume that the blocks have
been ordered in the following way: 1€ S,, min{i € [n] - S;}€ S, and
min{ie [n]-S,US,U...U Sj_l} € Sj. This just means that we order the blocks
so that block Sj contains the smallest element not in preceding blocks. We define
DS, US, U...US) =(Vy, V..., V) by v;=j ifandonlyif ie Sj. We must
check that (vy, vy, ..., v;) is an RG function. Clearly v, =1. Let i€ [n] and put
m=max{v,, vy, ..., Vi1 }. Then [i-1]c S, US,U...US_ and either
ie SUS,U...US  or i isthe smallest number outside this union. In the first
case v;<m, while in the second case i is in the block Sp41» Which means that
v;=m+ 1. This verifies that v; < max{v,,...,v,_;}+ 1.

It is now easy to verify that ® o® and @ o @ are identity mapson B and A
respectively. This implies that @ is a bijection.

Algorithm 11 lists all RG functions on [n] in lex order. We begin with 11...1
and always increase an entry by one. We find which entries can be increased by one
and still retain the RG condition. So we record the "legal” maximum m, =

max{v;,...,v;} + 1.

ALGORITHM 11: Restricted Growth Function List
begin
for i1 to n do
v;e1
m; 2
Done « false
while not Done do
Print(v)
jen+1l
repeat
jej-1
until vj# m,
if j>1 then
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vj<—vj+1

for i<j+1 to n do
v;e1
if vy =m then
m; ¢ m; + 1
else
m; & m
else
Done « true
end.

The Rank and Unrank algorithms are more difficult. We need the number of
ways of "finishing" an RG function with a specified beginning. This is because the
number of predecessors of (v}, v,, ..., Vv,) is

n vi-l
i=21 El AV, o 5 Vg)
where Aij(vl’ Vy .-+, Vp) i the number of RG functions which begin
(V1> Vs eees Vi pp ) Tyvo observations can be made about Aij(vl’ Vs eee s V).
First, it depends only upon i and the largest value in {vi V95 --.» ¥, j}. Second,
j<max{v,,v,, ..., v; ;} by the RG condition on v, so max{v,, vy, ..., V;_;,j}

=max{v;, vy, ..., V;_1} = u;. Thus, we may rewrite the above expression as
n
X dgiy,(vi-D
i=1

where d, is the number of ways of "finishing" the last m positions if t is the
maximum of the first n—m positions.
Finally, note that

52)  dy=tdy,, +d

m,t m—1,t+1

because we may place either t+ 1 inthe n—m+ 1 position, leaving m - 1
positions to fill, with largest value now t+ 1; or we may place 1,2,...,t inthe n—
m+ 1 position, leaving m — 1 positions to fill, with largest value still t.
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ALGORITHM 12: Rank Restricted Growth Function
begin
u; 1
for i< 2 to n do
if u,_; >v, ; then
U e
else
U €< Vi
Re0
for i «<n downto 1 do
teu,
ReR+d; (vi—-1)
Rank(v) <R
end.

ALGORITHM 13: Unrank Restricted Growth Function
begin
u; 1
v, &1
for i<2 to n do
teu
if y_y'd, ;<R then
viet+1l
R&R- t'dn_i.t
U v,
else
v | R/d, 0]+ 1
R<R mod d
y et
Unrank(R) < v

n—-it

end.



22
Notes

The books by Nijenhuis and Wilf [N-W]; Reingold, Nievergelt and Deo
[R-N-DJ; and Williamson [Wi] contain more material in this area. Some of these
books also explicitly give programs. It is possible to give loop-free versions of some
of the listing algorithms in this chapter. For examples, see [Eh] or [Jo-Wh-Wi]. Gray
codes are important in computer science and were first described in [Gra]. The
version given here is called a binary reflected Gray code. Restricted growth functions
were studied extensively by Milne [Mi]. Exercises 4 and 5 below are from [R-N-D].

Exercises

1.[1] a) How many permutations lie between the permutations 1572634 and
7241365 in the Johnson-Trotter algorithm?

b) Find the millionth permutation (thatis, Unrank(999999)) of [12] in
the Johnson-Trotter algorithm.

2.[2C] Give the listing algorithm for the lex list of permutations of [n] of length
k. Upon what recurrence formula is this list based?

3.[3] a) Find a Rank and Unrank formula for permutations listed in lex order.
b) Give a bijective proof of 1(1!)+22) +...+n(m!)=m+1)!-1.

¢) Prove thatany 0 <m < (n+ 1)! — 1 can be uniquely expressed as

n
m= 2 ajil
i=1

where 0<a; <i.

4. [3] A permutation 7 is called even if T can be expressed as a product of an
even number of transpositions. Suppose Rank(m) =M in lex order, where M =d, 1!

+d,2!+...+d,_(n-1!, 0< dj <j. Show that m is even if and only if d;+d,
+...+d,_, is even. What is the corresponding result for the Johnson-Trotter

algorithm?
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5.[3C] Write a program to find, for various values of n, the number of
permutations ® of [n] which satisfy m,—i=m; - j mod n implies i=j. This
condition means that the numbers - j mod n, 1<j<n, are all distinct. An

example of such a © is 321. Formulate and prove as many theorems as you can.

6.[2C] Write a program to generate random permutations of n. Use it to estimate
the answer to Exercise 5 for various values of n.

7.12] Show that for any given sequence (a;, ..., a,), 0<a; <i-1, thereis

exactly one permutation whose inversion sequence is (a;, ..., a,).

8.[2] Give bijective proofs of
n-1 n

n (o) = x ()
and

(n +1 _ i ( m)

k+1 mox ‘K77

9.[1] What is the rank of (2, 3,4,7,9) for n=9 in the list generated by
Algorithm 4? What is its successor?
10.[2] Prove that if the k-element subsets of [n] are listed in colex order, and j
is replaced by n+ 1 —j in each subset, the resulting list is lex order backwards. Use
this to give a Rank and Unrank procedure for lex order. Do Exercise 9 for this list,
where n = 10.

11.[2]  Show that v, <v,<...<v, in Algorithm 6.

12. (3] Let Ag Ay, ..., Ap, be the first m k-element subsets of [n] in colex
order. Let [T={B:B|=k-1, BCc A, forsome 0<i<m-1}. If

K
m= X (vi.—l)

i=1 1

and v;=1i for i= 1,2,...,r, show that
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k
v.—1
mr= 2 (.',).
i=r+l ( i-1 )
For example, if n=5, k=3 and m =35, the first five subsets are 123, 124, 134,
234 and 125, T = {12, 13, 23, 14, 24, 34, 15,25} and [[1/=8.

13. [3C] Give the Rank and Unrank algorithms for Algorithm 7. Find
Rank(3323 14).

14.[2] Give arecursion for p(n, k), the number of partitions of n whose largest
partis <k. Whatis p(n) in terms of p(n, k)?

15.[3C] Write a program to list all partitions of n with distinct parts. How many
have an even (odd) number of parts? Formulate your conjectures and prove as many
as you can.

16. [3C] Write a program which lists all partitions of n
a) whose even parts are distinct;
b) all of whose parts have multiplicity <3.
Formulate a conjecture and prove it.

17. [3C] Write a program which lists all partitions of n
a) with an odd number of parts;
b) with an even number of parts; and
c) into distinct, odd parts.

Formulate a conjecture and prove it.

18. [3C] Write a program which lists all partitions of n

a) into parts which are congruentto 1 or 4 mod 5;

b) into parts whose differences are at least two; and

¢) into distinct parts, where each even partis > twice the number of odd
parts.
Investigate your data. If a) is replaced by 2 or 3 mod 5, can you find an
appropriate b)?

19.[11 What is the last n-tuple on the list G(n)?

20.[2] Suppose 0<i<2%-1, andlet i=a _,a, _,...a, be the base 2
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representation of i. For the Gray code G(n), what is Unrank(i) in terms of
(@, 1 8y 95 - 5 39)?

21.[2]  Use Algorithms 9 and 10 to state and prove a representation theorem for
integers i satisfying 0 <i<m;m,-'m - 1.

22.[2]  Show that Algorithm 8 for m; =i produces the permutation list of

Algorithm 1 by the inversion vector.

23.[2] Give a bijective proof that the Bell numbers B satisfy
n
n
B, = kZ—O ( k)Bk

24.[1] Find Rank(1231142) in the lex list of RG functions.

25.[2]1 Give bijective proofs of
o (VG- GG
b) Sn+1,m+1) =k=£ (I:)S(k,m).

26.[2] Give a bijective proof of Vandermonde's theorem
i

Z (DG - ).

27.[3] What is the representation theorem for integers i satisfying 0<i<B -1
which follows from Algorithms 12 and 13?



CHAPTER 2

Partially Ordered Sets

Partially ordered sets, or posets, appear in many branches of mathematics, but
they are fundamental in combinatorics. For example, many of the important
enumeration techniques (generating functions, inclusion-exclusion) have their
theoretical foundation in some underlying poset.

In Chapter 1 we considered five different combinatorial objects. In this chapter
we shall describe a poset for each of the five objects. For integer partitions we give
two different posets, giving a total of six posets. The listing algorithms can be used to
establish some non-trivial properties of these posets, as we see in §§2.2, 2.3 and 2.4.
We concentrate on the Boolean algebra, and lex order from Chapter 1 will be crucial in
developing its properties.

§2.1 Six Posets

A partially ordered set (P, <) is a set P with an order relation < which has
the following properties:

i) a<a forall aeP,
(ii) a<b and b<a implies a=b, and
(iii) a<b and b <c implies a<c.

We will consider only finite posets. A number of methods can be used to
describe a poset: one is to maintain a list of all pairs (a,b) with a <b (this means a
<b and a#b). We say that b covers a if a<b and thereis no c satisfying a <
¢ <b. Weshall write a<-b for b covers a. Because of property (iii), we need
only maintain a list of all pairs (a, b) with a <- b. These are called the covering
relations of P.

We can visualize a poset as a graph with the "largest" elements of P as vertices
at the top, the "smallest" at the bottom, and the other elements of P distributed
appropriately in between. An edge connects a and b if and only if a <- b.
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As an example, suppose P = {a, b, c, d, e, f} and the covering relations in P
are

{(, a), (c, b), (¢, a), (¢, d), (f, ¢), (£, €)}.

N
N

Such a diagram is called a Hasse diagram.

We can draw the poset as below.

We now describe the posets for the objects of Chapter 1.

A. Permutations Although several orders are possible, we choose one which is
closely related to Algorithm 1. Here are the covering relations. Suppose T and ©
are permutations of [n], and let = (n;, ..., %) in one-line notation. We say ©
Thus,

roughly speaking, ® has more disorder than 6. As we move up this poset, we create
more disorder. We call this poset the inversion poset and refer to it as &n. The

< if o can be obtained by transposing 7; and w,,,, where W, >, ;.

Hasse diagram of . 4 is given below.

4321

3421 4231 >( 4312
3241 ><3412 4213 4132

2341 3214

3142 2413 %\4123
N/ N\ A~ N/

2314 3124 2143 1342 1423

e

2134\\\1374 1243

1234
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B. Subsets The subsets of [n] are naturally ordered by set inclusion. This poset
is called the Boolean algebra (even though a Boolean algebra is a special kind of poset,
of which this is one example). We denote it by B . The Hasse diagram for B, is

given below.

C. Set partitions The set partitions of [n] are ordered by reverse refinement.
Thatis, *={B,...,B;} < {A, ..., Aj} =0 if j=k+1 and for some p, m

and t, Bp = A, UA, withall of the other blocks of © and © identical. Thus the

covering relations are obtained by splitting one block into two blocks, for example
147-29-368-5 <- 147-29-38-5-6. (Note that we have dropped the set symbols { }.)
Call this poset the partition lattice and denote it Pn. The Hasse diagram of P, is

given below.

1-2-3-4

12-3-4  13-2-4 14-2-3 1-23-4 1-24-3 1-2-34

123-4 12-34 1243 134-2 13-24 14-23 1-234

1234
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D. Integer Partitions There are two common posets associated with integer
partitions.

D1. For the first one, take any partition A and let P be the set of all partitions
whose Ferrers diagram is contained in the Ferrers diagram of A. Order these
partitions by containment of their Ferrers diagram. This poset is called Young's lattice
and is designated Y,. The Hasse diagram of Y,,, is given below.

332
/\\

322 331
/\/\\
221 311 32
211 22 31
111\/2}\/3
11 \\_1______,_,.,-— 2
|
1%}

D2. The other order is called dominance. Let P be all integer partitions of n. We
say that A= (A, ... ,Ay) dominates p=(y, ..., W) if A+ +A;2 i+ +
M, forall t>1. (Weappend O partsto A and p for t>k or t>j) The posetis
called the domination lattice and is denoted . The Hasse diagram of D, is given

below.
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421
331
4111 |

322

3211

/N

31111 2221

22111

211111

1111111

E. Product Spaces Since there is a bijection between all subsets of [n] and the
product space {0, 1}, the Boolean algebra Bn can be identified with {0, 1}°. We
generalize thisto P={0, 1, ... ,m~-1}" Giventwo n-tuplesin P, v=
(Vy5---»Vy) and w=(w, ..., W), wesay that v<-w if v and w agreein all
but one entry, and in that entry v;+ 1 =w,. We call this poset a product of chains,
and denote it C . The Hasse diagram for C,, is given below.
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/N

@n G2

N\

2,00 (1,1) (0,2

NN

(1,0 O 1

N

0, 0)

‘We now give several important properties of a general poset P. We may then
ask which of our six posets has each of these properties.

(1) Ranked A poset P is called ranked if each element a € P can be assigned a
non-negative integer, rank(a), sothat a <- b implies rank(b) = rank(a) + 1. The set
L, ={ae P:rank(a) =i} is called the set of rank i, or a level set. This rank function
should not be confused with the Rank function of Chapter 1. The inversion poset &n
is ranked by the number of inversions of m, |{(i,j):i<jand ;> 7tj}|. Clearly this
number is the sum of the entries of the inversion vector of w. In the other posets, Bn
is ranked by the size of the subset, P by the number of blocks, Y, by the integer
being partitioned and Cnm by the sum of the entries in the n-tuple. The poset ﬁn
is not ranked for n27.

(2) Rank unimodal A finite ranked poset P is called rank unimodal if w; = [Lj|,
w;=0 for i>m and wy<w; <...<w, 2w, ,2...2w,_ forsome k<m. Itis
clear that the Boolean algebra B is rank unimodal. It can be shown that & , ¥
and Gnm are also rank unimodal. Unimodality is often difficult to prove. The case
of Y, for arbitrary A is unsettled although for A =n™, Young's lattice is rank
unimodal.

(3) Rank symmetric A ranked poset P is called rank symmetric if there is an m
such that w;=0 for i >m and w;=w,; for 0<i<m. Theposets L, C__

and ]3n are rank symmetric, while Pn, ";]k and Dn are not in general.

(4) Order symmetric A poset P is called order symmetric if the poset P
obtained by reversing the order of P is isomorphic to P. Another way of saying this
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is that if the Hasse diagram of P is turned upside down, it looks the same. The
posets { , Bn, C,, and D are order symmetric, while P and Y, are not.

(5) Lattice A poset P is called a lattice if every pair {a, b} of elements of P has
a least upper bound (called the join of a and b, avb) and a greatest lower bound
(called the meet of a and b, aab). A least upper bound (greatest lower bound) of
{a, b} is an element ceP which is an upper (lower) bound of {a,b},a<cand b<c,
and below (above) all other upper (lower) bounds. The following poset is not a lattice.

>m

o
o

X

Qs
(]

=

Each of the six posets is a lattice.

(6) Existence of maximum and minimum elements We say a poset (P, <)

has a minimum element 0 if O P and 0<a forall ac P. We say P hasa
maximum element f if Te P and a< 'f for all ae P. All of our six posets have
maximum and minimum elements.

(7) Sperner property If (P, <) is a poset, a subset S P is called

independent if for all a and b e S, neither a<b nor b <a. Sometimes such a set
is called an antichain. For a ranked poset, it is clear that the level sets L; are
independent sets. A finite ranked poset P has the Sperner property if the size of the
largest independent set is max{w,:i20}. This means that we can do no better than
to take the largest level set as our independent set.

For the Boolean algebra, the largest level number is the middle binomial
coefficient. A theorem called Sperner's Theorem states that the size of the largest
independent set of Bn is this binomial coefficient. So B ., has the Sperner property.
We shall prove this in the next section using lex order. It can also be shown that Cnm
has the Sperner property.

In the other posets the situation is less clear. It was conjectured by Rota in 1968
that Pn had the Sperner property, but 10 years later Canfield [Ca], using asymptotic

methods, showed that it does not. More recent research has shown that the first n for
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which Pn does not have the Sperner property is <N, where N = 1000.
The case of L is unsettled. For a general A, the case of ¥, is also open.
However, for A =n™ (the Ferrers diagram of A is an n x m rectangle), 'le has the

Sperner property. This is a recent theorem of Stanley ([Stal]), although it is implicit
in Pouzet [Po].

We summarize these results in the table below. You are asked to verify several
of these entries in the exercises. (A complete list of the pertinent exercises is given in
the Notes.)

Ranked g:]rlr(mdal g;rr;kmeMc (S);dn?metric Lattice 0|1 Is’rp:pn;iy
4, yes yes yes yes yes | yes|yes| ?

n | yes yes yes yes yes | yes|yes| yes
P, | yes yes no no yes | yes|yes| mno
Y, | ves ? no no yes | yes|yes| ?
Dy no no no yes yes | yes|yes| no
Coml| Yes yes yes yes yes | yes|yes| yes

§2.2 Matching in the Boolean algebra

In this section we shall prove that the Boolean algebra B has the Sperner
property. We shall use the lex order list of subsets given in Chapter 1. The basic idea
of the proof is that lex order naturally gives a matching in Bn. This matching gives a
decomposition of Bn into chains. From the chain decomposition of Bn it is easy to
establish the Sperner property. First we need to define these terms.

A chain C in a finite poset (P, <) is a sequence of elements
a,<a,<...<ay. Thelength of the chainis m. For example, & c{1,3}c

{1,2,3,5} isachainin BS‘ Two chains are called disjoint if they have no elements
in common. A chain decomposition of P is a partitioning of P into a set of disjoint
chains, {C;}. Clearly, we could let each C; have exactly one element and have a
chain decomposition of P into [P| chains. The next theorem says that the existence
of special chain decompositions of P implies the Sperner property.
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THEOREM 2.1 Let P be afinite ranked poset with a largest level set L. If P hasa
chain decomposition {C.}, and each C; contains one element of L, then P has

the Sperner property.

Proof Let M be the size of a largest independent set S. Every elementof S must be
on a different chain of {C.}. Thus, M <[{C;}|. Sinceeach C; has exactly one

element of L, [{C;} =Lyl

One way to produce such a chain decomposition is to construct a match between
adjacent level sets. Suppose [Lj| <|L, |. A function f:L,—> L, iscalleda

matching from L; to L, ; if f is an injection (this means f(a) = f(b) implies a =b)
and a<f(a) forall ae L, Similarly define a matching from L, to L; if |L;,,|<
Lyl

THEOREM 2.2 Suppose P is rank unimodal and there is a matching between any
two adjacent levels of P. Then P has the Sperner property.

Proof Since P is rank unimodal, L |<[L,<...<[L |2...2|L | for somek. Let
f,:L,_; = L, be amatching for i=1,2,...,k, andlet g;: ;- L; ; be a matching
for i=k+1, ..., m. Delete from the Hasse diagram of P all edges except those of
the form {a, f,.;(a)} or {a, g,(a)}. The new Hasse diagram is a union of chains,
each of which must contain an element of L,. These chains are naturally also chains

in P, so Theorem 2.1 implies that P has the Sperner property.

The proof of Theorem 2.2 gives us an algorithm to construct the chain
decomposition of P which satisfies the hypothesis of Theorem 2.1. We merely
identify those chains in the proof. Suppose L,# &, and choose any ae L. Let

ag=a, a; =f,(ap), ..., 3, =fi(a,_;). We now have a chain a;< a; < ... < a,.
If a, is in the image of g,,,, let a,,; be the unique element in L, such that
84+1(@y,1) = 3. We continue in this manner until either
(a) weencounter an a; which is not in the image of g; ;, or
(b) wereach a eL .

Let C, =a;< a; < ... < a be this chain. Now repeat the preceding

construction until the elements of L, are exhausted. Then continue the construction
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by choosing a € L, —f;(Ly) and moving up the chain of matchings. This process is
continued at all levels. After we complete this process at level k, we have obtained
the appropriate chain decomposition.

Next we apply Theorem 2.2 to the Boolean algebra Bn. We need a matching
between any two levels, Lp to Lp+1. Let A;, A,, ... be the p-element subsets of
[n] listed in lex order. Let B, B,, ... be the (p+1)-element subsets of [n] listed in
lex order. How can we match these sets? One idea would be to match A to the first
Bj such that A, c Bj. Then match A, to the first unmatched Bj such that A, c Bj,
and continue. This is our next algorithm.

The set U is the collection of (p+1)-element subsets which have been matched.
The subroutines GetFirstSubset(k, A, b) and GetNextSubset(k, A, b) return the
first and next k-element subset in lex order. The boolean variable b is returned true
if the list is complete and false otherwise. This algorithm will list all the matched pairs
and all unmatched p- and (p+1)-element subsets.

ALGORITHM 14: Match to First Available

begin
Ue«O
GetFirstSubset(p, A, EndOfList)
while not EndOfList do
GetFirstSubset(p + 1, B, ListDone)
StopLoop « ListDone
while not StopLoop do
if AcB and B¢ U then
StopLoop ¢« true
else
GetNextSubset(p + 1, B, ListDone)
StopLoop « ListDone
if not ListDone then
PrintMatch(A, B)
U« Uu{B}
else
PrintNoMatch(A)
GetNextSubset(p, A, EndOfList)
GetFirstSubset(p + 1, B, EndOfList)
while not EndOfList do
if B¢ U then
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PrintNoMatch(B)
GetNextSubset(p + 1, B, EndOfList)
end.

It would seem remarkable that Algorithm 14 would work, that is, the function f
would be a matching. Yet the next theorem says that it does.

THEOREM 2.3 If p <[n/2], then f is a matching from L,to Ly, in B.If

p2[n/2], then £ is a matching from L, toL,inB,

Proof We approach this theorem by defining a completely new function ¢ which
satisfies its conclusion. Then we show that ¢ =f.

We shall write our p-element subsets of [n] as n-tuples of O's and 1's as
described in Chapter 1. These n-tuples can be pictured as lattice paths from (0, 0) to
(n,2p —n). Each digit in the n-tuple represents a step one unit to the right, and one
unit either up (a "1") or down (a "0"). For example, if

A={1,3,4,6,7,10,12,13,16,19} c [21],

we write it as (101101100101100100100) or graph it as the following.

Clearly there is a bijection between all such lattice paths from (0, 0) to
(n,2p—n) and the p-element subsets of [n]. Henceforth, we shall refer to this
lattice path (or graph) as the subset A itself.

Let a(A)=(a,(A), ay(A)) be the rightmost peak (absolute maximum) in the
graph of A. In our example above, a(A) = (13, 3). If ax(A) #n, then the edge
immediately to the right of o(A) must correspond toa "0". Let ¢p(A) be the
(p+1)-element subset of [n] obtained by changing that "0" toa "1". Note that to the
left of a(A), the graphs of A and ¢(A) coincide. To the right of a(A), the graphs
have the same relative position, but the graph of ¢(A) has been "lifted" 2 units.
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B (6 (A)
1a0 1

‘We now make a number of observations about ¢. We assume n = 1.

(1) Ifpc< [n/2], then ¢ is well-defined. Forif n is even, p <n/2 implies
2p—n<0 and the graph of A ends below the x-axis, and o (A)#n. If n is odd,

p<(n+l1)/2 implies 2p—n < 1. Since n is odd, 2p—n#0, thus 2p—n <0 and the
argument for n even applies.

@) If p2 [n/2], then ¢(A) is not defined if and only if o (A) =n.

(3) For asubset B, let B(B) = (B,(B), By(B)) be the leftmost peak of B.
Suppose that B = ¢(A) for some A. Then o(A) and B(B) = B(¢(A)) are the left
and right hand endpoints of the same edge. This is because ay(A) 2 y-coordinate of
every point left of c(A), and ay(A) > y-coordinate of every point right of c(A).

Then in ¢(A), the y-coordinate of the vertex to the right of 0/(A) must be >
y-coordinate of every point to its left and > y-coordinate of every vertex to its right.
The reader is encouraged to look at some examples and verify these remarks.

(4) It follows then thatif p= Ln/2J and |B|=p+1, ¢'1(B) will exist and can be
found by converting the edge immediately to the left of B(B) froma "1" toa "0".
The only case where this cannot be done is when BX(B) =0. Butif n is even,
p=n/2 implies 2p—n 20, so2(p+1)-n=>2. If n is odd, p 2(n—1)/2 implies
2(p+1)-n 2 1. In either case, (0, 0) # B(B).

6) Ip< Ln/ZJ and [B|=p+1, then ¢'1(B) does not exist if and only if B(B) =
0,0).

These observations prove that if p < [n/2], ¢ is a matching from Lp to Lp+1;
and if p=[n/2], ¢! is a matching from Ly, to L, To complete the proof of
Theorem 2.3, we must show that ¢ =f.

We proceed by induction in the p < [n/2] case. The p>[n/2] case can be
done similarly.

The first A in lex order can easily be shown to satisfy f(A) = $(A). So we can
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assume by induction that ¢(7\) = f(;i), forall A preceding A in lex order. We
know that there is at least one B available as a match for A, namely ¢(A). We need
not consider any B's further down the lex order list than ¢(A), for Algorithm 14
would select ¢(A) before them. So we assume that there is a B_which precedes
O(A) in lex order, which contains A, and which is still free (f~ 1(B) does not yet
exist).

Given such a B, let y denote the right endpoint of the edge e changed from a
"0" toa "1" toconvert A to B. Since B # ¢(A), Y# B(B), and we can consider
two cases.

Case1: vy precedes B(B).

B (B)
B
A
Y
B (B)
Y B
o'(B)

Then A and ¢‘1(B) will agree up to the edge before 7y, but A will have a
"0" along this edge while ¢‘1(B) will have a "1". So in lex order, <p'1(B) will
precede A. By induction, ¢‘1(B) has already been matched to f(¢_1(B)) = ¢(¢‘1(B))
=B, which implies that B is not free, a contradiction.

Case 2: v follows B(B). The graphs of B and ¢(A) differ at two places: to the
left of vy, (¢(A) hasa "0", B hasa "1"), and to the right of a(A), ($(A) has a
"1", B hasa "0"). First we show that a(A) must precede 7¥. Suppose not, so
a(A) follows y. Then B and ¢(A) agree up to the edge ¢ before y. The sets A
and ¢(A) differ only at the edge following 0a(A). (See the diagram below.)
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p@®) ¥
A
a(A) B
o(A)
p@®) Y
¢ a(A) B
A

Since B hasa "1" at e while A hasa "0", the graph of B must lie strictly
above the graph of A between y and o(A). The peak B(B) of B must therefore
lie above the graph of A at o(A). But v follows B(B) sothat B agrees with A at
B(B). This shows that ol(A) is not a peak of A, a contradiction.

