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Preface 

The notes that eventually became this book were written between 1977 and 1985 

for the course called Constructive Combinatorics at the University of Minnesota. This 

is a one-quarter (10 week) course for upper level undergraduate students. The class 

usually consists of mathematics and computer science majors, with an occasional 

engineering student. Several graduate students in computer science also attend. At 

Minnesota, Constructive Combinatorics is the third quarter of a three quarter sequence. 

The fIrst quarter, Enumerative Combinatorics, is at the level of the texts by Bogart 

[Bo], Brualdi [Br], Liu [Li] or Tucker [Tu] and is a prerequisite for this course. The 

second quarter, Graph Theory and Optimization, is not a prerequisite. We assume that 

the students are familiar with the techniques of enumeration: basic counting principles, 

generating functions and inclusion/exclusion. 

This course evolved from a course on combinatorial algorithms. That course 

contained a mixture of graph algorithms, optimization and listing algorithms. The 

computer assignments generally consisted of testing algorithms on examples. While 

we felt that such material was useful and not without mathematical content, we did not 

think that the course had a coherent mathematical focus. Furthermore, much of it was 

being taught, or could have been taught, elsewhere. Graph algorithms and 

optimization, for instance, were inserted into the graph theory course where they 

naturally belonged. The computer science department already taught some of the 

material: the simpler algorithms in a discrete mathematics course; effIciency of 

algorithms in a more advanced course. 

We decided to take as our point of view a decidedly modem trend in 

combinatorics: the attempt to give algorithmic explanations to combinatorial 

phenomena. While the systematization of this point of view is modem, its 

mathematical roots are quite deep, dating back to Euler, Cayley and Sylvester. The 

resulting course and this book are therefore more mathematically unified and deeper 

than the course's precursor. Nevertheless, we still believe that the material in this 

book should be of interest to students in computer science, as well as those in 

mathematics and other sciences. In fact, this book might provide the jumping-off 

point for a deeper investigation of related subjects: linear algebra, computational 
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complexity, lattice theory, group theory, representation theory, special functions or 

mathematical physics. 

In this book we use combinatorial algorithms for two purposes. First, a 

constructive proof of a theorem can be an algorithm. These algorithms often describe 

a bijection between two fmite sets. So we concentrate on interesting mathematical 

theorems which are proved by bijections. The other purpose is interactive: use the 

algorithms to investigate interesting mathematical examples. Here the examples are 

our main focus. An algorithm can be used to generate data related to a problem. It is 

then up to the students to study these data, formulate as many conjectures as they can, 

and then prove them. They are not told what the theorems are in advance. 

Unfortunately, this kind of "research" is usually impossible in most undergraduate 

mathematics courses. 

The material here is more than what can be covered in a 10 week course. Two 

sections of peripheral interest are §§ 1.4 and 2.4. Moreover, some of the material in 

Chapters 3 and 4 (§§3.5-3.7 and §§4.5-4.6) could be considered graduate material. 

Strictly speaking, each chapter can be presented independently, although we frequently 

tie together material from different chapters. There are many other topics which would 

have been suitable for inclusion. One such topic we regretted omitting was the 

Lagrange inversion formula (see [La] and [RaJ). 

The notes are organized in the following way. In Chapter 1 algorithms which 

list fundamental combinatorial objects are given. They are written in a shorthand 

version of Pascal (no declaration or i/o statements are given). It is assumed that the 

students are familiar with a programming language, though not necessarily Pascal. In 

Chapter 2, a partially ordered set is defmed for each object. We concentrate on the 

Boolean algebra. A number of interesting bijections are given in Chapter 3 for these 

objects. Finally, we generalize bijections to involutions in Chapter 4. There is some 

emphasis on tableaux in these last two chapters. Thus they can serve as a 

combinatorial forerunner to the theory of representations of the symmetric group. 

We have included more complete Pascal programs in the Appendix. 

Furthermore, we would be happy to provide disks (Apple Macintosh Pascal© or 

Turbo Pascal©) with source code for these programs to interested readers. 

The exercises vary from true exercises to very difficult problems. We have 

assigned each exercise a number from one to four, which we believe is some 

indication of its difficulty (one is easy, four is hard). Exercises involving a computer 

are marked with a "C". 

Exercises labeled 3C or 4C might be suitable for a term project. We feel 

strongly that anyone using this book as a text should assign one or more of these 
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exercises. They give the student a chance to use the computer in a non-routine way 

and to engage in the excitement of mathematical investigation. 

We would like to thank the following people who have helped in various ways 

in the development of this book: David Bressoud, Adriano Garsia, Ira Gessel, Jay 

Goldman, Jim Joichi, Jeff Remmel, Richard Stanley, Gerard Viennot, Herb Wilf, Gill 

Williamson and Doron Zeilberger. Finally, we wish to thank the many students who 

took the courses upon which this material is based. They were our guinea pigs and 

their feedback has been an important source of direction for us. 

This book was prepared using MacWrite©, MacPaint©, MacDraw© and 

Macintosh Pascal© on our Apple Macintosh© computers, and was printed on an Apple 

Laserwriter© printer. While the Macintosh gave us a wonderful environment to 

incorporate text, programs and drawings into a single entity, we cannot say that Apple 

supports, in an adequate way, mathematical text preparation. 

Minneapolis,Minnesota 

U.S.A. 

Dennis W. Stanton 

Dennis E. White 
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CHAPTER 1 

Listing Basic Combinatorial Objects 

At a basic level, one would expect that constructive combinatorics would 

address the question of how one constructs the fundamental objects in combinatorics. 

In fact, "constructing" these objects could mean providing an algorithm for listing all 

of them, or it could mean generating one of them at random. While both questions are 

of interest, we shall concentrate on the first. 

It is frequently useful in combinatorics to have such listing algorithms. The 

most obvious application is to use the algorithms to produce computer programs which 

test conjectures and theorems for combinatorial objects. Better yet, conjectures might 

be discovered in the resulting data. In another direction, the algorithm itself could be 

of mathematical interest. The algorithm might be a proof of a theorem. For instance, 

the existence of an algorithm which lists permutations by transposing adjacent objects 

proves that any permutation can be written as a product of adjacent transpositions. 

Any such list of objects gives the objects a linear order. This means that if a 

and b are objects, then we can say that a < b if a precedes b on the list. This 

linear order clearly gives a ranking function on the objects. One might expect that the 

first object has rank one, and so on. However, we shall find it more useful to define 

the Rank of an object as the number of objects in the list which precede it. So if a is 

fIrst, Rank(a) = O. If the list has N objects, the function Rank: must map these 

objects to the set {O, 1, ... ,N-l}. 

While the theoretical defmition of Rank is obvious, it is often not at all clear how 

to construct Rank without listing all of the objects. In fact, algorithms to rank objects 

(find Rank(a» and unrank integers (fInd Unrank(i) = Rank-l(i), 

i E {O, 1, ... , N-l}) often give great insight into the algorithm. 

In this chapter we give listing algorithms for these combinatorial objects: 

permutations, subsets of a set, integer partitions, set partitions and product spaces. 

Each algorithm will be based upon a recursive formula for the number of objects 

listed. For example, subsets may be listed by using the combinatorial interpretation of 

Pascal's triangle. 

The most important ranking function will use "lexicographic" ordering. It can 
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be used for virtually any combinatorial object We shall see in Chapter 2 that it also 

has many remarkable and surprising theoretical properties. 

§ 1.1 Permutations 

A permutation of n distinct objects of length k is an ordered arrangement of 

any k of the objects. For instance, the permutations of {a, b, c, d} of length two 

are ab, ac, ad, ba, be, bd, ca, cb, cd, da, db and de. The next proposition is 

.clear. 

PROPOsmON 1.1 The number of permutations of n objects of length k is 
n(n-l) .. , (n-k+1). 

Sometimes we shall write (n~ (called thefallingfactorial) for 

n(n-l) ... (n-k+l). 

A permutation of n objects of length n is frequently called a permutation of n 

objects (or simply a permutation of n). It is clear that we can take the set [n] = 

{ 1, 2, ... ,n} for the n objects. We shall frequently use this notation. Proposition 

1.1 shows that the number of permutations of n is (n)n = n!. 

Perhaps the most natural ordering of the permutations of n is lexicographic 

(lex) order. We say that 1t precedes 0 in lex order, if, for some i, the fIrst i 

entries of 1t and 0 are the same, and the (i+l)th entry of 1t is less than the (i+l)th 

entry of 0. The lex list of the permutations of 3 is 123, 132, 213, 231, 312 and 

321. This ordering is quite simple. You are asked to consider it in Exercises 2 and 3. 

We shall return to lex order in § 1.2. 

We consider instead an algorithm to list all permutations of n that is due to 

Johnson [Joh] and Trotter [T]. It is based on a "combinatorial proof' of n! = 

n(n-l)!: for each of the (n-l)! permutations of [n-1], there are n "positions" into 

which n may be inserted. The algorithm has the property that each permutation 

differs from its predecessor by only a transposition of adjacent symbols. The lex list 

does not have this property. 

How does the algorithm work? Suppose we have the list for permutations of 

[n-l]: 1t(O), 1t(l), ••.• Then we construct the list for permutations of [n] by 

inserting n into each of the n possible positions of each 1t(i). The insertions go 

from left to right if i is odd and right to left if i is even. The lists for n = 1, 2, 3 

and 4 are given below with the recursive structure indicated. 
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[ 1234 
123 1243 

1423 
4123 

[ 4132 
12 132 1432 

1342 
1324 

[3124 
312 3142 

3412 
4312 

[4321 
321 3421 

3241 
3214 

[ 2314 2341 
21 231 2431 

4231 

[4213 
213 2413 

2143 
2134 

The Iohnson-Trotter algorithm is listed in Algorithm 1. The permutations 1t 

are given by 1t = (1t[I], .•. ,1t[n]). (Usually we will write 1t as (1t1''''' 1tn) but in 

algorithms we will sometimes use [] instead of subscripts.) The inverse of the 

permutation 1t is also used, so 1t[7r1[m]] = m. In order to keep track of which digits 

are moving, we use the set of active digits, A. Initially all digits> 1 are active. If a 

digit i comes to a boundary, it becomes passive (is deleted from A), and all digits> 

i become active. The directions that the digits are moving are given by the direction 

vector (d[I], ... , d[n]); d[i] = 1 is to the right and d[i] = -1 is to the left. Initially, 

each d[i] is -1 and (1t[I], ... , 1t[n]) = (1, 2, ... ,n). The variables 1t[O] and 

1t[n+ 1] are used for "the boundary positions" and are fixed at n+ 1. The algorithm 

ends when A is empty. 

ALGORITIIM 1: Permutation List 

begin 
for i +-- 1 to n + 1 do 

1t[i] +-- i 

1t-1[i] +-- i 

d[i] +---1 

1t[O] +-- n + 1 

A+-- {2, ... , n} 
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Done~false 

while not Done do 

Print(x) 

if A:#-0 then 

else 

m ~ max{i: ieA} 

j ~ X-l[m] 

xfj] ~ x[j + d[ m]] 

x[j + d[m]] ~ m 
x-l[m] ~ X-l[m] + d[m] 

X-l[X[j]] ~ j 

if m < x[j + 2'd[m]] then 

d[m] ~-d[m] 

A~A-{m} 

A~ Au {m+ 1, ... ,n} 

Done~true 

The proof that Algorithm 1 works is inductive. It is clear that it will cause n to 

sweep back and forth across the pennutation, and, at each boundary, construct a new 

permutation of [n-l]. As n sweeps across, no d[i] changes. Thus the only 

changes in (d[1], ... , d[n-ID occur when n reaches a boundary. These are 

precisely the changes that would be encountered in the permutation list for [n-l]. 

The function Rank for Algorithm 1 can now be given. Clearly, 

Rank(1,2, ... , n) = O. Let x = (x[1], ... , x[nD be a pennutation of n, and let x' 

be the permutation of [n-l] which is x with n deleted. Note that n has made 

Rank(x') complete sweeps. Its last incomplete sweep is right to left if Rank(x') is 

even and left to right if Rank(x') is odd. If n occupies position j in x (that is, 

x[j] = n), we find 

{ j - 1 ifRank(x') is odd 
(1.1) Rank(x) = n Rank(x') + 

n - j if Rank(x') is even. 

For example, suppose x = (5, 1,6,2,3,7,4). Then (1), (1,2), (1,2,3) 

and (1,2,3,4) all have rank O. So 

Rank(5, 1, 2, 3, 4) = 5'0 + (5 - 1) = 4 since 0 is even, 

Rank(5, 1, 6, 2, 3, 4) = 6'4 + (6 - 3) = 27 since 4 is even, and 
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Rank(5, 1,6,2,3,7,4) = 7·27 + (6 -1) = 194. 

ALGoRITHM 2: Rank Permutation 

begin 
R~O 

end. 

for i ~ 1 to n do 

Moves ~ IU : j < i and 1t-l m < X-l [i]} I 
if R odd then 

remainder ~ Moves 
else 

remainder ~ i-I - Moves 

R ~ i·R + remainder 

Rank(1t) ~ R 

To unrank M, the algorithm is reversed. 

ALGoRITHM 3: Unrank Permutation 

begin 

for j ~ 1 to n do 

1t[j] ~ 0 

P~M; 

for j ~ n downto do 

R~P mod j 

P ~ LP/jJ 

if P odd then 

k~O 

Dir~ 1 
else 

k~n+l 

Dir~-l 

C~O 

repeat 

k~k+Dir 

if 1t[k] = 0 then 

C~C+l 

until C = R+ 1 

1t[k] ~ j 
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Unrank(M) +-1t 
end. 

In fact, Algorithms 2 and 3 have a theoretical consequence. 

THEOREM 1.2 Every integer k satisfying 0 S k S n! -1 can be uniquely 

represented as 

n 

k 1: (n)n_j b j 
j - 1 

where bj satisfies 0 S bj S i-I. 

Proof Algorithms 2 and 3 establish a one-to-one correspondence between 

permutations of n and sequences (b l , ... ,bn) where 0 S bj < i. Iterating the 

recurrence relation (Ll) for Rank(1t) gives the theorem. 

Permutations of n can be thought of as one-to-one functions from the set [n] = 

{ 1, 2, ... ,n} to itself. Recall that the product of two permutations of n is their 

composition as functions on [n]. So if 1t = (5,4,1,3,2) and ~ = (3,5, 1,4,2), 

then 1t 0 ~ = (1,2,5,3,4) because 

11 It 
1 1 -+ 3 -+ 

2 11 5 
It 2 -+ -+ 

11 It 
5 3 -+ 1 -+ 

11 It 
3 4 -+ 4 -+ 

5 
11 

2 
It 

4. -+ -+ 

Any permutation of [n] can be written as a product of disjoint cycles in cycle 

notation. For 1t = (3,5,1,4,2), we have 1t = (1 3) (2 5) (4). Note that any 

I-cycle (a cycle oflength one in 1t) corresponds to a fixed point of 1t. In the 

example 1t(4) = 4 is a fixed point. A transposition is a permutation with exactly two 

points that are not fixed. Thus a transposition fixes all but two points, say j and k, 

which form a two cycle (j k) of 1t. An adjacent transposition is a transposition of the 

form (j j+ 1). We now note that Algorithm 1 also has a theoretical consequence. 
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llffiOREM 1.3 Every permutation can be written as a product of adjacent 

transpositions. 

Proof This follows from Algorithm 1, in which each permutation is obtained from its 

predecessor by an adjacent transposition. 

So far we have used two representations of permutations: one-line notation 1t = 

(3,5,1,4,2) and cycle notation 1t = (1 3) (2 5) (4). Another notation is two-line 

IWtation 

( 12345) 
35142 

which lists 1ti under i. There are several other ways of identifying permutations. 

One example, which will be considered in Chapter 2, is the inversion sequence of 1t. 

Let 1t = (1t1' •.. ,1tn). The inversion sequence of 1t, (at, ... , ~), is defined by ai 

= l{j : j < i and 1tj > 1ti }l. In the example above, the inversion sequence is 

(0,0,2, 1, 3). Clearly o:s; ai :s; i-I. In Exercise 7 you are asked to reconstruct 1t 

from its inversion sequence. We shall return to this statistic on permutations in 

Chapters 2 and 3. 

§1.2 Subsets 

One of the fundamental building blocks of combinatorics is the binomial 

coefficient. Recall that the number of k-element subsets of the set [n] = 

{ 1, 2, ... , n} is the binomial coefficient 

(~) = 
n! 

k! (n- k)! 

Recall also that the binomial theorem is 

(2.1) 

where n is a non-negative integer and x and y are complex numbers. 

There are many formulas relating binomial coefficients. Frequently these 

formulas have combinatorial interpretations as bijections. A bijection between two sets 
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A and B is a function f: A -+ B which is one-to-one and onto. Clearly if there is a 

bijection between two finite sets, those two sets contain the same number of elements. 

In fact, we have already seen a bijection: the Rank function in § 1.1. The symmetry 

relation 

(2.2) 

can easily be shown by a bijection. Let A be the set of k-element subsets of [n) and 

let B be the set of (n-k)-element subsets of [n). Complementation is a bijection 

from A to B, and (2.2) is established. 

In this section we shall use the Pascal triangle property of the binomial 

coefficients to list all k-element subsets of [n). It is 

A bijective proof of (2.3) is easy. Split the set of k-subsets of [n] into two sets: 

those containing 1 and those not containing 1. 

A k-element subset of [n] is a k-tuple (v!' v2' ... ,vk) where VI < v2 < ... 

< vk' Our listing uses lexicographic (dictionary) order on such k-tuples. We say that 

(v!' v2"'" vt> is before (wI' w2, .•. ,wk) in lexicographic order if, for some 

1 Sj Sk - 1, (v!' v2' •.• , Vj) = (wI' w2, ••• ,wj) and Vj+l < wj+l • This is the 

same ordering that words with distinct letters have in a dictionary. So the 3-element 

subsets of [6) in lex order are 123, 124, 125, 126, 134, 135, 136, 145, 146, 

156, 234, 235, 236, 245, 246, 256, 345, 346, 356 and 456. The first 10 

subsets on this list begin with a 1. They are listed according to lex order of the two 

element subsets of {2, 3, 4, 5, 6}. The remaining sets are listed in lex order for the 

three-element subsets of {2, 3, 4, 5, 6}. Thus the lex list is given exactly by the 

combinatorial proof of (2.3). 