Since we have just shown that o((A) precedes ¥, ¢(A) precedes B in lex
order. This contradicts our hypothesis that B_precedes ¢(A) in lex order. This
completes the proof that ¢ = f, and thus also completes the proof of Theorem 2.3.

§2.3 The Littlewood-Offord Problem

Littlewood and Offord [Li-O] asked the following question. Let p (x) bea

polynomial of degree n with complex coefficients,
n
p(x) = X a, xk
" k-0 ¢

Certainly p,(x) has n complex roots, and a smaller number of real roots. Now
consider the 2" polynomials obtained from p,(x) by arbitrarily changing the signs of
a,, 1<k<n. What is the average number of real roots of these 2" polynomials?

Littlewood and Offord showed that this average was rather small. In this section we
discuss a combinatorial problem which arose naturally in this context. The complete
solution to this problem is due to Kleitman (see [Gre-K1]). It uses the chain
decomposition of the Boolean algebra given in §2.2.
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Before stating the problem, we need another property of the chain
decomposition. Let P be a rank unimodal and rank symmetric poset, with ranks from
0 to m. We call a chain decomposition {C;} of P asymmetric chain decomposition
if each chain C; has the form

C: A<y << Ap,

for some j, where rank(a;) =i forall i, j<i<m-—j. This says that the chains are
symmetric with respect to the middle of the poset. The matching in Bn produces the
chain decomposition {C,, C,, C5},

123

12 13 23 G

where
C:9c{l}c{1,2}c{1,2,3},
C,: {2} c{2,3},

and Cy: {3} {1,3}

The matching f always gives a symmetric chain decomposition of Bn. You are

asked to prove this in Exercise 25.
The Littlewood-Offord problem is the following. Let {v,, ..., v } bea

multiset (repetitions are allowed) of vectors from RN such that [Ivil21 forall i.

Given a subset A c [n], define a new vector

Wy = 2 V..
A eA i

Clearly, as a multiset, there are 2% such vectors w,. How many such vectors can lie

in any sphere of diameter 1? The answer is the following theorem.

THEOREM 3.1 Let S be any sphere of diameter 1. Then the number of vectors w a
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from the origin which terminate inside S is <M(n), where

Mo = ().

Moreover, this bound is best possible.

Proof First we show that, in general, the bound cannot be decreased. Suppose all of
the vectors are the same, v;=v. Then wp =|A| v, and if |A|= Ln/2 g is fixed, wp

is always the same vector. So the sphere S centered at |n/2 |v contains M(n)
vectors. It does not contain any of the other wp because ||v]| 2 1.

The proof will mimic an inductive construction of the symmetric chain
decomposition of Bn, first given by deBruijn, Tengbergen and Kruyswijk
[deB-T-K]. Suppose {C;} is a symmetric chain decomposition of Bn. We need to
modify the subsets in these chains to create a symmetric chain decomposition of
B, Let Ei be the chain in ]3n 1 Which results from adding n+1 to each subset
of C,. Unfortunately, E?i is not a symmetric chainin B , . Let o, be the top
subset of E‘:i, and put D;= Ei -, and E;=C U, Itiseasy to see that D; and
E; are both symmetric chains in Bn 41+ Weclaim that {D;} U {E;} is a symmetric

chain decomposition of B ;.

123 1234 123

12 124 124 12

| |
1 14 14 1
I
2 4 4 @
C1 é1 Dl E1

Let B be any subset of [n+1]. If n+1 isnotin B, then Be C; for some i,
so e E;=C,ua, also. Otherwise n+l € B, and B - {n+1} € C; for some i.
If B—{n+1} is the top subsetof C;, then B=o, and Be E;=C;u . If

B—{n+1} is not the top subset of C;, then Be C; - o, =D;. So we have proven
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that all subsets B of [n+1] lie in one of the chains in {D;} U {E;}. Clearly these
chains are disjoint.

We now return to the Littlewood-Offord problem. The idea is to decompose the
2" vectors wp into M(n) blocks {B;}, 1<i<M(n), such that the distance
between any two vectors within a block B, is = 1. Then any sphere S of diameter
1 could contain, at most, one vector from each B,.

The blocks {B;} are built inductively just as the chains {C;} were built.
Suppose blocks {B;}, 1 <i<M(n), have been chosen for {v,,...,v,}. We define

new blocks for for the vectors {v,,...,v,,,}. The vector v, takes the place of

n+l
n+l in the symmetric chain decomposition of B . Let B;={t;, ..., t,}. Welet ﬁi
={t;+v

ptlr o B+ Yy +11» Which is analogous to the definition of éi. Next we

need a vector analogue of o, the top subset of Ei. This is the vector t + v,
where t_ is a vector of B, with maximal component in the v,,, direction. Our two
new blocks are D, = B, - {t_+v,,,} and E;=B, U {t_ +V,,,}. Itis clear that
{D;} and {E;} partition the set of vectors wp, A c[n+1]. The total number of
blocks is exactly the number of chains in the symmetric chain decomposition of B 410
M(n+1). It remains to prove the distance condition for any two vectors from a given
block.

By induction, we need only check the vectors t +v, ., and t; of E;. Let

3.1) t=c;v

Vo1 tWp 1Si<p,

where c; isrealand w; 1 v,

1. By our choice of t , ¢ >¢; forall i. So

(3.2) e+ Voo =t == €+ 1) Vyyy + Wy = Wil2
= (= &+ 12 Vg P + lIwgy — w2
2 [Vl + llwy, = w2
2 (v, 22 1.

To complete the proof, we must check the n =1 case. Clearly the block
{0,v,} works because |v[|=1.

Theorem 3.1 does not depend upon the dimension of the vector space RN in
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which the vectors lie. It even holds for infinite dimensional vector spaces.

§2.4 Extremal Set Theory

Colex order of the k-element subsets has certain desirable properties which
allow us to prove some important theorems in extremal set theory. In this section we
shall prove two of these theorems: the Kruskal-Katona Theorem and the
Erdés-Ko-Rado Theorem. Most of this section is devoted to proving the
Kruskal-Katona Theorem. The Erdos-Ko-Rado Theorem is a corollary of the
Kruskal-Katona Theorem.

First we begin with some notation. Let ¥ be a collection of k-element
subsets. Let d% denote the collection of all (k—1)-element subsets which are subsets
of members of ¥, that is, all of the (k—1)-element subsets which are covered by
members of ¥ in B, for an appropriate n. We ask: how small can [0¥| be for a

given [F|? As an example, take k=4 and let ¥ be these subsets.

1357
2357
2457
3458
2358

Then 0% contains the following subsets.

135 257 358
137 245 458
157 247 238
357 457 258
235 345
237 348

You were asked in Exercise 12 of Chapter 1 to find 0¥ for a special collection ¥.
We state that result slightly differently here as a lemma.

LEMMA 4.1 Suppose that ¥ consists of the first m k-element subsets listed in
colex order, and that Rank(a,, ... ,a,) = m so that

m = (ak;l ot (aii_l)
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with a; = j for 1<j<i—1. Then 0¥ consists of the first m (k—1)-element

subsets listed in colex order, where

m_(k_1 +...+(i_1
Proof For example, if k=4 and m =6 the first 6 such subsets are

1234
1235
1245
1345
2345
1236.

The next is 1246 for which Rank(1246) = 6. From Theorem 2.1 of Chapter 1 we
know that

m = (3)+ ()

so Lemma 4.1 implies that

~ _ (5 3
m = (3)*(2) = 13
Here is 0%
123 135 345
124 235 126
134 145 136
234 245 236

125

Note that n need not be given to list the first m k-element subsets in colex
order.

For the proof, note that ¥ consists of all of the k-element subsets of [a — 1],
all of the (k—1)-element subsets of [a,_; — 1] with a, adjoined, all of the
(k—2)-element subsets of [a, ,— 1] with a, and a,_; adjoined, etc. Thus, oF
must consist of all of the (k—1)-element subsets of [a, — 1], all of the (k—2)-element
subsets of [a,_, — 1] with a, adjoined, all of the (k—3)-element subsets of
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[a,_,—1] with a, and a,_, adjoined, etc. The size of oF is clearly m, as

claimed.

Because of Lemma 4.1, it is clear that Lemma 4.2 is equivalent to Theorem 4.3,
which is the Kruskal-Katona Theorem.

LEMMA 4.2 Suppose T is a collection of k-element subsets, and J is the
collection of the first |¥| k-element subsets in colex order. Then |04| <|9%|.

THEOREM 4.3 If ¥ is a collection of k-element subsets, where

5= () s (71

pn 2 (32) ++ (0]

We prove Theorem 4.3 at the end of the section. Next we state the
Erdos-Ko-Rado Theorem.

THEOREM 4.4 Suppose that k <|1n/2|. Then the size of the largest collection T of

k-element subsets of [n), no pair of which are disjoint, is
(n—l
k-1/-

For example, if n=6 and k =3, we can choose our collection ¥ to be

123 234 235 345
124 125 145
134 135 245.

But if we add any other 3-element subset to ¥, it will be disjoint with one of the
members of ¥.

Proof of the Erdés-Ko-Rado Theorem Let & be such a collection of subsets, and
suppose that
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Let T be the collection of complements of the subsets of ¥. Certainly T consists
of ¥ (n—k)-element subsets of [n]. Furthermore, no member of ¥ can be a subset
of any member of T. (Suppose Ac ¥, Be T and AcB. Then ANB=0,
and A and B are two members of ¥ which would be disjoint.) The picture below
describes this situation, since k<n-k.

‘We now obtain a lower bound on the number of k-element subsets which lie
below F. If we apply the map 9 n—2k times to T (call this iterated map o™ 2k),
we obtain all of these subsets. Let

@2 7| = (aﬁ'li_kl - (aii‘l)

Since
@y F=1F s (22) = (D),

a,_, mustbe n. So by the Kruskal-Katona Theorem (Theorem 4.3),

(4.4) 0T > (,:1:_11)

Repeating this n— 2k — 1 more times gives
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(4.5) oE | > (n—lI(l—_(ln—Zk - (n; 1)-

But ¥ and 9* 2T have no elements in common, so
n
(4.6) T+ P"HF < ( k).

Clearly (4.6), (4.5) and (4.1) contradict Pascal's triangle (§1.2, Eq. (2.3)) for the
binomial coefficients.

Proof of the Kruskal-Katona Theorem The proof will be by induction on n, the size
of the base set U = {xe A : Ae ¥}, and will have three steps.

(1) Change ¥ into a collection ¥' such that |0%'| <|0%| and [¥'| = |F|. The
subsets in &' will contain 1 as frequently as possible.

(2) Decompose the collection &' into two subcollections: those subsets with 1,
F'(1), and those subsets without 1, F(1), so that ¥ = (1) UF(1). Derive a
lower bound for |0%'| in terms of ¥'(1).

(3) Use the induction hypothesis by deleting 1 from the subsets in ¥'(1) to
simplify the lower bound of |0%'| from (2). From (1), this number is also a lower
bound of |0%|, and it turns out to be the bound of Theorem 4.3.

Step (1) Given an integer j, j=2, and a collection of subsets X, we define a
switching map §; on A. For Ae 4, let S(A)=(A-{jhu{l}ifje A,

le¢ A and (A-{j}) U {1} e A. Otherwise we put Sj(A) = A. Clearly the new
collection Sj(/zl) has at least as many sets with 1 as Z did. The nextlemma tells

us how Sj interacts with o.

LEMMA 4.5 Forany j, j22, a(sjm)csj(a?).

Proof We must show that a(Sj(A)) c sj(ax) forall Ae ¥.

If Sj(A) = A, thisis dA Sj(BF). If je A, j is notin any of the sets in dA
50 0A = Sj(aA) c sj(ax). If 1 isin A, all butone (A - {1}) of the sets in dA
contain 1, and the previous argument shows each of them is in Sj(aF). For
A —{1}, note that we can assume that j isin A, sothat dA contains both A —{1}
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and A-{j}. So Sj(A— {1}) = A - {1}, which means A —{1}isin sj(a$).
Therefore, all of dA is in Sj(aF). Finally we assume that je A, 1¢ A and
A-{jDu{l}e T Let A—{k}e 0A, k=j. Since (A-{k,jhu{l}e 7,
the switching map Sj fixes A—{k}, so A-{k}= Sj(A -{kh e sj(ax). The last
caseis A-{j}=S{(A-{jhe Sj(aA) c sj(az—‘).

If S{(A)#A, then je A, 1¢ A and S(A)=(A-{jhu{lle T. The
subsets (A —{k,j}hH U {1} and A —{j} in Sj(aA) can be checked as in the

previous paragraph.

Suppose we iterate the switching maps Sj for various j, until ¥ is converted
to a collection ¥' such that S;(F") = & forall j. This is possible because S; either
fixes ¥, or gives ¥ more members which contain 1. Since the switching maps do
not change the size of the collection, Lemma 4.5 implies that [0F'| <|0¥|. This
completes Step (1).

Step(2) Let¥=F)u ?‘(T) as indicated. Clearly JF' = d%'(1) U BF'(T).
First we show that

@.7) oF'(D) 9,8 (1),

where 9, is the operation of deleting 1 fromaset. Let B=A - {j} € aF(D),
j#1, Ae T(1). Since ¥ is fixed under Sj, Bu {1} e ¥(1), soB e 9,F(1).
This establishes (4.7), which clearly implies

(4.8) oF' = 3F(1).

We now separate the collection 9%' into two subcollections: those subsets with 1
deleted, al'&"(l), and those subsets with some element # 1 deleted,

9(9,%'(1)) U {1}. (This notation means that we first delete 1 from each member of

¥'(1), nextapply 9, and then reinsert 1 into each member.) Because these two
subcollections are disjoint,

(4.9) 0% = 0,5'(D)[ +[9(0,F'(1)) L {1},

This completes Step (2).

Step 3)  Suppose that
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Because 81117'(1) is a collection of (k—1)-element subsets of the (n—1)-element

subset U—{1}, we may conclude by induction that
. a,—2 a;—2
@11)  P,F) 2 (1?—2 bt (i'_2 ,

The insertion of 1 into each set of d0,F'(1) is a bijection to 9(9,¥'(1)) U {1}.
Thus, (4.9), (4.10) and (4.11) imply

o7 > [(RD)+ () 1 +-+ (D) + (D)
which by Pascal's Triangle (§1.2, Eq. (2.3)) implies our result

ai—l

4.12) PF| 2 (a“ ! (i_1 ).

So we suppose that (4.10) is not true, i. e.,
1 a —2 a—2
@13 BFOL < (31D« (2D

Clearly [¥]=|¥|=F'(1) + |F'(i')| =10, + |F'(T)|, so that (4.13) and the

assumed value of [¥| give

wdr > [ -GED T -+ [ET) - (D]

and again Pascal's Triangle implies

@14 7@ > (ak;z v (72).

This time T'(T) is a collection of k-element subsets of the (n—1)-element set
U—{1}, so again by the induction hypothesis

~ a -2 aj-2
4.15)  PFA) > 1{‘_1) +ot (i'—l .

However (4.7) implies
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4.16)  PFQ) 2 197 (D).

Taken together, (4.15) and (4.16) contradict (4.13). So (4.10) must hold, and the
proof is complete.

Notes

Three good general references for posets are [Ai], [Be] and [Gre-K1] . Sperner
theorems are included in §3 of Chapter VIII of [Ai]. They are also a central topic of
[Gre-K1]. Exercise 7 below, and Exercises 18 of Chapter 3 and Exercise 20 of
Chapter 4 establish the entries of the chart for { . The entries for Bn and ‘E]k are

given in Exercises 8 and 10. For Pn they are Exercises 9 and 22, for If)n Exercises
11 and 12, and for Cnm Exercises 13 and 29. A matching between two adjacent
levels of the Boolean algebra can easily be shown to exist from Hall's Theorem. The
decomposition into symmetric chains is not guaranteed from this technique. The fact
that matching to first available in the Boolean algebra works is due to Aigner [Ai]. The
relationship between the various matching schemes in Bn can be found in [Wh-Wi].
Kleitman's solution of the Littlewood-Offord problem appears in [Gre-K1]. The
proof of the Kruskal-Katona Theorem is due to Frankl, [Fr].

Exercises

1.[2] Given a finite poset (P, <), show that there is at least one way to totally

order P, thatis, label all of the elements of P with [n]: a;,...,a, so that a; < 3

implies i<j. Such alabeling is called a linear extension of (P, <).

2.[2C]  Write a program which takes as input a poset P and gives as output a
linear extension of (P, <).

3.[3C] Foreachposet (P,<) pictured below, write a program which finds the
total number of linear extensions of (P, <). Can you prove any theorems here?
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. m\/n

4.[2] Let (P, <) be a poset with a linear extension a,, ..., a,. The incidence
matrix of (P, £) is the n xn matrix Z, where Zij =1 if a Saj and Zij =0

otherwise. Prove that Z is invertible. Construct Z for Ba’ P3, .lL3 and ’Hn.

5.[1] For a ranked poset, the numbers |L;| = W, are called the Whitney numbers
of the second kind. For Bn, the Whitney numbers are the binomial coefficients.
What are they for P ?

6.[2] Let Wy (n) denote W, for { . Prove
W)= Wn-1+..+W,_ (n-1)
where t=min{k,n—1}.

7.[1] Prove that &n is rank symmetric and order symmetric. (Exercise 18 of
Chapter 3 will show that {L_ is rank unimodal, and Exercise 20 of Chapter 4 shows

that it is a lattice.)

8.[2] Prove that Bn is rank unimodal, rank symmetric, order symmetric and a
lattice. '

9.[2] Prove that Pn is a lattice.
10.[2]  Prove that ";{k is a lattice.

11.[2]  Prove that O is order symmetric.
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12.[3]  Prove that Dﬂ is a lattice by finding the meet of two partitions A and M.

(Hint: Take the smaller of the two partial sums to define the partial sum of the meet.
Reason similarly for the join.)

13.[2]  Prove that Cnm is rank unimodal, rank symmetric and order symmetric.

(The Sperner property follows from Exercise 29.)
14[1]  Whatis the rank of (n,n-1,...,1) in & ?

15.[4C] A chain C is called a maximal chain if C is not contained in any other
chain. What is the length of a maximal chain in J ! In ‘Ul, A=(n-l,...,

1)? Write a program which gives the number of maximal chains each poset has. What
are your conclusions? [Sta2]

16.2] How many maximal chains do B, and P have?
17.[21 How many edges do the Hasse diagrams of Bn and .lln have?

18.[3C] Write a program to count the number of edges in the Hasse diagram of P .
Formulate a conjecture, based upon an appropriate combination of Bell numbers.
(Hint: Try (B,,,—a'B,,;+bB,)/2, for appropriate positive integers a and b.

Can you give a combinatorial proof of this result?)

19.[4C] Write a program to compute the Whitney numbers of Y,, A =n™

Formulate and prove as many conjectures as you can. §3.3 may be useful.

20.[2]  Suppose Vg, vy, ..., V, is a finite sequence of positive real numbers. We
say Vg, Vy, ..., vy i8 log-concave if vk2 2V, Vi, for 1<sk<n-11If

Vg» Vs -+ 5 Vy 18 lOg-concave, prove that it is also unimodal.

21.[3] Suppose the polynomial v(x) =v,+v,_, 1.+ vo X" has negative real
roots. Show that vy, vy, ..., v, is log-concave. Possible hint: This result has a
combinatorial proof. Let {-r;,...,-1,} be the roots of v(x). Define the weight

w(A) of asubset A c[n] to be
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wA) = I r,.
ieA
Show that
vi=Y wAw®),
(AB)
|Al=|B| =n-k
and

1V = & wOwD)
(C,D)
IC] = n-k+1
ID| = n-k-1

Then use the unimodality of the binomial coefficients to give an injection of the pairs
(C,D) for v;_;'vy,, to (A, B) for v,2 which preserves the weight.

22.[3] Let S (x) be the polynomial of degree n

n+l

Sx) = X S+l k)xKL,
k=1

(a) Using (5.1) of Chapter 1, show that
S,x)=(x+1)S_;(x)+xS8'_;(x).

(b) Now show that S (x) has n distinct negative roots following these
steps. By induction, suppose that S, ;(x) has n—1 distinct negative roots
-I)<...<-T, ;. From (a), show that S (-r) and S,(-1;,;) have opposite signs
for each i, 1 <i<n-2. Conclude that S (x) must have a root in the interval
(-1;,—1;,), sothat S (x) has at least n—2 negative roots. Show that S 1)
>0, and again use (a) to show that S (-r,_;) <0. Conclude that S (x) has a root in
the interval (-r,_j, 0). Finally, conclude that S (x) has another root in the interval
(=0, —1;). We have just shown that the roots of S (x) and S_,(x) interlace:

between any two consecutive roots of one polynomial there is exactly one root of the
other polynomial.

(c) From Exercises 20 and 21 show that the Stirling numbers of the second
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kind are unimodal.

23.[2] Let S be a subset of [999] L {0}. If |S|=76, show that S must
contain at least two numbers n and m, so that the difference n—m can be
computed with no "borrowing". (Hint: consider the poset Cj ;(.)

24.[3] Let A={a,... ,ap} C[n], where a; <...< a,. Define g(A) =
{aj,...,a,a,+1,a,,,...,a}, where t isthelargest i for which a;—2i is
minimal (assume aj =0). Prove that g(A) = f(A), where f is defined in Algorithm
14. [Ai]

25.[3] Suppose A c|[n] is represented as a sequence of n parentheses, where
parenthesis i is rightif i€ A and left otherwise. Thus,

A={1,3,4,6,7,10,12,13, 16, 19} c [21]
corresponds to

) ( () )y )y CC) €«

) () ) ()
3 6 7 8 910111213 14 15 16 17 18 19 20 21

(
12 5

)
4

and if we pair off the parentheses in the usual way,

—_— e =1 —
> (H)H) )Yy o)y ¢y )y )y € ) €«
12345678 910111213 14151617 18 19 20 21

we are left with a string of unpaired right parentheses followed by a string of unpaired
left parentheses.

— N
S
N
~N A~
—~

Now take the first unpaired left parenthesis and turn it around.
) ) ) CC(
1 4 7[[4]17 20 21

The resulting string of parentheses

) ( ()Y )y )y co) ¢«

) ()) (O) ()
34567 891011121314 1516 17 18 19 20 21

12
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corresponds to a new subset
h(A) = {1, 3,4, 6,7, 10, 12, 13, 14, 16, 19}.
a) Prove that h satisfies the conclusion of Theorem 2.3.

b) Prove that h gives a symmetric chain decomposition of Bn.

¢) Prove that h = f. ([Gre-K2]; see also [Ai], p. 439.)

26.[4C] Write a program which applies Algorithm 14 to colex order. Try it for
various values of n and p. Does it work? What can you conjecture (and prove)
about the resulting f? [Wh-Wi]

27.[2C] Use the first available match to find a matching for Pn for some small

values of n. You can use the lex order of RG functions given in Algorithm 11 instead
of the lex order of subsets of [n]. What is your chain decomposition?

28.[2] Let m=p, p, " p,, whereeach p,; is a different prime. Show that the

maximum number of divisors of m which do not divide each other is M(n).

29.[2] Find a symmetric chain decomposition for C_ (p. 436 of [Ai]).

30.[4C] Suppose the integer partitions of n are ordered by reverse refinement. That
is, A <- W if and only if they are identical except one part of A is split into two parts
of W. For instance, 513211 413212

(a) Show that the resulting poset is ranked with a 6 and a f, but it is not
rank or order symmetric.

(b) Show that the resulting poset is not a lattice.

(c) Revise Algorithms 7 and 14 to investigate the unimodal and Sperner
properties. What theorems can you guess? What theorems can you prove?

3131 Let L, and L,_; betwo levelsin Bn with k<|n/2| Suppose T isan

independent set from these two levels. Prove that |T| is maximal if and only if T =

L,
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32.[4] Generalize the Erdos-Ko-Rado Theorem to collections ¥ of subsets of [n]
such that A,B € ¥ implies |[A|<k and ANnB=#.



CHAPTER 3

Bijections

We have already encountered several examples of explicit bijections ¢ : A — B,
for two finite sets A and B. In Chapter 1 we let A be the set of all permutations w
of [n] and B be the set {0, 1,...,n!—1}. The rank function was an explicit
bijection from A to B. It was closely related to the listing algorithm for
permutations. '

There are many reasons for constructing a bijection ¢ : A — B. The most
obvious application is to conclude that |A| = [B|. This is useful if we know |A| but
do notknow |[B|. In some cases A might have a complicated subset A, which
interests us. The bijection could simplify A, to By = @(A). It might be the case that
A and B are both complicated; we can still conclude that |A| = [B|. But in any case,
bijections can be used to explain why certain classes of objects are counted by the
same number.

Bijections can also be used to establish generating functions. Let's take a very
simple example, the binomial theorem, to show this. Let A be the set of all subsets of
[n]. The weight w(a) of an element of A is defined by

0.1) w(o) = x!,

So the generating function of all elements of A is

(0.2) fx) = ¥ x4 = ¥ w).

oe acA

We know that A has
()

elements o such that |o =k, so
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03) () = 5‘:‘0 (E) xk,

Let B be the set of n-tuples of 0's and 1's, and let the weight of any element B of
B be w(B) =xX, where B has k 1's. Define the bijection ¢ : A — B by

1ifi
o -

0 if iea.

The bijection @ is weight-preserving, because w(o) = w(@(e)). It is clear that the
generating function for B is (1 +x)?, so (0.2) becomes

0.4) f(x) = A +x)™

Another kind of combinatorial proof of the binomial theorem can be given when
x is a non-negative integer. In this case, the right-hand side of (0.4) counts functions
from [n] to aset S of size 1+ x. The right-hand side of (0.3) counts the same
functions by classifying by the number of members of [n] which get sent to the first
x members of S. The theorem can easily be extended to all real x.

In this chapter we give examples of all these phenomena. The Catalan numbers
provide bijections between apparently unrelated sets. The Priifer correspondence
associates a simple B with a complicated A. Partitions and permutations illustrate all
these ideas. The most difficult bijection that we consider is the Schensted
correspondence between permutations and tableaux.

Several of the constructions in this chapter and the next involve graphs. While
none of the graph theory concepts used are difficult, we will state here some of the key
definitions and results involving graphs.

A graph is a set of vertices and a set of edges. The edges are usually a collection
of 2-element subsets of the vertex set (such graphs are called simple), but sometimes
one-element subsets (loops) or repetitions (multiple edges) are allowed. If the edges
are ordered pairs of vertices, the graph is called directed (or a digraph) and the edges
are directed edges.

The degree of a vertex is the number of vertices incident to it. A vertex ina
directed graph has an in-degree and an out-degree.

A path in a graph is a sequence of adjacent vertices. A path is simple if no
vertex is repeated (except that the first may equal the last). A cycle is a simple path
which starts and ends at the same vertex. We sometimes will refer to the unordered
set of vertices in a cycle as a cycle. A graph is connected if there is a path from
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every vertex to every other vertex. Directed graphs have directed paths. Directed
graphs are strongly connected if there is a directed path from every vertex to every
other vertex. Graphs may have one component (connected) or several components.

A tree is a connected simple graph with no cycles. A tree on n vertices has
n—1 edges. There is a unique path between any pair of vertices in a tree. Trees may
be rooted, i. e., have a distinguished vertex. In that case, the tree may be directed
naturally along the unique path from any vertex to the root. In rooted trees, vertices
are related in a familial sense: they may be fathers, brothers or sons.

A bipartite graph is a graph whose vertex set is partitioned into two blocks. All
edges in the graph go between these two blocks. A complete graph is the simple graph
where every possible edge is drawn.

Graphs may be labeled or unlabeled. Generally speaking, labeled graphs are
easier to deal with. For example, there are

,®

labeled simple graphs on n vertices, but the number of unlabeled graphs is given by a
complicated formula which involves Polya's enumeration theorem.

§3.1 The Catalan Family

There is a sequence of integers, called the Catalan numbers, which occur
frequently in combinatorial problems. They are defined by

e ().

sothat Cy=1, C,=1, C,=2, C;=5, C,= 14, etc. Many combinatorial objects
are counted by these numbers.
We will describe bijections between six sets and then show that one of these sets

is counted by the Catalan numbers. Three of these sets will involve trees. These sets
are:

(1) Binary trees A binary tree is a rooted tree where each vertex has either 0, 1 or
2 sons; and, when only one son is present, it is either a right son or a left son.

(2) Ordered trees An ordered tree can be defined inductively as a rooted tree
whose principal subtrees (the trees obtained by removing the root) are ordered trees
and have been assigned some order among themselves.
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(3) Full binary tree A full binary tree is a binary tree where every vertex has
either 0 or 2 sons.

(4) Well-formed parentheses A sequence of parentheses is called well-formed
if, at any point in the sequence, the number of right parentheses up to this point does
not exceed the number of left parentheses up to the same point. Moreover, the total
number of left parentheses equals the total number of right parentheses.

(5) Ballot problem Suppose Alice and Barbara are candidates for office. The
result is a tie. In how many ways can the ballots be counted so that Alice is always
ahead of or tied with Barbara?

(6) Standard tableaux Given a partition A of n, a standard tableau T is an
arrangement of [n] in the n cells of the Ferrers diagram of A which increase across
rows and down columns. These objects will be discussed in greater detail in §3.5.

THEOREM 1.1 The following sets of objects all have the same number of elements,
and this number is C:

(1)  binary trees on n vertices,

(2) orderedtrees on n+ 1 vertices;

(3) full binary trees on 2n+1 vertices;

(4) well-formed sequences of 2n parentheses,

(5) solutions to the ballot problem when 2n votes are cast, and

(6) standard tableaux in a 2 X n rectangular Ferrers diagram.

Proof We use bijections to show (1)-(6) are equinumerous. Then we show that (4)
yields the Catalan number.

(1) = (2): We give a bijection ¢ from binary trees to ordered trees. Let B be a
binary tree. Here is how we construct T = ¢(B).

(a) The vertices of B are the vertices of T with the root deleted.

(b) Therootof B is the first son of the root of T.

(c) Vertex v is aleft son of vertex w in B if and only if v is the first son of w
in T.

(d) Vertex v isarightson of vertex w in B if and only if v is the brother to the
rightof w in T.

In the examples below, we have labeled the vertices to help the reader trace what
happens under ¢.
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) 0
2 3 o 1&5
4 5 q
> 2% 4 6
B T

(1) = (3): The bijection ¢ will be from binary trees to full binary trees. Let B be a
binary tree. Construct F = ¢(B) by adding a new son to each vertex of B with
exactly one son, and adding two sons to each vertex of B with no sons (terminal

1
2
2 3 (0}
4 5 e—
6

B F

vertices).

You are asked to prove in Exercise 2 that the number of terminal vertices in a full
binary tree is one more than the number of internal (non-terminal) vertices. So F is a
full binary tree on 2n+1 vertices. It is clear that (p’1 is given by "pruning” the
terminal vertices from F.

(2) = (4): The bijection ¢ will be from ordered trees to well-formed sequences of
parentheses. Let T be an ordered tree. We show how to construct P=@(T). If T
consists of a single vertex (the root), then P is the empty sequence. Now ¢ will be
defined recursively. Suppose ¢ has been defined for all ordered trees T with k+1
vertices, k <n, and (p("f‘) has 2k parentheses. Let T be an ordered tree with
n+1 vertices and principal subtrees T, T,, ..., T;. Let P;, P,, ..., P, be the
corresponding well-formed sequences of parentheses. Then P = (P))(P,) ... (Py).

Clearly, the number of parentheses in P is
S
2s+ ), 2(#of verticesin T; —1) =2n.
i=1

It is also clear that P is well-formed.
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0
P LSRR 2
1 3 5 mmmelp (())CC)(C)) ()
2% 4 6 1 3 |
T P

To define ¢}, let ¢~ }(D) = the tree consisting of only a root. Again, by
induction, assume (p'l(lﬂs) =T has been defined for all sequences P of length 2k
and ordered trees T with k + 1 vertices, k <n. Let P be a well-formed sequence of
length 2n. Write P = f’l 1‘52 f’s, where each f’i is determined by those points in
P where the number of left and right parentheses are equal. Each 1‘5i is itself a
well-formed sequence enclosed in a parenthesis pair. Let P; be the well-formed
sequence obtained from }.;i by removing this pair. Let T, be the associated tree. Put
(p‘l(P) =T, where the ordered tree T has principal subtrees Ty, ..., T,

"
(4) = (5): Now the bijection ¢ will be from well-formed parentheses sequences to
solutions to the ballot problem. Let P be a well-formed sequence. Then W = ¢(P)
is obtained by replacing "(" by a vote for Alice (or "A") and ")" by a vote for
Barbara (or "B"). The word W in the letters "A" and "B" is a sequence of votes
which solves the ballot problem since P is well-formed.

¢
(OO ()) () - AABBAABABBAB
P W

(4) = (6): The bijection ¢ will be from well-formed sequences to standard tableaux
of shape 2 xn. Let P be a well-formed sequence; define S = @(P) as follows.
Label the positions of the 2n parenthesesin P by 1,2,...,2n. In S, put i in the
first row if and only if the parenthesis in position i is left. Otherwise, put i in the
second row. Arrange the entries of S to be increasing in the two rows. Since P is
well-formed, S must be increasing down the columns. The definition of (p‘l is
clear.

1 3

(())

1

56 78 91011 12 ¢
(() () () =——pp S1ototetists
P S

3
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Finally, we show that the number of sequences of well-formed parentheses of
length 2n is C_. To begin with, rewrite C_ as follows:

1 2n+1
(1.2) Co = 2n71 ( n+l /-

Let us represent sequences of parentheses as strings of 0's and 1's (called biz
strings): 0 to represent a right parenthesis and 1 a left parenthesis. Such a sequence
can also be represented as a lattice path, such as those described in §2.2. In view of
(1.2), we consider ,&n, the set of bit strings with 2n+ 1 digits, n+ 1 of which are

1's. Notice that a cyclic permutation of any bit string in 8n gives a new bit string in
,8.11. In fact, a bit string in 8n can be cyclically permuted into 2n + 1 distinct bit
strings. Thus &n can be partitioned into equivalence classes of size 2n+ 1. The
number of such classes is exactly C_.

Now let us consider one of these equivalence classes, 0. Pick any bit string
w e B. Label the positions between the digits of w by 1,2, ...,2n+2. Let y(w)
be the position of the rightmost minimum in the lattice path of this bit string.

w
1101001011100

Let w" be the same bit string cyclically permuted one position to the left:

w+
0110100101110

Observe that
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Yw?) - {Y(W)*'l if Y(w) # 2n+1

1 if Y(w) = 2n+1.

Thus, there is exactly one string w* € O such that y(w*) = 1.

wk
1110011010010

Y(w*)

Note that the initial digitin w* mustbe 1. If this 1 is removed, what remains is the
bit string corresponding to a well-formed sequence of parentheses. Conversely, if a 1
is added to the front of the bit string of a well-formed sequence to form the bit string
w, then y(W) = 1.

This means that the number of well-formed sequences of 2n parentheses is
exactly the number of equivalence classes, i. €., C,.

Several more examples of sets counted by Catalan numbers are given in the
exercises.

§3.2 The Priifer Correspondence

A bijection ¢ : A — B can be used to transfer properties of A to a simpler set
B. The Priifer correspondence provides an example of this phenomenon. In this case,
A consists of all labeled trees on n vertices, while B is just the set of all
" (n—2)-tuples of integers in [n].
Recall that a tree is a connected graph with no cycles and a labeled tree on n
vertices is just a tree whose n vertices are labeled with the integers in [n]. There are
clearly

,®

labeled graphs on n vertices. We wish to find the number of labeled frees on n
vertices. The Priifer correspondence ¢ establishes Cayley's Theorem.
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THEOREM 2.1 The number of labeled trees on n vertices is no2,

Given a labeled tree T on n vertices, we want to produce @(T), an
(n—2)-tuple with entries in [n]. The construction of ¢(T) involves removal of

terminal vertices from T. Terminal vertices always exist in view of the next lemma.

LEMMA 2.2 Everytree T with two or more vertices has two or more terminal

vertices.

Proof A well-known property of trees on n vertices is that they have n—1 edges.
Since T has n—1 edges, the sum of the degrees of all vertices is 2-(n—1). Every
degree is at least 1, so the pigeonhole principle implies that at least two degrees are
exactly 1.

Now ¢(T) = (a,, ..., a,) is easily described. Let J be the set of terminal
vertices of T, so J c[n]. Let v=max{i:ie J} and a, be the vertex adjacent to
v. Now delete v and the edge v—a,; from T to form a new tree T and iterate.

The iteration stops when the tree has only two vertices remaining. We will then have

an (n—2)-tuple, ¢(T) = (a,, ..., a,). Here is an example of this construction.
5
T
2 3 6 1 9
[ @ . 4 )
8
7 4

(P(T) = (1) 3) 87 8y 3y 67 8)

In the following description of this procedure, [n] is the vertex setof T and E
is the edge set. The function adj(v) will return the vertex adjacentto v e J.

ALGORITHM 15: The Priifer Correspondence

begin
for k1 to n—-2 do
vemax{i:ie J}
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a, « adj(v)
E—E-{v—a}

end.

To show @ is a bijection, we describe (p"l. Let (a;,...,a) be an
(n—2)-tuple with entries in [n]. If T satisfies ¢(T) =(a;, ..., a,), then the degree
of i in T is one more than the number of occurrences of i in @(T). In fact, the
terminal vertices < are precisely those which do not occur in ¢(T). Let v =
max{i:ie J} and construct the edge a,— v. The new terminal vertices are found
by subtracting one from the degree of a; and removing v from J. In this way
n-2 edges are constructed. The final edge is drawn between the only remaining
terminal vertices, which willbe a,_, and 1 (or 2 if a,_,=1). Itis clear that the

edges of T are inserted in the same order that ¢ removed them. We leave the details
of the induction to the reader.

In the algorithm below, the vector (d,, ..., d;) keeps track of the residual
degrees of the vertices of T.

ALGORITHM 16: The Priifer Correspondence
begin
for ve—1 to n do
d, <1
for i<~ 1 to n-2 do
Ve a
d, «d,+1
E« O
for i1 ton-2 do
w ¢ max{k:d, =1}

Ak
E«Eu{w—v}
d,&d, -1

d, <0

v ¢ max{k:d, =1}
w & min{k:d, = 1}

E«—Eu{w—v}
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end.

The following theorem is typical of the kinds of results that can be obtained
from the Priifer correspondence.

THEOREM 2.3 The number of labeled trees with t terminal vertices is
(m!/t1)-S(n-2,n—t).

Proof The number of labeled trees with t terminal vertices is
n

(¢)
times the number of labeled trees with {1, 2,...,t} as terminal vertices. The Priifer
code ¢(T) for such a tree does not include any entries from {1, 2, ...,t}.
Moreover, {t+1,...,n} each mustoccur at least once in ¢(T) since they are not
terminal vertices. Let B, ..., B, be the sets of positions where t+1,...,n
appear in @(T). These blocks define a partition of [n—2] into n—t labeled blocks.
The number of such set partitions (see §1.5) is S(n—2,n—t), and the number of

ways of labeling the blocks is (n —t)!. So the number of labeled trees with t terminal
vertices is

(?) m—-1t)! S(n-2,n-t) = %' S(n-2, n—t).

There is a startling application of Theorem 2.1 to permutations. Suppose T is
an n-cycle, thatis, a permutation whose cycle decomposition consists of one cycle of
length n. We may ask in how many ways can © be written as a product of n—1
transpositions? For example, if = (123), then ® = (23) o (13), ®=(13) 0 (12) or
7 = (12) o (23), so there are three such representations. The answer is rather

unexpected.

THEOREM 2.4 Given an n-cycle m, the number of sequences (t,, ... ,t, ;) of

transpositions such that T=t, otyo...ot _; is n"2,

Proof We will count the total number N of sequences (t;,...,t ;) of

transpositions whose product is an n-cycle. Since there are (n —1)! n-cycles, the
number of such sequences which will yield a specific n-cycle will then be
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N/(m-1).
We shall need two graphs, one associated with a collection of transpositions and
one associated with a permutation. Given a set of transpositions {t;, ..., t}, let T

be the labeled graph whose vertices are given by [n] and whose edges are given by
the transpositions {t,, ..., t,}. Given any permutation m, let Gy be the directed

graph on [n] with edges i — j if and only if m(i) =j. Notice that the fixed points of
n correspond to directed loops in G and the cycle decomposition of 7 corresponds
to the decomposition of Gy, into directed cycles.

The following lemma shows how Gy is affected by multiplying by a

transposition.

LEMMA 2.5 Let t be the transposition (xy) and T =T ot. Then the graph of Gy

is obtained from Gy in the following way:

(1) If x and y arein different cycles of Gy, then these two cycles merge into one

cycle;

(2) If x and y arein the same cycle of G, then this cycle splits into two cycles.

Proof The proof is clear from the following two pictures. In Case (1) we have:
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That N =n"2(n—1)! follows immediately from this last lemma.

LEMMA 2.6 Suppose m=t otyo...ot | and T isthe graph corresponding to

{t}> ..., t,1}. Then = is an n-cycleif and only if T is a tree.

Proof First we suppose T is a tree and prove = is an n-cycle. The proof is by
induction on n. The edge e corresponding to t_; is a cut-edgeof T, i.e., its

removal will disconnect T. So T—e =T, UT, for two smaller trees T; and T,,
where T, has k vertices and T, has n-k, k>1. By induction, the product of the
transpositions t; for T; and T, (taken in the same order as in 7) is a k-cycle o,
and an (n-k)-cycle o, respectively. Moreover, since T, T, =, the
transpositions for T, commute with those for T,. Thus tjotyo...0t ,= 0,00,
and the graph Gy ot _, consists of these two cycles. Then Gy is obtained from
Gy ot, ; by part (1) of Lemma 2.5.

Now suppose 7 is an n-cycle and we prove T is a tree. Consider what
happens to the graphs Gp(k), n® = tjotyo... ot,, as we successively add edges to
construct T. Initially, Gp(0) consists of n loops and T is empty. Since Gy has

only one component and we are adding exactly n—1 edges, we must be in case (1)
of Lemma 2.5 for each new transposition t ;. So we assume by induction that

Gp hasn—k cycles {C;}, and T is aforestof n—k trees {T;}, with the
vertices of T, = the vertices of C,. Then the transposition t,,; combines the two
cycles (C; and C,) toform 61 in Gp(k+1) and connects trees T; and T, to form
anew tree :I"l. Clearly the vertices of '-f‘l = the vertices of 61. Thus Gp(k+1) has

the desired properties. Putting k=n—1 gives a forest of one tree, i. €., a tree. This
completes the proof of Lemma 2.6 and also Theorem 2.4.

Unfortunately, this is not a direct proof of Theorem 2.4. Such a proof would
establish a bijection between labeled trees and sequences of transpositions whose
product is a given n-cycle.

§3.3 Partitions

Integer partitions provide a rich source of bijections. We already gave a simple
bijection for partitions in Theorem 3.1 of Chapter 1. In this section are several other
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examples. The first theorem is due to Euler.

THEOREM 3.1 The number of partitions of n into odd parts equals the number of

partitions of n into distinct parts.

Proof Let PO(n) and PD(n) denote the two sets of partitions. We will construct a
bijection ¢ : PO(n) — PD(n). Let A € PO(n) whose largest partis N andlet i be
an odd part of A of multiplicity m;,, Write m; in base 2:

m; = p aj2j, a; = Qor 1.
i

For each a;= 1, @ will create a part of size i-2. We write ¢(m,, i) to denote these
parts. Clearly they are distinct. Now let @A) = 2o(m,, i). Note that if i,-2}1 =
i,2J2 with i, and i, both odd, then i, =i, and j,=J,.

The definition of ¢! is straightforward. Take all parts of A € PD(n) of the
form i-2), for some j and a fixed odd i. Then ¢ '(A) has

¥ 2!
j
parts of size i.
As an example of this bijection, take A = 151925333 14, The 4 in 14
written base 2 is 100, so ¢(4, 1) = 4. The exponent 3 in 33 is 11 in binary, so

¢(3, 3) =3 + 6. Do the same thing for the other parts. Then put the parts together to
get @(15' 92533314 = (18, 15, 10, 6, 5, 4, 3).

As generating functions, Theorem 3.1 is clearly equivalent to
G I a-xZHT o [T @ +x™.
i=0 n=0

In fact, the bijection ¢ is really just a combinatorial proof of

(3.2) (A-x2+1y1 [ +x @02
ji=0

which provides a proof of (3.1).
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The next example is of a somewhat different nature. If A is a partition whose
largest part A, is <n, and whose number of parts is <m, then the Ferrers diagram

of A is contained in an m X n rectangle. The next theorem counts these partitions.

THEOREM 3.2 The number of partitions A whose Ferrers diagram lies inside an
mXn rectangle is

n+m
(")
Proof We construct the bijection ¢ : P, — B, where P is the set of partitions A
and B is the set of (n+m)-tuples with m O's and n 1's.
As usual, let the m x n rectangle be located in the 4th quadrant in the xy-plane.
Then the outside border of A is the set of n+ m line segments connecting (0, —m)

to (n,0) along A. For example,if A=(3,3,1), n=5 and m =4, the outside
border of A is shown below.

©,0) (5,0

0,-4)

It is clear that A is uniquely determined by this lattice path from (0, ~m) to (n, 0),
with unit steps up or to the right. The converse is also true. We code such a lattice
path with an (n+m)-tuple of 0's and 1's. Anupstepis O and a step to the right is a
1. Soweget m O's and n 1's. This determines @(A). In the example above, @(A)
=(010110011).

For such a partition A, let ||A]| denote the number A partitions. The

generating function

33)  G,@ = X g
=3

is a polynomial in q of degree m:n. According to Theorem 3.2,
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Gl = ("1").

Thus G, (q) is a polynomial analogue of the binomial coefficient. It is called the

g-binomial coefficient and is denoted

n+m
G4 Gn@ = [ : ] .
q

Itis clear that G (q) is the rank generating function of the Young lattice “Jl of the
partition A =n™. Thus properties of this lattice from Chapter 2 become properties of
the g-binomial coefficient.

A partition A is self-conjugate if L =L' (see §1.3), i. e., the Ferrers diagram
of A is invariant under a flip across the main diagonal.

THEOREM 3.3 The number of self-conjugate partitions of n is equal to the number
of partitions of n into odd, distinct parts.

Proof Let PSC(n) and POD(n) be the appropriate sets of partitions. We define
¢ :PSC(n) — POD(n). For A e PSC(n), A= 0‘1’ ,ls), let d be the largest

integer such that Kkz k. Infact, d is the size of the largest principal subsquare
(called the Durfee square) of the Ferrers diagram of A. Or, d is the length of the
main diagonal of the Ferrers diagram of A. Number the cells down this diagonal
1,2, ...,d. The cell numbered k will have Xk ~k cells to its right, and since A is
self-conjugate, A, —k cells below it. So the cells of A are partitioned into blocks,
one block for each diagonal cell, with the block corresponding to diagonal cell k
containing 2A, — 2k +1 cells. Since A 2... 2 these odd numbers are distinct.
Let @A) = (2A-1, ..., 2A —2d+1).

In this example, A =(5,5,3,2,2), d=3 and ¢(A)=(9, 7, 1).

A o(\)
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The definition of (p'1 is clear. Just "bend" each odd partin A € POD(n) in
the middle and center it on the main diagonal. Since the parts are distinct, this will
form a Ferrers diagram of some partition in PSC(n).

Is there a generating function identity implied by Theorem 3.3? Clearly,

oo

(3.5) ZO [POD()| x® = 'iflo @ + x2i*1),

n=

For [PSC(n)| we can use the decomposition by the d x d Durfee square to obtain

Xd2 oo
D) () G2, Pscml .

(3.6) z
do

since the Durfee square contains d? boxes, and what remains are two copies of some
partition with at most d parts. So Theorem 3.3 is interpreted by

d2

had X
3.7) d>=:o (=x2) - (1-x%)

I’I a1+ x2i+1 ).

i=0
In fact, (3.7) is a special case of the analogue of the binomial theorem for g-binomial
coefficients [An].

We shall return to partitions in Chapter 4.

§3.4 Permutations

Permutations are such naturally occurring objects that it should come as no
surprise many interesting bijections involve them. We have already seen several
properties of the inversion number of a permutation from the inversion poset in §2.1.
We state two of these properties as bijections in this section. We also give some
bijections related to Stirling numbers. Finally, we consider multiset permutations,
which will be discussed in more detail in §§3.5-3.7.

In §1.1 we saw that the inversion sequence (a;, ... ,a,) of a permutation 7
uniquely defined . So the map ¢ from permutations of n to sequences
(@, ...,a;) with 0<a; <i is a bijection. If @(n) =(a;,...,a), clearly the

number of inversions of &, inv(w), is a; +...+a . Thus, the bijection ¢ proves
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the following theorem.

THEOREM 4.1 The generating function for the number of inversions of permutations
T of nis

X qvm® =(1+<1)(1+q+q2)--- (1+q+...+@M).

1teS’J

If we consider T as an element of the inversion poset Jln, rank(m) = inv(T),

so that Theorem 4.1 also gives the generating function for the Whitney numbers (see
Exercise 6 of Chapter 2) of &n. The rank symmetry and rank unimodality of &n

can be shown from this generating function (see Exercise 7 of Chapter 2).
Another interesting fact about £l is that the inverse map preserves the partial
order of &n. This means thatif T <o, then 7! < oL, This implies that the

inverse map preserves the rank, so inv(w) = inv(z!). We prove this, based upon a
bijection between permutations and non-attacking rooks on a chessboard.

THEOREM 4.2 If © is a permutation of 1, then inv(rn) = inv(n™0).

Proof There is a bijection between permutations © of n and arrangements of n
non-attacking rooks on an n X n chessboard: place the rook of row i in column
n(i). For example, here is the arrangement for m =23154.

)

X

)

The value of inv(w) is the number of pairs (i, j) with i<j and m(i) > n(). This
corresponds to a pair of rooks (R;,R,), with R, to the right and above R,. That
means there is a square directly to the left of R; which is also directly above R,. If

we shade all squares to the left of a rook, and also all squares above a rook, these pairs
are those squares which are shaded in both directions.
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In this example, inv(r) = 3.

The arrangement of rooks corresponding to ! is precisely the transpose of
the arrangement for 7. Transposing the chessboard will not change the number of
doubly shaded squares.

In §1.1 we gave another representation of a permutation n: the decomposition
of m into disjoint cycles. This gives us another bijection. We put the smallest
number of each cycle at the end of that cycle, and put the cycles in order of their last
entries. This defines the canonical cycle decomposition of m. The canonical cycle
decomposition of 7 =463281795 is (4261) (3) (895) (7).

If we remove the parentheses from the canonical cycle decomposition of w, we
have another permutation, ¢(r) =426138957, in one line notation. The map ¢ is a
bijection because we can recover ©t from ¢(r): the first cycle of m is the initial
segment of ¢(n) ending at 1. The next cycle of © ends in the smallest number not
appearing in the first. The remaining cycles are obtained in the same manner. For
n =4 the bijection is given below.

T o (m
1234 1234
1243 1243

1423 1432
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4123 4321
4132 4213
1432 1423
1342 1342
1324 1324
3124 3214
3142 3421
3412 3142
4312 4231
4321 4132
3421 3241
3241 3412
3214 3124
2314 2314
2341 2341
2431 2413
4231 4123
4213 4312
2413 2431
2143 2143
2134 2134

The first entries of © = (%, ..., ®,) and ¢(n) = (0 ...,0)=0 are the
same on this list. This is always the case because the last entry of the first cycle of ©

is 1, so © maps 1 to ;. This is w; =0,. We also notice that the falls, or

descents, of 6 must lie jnside the cycles of n. The example 6=4/26/1389/57
has 3 falls: 4 to 2, 6 to 1, and 9 to 5, which have been indicated with a slash.
In general, i isafallof o if 6,>0, . So,forany fall 6,0, , of 6, T maps j=
o, to m=g,, (1 =m), where j>m. Clearly any such j and m give afallin ©.

Thus we have the following theorem.
THEOREM 4.3 The number of permutations ® of n with k falls is equal to the

number of permutations T of n whose two line notation has m below j with j>m
in exactly k positions.

If a permutation ¢ has k falls, italso has k+1 runs. A run of a permutation
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is the string of integers between two consecutive falls or between a fall and an end of
the permutation. They are the strings separated by the slashes of the falls. Let
e(n, k), the Eulerian number, be the number of permutations ¢ of n with k runs.
For n=4, e(4,1)=1, e4,2)=11, e(4,3) =11 and e(4,4) = 1. These numbers
have several properties which mimic those of the binomial coefficients or the Stirling
numbers of the second kind.

The analogue of Pascal's triangle is

4.1) en,k)=kemn-1L,k+m-k+1)en-1,k-1).

It is easy to give a bijective proof of (4.1). As in the proof of (2.3) in §1.2 or (5.1) in
§1.5, just consider where n is placed in ©.