There is another order closely related to lex order, called colexicographic (colex) 

order. This order is defined by reading the k-tuple (v l' v2, •• , ,vk) from right to left 

instead of left to right. The colex list for 3-element subsets of [6) is 123, 124, 

134, 234, 125, 135, 235, 145, 245, 345, 126, 136, 236, 146, 246, 346, 

156, 256, 356 and 456. It is clear that this list is just the colex list for 3-element 

subsets of [5), followed by the colex list of 2-element subsets of [5], with 6 

adjoined. Again it is a version of (2.3). In fact, the lex list can be found from the 

colex list (see Exercise 10). 
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The algorithm for the colex list is based upon a successor algorithm. The subset 

which follows (vI' V2' ... ,Vk) in colex order is obtained by finding the smallest j 

such that Vj + 1 < Vj+1 (or j = k if there is no such j), replacing Vj by Vj + 1, 

andreplacing (vl'v2' ... , vj-1) by (1,2, ... ,j-I). 

ALGoRITIIM 4: Subset List 

begin 

for i ~ 1 to k do 

vi~i 

vk+1 ~ n+ 1 

Done~false 

while not Done do 

Print(v) 

if vI <n-k+ 1 then 

j~O 

repeat 

j ~ j+ 1 

until Vj+1 > Vj + 1 

vj~vj+I 

for i ~ 1 to j - 1 do 

vi~i 
else 

Done ~true 

end. 

To find Rank(vl' v2' ... ,vk), note that (vl' v2' ... ,vk) is preceded by all 

k-element subsets of [vk - 1], and by all k-element subsets (~I' ~2' ... , ~k)' 

where (~l' ~2' ... '~k-I) precedes (vl'v2, ... ,vk- I) in the colex list of 

(k-l)-element subsets and ~k = vk. This is 

For example, if (vl' v2, ... , vk) = (3, 4, 7) c [7], Rank(3, 4, 7) = 25 since it is 

preceded by 
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123} 
456 3-element subsets of [6] 

and 

127} 
237 2-element subsets of [3] 

147} 
247 I-element subsets of [2] 

ALGoRl'l1iM 5: Rank Subset 

begin 

R+-O 

end. 

for i +- 1 to k do 

R +- R + (ViiI) 
Rank(v) +-R 

Algorithm 5 shows that Rank is a bijection from (vl' v2' ... ,vk) with 

1 SV1 < v2 < ... <vkSn to the set [N-l] u {OJ, 

so that we have proved the following theorem. 

THEOREM 2.1 Any integer m satisfying 

can be uniquely expressed as 

for some positive integers satisfying 1 S v1 < v2 < ... < vk S n. 
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To find Unrank(m) for a given k and find the largest binomial coefficient <D 
that is S; m. Then put vk = i + l, subtract that binomial coefficient from m, and 

repeat with k replaced by k - 1. 

ALGoRI1HM 6: Unrank Subset 

begin 

end. 

Rf-m 

for i f- k downto 1 do 

pf-i-l 

repeat 

pf-p+l 

until (r) > R 

Vi f-p 

Unrank(m) f- v 

Note that the condition 1 S; VI < v2 < ... < vk S; n is not immediately obvious 

from Algorithm 6. We know that it holds because Unrank is the inverse function of 

Rank. You are asked to verify this condition in Exercise 11. 

§1.3 Integer Partitions 

The third combinatorial object we consider is a partition of an integer. A 

k-tuple of positive integers A = ( \' ... '\:) is an integer partition of n if Al + A2 

+ ... + ~ = n and Al ~ A2 ~ ... ~ \: ~ 1. The number of parts of A is k. An 

example of a partition of 12 into 6 parts is A = (4, 2, 2, 2, 1, 1). Alternatively, we 

can completely describe A by giving the number of times that a part i occurs, called 

the multiplicity of i. In this notation A. = 41 23 12, because A. has one 4, three 2's 

and two l's. 

A useful way of picturing a partition is an array of squares, or cells, left 

justified, in decreasing order. For example, 41 23 12 is given by 
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Such diagrams are called Young diagrams or Ferrers diagrams. 

The conjugate partition of A, denoted A', is the partition obtained from A by 

interchanging the rows and columns of the Ferrers diagram of A. In other words, just 

transpose the Ferrers diagram of A. For A = 41 23 12, A' = 61 41 12. It is clear that 

the map conj: A ~ A' gives the following theorem. 

THEOREM 3.1 The number of partitions of n with k parts is equal to the number of 

partitions of n whose largest part is k. 

Proof The map conj takes the first column of A to the fIrst row of A'. So if A has 

k parts, the largest part of A' is k. Because two applications of conj yields the 

identity map, conj is a bijection. 

The listing algorithm for partitions uses reverse lex order. Given A = 

(AI' ... '\) and Il = ( Ill' ~, ... ,Ilm), we say A precedes Il if, upon reading 

left to right, the first entry i for which \"# Ili' satisfies \ > Ili' Thus, the reverse 

lex list for n = 7 is 

7 

61 

52 

512 

43 

421 

413 

32 1 

322 

3212 

314 
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Algorithm 7 uses the multiplicities (ml'~' ... ,mk) of the parts 

(pp P2' ... ,1\) to describe the partition A. We require that Il\;t: 0 and that Pi> P2 

> ... > 1\. Thus, the vectors (mp~,~, m4) = (2, 1,4, 1) and (pp P2' P3' P4) = 
(6, 3, 2, 1) correspond to 62 31 24 11, a partition of 24. The number of parts of the 

partition is kept in the variable r. 

Given A, what is its successor? Find the smallest part p of A which is not a 

1. Then use p and all of the 1 's to create as many parts of size (p-l) as possible. 

The "leftovers" become one part. For 5 42 14, P = 4 and we change 4 14 to 32 2. 

So 54322 follows 54214. 

ALGORITHM 7: Integer Partition List 

begin 

Pi rn 

m1 r 1 

rr 1 

Done r false 

while not Done do 
Print(A.) 

if Pr > 1 or r > 1 then 

if Pr = 1 then 

SrPr_l+~ 

krr-l 

else 

SrPr 

krr 

wrl\-1 

urLs/wJ 

VrS mod w 

mk rmk -l 

if mk = 0 then 

kIrk 



else 

end. 

else 

k1 ~k+ 1 

mk1 ~u 

1\:1 ~ w 

if v = 0 then 

r~k1 

else 

mkl+l ~ 1 

1\:1+1 ~ v 

r~k1 + 1 

Done~true 

14 

One can ask how to construct the Rank and Unrank functions and if they give 

explicit representation theorems, such as Theorems 1.2 and 2.1. Since the list is 

reverse lex, it might make sense to count the partitions which .fulll;m: the given partition 

and subtract that number from pen), the total number of partitions of n. Let SO .. ) 
denote the number of partitions which follow A. Certainly all partitions of n whose 

largest part is less than 1..1 will follow A. Let pen, k) denote the number of 

partitions of n whose largest part is < k. Then 

(3.1) S(A) = pen, 1..1) + S(A *) 

where 

Iterating (3.1) gives the following theorem. 

THEOREM 3.2 Any integer i satisfying O:s; i :s; pen) - 1 can be uniquely 

represented by 

k 

i = L p(nj,Aj) 
j = 1 

for some sequence of positive integers n ~ 1..1 ~ 1..2 ~ ••. ~ ~ ~ 1, where nj = 

n- (1..1 +~ + ... + Aj-1)' n1 = n. 
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Unfortunately, there are no simple closed fonnu1as for p(n) or p(n, k). 

However, the p(n, k) can be computed via a recursion, as can p(n). In Exercises 13 

and 14 we ask you to give these recursions and the Rank and Unrank algorithms. 

In §4.1 we shall give a more efficient method for computing p(n). In §3.3 we 

give bijective proofs of several partition theorems. There are also a number of 

exercises in this chapter and Chapter 3 concerning partitions. 

§1.4 Product Spaces 

Suppose we need a list of all of the subsets of [n], not just the k-element 

subsets. We could use Algorithm 4 for k = 0, 1, ... ,n and paste the lists together. 

In this section we shall give a more natural listing using product spaces. The number 

of subsets of [n] is 2n, which is the size of the n-fold Cartesian product {O, l}n = 

{O, I} x ... x {O, I}. The reason is clear. There is a bijection between all subsets 

A c [n] and all n-tuples of O's and l's. For example, {3, 4, 6, 8} c [9] 

corresponds to the 9-tuple (0,0,1,1,0,1,0,1,0). 

A Gray code G is a list of the elements of {O, l}n such that two adjacent 

n-tuples differ in exactly one component, including the fIrst and last n-tuples. 

Another description of a Gray code is a Hamiltonian cycle in the n-dimensional cube. 

From the bijection, a Gray code is equivalent to a list of the subsets of [n], where two 

adjacent subsets differ by only one element. For n = 3 an example of such a code is 

(0,0,0) 

(0,0, 1) 

(0, 1, 1) 

(0, 1,0) 

(1, 1,0) 

(1, 1, 1) 

(1,0, 1) 

(1,0,0). 

A Gray code can be constructed inductively. Suppose G(n) is one such code 

for [n]. To construct G(n+1), insert a ° before each of the n-tuples on the list 

G(n). Follow this list by G(n) backwards, with 1 inserted before each n-tuple. 

The example above is G(3) with the initial condition G(l) = 0, 1. 

More generally, we shall give an algorithm for the n-tuples in 

{O, 1, ... , mel} x {O, 1, ... ,Illz-1} x ... x {O, 1, ... ,~-1}, for positive 

integers (ml' m2 •••. ,~). Again two adjacent n-tuples will differ in exactly one 
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component. 

The main idea for Algorithm 8 is the same as Algorithm 1. This time component 

i of the n-tuple (Vi) will increase and decrease from 0 to ~ - 1. We use the set A 

to indicate which components are changing. The "direction" vector (d .. ~, ... ,~) 

indicates whether a component is increasing or decreasing. The largest active 

component is used, just as in Algorithm 1 the largest active digit is used. The set B 

keeps track of those i such that ~ = 1. This set is made permanently passive. 

ALGoRITHM 8: Product Space List 

begin 

end. 

for i+-l to n do 

vi+- O 

~+-1 

A+-Bc 

Done +- false 

while not Done do 

Print(v) 

if A~0 tben 

Done +- false 

else 

p +- max{i: ieA} 

vp+-vp+~ 

if vp = ~ - 1 or vp = 0 tben 

~+--~ 
A+-A-{p} 

A +- A u ({p + 1, ... , n} ("\ B) 

Done +- true 

It is clear that Algorithm 8 will list all (0, v 2' ••• , v n) and then change v I = 0 

to VI = 1 when A= {I}. The next part of the list (for VI = 1) willbethe VI =0 

list backwards. The algorithm continues in this way. For m l = ~ = ... = ~. = 2, 

Algorithm 8 gives the Gray code O(n). 

There is an unexpected bonus from Algorithm 8. If we take ~ = i, the product 

space will have n! elements. This list is precisely the inversion sequence list of the 

permutations in Algorithm 1. 
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The Rank algorithm is very similar to Algorithm 2. Let 

This time the "clumps" have size ~, from the last component vn ranging in 

0:5; v n :5; ~ - 1. So (v l' ... , v 0) has ~'rn-1 n-tuples in clumps preceding it. The 

direction dn for the clump of (v1'''' , v 0) depends upon the parity of rn-1' We 

have 

(4.2) { m-V-lifr is odd r = m r + 0 0 0-1 
o 0 0-1 'f' Vo 1 rn_1 IS even. 

ALGORITHM 9: Rank Product Space 

begin 

end 

Rf-O 

for i f- 1 to n do 

if R odd then 

C f-mi -vi -l 

else 

C f-Vi 

Rf-mj'R+C 

Rank(v) f-R 

ALGORITHM 10: U nrank Product Space 

begin 
Sf-R 

end. 

for i f- n downto 1 do 

Vif-S mod mi 

S f-L Slmd 

if S odd then 

Vi f- mi - Vi - 1 

Unrank(R) f- v 
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§1.5 Set Partitions 

A set partition is analogous to an integer partition. Instead of writing the integer 

n as a sum of positive integers, we write the set [n] as a disjoint union of subsets. 

These disjoint subsets of [n] are called blocks of the set partition. There are 15 set 

partitions of [4]. They are 

1234 12-34 14-2-3 

123-4 13-24 23-1-4 

124-3 14-23 24-1-3 

134-2 12-3-4 34-1-2 

234-1 13-2-4 1-2-3-4. 

The number of set partitions of [n] is called the Bell number Bn' The number 

of set partitions of [n] with k blocks is called the Stirling number of the second kind 

S(n, k). (We shall discuss the Stirling number of the first kind in §3.4.) So we see 

that B4 = 15 and S(4, 1) = 1, S(4, 2) = 7, S(4, 3) = 6 and S(4, 4) =1. 

There is an analogue to Pascal's triangle (2.3) for the Stirling numbers of the 

second kind. It is 

(5.1) S(n, k) = S(n - 1, k -1) + kS(n -1, k). 

The bijective proof of (5.1) is easy. If n E [n] lies in a block by itself, the remaining 

blocks form a set partition of [n-1]. Otherwise n lies in one of the k blocks of a set 

partition of [n-1]. 

We shall use another bijection to list all set partitions of [n]. A restricted 

growth function on [n] (or RG function) is a vector (vl'v2, ••• , vn) satisfying vI 

= 1 and vi ~ max{vl' ... , vi-I} + 1. The 15 RG functions on [4] are 

1111 

1112 

1121 

1122 

1123 

1211 

1212 

1213 

1221 

1222 

1223 

1231 

1232 

1233 

1234. 

THEOREM 5.1 There is a bijection between RG functions on [n] and set partitions 

of [n]. 

Proof Let A be the set of all RG functions on [n], and let B be the set of all set 

partitions of [n]. We define a map ~: A ~ B which is the required bijection. Put 
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<I>«vl, V2, ... , Vn» = Sl U S2 U ... U Sk' where Si = {j : Vj = i}. The map <I> 

certainly maps A to B. We must verify that it is one-to-one and onto. To do this, 

we explicitly construct the inverse function to <1>, ~: B ~ A. 

Let Sl u S2 U ... U Sk E B be a set partition. Assume that the blocks have 

been ordered in the following way: IE Sl' rnin{i E [n] - Sl} E S2 and 

min{i E [n] -Sl u S2 U ... U Sj_l} E Sj' This just means that we order the blocks 

so that block Sj contains the smallest element not in preceding blocks. We define 

~(Sl U S2 U ... u Sk) = (vi'v2, ... , vn) by vi = j if and only if i E Sf We must 

check that (vi'v2, ... , vn) is an RG function. Clearly vl = 1. Let i E [n] and put 

m = max{vi' v2' ... , vi-l}' Then [i -1] c Sl U S2 U ... U Sm and either 

i E S 1 U S2 U ... U Sm or i is the smallest number outside this union. In the first 

case Vi ~ m, while in the second case i is in the block Sm+i' which means that 

Vi = m + 1. This verifies that Vi ~ max{vl, ... , vi-l} + 1. 

It is now easy to verify that <I> 0<1> and ~ 0 <I> are identity maps on B and A 

respectively. This implies that <I> is a bijection. 

Algorithm 11 lists all RG functions on [n] in lex order. We begin with 11...1 

and always increase an entry by one. We find which entries can be increased by one 

and still retain the RG condition. So we record the "legal" maximum mi = 

max{vl' ... , Vi} + 1. 

ALGORmIM 11: Restricted Growth Function List 

begin 
for i ~ 1 to n do 

vi~ 1 

mi~2 

Done ~ false 

while not Done do 

Print(v) 

j~n+ 1 

repeat 

j ~ j-l 

until Vj ¢. ~ 

if j > 1 then 



else 

end. 
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Vj~Vj+l 

for i ~ j + 1 to n do 

vi~1 

if Vj = tn.i then 

~~tn.i+l 

else 

Done~true 

The Rank and Unrank algorithms are more difficult We need the number of 

ways of "finishing" an RG function with a specified beginning. This is because the 

number of predecessors of (vp v2' ... ,vn) is 

n vi-1 

L L Aij(vl' ... ,Vn) 
i=l j=l 

where Ai/vP v2' ... ,vn) is the number ofRG functions which begin 

(vp v2' ... , vi-l'j). T~o observations can be made about Aij(vP v2' ... , vn). 

First, it depends only upon i and the largest value in {vl'v2, ... , vi_P j}. Second, 

j S:max{vl'v2, ... , vi- 1} by theRGcondition on Vi' so max{vl' v2' ... , vi_Pj} 

= max{vp v2' ... , vi- 1} = ui. Thus, we may rewrite the above expression as 

where dm,t is the number of ways of "finishing" the last m positions if t is the 

maximum of the first n - m positions. 

Finally, note that 

(5.2) dm,t = t dm-1,t + dm-1,t+1 

because we may place either t + 1 in the n - m + I position, leaving m - 1 

positions to fill, with largest value now t + 1; or we may place 1,2, ... ,t in the n

m + 1 position, leaving m - 1 positions to fill, with largest value still t. 
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ALGoRITIIM 12: Rank Restricted Growth Function 

begin 

end. 

UI +-1 

for i +- 2 to n do 

if ui_1 > vi_1 then 

else 

R+-O 

for i +- n downto 1 do 

t+- ui 

R +- R+ ~-i, i(vi -1) 

Rank(v) +-R 

ALGoRITHM 13: Unrank Restricted Growth Function 

begin 

end. 

UI +-1 

vI +-1 

for i+-2 to n do 

t +- ui- I 

if ui-t"~-i,t S R then 

vi +-t+ 1 

else 

R +-R-t"~i,t 

Vi +-LR/(~i.t)J+ 1 

R +- R mod ~-i,t 

ui +-t 

Unrank(R) +- v 
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Notes 

The books by Nijenhuis and Wilf [N-W]; Reingold, Nievergelt and Deo 

[R-N-D]; and Williamson [Wi] contain more material in this area. Some of these 

books also explicitly give programs. It is possible to give loop-free versions of some 

of the listing algorithms in this chapter. For examples, see [Eh] or [Jo-Wh-Wi]. Gray 

codes are important in computer science and were first described in [Gra]. The 

version given here is called a binary reflected Gray code. Restricted growth functions 

were studied extensively by Milne [Mi]. Exercises 4 and 5 below are from [R-N-D]. 

Exercises 

1. [1] a) How many permutations lie between the perrilutations 1572634 and 

7241365 in the Johnson-Trotter algorithm? 

b) Find the millionth permutation (that is, Unrank(999999» of [12] in 

the Johnson-Trotter algorithm. 

2. [2C] Give the listing algorithm for the lex list of permutations of [n] of length 

k. Upon what recurrence formula is this list based? 

3. [3] a) Find a Rank and Unrank formula for permutations listed in lex order. 

b) Give a bijective proof of 1(1!) + 2(2!) + ... + n(n!) = (n + I)! - 1. 

c) Prove that any 0 S m S (n + I)! - 1 can be uniquely expressed as 

where 0 S aj S i. 

n 

m = 1: aji! 
j = 1 

4. [3] A permutation 1t is called even if 1t can be expressed as a product of an 

even number of transpositions. Suppose Rank(1t) = M in lex order, where M = d11! 