We can also classify permutations by the number of cycles. Let c(n, k) denote
the number of permutations of n with k cycles. For reasons which will become
clear (see (4.3) and (4.5) below), this number is usually given a sign: s(n, k) =
(=1)™¥ ¢(n, k). For example, s(4,1)=—6, s(4,2) =7, s(4,3)=—6, and s(4, 4)
=1. The numbers s(n, k) are called Stirling numbers of the first kind. They have
many properties analogous to those of Stirling numbers of the second kind. For
instance, they satisfy a three-term recurrence:

4.2) s(n, k)= —(n-1Dsn-Lk)+s(n-1,k-1).

This recurrence can be proved in the same manner as (2.3) or (5.1) in Chapter 1 or
(4.1) above. You are asked to prove (4.1) and (4.2) in Exercise 23.
Stirling numbers are related to one another by an orthogonality formula:

n 1ifn=j
43 S, k) s(k, j) =
@3 kgo (1) s 9 {Oifn;tj.

You are asked to give a combinatorial proof of (4.3) in Chapter 4.

Stirling numbers and Eulerian numbers satisfy analogues of the binomial
theorem. For Eulerian numbers, this is

n < x+k—1
4.4) x" = kZ=10 ( n )e(n, k).

For Stirling numbers of the first kind, it is
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n
4.5) x)y = X sk xX

For Stirling numbers of the second kind, it is
n
4.6) x" = kZ‘,o S(n, k) (x), -

(Recall from §1.1 that (x), =x (x —1) - (x—n+1).)

Like the binomial theorem, equations (4.4)-(4.6) have many proofs. We will
concentrate on combinatorial proofs in the style of the two proofs of the binomial
theorem given at the start of this chapter. The reader might want to review those two
proofs at this time. Recall that in the first proof, we defined two weighted sets, Cl
and B, where the weight of an element was a monomial. Then the two sides of the
equation corresponded to summing the weights of the elements of the two sets Cl
and B. We then constructed a weight-preserving bijection between the two sets.

In the second proof, we let x be a positive integer. Then we described a set
which was counted in two different ways by the two sides of the identity.

Equations (4.4)-(4.6) cause some difficulty because they involve signs. We
will learn other techniques for dealing with signs in Chapter 4. With
weight-preserving bijections, the signs can be incorporated in the weights. Let's
prove (4.5) in this way. First, we expand the left-hand side of (4.5):

4.7) X = X I a-ix™A

Ac[n] ieA

From (4.7) we see that an appropriate set I would be all pairs (A, f) where A
[n] andf is a function f: A — [n] such that f(i) <i, i€ A. The appropriate weight
would be w(A, f) = (~1)/AIx2-1Al The other set, B, will be all permutations of n.
The right-hand side of (4.5) tells us the weight of a permutation, w(r) = (—1)™* xk,
where k is the number of cycles in .

We now need a weight-preserving bijection ¢ : B— . For ne B, the
canonical cycle decomposition of ® has k special entries, those at the end of each
cycle. In @(m) = (A, f), let A be those entries of ® which are not special. The
function f indicates how the remaining entries of ® were positioned. Define f(i) —1
to be the number of entries to the left of i which are <i. For example,if n=9, A=
{2,4,6, 8,9}, and = (62481) (93) (5) (7), then f(2) =1, f(4)=2, f(6) =1,

f(8) = 4, and f(9) = 6. It is not hard to prove that ¢ is a weight-preserving bijection.
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Proofs of (4.4) and (4.6) are sketched in Exercises 27 and 26.

Now let's use the second method to prove (4.4)-(4.6). Remember that x isa
positive integer. First consider (4.6). The left-hand side counts the set of all functions
f:[n] — [x]. Classify these functions by the partition of [n] given by f~ 1. There are
S(n, k) possible partitions. How many functions from [n] to [x] have a given
pre-image partition n? Clearly, elements of the same block map to the same element
of [x], while elements of different blocks must be mapped to different elements of
[x]. If = has k blocks, the number of such functions is just (x),.

Unfortunately, the terms in the sum in (4.5) alternate in sign. In Chapter 4 we
shall learn more about dealing with signs. For now, we can replace x with —x in
(4.5) and multiply by (-1)" to get

4.8) x(x+1)--- (x+n—-1) = 211: c(n, k)xk.
k=0

The left-hand side of (4.8) counts placements of n labeled balls in x labeled boxes,

where the balls in any single box are ordered. For example, here is such a placement
when n=9 and x=4.

- 100G

®
| @
@ ®

The right-hand side counts the same set in the following way. Construct a permutation
of the balls and write it in cycle notation. Let k be the number of cycles. Now assign
each cycle to a box. The number of ways of doing this is c(n, k) xX, for each k.
Within any single box there will be a collection of cycles. These form an ordering of
the balls in that box. In the example, box 1 contains the permutation 7364, box 2
is empty, box 3 contains the permutation 259, and box 4 the permutation 81. So
the resulting permutation is (81) (2) (743) (5) (6) (9), with (743) and (6) assigned
to box 1; (2), (5) and (9) assigned to box 3; and (81) assigned to box 4.

We leave (4.4) as an exercise (Exercise 21).

The final topic of this section is multiset permutations. A multiset M, is a "set"
of objects where repetitions are allowed. Usually the word "set" refers to distinct
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objects, so we use the word multiset. An example of a multiset is
M={A,AN,N,O,R,R,S,S, T,U, U, Y}.

The multiplicity of A in M is 2, because T contains 2 A's. A multiset
permutation is some ordering of the elements of a multiset. TYRANNOSAURUS is a
multiset permutation of M.

We often denote a multiset M, by the objects {1, ..., n} with multiplicities
(my, ..., my). Itis clear that the number of multiset permutations of m is
M!/m;!'-m!, where M=m,+...+m_ This number is called the multinomial

coefficient

)
my, weey My

because of the multinomial theorem

M

M _ m m

(x1+...+xn) ~(m > ) (mp ...,mn) X 1... X B
JEEEERIRLL ]

Multiset permutations are naturally given in one-line notation. There is also a
two-line notation. For 1 =221231122311 we could write

to signify that 2 is first, 3 is fifth, and so on. Another two-line notation places the
same entries on the top line in increasing order,

(111112222233)
T = 221231122311

so that both two-line notations give the usual two-line notation if the multiset
permutation is a permutation of n. An analogue of the cycle representation of © also
exists (see [Lot], Chapter 10).

The number of inversions of a multiset permutation, inv(r), is the number of
@,j) with i<j and m;> T In our example, inv(m) =26. You are asked to

investigate this statistic in Exercise 29.
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§3.5 Tableaux

The tableau is a fundamental construction in the classical presentation of
representations of the symmetric group. But its algebraic importance carries over to
many other areas of mathematics: symmetric functions, invariant theory, algebraic
geometry, Lie algebras and combinatorics, to name a few. Two practical applications
are in quantum theory (representations of GL(n)) and chemistry (Polya counting
theory). In this section we shall give a basic bijection for column strict tableaux, and
relate these tableaux to Young's lattice of §2.1. They will play a central role in the
next two sections on the Schensted correspondence.

Let A be a partition of n. A tableau T of shape A is the Ferrers diagram of
A with each cell filled with a positive integer. These positive integers are called the
entries of the tableau T. The content p = Py > Py of atableau T is the vector

of multiplicities of the entries of the tableau T. This means that T has p, 1's, p,
2's,..., and p_ m's. When itis necessary, we will append zeros to the end of p.

The tableau T below has shape A =4 22 and content p=(2,0,3,1,2).

313]5]1]

T =

W
—

We will be concerned with a special kind of tableau. A tableau T is called
column strict if the entries of T are non-decreasing along the rows of T and strictly
increasing down the columns of T. The tableau below of shape A =4 22 and content
p=(2,0,3,1,2) is column strict.

p—
—

3| 5]

T=

Let J(A, p) be the set of all column strict tableaux of shape A and content p. For
example, J(32,(2,1,1,1)) consists of the following tableaux

—

if1f2] J1]1]3] fif1f4}
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while J(32,(1,2,1,1)) has

It is not an accident that the number of tableaux in each set is the same. It is our next
theorem.

THEOREM 5.1 There is bijection between I(A, p) and I(A, p'), where p' is
obtained from p by applying an adjacent transposition.

Proof Let p' agree with p, exceptfor p, andp, ,, which have been
interchanged. Let Te J(A, p) sothat T has p,_ k's and p, , k+1's. We need
to produce a tableau T' € J(A, p') which has p, k+1's and p, , k's. We willdo

this by switching some k's in T to k+1's, and also switching some k+1's in T to
k's. The k and k+1 entries inrow i of T have the following structure.

a b c
row i-1 ' ot v ! k - k
row i -+ k k -+ k k+l--k+1l ktl--- k+l
row i+1 k+1 - k+1 | SES—

d

For this row, we let a =0 be the number of k's with k+1's below them.
Immediately to the right of these k's, there will be some number b2>0 of k's with
no k+1's below, then some number ¢ 20 of k+1's with no k above, and finally
some number d 20 of k+1's with k's above them.

Wechange T to T' by changing each row i to this form.

a C b
row i-1 r v L 1 kK - k
row i k .-k k -+ k k+l--k+l k+l--- k+l
row i+1 k+1--- k+1 — 1

d

Note that the k's and k+1's which are paired with k+1's below and k's
above are left unchanged. However, the b k's have become ¢ k's, and the ¢
k+1's have become b k+1's. So the total number of unpaired k's in T is equal to
the total number of unpaired k+1's in T'. This implies that T' has p, , k's and

p, k+l's. Itis easy to see that T' is column strict.
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It is clear that if we apply this map again we obtain T, thatis T"=T. So the

map T — T is a bijection.

An example of this bijectionis Te J(8242,(3,6,4,1,2,6)),

1]1]1]2]2]2[2]3
T 212[313]4(6]6}]6
315/6]6
5|6
and T'e IJ(8242,(3,4,6,1,2,6)),
1] 1] 1] 2] 2{3]3]3
T |212[3[3]4]6[6]6
315/6/6
516

The paired 2's and 3's have been boxed in bold face.
Because of Theorem 1.3 of Chapter 1, we immediately have this corollary.

COROLLARY 5.2 If p' is any reordering of p, then |I(A, p)| = |I(A, pY)I.

From Corollary 5.2, we can reorder p so that p,2p, ,. This means that we
can assume that p is a partition. The number of column strict tableaux of shape A
and content p, |I(A, p)l, is called the Kostka number K, o It plays a key role in
the study of tableaux and their connections to various branches of mathematics.

A column strict tableau of content p = (1,1, ..., 1) is called a standard
tableau. There are 5 standard tableaux of shape 3 2.

—
w
(9]

4|

—
w

3] [1]2]4] [1]2]5]

—
N
[ 8]

The number of standard tableaux of shape A, K, ;n, is also very important and is

denoted d,. The next theorem is clear.
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THEOREM 5.3 The number of standard tableaux of shape A, d,, equals the number

of maximal chains in Young's lattice ";Jx

There is an amazing formula for d,. Itis simple to state and difficult to prove.

We will give a proof of an equivalent formula in §4.5. To state this formula, we need
to define a hook. Let ¢ be a cell of the Ferrers diagram of A. We write c € A. The
hook of ¢, H_, consists of the cells to the right of ¢, below ¢, and c itself. In the
bijection proving Theorem 3.3 of this chapter, we used the hooks of the major
diagonal. The length of the hook of ¢, h_, is [H . In the example below the hook of
c is shaded and its length h =7.

[ |

> L
El

The formula for d, is called the hook formula.

THEOREM 5.4 Let A be a partition of n. Then

n!
d, =

As an example, take A = 4 22, We insert the hook lengths into the cells of A.

6|5[2]1]

w
N

Then

8!
dipy = —o 56
227 652:1-32:2:1
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§3.6 The Schensted Correspondence

The construction which plays a central role in the applications of tableaux to various
areas of mathematics is the Schensted correspondence. This correspondence is a
bijection between multiset permutations and pairs of tableaux of the same shape: one
standard, the other column strict. We shall find that several properties of permutations
manifest themselves in the tableaux via the Schensted correspondence.

First we consider a special case: permutations instead of multiset permutations.
Then the Schensted correspondence becomes this theorem.

THEOREM 6.1 The Schensted correspondence is a bijection between all permutations
7 of n and all pairs (P, Q) of standard tableaux of the same shape \. The shape A\

is an arbitrary partition of n.

For n=3 the bijection is

1]
123 +—> 1
3] 3
132 «— L3 [13]
2 | 12 |
1[2] [1]2]
213
> 5 a
31— 21 [13]
5 [2
312 < >;3l 12]

and 321 — [12]3] [1[2[3]

The Schensted correspondence is built inductively. First we take the example
n=35186724 as a permutation of 8. Clearly, if we delete 4 from T, we have a
string ©' of length 7. If we subtract one from all of the entries of &' which are
>4, we have the permutation n" = 3417562 of 7. By induction, n" corresponds
to a pair of standard tableaux (P", Q") with 7 cells. What we need to do is this:
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insert the number 4 into P" and Q" (in some way) and add one to all of the entries
of P" and Q" which are > 4. This will give us P and Q. Of course, the difficult
part of this is to determine exactly how to insert the number 4. This algorithm is
called the Schensted column insertion algorithm.

First, we should remark that it is not necessary to do the addition and
subtraction of one to the entries of P" and Q". The Schensted correspondence will
produce tableaux (P', Q") for w', where the entries of P' are [8] — {4}, and the
entries of Q' are [7]. For nt=35186724,

n' =3518672, P'=

1 1
2 2
6| 4
7. 6]

The Schensted column insertion algorithm inserts 4 into P' and 8 into Q'
The natural position of 4 in the first column of P' is between the 2 and the 6. The
4 takes the place of the 6, or bumps the 6 out of the first column of P'. The 6
now is inserted by the same method into the second column of P'. This time the 6 is
placed after the 5 and does not bump any entry of the second column. The column
insertion algorithm has been completed. The resulting tableau P is

w

8]

P =

W

I\l-bl\)'ﬂ
(=)}

Note that the shape of P differs from that of P' by the addition of exactly one
cell (the cell 6 of P). We place an 8 in that cell for the definition of Q'

3]

1
Q- 2
4[8
[ 6]

(V]

A given insertion could cause several bumps. An example in the general case is
given later.

To find P and Q from =, just apply the column insertion algorithm
successively to the entries of w. If we use two line notation for T,
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34567 <4— entries of Q
= (3 86724 <«4—— entries of P

the entries of the top line are successively inserted into Q, while those of the bottom
line are likewise inserted into P. What follows is the sequence of tableaux obtained
from the column insertions of 7 to arrive at P' and Q'

3

35 1]
2
351 1 3] 1 34‘
5 (2
3518 1]3] 1]3]
> 2 |
8] 4]
35186 1]3 1]3
5(8 2[5
6 4 ]
351864 1[3]38] 1]3]6]
4[5 2|5
6] 4
3518647 1]3]8] 1]3]6|
415 215
6| 14 |
7 ] A

If the Schensted correspondence is a bijection, we must be able to recover ©
from (P, Q). Itis clear what we do. Find the largest cell ¢ in Q (in the example it
contains 8), and find the entry e of thatcellin P (in the example itis 6). Now we
insert e in the left neighboring column, and bump the largest entry of that column
which is < e to the left. (This is exactly the reverse of the bumping procedure.) We
continue this procedure until an entry f is bumped out of the first column of P,
creating the new tableau P'. Then f is the last entry of © (in the example f = 4).
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Removing ¢ from Q gives Q'. Next, we start with the largest entry of Q', and do
this inverse bumping procedure until another entry is bumped from the first column of
P', and continue.

We will not give a formal proof by induction of this case. Instead, we will
consider the generalized Schensted correspondence for multiset permutations. Let T
be a multiset with conzent (p,, ..., p_), sothat T contains p, i's. A permutation

n of M is any sequence of the elements of M. For (pl, ,pm) =(1,4,2), one
such © is 2322132. Clearly if each p, =1, M has no repetitions so that multiset

permutations are just usual permutations. The generalized Schensted correspondence
will associate to 7 the pair of tableaux (P, Q), where P is column strict of content
p, and Q is a standard tableau of the same shape as P. For & =2322132 we will
see that

@, Q) = ( 1]2[22] 1345])
’ 2[3]3] 2l6]7 ’

To produce P and Q, we use the same bumping procedure with a minor
modification. Suppose we are inserting k into a column. The number which is
bumped out of the column is the smallest number > k. (In the previous case, it was
>k because repeats were not allowed.) For example, suppose we are inserting 4 into
the column strict tableau P.

1{1]1]2]4[4]6]6]

2[313 35 |7
P= B

4171717

6]

Then the 4 will bump the 4 in the first column, so that the new first column is the
old first column.

The bumped 4 now bumps the 5 in the second column, for the following first two
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new columns.

N AW -

[O\-bwwr-‘

The 5 from column 2 bumps the 5 in column 3.

NP W| -
Sl nfWw| =

IO\#WN»—!

The 5 from column 3 bumps the 6 from column 4.

11 1]2
213]13[3
31 4{5{5
4171717
6

The 6 from column 4 bumps the 7 from column 5.

1{1[1]2]4

2[3[3]3]5

3|4[5[5]6

4|7(7(7
L6

The 7 from column 5 bumps the 7 from column 6.

LW -
SN|alw|—
BN LRIV | )
W
2

IO\AWN'—‘
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The 7 from column 6 is larger than everything in column 7. It is therefore placed at
the end of column 7, and the insertion of 4 into P has been completed.

1{1]1]2]4]4]6]6]
213]3][3[5[7]7
3[4[5]5]6

4| 7] 717

L]

The new cell has been marked in bold face. We would place the next entry of Q (here
a 25) in that cell.

The reader should verify that m =2322132 gives the (P, Q) that was
previously claimed. The entries of Q are 1234567, the first row of the two line
notation for .

The inverse Schensted correspondence (P, Q) — & is as before. We use the
largest entry of Q to find the entry e of P which bumps to the left. This time the
largest number of the column which is <e is bumped to the left. (Note that the entry
directly to the left of e is <e, so that this set is non-empty.) The number eventually
bumped out of the first column is again the last entry of . We call this inverse
procedure column deletion. Because column deletion is the inverse to column
insertion, it is easy to see by induction that the generalized Schensted correspondence
is a bijection.

THEOREM 6.2 The generalized Schensted correspondence is a bijection between all
multiset permutations T of content p, and pairs of tableaux (P, Q), where P is
column strict of content p, and Q is standard with the same shape as P.

Suppose that p = (p,, ..., p,), so that the multinomial coefficient gives the

number of multiset permutations . The number of ordered pairs (P, Q) is a sum of
Kostka numbers K; p times d,, so that we have this corollary.

COROLLARY 6.3 If p=(py,...,p,) and p,+...+p_=n, then

Py+..+ Py
= K, d,,
Py Py ) % Ap TA

where the summation is over all partitions A of n.
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For permutations of n, Corollary 6.3 specializes to the following corollary.
COROLLARY 6.4 For any positive integer n,

n!=2di
A

Where the summation is over all partitions A of n.

We now give the algorithms for Schensted column insertion, Schensted column
deletion, the generalized Schensted correspondence (called Schensted encode) and the
inverse generalized Schensted correspondence (called Schensted decode). For column
insertion, the tableau is P with cell entries P(i, j). The value to be inserted is k. The
length of the jth column of P is Cpe The tableau with k inserted into P is
Ins(k, P); the new cellis Cell(k, P).

ALGORITHM 17: Schensted Column Insertion

begin

P'«P

DoMore ¢ true

je1

while DoMore do

if k SP'(cj,j) then
ie G
repeat
ie—i-1
until P'(G,j) <k
ie—i+1
x « P'G,j)
P'(4,j) «k
kex
jej+1l
else

ie G+ 1
P'G4,j) <k
DoMore « false

Ins(P, k) « P'
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Cell(P, k) « (1, j)
end.

The column deletion algorithm begins at row r and column ¢ of the tableau P. The
tableau after deletion is Del((r, ), P) and the value bumped out is Val((r, c), P).

ALGORITHM 18: Schensted Column Deletion

begin
P'«P
x « P(r,c)
for j<c—-1 downto 1 do
i1
repeat
ie—i+1
until P'G,j)>x or i> G
ie—i-1
y < PG )
P'G, ) « x
X ¢ y
Del((r, c), P) « P
Val((r,c),P) «y
end.

Now we give the Schensted encode algorithm. We use Ins(k, P) and
Cell(k,P) from Algorithm 17. The permutation is ®, whose two-line notation has
top row jy, j,, .-- » j, and bottomrow ®;, T, ..., ®,. The resulting pair of tableaux
is (Schp(m), SchQ(n:)).

ALGORITHM 19: Schensted Encode
begin
PO
Q«U
for i< 1 to n do
P « Ins(m;, P)
Q(Celi(r, P)) « j;
Schp(n) « P
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SchQ(n) «Q

end.

For the Schensted decode algorithm, we use Del((i, j), P) and Val((, j), P) from
Algorithm 18. MaxCell(Q) computes the row and column containing the largest entry
in Q. From the pair of tableaux (P, Q), this algorithm computes the permutation in
two-line notation: Schy(P, Q) is the bottom row and Sch(P, Q) the top row.

ALGORITHM 20: Schensted Decode
begin
P «P
QeQ
for i < n downto 1 do
¢ « MaxCell(Q")
o, < Q(c)
P' « Del(c, P)
T, « Val(c, P')
Q Q' —{c}
Schyp(P,Q) =

Schx(P, Q) <0
end.

Sometimes we will use the following notation and terminology. We call P the
P-tableau, and Q the Q-tableau, if © corresponds to (P, Q). We also use the
notation P = Schp(n) and Q= SchQ(n), as in Algorithm 19 above.

Several more remarkable properties of the Schensted correspondence are given
in the next section.

§3.7 Properties of the Schensted Correspondence

In this section we shall investigate three of the many remarkable properties of
the Schensted correspondence. The first property motivated Schensted's original
paper [Sch]: given a permutation ® of n, how can one find the length of the longest
increasing subsequence of ©? While solving that problem, we will also answer this
question: what permutation corresponds to (Q, P) if m corresponds to (P, Q)?
Finally, we will see that the matching in the Boolean algebra of §2.2 can be derived
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from the generalized Schensted correspondence.
The answer to the first question is given by this theorem.

THEOREM 7.1 The number of rows of P (or Q) is the length of the longest

increasing subsequence of T.

In the example T =35186724 of §3.6, P had 4 rows, so 7 has an increasing
subsequence of length 4, 3567, and none longer.

To prove Theorem 7.1, we need to describe what happens to P and Q in the
first column only at each stage. Suppose, as in the previous section, T =35186724.

Entry in Action Taken Column 1 of P of Q
1 Insert 3; Q; «1 3 1
2 Insert 5; Q, <2 3 1

5 2

3 Insert 1; bump 3 1 1
5 2

4 Insert 8; Q;, « 4 1 1
2

8 4

5 Insert 6; bump 8 1
5 2

6 4

6 Insert 7; Q4 <6 1 1
5 2

6 4

7 6

7 Insert 2; bump 5 1 1
2 2

6 4

7 6

8 Insert 4; bump 6 1 1
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The remaining columns of P and Q can be found by applying the Schensted
correspondence to T = 3856 (the bumped numbers), using 3578 as the available
entries for Q.

We call the "permutation”

3578
mb = (3856

the bumping permutation of . To find the second columns of P and Q we apply
the column insertion algorithm to this two line array.

Entry int Action taken Column 2 of P of Q
3 Insert 3; Q; 3 3 3
5 Insert 8; Q,, <5 3 3
8 5
7 Insert 5; bump 8 3 3
5 5
8 Insert 6; Qs, ¢~ 8 3 3
5
6 8

Clearly, for the third column, P has 8 and Q has 7.
We now divide the n elements of the set {(i,7;) : 1<i<n} into classes. We

say that (i, m) isinclass ¢ if m; was inserted into row t of column 1. In the

example

class 1 = {(1, 3), (3, 1)},

class 2 = {(2,5), (7, 2)},

class 3 = {(4, 8), (5, 6), (8, H)},
and class 4 = {(6,7)}.

We see that if (i, w;) isinclass t, the first column of P must have t -1
entries smaller than m; when =, is inserted. So m has an increasing subsequence of

length t which ends at ;. Any longer such subsequence would force T; to be
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inserted below row t. This pfoperty characterizes the class of a pair.

LEMMA 7.2 Thepair (i, ;) belongs to class t if and only if the length of the

largest increasing subsequence of T ending at T, is t.

Proof Tt remains to show if the length of the largest increasing subsequence of ©
ending at m; is t, then (i, m;) belongs toclass t. We do this by inductionon t. If t
=1, then m; is smaller than all of the preceding 7;, so =; is inserted into the first
row of column and (i, 7;) belongs to class 1.

Now suppose t > 1, and choose an increasing subsequence S of m ending at
m; of length t. Let T be the predecessor to =; in S. Then the subsequence S§'=
S—{m;} which ends at T is also of maximal length. By induction, (j, ) belongs
toclass t — 1. So when 7; was inserted into the first column, the entry v in row
t—1 was Sn:j< ;. Thus, m, was inserted either below row t orinrow t. Let w
be the entry in row t when m; was inserted. The entry w (which precedes =) is a
member of a pair in class t. By the first part of the theorem, there is an increasing
subsequence of m of length t ending at w. If w < m;, we could attach T, to this

subsequence and have an increasing subsequence of length t+ 1. This contradicts our
hypothesis, so w >m; and =; was inserted into row t.

Proof of Theorem 7.1 Suppose S is one of the longest increasing subsequences of ©
and has length t and suppose that P has r rows. By Lemma 7.2, the last member
m, of S is inserted into row t of P, so t<r. Conversely, the (r, 1) entry of P is

in class r, so Lemma 7.2 implies that r <t.

The answer to our second question is provided by Theorem 7.3.

THEOREM 7.3 Suppose that ©© corresponds to (P, Q) in the Schensted
correspondence. Then T (the inverse of &) correspondsto (Q,P).

Proof In fact, Theorem 7.3 holds for all two line arrays with distinct entries. In this
case T! is the two line array obtained by interchanging the two lines, then sorting the
columns according to the first line. Our proof will be by induction on the number of
columns of P. First we show that the first columns agree, and then apply induction.
We initially consider the permutation case, but the reader should have no difficulty
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extending to the two line case.
Let (i, ™) belong to class t for m. Itis clear from Lemma 7.2 that (m;, i) is

apair for ©! which also belongs to class t.
Note thatif (i, 7;) and (, nj) are in the same class t for © with i<j, then

> This is because the entries in row t, column 1 must be non-increasing as the
entries of T are inserted into P. This also implies that the smallest =; in class t is
the entry P,;. The largest m; in class t occurs when that cell is first occupied, so
Q, =i. (In the example, the smallest T; of class 3 is mg =4, and P;; =4. The
largest m; is 7, =8, and Q;; =4.) Thus the subsequence S of m of the class t
m;'s is decreasing and has lastentry P;. Theindex i of the first m; in S is the
entry in Q. The diagram below shows S, the entries P,; and Qy;, and the
reversal of S for !, This subsequence of ! gives the entries P'; and Q' if

n! corresponds to (P', Q).