+ ~2! + ... + ~_l(n -I)!, 0 S dj Sj. Show that 1t is even if and only if d1 +~ 

+ ... + dn- 1 is even. What is the corresponding result for the Johnson-Trotter 

algorithm? 
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5. [3C] Write a program to fmd, for various values of n, the number of 

permutations x of [n] which satisfy Xj - i == Xj - j mod n implies i = j. This 

condition means that the numbers Xj - j mod n, 1 S j S n, are all distinct. An 

example of such a x is 321. Formulate and prove as many theorems as you can. 

6. [2C] Write a program to generate random permutations of n. Use it to estimate 

the answer to Exercise 5 for various values of n. 

7. [2] Show that for any given sequence Cal' ... ,an)' 0 S aj S i-I, there is 

exactly one permutation whose inversion sequence is (al , ... , ~). 

8. [2] Give bijective proofs of 

and 

Cn + 1) 
k+l 

n 

L C;). 
m = k 

9. [1] What is the rank of (2,3,4,7,9) for n = 9 in the list generated by 

Algorithm 4? What is its successor? 

10. [2] Prove that if the k-element subsets of [n] are listed in colex order, and j 

is replaced by n + 1 - j in each subset, the resulting list is lex order backwards. Use 

this to give a Rank and Unrank procedure for lex order. Do Exercise 9 for this list, 

where n = 10. 

11. [2] Show that v 1 < v2 < '" < vk in Algorithm 6. 

12. [3] Let Ao, Al' ... '~-l be the first m k-element subsets of [n] in colex 

order. Let II={B:IBI=k-l, BcAj forsome OSiSm-l}. If 

and Vj = i for i = 1, 2, ... ,r, show that 
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I II I = i (~i-l) 
i = Hl 1-1 . 

For example, if n = 5, k = 3 and m = 5, the first five subsets are 123, 124, 134, 

234 and 125, II = {12, 13,23,14,24,34, 15, 25} and IIII = 8. 

13. [3C] Give the Rank and Unrank algorithms for Algorithm 7. Find 

Rank(33 23 14). 

14. [2] Give a recursion for p(n, k), the number of partitions of n whose largest 

part is < k. What is p(n) in terms of p(n, k)? 

15. [3C] Write a program to list all partitions of n with distinct parts. How many 

have an even (odd) number of parts? Formulate your conjectures and prove as many 

as you can. 

16. [3C] Write a program which lists all partitions of n 

a) whose even parts are distinct; 

b) all of whose parts have multiplicity :5 3. 

Formulate a conjecture and prove it. 

17. [3C] Write a program which lists all partitions ofn 

a) with an odd number of parts; 

b) with an even number of parts; and 

c) into distinct, odd parts. 

Formulate a conjecture and prove it. 

18. [3C] Write a program which lists all partitions of n 

a) into parts which are congruent to 1 or 4 mod 5; 

b) into parts whose differences are at least two; and 

c) into distinct parts, where each even part is > twice the number of odd 

parts. 

Investigate your data. If a) is replaced by 2 or 3 mod 5, can you find an 

appropriate b)? 

19. [1] What is the last n-tuple on the list G(n)? 

20. [2] Suppose 0:5 i :5 2n - 1, and let i = an- l ~-2 ... ao be the base 2 
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representation of i. For the Gray code G(n), what is Unrank(i) in terms of 
(an-l' ~2' ... , 1Io)? 

21. [2] Use Algorithms 9 and 10 to state and prove a representation theorem for 

integers i satisfying 0 ~ i ~ m1 m2···~ - 1. 

22. [2] Show that Algorithm 8 for 111;. = i produces the pennutation list of 

Algorithm 1 by the inversion vector. 

23. [2] Give a bijective proof that the Bell numbers Bn satisfy 

24. [1] Find Rank(1231142) in the lex list ofRG functions. 

25. [2] Give bijective proofs of 

a) 

n 

b) S(n + 1, m + 1) ( ~) S(k, m). 

26. [2] Give a bijective proof ofVandermonde's theorem 

i (m) (. n ) = (m -: n) 
k=O k l-k 1· 

27. [3] What is the representation theorem for integers i satisfying 0 ~ i ~ Bn -1 

which follows from Algorithms 12 and 13? 



CHAPTER 2 

Partially Ordered Sets 

Partially ordered sets, or posets, appear in many branches of mathematics, but 

they are fundamental in combinatorics. For example, many of the important 

enumeration techniques (generating functions, inclusion-exclusion) have their 

theoretical foundation in some underlying poset. 

In Chapter 1 we considered five different combinatorial objects. In this chapter 

we shall describe a poset for each of the five objects. For integer partitions we give 

two different posets, giving a total of six posets. The listing algorithms can be used to 

establish some non-trivial properties of these posets, as we see in §§2.2, 2.3 and 2.4. 
We concentrate on the Boolean algebra, and lex order from Chapter 1 will be crucial in 

developing its properties. 

§2.1 Six Posets 

A partially ordered set (p, S) is a set P with an order relation S which has 

the following properties: 

(i) a S a for all a E P, 

(ii) a S b and b S a implies a = b, and 

(iii) a S b and b S c implies a S c. 

We will consider only finite posets. A number of methods can be used to 

describe a poset: one is to maintain a list of all pairs (a, b) with a < b (this means a 

S b and a ~ b). We say that b covers a if a < b and there is no c satisfying a < 

c < b. We shall write a <. b for b covers a. Because of property (iii), we need 

only maintain a list of all pairs (a, b) with a <. b. These are called the covering 

relations of P. 

We can visualize a poset as a graph with the "largest" elements of P as vertices 

at the top, the "smallest" at the bottom, and the other elements of P distributed 

appropriately in between. An edge connects a and b if and only if a <. b. 
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As an example, suppose P = {a, b, c, d, e, f} and the covering relations in P 

are 

{(b, a), (c, b), (e, a), (e, d), (f, c), (f, en. 

We can draw the poset as below. 

Such a diagram is called a Hasse diagram. 

We now describe the posets for the objects of Chapter 1. 

A. Permutations Although several orders are possible, we choose one which is 

closely related to Algorithm 1. Here are the covering relations. Suppose 1t and (J 

are permutations of [n], and let 1t = (1tl' •• ' ,1tn) in one-line notation, We say (J 

<.1t if (J can be obtained by transposing 1ti and 1ti+l' where 1ti > 1ti+1, Thus, 

roughly speaking, 1t has more disorder than (J, As we move up this poset, we create 

more disorder. We call this poset the inversion poset and refer to it as J.n, The 

Hasse diagram of J.4 is given below, 

4321 ______ 

3421 ------ 42~1 4312 

324( :X3412 ~ \132 

2{~ ~2~ ~"'4123 '" / '" / / ----- / '" / 231\ ~143~ /1423 

2134~f4 _____ 1243 

1234 
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B. Subsets The subsets of [n] are naturally ordered by set inclusion. This poset 

is called the Boolean algebra (even though a Boolean algebra is a special kind of poset, 

of which this is one example). We denote it by Bn' The Hasse diagram for B4 is 

given below. 

1234 

o 

c. Set partitions The set partitions of [n] are ordered by reverse refmement. 

That is, 1t = {Bl' ... , Bt } <. {Al' ... , Aj } = a if j = k + 1 and for some p, m 

and t, Bp = Am U At, with all of the other blocks of 1t and a identical. Thus the 

covering relations are obtained by splitting one block into two blocks, for example 

147-29-368-5 <. 147-29-38-5-6. (Note that we have dropped the set symbols { }.) 

Call this poset the partition lattice and denote it f n' The Hasse diagram of f 4 is 

given below. 

1234 
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D. Integer Partitions There are two common posets associated with integer 

partitions. 

Dl. For the first one, take any partition A. and let P be the set of all partitions 

whose Ferrers diagram is contained in the Ferrers diagram of A.. Order these 

partitions by containment of their Ferrers diagram. This poset is called Young's lattice 

and is designated \I/... The Hasse diagram of \1332 is given below. 

332 ------322 331 --------------222 321 33 

L-----T-----J 
221 311 32 

t:::><:t:>-<:J 
211 22 31 

r------J----I 
111 21 3 

~ 11 ____ 2 

1 
I 
(0 

D2. The other order is called dominance. Let P be all integer partitions of n. We 

say that A. = (A.i' .•• , A. k) dominates Il = (Ill' ... ,Ilj) if A.l + ... + A. t ~ III + ... + 

Ilt for all t ~ 1. (We append 0 parts to A. and Il for t> k or t > j.) The poset is 

called the domination lattice and is denoted On. The Hasse diagram of 07 is given 

below. 
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7 

I 
61 

I 
52 

A 
43 511 

V 
421 

/'331 
4111 I 
V 22 

3211 

A 
31111 2221 

V 
22111 

I 
211111 

I 
1111111 

E. Product Spaces Since there is a bijection between all subsets of [n] and the 

product space {a, l}n, the Boolean algebra Bn can be identified with {a, 1}n. We 

generalize this to P = {a, 1, ... ,m - 1}n. Given two n-tuples in P, v = 

(vI' ... ,vn) and w = (wi' ... ,wn), we say that v <. w if v and w agree in all 

but one entry, and in that entry vi + 1 = wi. We call this poset a product of chains, 

and denote it 0nm. The Hasse diagram for 023 is given below. 
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(2,2) 

A 
(2, 1) (1,2) 

~ 
(2,0) (1, 1) (0,2) 

VV 
(1, 0) (0, 1) 

V 
(0,0) 

We now give several important properties of a general poset P. We may then 

ask which of our six posets has each of these properties. 

(1) Ranked A poset P is called ranked if each element a E P can be assigned a 

non-negative integer, rank(a), so that a <. b implies rank(b) = rank(a) + 1. The set 

Li = {a E P : rank(a) = i} is called the set of rank i, or a level set. This rank function 

should not be confused with the Rank function of Chapter 1. The inversion poset .!In 

is ranked by the number of inversions of 1t, I{ (i, j) : i < j and 1ti > 1tj}l. Clearly this 

number is the sum of the entries of the inversion vector of 1t. In the other posets, Bn 

is ranked by the size of the subset, P n by the number of blocks, '\I~ by the integer 

being partitioned and Cnm by the sum of the entries in the n-tuple. The poset 1\ 
is not ranked for n ~ 7. 

(2) Rank unimodal A finite ranked poset P is called rank unimodal if wi = 1Lil, 

wi = ° for i > m and wo:S; w1 :s; ... :s; wk ~ wk+l ~ ... ~ wm for some k:S; m. It is 

clear that the Boolean algebra B is rank unimodal. It can be shown that .!l , p n n n 
and Cnm are also rank unimodal. Unimodality is often difficult to prove. The case 

of '\I).. for arbitrary A is unsettled although for A = nm, Young's lattice is rank 

unimodal. 

(3) Rank symmetric A ranked poset P is called rank symmetric if there is an m 

such that Wi = ° for i > m and Wi = wm_i for o:s; i:S; m. The posets .!In' Cnm 

and B are rank symmetric, while P , 11, and 1) are not in general. n n fI. n 

(4) Order symmetric A poset P is called order symmetric if the poset P 
obtained by reversing the order of P is isomorphic to P. Another way of saying this 
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is that if the Hasse diagram of P is turned upside down, it looks the same. The 

posets _0 , B ,C and t) are order symmetric, while P and '\I, are not. 
~ 0 om 0 0 ~ 

(5) Lattice A poset P is called a lattice if every pair {a, b} of elements of P has 

a least upper bound (called the join of a and b, avb) and a greatest lower bound 

(called the meet of a and b, aAb). A least upper bound (greatest lower bound) of 

{a, b} is an element CE P which is an upper (lower) bound of {a, b}, a :$; c and b :$; c, 

and below (above) all other upper (lower) bounds. The following poset is nQ1 a lattice. 

a 

A 
b c 

l><J. 
V 

f 

Each of the six posets is a lattice. 

(6) Existence of maximum and minimum elements We say a poset (P,:$;) 

has a minimum element 0 if 0 E P and O:$; a for all a E P. We say P has a 
A A A 

maximum element 1 if 1 E P and a:$; 1 for all a E P. All of our six posets have 

maximum and minimum elements. 

(7) Sperner property If (p, :$;) is a poset, a subset S c P is called 

independent if for all a and b E S, neither a ~ b nor b:$; a. Sometimes such a set 

is called an antichain. For a ranked poset, it is clear that the level sets Li are 

independent sets. A finite ranked poset P has the Sperner property if the size of the 

largest independent set is max{wi : i~O}. This means that we can do no better than 

to take the largest level set as our independent set. 

For the Boolean algebra, the largest level number is the middle binomial 

coefficient. A theorem called Sperner's Theorem states that the size of the largest 

independent set of Bo is this binomial coefficient. So Bo has the Spemer property. 

We shall prove this in the next section using lex order. It can also be shown that Com 

has the Spemer property. 

In the other posets the situation is less clear. It was conjectured by Rota in 1968 

that Po had the Spemer property, but 10 years later Canfield [Cal, using asymptotic 

methods, showed that it does not. More recent research has shown that the first n for 
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which P n does not have the Sperner property is S N, where N '" 1000 . 

The case of .Qn is unsettled. For a general A., the case of \lA. is also open. 

However, for A. = nm (the Ferrers diagram of A. is an n x m rectangle), \lA. has the 

Sperner property. This is a recent theorem of Stanley ([Sta1]), although it is implicit 

in Pouzet [po]. 

We summarize these results in the table below. You are asked to verify several 

of these entries in the exercises. (A complete list of the pertinent exercises is given in 

the Notes.) 

Rank Rank Order 1\ 1\ Sperner 
Ranked Unimodal Symmetric Symmetric Lattice 0 1 Property 

..lln yes yes yes yes yes yes yes ? 

En yes yes yes yes yes yes yes yes 

Pn yes yes no no yes yes yes no 

\I A. yes ? no no yes yes yes ? 

On no no no yes yes yes yes no 

eDln yes yes yes yes yes yes yes yes 

§2.2 Matching in the Boolean algebra 

In this section we shall prove that the Boolean algebra En has the Spemer 

property. We shall use the lex order list of subsets given in Chapter 1. The basic idea 

of the proof is that lex order naturally gives a matching in En' This matching gives a 

decomposition of En into chains. From the chain decomposition of En it is easy to 

establish the Sperner property. First we need to define these terms. 

A chain C in a finite poset (p, S) is a sequence of elements 

a1 < liz < ... < am' The length of the chain is m. For example, 0 c {I, 3}c 

{I, 2, 3, 5} is a chain in Es' Two chains are called disjoint if they have no elements 

in common. A chain decomposition of P is a partitioning of P into a set of disjoint 

chains, {Ci }. Clearly, we could let each Ci have exactly one element and have a 

chain decomposition of Pinto IPI chains. The next theorem says that the existence 

of special chain decompositions of P implies the Sperner property. 
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THEOREM 2.1 Let P be a finite ranked poset with a largest level set ~. If P has a 

chain decomposition {Cj }, and each Cj contains one element of~, then P has 

the Sperner property. 

Proof Let M be the size of a largest independent set S. Every element of S must be 

on a different chain of {Cj}. Thus, M ~ I{Cj}l. Since each Cj has exactly one 

element of ~, I{Cj}1 = I~I. 

One way to produce such a chain decomposition is to construct a match between 

adjacent level sets. Suppose ILjl ~ ILj+il. A function f: Lj ~ Lj+i is called a 

matching from Lj to Lj+i if f is an injection (this means f(a) = feb) implies a = b) 

and a:5; f(a) for all a E Lj. Similarly define a matching from Li+i to Li if ILi+i l:5; 

ILil. 

THEOREM 2.2 Suppose P is rank unimodal and there is a matching between any 

two adjacent levels of P. Then P has the Sperner property. 

Proof Since P is rank unimodal, IL11:5; IL21 :5; ... :5; IL kl ~ ... ~ ILml for some k. Let 

fj: Li- l ~ Li be a matching for i =1, 2, ... ,k, and let gi: Li ~ Li_l be a matching 

for i = k + 1, ... ,m. Delete from the Hasse diagram of P all edges except those of 

the form {a, fj+i (an or {a, gj(a)}. The new Hasse diagram is a union of chains, 

each of which must contain an element of ~. These chains are naturally also chains 

in P, so Theorem 2.1 implies that P has the Sperner property. 

The proof of Theorem 2.2 gives us an algorithm to construct the chain 

decomposition of P which satisfies the hypothesis of Theorem 2.1. We merely 

identify those chains in the proof. Suppose Lo "* 0, and choose any a E Lo. Let 

ao = a, ai = fl(aO)' ••• , ak = fk(ak_i). We now have a chain ao <. ai < .... <. ak. 

If ak is in the image of gk+l' let ak+l be the unique element in ~+i such that 

gk+l (ak+l) = ak· We continue in this manner until either 

(a) we encounter an ai which is not in the image of gi+l' or 

(b) we reach am ELm. 

Let C i = aO <. ai < .... <. at be this chain. Now repeat the preceding 

construction until the elements of Lo are exhausted. Then continue the construction 
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by choosing a E LI - fl (Lo) and moving up the chain of matchings. This process is 

continued at all levels. After we complete this process at level k, we have obtained 

the appropriate chain decomposition. 

Next we apply Theorem 2.2 to the Boolean algebra En. We need a matching 

between any two levels, Lp to Lp+I. Let AI' A2, ... be the p-element subsets of 

[n] listed in lex order. Let BI' B2, ... be the (p+I)-element subsets of [n] listed in 

lex order. How can we match these sets? One idea would be to match Al to the first 

Bj such that Al c Bj" Then match A2 to the first unmatched Bj such that A2 c Bj , 

and continue. This is our next algorithm. 

The set U is the collection of (p+1)-element subsets which have been matched. 

The subroutines GetFirstSubset(k, A, b) and GetNextSubset(k, A, b) return the 

fIrst and next k-element subset in lex order. The boolean variable b is returned true 

if the list is complete and false otherwise. This algorithm wi111ist all the matched pairs 

and all unmatched p- and (p+ I )-element subsets. 

ALGoRTIHM 14: Match to First Available 

begin 

U~0 

GetFirstSubset(p, A, EndOtList) 

while not EndOtList do 

GetFirstSubset(p + 1, B, ListDone) 

StopLoop ~ ListDone 

while not StopLoop do 

if A c Band B Ii!! U then 

StopLoop ~ true 

else 

GetNextSubset(p + 1, B, ListDone) 

StopLoop ~ ListDone 

if not ListDone then 

PrintMatch(A, B) 

U~Uu{B} 

else 

PrintNoMatch(A) 

GetNextSubset(p, A, EndOfList) 

GetFirstSubset(p + I, B, EndOfList) 

while not EndOfList do 

if B Ii!! U then 
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PrintNoMatch(B) 

GetNextSubset(p + 1, B, EndOfList) 

It would seem remarkable that Algorithm 14 would work, that is, the function f 

would be a matching. Yet the next theorem says that it does. 