—> Jif<ip ..< i
(.< 2 <k class t

T N -
i >y, > «— P, pairs for T

1t <T; T
(n fgg < 1y class t

) o, st
i > i > <+— P}, pairs for

This diagram shows that Q',; =P,; and P'; = Q,, so that the first columns
of Q' and P, and P' and Q, are identical.

Next, suppose that the bumping permutation of ©t is ©tb. The entries on the
first line of 7tb are used for the remaining columns of Q. Thus, they will also be
used for the remaining columns of P'. The same statement can be made about the
second line of ©b and the remaining columns of P and Q'. So, if we show that ©tb
is the inverse of the two line array ~1b, the induction hypothesis will show that the
P tableau of b is the Q tableau of 7~!b, and vice versa. This will complete the
proof.

In the class t pairs of =, m;, bumps =;;, 73 bumps 7;,, etc. So nb
contains the pairs

( i < .. < iy )
i T
7t11> > g1

while n~1b contains the pairs from class t
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T T
( _lk-l < e < .11)
iy > .. >1ip /-

For example, the class 3 pairs of 7t =35186724 give
[4]5 8 > (58
( 8 6) ( 86
while the class 3 pairs of w~! give
68) —p (68
@eg) — (53

This proves that the inverse of ©b is ©"'b, and completes the proof of
Theorem 7.3.

COROLLARY 7.4 The number of standard tableaux with n entries is equal to the
number of involutions ® of [n].

Proof An involution of [n] is a permutation 7 of [n] such that = =n"l. By
Theorem 7.3, the Schensted correspondence is a bijection between all pairs of standard
tableaux (P, P), and all permutations © of [n] such that & =mn"1,

The third application involves the matching f in the Boolean algebra of §2.2.
We shall use the generalized Schensted correspondence to obtain the matching f.

Let A c[n], |Al=p, and write A as an n-tupleof n—p O's andp 1.
Written this way, we may consider A as a multiset permutationof p 1's and n—p
0's. Now apply Algorithm 19to A to obtain (P, Q). Since P is column strict with
n—p O's and p 1's, P must have either one or two rows. If thereis no 1 below
the last 0 inrow 1, change that 0 toa 1 to obtain a new tableau P'. (For
p<|n/2] this will always be the case.) Next apply Algorithm 20 to (P, Q) to obtain
astringof p+1 1's and n—p—1 0's. This string corresponds toa p+1 element
subset B of [n]. Let g(A)=B.

For example, if n=8 and A ={1,4,7, 8}, the binary string is 10010011.
Algorithm 19 gives

(=]
(=]
(=]

0]1] Q- M2

w

5/6]

P=
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Then switching the last 0 of P toa 1 gives

p _ [O]O]0[1[T]

111]1

Applying Algorithm 20 to P' and Q yields 11010011, which corresponds to B =
g(A) ={1,2,4,7, 8}. Note that f(A) = g(A), where f is the matching from §2.2.

THEOREM 7.5 If g is defined as above, then g =f, the matching in the Boolean
algebra of §2.2.

Proof We will show that the Schensted encoding algorithm, when applied to f(A),
yields (P', Q). By Theorem 6.2, this implies that f(A) = g(A).

To do this, we need to find out how the peaks of the graph of A (as in §2.2)
are related to the encoding algorithm. Let A, be the initial segment of A of length i.
Put P,(A) = Schp(A;) and Q(A) = SchQ(Ai). Let h;(A) be the height of the graph
of A after the ith step. The following technical lemma is central to the proof.

LEMMA 7.6 Supposethat A and B are subsets of [n] and 1<i<j<n, j—i=
2k. Suppose also that hy(A) = hj(A) and h(A)2h_(A) for i<m<j. Finally,
suppose that A and B agree between i and j, and that the shapes of P(A) and
P(B) areidentical. Then

(1) Pj(A) =P,(A) with k O's addedtorow 1 and k 1's added to row 2,

2) Pj(B) =P,(B) with k O's addedtorow 1 and k 1's added to row 2, and
(3) thepart of Qj(A) which was added to Q,(A) is identical to the part of Qj(B)
which was added to Q,(B).

Note: the hypotheses on the heights just mean that there is a "valley" between the
"peaks" i and j in the graphs of A or B. The conclusion of the lemma is that the P
and Q tableaux of A and B are built identically (in a simple way) between these
peaks.

Proof Let P,(A) be the following tableau.

\4 w

P NI —

P.(A) 0---fofof---fof1]---1]
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Insertion of O's increases the string (v) of O's inrow 1. Because hi(A)2h_ (A)
for i <m £j, we have always added at least 2s many O's as 1's. Thus,no 1 can
bumpa 1 inrow 1, and all of the 1's are added torow 2. This proves (1).
Because the shapes of P,(A) and P,(B) are identical, we also have shown (2).

By (1) and (2), inserting a 0 will create a new entry of Q inrow 1, and
inserting a 1 will create a new entry of Q inrow 2. The same sequence of
insertions is done for A and B because A and B agree between i and j. This
proves (3).

Lemma 7.6 means that if we are constructing P and Q for A and B = f(A),
we can ignore what happens between the peaks where A and B agree. For the
graph of A, we replace all edges between such i and j by horizontal edges. For
example, A =1100111010001001011010010

AN

is replaced by:

AN

hS

Generally, there will be a sequence of rising terraces followed by a sequence of falling
terraces. The falling edge e of the highest terrace is the edge which is switched to
construct f(A).

O\
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To prove Theorem 7.5, we need to show that Schp(f(A)) =P' and SchQ(f(A))

= Q. Let the initial endpoint of the edge e have coordinates (i, j). Since A and f(A)
agree up to e, P,(A) = P,(f(A)) and Q(A) = Q(f(A)). Lemma 7.6 implies that
P,(A) is the following tableau.

o
(=}

1|...|1 I

P,(A)

We inserta O into P,(A) toobtain P, ;(A), and 1 into P;(A) to obtain
P, +1(f(A)).

j
P ,(A) ol---lofoda |---]1]
nEEn
j+1
P, (f(A) o [o[1]---[1 ]
1---1

The cell in which P, ;(A) and P, ,(f(A)) do not agree has been outlined. The new
cell created in P, ;(A) and P, ,(f(A)) is at the end of the first row, so Q,,;(A) =
Q1 (f(A)).

What happens as we continue to insert the remaining O's and 1's of A?
(Since f(A) agrees with A past e, we are inserting the same O's and 1's asin
f(A).) If we insert the O's after e which are before the next terrace, they are placed
in the first row of the P-tableau of A and f(A). Again the only difference in these
two tableaux will be the outlined entry. If we insert the entries of a terrace, Lemma
7.6 implies that the P and Q tableaux of A and f(A) are built identically. Thus,
Schp(A) and Schp(f(A)) differ in only the outlined entry. This was our definition of
P', so Schp(f(A)) = P'. We also conclude that SchQ(f(A)) = Q, which completes
the proof of Theorem 7.5.
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Notes

Two good references for bijections are Berge [Be] and Lothaire [Lot]. Itis an
active area of research (see, for example, the papers of Foata, Viennot or Zeilberger).
The result for n-cycles and trees appears in Berge. Goulden and Jackson [G-J] also
contains bijections with particular attention paid to generating functions. Knuth [Kn]
is a rich source for constructions on permutations and the Schensted correspondence.
The Schensted correspondence was equivalent to a correspondence of Robinson, who
stated his correspondence with no proof. Knuth generalized it to two line arrays as in
Exercise 41 below. It is sometimes referred to as the Robinson-Schensted-Knuth
correspondence. The result of Exercise 30 is due to MacMahon in 1913. Foata [Fo]
gave a bijective proof. Andrews [An] is the standard source for partitions. Many of
the relationships between tableaux and permutations are given in James and Kerber
[Ja-K].

Exercises
1.[2] Prove by a bijection that
n—-1

C = Z CyCox-
k=0

2.[1] Use a bijection to show that the number of terminal vertices in a full binary
tree is one more than the number of internal vertices.

3.[1] Given the sequence of well-formed parentheses ((() ())()) () () ()),
construct the corresponding

(a) binary tree,
(b) ordered tree,

(c) standard tableau.

4.[3] A function f: [n] — [n] called monotone if f(x) <f(y) whenever x <y.
Give a bijection which shows that the number of monotone functions f: [n] — [n]
which satisfy f(i) <i, i€ [n], is C. How many elements does Young's lattice "dl

have, A = (n-1,n-2,...,1)?
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5.02] A rooted labeled binary tree T is called increasing if x >y whenever x is
below y in T. Thus 1 is the root of T. Give a bijection which proves that the
number of increasing binary trees with n vertices is n!.

6.[3C]  (Viennot and Zeilberger [Z3]) From §3.1 we know that there is a bijection
between ordered trees on n+ 1 vertices and full binary trees on 2n + 1 vertices.
Write a program to investigate the following statistics on these trees.

Ordered Trees: A filament of arooted tree T is a maximal path from a terminal
vertex, not including the root, all of whose vertices have degree <2. The filaments of
the tree below have been circled.

If the filaments of an ordered tree are deleted, another ordered tree results. The
filament number of an ordered tree T is the number of successive filament deletions
which reduce T to its root. The filament number of the above tree is 2. Here are the
5 ordered trees on 4 vertices and their filament numbers.

! { ! {\ ! q ‘:/k ﬂ\
Full Binary Trees: The decomposition number of a full binary tree is defined
inductively. Label the terminal vertices of T with 0. Label any other vertex v of T
by the maximum of the labels of the two sons of v, if these labels are not the same,
and by the label +1 if these two labels are the same. The decomposition number of T

is the label of the root of T. Here are the 5 full binary trees on 7 vertices with their
appropriate labelings.



7.[3]

8.[1]

9.[2]

1 2
1 1
0
1
0 00 O
0
1
1
0
1
0
0 0

Using a bijection, prove
e ( n+k) X 2
z 2™ = 2%
K=o K

Find the Priifer code of the following labeled tree.

How many labeled trees on [n] have the degree sequence d;,d,, ..., d

where d;21 and d; +d,+... +d, =2n-2?

10.[2]
degree k?

11.[2]

How many labeled trees on n vertices are there such that vertex 1 has

Use Exercise 9 to find the generating function

- X; n ’

Fxy, %) = % 3D 4 6D
T
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where the sum is over all labeled trees T on [n], and d(T) is the degree of vertex i
in T?

12.[3] LetT = n™2. By considering ordered pairs (T, e) of labeled trees T and
edges e of T, give a bijective proof that

n—1
-1
m-DT, = 121 (E_I)Tan_kk(n—k).

13.[1] Let f be a function from [n] to [n], f: [n] = [n]. The functional digraph
of f is the directed graph Gy whose vertex setis [n] and with edge i — if and

only if f(i) =j. The graph Gy in the proof of Theorem 2.4 was a functional digraph.
What does a typical functional digraph look like?

14.[2] Find a bijection between all functional digraphs (see Exercise 13) on [n]
with k loops (fixed points of f) and all function digraphs on [n] where 1 has
in-degree k.

15.[2]  The following bijective proof of Cayley's theorem is due to G. Labelle [La].
A weighted version of it can be used to give a bijective proof of the Lagrange inversion
formula.

Let S be the setof all (T, r, x), where T is arooted labeled tree on n
vertices, r is the root of T, and x is any vertex of T. Clearly, to prove Cayley's
theorem it is sufficient to prove that |S|=n" So we need a bijection ¢ : S = F,
where F is the set of all functions f: [n] — [n]. We will give the functional digraph
(see Exercise 13) of f=¢((T, 1, x)).

First, direct each edge of T toward the root r. Next, order the vertices of the
unique path P in T from r to x. This gives a permutation of the vertices of P,
whose cycles are the cycles of f. Attach the remaining vertices of T to these cycles in
exactly the same way that they are attached in T, to complete the definition of f.
Show that the map ¢ is a bijection.

Example: Let n=16, r=4, x=9, and T be the tree (whose edges have
already been directed)
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5 11 9\

Then the path P from r to x is 4 16 109, whose cycle decomposition is
(4) (9 16) (10). So we attach the rest of T to these cycles to define f.

4 0 3 9 16
; 15/' F 16
/ l\12 14 5 11
/7 \
2 7

16.[3C] Write a program to compute, for various values of m and n, the
generating function G (q) of §3.3. What do rank symmetry and unimodality of
Young's lattice Y, for the shape A =n™ imply about G,,(q)? Conjecture and
prove an explicit formula for G (q). (Hint: A useful polynomialis (1-q) (1 - q2)
-+ (1 —q).) What justification can you give for G_ (q) being called the g-binomial

coefficient?
17.[2]  Prove that the number of partitions of n into k distinct parts is equal to the
number of partitions of n—k (k+ 1) /2 with at most k parts. What generating

function identity does this imply?

18.[2] Use Theorem 4.1 to conclude that the inversion poset n is rank
symmetric and rank unimodal.

19.[1] If 7t =372459168, find the corresponding ¢(w) of §3.4.

20.[2]  Prove by a bijection that e(n, k) = e(n, n+ 1 —k). What is the average
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number of falls of a permutation 1t of n?

21.[3]  Give a bijective proof of (4.4) for positive integral values of x. Then
conclude that (4.4) holds as a polynomial identity in x.

22.[3]  Prove by a bijection that

m

n—k
Sn,m)m! = k§1 e(n, k) (m-k .

23.[1] Prove the recurrence formulas (4.1) and (4.2) as outlined in §3.4.
24.[3]  Can you find an orthogonality formula for the binomial coefficients?
25.[3]  Can you find another orthogonality formula for the Stirling numbers?
26.[2] Prove (4.6) by using (4.5) and (4.3).

27.[3] Prove (4.4) from Exercise 22 above and Vandermonde's Theorem (Exercise
26 of Chapter 1).

28.[3C] Let e(n, p,k) be the number of multiset permutations on M =

{1P,2P, ..., nP} that have k falls. For fixed values of n and p, write a program
to find the values of e(n, p; k). State and prove as many conjectures as you can.
(This is called Simon Newcomb's problem.)

29.[4C] Let M be the multiset of m O's and n 1's. For we M, let ¢ (w)
be the corresponding partition of Theorem 3.2. Show that ¢~}(w) partitions the
number inv(w). Write a program to find the generating function for the inversion
number of a multiset of m 0's, n 1's,and k 2's. State and prove as many
conjectures as you can.

30.[3C] (MacMahon, 1913; Foata [Fo]) The index of a permutation 7 =17, -

n
is the sum of all subscripts j such that > Ty, 1<j<n- 1. Forexample, the
index of 47816325 is 3+ 5+ 6 = 14. Write a program which finds, for a given n,
the number of permutations a(n, k) which have index k. State and prove your
conjectures. What is the generating function
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Y amnk) ¢ ?
k=0

31.[1] Give the Kostka table for n = 4.

32.[2] Prove the Gale-Ryser Theorem (see, for example, [Ja-K]): K, w> 0 if and

only if A >} in the dominance lattice.

33.[4] Prove that KMl 2K, 0 if p 2= in the dominance lattice. (Hint:
characterize p -> |1, and then show that KMl 2K, p if p->p.)

34.[4C] Write a program which finds the number of column strict tableaux of shape
A whose entries are <N. State and prove your conjectures.

35.[1] Suppose that ©t=443511242. Find the P and Q tableaux of 7 in the
generalized Schensted correspondence.

36.[1]  Suppose

4]4] 415]9]

NS
o

[
(o}

RS
(¥}
IOOU) N
~

Find the multiset permutation ® which corresponds to (P, Q).

37.[2]1 From the Schensted correspondence prove the Erdos-Szekeres Theorem:
any sequence of n2+ 1 distinct real numbers has either an increasing subsequence or
decreasing subsequence of length 2n + 1.

38.[3C] Use Algorithm 19 to list all involutions of [n] and the corresponding
tableaux. Is there any relationship between the shape of the tableau and the cycle
structure of the permutation?

39.[2] A lattice permutation is a multiset permutation T of 7Ll 1's, )‘2 2's, ...,
A n n's, such that for any initial segment of 7, the number of 1's 2 the number of

2's > ... 2 the number of n's. Thus, 1121233213 is a lattice permutation while
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11212331321 is not. Find a bijection between all such lattice permutations and
standard tableaux of shape A.

40.[3C] (Schiitzenberger [Sc]) Itis clear that a row insertion algorithm exists which
is completely analogous to the column insertion algorithm. Write a program to
investigate this problem: if ® corresponds to (P, Q) under column insertion, and w'
corresponds to (P, Q) under row insertion, how are © and w' related?

41.[3C] (Knuth [Kn1]) The Schensted correspondence may be generalized to give a
bijection between all pairs (P, Q) of column strict tableaux of the same shape and
contents (U, p), and integral matrices A whose row sums are | and column sums
are p. We define a two line array © from A by using Ay pairs (i, j) in @ We
order these pairs in 7 to be increasing in i, and for a fixed i, decreasingin j. Then
we apply the column insertion algorithm to 7 (using the top line of & for the entries
of Q). For example, if

p =554

2 21 5

A = 31 1 5
1 2 1 4

p=653 6 5 3

then m has 2 pairs (1, 1), 2 pairs (1,2), 1 pair (1, 3), etc., so

(1 1222223333
T = (3 1321 3221)
and
af1faff1]2]2]3] 11 1] 1]2]2]2]3]
P= 21212 s Q= 2121313
3 3

If A corresponds to (P, Q), what matrix corresponds to (Q, P)? Also, give an
expression for the number of such matrices (with a general p and p) which involves
the Kostka numbers.



CHAPTER 4

Involutions

Many combinatorial formulas include positive and negative values. It might first
seem that a bijection is not the proper tool for dealing with these formulas. This is not
the case, however. Such formulas can sometimes be proved by using an involution on
a signed set. In fact, involutions may be used to prove theorems seemingly unrelated
to combinatorics. This will be done in Section 3 for the Cayley-Hamilton Theorem.

A signed set A is a set which has been partitioned into two subsets, A and
A~ with AY¥UA™=A and A* N A~ =@. The elements of At and A~ are
called positive and negative, respectively. We are interested in the value ||A|| =
IAY A7,

If some of the elements of A~ can be paired with some of the elements of A¥,
then the total size of the sets that we have to count to compute ||A]| is reduced. In fact,
if A% isbiggerthan A~ and if we pair up all of A~, then ||A|| is just the number of
elements of At which are unpaired. More formally, such a matching is an involution
@ on A, thatis,a permutation @ on A such that ¢? =id. This involution has the
property that whenever @(x) #x, then x € A" if and only if ¢(x) e A~. Note that
this means thatif x € A™ then @(x) € At

Notice that [JA|| is precisely the number of fixed points of ¢ in A minus the
number of fixed points of ¢ in A™. If we write F(¢) for the fixed point set of @,
and F(9)* = F(p) N At and F(¢)™ =F(¢) N A~, then F(¢) is a new signed set and
|IF(@)ll = [|All. Typically, one or both of F((p)"’ or F(¢)~ is empty. Suchan
involution @ is called sign-reversing, for if x is not fixed by ¢, then ¢(x) has the
sign opposite from x.

An important formula from elementary enumeration theory is the principle of
inclusion-exclusion. This principle can easily be proved with a sign-reversing
involution. Suppose X is some finite set of objects and each of these objects is
endowed with certain properties. A property may be thought of as a subset of X.
Suppose P denotes the collection of properties. So associated with x € X thereis a
subset P, P of properties with which x is endowed. For any subset TP of

properties let N_(T)={xe X:P =T} and N_(T) = {x e X:P, > T}. Thus,
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N_(T) is the set of objects in X whose list of properties is exactly T, while N_(T)

is the set whose list contains T. The principle of inclusion-exclusion can now be
stated:

oy N @ - ¥ )TN m.

TcP

Equation (0.1) is usually expressed in basic combinatorics texts as an alternating
sum of various set unions and is generally proved by induction. In the form given
here, it is quite easy to prove using an involution [Z2]. Let A={(x,T):xe€ X and
T cP,}. This set can be made into a signed set by defining sgn(x, T) = DM,
Then At ={(x,T) e A:sgn(x,T)=+1} and A~ = {(x, T) : sgn(x, T) =—1}. The
right-hand side of (0.1) clearly computes [|All.

‘We now give a sign-reversing involution ¢ on A. Suppose the properties P
are linearly ordered. For (x,T) € A, let t be the largest property in P,. If te T,
then @(x, T) = (x, T—{t}). If te P, — T, then @(x, T) = (x, TU {t}). Since [T]
changes by one, ¢ is sign-reversing. Two applications of ¢ will clearly restore
(x, T). This construction cannot be accomplished if P, is empty. In this case, T
must be empty and sgn(x, T) = +1. These elements of A are the fixed points of ¢
and are all positive. They are clearly counted by the left-hand side of (0.1). This
completes the proof.

§4.1 The Euler Pentagonal Number Theorem

In Exercise 15 of Chapter 1 you were asked to discover a relationship between
partitions of n into an odd number of distinct parts and partitions of n into an even
number of distinct parts. This relationship is called Euler's pentagonal number
theorem. In this section we give a famous classical proof of it due to Franklin, which
uses a sign-reversing involution.

THEOREM 1.1 Let PDE(n) (PDO(n)) be the set of partitions of n into distinct parts
with an even (odd) number of parts. Then

0 if n=Gktk)2

PDE(m) —PDOM) = {(—1)“ if n = Gk*K)2.

Note: Itis easy to see that Theorem 1.1 is equivalent to
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oo

(L.1) nm a-xH =1+ i 1k x(3k2+ w2
k=1

i=1

which is a special case of the Jacobi triple product identity [An]. Itis called the
pentagonal number theorem because the numbers (3k%tk)/2 arise when constructing
larger regular pentagons from smaller ones.

Proof Let PD(n) be the set of all partitions of n into distinct parts. Let PD(n)* =
PDE(n) and PD(n)~ = PDO(n). This makes PD(n) into a signed set with sgn(A) =
(1) ofpartsin X The jdea of this proof will be to construct a sign-reversing
involution ¢ on PD(n) with no fixed points, unless n is of the form n = (3k%+K)/2,
in which case ¢ will have exactly one fixed point. The sign of this fixed point will be
(1)K, Clearly, if ¢ has these properties, Theorem 1.1 follows.

Suppose A € PD(n). Recall that we write A = (A}, A,, ... ) with
7»1 > 12 >.... (The inequalities are strict here because the parts of A are distinct.)
Let a(A) = max{j: Xj =\, +1-j} and bQA) = min{kj}. Thus b(A) is the smallest
partof A and a(A) is the length of the "staircase" on the border of the Ferrers
diagram of A. For A=(7,6,5,3,2), a(A) =3 and b(A) = 2.

If b(A) <a(A), create a new partition @(A) of n by moving the b(A) part
adjacent to a(A). Thus ¢(7,6,5,3,2)=(8,7,5,3):

a(A)
* & 6 6 o 9o * o o * & o
)\ — * 6 ¢ o 9 (p(),) — * o o * &
* & o o * o o
* o 0_/ * o o

G__P

b(A)

Note that since A has distinct parts, b(@(A)) > a(@(A)) = b(A). The reader should
carefully check this.

If b(A) > a(\), then @()) is obtained by creating a "part" consisting of the
a(\) cells at the end of the first a(A) rows. This part is placed under the b(A) part,
i. €., this new part is now the smallest part of @(A). For example, ¢(9, 8, 6, 3) =
®8,7,6,3,2):
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¢ o 0
. o
¢ o 0
¢ o 0
¢ o 0
. o
N
S
~
>J
~
Il
¢ o o 0
¢ o o 0

* & o o

Since ¢ changes the number of parts by one, it is clear that it is sign-reversing.
Furthermore, ¢ reverses the two cases above, i. €., if b(A) <a(A) then b(e(A)) >
a(p(A)) and conversely. Butis ¢ defined on all of PD(n)? If it is not, we can
extend @ by defining ¢ to fix these remaining partitions. Certainly ¢ is
well-defined when the cells counted by a(A) and b(A) do not overlap. The reader
should also check to see that it is well-defined if a(A) <b(A) —1 or a(A) > b(A),
whether or not these cells overlap.

But if b(A) =a(L) and these cells overlap, ¢ is not defined. Nor is it defined
if a(A) = b(X) — 1 and these cells overlap. In the former case, if b(A) =k, then A =
(2k-1,2k-2, ... ,k+1,k) so A partitions (3k2—k)/2 and A has k parts which
means the sign of A is (—l)k. For example, A mightbe (7,6, 5,4) and k = 4:

b(A)

Moving the b(L) cells up will not give a proper partition.

In the latter case, if b(A) =k + 1, then A = (2k, 2k-1, ... ,k+1), so A isa
partition of (3k?+k)/2, A has k parts, and the sign of A is (—1)X. For example,
A might be (6,5,4) and k=3:

® 6 ¢ o 9
* & o
IO

b(A)
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As an application of Theorem 1.1, recall that the generating function for all
partitions is given by

12 I 0-xH" = T pmx,
i=1 n=0
Clearing the fraction and substituting (1.1) gives

(1.3) Y pmx* X (_1)kx(3k2+k)/2 - L
n=0

= -co

Equating coefficients in (1.3) gives, for n >0,

(1.4) Y D pm-GBK+k)2) = 0.
k=-00

For any given value of n, this sum is actually finite and gives a recurrence for p(n).

§4.2 Vandermonde's Determinant

Sign-reversing involutions are a natural tool for handling identities involving
determinants because the terms in the expansion automatically have signs attached. In
this section we give a proof due to Gessel [Ge] which establishes Vandermonde's
determinant using a sign-reversing involution.

Vandermonde's determinant is

2.1) det(x7™) = I g-x).

Iijsn 1<icj<n
It is clear that the product side of (2.1) has
e

terms, while the determinant has only n! terms. We need a sign-reversing involution
¢ that cancels

D



115

terms on the product side of (2.1). But first we must interpret the product as a
generating function for an appropriate class of combinatorial objects.

A tournament T is a labeled directed graph on [n] such that any pair {i, j},
i#j, has exactly one directed edge, either i — j or j —i. The word tournament is
appropriate if we interpret i —j as "i beats j." Then each player i must play one
game with each of the other n— 1 players. For each pair (i, j), i <], thereisa
corresponding term, X; = X;, on the product side of (2.1). To eachedge € of T
assign a weight w(e), with w(e) =x; if e =i—>j. Thatis, the weight of an edge is
x subscripted by the winner. To each edge e of T we assign a sign, sgn(e), with
sgn(e)=+1 if e=i—j and i<j and sgn(e)=-1 if e=i—j and j<i. The
weight of a tournament T is defined by

2.2) w) = I we).

edges e

It is clear that
2.3) w(T) = x?lx;2---x:“,

where a, = the number of games player i wins. The sign of T, sgn(T), is defined

similarly. Itis (—1)™ where m is the number of ordered pairs (i, j) such that i<
but j beats i. So we have shown that

(2.4) I (x-x)) = X w(T)sgn(T).
T

1<i<j<n
Of the
n
)
possible tournaments T, there are n! special tournaments: call T transitive if there

is a ranking of players, ®; T, --* ™, such that m; beats T if and only if i<]j.