THEOREM 2.3 If p < r n/21, then f is a matching from Lp to LP+l in Bn' If 

p~rn/21, then r-1 isamatchingfrom Lp+l to Lp in Bn' 

Proof We approach this theorem by defIning a completely new function <\l which 

satisfies its conclusion. Then we show that <\l = f. 

We shall write our p-element subsets of [n] as n-tuples of O's and l's as 

described in Chapter 1. These n-tuples can be pictured as lattice paths from (0, 0) to 

(n, 2p - n). Each digit in the n-tuple represents a step one unit to the right, and one 

unit either up (a "1") or down (a "0"). For example, if 

A = {l, 3, 4, 6, 7,10,12,13,16, 19} c [21], 

we write it as (101101100101100100100) or graph it as the following. 

A 
a (A) 

Clearly there is a bijection between all such lattice paths from (0, 0) to 

(n,2p-n) and the p-element subsets of [n]. Henceforth, we shall refer to this 

lattice path (or graph) as the subset A itself. 

Let a(A) = ( ax(A), a/A)) be the rightmost peak (absolute maximum) in the 

graph of A. In our example above, a(A) = (13, 3). If a/A) *- n, then the edge 

immediately to the right of a(A) must correspond to a "0". Let <\leA) be the 

(p+l)-element subset of [n] obtained by changing that "0" to a "1". Note that to the 

left of a(A), the graphs of A and <\leA) coincide. To the right of a(A), the graphs 

have the same relative position, but the graph of <\leA) has been "lifted" 2 units. 
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[3(<1> (A» 

o 1 0 

o 

We now make a number of observations about <1>. We assume n ~ 1. 

(1) If P < [" n/21, then <I> is well-defined. For if n is even, p < n/2 implies 

2p-n < 0 and the graph of A ends below the x-axis, and a/A) * n. If n is odd, 

p < (n+ 1)12 implies 2p-n < 1. Since n is odd, 2p-n * 0, thus 2p-n < 0 and the 

argument for n even applies. 

(2) If P ~ [" n/21, then <I>(A) is not defined if and only if a/A) = n. 

(3) For a subset B, let [3(B) = ([3/B), [3/B» be the leftmost peak of B. 

Suppose that B = <I>(A) for some A. Then a(A) and [3(B) = [3(<I>(A» are the left 

and right hand endpoints of the same edge. This is because a/A) ~ y-coordinate of 

every point left of a(A), and a/A) > y-coordinate of every point right of a(A). 

Then in <I>(A), the y-coordinate of the vertex to the right of a(A) must be > 

y-coordinate of every point to its left and ~ y-coordinate of every vertex to its right. 

The reader is encouraged to look at some examples and verify these remarks. 

(4) It follows then that if p ~ L n/2 J and IBI = p + 1, <I>-l(B) will exist and can be 

found by converting the edge immediately to the left of [3(B) from a "1" to a "0". 

The only case where this cannot be done is when [3x(B) = O. But if n is even, 

p ~ n/2 implies 2p-n ~ 0, so 2(p+ 1 )-n ~ 2. If n is odd, p ~(n-l )/2 implies 

2(p+ 1 )-n ~ 1. In either case, (0, 0) * [3(B). 

(5) If P < L n/2 J and IBI = p + 1, then <I>-l(B) does not exist if and only if [3(B) = 
(0,0). 

These observations prove that if p < [" n121, <I> is a matching from Lp to Lp+ 1; 

and if p ~ [" n12l, <1>-1 is a matching from LP+l to Lp. To complete the proof of 

Theorem 2.3, we must show that <I> = f. 

We proceed by induction in the p < [" n/21 case. The p ~ [" n/21 case can be 

done similarly. 

The first A in lex order can easily be shown to satisfy f(A) = <I>(A). So we can 
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assume by induction that cjl(A) = f(A), for all A preceding A in lex order. We 

know that there is at least one B available as a match for A, namely cjl(A). We need 

not consider any B's further down the lex order list than cjl(A), for Algorithm 14 

would select cjl(A) before them. So we assume that there is a B which precedes 

cjlW in lex order, which contains A, and which is still m (r-l(B) does not yet 

exist). 

Given such a B, let 1 denote the right endpoint of the edge e changed from a 

"0" to a "1" to convert A to B. Since B ¢ cjl(A), 1 ¢ ~(B), and we can consider 

two cases. 

Case 1: 1 precedes ~(B). 

Then A and cjl-l(B) will agree up to the edge before 1, but A will have a 

"0" along this edge while cjl-l(B) will have a "1". Soinlexorder, cjl-l(B) will 

precede A. By induction, cjl-l(B) has already been matched to f(cjl-l(B» = cjl(cjl-l(B» 

= B, which implies that B is run free, a contradiction. 

Case 2: 1 follows ~(B). The graphs of B and cjl(A) differ at two places: to the 

left of 1, (cjl(A) has a "0", B has a "1"), and to the right of a(A), (cjl(A) has a 

"1", B has a "0"). First we show that a(A) must precede 1. Suppose not, so 

a(A) follows 1. Then B and cjl(A) agree up to the edge e before 1. The sets A 

and <\leA) differ only at the edge following a(A). (See the diagram below.) 
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B 

cI>(A) 

B 

A 

Since B has a "I" at e while A has a "0", the graph of B must lie strictly 

above the graph of A between 'Y and a(A). The peak ~(B) of B must therefore 

lie above the graph of A at a(A). But 'Y follows ~(B) so that B agrees with A at 

~(B). This shows that a(A) is not a peak of A, a contradiction. 

Since we have just shown that a(A) precedes 'Y, cI>(A) precedes B in lex 

order. This contradicts our hypothesis that B precedes cjI!A). in lex order. This 

completes the proof that cI> = f, and thus also completes the proof of Theorem 2.3. 

§2.3 The Littiewood·Offord Problem 

Littlewood and Offord [Li-O] asked the following question. Let Pn(x) be a 

polynomial of degree n with complex coefficients, 

n 

Pn(x) = 1: alt xlt 
It=O 

Certainly Pn(x) has n complex roots, and a smaller number of real roots. Now 

consider the 2n polynomials obtained from Pn(x) by arbitrarily changing the signs of 

alt, 1 ~ k ~ n. What is the average number of real roots of these 2n polynomials? 

Littlewood and Offord showed that this average was rather small. In this section we 

discuss a combinatorial problem which arose naturally in this context The complete 

solution to this problem is due to Kleitman (see [Gre-KIl). It uses the chain 

decomposition of the Boolean algebra given in §2.2. 
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Before stating the problem, we need another property of the chain 

decomposition. Let P be a rank unimodal and rank symmetric poset, with ranks from 

o to m. We call a chain decomposition {Ci} of P a symmetric chain decomposition 

if each chain Ci has the form 

for some j, where rank(ai) = i for all i, j SiS m - j. This says that the chains are 

symmetric with respect to the middle of the poset. The matching in Bn produces the 

chain decomposition {Cl'~' C;}, 

where 

C1 : 0 c {1} c {1, 2} c {1, 2, 3}, 

C2 : {2} c {2, 3}, 

and C; : {3} c {1, 3}. 

The matching f always gives a symmetric chain decomposition of Bn' You are 

asked to prove this in Exercise 25. 

The Littlewood-Offord problem is the following. Let {v I' ••• , V n} be a 

multiset (repetitions are allowed) of vectors from RN such that IIvili ~ 1 for all i. 

Given a subset A c [nJ, defme a new vector 

Clearly, as a multiset, there are 2n such vectors w A- How many such vectors can lie 

in any sphere of diameter 1? The answer is the following theorem. 

THEOREM 3.1 Let S be any sphere of diameter 1. Then the number of vectors w A 
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from the origin which terminate inside S is S; M(n), where 

M(n) = (L~2J). 

Moreover, this bound is best possible. 

Proof First we show that, in general, the bound cannot be decreased. Suppose all of 

the vectors are the same, vi = v. Then w A = IAI v, and if IAI = L nI2 J is fixed, w A 

is always the same vector. So the sphere S centered at L nl2 J v contains M(n) 

vectors. It does not contain any of the other w A because Ilvll ~ 1. 

The proof will mimic an inductive construction of the symmetric chain 

decomposition of En' first given by deBruijn, Tengbergen and Kruyswijk 

[deB-T-K]. Suppose {Ci} is a symmetric chain decomposition of En' We need to 

modify the subsets in these chains to create a symmetric chain decomposition of 

En+1. Let Ci be the chain in En+1 which results from adding n+ 1 to each subset 

of Ci. Unfortunately, Ci is not a symmetric chain in En+1' Let (Xi be the top 

subset of Ci, and put Di = Ci - (Xi and Ei = Ci U (Xi" It is easy to see that Di and 

Ei are both symmetric chains in En+1. We claim that {Di} U {Ei} is a symmetric 

chain decomposition of En+1. 

1234 

I 
123 1234 123 

I I I 
12 124 124 12 

I I I I 
1 14 14 1 

I I I I 
0 4 4 0 
C1 C1 D1 E1 

Let 13 be any subset of [n+l]. If n+l isnotin 13, then l3e Ci forsome i, 

so 13 e Ei = Ci U (Xi also. Otherwise n+ 1 e 13, and 13 - {n+ I} e Ci for some i. 

If 13 - {n+ I} is the top subset of Ci, then 13 = (Xi and 13 e Ei = Ci U (Xi" If 

13 - {n+ I} is not the top subset of Ci, then 13 e Ci - (Xi = Di. So we have proven 
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that all subsets ~ of [n+l] lie in one of the chains in {Dj} U {Ej}. Clearly these 

chains are disjoint 

We now return to the Littlewood-Offord problem. The idea is to decompose the 

2n vectors w A into M(n) blocks {Bj}, 1:5; i :5; M(n), such that the distance 

between any two vectors within a block Bj is ~ 1. Then any sphere S of diameter 

1 could contain, at most, one vector from each Bj. 

The blocks {BJ are built inductively just as the chains {Cj} were built. 

Suppose blocks {B j }, 1:5; i:5; M(n), have been chosen for {vi' .. , ,vn}. We define 

new blocks for for the vectors {vI' ... ,vn+I}. The vector vn+1 takes the place of 

n+l in the symmetric chain decomposition of 13n. Let Bj = {tl' ... ,),}. We let Hj 

= {tl + vn+l' ... , ), + vn+I}, which is analogous to the definition of Cj. Next we 

need a vector analogue of (Xi' the top subset of Cj. This is the vector tm + vn+i' 

where tm is a vector of Bj with maximal component in the vn+1 direction. Our two 

new blocks are Dj = Hj - {tm + vn+l} and Ej = B j U {tm + vn+I}. It is clear that 

{Dj } and {Ej } partition the set of vectors w A, A c [n+ 1]. The total number of 

blocks is exactly the number of chains in the symmetric chain decomposition of 13n+l, 

M(n+ 1). It remains to prove the distance condition for any two vectors from a given 

block. 

By induction, we need only check the vectors tm + vn+1 and tj of Ej. Let 

where cj is real and Wj .1 vn+I' By our choice of tm, cm ~ cj for all i. So 

To complete the proof, we must check the n = 1 case. Clearly the block 

{D,vl} works because IIvIIi ~ 1. 

Theorem 3.1 does not depend upon the dimension of the vector space RN in 
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which the vectors lie. It even holds for infinite dimensional vector spaces. 

§2.4 Extremal Set Theory 

Colex order of the k-element subsets has certain desirable properties which 

allow us to prove some important theorems in extremal set theory. In this section we 

shall prove two of these theorems: the Kruskal-Katona Theorem and the 

Erdos-Ko-Rado Theorem. Most of this section is devoted to proving the 

Kruskal-Katona Theorem. The Erdos-Ko-Rado Theorem is a corollary of the 

Kruskal-Katona Theorem. 

First we begin with some notation. Let f be a collection of k-element 

subsets. Let af denote the collection of all (k-l )-element subsets which are subsets 

of members of f, that is, all of the (k-1 )-element subsets which are covered by 

members of f in En' for an appropriate n. We ask: how small can lafl be for a 

given Ifl? As an example, take k = 4 and let f be these subsets. 

1357 
2357 
2457 
3458 
2358 

Then af contains the following subsets. 

135 
137 
157 
357 
235 
237 

257 
245 
247 
457 
345 
348 

358 
458 
238 
258 

You were asked in Exercise 12 of Chapter 1 to find af for a special collection f. 
We state that result slightly differently here as a lemma. 

LEMMA 4.1 Suppose that f consists of the first m k-element subsets listed in 

colex order, and that Rank(al' ... , ak) = m so that 
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with aj = j for 1:S;j:S; i -1. Then df consists of the first m (k-1)-element 

subsets listed in colex order, where 

- (ak-1) m = k-1 + ... + 

Proof For example, if k = 4 and m = 6 the fIrst 6 such subsets are 

1234 

1235 

1245 

1345 
2345 

1236. 

The next is 1246 for which Rank:(1246) = 6. From Theorem 2.1 of Chapter 1 we 

know that 

so Lemma 4.1 implies that 

Hereis df: 

123 

124 

134 
234 

125 

135 
235 

145 

245 

345 

126 

136 
236 

Note that n need not be given to list the first m k-element subsets in colex . 
order. 

For the proof, note that 'f consists of all of the k-element subsets of [ak - 1], 

all of the (k-1)-element subsets of [~-l - 1] with ak adjoined, all of the 

(k-2)-element subsets of [ak- 2 - 1] with ak and ak- 1 adjoined, etc. Thus, a'f 

must consist of all of the (k-l)-element subsets of [ak - 1], all of the (k-2)-element 

subsets of [ak- 1 - 1] with ak adjoined, all of the (k-3)-element subsets of 
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[ak- 2 - 1] with ak and ak_ 1 adjoined, etc. The size of a'f is clearly m, as 

claimed. 

Because of Lemma 4.1, it is clear that Lemma 4.2 is equivalent to Theorem 4.3, 

which is the Kruskal-Katona Theorem. 

LEMMA 4.2 Suppose 'f is a collection of k-element subsets, and AJ. is the 

collection of the first Ifl k-element subsets in colex order. Then lanl:S; la'fl. 

THEOREM 4.3 If 'f is a collection of k-element subsets, where 

(ak- 1) (a. -1) l'fl = k + ... + Ii 

then 

We prove Theorem 4.3 at the end of the section. Next we state the 

Erdos-Ko-Rado Theorem. 

THEOREM 4.4 Suppose that k:S; L nl2 J Then the size of the largest collection 'f of 

k-element subsets of [n], no pair of which are disjoint, is 

( n-l) 
k-l . 

For example, if n = 6 and k = 3, we can choose our collection 'f to be 

123 

124 

134 

234 

125 
135 

235 
145 

245. 

345 

But if we add any other 3-element subset to 'f, it will be disjoint with one of the 

members of 'f. 

Proof of the Erdos-Ko-Rado Theorem Let 'f be such a collection of subsets, and 

suppose that 
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(4.1) I fl > (:= D. 
Let f be the collection of complements of the subsets of f. Certainly f consists 

of Ifl (n-k)-element subsets of [n]. Furthermore, no member of f can be a subset 

of any member of f. (Suppose A E f, BE f and A c B. Then A ("\ B = 0, 

and A and B are two members of f which would be disjoint.) The picture below 

describes this situation, since k S; n - k. 

We now obtain a lower bound on the number of k-element subsets which lie 

below f. If we apply the map a n - 2k times to f (call this iterated map an-2k), 
we obtain all of these subsets. Let 

Since 

(4.3) If I = If I > (n-l) = (n-l) 
k-l n-k ' 

~-k must be n. So by the Kruskal-Katona Theorem (Theorem 4.3), 

(4.4) lafl > (n~~~l). 

Repeating this n - 2k - 1 more times gives 
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(4.5) > ( n - 1 '\ = (nk- 1). 
n-k- (n-2k)l 

But rand an- 2kf have no elements in common, so 

Clearly (4.6), (4.5) and (4.1) contradict Pascal's triangle (§ 1.2, Eq. (2.3)) for the 

binomial coefficients. 

Proof of the Kruskal-Katona Theorem The proof will be by induction on n, the size 

of the base set U = {xeA: Aer}, and will have three steps. 

(1) Change r into a collection r' such that lar'l:S; larl and WI = WI. The 

subsets in r' will contain 1 as frequently as possible. 

(2) Decompose the collection P into two subcollections: those subsets with 1, 

r'(I), and those subsets without 1, r'(i). so that r' = r'(I) u r'(i). Derive a 

lower bound for lar'l in terms of r'( 1). 

(3) Use the induction hypothesis by deleting 1 from the subsets in r'(I) to 

simplify the lower bound of lar'l from (2). From (1), this number is also a lower 

bound of larl, and it turns out to be the bound of Theorem 4.3. 

Step (1) Given an integer j, j ~ 2, and a collection of subsets At, we define a 

switching map Sj on At. For A e At, let SiA) = (A - {j}) u {I} if j e A, 

I e A and (A-{j}) u {I} e At. Otherwise we put Sj(A) =A. Clearly the new 

collection Sj(At) has at least as many sets with I as At did. The next lemma tells 

us how Sj interacts with a. 

Proof We must show that a(Sj(A)) c Sj(ar) for all A e r. 

If Sj(A) = A, this is aA c Siar). If j e A, j is not in any of the sets in aA 

so aA = SiaA) c Siar). If I is in A, all but one (A - {I}) of the sets in aA 

contain 1, and the previous argument shows each of them is in Siar). For 

A - {I}, note that we can assume that j is in A, so that aA contains both A - {I} 
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and A-{j}. So Sj(A-{I})=A-{I}, which means A-{l}isin s/a'f). 

Therefore, all of aA is in Sj(a'f). Finally we assume that j e A, 1 ~ A and 

(A-{j})u{l}e 'f. Let A-{k}e aA, k;!:j. Since (A-{k,j})u{l}e a'f, 

the switching map Sj fixes A-{k}, so A-{k}=Sj(A-{k})e Sj(a'f). Thelast 

case is A - {j} = SjCA - {j}) e Sj(aA) c Sj(a'f). 

If SjCA);!: A, then j e A, I ~ A and S}A) = (A - {j}) u {I} ~ 'f. The 

subsets CA - {k, j}) u {I} and A - m in Sj(aA) can be checked as in the 

previous paragraph. 

Suppose we iterate the switching maps Sj for various j, until 'f is converted 

to a collection 'f' such that Sj('f') = 'f' for all j. This is possible because Sj either 

fixes 'f, or gives 'f more members which contain 1. Since the switching maps do 

not change the size of the collection, Lemma 4.5 implies that la'f'1 ~ la'fl. This 

completes Step (1). 

Step (2) Let 'f'= 'f'(l) u 'f'(i) as indicated. Clearly a'f' = a'f'(l) u a'f'(i). 

First we show that 

where a1 is the operation of deleting I from a set. Let B = A - {j} e a'f'(i). 

j;!:l, Ae'f'Ci). Since 'f' is fixed under Sj' Bu{l}e 'f'(l), soBe a1'f'(I). 

This establishes (4.7), which clearly implies 

(4.8) a'f' = a'f'(l). 

We now separate the collection a'f' into two subcollections: those subsets with 

deleted, al'(I), and those subsets with some element;!: I deleted, 

a(al'(1» u {I}. (This notation means that we first delete I from each member of 

'f'CI), next apply a, and then reinsert I into each member.) Because these two 

subcollections are disjoint, 

This completes Step (2). 

Step (3) Suppose that 
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(4.10) (a'-2) + ... + i-I. 

Because dl'(I) is a collection of (k-l)-element subsets of the (n-l)-e1ement 

subset U-{I}, we may conclude by induction that 

The insertion of 1 into each set of dd1f'(I) is a bijection to d(d1P(I» u {I}. 

Thus, (4.9), (4.10) and (4.11) imply 

which by Pascal's Triangle (§ 1.2, Eq. (2.3» implies our result 

So we suppose that (4.10) is not true, i. e., 

Clearly If I = WI = W(1)1 + If'd) I = Idl'(1)1 + If'(i)l, so that (4.13) and the 

assumed value of If I give 

and again Pascal's Triangle implies 

This time f'd) is a collection of k-element subsets of the (n-l)-element set 

U-{I}, so again by the induction hypothesis 

(4.15) - (a -2) (a. - 2) Idr'(l)1 > :-1 + ... + i-I· 

However (4.7) implies 
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Taken together, (4.15) and (4.16) contradict (4.13). So (4.10) must hold, and the 

proof is complete. 

Notes 

Three good general references for posets are [Ai], [Be] and [Gre-Kl]. Spemer 

theorems are included in §3 of Chapter VIII of [Ai]. They are also a central topic of 

[Ore-Kl]. Exercise 7 below, and Exercises 18 of Chapter 3 and Exercise 20 of 

Chapter 4 establish the entries of the chart for .!lo' The entries for Eo and '\IA, are 

given in Exercises 8 and 10. For "0 they are Exercises 9 and 22, for t>o Exercises 

11 and 12, and for Com Exercises 13 and 29. A matching between two adjacent 

levels of the Boolean algebra can easily be shown to exist from Hall's Theorem. The 

decomposition into symmetric chains is not guaranteed from this technique. The fact 

that matching to first available in the Boolean algebra works is due to Aigner [Ai]. The 

relationship between the various matching schemes in Eo can be found in [Wh-Wi]. 

Kleitman's solution of the Littlewood-Offord problem appears in [Gre-Kl]. The 

proof of the Kruskal-Katona Theorem is due to Frankl, [Fr]. 

Exercises 

1.[2] Given a fmite poset (p,~, show that there is at least one way to totally 

order P, that is, label all of the elements of P with [n]: al"'" ~ so that a j ::;; ~ 

implies i S;j. Such a labeling is called a linear extension of (p,~. 

2.[2C] Write a program which takes as input a poset P and gives as output a 

linear extension of (p, S;). 

3.[3C] For each poset (p,::;;) pictured below, write a program which finds the 

total number of linear extensions of (p,~. Can you prove any theorems here? 
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(a) 

(b) 

4.[2] Let (p, ~ be a poset with a linear extension al' ... '~. The incidence 

matrix of (p,:S:) is the n x n matrix Z, where Zjj = 1 if ~:S: ~ and Zjj = 0 

otherwise. Prove that Z is invertible. Construct Z for 33, f 3' ~ and \132. 

5.[1] For a ranked poset, the numbers ILjl = Wj are called the Whitney numbers 

of the second kind. For 3n, the Whitney numbers are the binomial coefficients. 

What are they for "n? 

6.[2] Let Wk(n) denote Wk for .In. Prove 

where t = min{k, n -I}. 

7.[1] Prove that .Q.n is rank symmetric and order symmetric. (Exercise 18 of 

Chapter 3 will show that .Q.n is rank unimodal, and Exercise 20 of Chapter 4 shows 

that it is a lattice.) 

8.[2] Prove that 3n is rank unimodal, rank symmetric, order symmetric and a 

lattice. 

9.[2] Prove that f n is a lattice. 

10.[2] Prove that '\fA. is a lattice. 

11.[2] Prove that t)n is order symmetric. 
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12.[3] Prove that 1\ is a lattice by finding the meet of two partitions A. and 11. 

(Hint: Take the smaller of the two partial sums to define the partial sum of the meet. 

Reason similarly for the join.) 

13.[2] Prove that 0nm is rank: unimodal, rank: symmetric and order symmetric. 

(The Spemer property follows from Exercise 29.) 

14.[1] What is the rank of (n,n-1, ... ,1) in .Qn? 

15.[4C] A chain C is called a maximal chain if C is not contained in any other 

chain. What is the length of a maximal chain in .Qn+ l? In \lA.' A. = (n, n-1, ... , 

I)? Write a program which gives the number of maximal chains each poset has. What 

are your conclusions? [Sta2] 

16.[2] How many maximal chains do En and I' n have? 

17.[2] How many edges do the Hasse diagrams of En and .Qn have? 

18.[3C] Write a program to count the number of edges in the Hasse diagram of G'n. 

Formulate a conjecture, based upon an appropriate combination of Bell numbers. 

(Hint: Try (Bn+2 - a·Bn+l + b·Bn) 12, for appropriate positive integers a and b. 

Can you give a combinatorial proof of this result?) 

19.[4C] Write a program to compute the Whitney numbers of \lA.' A. = nrn. 

Formulate and prove as many conjectures as you can. §3.3 may be useful. 

20.[2] Suppose Yo' vl' ... ,vn is a finite sequence of positive real numbers. We 

say YO' v!' ... ,vn is log-concave if vk2 ~ vk_(vk+l for 1 ~ k ~ n -1. If 

YO' vp ... ,vn is log-concave, prove that it is also unimodal. 

21.[3] Suppose the polynomial v(x) = vn +vn- l xl + ... +voxn has negative real 

roots. Show that Yo' vl' ... ,vn is log-concave. Possible hint: This result has a 

combinatorial proof. Let {-r1' ... ,-rn} be the roots of v(x). Define the weight 

w(A) of a subset A c [n] to be 
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and 

w(A) = n r i' 
ieA 
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v~ L w(A)w(B), 
(A,B) 

IAI=IBI =n-k 

L w(C)w(D). 
(C,D) 

iCl = n-k+l 
IDI = n-k-l 

Then use the unimodality of the binomial coefficients to give an injection of the pairs 

(C,D) for vk_!,vk+l to (A, B) for vk2 which preserves the weight. 

22.[3] Let Sn(x) be the polynomial of degree n 

n+1 
Sn(x) L S(n+1, k) xk-I. 

k=1 

(a) Using (5.1) of Chapter 1, show that 

Sn(x) = (x + 1) Sn_1 (x) + x S'n_1 (x). 

(b) Now show that Sn(x) has n distinct negative roots following these 

steps. By induction, suppose that Sn_1 (x) has n - 1 distinct negative roots 

-rl < ... < -rn-l' From (a), show that Sn(-ri) and Sn(-ri+l ) have opposite signs 

for each i, 1 S; i S; n-2. Conclude that Sn(x) must have a root in the interval 

(-ri, -ri+I), so that Sn(x) has at least n - 2 negative roots. Show that S'n_I(-rn_l ) 

> 0, and again use (a) to show that Sn(-rn_l ) < O. Conclude that Sn(x) has a root in 

the interval (-rn_1' 0). Finally, conclude that Sn(x) has another root in the interval 

(-00, -rl ). We have just shown that the roots of Sn(x) and Sn-I (x) interlace: 

between any two consecutive roots of one polynomial there is exactly one root of the 

other polynomial. 

(c) From Exercises 20 and 21 show that the Stirling numbers of the second 
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kind are unimodal. 

23.[2] Let S be a subset of [999] U {O}. If lSI ~ 76, show that S must 

contain at least two numbers nand m, so that the difference n - m can be 

computed with no "borrowing". (Hint: consider the poset C3,lO') 

24.[3] Let A = {at' ... , ~} c [n], where a l < ... < ap' Define g(A) = 

{al , ... ,~, ~ + I, ~+l' ... ,~}, where t is the largest i for which ~ - 2i is 

minimal (assume 1Io = 0). Prove that g(A) = f(A), where f is defined in Algorithm 

14. [Ai] 

25.[3] Suppose A c [n] is represented as a sequence of n parentheses, where 

parenthesis i is right if i e A and left otherwise. Thus, 

A = {I, 3,4,6, 7,10,12,13,16, 19} c [21] 

corresponds to 

)(»(»(()() )(()(()(( 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 

and if we pair off the parentheses in the usual way, 

...---. i ....--.,...--. I ......--. 
)(»(»(()() )(() ( ) ( ( 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 

we are left with a string of unpaired right parentheses followed by a string of unpaired 

left parentheses. 

»)(((( 
1 4 7 14 17 20 21 

Now take the first unpaired left parenthesis and tum it around. 

»»((( 
1 4 7 [!!I 17 20 21 

The resulting string of parentheses 

)(»(»(()() »()(()(( 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 
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corresponds to a new subset 

h(A) = {I, 3, 4, 6, 7,10,12,13,14,16, 19}. 

a) Prove that h satisfies the conclusion of Theorem 2.3. 

b) Prove that h gives a symmetric chain decomposition of En. 

c) Prove that h = f. ([Gre-K2]; see also [Ai], p. 439.) 

26.[ 4C] Write a program which applies Algorithm 14 to ~ order. Try it for 

various values of nand p. Does it work? What can you conjecture (and prove) 

about the resulting f? [Wh-Wi] 

27.[2C] Use the first available match to find a matching for Pn for some small 

values of n. You can use the lex order of RG functions given in Algorithm 11 instead 

of the lex order of subsets of [n]. What is your chain decomposition? 

28.[2] Let m = P1 P2 ... Pn' where each Pi is a different prime. Show that the 

maximum number of divisors of m which do not divide each other is M(n). 

29.[2] Find a symmetric chain decomposition for enm (p. 436 of [AiD. 

30.[ 4C] Suppose the integer partitions of n are ordered by reverse refinement. That 

is, A. <. Il if and only if they are identical except one part of A. is split into two parts 

of Il. For instance, 5132 11 <.41 32 12. 

" " (a) Show that the resulting poset is ranked with a ° and a 1, but it is not 

rank or order symmetric. 

(b) Show that the resulting poset is not a lattice. 

(c) Revise Algorithms 7 and 14 to investigate the unimodal and Spemer 

properties. What theorems can you guess? What theorems can you prove? 

31.[3] Let ~ and ~-1 be two levels in En with k ~ L n/2 J Suppose T is an 

independent set from these two levels. Prove that ITI is maximal if and only if T = 

~. 
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32.[4] Generalize the Erdos-Ko-Rado Theorem to collections 'f of subsets of [n] 

such that A, B E 'f implies IAI ~ k and A (') B # 0. 



CHAPTER 3 

Bijections 

We have already encountered several examples of explicit bijections cp: A ~ B, 

for two finite sets A and B. In Chapter 1 we let A be the set of all permutations 1t 

of en] and B be the set {O, 1, ... , n! - I}. The rank function was an explicit 

bijection from A to B. It was closely related to the listing algorithm for 

permutations. 

There are many reasons for constructing a bijection cp: A ~ B. The most 

obvious application is to conclude that IAI = IBI. This is useful if we know IAI but 

do not know IBI. In some cases A might have a complicated subset Ao which 

interests us. The bijection could simplify Ao to Bo = cp(Ao)' It might be the case that 

A and B are both complicated; we can still conclude that IAI = IBI. But in any case, 

bijections can be used to explain why certain classes of objects are counted by the 

same number. 

Bijections can also be used to establish generating functions. Let's take a very 

simple example, the binomial theorem, to show this. Let A be the set of all subsets of 

en]. The weight w(a) of an element of A is defined by 

(0.1) w(a) = xlal. 

So the generating function of all elements of A is 

(0.2) f(x) = L 
aeA 

We know that A has 

(~) 

elements a such that lal = k, so 
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(0.3) f(x) 

Let B be the set of n-tuples of O's and l's, and let the weight of any element ~ of 

B be w(~) = xk, where ~ has k 1 'so Define the bijection <p: A ~ B by 

{ lifiEa 
<p(a)(i) = 

o if ie a. 

The bijection <p is weight-preserving, because w(a) = w(<p(a)). It is clear that the 

generating function for B is (1 + X)D, so (0.2) becomes 

(0.4) f(x) = (1 + X)D. 

Another kind of combinatorial proof of the binomial theorem can be given when 

x is a non-negative integer. In this case, the right-hand side of (0.4) counts functions 

from [n] to a set S of size 1 + x. The right-hand side of (0.3) counts the same 

functions by classifying by the number of members of [n] which get sent to the fIrst 

x members of S. The theorem can easily be extended to all real x. 

In this chapter we give examples of all these phenomena. The Catalan numbers 

provide bijections between apparently unrelated sets. The Priifer correspondence 

associates a simple B with a complicated A. Partitions and permutations illustrate all 

these ideas. The most diffIcult bijection that we consider is the Schensted 

correspondence between permutations and tableaux. 

Several of the constructions in this chapter and the next involve graphs. While 

none of the graph theory concepts used are difficult, we will state here some of the key 

definitions and results involving graphs. 

A graph is a set of vertices and a set of edges. The edges are usually a collection 

of 2-element subsets of the vertex set (such graphs are called simple), but sometimes 

one-element subsets (loops) or repetitions (multiple edges) are allowed. If the edges 

are ordered pairs of vertices, the graph is called directed (or a digraph) and the edges 

are directed edges. 

The degree of a vertex is the number of vertices incident to it. A vertex in a 

directed graph has an in-degree and an out-degree. 

A path in a graph is a sequence of adjacent vertices. A path is simple if no 

vertex is repeated (except that the fIrst may equal the last). A cycle is a simple path 

which starts and ends at the same vertex. We sometimes will refer to the unordered 

set of vertices in a cycle as a cycle. A graph is connected if there is a path from 
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every vertex to every other vertex. Directed graphs have directed paths. Directed 

graphs are strongly connected if there is a directed path from every vertex to every 

other vertex. Graphs may have one component (connected) or several components. 

A tree is a connected simple graph with no cycles. A tree on n vertices has 

n - 1 edges. There is a unique path between any pair of vertices in a tree. Trees may 

be rooted, i. e., have a distinguished vertex. In that case, the tree may be directed 

naturally along the unique path from any vertex to the rool In rooted trees, vertices 

are related in a familial sense: they may be fathers, brothers or sons. 

A bipartite graph is a graph whose vertex set is partitioned into two blocks. All 

edges in the graph go between these two blocks. A complete graph is the simple graph 

where every possible edge is drawn. 

Graphs may be labeled or unlabeled. Generally speaking, labeled graphs are 

easier to deal with. For example, there are 

labeled simple graphs on n vertices, but the number of unlabeled graphs is given by a 

complicated formula which involves Polya's enumeration theorem. 

§3.1 The Catalan Family 

There is a sequence of integers, called the Catalan numbers, which occur 

frequently in combinatorial problems. They are defined by 

(1.1) 

so that Co = 1, C1 = 1, C2 = 2, C3 = 5, C4 = 14, etc. Many combinatorial objects 

are counted by these numbers. 

We will describe bijections between six sets and then show that one of these sets 

is counted by the Catalan numbers. Three of these sets will involve trees. These sets 

are: 

(1) Binary trees A binary tree is a rooted tree where each vertex has either 0, 1 or 

2 sons; and, when only one son is present, it is either a right son or a left son. 

(2) Ordered trees An ordered tree can be defined inductively as a rooted tree 

whose principal subtrees (the trees obtained by removing the root) are ordered trees 

and have been assigned some order among themselves. 
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(3) Full binary tree Afull binary tree is a binary tree where every vertex has 

either 0 or 2 sons. 

(4) Well-formed parentheses A sequence of parentheses is called well-formed 

if, at any point in the sequence, the number of right parentheses up to this point does 

not exceed the number of left parentheses up to the same point. Moreover, the total 

number of left parentheses equals the total number of right parentheses. 

(5) Ballot problem Suppose Alice and Barbara are candidates for office. The 

result is a tie. In how many ways can the ballots be counted so that Alice is always 

ahead of or tied with Barbara? 

(6) Standard tableaux Given a partition A. of n, a standard tableau T is an 

arrangement of [n] in the n cells of the Ferrers diagram of A. which increase across 

rows and down columns. These objects will be discussed in greater detail in §3.S. 

THEOREM 1.1 The following sets of objects all have the same number of elements, 

and this number is Cn: 

(1) binary trees on n vertices; 

(2) ordered trees on n + 1 vertices; 

(3) full binary trees on 2n + 1 vertices; 

(4) welljormed sequences of 2n parentheses; 

(5) solutions to the ballot problem when 2n votes are cast; and 

(6) standard tableaux in a 2 x n rectangular F errers diagram. 

Proof We use bijections to show (1)-(6) are equinumerous. Then we show that (4) 

yields the Catalan number. 

(1) = (2): We give a bijection <p from binary trees to ordered trees. Let B be a 

binary tree. Here is how we construct T = <p(B). 

(a) The vertices of B are the vertices of T with the root deleted. 

(b) The root of B is the first son of the root of T. 

(c) Vertex v is a left son of vertex w in B if and only if v is the frrst son of w 

in T. 

(d) Vertex v is a right son of vertex w in B if and only if v is the brother to the 

right of w in T. 

In the examples below, we have labeled the vertices to help the reader trace what 

happens under <po 
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1 0 

1~5 2~ cp 
4 5 • 

6 
2 4 6 

B T 

(1) = (3): The bijection cp will be from binary trees to full binary trees. Let B be a 

binary tree. Construct F = cp(B) by adding a new son to each vertex of B with 

exactly one son, and adding two sons to each vertex of B with no sons (terminal 

vertices). 

1 
1 

20 
4~ '5 

6 

B F 

You are asked to prove in Exercise 2 that the number of terminal vertices in a full 

binary tree is one more than the number of internal (non-terminal) vertices. So F is a 

full binary tree on 2n + 1 vertices. It is clear that cp-l is given by "pruning" the 

terminal vertices from F. 