Here is a transitive tournament T with ranking 35142:
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To prove (2.1), we need a sign-reversing involution ¢ on non-transitive tournaments
which preserves the weight. If sucha ¢ exists, (2.4) becomes

2.5) M x-x) = X w(D)sgn(D).
1<i<j<n T
transitive

Any transitive T corresponds to a ranking permutation & =1, %, --- T, such that

n’
m, wins n—i games. For such T,
n-1 0
w(T) = TR
Also, sgn(T) = (-1)™, where m is the number of inversions of =. This is precisely
the definition of the sign of the permutation =, so (2.5) becomes

n-1 0
(2.6) ISiI;Ian (x;-x;) = ; Sg(T) X+ Xy .
But the right-hand side of (2.6) is the definition of the determinant in (2.1).
The proof then hinges on the involution ¢. We need first a characterization of
non-transitive tournaments that you are asked to show in Exercise 17.

PROPOSITION 2.1 T is a non-transitive tournament if and only if T has two vertices
with equal out-degree.

Proof Exercise.

The sequence of out-degrees, or wins, (a,,a,, ..., a,) is called the score

vector a of T. Choose the lexicographically first pair (i, j), i <j, such that a;= aj.
For example, the tournament below has score vector (2, 3,0, 3,2, 6, 5); choose i=
1 and j=5.
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Assume, without loss of generality, that the directed edge between i and j is i — j.
Consider all the other vertices k. The vertices i, j and k will form one of four
kinds of triangles:

k k
i & j i@& j
k k
i j i j
The tournament ¢(T) is obtained from T by reversing all of the directed edges
on triangles of types (I) and (I). At least one such triangle must exist because i and j
have the same out-degrees, but the edge i — j contributes one to the out-degree of i
and zero to the out-degree of j. In the example above, i=1 and j=5; the triangles
1-5-7, 1-5-6, and 1-5-2 are type (III); the triangle 1-5-3 is type (IV); and the

triangle 1-5-4 is type (I). There are no type (II) triangles. These triangles are
indicated in the drawing below; all other triangles have been omitted.
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The involution @ reverses the edges of the 1-5-4 triangle:

ot 2

Thus ¢ produces this tournament:
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Certainly the out-degrees of all vertices k #1i or j are unchanged by ¢. But
what about a; and aj? Let ;i and ;j denote the out-degrees of i and j in @(T).
Notice that the only contribution to a; comes from triangles of type (II) and type (IV),
plus the i — j edge, while the only contribution to 3; comes from triangles of type
(I) and type (IV). But the only contribution to z'a; is from triangles of type (I) and type
(IV), while the only contribution to ;j is from triangles of type (II) and type (IV), plus
the i — j edge. This means that ;i =3 and ;j = a,;. Since a;= a;, they are all equal.

This shows that

@7 w(T) = w(o(T)).

Reversing an edge changes the sign of T. Since ¢ reverses two edges per type (I) or
type (II) triangle and also reverses i — j, it reverses an odd number of edges and so

23 sgn(T) = — sgn(o(T)).

It remains to show that ¢ is in fact an involution on non-transitive tournaments.
Since ¢ fixes the score vector of T, the first pair i <j in ¢(T) such that a,= 3 is
the same as that pair for T. Finally, reversing the edges in types (I) and (Il) preserves
these types. Soif ¢ is applied to ¢(T), the same edges are again reversed; thus

o(e(T) =T.
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§4.3 The Cayley-Hamilton Theorem

In this section we give a combinatorial proof of the Cayley-Hamilton Theorem.
This proof once again uses a sign-reversing involution. Itis due to Straubing [Str].

THEOREM 3.1 Let A be any nxn matrix over any field. Let p,(\) = det(AI - A)
be the characteristic polynomial of A. Then p,(A) =0.

It might seem surprising that a theorem from linear algebra has a combinatorial
proof. However, sign-reversing involutions are a perfectly suitable tool for handling
determinants, because determinants are signed sums of products of the entries of a
matrix. In fact, it can be argued that the combinatorial proof we give here is the most
"natural” proof because it does not depend upon the field of scalars. Proofs of this
theorem from algebra usually first prove a weak version for diagonal or triangular
matrices and then "extend" to all matrices. However, this extension requires that the
scalars be the complex numbers, and some major theorem, such as the Fundamental
Theorem of Algebra or Taylor's Theorem, must be used to eliminate the dependence
on the complex numbers.

Proof We begin by writing the characteristic polynomial as a signed sum of products

Gl pA) = X sgam@ IT (AI-A);
neS i=1

n

Each fixed-point i of © (i. e., m(i) =1i) will contribute either A or —a; to the
product, while each non-fixed-point i will contribute —a;;,. Equation (3.1) can now
be written

32  pM = X seam X (—1)'S'x“"s'iIEIS i n) >

neSy Sc(n]

where the subset S c [n] is any subset which satisfies
3.3) [n] — S c fixed points of & = F(m).

Note that since 7 fixes everything in [n] outside of S, we may regard ® as a
permutation of the elements of S. Let P(S) denote the set of permutations of S. The
sign of m will be the same when it is regarded as a permutation in P(S). So we may
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reorder the sum in (3.2) and organize by |S}:

n

BG4 pW =3 AT ¥ sgam® DEIL ajag.
k=0 ISl=k ®eP(S) ieS

It is well-known that the sign of a permutation is the product of the signs of its
cycles, and that the sign of a cycle of length r is (—1)7. Soeachcyclein =
contributes (1) to (=1)¥ and (=1)~! to sgn(w). Thus the total contribution of a
given cycle to (—1)Xsgn(m) is —1 and (-1)¥sgn(m) can be replaced with (—1)3™,
where d(r) is the number of cycles in &

n
35  pA) =X AT X DO ajg.
k=0 ISk ®eP(S) ies
We can visualize a typical permutation ©t € P(S) as a directed graph on the
vertices [n], with edges i — m(i). This is the graph G we encountered in §3.2. In
this graph, each vertex in S will have in-degree and out-degree equal to one. Also,
each edge i — m(i) will be given a weight Ay and each cycle © will correspond

to a cycle in the graph and will be given the sign —1. Then the weight of © will be
wm = II ajng
ieS
and the sign of ® will no longer be the ordinary sign of a permutation, but will be

sgn*(m) = (-1)4®, In the example below, n=9, S={1,4,6,9} and © =
(146) (9). Then W(T) =a,4a,35,399 and sgn*(m) =+1.

S 4 .2
. O -
L) - 5

9 -
1-‘_—-6 7
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Next, replace A in (3.5) with A. We wish to describe the ij-th entry of the
resulting matrix.

GO @Ay = E Ay T X D I ang.

U ISlk meP(S)

This involves describing (A™X);. This is clearly

(3.7) (An_k)ij = Z aiil ai1i2'~~ a

L . ipg1d-
115195ce51p k.1 n-k-1

We visualize a term in this sum combinatorially as a directed path P of length n —k
from i to j on the vertices [n]. Moreover, let the weight of P, w(P), be the
product of the weights of the edges of P where the weight of an edge is as above:
w(e) = ajj if e=1i—j. Then w(P) is exactly a term in this sum.

We may now give a complete combinatorial description of the right hand side of
(3.6). Let (S, w, P) be a triple such that

(@) S is asubsetof [n];
(b) = isapermutationon S; and
(¢c) P isadirected path from i to j of length n —|S| with vertices in [n].

The weight of the triple, w(S, w, P), is w(P) w(r) and the sign of the triple,
sgn(S,x, P), is sgn*(n). Then the ij-th entry of p,(A) is the generating function

(3.8) DA, = o )n:P)w(s, x, P) sgn(S, =, P).

s 1%

Clearly, the set of such triples, S, is a signed set. To prove the

1)’
Cayley-Hamilton Theorem, we need to show that (3.8) is zero. Thus, we require a
weight-preserving, sign-reversing involution ¢ on S‘-j.

We can visualize a triple (S, , P) € Sij as a directed multi-graph on the
vertices [n] with two kinds of edges: the edges from © and the edges used in P.
Note that the path P may use an edge more than once and may also use edges in T;
hence the graph is a multi-graph. As an example, let n=9, i=2, k=4, and j=35.
Choose S ={1, 4, 6,9}, ©=(146) (9) and P =211515.
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=5

As another example with the same n, i, j, S and =, let P =253215.

v .

LS |
= 00
ml

We

—
'y

]
=)

If ¢ is weight-preserving, it should preserve the edges of this multi-graph. If
¢ is sign-reversing, it should change the number of cycles in ® by one. We look for
such an involution.

Note that either the path P intersects ®© or P contains a cycle. For if P did
not intersect 7, it would be a graph on n —|S| vertices with n —|[S| edges, and
would therefore have a cycle.

Let v be the first vertex in P such that either

(1) visin m, or
(2) v completes acyclein P.

By the preceding discussion, at least one vertex satisfying (1) or (2) must exist. So
we can choose the first such vertex. Furthermore, this vertex cannot satisfy both (1)
and (2); forif v isin m and completes a cycle in P, it was encountered in P before
and would have satisfied (1) at that point. In the first example above, v=1 and is
chosen by (1); in the second example, v =2 and is chosen by (2).

We can now define ¢(S, &, P) = (§, ;c, f’). Suppose v satisfies (1); let C be
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the cycle of m containing v. Let P be P with C inserted at the position of v. Let
S be S with the vertices in C removed. Let T be 7 with C removed. Note that
the second occurrence of v in P now completes a cycle in B. No earlier vertex in
P satisfies (2): those up to and including the first occurrence of v are the same as in
P and they did not satisfy (2) in P; those between the two occurrences of v were on
C and therefore could not have been encountered before v in P. Therefore

S, 7, P) satisfies (2). In our first example, S = {9} and P =214611515:

Now suppose v satisfies (2); let C be the cycle in P just completed. Then C
will be a cycle from v to v in P. Let P be P with C removed (including one
occurrence of v). Let S be S with the vertices in C added. Let T be 7 with the
cycle C added. This construction is legal because no vertex before the second
occurrence of v could be in & or could be a repetition in P. Note that the first
occurrence of v in P now satisfies (1) because v is now in w. In our second
example, S ={1,2,3,4,5,6,9} and P =215:

S

AVAN

" 00
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Since ¢ sends triples satisfying (1) to triples satisfying (2) and vice versa, ¢
is an involution. Furthermore, ¢ either removes or adds one cycle to =, soitis
sign-reversing. Finally, all the edges of the graph of the triple remain, so it is
weight-preserving.

§4.4. The Matrix-Tree Theorem

Suppose G is a labeled graph. A spanning tree of G is a tree with the same
vertex set as G -and with an edge set that is a subset of the edges set of G. We may
then ask how many spanning trees does G have? The answer is given by the
matrix-tree theorem.

THEOREM 4.1 Let G be a labeled graph on [n]. Then the number of spanning trees
of G is any cofactor of the nXn matrix D — A, where D is diagonal, (D);;=d,,
the degree of vertex i, and (A)-‘j= 1 ifi—j, i#], isanedgeof G and (A)y= 0

otherwise.

For example, if G =K;, the complete graph on 3 vertices, then

2 -1-1
4.1) D-A = -1 2 -1
-1-1 2

and any cofactor of D — A has the value 3. So K, has 3 spanning trees.
If G=K,, Theorem 4.1 gives n™2 as the number of spanning trees (see

Exercise 22). So Theorem 4.1 gives another proof of Cayley's Theorem (Theorem
2.1 in Chapter 3).

In this section, we prove Theorem 4.1 using a sign-reversing involution ¢.
This proof is due to Chaiken [Ch] and is very similar to the proof of the previous
section. However, this time ¢ will have a fixed point set.

Proof 1t is more convenient to work with rooted labeled trees. Let E]n be the rooted
trees on [n] with root n. Such trees will be considered directed, with each edge

directed toward the root. Suppose T e Eln. For each directed edge e=i—j of T,
assign the weight w(e) = a. As in the previous section, w(T) is the product of the

weights of edges in T. For example, if n=7 and
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NN

then w(T) = a,78472378),854353. Thus, w(T) is a monomial in the variables a,
1<i#j<n.
Let a denote the variables a, 1 <4, j <n. The generating function for the

trees in J_ is given by

4.2) f(3) = X w().

Tedpy

To count the number of spanning trees of G, merely put == 1 for each pair
(i, j) thatis an edgein G and a=a;= 0 for each pair (i, j) thatis not an edge in
G.

Let us now identify f +1(zT) as an n xn determinant.

PROPOSITION 4.2 Let Ry=a;;+a,+...+2a
detR 8..—aij), 1<i,j<n.

iu

pe1 1SiSn. Then £, (a) =

Note: For n =2, Proposition 4.2 is

apta;y —ap
= 8158)3+ 338, +338;,,

43)  fy(7) = det [

—d; ajzit+azs

which is the generating function for the three rooted labeled trees on [3].

11
117N
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Clearly, Proposition 4.2 implies the matrix-tree theorem for the (n+1, n+1) cofactor
and thus for the (i,i) cofactor. It can be adapted for the (i, j) cofactor, but we do
not do so here.

Proof of Proposition 4.2 Proceeding as in the derivation of (3.5) in §4.3, we get

(4.4) det ®Rig—a;) = X X D)@Pwm I Ry,
Sc[n] meP(S) i€[n}-S

where S is a subset of [n], & is a permutation of S with d(m) cycles, and the
weight of &, w(m), is

4.5) w(m) = ,HS 3 n() -

The only difference between (4.4) and (3.5) is that

m R

ie[n]-S
replaces AMSI Expanding this product gives

(4.6) I R = X wo,

i€[n]-S f:[n]-S - [n+1]
where

4.7) = I ag.
v iem]-S %)

So

@8)  det®R¥;-ay) = X X Y DO wmw.

Sc[n] meP(S) f:[n]-S— [n+1]

The combinatorial description of the right-hand side of (4.8) is the set of triples
S, m, f) such that

(@) S isasubsetof [n];
(b) = is a permutationon S; and
(¢c) f isafunction from [n]-S to [n+1].
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The weight of a triple, w(S, =, f), is w(f) w(n); the sign of a triple, sgn(S, =, f),
is sgn*(w) = (-1)¥® a5 in §4.3. To prove Proposition 4.2, we must find a
weight-preserving, sign-reversing involution ¢ on these triples.

Such a triple can be represented as a directed graph on [n+1] with two kinds of
edges: those which represent 7, as in §4.3; and those which represent f, that is, an
edge i —j if f(i) =j, orthe functional digraph of f (see Exercise 13 of Chapter 3).
For example, if n=10, S={3,5,7,8,9}, n=(398) (5) (7) and

- 12461
f 114237)’

then this triple can be represented:

3 s 11
C
-—-‘ . . 4
9 8 6
s 5 O 71
: T [n]-S
7 10 *2
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Once again, ¢ will change the number of cycles of ® by exactly one and will
preserve all the edges in the graph. Let C be the cycle in this graph with the smallest
vertex. Define @(S, =, f) = (§, ;E, f) as follows. If C isin =, let S be S with
C removed, f be f with C added, and T be ® with C removed. If C isin f,
let S be S with C added, f be f with C removed, and T be m with C added.
In the first example, S ={2,3,4,5,7,8,9}, T=(24) (398) (5) (7) and

f- (1610
t= (1137

to give the graph:
2 L) C Il 4
-
9
~?/|\ -
[ > (X L] l 1
8 3 6

S

In the second example, S= {5, 7}, = 5) () and

(123468910
f (4191183810)

to give the graph:
.11
S 1
8-‘—- 9
C
s UING Tt
6" '3
o
0 &g S
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Clearly, ¢ is sign-reversing and weight-preserving; also (p2 =id because C
will move back to its original position. What are the fixed-points of ¢? They will be
those triples (S, &, f) with no cycles. Thus, ® is empty, S =, and the graph of
f: [n] - [n+1] has no cycles. This graph must then be a tree, with every edge
directed along the path toward n+ 1, thatis, a tree in Elml. Conversely, any tree in

E“ln+1
section corresponds to the function

‘- (123439)

So the right-hand side of (4.8) becomes

naturally defines such a function f. The example at the beginning of this

(4.9) Y w = f,(3)

Tedp

which is exactly what Proposition 4.2 claimed.

§4.5 Lattice Paths

Franklin's proof of the pentagonal number theorem appeared in 1881. Another
early sign-reversing involution, called the reflection principle, was given by Andre in
1887. This time the signed set S =S*U S~ consists of certain lattice paths in the
plane. The involution reflects a lattice path through a line to obtain a new lattice path.
In this section we use the reflection principle for the generalized ballot problem. We
also use a related idea (due to Gessel and Viennot) to relate determinants of binomial
coefficients to non-intersecting lattice paths and column strict tableaux. We prove a
formula of Frobenius, which is a precursor of the hook formula for standard tableaux
(Theorem 5.4 of Chapter 3).

In Chapter 3, we saw that the Catalan number C, was the solution to the ballot
problem: if candidates A and B bothreceive n votes, how many ways are there to
count the votes so that A is never behind B? We give an alternative proof here,
which uses the reflection principle. Represent any sequence of 2n votes as a lattice
path (up for A, down for B) with unit steps, beginning at the origin. For example,
ABAABABBAAABBABB is represented by
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el

. 3 "
mpe—p— T u T r—— ' T T T T + —

0,0 (2n, 0)

Clearly there is a bijection between all sequences of 2n votes and such lattice paths.
Moreover, if A and B have the same number of votes, n, the lattice path ends at
(2n, 0). The condition that A is never behind B is equivalent to the lattice path
remaining at or above the x-axis.

Before defining the signed set S = St US™, we make a minor change in the
lattice paths we want to count. Any lattice path on or above the x-axis can be
displaced vertically by one unit to a lattice path which lies strictly above the x-axis.
That means there is a bijection between solutions to the ballot problem with 2n votes
and lattice paths from (0, 1) to (2n, 1) which lie strictly above the x-axis.

Now let ST be the set of all lattice paths from (0, 1) to (2n,1). Let S~ be
the set of all lattice paths from (0, —1) to (2n, 1). Clearly, |S*] is

(%)
while |S7| is
(n2+nl .

We will define a sign-reversing involution ¢ on STUS™ whose fixed point set
F(p) consists exactly of the solutions to the ballot problem, all of which are in S
Thus,

G.1) IF(®)| = ISl = IS* - IS71 = C,,

To define ¢, note that any path P in S™ must cross the x-axis. Let m be
the smallest x-coordinate such that P crosses the x-axis at m. Reflect the initial
segment of P from x =0 to x =m across the x-axis to obtain the new path ¢@(P).
Note that @(P) € S*. Clearly ¢ is similarly defined for all P e St which touch or
cross the x-axis and @ =id. The fixed points of ¢ are those paths P in ST which
do not touch or cross the x-axis.
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IA\ I' ‘\ (2n 1)
2N VA VA

0,-1)

It is clear that this principle works for a more general ballot problem. Suppose
A and B receive n and m votes respectively, n > m. How many ways are there to
count the votes so that A is never behind B? This time we consider lattice paths from
(0, 1) to (n+m, n—-m+1). The reflection principle gives us the answer immediately:

(n+m) (n+m n+1—m(n+m)
n “\n+1l/) T p41 n /-

The reflection principle was generalized by Gessel and Viennot [Ge-V] to allow
k-tuples of lattice paths. They showed that there are many relationships between lattice
paths, determinants and tableaux. We will present a few of these.

It is more convenient if we "tilt" our pictures 45°. A lattice path P will no
longer consist of steps (1, 1) (up) and (1,-1) (down), but horizontal (1,0) and
vertical (0, 1) steps. For example, a lattice path P from (1, 1) to (4,3) could be:

4, 3)

1,1

A 4

00

It is easy to see that such lattice paths are equivalent to the up-down lattice paths of the
ballot problem. In fact, a solution to the ballot problem corresponds to a lattice path P
from (0,0) to (n,n) which always lies at or above the line y = x.

The lattice paths we will consider always begin on the line y = 1. Let us write
P:(a, 1) = (b, N) to mean a lattice path from (a, 1) to (b, N). How many P are
there such that P : (a, 1) = (b, N)? Clearly, this number is
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M.

Now fix integers 0 <a;<ay<...<a and O0<b; <by<...<b, and N, andlet S
be the set of pairs (G, (P, P,, ..., P,)) where o is a permutation of [k] and
P, P,, ..., P) isa k-tuple of lattice paths such that P;: (a;, 1) — (bo(i), N). For

example, let k= 4, (al’ a2, as, a4) = (1, 3; 4’ 5), (bp b27 b3s b4) = (3: 5, 61 7),
N=5 and o =(1) (2) (34).

P, P, P,| P

a$n G1H&DHG

How many such k-tuples are there such that none of the lattice paths intersect?

THEOREM 5.1 The number of k-tuples of lattice paths (P}, P,, ... ,P,) such that

@ P:(,1)—>((®,N), 1<i<k, and
(ii) anytwo paths P, and Pj do not intersect

is detM, where M = (Mij) is a k Xk matrix with
_ (N+b—a;-1
My = ( b-a; ).

Proof Let's begin with a simple example: a; =3, a,=4, b; =4, b,=6 and N =
4. Then Theorem 5.1 says there are

(DG - @)(E) -»

such pairs (P,, P,). This special case is easy to prove and tells us how to proceed in
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general. There are certainly
(D)

pairs of paths (P, P,) such that P, : (3,1)> 4, 4) and P,:(4,1) > (6,4).

From these pairs we must exclude all pairs (there will be
3 6
(5)(%)
of them) (P, P,) which intersect. If P; and P, intersect, let m be the last point of

intersection. Construct (f’l, §2) = ¢(P;, P,) by interchanging the paths from m to
the endpoints. Then P, : (3,1) = (6,4) and P,: (4, 1) > (4, 4).

44) 64 4.4) (6,4

|—J| Pl PZ

(3 1) (4 1) (3.0 1)

Any such pair (I'Sl, 1'52) must intersect so ¢ is a bijection to all such pairs. There are

(5)(%)

pairs (131, 1.52).
Recall that S is the set of k-tuples of paths (P, P,, ..., P,), together with
the permutation 6. The sign of ¢ makes S into a signed set. Clearly,

_ N+bggp—2a; -1

+

62 IS1 == 51 s _H( b ),
CEDYK

which is detM in Theorem 5.1. All that is necessary is a sign-reversing involution ¢
on S whose fixed point set F(¢) is given by (i) and (ii) of Theorem 5.1.

The "bad" elements of S are those with paths which intersect. These are the
ones on which we must define ¢. Let (o, (Py, ..., Py)) € S be such that at least

two paths of (P, ..., P,) intersect. Choose the first pair i <j in lex order such that
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P, intersects Pj. Construct new paths f’i and 1.5j as before by switching the tails
after the last point of intersection of P; and Pj. Now the path }.5i will end at
(bo(i)’ N) and 13‘1. will end at (bo(i), N). Since Go(ij) sends i to ©(j), j to o(i),

and t to o(t) for t=1i,j, welet
®(0, @y, ..., PY) = (©c(if), @y, ..., By oo, By ot ).

Clearly ¢ is now sign-reversing. Since the first intersecting pair i< j is not affected
by ¢, ¢ is aninvolution. The only paths (P, ... » P) which do not intersect have
o = the identity.

Consider the example given earlier where k =4, (a, a3y, 253, 8.)=(1,3,4,5),
(by, by, by, b)) =(3,5,6,7), N=5 and o= (1) (2) (34). The first pair i <j of
intersecting paths occurs when i=2 and j=3. The last point of intersection of P;
and Pj is at (5, 3). The new 4-tuple of paths is given below. The new permutation
will be (34) (23) = (243).

(CR)) (5,3) (6,5 (7,5

7

[
0]

an GDHEDHG D

The involutions in §§4.2, 4.3 and 4.4 were not only sign-reversing, but also
weight-preserving. Is there a version of Theorem 5.1 that involves weights, i.e,
generating functions? Can we find a weight w such that w(o, Py s PY) =
w(o(o, (P}, ..., P))))? Since ¢ preserves all the edges in the lattice paths
Py -5 PY), any weight which depends upon this set of edges will be preserved by
¢. Let us describe such a weight. Given apath P: (a, 1) = (b, N), let Hory(P) be
the multiset of the y-coordinates of the horizontal steps of P. Let
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(5.3) w(P) = I1 X;.
ie Hory(P)

In this example

_6J (7,7

L
3.1

™ y T r T Y v

Hor,(P) = {1,3,3,6} and w(P)= X1 %2 xL

Now extend w to S by w(G, (P, ..., Pp)) = w(P)) w(P,) --* w(P,). By the
preceding remarks, w is preserved by ¢. We can now replace the binomial
coefficients that appear in Theorem 5.1 by generating functions. Given (a, 1) and
(b, N), we saw that there are

(ot

lattice paths P : (a, 1) — (b, N). But we can also describe the generating function of
all such paths:

G4 X wEP).
P
Any path P is uniquely determined by its horizontal steps. Thus the terms in (5.4)
will be monomials
xflﬂl xM my

22+ XN

such that m; + m, +... + my=b —a. Note in particular that (5.4) depends only on
X, X, ..., Xy @nd b—a. Write
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(5.5) hya(X1, Xg50es XN) = >1; w(P).

So Theorem 5.1 can be generalized as follows.

THEOREM 5.2 Given integers 0 <a; <a,<...<a, and 0 <b; <b,<... <b,, let
M= (Mij) be the k xk matrix with

Mj = hp o (X1 X200 XN)-
Then

detM) = X w(P) - w(B),
(P, 1By

where the sum is taken over all sequences (Py, ..., P,) of non-intersecting lattice
paths P;: (a, 1) = (b, N).

The function h (x;, X,, ..., X)) is called the complete or homogeneous

symmetric function of degree n; it has the generating function
s -1 -1 -1
(5.6) k);,o By (X1, Xgpe X)X = (A=t X ) (I=txy) e (I-txy )

There is a surprising connection between a special case of Theorem 5.2 and
column strict tableaux. Put a,=i and b;= )‘k +1—p 1S1<k, for some partition A

with k parts, A, 24, 2 ... 2},

PROPOSITION 5.3 There is a weight-preserving bijection ¢ between
non-intersecting paths (P, ... ,P), P;: (i, 1) —» (7\1 it i, N) and column strict

tableaux of shape A\ with entries from [N].