(2) = (4): The bijection cp will be from ordered trees to well-formed sequences of 

parentheses. Let T be an ordered tree. We show how to construct P = cp(T). If T 

consists of a single vertex (the root), then P is the empty sequence. Now cp will be 

defined recursively. Suppose cp has been defined for all ordered trees T with k + 1 

vertices, k < n, and cp(T) has 2k parentheses. Let T be an ordered tree with 

n + 1 vertices and principal subtrees Tp T2, ••• , Ts' Let Pp P2, ... 'Ps be the 

corresponding well-formed sequences of parentheses. Then P = (Pl)(P2) ... (Ps)' 

Clearly, the number of parentheses in P is 

s 
2s + L 2(# of vertices in Ti -1) = 2n. 

i = 1 

It is also clear that P is well-formed. 
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~----~, ~'--------~ 
1 3 

p 

To derme q>-1, let q>-1(0) = the tree consisting of only a root. Again, by 

induction, assume q>-1(p) = T has been defined for all sequences P oflength 2k 

and ordered trees T with k + 1 vertices, k < n. Let P be a well-formed sequence of 

length 2n. Write P = P1 P2 ••• Ps' where each Pi is determined by those points in 

P where the number of left and right parentheses are equal. Each Pi is itself a 

well-formed sequence enclosed in a parenthesis pair. Let Pi be the well-formed 

sequence obtained from Pi by removing this pair. Let Ti be the associated tree. Put 

q>-1(p) = T, where the ordered tree T has principal subtrees Tp ... , Ts. 

(4) = (5): Now the bijection q> will be from well-formed parentheses sequences to 

solutions to the ballot problem. Let P be a well-formed sequence. Then W = q>(P) 

is obtained by replacing "(" by a vote for Alice (or "A") and ")" by a vote for 

Barbara (or "B"). The word W in the letters "A" and "B" is a sequence of votes 

which solves the ballot problem since P is well-formed. 

<p 
( ( ) ) ( ( ) ( ) ) ( ) --I.~ AABBAABABBAB 

P W 

(4) = (6): The bijection q> will be from well-formed sequences to standard tableaux 

of shape 2 x n. Let P be a well-formed sequence; define S = q>(P) as follows. 

Label the positions of the 2n parentheses in P by 1, 2, ... ,2n. In S, put i in the 

first row if and only if the parenthesis in position i is left. Otherwise, put i in the 

second row. Arrange the entries of S to be increasing in the two rows. Since P is 

well-formed, S must be increasing down the columns. The definition of q>-1 is 

clear. 

2 3 4 5 6 7 8 9 10 11 12 <p 
(())(()())()--I.~~~~~ 

P s 
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Finally, we show that the number of sequences of well-formed parentheses of 

length 2n is Cn• To begin with, rewrite Cn as follows: 

1 (2n+l) 
(1.2) Cn = 2n+l n+l. 

Let us represent sequences of parentheses as strings of O's and l's (called bit 

strings): 0 to represent a right parenthesis and 1 a left parenthesis. Such a sequence 

can also be represented as a lattice path, such as those described in §2.2. In view of 

(1.2), we consider '&n' the set of bit strings with 2n + 1 digits, n + 1 of which are 

l's. Notice that a cyclic permutation of any bit string in .&n gives a new bit string in 

.&n. In fact, a bit string in .&n can be cyclically permuted into 2n + 1 distinct bit 

strings. Thus .&n can be partitioned into equivalence classes of size 2n + 1. The 

number of such classes is exactly Cn• 

Now let us consider one of these equivalence classes, 1::1. Pick any bit string 

WE 1::1. Label the positions between the digits of w by 1,2, ... , 2n + 2. Let y(w) 

be the position of the ri~htmost minimum in the lattice path of this bit string. 

w 

1101001011100 

'Y(w) 

Let w+ be the same bit string cyclically permuted one position to the left: 

Observe that 

w+ 

o 1 1 0 100 101 1 1 0 

1~ 
~ _ ly -14 

7 5 ~ 
'Y(w+) 
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'V {'Y(W)+l ifY(w);o!o2n+1 
I (w+) = 

1 if Y(w) = 2n+1. 

Thus, there is exactly one string w* E I:l such that ),(w*) = 1. 

w* 

1 1 100 1 1 0 o 0 1 0 

3 11 

6 12 14 

y(w*) 

Note that the initial digit in w* must be 1. If this 1 is removed, what remains is the 

bit string corresponding to a well-formed sequence of parentheses. Conversely, if a 1 

is added to the front of the bit string of a well-formed sequence to form the bit string 
A A 

w, then yew) = 1. 

This means that the number of well-formed sequences of 2n parentheses is 

exactly the number of equivalence classes, i. e., Cn. 

Several more examples of sets counted by Catalan numbers are given in the 

exercises. 

§3.2 The Priifer Correspondence 

• 

A bijection <p: A ~ B can be used to transfer properties of A to a simpler set 

B. The Profer correspondence provides an example of this phenomenon. In this case, 

A consists of all labeled trees on n vertices, while B is just the set of all 

(n-2)-tuples of integers in [n]. 

Recall that a tree is a connected graph with no cycles and a labeled tree on n 

vertices is just a tree whose n vertices are labeled with the integers in [n]. There are 

clearly 

labeled ~ on n vertices. We wish to find the number of labeled m£ on n 

vertices. The Priifer correspondence <p establishes Cayley's Theorem. 
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THEOREM 2.1 The number of labeled trees on n vertices is nn-2. 

Given a labeled tree T on n vertices, we want to produce <p(f), an 

(n-2)-tuple with entries in [n]. The construction of <p(T) involves removal of 

terminal vertices from T. Terminal vertices always exist in view of the next lemma. 

LEMMA 2.2 Every tree T with two or more vertices has two or more terminal 

vertices. 

Proof A well-known property of trees on n vertices is that they have n -1 edges. 

Since T has n - 1 edges, the sum of the degrees of all vertices is 2·(n - 1). Every 

degree is at least 1, so the pigeonhole principle implies that at least two degrees are 

exactly 1. 

Now <p(T) = (aI' ... ,~) is easily described. Let el be the set of terminal 

vertices of T, so el c [n]. Let v = max{i : i E el} and al be the vertex adjacent to 

v. Now delete v and the edge v - al from T to form a new tree T and iterate. 

The iteration stops when the tree has only two vertices remaining. We will then have 

an (n-2)-tuple, <p(T) = (aI' ... ,an). Here is an example of this construction. 

5 

T 
2 3 6 1 9 

8 

7 4 

<P(T) = (1,3, 8, 8, 3, 6, 8) 

In the following description of this procedure, [n] is the vertex set of T and E 

is the edge set. The function adj(v) will return the vertex adjacent to v E el. 

ALGORITHM 15: The Prilfer Co"esporuience 

begin 
for k (- 1 to n - 2 do 

v (- max{i : i E el} 
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aIe f- adj(v) 

E f- E - {v-aIe} 

end. 

To show cp is a bijection, we describe <pl. Let (al' ... ,an) be an 

(n-2)-tuple with entries in [n]. If T satisfies cp(T) = (aI' ... ,~), then the degree 

of i in T is one more than the number of occurrences of i in cp(T). In fact, the 

terminal vertices <1 are precisely those which do not occur in cp(T). Let v = 

max{i: i E <1} and construct the edge aI-v. The new terminal vertices are found 

by subtracting one from the degree of al and removing v from <1. In this way 

n - 2 edges are constructed. The final edge is drawn between the only remaining 

terminal vertices, which will be an-2 and 1 (or 2 if ~-2 = 1). It is clear that the 

edges of T are inserted in the same order that cp removed them. We leave the details 

of the induction to the reader. 

In the algorithm below, the vector (dp ... ,dn) keeps track of the residual 

degrees of the vertices of T. 

ALGORITHM 16: The Prufer Correspondence 

begin 

for v f- 1 to n do 
dy f- 1 

for if-I to n - 2 do 
V f- ai 

dy f-dy +l 

Ef-0 

for if-I to n - 2 do 

w f- max{k : dIe = I} 

V f- ai 

Ef-Eu{w-v} 

dy f-dv -1 

rlw f- 0 

V f- max{k : dIe = I} 

w f- min{k: dIe = I} 

Ef-Eu{w-v} 
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end. 

The following theorem is typical of the kinds of results that can be obtained 

from the Priifer correspondence. 

THEOREM 2.3 The number of labeled trees with t terminal vertices is 

(n! / t!)-S(n - 2, n - t). 

Proof The number of labeled trees with t terminal vertices is 

(~) 

times the number of labeled trees with {1, 2, ... , t} as terminal vertices. The Priifer 

code <p(T) for such a tree does not include any entries from {1, 2, ... , t}. 

Moreover, {t + 1, ... ,n} each must occur at least once in <p(T) since they are not 

terminal vertices. Let Bt+1' ... ,Bn be the sets of positions where t + 1, ... , n 

appear in <p(T). These blocks define a partition of [n-2] into n - t labeled blocks. 

The number of such set partitions (see § 1.5) is S(n - 2, n - t), and the number of 

ways of labeling the blocks is (n - t)!. So the number of labeled trees with t terminal 

vertices is 

( ~) (n- t)! S(n-2, n-t) 
n! 
t! S(n-2, n-t). 

There is a startling application of Theorem 2.1 to permutations. Suppose 1t is 

an n-cycle, that is, a permutation whose cycle decomposition consists of one cycle of 

length n. We may ask in how many ways can 1t be written as a product of n - 1 

transpositions? For example, if 1t = (123), then 1t = (23) 0 (13), 1t = (13) 0 (12) or 

1t = (12) 0 (23), so there are three such representations. The answer is rather 

unexpected. 

THEOREM 2.4 Given an n-cycle 1t, the number of sequences (t1' ... ,tn-I) of 

transpositions such that 1t = tl 0 tz 0 ••• 0 tn-I is nn-2. 

Proof We will count the total number N of sequences (tl, ... ,tn-I) of 

transpositions whose product is an n-cycle. Since there are (n - 1)! n-cycles, the 

number of such sequences which will yield a ~ n-cycle will then be 
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N/(n-1)!. 

We shall need two graphs, one associated with a collection of transpositions and 

one associated with a permutation. Given a set of transpositions {t1, ... , tk}, let T 

be the labeled graph whose vertices are given by [n] and whose edges are given by 

the transpositions {tt' ... , tk}. Given any permutation 1t, let G1t be the directed 

graph on [n] with edges i -7 j if and only if 1t(i) = j. Notice that the fixed points of 

1t correspond to directed loops in G1t and the cycle decomposition of 1t corresponds 

to the decomposition of G1t into directed cycles. 

The following lemma shows how G1t is affected by multiplying by a 

transposition. 

LEMMA 2.5 Let t be the transposition (x y) and it = 1t 0 t. Then the graph of G~ 

is obtainedfrom Gn in the following way: 

(1) If x and yare in different cycles of G1t, then these two cycles merge into one 

cycle; 

(2) If x and yare in the same cycle of G1t, then this cycle splits into two cycles. 

Proof The proof is clear from the following two pictures. In Case (1) we have: 

. . . . . . 

x a 
y b 

o 
In Case (2) we have: 
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That N = nn-2 (n - I)! follows immediately from this last lemma. 

LEMMA 2.6 Suppose 1t = t1 0 ~ 0 ••• 0 to- 1 and T is the graph corresponding to 

{tl' ... ,tn-I}' Then 1t is an n-cycle if and only if T is a tree. 

Proof First we suppose T is a tree and prove 1t is an n-cycle. The proof is by 

induction on n. The edge e corresponding to to- 1 is a cut-edge of T, i. e., its 

removal will disconnect T. So T - e = T 1 U T 2 for two smaller trees T 1 and T 2' 

where T 1 has k vertices and T 2 has n - k, ~ 1. By induction, the product of the 

transpositions tj for T1 and T2 (taken in the same order as in 1t) is a k-cycle 0"1 

and an (n-k)-cycle 0"2 respectively. Moreover, since T 1 (\ T2 = 0, the 

transpositions for T 1 commute with those for T 2' Thus t1 0 ~ 0 ••• 0 to- 2 = 0"1 0 0"2 

and the graph G1t 0 to- 1 consists of these two cycles. Then G1t is obtained from 

G1t 0 tn- 1 by part (1) of Lemma 2.5. 

Now suppose 1t is an n-cycle and we prove T is a tree. Consider what 

happens to the graphs G 1t(k) , 1t(k) = t1 0 ~ 0 ••• 0 tk, as we successively add edges to 

construct T. Initially, G 1t(O) consists of n loops and T is empty. Since G1t has 

only one component and we are adding exactly n - 1 edges, we must be in case (1) 

of Lemma 2.5 for each new transposition tk+1. So we assume by induction that 

G 1t(k) has n - k cycles {Cj}, and T is aforest of n - k trees {Tj }, with the 

vertices of Tj = the vertices of C j • Then the transposition tk+1 combines the two 

cycles (C1 and C2) to form (:1 in G1t(k+1) and connects trees T 1 and T2 to form 

a new tree i\. Clearly the vertices of 1'1 = the vertices of (:1' Thus G1t(k+1) has 

the desired properties. Putting k = n - 1 gives a forest of one tree, i. e., a tree. This 

completes the proof of Lemma 2.6 and also Theorem 2.4. 

• 
Unfortunately, this is not a ~ proof of Theorem 2.4. Such a proof would 

establish a bijection between labeled trees and sequences of transpositions whose 

product is a given n-cycle. 

§3.3 Partitions 

Integer partitions provide a rich source of bijections. We already gave a simple 

bijection for partitions in Theorem 3.1 of Chapter 1. In this section are several other 
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examples. The fIrst theorem is due to Euler. 

1HEOREM 3.1 The number of partitions of n into odd parts equals the nwnber of 

partitions of n into distinct parts. 

Proof Let PO(n) and PD(n) denote the two sets of partitions. We will construct a 

bijection cp: PO(n) ~ PD(n). Let A. E PO(n) whose largest part is N and let i be 

an odd part of A. of multiplicity Ill;.. Write Ill;. in base 2: 

For each ') = 1, cp will create a part of size i· 2i. We write cp(Ill;., i) to denote these 

parts. Clearly they are distinct. Now let cp(A.) = Lcp(mi , i). Note that if i(~l = 

iiV2 with i1 and i2 both odd, then i1 = i2 and j1= j2. 

The definition of cp-1 is straightforward. Take all parts of A. E PD(n) of the 

form i·2i, for some j and a fIxed odd i. Then cp-1(A.) has 

parts of size i. 

As an example of this bijection, take A. = 151 9253 33 14. The 4 in 14 

written base 2 is 100, so cp(4, 1) = 4. The exponent 3 in 33 is 11 in binary, so 

cp(3, 3) = 3 + 6. Do the same thing for the other parts. Then put the parts together to 

get cp(151 92 53 33 14) = (18, 15, 10,6,5,4,3). 

(3.1) 

As generating functions, Theorem 3.1 is clearly equivalent to 

n (l_x2i+1r1 
i = 0 

In fact, the bijection cp is really just a combinatorial proof of 

(3.2) 
00 

n 
i = 0 

which provides a proof of (3.1). 

(1 + x (2i+l)2i ) 
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The next example is of a somewhat different nature. If A. is a partition whose 

largest part 1.1 is ~ n, and whose number of parts is ~ m, then the Ferrers diagram 

of A. is contained in an m x n rectangle. The next theorem counts these partitions. 

THEoREM 3.2 The nwnber of partitions A. whose Fe"ers diagram lies inside an 
m x n rectangle is 

Proof We construct the bijection cp: P mn ~ B, where P mn is the set of partitions A. 

and B is the set of (n+m)-tup1es with m O's and n l's. 

As usual, let the m x n rectangle be located in the 4th quadrant in the xy-plane. 

Then the outside border of A. is the set of n + m line segments connecting (0, -m) 

to (n,O) along A.. For example, if A. = (3, 3, 1), n = 5 and m = 4, the outside 

border of A. is shown below. 

(0,0) (5,0) 

(0, -4) 

It is clear that A. is uniquely determined by this lattice path from (0, -m) to (n, 0), 

with unit steps up or to the right. The converse is also true. We code such a lattice 

path with an (n+m)-tuple of O's and l's. An up step is 0 and a step to the right is a 

1. So we get m O's and n l's. This determines cp(A.). In the example above, cp(A.) 
= (010110011). 

For such a partition A., let 111.11 denote the number A. partitions. The 

generating function 

(3.3) 

is a polynomial in q of degree m·n. According to Theorem 3.2, 



72 

G (1) = (n+m) 
mn n· 

Thus Gmn(q) is a polynomial analogue of the binomial coefficient. It is called the 

q-binomial coefficient and is denoted 

(3.4) G (q) = [n+m] mn n. 
q 

It is clear that Gmn(q) is the rank generating function of the Young lattice \I)., of the 

partition A. = nm. Thus properties of this lattice from Chapter 2 become properties of 

the q-binomial coefficient. 

A partition A. is self-conjugate if A. = A.' (see § 1.3), i. e., the Ferrers diagram 

of A. is invariant under a flip across the main diagonal. 

THEOREM 3.3 The number of self-conjugate partitions of n is equal to the number 

of partitions of n into odd, distinct parts. 

Proof Let PSC(n) and POD(n) be the appropriate sets of partitions. We define 

<p: PSC(n) --+ POD(n). For A. e PSC(n), A. = (A.1, •.. '\)' let d be the largest 

integer such that \ ~ k. In fact, d is the size of the largest principal subsquare 

(called the Duifee square) of the Ferrers diagram of A.. Or, d is the length of the 

main diagonal of the Ferrers diagram of A.. Number the cells down this diagonal 

1,2, ... ,d. The cell numbered k will have \ - k cells to its right, and since A. is 

self-conjugate, \ - k cells below it. So the cells of A. are partitioned into blocks, 

one block for each diagonal cell, with the block corresponding to diagonal cell k 

containing 2\ - 2k + 1 cells. Since A.1 ~ ••• ~ A.d these odd numbers are distinct. 

Let <p(A.) = (2A.C1, ... ,2\-2d+1). 

In this example, A. = (5, 5, 3, 2, 2), d = 3 and <p(A.) = (9, 7, 1). 

<peA) 
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The definition of cp-l is clear. Just "bend" each odd part in A E POD(n) in 

the middle and center it on the main diagonal. Since the parts are distinct, this will 

form a Ferrers diagram of some partition in PSC(n). 

(3.5) 

Is there a generating function identity implied by Theorem 3.3? Clearly, 

L \POD(n)\ x n 
n~O 

00 

II (1 + x2i+l). 
i ~ 0 

For \PSC(n)\ we can use the decomposition by the d x d Durfee square to obtain 

(3.6) L \PSC(n)\ xn. 
n~O 

since the Durfee square contains d2 boxes, and what remains are two copies of some 

partition with at most d parts. So Theorem 3.3 is interpreted by 

(3.7) 
00 

II (l + x2i+l ). 
i ~ 0 

In fact, (3.7) is a special case of the analogue of the binomial theorem for q-binomial 

coefficients [AnJ. 

We shall return to partitions in Chapter 4. 

§3.4 Permutations 

Permutations are such naturally occurring objects that it should come as no 

surprise many interesting bijections involve them. We have already seen several 

properties of the inversion number of a permutation from the inversion poset in §2.1. 

We state two of these properties as bijections in this section. We also give some 

bijections related to Stirling numbers. Finally, we consider multiset permutations, 

which will be discussed in more detail in §§3.5-3.7. 

In §1.1 we saw that the inversion sequence (al' ... ,an) of a permutation 1t 

uniquely defined 1t. So the map cp from permutations of n to sequences 

(al' ... ,~) with 0 ~ ai < i is a bijection. If cp(1t) = (al' ... ,an)' clearly the 

number of inversions of 1t, inv(1t), is al + ... + an. Thus, the bijection cp proves 
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the following theorem. 

THEOREM 4.1 The generatingfunctionfor the number of inversions of permutations 

1t of n is 

L qinv(lt) =(1+q)(1+q+q2) ... (1+q+".+cf-1). 

It e Sn 

If we consider 1t as an element of the inversion poset .Qn' rank(1t) = inv(1t), 

so that Theorem 4.1 also gives the generating function for the Whitney numbers (see 

Exercise 6 of Chapter 2) of .Qn' The rank symmetry and rank unimodality of .Qn 

can be shown from this generating function (see Exercise 7 of Chapter 2). 

Another interesting fact about .Qn is that the inverse map preserves the partial 

order of .Qn' This means that if 1t < 0', then 7t1 < 0'-1. This implies that the 

inverse map preserves the rank, so inv(1t) = inv(1t-1). We prove this, based upon a 

bijection between permutations and non-attacking rooks on a chessboard. 

THEOREM 4.2 If 1t is a permutation of n, then inv(1t) = inv(1t-1). 

Proof There is a bijection between permutations 1t of n and arrangements of n 

non-attacking rooks on an n x n chessboard: place the rook of row i in column 

1t(i). For example, here is the arrangement for 1t = 23154. 

r 
r 

r 
r 

r 
The value of inv(1t) is the number of pairs (i, j) with i < j and 1t(i) > 1t(j). This 

corresponds to a pair of rooks (Rl' ~), with R1 to the right and above R2. That 

means there is a square directly to the left of R1 which is also directly above R2• If 

we shade all squares to the left of a rook, and also all squares above a rook, these pairs 

are those squares which are shaded in both directions. 
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In this example, inv(7t) = 3. 

The arrangement of rooks corresponding to n-1 is precisely the transpose of 

the arrangement for 7t. Transposing the chessboard will not change the number of 

doubly shaded squares. 

• 
In § 1.1 we gave another representation of a permutation 7t: the decomposition 

of 7t into disjoint cycles. This gives us another bijection. We put the smallest 

number of each cycle at the end of that cycle, and put the cycles in order of their last 

entries. This defines the canonical cycle decomposition of 7t. The canonical cycle 

decomposition of 7t = 463281795 is (4261) (3) (895) (7). 

If we remove the parentheses from the canonical cycle decomposition of 7t, we 

have another permutation, <\>(7t) = 426138957, in one line notation. The map <\> is a 

bijection because we can recover 7t from <\>(7t): the first cycle of 7t is the initial 

segment of <\>(7t) ending at 1. The next cycle of 7t ends in the smallest number not 

appearing in the first. The remaining cycles are obtained in the same manner. For 

n = 4 the bijection is given below. 

1k 

1234 

1243 

1423 

Ull 
1234 

1243 

1432 
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4123 4321 
4132 4213 
1432 1423 
1342 1342 
1324 1324 
3124 3214 
3142 3421 
3412 3142 
4312 4231 
4321 4132 
3421 3241 
3241 3412 
3214 3124 
2314 2314 
2341 2341 
2431 2413 
4231 4123 
4213 4312 
2413 2431 
2143 2143 
2134 2134 

The frrst entries of x = (Xl' ••• ,xn) and cp(x) = (0"1' ••• 'O"n) = 0" are the 

same on this list This is always the case because the last entry of the first cycle of X 

is 1, so X maps 1 to 0"1. This is Xl = O"r We also notice that thefalls, or 

descents, of 0" must lie ~ the cycles of x. The example 0" = 4/26/1389157 

has 3 falls: 4 to 2, 6 to 1, and 9 to 5, which have been indicated with a slash. 

In general, i is a fall of 0" if O"i> O"i+l. So, for any fall O"i O"i+l of 0", X maps j = 

O"i to m = O"i+l (Xj = m), where j > m. Clearly any such j and m give a fall in 0". 

Thus we have the following theorem. 

1lIEOREM 4.3 The number ofpermutations x of n with k falls is equal to the 

number of permutations x of n whose two line notation has m below j with j > m 

in exactly k positions. 

If a permutation 0" has k falls, it also has k + 1 runs. A run of a permutation 
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is the string of integers between two consecutive falls or between a fall and an end of 

the permutation. They are the strings separated by the slashes of the falls. Let 

e(n, k), the Eulerian number, be the number of permutations cr of n with k runs. 

For n = 4, e(4, 1) = 1, e(4, 2) = 11, e(4, 3) = 11 and e(4, 4) = 1. These numbers 

have several properties which mimic those of the binomial coefficients or the Stirling 

numbers of the second kind. 

The analogue of Pascal's triangle is 

(4.1) e(n, k) = k e(n -1, k) + (n - k + 1) e(n -1, k -1). 

It is easy to give a bijective proof of (4.1). As in the proof of (2.3) in §1.2 or (5.1) in 

§ 1.5, just consider where n is placed in cr. 

We can also classify permutations by the number of cycles. Let c(n, k) denote 

the number of permutations of n with k cycles. For reasons which will become 

clear (see (4.3) and (4.5) below), this number is usually given a sign: sen, k) = 

(_I)D+k c(n, k). For example, s(4, 1) = - 6, s(4, 2) = 7, s(4, 3) = - 6, and s(4,4) 

= 1. The numbers sen, k) are called Stirling numbers of the first kind. They have 

many properties analogous to those of Stirling numbers of the second kind. For 

instance, they satisfy a three-term recurrence: 

(4.2) sen, k) = - (n - 1) sen - 1, k) + sen - 1, k - 1). 

This recurrence can be proved in the same manner as (2.3) or (5.1) in Chapter 1 or 

(4.1) above. You are asked to prove (4.1) and (4.2) in Exercise 23. 

Stirling numbers are related to one another by an orthogonality formula: 

(4.3) 
D {lifn=j L Sen, k) s(k, j) = 

k = 0 0 ifn;ll: j. 

You are asked to give a combinatorial proof of (4.3) in Chapter 4. 

Stirling numbers and Eulerian numbers satisfy analogues of the binomial 

theorem. For Eulerian numbers, this is 

(4.4) 

For Stirling numbers of the first kind, it is 
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(4.5) 

For Stirling numbers of the second kind, it is 

(4.6) 
n 

xn = L Sen, k) (x)k' 
k=O 

(Recall from § 1.1 that (x)n = x (x - 1) ... (x - n + 1).) 

Like the binomial theorem, equations (4.4)-(4.6) have many proofs. We will 

concentrate on combinatorial proofs in the style of the two proofs of the binomial 

theorem given at the start of this chapter. The reader might want to review those two 

proofs at this time. Recall that in the first proof, we defined two weighted sets, <1 

and B, where the weight of an element was a monomial. Then the two sides of the 

equation corresponded to summing the weights of the elements of the two sets <1 
and B. We then constructed a weight-preserving bijection between the two sets. 

In the second proof, we let x be a positive integer. Then we described a set 

which was counted in two different ways by the two sides of the identity. 

Equations (4.4)-(4.6) cause some difficulty because they involve signs. We 

will learn other techniques for dealing with signs in Chapter 4. With 

weight-preserving bijections, the signs can be incorporated in the weights. Let's 

prove (4.5) in this way. First, we expand the left-hand side of (4.5): 

(4.7) (XA, = L II 0- i) x n-IAI 
Ac[n] ieA . 

From (4.7) we see that an appropriate set <1 would be all pairs (A, f) where A c 

[n] and f is a function f: A ~ [n] such that f(i) < i, i E A. The appropriate weight 

would be w(A, f) = (-1 )IAI xn- IAI. The other set, B, will be all permutations of n. 

The right-hand side of (4.5) tells us the weight of a permutation, wen;) = (_l)n+k xk, 

where k is the number of cycles in n;. 

We now need a weight-preserving bijection <p: B ~ <1. For n; E B, the 

canonical cycle decomposition of n; has k special entries, those at the end of each 

cycle. In <pen;) = (A, f), let A be those entries of n; which are not special. The 

function f indicates how the remaining entries of n; were positioned. Define f(i) - 1 

to be the number of entries to the left of i which are < i. For example, if n = 9, A = 
{2, 4, 6, 8, 9}, and n; = (62481) (93) (5) (7), then f(2) = 1, f(4) = 2, f(6) = 1, 

f(8) = 4, and f(9) = 6. It is not hard to prove that <p is a weight-preserving bijection. 
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Proofs of (4.4) and (4.6) are sketched in Exercises 27 and 26. 

Now let's use the second method to prove (4.4)-(4.6). Remember that x is a 

positive inte~er. First consider (4.6). The left-hand side counts the set of all functions 

f: [nl ~ [xl. Classify these functions by the partition of [nl given by II. There are 

S(n, k) possible partitions. How many functions from [nl to [xl have a given 

pre-image partition 1t? Clearly, elements of the same block map to the same element 

of [xl, while elements of different blocks must be mapped to different elements of 

[xl. If 1t has k blocks, the number of such functions is just (x)k. 

Unfortunately, the terms in the sum in (4.5) alternate in sign. In Chapter 4 we 

shallieam more about dealing with signs. For now, we can replace x with -x in 

(4.5) and multiply by (-1)0 to get 

o 
(4.8) x(x+l)··· (un-I) = l: c(n, k) x k. 

k=O 

The left-hand side of (4.8) counts placements of n labeled balls in x labeled boxes, 

where the balls in any single box are ordered. For example, here is such a placement 

when n = 9 and x = 4. 

o 
@ 
CD 
CD 

1 2 

0) 
CD 
CD 

3 4 

The right-hand side counts the same set in the following way. Construct a permutation 

of the balls and write it in cycle notation. Let k be the number of cycles. Now assign 

each cycle to a box. The number of ways of doing this is c(n, k) xk, for each k. 

Within any single box there will be a collection of cycles. These form an ordering of 

the balls in that box. In the example, box 1 contains the permutation 7364, box 2 

is empty, box 3 contains the permutation 259, and box 4 the permutation 81. So 

the resulting permutation is (81) (2) (743) (5) (6) (9), with (743) and (6) assigned 

to box 1; (2), (5) and (9) assigned to box 3; and (81) assigned to box 4. 

We leave (4.4) as an exercise (Exercise 21). 

The final topic of this section is multiset permutations. A multiset m is a "set" 

of objects where repetitions are allowed. Usually the word "set" refers to distinct 
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objects, so we use the word multiset. An example of a multiset is 

m= {A,A,N,N,O,R,R, S,S, T, U, U, Y}. 

The multiplicity of A in Tn. is 2, because m contains 2 A's. A multiset 
permutation is some ordering of the elements of a multiset TYRANNOSAURUS is a 

multiset permutation of Tn.. 
We often denote a multiset m by the objects {I, ... ,n} with multiplicities 

(ml' ... ,Iflu). It is clear that the number of multiset permutations of m is 

M! I m1 ! ... ~!, where M = m1 + ... +~. This number is called the multinomial 

coefficient 

because of the multinomial theorem 

Multiset permutations are naturally given in one-line notation. There is also a 

two-line notation. For 7t = 221231122311 we could write 

7t = ( 1 2 3 4 5 6 7 8 9 10 11 12) 
221231122311 

to signify that 2 is fmt, 3 is fifth, and so on. Another two-line notation places the 

same entries on the top line in increasing order, 

7t = ( 111112222233) 
221231122311 

so that both two-line notations give the usual two-line notation if the multiset 

permutation is a permutation of n. An analogue of the cycle representation of 7t also 

exists (see [Lot], Chapter 10). 

The number of inversions of a multiset permutation, inv(7t), is the number of 

(i, j) with i < j and 7tj > 7tj. In our example, inv(1t) = 26. You are asked to 

investigate this statistic in Exercise 29. 
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§3.S Tableaux 

The tableau is a fundamental construction in the classical presentation of 

representations of the symmetric group. But its algebraic importance carries over to 

many other areas of mathematics: symmetric functions, invariant theory, algebraic 

geometry, Lie algebras and combinatorics, to name a few. Two practical applications 

are in quantum theory (representations of GL(n» and chemistry (polya counting 

theory). In this section we shall give a basic bijection for column strict tableaux, and 

relate these tableaux to Young's lattice of §2.1. They will playa central role in the 

next two sections on the Schensted correspondence. 

Let A. be a partition of n. A tableau T of shape A. is the Ferrers diagram of 

A. with each cell ftlled with a positive integer. These positive integers are called the 

entries of the tableau T. The content P = (Pl' ... ,pm> of a tableau T is the vector 

of multiplicities of the entries of the tableau T. This means that T has Pl 1 's, Pz 

2's, ... , and Pm m's. When it is necessary, we will append zeros to the end of p. 

The tableau T below has shape A. = 4 22 and content P = (2,0,3, 1,2). 

T = 5 1 r351 
4 3 

We will be concerned with a special kind of tableau. A tableau T is called 

column strict if the entries of T are non-decreasing along the rows of T and strictly 

increasing down the columns of T. The tableau below of shape A. = 4 22 and content 

P = (2, 0, 3, 1, 2) is column strict. 

T=~ 
tilij 

Let "(A., p) be the set of all column strict tableaux of shape A. and content p. For 

example, "(32, (2, 1, 1, 1» consists of the following tableaux 

[J]JTI] 
~ 

[[[II}] 
[IITJ 

[]IE] 
[illJ 
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while ~(3 2, (1, 2, 1, 1» has 

[JJI[I] 
[ffiJ 

[ill]}] 
~ 

[[]TITI 
~ 

It is not an accident that the number of tableaux in each set is the same. It is our next 

theorem. 

THEOREM 5.1 There is bijection between ~(A, p) and ~(A, p'), where p' is 

obtainedfrom p by applying an adjacent transposition. 

Proof Let p' agree with p, except for Pk and Pk+l' which have been 

interchanged. Let TE ~(A,p) so that T has Pk k's and Pk+1 k+l's. Weneed 

to produce a tableau T' E ~(A, p') which has Pk k+l's and Pk+l k's. We will do 

this by switching some k's in T to k+ 1 's, and also switching some k+ 1 's in T to 

k's. The k and k+ 1 entries in row i of T have the following structure. 

row i-I 
row i 
row i +1 

a 

k k k 
k+l .. · k+l 

b c 
k ... k 

k hI .. · hI hI .. · hI 

d 

For this row, we let a ~ 0 be the number of k's with k+ I 's below them. 

Immediately to the right of these k's, there will be some number b ~ 0 of k's with 

no k+ I 's below, then some number c ~ 0 of k+ I 's with no k above, and finally 

some number d ~ 0 of k+ l's with k's above them. 

We change T to T' by changing each row i to this form. 

row i-I 
row i 
row i +1 

a 

k k k 
k+I ... k+I 

c b 
k ... k 

k hI .. · hI hI .. · hI 

d 

Note that the k's and k+ I 's which are paired with k+ I 's below and k's 

above are left unchanged. However, the b k's have become c k's, and the c 

k+ I 's have become b k+ I 'so So the total number of unpaired k's in T is equal to 

the total number of unpaired k+ 1 's in T'. This implies that T' has Pk+1 k's and 

Pk k+I's. It is easy to see that T' is column strict. 



83 

It is clear that if we apply this map again we obtain T, that is Tn = T. So the 

map T ~ T' is a bijection. 

An example of this bijection is T E <:1(82 42, (3, 6, 4, 1, 2, 6)), 

1 1 1 2 2 

T 22334 
3 5 6 6 
5 6 

and T' E <:1(82 4 2, (3, 4, 6, 1, 2, 6)), 

1 1 1 2 21313131 

T' 2 2 3 3 41616161 
3 5 6 6 
5 6 - -

The paired 2's and 3's have been boxed in bold face. 

Because of Theorem 1.3 of Chapter 1, we immediately have this corollary. 

COROLLARY 5.2 If p' is any reordering of p, then 1<:1(1.., p)1 = 1<:1(1.., p')I. 

From Corollary 5.2, we can reorder p so that Pi;;:: Pi+l. This means that we 

can assume that P is a partition. The number of column strict tableaux of shape A. 
and content p, 1<:1(1.., p)l, is called the Kostka number K/.. p. It plays a key role in 

the study of tableaux and their connections to various branches of mathematics. 

A column strict tableau of content p = (1, 1, ... , 1) is called a standard 

tableau. There are 5 standard tableaux of shape 3 2. 

[ilil]c:rr:II±JIIIiliJ[I]ill][!Jill] 
~ []J}J ~ rrrrr- [ITJ 

The number of standard tableaux of shape A., K/.. 1 n, is also very important and is 

denoted d/... The next theorem is clear. 
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THEOREM 5.3 The number of standard tableaux of shape A., dA,' equals the number 

of maximal chains in Young's lattice \IA,' 

There is an amazing formula for dA,' It is simple to state and difficult to prove. 

We will give a proof of an equivalent formula in §4.5. To state this formula, we need 

to define a hook. Let c be a cell of the Ferrers diagram of A.. We write c e A.. The 

hook of c, He' consists of the cells to the right of c, below c, and c itself. In the 

bijection proving Theorem 3.3 of this chapter, we used the hooks of the major 

diagonal. The length of the hook of c, he' is 1Hel. In the example below the hook of 

c is shaded and its length he = 7. 

c 

The formula for dA, is called the hook formula. 

THEOREM 5.4 Let A. be a partition of n. Then 

n! 

As an example, take A. = 4 22. We insert the hook lengths into the cells of A.. 

r521 3 2 
2 1 

Then 

8! 
56. 

6'5'2'1'3'2·2'1 
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§3.6 The Schensted Correspondence 

The construction which plays a central role in the applications of tableaux to various 

areas of mathematics is the Schensted correspondence. This correspondence is a 

bijection between multiset permutations and pairs of tableaux of the same shape: one 

standard, the other column strict We shall find that several properties of permutations 

manifest themselves in the tableaux via the Schensted correspondence. 