Proof The bijection @ is easy to describe. Take as an example k=4, A =
(5,3,2,2) and N =6. Here is a set of 4 non-intersecting paths:
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[
v

Each horizontal edge is labeled with its y-coordinate. Place these entries of path
Py,;-; intorow i of the tableau T,

H

415]

T-=

[« N E R A B &/

B W =

Why is T column strict? Certainly it has shape A and is weakly increasing
across rows. Let T;; be the entry in row i, column j of T. Then the paths P, ,
and P,_;., (which correspond torows i+ 1 and i respectively in T) begin their
jth horizontaledge at x=k—i+j—1 and x =k —i+] respectively. Since P, ; is
to the left of P, ;,;, the jth horizontal edge of P, ; must be strictly above the jth
Thus T;< Ty, ;.
The inverse of ¢ is also easy. Given a tableau T, the entries inrow i of T

determine the horizontal steps of P,_,,;, and thus the entire path P,_, ,. The paths

horizontal edge of P, _,, ;.

again do not intersect because T is column strict.
The weight of a column strict tableau T, w(T), is defined by

67w = I x;.
entries
iof T

In our example,
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112422
W(T) = xX,X3X4X5Xg = W(P,P,, Py, Py).

This obviously makes ¢ weight-preserving.

Theorem 5.2 can now be applied to tableaux.

COROLLARY 5.4 If A isapartition of N with k parts,

p p
> Ky p Xy o X = det[hy g (51 e x0)],

where 1<i,j<k and K, o IS the Kostka number of §3.5.

In Corollary 5.2 of Chapter 3 we showed that K, o= K, o if p' is any

reordering of p. This statement is obvious from Corollary 5.4, because each entry in
the determinant is a symmetric polynomial in x, X,, ... , XN.

The symmetric polynomial in Corollary 5.4 is called the Schur function and is
denoted s,(xy, ... 5 Xy)-

Corollary 5.4 can now be used to prove a formula of Frobenius (1899) for the
number of standard tableaux of shape A.

PROPOSITION 5.5 For any partition A of N,

k
dy= NI (k=017 TT (-i=Aj+i)
t=1

1<i<j<k
where 7\,12%22...27\]‘ and 7\.1+7\,2+...+7\.k=N.

Note: For A = (4,2, 2), Proposition 5.5 gives d,,, = 56, which agrees with the
result from the hook formula of §3.5. In fact, the Frobenius formula can be shown to
be equivalent to the hook formula, Theorem 5.4 of Chapter 3. You are asked to do
this in Exercise 29.

Proof Since d, =K, p P= 1N, we see that d, is the coefficient of x; X, Xy in
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k
(5.8) det [hy4ji (X1 XN)] = Z sgn(o) II N vo() - iK1 XN
ce Sk i=1

Such a monomial can be created by selecting a square-free monomial from each
h, k= li— i+ o(i), with the product of these monomials equal to x, X, - xy. The

number of ways of doing this is easily seen to be the multinomial coefficient

(xl+ o(1) -1 N Ayt k) -k ).

So (5.8) implies
5.9) dy =Ntdet [[A, —i+))1T], 1<4,j<k.

By factoring out entries in the last column, we get

k
(510)  dy = Nt IT [(hprk=t)!] Tdet [(A,—i+j+1) - (A= i+ K],

where 1<i,j<k. Let ij(x) be the polynomial in x of degree k—j
(5.11) Py(x) = x+j+1)--(x+k)

so that
x 1
(5.12) d, = N! tI:I1 [(A+k-t)1]" det [, A -1 1<4,j<k

By column operations which do not change the value of the determinant,

k
(5.13)  dy=N! I [(A+k—t)1] " det [(A, —1)91, 1 €4,j<k.

This determinant is Vandermonde's; the evaluation given in (2.1) gives Proposition
5.5.

The reader can try to evaluate detM for x; =x, =... =xy=1 in Theorem

5.2. The result is the number of column strict tableaux of shape A with entries in

[N].
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§4.6 The Involution Principle

Thus far we have seen several examples of sign-reversing involutions on signed
sets. Now suppose we have two signed sets, A =AY UA™ and B=BtUB™. We
say that there is a signed bijection between A and B if there is a sign-reversing
involution @ with no fixed-points on A U B, where (AU Byt =AtUB™ and
(AUB)Y"=A"U BY. Notice that this implies that ||A]| = |[B||. For example, any
pointin A% is identified with either a pointin A~ (a cancellation) or a point in Bt.
When A and B are not signed, i.e., At =A and BY =B, then ¢ is an ordinary
bijection between A and B.

Garsia and Milne [Ga-M] discovered a general method of constructing signed
bijections.

THEOREM 6.1 Let A be afinite signed set, A = A U A™, with sign-reversing
involutions @ and \y whose fixed-point sets are F(¢) and F(y) respectively. Then
there is a signed bijection Y between F(¢) and F(y). Furthermore, Y can be
constructed using the following algorithm:

ALGORITHM 21: Involution Principle

begin
if @(x)=x then
y X
repeat
z < y(y)
y < 9(2)
until ¢(z)=z or y(y)=y
if ¢(z) =z then
MNX) ez
else
Yx) «y
else if y(x) =x then
y e x
repeat
z & (y)
y < v(@)
until y(z) =z or @(y) =y
if y(z) =z then
X) 2



142

else
¥x) &y
else
{x is not a fixed point of ¢ or y}
end.

Proof We construct a graph G whose vertices are elements of A. The edges of G
are labeled @ or y, with the ¢-edges given by (x, ¢(x)) for x € A—F(¢) and the
y-edges by (x, y(x)) for x € A —F(y). For example, if the involution ¢ is given
by this picture:

i
|

and the involution W by this picture:

then the graph G looks like this:



-9 + ¥V - ¢ +

+ @ -V +
7 18 6
+ ¥V _
4 17

21

Clearly the degree of any vertex of G is at most 2, so the connected components of
G consist of isolated points, chains or cycles. Also, elements of F(¢) and F(y)
will be isolated points or endpoints of chains. If x € A is isolated, then

x € F(¢) NF(y) so Algorithm 21 will give Y(x) = x.

Suppose x € F(@) is the end of a chain. The edges of this chain must alternate
labels @ and . If the last edge in the chain is labeled v, the other endpoint y of
the chain must be in F(¢). In this case there will be an odd number of edges in the
chain, so x and y have opposite signs. In the example above, x =5 andy =17
are connected by such a chain.

If the last edge in the chain is labeled ¢, the other endpoint y of the chain must
be in F(y). There will be an even number of edges in the chain, so x and y have
the same signs. In the example above, x =6 and y =9 is such a chain.

Note that Algorithm 21 merely constructs values along the chain until the other
end is reached.

Frequently, the involution principle gives an explicit bijection between two
apparently unrelated sets. In practice, the sets F(¢) and F(y) may be very small
subsets of A. The number of iterations in Algorithm 21 can be very large, and
depends on the element chosen.

Garsia and Milne used the involution principle to give the first proof using a
bijection of the Rogers-Ramanujan identities.

THEOREM 6.2 The number of partitions of n whose parts are congruent to 1 or 4
mod 5 is the same as the number of partitions of n into distinct parts whose
consecutive parts differ by at least two.

Garsia and Milne discovered a large signed set A which contained the two sets
of partitions in question, and they found two involutions whose fixed point sets were
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these two sets. Thus, they had found a bijection between the two sets.

As an example of Theorem 6.2, if n= 12, there are 9 partitions in each set:
111, 913, 62, 6412, 615, 43, 4214, 413 and 1!2 with parts congruent to 1
or 4 mod 5; and 12, 111, 102, 93, 84, 831, 75, 741 and 642 whose
parts differ by at least two.

We will now give three examples of the involution principle. First we prove
Euler's theorem.

THEOREM 6.3 The number of partitions of n into odd parts equals the number of
partitions of n into distinct parts.

Proof Let P, be the set of all partitions of k and let ED,_, be the set of partitions
of n-k into even, distinct parts. Let

n
A= U P xED,
k=0

and define the sign of an element x = (p;, p,) € A by

sgn(x) = (_l)numbcr of parts of p, .

For the involution ¢, take the smallest even part € of p; or p, and move e from
p; to p, if e isnotin p,. Otherwise move e from p, to p,. Clearly ¢ changes
the number of parts of p, by one, so ¢ is sign-reversing. Also, F(¢) =
{(p;,D):p, has only odd parts} A*. As an example, let n=26 and k= 12:

* o o o ® & 6 6 6 & o o
* & o * o
Pl PZ
* o
* & ¢ o ® 6 & 6 O 0 o o
* & o
* & o
* o



145

Now we need the involution y whose fixed-point set F(y) is
{(p;,D): p, has distinct parts}. Given (p;, p,), let (i, i) be the smallest repeated
partin p, and let 2j be the smallest part of p,. If i <j or p, =@, move (i, i)
from p, to p, by creating a part of size 2i; if i2j, move 2j from p, to p; by
creating two parts, (j, ), in p;. In the example below, n=26 and k = 12.

* o o ® & & 6 ¢ 0o o o
* o POQOQ
2

. D)

* & o o

* o ® & 6 6 6 o o o
L 4 * & o o
L 4

Again y changes the number of parts of p, by one. The fixed point set is what we

wanted. This completes the proof.

The involution principle can be extended so that the involutions ¢ and y act
on different signed sets A and B respectively. If there is a signed bijection
between A and B, then there is a signed bijection between F(¢) and F(y). In
Algorithm 21, replace ¢ and y with sign-reversing versions of §, ¢ o { and

W o L. The proof of Theorem 6.1 is much the same, and the picture below gives an

example. You are asked in Exercise 31 to do a related problem.

4

A+ F(®) g m F(V)
111 10)

‘PA gw ¢ V| v
Z

B

A"
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Remmel [Re] has used this version of the involution principle to give several
bijections. Here are two. The first is a theorem due to Schur.

THEOREM 6.3 The number of partitions of n into parts congruentto 1 or 5 mod

6 equals the number of partitions of n into distinct parts congruentto 1 or 2 mod
3.

Proof The idea of the proof is to define two signed sets, A and B: A related to the
mod 6 condition and B to the mod 3 condition. Let us begin with A. Since F(¢)
c AY, theinvolution ¢ should move any partitionin A with parts 2, 3, 4,6, 8, ... .
For any partition A of n, let S,(A) be the set of these "illegal" parts of A. For
example, if A=9827362 12, then S = {9, 8, 6, 2}.

Now define A ={(A,S):A partitions n, S<S,(A)} and put sgn(d, S) =
(-1)SL The involution ¢ on A merely changes S. Suppose (A, S)e A. If S,(A)
is non-empty, insert (delete) its largest element into (from) S to obtain §; oQ, S) =
@, S). For example,

0(98276212{9,8,2}) = (982736212 {8,2)}).

The fixed points of ¢ are those (A, S) such that S,(A) is empty, thatis, A has no
"illegal" parts.

The set B is defined in a similar way. The "illegal" parts are somewhat more
complicated. There are two kinds of illegal parts: multiples of three, i. e., 3,6, 9,
...; and pairs of equal parts congruentto 1 or 2 mod 3, i.e., 12,22,42,52, ...,
For any partition A of n, let

LA)={k:k isapartof A and k=0 mod 3} and
L(A) = {j*: j is arepeated partof A, j=1 or 2 mod 3}.

Let SgA) =I,(A) UL, (A). Put B={(A,S) : A partitions n, S < Sy(A)} and put
sgn(A, S) = (-1)Sl, Again, the involution  either inserts or deletes an element from
S. To see which element, we need a weight w on Sg(A). If ke I;(A), let w(k) =
k; if 2e LA, let w(j?) =j+j. Given (A, S)e B, if Sg(A) is non-empty, either
delete or insert the element of Sy(A) with largest weight from S. For example, if A
=654%31 and S = {6,4%}, then Y(A, S)=(654%3 1,{6}), since Sy(A) =
{6,4%,3} and w(4?) =8 is the largest weightin Sg(A). The fixed points of  are
those (A, S) such that Sy(A) is empty.

It remains to construct the signed bijection { between A and B. Butall thatis
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necessary is to identify the elements x € S,(A) with elements Xe Sg(A) insucha

way that x = w(x). This bijection is

6i+2 < Gi+l)%
6i+4 & (3i+2)%;
6i <> 6i;

6i+3 < 6i+3.

Sofor (A, S) € A, let LA, S)=((A-S)uUS, S) where S is constructed from S
by the bijection above. Then { identifies elements of A with elements of B. Since
S| =S|, the sign is preserved and since the weights are maintained, n is unchanged.
For example,

982776212 {9,8,2}) = (987264214, {9, 4% 12}).

For the last example we take Exercise 16 of Chapter 1: the number of partitions
of n whose even parts must be distinct is equal to the number of partitions of n such
that no part is repeated more than three times. Using the previous example as a model,
we need only identify the "illegal" parts. For the set A, the illegal parts are pairs of
even parts: {22, 42,62, ... }; for the set B, they are quadruples: {14,24,34,... }.
The bijection between these two sets is obvious. Thus, the involutions ¢ and y and .
signed bijection  can be defined as before.

Notes

As the reader can see, there has been much recent interest in involutions. These
techniques have become particularly popular among a group of French and French
Canadian mathematicians, including Foata, Joyal, G. Labelle, J. Labelle, Leroux and
Viennot. Other mathematicians who have developed and used these techniques are
Garsia, Gessel, Milne, Wilf and Zeilberger, to name just a few.

Andre's example appears in Feller [Fe].

Equation (5.8) is called the Jacobi-Trudi identity. Schur functions have many
important applications in and outside mathematics and are closely related to the
character theory of the symmetric group. Moreover, sign-reversing involutions seem
to arise frequently and naturally in this theory.
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Remmel [Re] has given several other applications of the involution principle.
New applications of the principle are being found with increasing frequency. Many of
these are too involved to be given here.

Exercises

L[2]  Let A bethe Boolean algebra B_ with sgn(a) = (-1)!*!. Finda
sign-reversing involution ¢ on A such that |of and |¢(c)| differ by exactly one for
all e A. Use the involution given in the introduction to this chapter which proved
the principle of inclusion-exclusion. What famous identity involving binomial
coefficients have you proved?

2.[2] Let A be the k-element subsets of [n], with n even. Foreach o€ A,
define val(o) to be

vall) = X i.

iea

Let At ={ae A:val(o) iseven} and A~ ={o e A : val(ar) is odd}. Construct a
sign-reversing involution ¢ on A which will prove

0 if k is odd

(_15"2( Eg if k is even.

A7 1&1 =

In each of the next five exercises, give a generating function proof of the identity
and then prove it combinatorially with a sign-reversing involution. In each case all the
parameters may be considered positive integers. Recall from Chapters 1 and 3 the
combinatorial interpretations of binomial coefficients and Stirling numbers.

3.02]

20 (%) e - s,enn
4.3]

m : 0 ifmis Odd,
& (?) () 7 - {(E)(—l)“ if m = 2k.
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5.03]
2 /nt+k-1 n x
kEO ( k ) (m—k) D™= B
6.[3]
n
2 S, k)s(k,j) = Oy
k=j
7.03]
n
kE, s(n, k) Sk, j) = Oy
=j
8.[3] Give a combinatorial proof using a weight-preserving, sign-reversing
involution.
n
= %Sm0 %)™
k=0
9.[3] Give a combinatorial proof using a weight-preserving, sign-reversing
involution.

n

®, = ¥ sk,

10.[2]  Give a sign-reversing involution which proves the more general version of
the principle of inclusion-exclusion:

N.©) = T "IN,

ScTcP

11.[2] Let P be the set of all partitions and PD be the set of all partitions with
distinct parts. Let ||p|| denote the number that p € P partitions. Then we know

oo
pep (1-x)(1-x?) -

As in the Euler pentagonal number theorem, PD is a signed set and
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z‘i’o sgn(p) o (- 0-x3) -
pe

Prove that

(1-x)(1-x2) .- .
-xa-<) -

by finding an appropriate involution on the set of ordered pairs (p;, p,), p;€ P and
p,€ PD.

12.[2] It is also clear that

A=xH)(1-xH - _ 1
(1-x)(1-x?) -+ (A-x)(1-x>) -

Define a signed set and an involution ¢ which proves this identity. You should
consider ordered pairs of partitions, as in Exercise 11.

13.[2]  Define a signed set and an involution ¢ which proves this identity:

(1-x)(1-x2) - (1-x") 1

(1= x)(1=x?) -+ T (1=xth(1—x0¥2) ..

As in Exercises 11 and 12, consider ordered pairs of partitions.

14.[3] Write down eight different versions of the identity in Exercise 13. For
example, here is another:

(1_xn+l)(1_xn+2)
(1-x)(1-x%) .-

(1=x)(1=x2) - (1=x")

Interpret each of these as an identity involving partitions and give a combinatorial
proof of each. Some will require sign-reversing involutions.

15.[3]1  Define a signed set and an involution ¢ which proves:

1 1 1
A=x)(1=xF) - (I40(1+x7) - (1=x2)(1-x4)-+




151

As in Exercises 11 and 12, consider ordered pairs of partitions.
16.[3]  Repeat Exercise 14 for the identity in Exercise 15.
17.[2] Prove Proposition 2.1.

1811  Let a be the score vector of a tournament T. Show that if exactly one
three-cycle of T is reversed, a remains unchanged.

19.[2] (Gessel [Ge]) Let G be the bipartite graph whose vertices are the
non-transitive tournaments on [n], and edges T — T if T can be obtained from T
by reversing exactly one three-cycle. Show that any connected component of G is
regular. (An important theorem from graph theory, the matching theorem, then
implies that G has a complete match.)

20.[3]  The purpose of this exercise is to show that the inversion poset &n isa
lattice. For © and ¢ in { o, We must define their join and meet. Let Ty be the
transitive tournament with ranking . Color the edges of T, blue and red: i — j,

i<j isblue; i —»j, i>] isred (the upsets).

(a) Show that ¢ covers w if and only if Ty and Tj are identical, except
for a blue directed edge of T, which is red and reversed in Tg;.

(b) Foragiven © and o, show that any transitive tournament T whose
red edges contain the red edges of T and T corresponds to a permutation which

lies above ® and © in .

(c) Show that there is a unique transitive tournament T satisfying (b)
whose red set is minimal. This tournament corresponds to the join of ©® and o©.

(d) How do you define the meet of ®© and ©?

21.[3] (Zeilberger [Z1]) Let S_ denote the permutations of n and for te S,
put W(1t) = am(l) A ann(n), SO that

det(A) = 2 sgn(m) w(m).

neS,
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(a) Define a weight-preserving, sign-reversing involution on S which

proves det A=0 ifa;;=a, for 1<i<n
(b) Give a combinatorial proof of det (AB) = (det A) (det B).

(c) Define A*= ('Yij) with %= (-1 det (Ay), where Ay is the ji-th
minor. Give a combinatorial proof that A* A = (det A) L

(d) Give a combinatorial proof of the expansion formula for det A along
the jth row of A.

22.[2] Prove Cayley's Theorem (Theorem 2.1 of Chapter 3) using Theorem 4.1.

23.[1] Let hy(x,, ..., X)) be the complete homogeneous symmetric function in

Xy +.v » Xy Of degree k. From Section 5 we see that h,(1,1,...,1) =
N+k
().
Whatis h(q',q? ..., q%)?
24.[2] Use Exercise 23 and (5.8) to find a determinantal expression for

’

E q 1Pyl
P
where the sum is over all column strict tableaux P of shape A and |[P|| is the sum of
entries in P. Can you evaluate your determinant?

25.[11  Let p bea partition of n, W, 2 W, 2... 2 W,. Define the homogeneous
symmetric function

l‘lM(x1 seees XN) = h’11 h;12 e
Interpret hu(xl, ..., Xy) as a generating function for a class of multiset permutations.
26.[2] Use the Schensted correspondence (Chapter 3) to conclude

h, = Zk‘, LS
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where s, is as defined in §4.5.

27.[3] Define the elementary symmetric functions, ej(xl, e XN

& (Xq,...,Xy) = > Xi Xip Xy
{ilxizw--yij}
distinct
in [N]
and, as in Exercise 25, define eu(xl, e XN

eu(xl,..., XN) = €u Cpy

Interpret eu(xl, ..., Xy) as an appropriate generating function and use the Schensted

correspondence to prove

28.[3] This exercise shows that

A x) 6y = X K, det [x}1*N7],

where A(xy, ..., Xy) is Vandermonde's determinant. Write the left-hand side as

2 wmwA)) - w(A,)sgn(n),
(mA] A )

where Tt e Sy (see Exercise 21), A;c [N], |A] =W,
N-1 o
w(n) = Xp(1) - XmN)
and

w(A) = I x;.
je A

Find a sign-reversing involution ¢ on this set such that F(¢) consists of those
(m, Ay, ..., Ay suchthatforall 1<j<k, w(m)w(A;) w(Aj) has distinct
exponents. Show that F(¢) is exactly what is counted by the right-hand side.
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29.[3] Prove the hook formula (Theorem 5.4 of Chapter 3) using the Frobenius
formula (Proposition 5.5).

30.[1]1  Show that the existence of sign-reversing involutions ¢ and W
immediately implies [F(9)| = [F(y)|, without the explicit bijection given by the
involution principle.

31.[2] Suppose A, B and C are three signed sets and suppose ¢ and Yy are
signed bijections between A and B and between B and C, respectively.

(a) Prove that there is a signed bijection between A and C, which might
be considered the "composition" of ¢ and y.

(b) The signed bijections ¢ and Wy might be degenerate in some sense.
For example, ¢ might be a "pure" bijection, i. e., ¢(A*) =B* and ¢(A™) =B~
Or ¢ might be a sign-reversing involutionon A or B: ¢(BY) c At and
@(B7) c A™. Determine under what conditions the composition described in (a)
requires the involution principle.

32.[4C] Program the involution principle and apply your program to Euler's
theorem. Run your program for various values of n. How does the bijection
compare with the bijection given in Chapter 3? Guess and prove the theorem.

33.[4C] Suppose A isasignedsetand X, Y c A, with [X|=[Y|=]|Al| and
XNY = . Write a program to construct two random involutions ¢ and y such
that F(¢) =X and F(y) =Y. Investigate

(a) the average length of a path from an element in X to anelementin Y;
and

(b) the average number of cycles in the graph of ¢ and .

What conjectures can you make and what theorems can you prove?

34.[4] This problem is due to Blas and Sagan [B1-Sa] and Zeilberger [Z4]. Let G
be a simple graph with vertex set V(G) and edge set E(G). A proper coloring of G
with k colors is a function from V(G) to the colors such that no two adjacent
vertices are given the same color. The chromatic polynomial of G is the function
pg(x), the number of ways of properly coloring V(G) with x colors. For example,
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the chromatic polynomial of K is (x),. (Itis easy to see that pg(x) isa
polynomial.) Whitney's broken circuit theorem [Whn] gives a combinatorial
interpretation of the coefficients of the chromatic polynomial in terms of broken
circuits. Suppose the edges of G are ordered in some way. A broken circuit of G is
a cycle with the largest edge of the cycle removed. Use the involution principle to
prove the broken circuit theorem: if [V(G)| =n, the coefficient of k™% in pgk) is
the number of edge subsets of size i which do not contain a broken circuit. Hint: Let
A={(S,f): ScCE(G) and f is any coloring of V(G) which is constant on the
connected components of the graph generated by S}. Make A into a signed set by
defining sgn(S, f) = (-1)S\. Find an involution ¢ with F(¢) = {(J,f)cA:f isa
proper coloring of G} and another involution y with F(y) = {(S,f)c A:S
contains no broken circuits}.
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Appendix

In this appendix we give Pascal procedures for each of the algorithms in the text. We have
grouped the algorithms roughly according to topic. For instance, the Johnson-Trotter algorithm
(Algorithm 1) together with its Rank and Unrank algorithms (Algorithms 2 and 3) all appear in the
section called Permutations.

This appendix contains only the subroutines associated with the algorithms in the text.
Input-output programs and drivers have been omitted.

In order to simplify the parameter passing to the algorithms, some structured data types (e. g.,
Pascal records) are used. For instance, the data type permutation contains, in addition to the
permutation itself, the inverse and the direction vector and the activity set. Furthermore, certain
parameters have been determined to be global, e. g., N for the listing, ranking and unranking of
permutations of [N].

As much as possible, standard Pascal has been used. When non-standard constructs appear, we
clearly identify them. The procedures were developed on Macintosh Pascal®.

The form of the listing algorithms has been changed somewhat from what appears in the text to
isolate input/output as much as possible. Instead of a single program which lists all relevant objects,
two subroutines are used: GetFirst and GetNext. The parameters used by these two procedures are the
object and a boolean variable which is true if no more objects are in the list and false otherwise.

The listing programs are all then virtually the same, except for changes in data types.

A.1 Permutations

Note the structured data type for permutations. The permutation length is a global variable.

const
MaxLength = 12;

type
Vector = array[0..MaxLength] of integer;
IndexSet = set of 0..MaxLength;
Permutation = record

Inverse, Value, Direction : Vector;

Activity : IndexSet; {set of active indices}
end; {Permutation}

var

N : integer; {length of permutation}
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procedure UnrankPerm (Rnk : integer; var Pi : Permutation);
var

j, Dir, PrevRank, Remainder, Count, PrevN : integer;

begin
with Pi do
begin
for j:=1toNdo {initialize permutation}
Value[j] := 0;

PrevRank := Rnk;
for PrevN := N downto 1 do
begin
Remainder := PrevRank mod PrevN;
PrevRank := PrevRank div PrevN;
if (PrevRank mod 2 = 1) then

{amount moved up or down}
{rank of PrevN-1}

{even means PrevN moving left; odd means right}
begin
ji=0; {initialize at left}
Dir:=1; {moving right}
end {if then}
else
begin
j:i=N+1; {initialize at right}
Dir :=-1; {moving left}
end; {else}
Count := 0;
repeat
j:=j+Dir; {advance left or right one position}
if (Value[j] = 0) then

Count := Count + 1; {advance count for each index not assigned}
until (Count = Remainder + 1); {quit when count reaches amount to be moved}
Value[j] := PrevN;

end; {for}
end; {with}
end; {UnrankPerm}

procedure RankPerm (Pi : Permutation; var Rnk : integer);
var

i, Moves, Remainder : integer;

function MoveCount (p : integer) : integer; {returns number of numbers <p and left of p in Pi}
var
j» Count : integer;
begin
Count := 0;
with Pi do
for j := 1 to Inverse[p] do
if (Value[j] < p) then
Count := Count + 1;
MoveCount := Count;

{Look at values left of p in Pi}
{increase Count if they are <p}
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end; {MoveCount}

begin
Rnk := 0; {initialize rank}
fori:=1toNdo

begin

Moves := MoveCount(i); {calculate number of moves i has made}

if (Rnk mod 2 = 1) then
remainder := Moves
else
remainder :=i- 1 - Moves;
Rnk := i * Rnk + remainder;
end; {for}
end; {RankPerm}

{add them from left if previous rank odd}

{add them from right if previous rank even}
{calculate new rank}

procedure GetFirstPerm (var Pi : Permutation; var Done : boolean);

var
i: integer;
begin
with Pi do
begin
fori:=1toN +1do
begin
Valuefi] := i;
Inverse[i] := i;
Direction[i] := -1;
end; {for}
Value[0] :=N + 1;
Activity := [2..N];
end; {with}
Done := false;
end; {GetFirstPerm}

{Initialize permutation, inverse and direction}

{Initialize the active set}

procedure GetNextPerm (var Pi : Permutation; var Done : boolean);

var
j» m: integer;
function LargestActive : integer; {returns largest integer in Activity set}
var

i: integer;
begin

i:=N;

with Pi do

while not (i in Activity) do

i=i-1;
LargestActive :=i;
end; {LargestActive}

begin
with Pi do
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if (Activity <> []) then {Activity empty when no more in list}
begin
Done := false; {There is another permutation}
m ;= LargestActive; {m is value which will move}
j := Inverse[m]; {j is its position}
Value[j] := Value[j + Direction[m]]; {transpose m with value in direction given by
Direction}

Value[j + Direction[m]] := m;
Inverse[m] := Inverse[m] + Direction[m]; {also transpose position of m with adjacent one}
Inverse[Value[j]] := j;
if (m < Value[j + 2 * Direction[m]]) then {has m reached a boundary?}
begin
Direction[m] := -Direction[m]; {if so, reverse its direction}
Activity := Activity - [m]; {and make it passive}
end; {if then}
Activity := Activity + [m + 1.N]; {if not, make all numbers>m active}
end {if then}
else
Done := true;
end; {GetNextPerm}

A.2 Subsets

Note that a K-subset of an N-setis a K-tuple. Both N and K are global. The binomial
coefficients needed for ranking and unranking are global and are assumed to have been computed.

const
MaxSetSize = 10;

type
Subset = array[0..MaxSetSize] of integer;
Matrix = array[0..MaxSetSize, 0..MaxSetSize] of integer;

var
N, K : integer; {k-subsets of n-set}
BinCoef : Matrix; {binomial coefficients}

procedure RankSubset (A : Subset; var Rnk : integer);
var
i:integer;

begin

Rnk :=0;

fori:=1toKdo
Rnk := Rnk + BinCoef[Al[i] - 1, i;

end; {RankSubset}
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procedure UnrankSubset (Rnk : integer; var A : Subset);
var

p, m, i : integer;

begin
m := Rnk;
for i := K downto 1 do
begin
p:=i-1;
repeat
p:=p+1
until (BinCoef][p, i] > m);
m := m - BinCoeflp - 1, i];

{find largest binomial coefficient less than m}

{reduce rank by that binomial coefficient}

Ali] :=p; {the parameters in the binomial coefficient give the set
value}
end; {for}
end; {UnrankSubset}

procedure GetFirstSubset (var A : Subset; var Done : boolean);
var

i: integer;
begin
fori:=1toKdo
Ali] :=1i;
AK+1):=N+1;
Done := false;
end; {GetFirstSubset}

{first subsetis 12...}

procedure GetNextSubset (var A : Subset; var Done : boolean);
var

i, j : integer;
begin
if (A[1]<N-K +1) then
begin
Done := false;
ji=0;
repeat
ji=j+1
until (A[j + 1] > A[j] + 1);
Afjl:=Afl+1;
fori:=1toj-1do
Ali] :=1i;
end {if then}
else
Done := true;
end; {GetNextSubset}

{when A[1] is too big, last set has been reached}

{find smallest element that can be advanced }

{advance it}
{reset all smaller elements}
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A.3 Set Partitions

The main data type consists of a restricted growth function and a vector whose jth component
is the largest entry the restricted growth function may attain in the jth position. The size of the set

partitioned is a global variable. The matrix D used in ranking and unranking is global and has been
computed elsewhere.

const
MaxSetSize = 12;

type
Vector = array[0..MaxSetSize] of integer;
Partition = record
Value, Maximum : Vector;
end; {Partition}
Matrix = array[0..MaxSetSize, 0..MaxSetSize] of longint; {longint is not standard Pascal}
var
N : integer;
D : Matrix;

procedure UnrankSetPart (Rnk : integer; var p : Partition);

var
i: integer;
begin
p-Maximum(1] := 1; {start maximum at 1}
p-Value[l] := 1;

{first value in RG function}
fori:=2toNdo

if (p.Maximum(i - 1] * D[N - i, p.Maximum(i - 1]] <= Rnk) then  {do too many D's fit into Rnk?}
begin
p-Value[i] := p.Maximumli - 1] + 1; {if too many, make Value as large as possible}
Rnk := Rnk - p.Maximum[i - 1] * D[N - i, p.Maximum([i - 1]]; {decrease rank’}
p-Maximum(i] := p.Value[i]; {increase max by one}

end {if then}

else

begin

p.Value[i] := Rnk div (D[N - i, p.Maximum[i - 1J]]) + 1;  {if not too many, put them into Value}
Rnk := Rnk mod (D[N - i, p.Maximum(i - 1]]); = {decrease rank}

p-Maximum([i] := p.Maximum([i - 1]; {max stays same}

end; {else}

end; {UnrankSetPart}

procedure RankSetPart (Pi : Partition; var Rnk : integer);
var

i, j : integer;

v, u: Vector;

begin

PiMaximum[1] := 1; {Set first max}
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fori:=2toNdo
if (Pi.Maximum(i - 1] > Pi.Value[i - 1]) then

Pi.Maximum[i] := Pi.Maximum[i - 1] {Value < Maximum means Maximum unchanged}
else

Pi.Maximum(i] := Pi.Value[i - 1];

{compute Maximum}

{Value <= Maximum means Maximum increases by
1}
Rnk :=0;

{start rank at 0}
for i := N downto 1 do

Rnk := Rok + D[N - i, Pi.Maximum[i]] * (Pi.Value[i] - 1); {use Maximum as index into D table}
end; {RankSetPart}

procedure GetFirstPart (var Pi : Partition; var Done : boolean);
var

i: integer;
begin
Done := false;
fori:=1toNdo
with Pi do
begin
Value[i] :=1; {first RG function is all 1's}
Maximum(i] := 2; {so first Maximum is all 2's}
end; {with} {note: Maximum[1]=2 causes the stopping condition}
end; {GetFirstPart}

procedure GetNextPart (var Pi : Partition; var Done : boolean);
var

i, j : integer;

begin

with Pido

begin

ji=N+1;

repeat

je=j-1

until (Value[j] <> Maximum(j]); {find largest non-max component}
if (j > 1) then {if j=1, no more partitions}
begin

Done := false;

Value[j] := Value[j] + 1; {advance jth component}
fori:=j+1toNdo

begin

Value[i] := 1;

{reset to min past j}
if (Value[j] = Maximum(j]) then

{is j*" component is at its max?}
Maximum(i] := Maximum([j] + 1 {yes-max past j is one more}
else
Maximum(i] := Maximum([j]; {no-max past j is same as max at j}
end; {for}
end {if then}
else
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Done := true;
end; {with}
end; {GetNextPart}

A4 Integer Partitions

The data type representing an integer partition is a record which holds the distinct part sizes, the
number of each, and the number of distinct parts. The integer partitioned is a global variable. The
rank and unrank algorithms are not implemented. They are exercises in Chapter 1.

const
MaxInteger = 15;

type
vector = array[0..MaxInteger] of integer;
Partition = record
Part, Multiplicity : vector;
NumberOfParts : integer;
end; {Partition}

var
N : integer;

procedure GetFirstPart (var mu : Partition; var Done : boolean);

begin

with mu do
begin
Part{1] := N;

{first partition has one part of size N}
Multiplicity[1] := 1;

NumberOfParts := 1;
end; {with}

Done := false;

end; {GetFirstPart}

procedure GetNextPart (var mu : Partition; var Done : boolean);

var
k, k1, s, u, v, w : integer;
begin
with mu do
if (Part[NumberOfParts] > 1) or (NumberOfParts > 1) then
begin
Done := false;
if (Part[NumberOfParts] = 1) then
begin

{smallest partsize is 1}
s := Part{NumberOfParts - 1] + Multiplicity{NumberOfParts];  {split 1's and next larger}

k := NumberOfParts - 1; {index of part to reduce by one and divide into s}
end {if then}

else
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begin {smallest partsize is not 1}
s := Part[NumberOfParts]; {split last part}
k := NumberOfParts; {reduce this part by one and divide into s}
end; {else}
w = Part[k] - 1; {reduce part by one to divide into s}
u:=sdivw; {this will be the multiplicity of new partsize}
v:=s mod w; {this will be number of leftover 1's}
Multiplicity[k] := Multiplicity[k] - 1; {reduce number of these parts}
if (Multiplicity[k] = 0) then
kl:=k {if none left, make changes at this component}
else
kl:=k+1; {if some left, make changes in next component}
Multiplicity[k1] := u; {set multiplicity}
Part[k1] := w; {set part size}
if (v = 0) then
NumberOfParts := k1 {no 1's}
else
begin
Multiplicity[k1 + 1] := 1; {create block of 1's}
Part[kl + 1] := v;
NumberOfParts := k1 + 1;
end; {else}
end {if then}
else
Done := true;

end; {GetNextPart}

A.S Product Spaces

An n-tuple in a product space also includes the direction vector and the activity set. Global
variables include n and the size of each set in the product space.

const
MaximumComponent = 15;

type
vector = array[0.. MaximumComponent] of integer;
IndexSet = set of 0.. MaximumComponent;
Ntuple = record
Value, Direction : vector;
Activity : IndexSet;
end; {Ntuple}

var

N : integer;

MaximumVector : vector; {the maximum value at each coordinate}
Base : IndexSet; {this set is a list of the non-zero coords of

MaximumVector}
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procedure UnrankProdSpace (Rnk : integer; var v : Ntuple);
var

i, PrevRnk : integer;

begin

PrevRnk := Rnk;

for i := N downto 1 do
begin

v.Value[i] := PrevRnk mod MaximumVector[i};  {start with Value as count from 0}
PrevRnk := PrevRnk div MaximumVectorl[i]; {calculate previous rank}
if (PrevRnk mod 2 = 1) then {if previous rank odd count from top}
v.Value[i] := MaximumVector[i] - v.Value[i] - 1;
end; {for}
end; {UnrankProdSpace}
procedure RankProdSpace (w : Ntuple; var Rnk : integer);
var
i, Count : integer;
begin
Rnk := 0;
fori:=1toNdo
begin
if (Rnk mod 2 = 1) then

{if odd, read from top; even, from bottom}
Count := MaximumVectorfi] - w.Value[i] - 1
else

Count := w.Valuel[i];

Rnk := MaximumVector[i] * Rnk + Count; {calculate rank from previous rank and count}
end; {for}
end; {RankProdSpace}

procedure GetFirstVector (var w : Ntuple; var Done : boolean);
var

i: integer;
begin
with w do
begin
fori:=1toNdo
begin
Value[i] := 0; {first vector is all 0}
Direction[i] := 1; {all values going up}
end; {for}
Activity := Base; {all components with non-zero max are active}
end; {with}
Done := false;
end; {GetFirstVector}

procedure GetNextVector (var w : Ntuple; var Done : boolean);
var

p: integer;
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function MaxActive : integer; {returns largest element of Activity}
var
i: integer;
begin
i:=N;
with w do
while not (i in Activity) do
i=i-1;
MaxActive := i;
end; {MaxActive}

begin
with w do
if (Activity <> []) then {none active means no more}
begin
Done := false;
P := MaxActive;
Value[p] := Value[p] + Direction[p]; {move largest active component ir: appropriate
direction}
if (Value[p] = MaximumVector[p] - 1) or (Value[p] = 0) then {hit boundary?}

begin
Direction[p] := -Direction[p];
Activity := Activity - [p];
end; {if then}
Activity := Activity + [p + 1..N] * Base;

{yes-reverse direction}
{make p inactive}

{no-make all larger than p with non-zero max active}

end {if then}
else
Done := true;

end; {GetNextVector}

A.6 Match to First Available

Lex order is used instead of colex for generating the subsets. However, the structure of the
algorithm (GetFirst and GetNext) is the same. While the level in the boolean algebra is a global
variable, the GetFirst subroutine has the subset size as an input parameter because it is called to
generate the k-subsets and the (k+1)-subsets. This additional parameter is not necessary in GetNext
since GetNext computes the size of the subset from the previous one. An additional global variable is

a set which represents those (k+1)-subsets which have been matched. The data type used to represent
a subset is different: we use Pascal subsets here.

const
MaxSetSize = 12;
MaxBinCoef = 1000;

type
Subset = set of 0..MaxSetSize;
SubsetList = set of 1..MaxBinCoef;
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var
N, K : integer;
UsedSubsets : SubsetList;

procedure GetFirstSubset (p : integer; var S : Subset; var Done : boolean);
begin

S:=[1.p];
Done := false;
end; {GetFirstSubset}

procedure GetNextSubset (var S : Subset; var Done : boolean);

var
Count, j, i : integer;
begin
ji=N;
repeat {find largest element that can advance}
j=i-1
until ((j in S) and not (j + 1 in S)) or (j = 0);
if ( > 0) then {j=0 means no more subsets}
begin
Done := false;
Count := 0;
fori:=jtoNdo {count number in subset past this element}
if (i in S) then

Count := Count + 1;

S:=(S-[j.N] + [ + 1.j + Count]; {remove these and j and add Count contiguous

elements}
end {if then}
else
Done := true

end; {GetNextSubset}

function Matched (A : Subset; var B : Subset) : boolean; {returns true and subset B if match}
var
ListDone, StopLoop : boolean;
p : integer;

begin

GetFirstSubset(K + 1, B, StopLoop);

p=1

while not StopLoop do

if (A <= B) and not (p in UsedSubsets) then
StopLoop := true

else
begin
GetNextSubset(B, ListDone);
StopLoop := ListDone;
pi=p+1

end; {else}

if not ListDone then

{search for first match or end of list}

{A is subset of B and B is not used}
{found a match}

{go to next subset}

{ListDone will be true if no match found}
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begin
Matched := true; {found a match}
UsedSubsets := UsedSubsets + [p]; {make it unavailable}
end {if then}
else
Matched := false; {no match}

end; {Matched}

procedure MatchToFirst;
var
A, B : Subset;
EndOfList : boolean;
i:integer;
begin
UsedSubsets := [1; {start with no subsets used}
GetFirstSubset(K, A, EndOfList); {first subset to match}
while not EndOfList do {search list of k-subsets in lex order}
begin
if Matched(A, B) then {find matching (k+1)-subset, if exists}
PrintPair(A, B)
else {no matching subset}
PrintNoMatch(A);
GetNextSubset(A, EndOfList);
end; {while}
GetFirstSubset(K + 1, B, EndOfList);
i=1;
while not EndOfList do {now search list of (k+1)-subsets in lex order}
begin
if not (i in UsedSubsets) then {list unmatched ones}
PrintNoMatch(B);
i=i+1;
GetNextSubset(B, EndOfList);
end; {while}
end; {MatchToFirst}

A.7 The Schensted Correspondence

We give here the implementation of the Schensted algorithm, both for encoding a permutation
as a pair of tableaux and vice versa. A partition is given as a record which contains the number of
parts and a vector of parts, largest first. A tableau consists of two partitions (the shape and its
conjugate) and a matrix of entries. A pair of tableaux is the record TableauPair with Bumping and
Template as its two constituents. Finally, a permutation in two-line notation is kept as the record
TwoLinePerm consisting of two vectors, TopRow and BottomRow.

The main work of the algorithm is done in the two procedures SchenstedInsert and
SchenstedDelete, which insert a value into a tableau and delete a value from a tableau, respectively.

The number of cells (or the number of elements in the permutation) is the global variable N.
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const
MaximumNumParts = 20;

type
vector = array[0..MaximumNumParts] of integer;

matrix = array[0..MaximumNumParts] of vector;
TwoLinePerm = record

TopRow, BottomRow : vector;
end;

Partition = record
NumberOfParts : integer;
Part : vector;
end;
Tableau = record
Shape, Conjugate : Partition;
CellEntry : matrix; {entries of tableau, in matrix form}
end;
TableauPair = record

Bumping, Template : Tableau; {Bumping sometimes called the P-tableau; Template
the Q-tableau}

end;
var
N : integer;

procedure SameShape (var S : Tableau; T : Tableau);

{Makes the tableau S the same shape as
T}

begin
S.Shape := T.Shape;
S.Conjugate := T.Conjugate;
end; {SameShape}

{changes the kth component of Lambda by plus or minus 1 (TrimSize)}

{if Shorten is true, changes the number of parts by the same amount}
{this will happen when part k has size 1.}

begin

with Lambda do

begin

Part[k] := Part[k] - TrimSize;

if Shorten then

NumberOfParts := NumberOfParts - TrimSize;
end; {with}

end; {TrimShape}

procedure TrimShape (var Lambda : Partition; k : integer; Shorten : boolean; TrimSize : integer);

procedure DeleteCell (var P : Tableau; Row, Col : integer);

{remove cell from P at Row,
Col}

begin
with P do
begin
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TrimShape(Shape, Row, (Col = 1), 1);
TrimShape(Conjugate, Col, (Row = 1), 1);
end; {with}
end; {DeleteCell}

{uses Schensted insertion to insert k into tableau P. Row and Col are new cell added to P}

procedure SchenstedInsert (var P : Tableau; k : integer; var Row, Col : integer);
var

x : integer;
DoMore : boolean;
begin
with P do
begin
Col :=1;
DoMore := true;
while DoMore do

{start at first column}

if (k <= CellEntry[Conjugate.Part[Col], Col]) then {k bumps something}
begin

Row := Conjugate.Part[Col]; {start looking for value to bump}
repeat

{find value to bump}
Row:=Row -1

until (CellEntry[Row, Col] < k);
Row :=Row + 1;

{value to bump is one cell down}
x := CellEntry[Row, Col];

{x is value to bump}
CellEntry[Row, Col] := k; {replace it with k}
k:=x;
Col := Col + 1; {move out to next column}
end {if then}
else ) {k goes at end of column}
begin

Row := Conjugate.Part[Col] + 1;

{Row is row index}
CellEntry[Row, Col] :=k;

{place k at end of column}
DoMore := false; {no more bumping}
TrimShape(Shape, Row, (Col = 1), -1);  {add cell to shape and conjugate}
TrimShape(Conjugate, Col, (Row = 1), -1);

end; {else}
end; {with}

end; {SchenstedInsert}

{Schensted deletion; value in cell of P at Row, Col starts deletion; x is the value removed}

procedure SchenstedDelete (var P : Tableau; var x : integer; Row, Col : integer);
var

i, j, y : integer;

begin

with P do
begin
x := CellEntry[Row, Col];
DeleteCell(P, Row, Col);
for j := Col - 1 downto 1 do

{start with x as value in P at Row,Col}
{remove this cell from P}
{bumping}
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begin
i=1;
repeat {find value to bump}
i=i+1
until (CellEntry([i, j] > x) or (i > Conjugate.Part[jl); {don't go past end of column}
i=i-1; {value to bump in row above}
y := CellEntry[j, j1; {bump it}
CellEntry(i, j] := x;
X:=y; {repeat for next column down}
end; {for}
end; {with}

end; {SchenstedDelete}

{convert permutation pi in two-line form to pair of tableaux}

procedure SchenstedEncode (pi : TwoLinePerm; var Z : TableauPair);
var

i, Row, Col : integer;

procedure Empty (var T : Tableau); {make T the empty tableau}
var

i:integer;
begin
with T do
begin
Shape.NumberOfParts := 0;
Conjugate.NumberOfParts := 0;
for i := 1 to MaximumNumParts do
begin
CellEntryf(i, 0] := 0;
CellEntry[0, i] := 0;
Shape.Part[i] := 0;
Conjugate Part[i] := 0;
end; {for}
CellEntry[0, 0] := 0;
end; {with}
end; {Empty}

begin
Empty(Z.Bumping); {start with empty tableaux}
Empty(Z.Template);

fori:=1toNdo
begin

SchenstedInsert(Z.Bumping, pi.BottomRow[i], Row, Col); {Schensted insert permutation value}

end; {for}

Z.Template.CellEntry[Row, Col] := pi.TopRowl[i]; {insert top row value into new cell}
SameShape(Z.Template, Z.Bumping);

{Bumping has right shapes; make Template same}
end; {SchenstedEncode}

{convert pair of tableaux to a permutation in two-line form}
procedure SchenstedDecode (Y : TableauPair; var pi : TwoLinePerm);
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var
i, k, Row, Col : integer;
Z : TableauPair;

procedure FindMaximum (Q : Tableau; var Row, Col : integer);

{returns Row and Col of largest
member of Q}

var
X, j : integer;
begin
x:=0;
with Q do
for j := Conjugate. NumberOfParts downto 1 do
if (CellEntry[Conjugate.Part[j], j] > x) then
begin
Row := Conjugate.Part[j];
Col :=j;
x := CellEntry[Row, Col];
end; {if then}
end; {FindMaximum}

function NumberOfCells (T : Tableau) : integer; {returns number of cells in T}
var
i, sum : integer;
begin
sum :=0;
with T do
for i := 1 to Shape. NumberOfParts do
sum ;= sum + Shape.Part[i];
NumberOfCells := sum;
end; {NumberOfCells}

begin

Z:=Y;

N := NumberOfCells(Z.Bumping);

for i := N downto 1 do

begin
FindMaximum(Z.Template, Row, Col);
pi.TopRow(i] := Z.Template.CellEntry[Row, Col];

tableau}

SchenstedDelete(Z.Bumping, k, Row, Col); {Schensted delete from this cell}

pi.BottomRow([i] := k; {value bumped out is bottom row value}
DeleteCell(Z.Template, Row, Col); {remove cell from template}
end; {for}

end; {SchenstedDecode}

{Z is going to be clobbered}
{compute N}
{remove each cell of Template}

{top row value is maximum in template
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A.8 The Priifer Correspondence

The data type for a tree is a vector of subsets. The vth subset is the set of vertices adjacent to
vertex v. This is called the adjacency list. The number of vertices, N, is a global variable.

const
MaxTreeSize = 20;

type

Vertex = 0..MaxTreeSize;

VertexSet = set of Vertex;

Tree = array[1..MaxTreeSize] of VertexSet; {tree is adjacency list}
Vector = array[1..MaxTreeSize] of Vertex;

var
N : integer;

procedure DecodeVector (a : Vector; var T : Tree);
var

i, v, w : Vertex;

Degree : Vector;

procedure AddAnEdge (var T : Tree; v, w : Vertex); {add edge (v,w) to T}
begin

TLv] := TIv] + [w];

TIw] = T{w] + [v];

end; {AddAnEdge}

function Largest (Degree : Vector) : Vertex; {returns largest terminal vertex of tree with

given degrees}

var
i: Vertex;

begin

i:=N;

while (i >= 1) and (Degree[i] <> 1) do
i=i-1;

Largest := i;

end; {Largest}

function Smallest (Degree : Vector) : Vertex; {returns smallest terminal vertex of tree with
degree given}

var

i: Vertex;

begin

i=1;

while (i <= N) and (Degree[i] <> 1) do

i=i+1;

Smallest := i;
end; {Smallest}
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begin
for v:=1toNdo
Degree[v] :=1;
fori:=1toN-2do
Degree[a[i]] := Degreel[a[i]] + 1; {compute degrees}
for v:=1toN do
Tiv]:=[1; {start with empty tree}
fori:=1toN-2do
begin
w .= Largest(Degree);

AddAnEdge(T, ali], w); {add edge from largest terminal vertex to vertex a[i]}

Degree[a[i]] := Degreefali]] - 1; {reduce degree}
Degree[w] := 0; {kill largest terminal vertex}
end; {for}
v := Largest(Degree); {two vertices remain; connect them}
w := Smallest(Degree);
AddAnEdge(T, v, w);
end; {DecodeVector}

procedure EncodeTree (T : Tree; var a : Vector);
var
k, v : Vertex;

function Largest (T : Tree) : Vertex; {returns largest terminal vertex of tree T}
var
i: Vertex;

function SetSize (S : VertexSet) : Vertex;  {returns size of set S}
var
m, i: Vertex;
begin
m:=0;
fori:=1toNdo
if (iin S) then
m:=m+1;
SetSize := m;
end; {SetSize}

begin

i:=N;

while (i >= 1) and (SetSize(T[i]) <> 1) do  {set size is 1 when vertex is terminal}
i=i-1;

Largest := i;

end; {Largest}

function Adjacent (T : Tree; v : Vertex) : Vertex;  {returns vertex adjacent to v}
var
k : Vertex;
begin
k:=1;
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while (k <= N) and (not (k in T[v])) do
ki=k+1;

Adjacent := k;

end; {Adjacent}

procedure RemoveEdge (var T : Tree; v, w : Vertex); {remove edge (v,w) from T}
begin

TLv] := T[v] - [w];

T{w] := T(w] - [v];

end; {RemoveEdge}

begin
fork:=1toN-2do
begin
v := Largest(T); {get largest terminal vertex}
a[k] := Adjaceny(T, v); {set a[k] to vertex adjacent to largest terminal vertex}
RemoveEdge(T, v, a[k]); {remove this edge}
end;

end; {EncodeTree}

A.9 The Involution Principle

We give here only the involution-principle. We omit the definitions of the two involutions ¢
and y. The underlying set is of type YourDataType. For example, if we were to use this procedure
to implement the involutions which proves Euler's theorem (§4.6), YourDataType would be pairs of
partitions: one with only distinct parts of even size and one with no restrictions.

Pascal imposes some restriction on the way the involution principle can be programmed.
Because Pascal functions have only a narrow choice of data types as output type, the involutions ¢
and y must, in general, be represented as procedures with input and output parameters.

function AreEqual(P, Q : YourDataType) : boolean;
begin

{return true if P=Q}

{return false if P#Q}
end; {AreEqual}

procedure Phi (P : YourDataType; var Q : YourDataType);
begin

{Q=Phi(P)}

end; {Phi}

procedure Psi (P : YourDataType; var Q : YourDataType);
begin

{Q:=Psi(P)}

end; {Psi}
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{input is Lambda; output is Rho; IsFixedPt is false if Lambda is not a fixed point}
procedure InvolPrin (Lambda : YourDataType; var Rho : YourDataType; var IsFixedPt :

boolean);
var

W, X, Y, Z: YourDataType;

begin

X := Lambda;
Phi(X, Y);
if AreEqual(X, Y) then
begin

repeat

Z:=Y;

Psi(Z, W); {apply Psi followed by Phi}
Phi(W, Y);

{Xis in fixed point set of phi}

until AreEqual(Z, W) or AreEqual(W, Y); {until a fixed point reached}
Rho:=W;

IsFixedPt := true;
end {if then}
else
begin
Psi(X, Y);
if AreEqual(X, Y) then
begin
repeat
Z:=Y;
Phi(Z, W); {apply Phi followed by Psi}
Psi(W, Y);

until AreEqual(Z, W) or AreEqual(W, Y);
Rho:=W;

IsFixedPt := true;
end {if then}
else
IsFixedPt := false;
end; {else}
end; {InvolPrin}

{Xis in fixed point set of psi}

{until a fixed point reached}

{input not fixed point of Phi or Psi}
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