First we consider a special case: permutations instead of multiset permutations. 

Then the Schensted correspondence becomes this theorem. 

THEOREM 6.1 The Schensted correspondence is a bijection between all permutations 

X of n and all pairs (P, Q) of standard tableaux of the same shape A.. The shape A. 
is an arbitrary partition of n. 

For n = 3 the bijection is 

• 123 ..... f--..... ~ ~ 
132 ..... 1---. • fETI fETI 
213 ..... 1---. • SF fETI 

• 231 ..... 1---. SF ffiTI 
312 ...... f--..... • tED [ETI 

and 321 .... ~--t~ • 11 12 13 I 11 12 13 I 

The Schensted correspondence is built inductively. First we take the example 

x = 35186724 as a permutation of 8. Clearly, if we delete 4 from x, we have a 

string x' of length 7. If we subtract one from all of the entries of x' which are 

> 4, we have the permutation x" = 3417562 of 7. By induction, x" corresponds 

to a pair of standard tableaux (P", Q") with 7 cells. What we need to do is this: 
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insert the number 4 into P" and Q" (in some way) and add one to all of the entries 

of P" and Q" which are ~ 4. This will give us P and Q. Of course, the difficult 

part of this is to determine exactly how to insert the number 4. This algorithm is 

called the Schensted colwnn insertion algorithm. 

First, we should remark that it is not necessary to do the addition and 

subtraction of one to the entries of P" and Q". The Schensted correspondence will 

produce tableaux (P', Q') for x', where the entries of P' are [8] - {4}, and the 

entries of Q' are [7]. For x = 35186724, 

x I = 3518672, ~ p'~ tit Q'= r37 
2 5 
4 
6 

The Schensted column insertion algorithm inserts 4 into P' and 8 into Q'. 

The natural position of 4 in the first column of P' is between the 2 and the 6. The 

4 takes the place of the 6, or bumps the 6 out of the first column of P'. The 6 

now is inserted by the same method into the second column of P'. This time the 6 is 

placed after the 5 and does not bump any entry of the second column. The column 

insertion algorithm has been completed. The resulting tableau P is 

P = 

'

38 
2 5 . 
4 6 
7 

Note that the shape of P differs from that of P' by the addition of exactly one 

cell (the cell 6 of P). We place an 8 in that cell for the definition of Q'. 

Q= 

'

37 
2 5 
4 8 
6 

A given insertion could cause several bumps. An example in the general case is 

given later. 

To find P and Q from x, just apply the column insertion algorithm 

successively to the entries of x. If we use two line notation for x, 
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It = ( 12345678) ....- entriesofQ 
35186724 ....- entriesofP 

the entries of the top line are successively inserted into Q, while those of the bottom 

line are likewise inserted into P. What follows is the sequence of tableaux obtained 

from the column insertions of It to arrive at P' and Q'. 

3 m [] 

35 [E [E 
351 

fETI fEIJ 
3518 r m31 

35186 

~ ~ 5 8 2 5 
6 4 

351864 W ~ 4 5 2 5 
6 4 

3518647 r r 4 5 2 5 
6 4 
7 7 

If the Schensted correspondence is a bijection, we must be able to recover It 

from (p, Q). It is clear what we do. Find the largest cell c in Q (in the example it 

contains 8), and find the entry e of that cell in P (in the example it is 6). Now we 

insert e in the left neighboring column, and bump the largest entry of that column 

which is < e to the left. (This is exactly the reverse of the bumping procedure.) We 

continue this procedure until an entry f is bumped out of the first column of P, 

creating the new tableau P'. Then f is the last entry of It (in the example f = 4). 
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Removing c from Q gives Q'. Next, we start with the largest entry of Q', and do 

this inverse bumping procedure until another entry is bumped from the first column of 

P', and continue. 

We will not give a formal proof by induction of this case. Instead, we will 

consider the generalized Schensted correspondence for multiset permutations. Let Tlt 
be a multiset with content (PI' ... ,Pm)' so that m. contains Pi i's. A permutation 

1t of m. is any sequence of the elements of Tlt. For (PI' ... , Pm) = (1,4,2), one 

such 1t is 2322132. Clearly if each Pi = 1, m. has no repetitions so that multiset 

permutations are just usual permutations. The generalized Schensted correspondence 

will associate to 1t the pair of tableaux (p, Q), where P is column strict of content 

p, and Q is a standard tableau of the same shape as P. For 1t = 2322132 we will 

see that 

(P, Q) = ( o:r:ITITTI 
CillIII ' IIIII!IIJ ). 
~ 

To produce P and Q, we use the same bumping procedure with a minor 

modification. Suppose we are inserting k into a column. The number which is 

bumped out of the column is the smallest number ;::: k. (In the previous case, it was 

> k because repeats were not allowed.) For example, suppose we are inserting 4 into 

the column strict tableau P. 

1 1 1 2 4 416/6 1 

p= 2 3 3 3 5 71 
3 5 5 6 7 
4 7 7 7 

..§.. 

Then the 4 will bump the 4 in the first column, so that the new first column is the 

old first column. 

The bumped 4 now bumps the 5 in the second column, for the following first two 
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1 1 
2 3 
3 4 
4 7 
6 
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The 5 from column 2 bumps the 5 in column 3. 

1 1 1 
2 3 3 
3 4 5 
4 7 7 

..2.. 

The 5 from column 3 bumps the 6 from column 4. 

1 1 1 2 
2 3 3 3 
3 4 5 5 
4 7 7 7 

...Q. 

The 6 from column 4 bumps the 7 from column 5. 

1 1 1 2 4 
2 3 3 3 5 
3 4 5 5 6 
4 7 7 7 

...Q. 

The 7 from column 5 bumps the 7 from column 6. 

1 1 1 2 4 41 
2 3 3 3 5 71 
3 4 5 5 6 
4 7 7 7 

.£ 
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The 7 from column 6 is larger than everything in column 7. It is therefore placed at 

the end of column 7, and the insertion of 4 into P has been completed. 

1 1 1 2 4 416161 
2 3 3 3 5 7J71 
3 4 5 5 6 
4 7 7 7 
6 -

The new cell has been marked in bold face. We would place the next entry of Q (here 

a 25) in that cell. 

The reader should verify that 1t = 2322132 gives the (p, Q) that was 

previously claimed. The entries of Q are 1234567, the first row of the two line 

notation for 1t. 

The inverse Schensted correspondence (p, Q) --+ 1t is as before. We use the 

largest entry of Q to find the entry e of P which bumps to the left. This time the 

largest number of the column which is :s; e is bumped to the left (Note that the entry 

directly to the left of e is :s; e, so that this set is non-empty.) The number eventually 

bumped out of the first column is again the last entry of 1t. We call this inverse 

procedure column deletion. Because column deletion is the inverse to column 

insertion, it is easy to see by induction that the generalized Schensted correspondence 

is a bijection. 

THEOREM 6.2 The generalized Schensted correspondence is a bijection between all 

multiset permutations 1t of content p, and pairs of tableaux (p, Q), where P is 

column strict of content p, and Q is standard with the same shape as P. 

Suppose that P = (PI' ... ,Pm)' so that the multinomial coefficient gives the 

number of multiset permutations 1t. The number of ordered pairs (p, Q) is a sum of 

Kostka numbers K).. p times d).., so that we have this corollary. 

COROLLARY 6.3 If P = (Pl' ... ,Pm) and PI + ... + Pm = n, then 

where the summation is over all partitions A. of n. 
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For permutations of n, Corollary 6.3 specializes to the following corollary. 

COROllARY 6.4 For any positive integer n, 

where the summation is over all partitions A of n. 

We now give the algorithms for Schensted column insertion, Schensted column 

deletion, the generalized Schensted correspondence (called Schensted encode) and the 

inverse generalized Schensted correspondence (called Schensted decode). For column 

insertion, the tableau is P with cell entries P(i, j). The value to be inserted is k. The 

length of the jth column of P is cj" The tableau with k inserted into P is 

Ins(k, P); the new cell is Cell(k, P). 

ALGORITHM 17: Schensted Column Insertion 

begin 
P'~P 

DoMore ~ true 

j ~ 1 

while DoMore do 

if k ~ P'(cj , j) then 

else 

i~cj 

repeat 

i ~ i-I 

until P'(i, j) < k 

i ~ i+ 1 

x ~ P'(i,j) 

P'(i,j) ~ k 

k~x 

j ~j+ 1 

i ~ cj + 1 

P'(i,j) ~ k 

DoMore ~ false 
Ins(p, k) ~ P' 
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Cell(P, k) ~ (i, j) 

end. 

The column deletion algorithm begins at row r and column c of the tableau P. The 

tableau after deletion is Del«r, c), P) and the value bumped out is Val«r, c), P). 

ALGORITHM 18: ScherlSted Column Deletion 

begin 
P'~P 

end. 

x ~ P(r, c) 

for j ~ c - 1 downto 1 do 

i~ 1 

repeat 

i~i+ 1 

until P'(i, j) > x or i > Cj 

i~i-l 

Y ~P'(i,j) 

P'(i,j) ~ x 

x~y 

Del«r, c), P) ~ P' 

Val«r, c), P) ~ Y 

Now we give the Schensted encode algorithm. We use Ins(k, P) and 

Cell(k, P) from Algorithm 17. The permutation is 1t, whose two-line notation has 

top row jl' j2' ... , jn and bottom row 1tl'1t2, ... ,1tn. The resulting pair of tableaux 

is (Schp (1t), SchQ(1t». 

ALGORITHM 19: SchenstedEncode 

begin 
P~0 

Q~0 

for i ~ 1 to n do 

P ~ Ins(1tj, P) 

Q(Cell(1tj, P» ~ jj 

Schp(1t) ~ P 
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end. 

For the Schensted decode algorithm, we use Del((i, j), P) and Val((i, j), P) from 

Algorithm 18. MaxCell(Q) computes the row and column containing the largest entry 

in Q. From the pair of tableaux (p, Q), this algorithm computes the permutation in 

two-line notation: Sch1t(p, Q) is the bottom row and Schcr(p, Q) the top row. 

ALGoRITHM 20: Schensted Decode 

begin 

end. 

P'~P 

Q'~Q 

for i ~ n downto 1 do 
c ~ MaxCel1(Q') 

cri ~ Q'(c) 

P' ~ Del(c, P') 

1ti ~ Val(c, P') 

Q' ~ Q' - {c} 

Sch1t(P, Q) ~ 1t 

Schcr(p, Q) ~ cr 

Sometimes we will use the following notation and terminology. We call P the 

P-tableau, and Q the Q-tableau, if 1t corresponds to (p, Q). We also use the 

notation P = Schp (1t) and Q = SchQ(1t), as in Algorithm 19 above. 

Several more remarkable properties of the Schensted correspondence are given 

in the next section. 

§3.7 Properties of the Schensted Correspondence 

In this section we shall investigate three of the many remarkable properties of 

the Schensted correspondence. The fIrst property motivated Schensted's original 

paper [Sch]: given a permutation 1t of n, how can one find the length of the longest 

increasing subsequence of 1t? While solving that problem, we will also answer this 

question: what permutation corresponds to (Q, P) if 1t corresponds to (p, Q)? 

Finally, we will see that the matching in the Boolean algebra of §2.2 can be derived 
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from the generalized Schensted correspondence. 

The answer to the fIrst question is given by this theorem. 

THEOREM 7.1 The number of rows of P (or Q) is the length of the longest 

increasing subsequence of 7t. 

In the example 7t = 35186724 of §3.6, P had 4 rows, so 7t has an increasing 

subsequence oflength 4, 3567, and none longer. 

To prove Theorem 7.1, we need to describe what happens to P and Q i.n....tlll:. 
fIrst column only at each stage. Suppose, as in the previous section, 7t = 35186724. 

Entry into 0 Action Taken Column 1 ofP Q[Q 

1 Insert 3; Qu f- 1 3 1 

2 Insert 5; Q21 f- 2 3 1 

5 2 

3 Insert 1; bump 3 1 1 

5 2 

4 Insert 8; Q31 f- 4 1 

5 2 

8 4 

5 Insert 6; bump 8 1 1 

5 2 

6 4 

6 Insert 7; <41 f- 6 1 1 

5 2 

6 4 

7 6 

7 Insert 2; bump 5 1 1 

2 2 

6 4 

7 6 

8 Insert 4; bump 6 1 1 

2 2 
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4 

7 

4 

6 

The remaining columns of P and Q can be found by applying the Schensted 

correspondence to 7t = 3856 (the bumped numbers), using 3578 as the available 

entries for Q. 

We call the "permutation" 

( 3578) 
7tb = 3856 

the bumping permutation of 7t. To find the second columns of P and Q we apply 

the column insertion algorithm to this two line array. 

Ento'intoQ Action taken Column 2 ofP Q[Q 

3 Insert 3; Q12 f- 3 3 3 

5 Insert 8; Q22 f- 5 3 3 

8 5 

7 Insert 5; bump 8 3 3 

5 5 

8 Insert 6; Q32 f- 8 3 3 

5 5 

6 8 

Clearly, for the third column, P has 8 and Q has 7. 

We now divide the n elements of the set {(i,7ti): I ~ i ~ n} into classes. We 

say that (i, 7ti) is in class t if 7ti was inserted into row t of column 1. In the 

example 

class I = {(I, 3), (3, I)}, 

class 2 = {(2, 5), (7, 2)}, 

class 3 = {(4, 8), (5, 6), (8, 4)}, 

and class 4 = {(6, 7)}. 

We see that if (i,7ti) is in class t, the first column of P must have t - I 

entries smaller than 7ti when 7ti is inserted. So 7t has an increasing subsequence of 

length t which ends at 7ti. Any longer such subsequence would force 7ti to be 
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inserted below row t. This property characterizes the class of a pair. 

LEMMA 7.2 The pair (i,1t) belongs to class t if and only if the length of the 

largest increasing subsequence of 1t ending at 1ti is t. 

Proof It remains to show if the length of the largest increasing subsequence of 1t 

ending at 1ti is t, then (i,1ti) belongs to class t. We do this by induction on t. If t 

= 1, then 1ti is smaller than all of the preceding 1tj , so 1ti is inserted into the first 

row of column and (i, 1ti) belongs to class 1. 

Now suppose t > 1, and choose an increasing subsequence S of 1t ending at 

1ti of length t. Let 1tj be the predecessor to 1ti in S. Then the subsequence S' = 

S - {1ti } which ends at 1tj is also of maximal length. By induction, (j, 1tj ) belongs 

to class t - 1. So when 1ti was inserted into the first column, the entry v in row 

t - 1 was S 1tj < 1ti . Thus, 1ti was inserted either below row t or in row t. Let w 

be the entry in row t when 1ti was inserted. The entry w (which precedes 1ti) is a 

member of a pair in class t. By the first part of the theorem, there is an increasing 

subsequence of 1t of length t ending at w. If w < 1ti , we could attach 1ti to this 

subsequence and have an increasing subsequence of length t + 1. This contradicts our 

hypothesis, so w > 1ti and 1ti was inserted into row t. 

Proof of Theorem 7.1 Suppose S is one of the longest increasing subsequences of 1t 

and has length t and suppose that P has r rows. By Lemma 7.2, the last member 

1ti of S is inserted into row t of P, so t S r. Conversely, the (r, 1) entry of P is 

in class r, so Lemma 7.2 implies that r S t. 

The answer to our second question is provided by Theorem 7.3. 

1lffiOREM 7.3 Suppose that 1t corresponds to (p, Q) in the Schensted 

correspondence. Then ,.-1 (the inverse of 1t) corresponds to (Q, P). 

Proof In fact, Theorem 7.3 holds for all two line arrays with distinct entries. In this 

case ,.-1 is the two line array obtained by interchanging the two lines, then sorting the 

columns according to the first line. Our proof will be by induction on the number of 

columns of P. First we show that the first columns agree, and then apply induction. 

We initially consider the permutation case, but the reader should have no difficulty 
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extending to the two line case. 

Let (i, x) belong to class t for x. It is clear from Lemma 7.2 that (xi' i) is 

a pair for x-I which also belongs to class t. 

Note that if (i, xi) and U, xj ) are in the same class t for x with i < j, then 

xi> xj . This is because the entries in row t, column 1 must be non-increasing as the 

entries of x are inserted into P. This also implies that the smallest xi in class t is 

the entry Pu. The largest Xi in class t occurs when that cell is first occupied, so 

Qu = i. (In the example, the smalles t xi of class 3 is Xs = 4, and P 31 = 4. The 

largest xi is x4 = 8, and Q3l = 4.) Thus the subsequence S of x of the class t 

Xi's is decreasing and has last entry Ptl. The index i of the first xi in S is the 

entry in Qtl. The diagram below shows S, the entries Ptl and Qu, and the 

reversal of S for X-I. This subsequence of x-I gives the entries P'tl and Q'u if 

X-I corresponds to (P', Q'). 

class t 
pairs for x 

class t 
pairs for x-I 

This diagram shows that Q'tl = Ptl and P'tl = Qtl' so that the first columns 

of Q' and P, and P' and Q, are identical. 

Next, suppose that the bumping permutation of x is xb. The entries on the 

first line of xb are used for the remaining columns of Q. Thus, they will also be 

used for the remaining columns of P'. The same statement can be made about the 

second line of xb and the remaining columns of P and Q'. SO, if we show that xb 

is the inverse of the two line array x-lb, the induction hypothesis will show that the 

P tableau of xb is the Q tableau of x-lb, and vice versa. This will complete the 

proof. 

In the class t pairs of x, xi2 bumps xi!' xh bumps xi2' etc. So xb 

contains the pairs 

while x-lb contains the pairs from class t 
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( 1I:~k_l < ... < ~il) 
lk > ... > 12 . 

For example, the class 3 pairs of 11: = 35186724 give 

( Hl58) ~ (58) 
86[!] 86' 

while the class 3 pairs of X-l give 

( Hl68 ) ~ (68) 
85[!] 85 . 

This proves that the inverse of xb is x-1b, and completes the proof of 

Theorem 7.3. 

COROlLARY 7.4 The number of standard tableaux with n entries is equal to the 

number of involutions X of [n]. 

• 

Proof An involution of [n] is a permutation 11: of [n] such that x = x-I. By 

Theorem 7.3, the Schensted correspondence is a bijection between all pairs of standard 

tableaux (P, P), and all permutations X of [n] such that x = X-l. 

The third application involves the matching f in the Boolean algebra of §2.2. 

We shall use the generalized Schensted correspondence to obtain the matching f. 

Let A c [n], IAI = p, and write A as an n-tuple of n - p D's and pi's. 

Written this way, we may consider A as a multiset permutation of pi's and n - p 

D's. Now apply Algorithm 19 to A to obtain (p, Q). Since P is column strict with 

n - p D's and pi's, P must have either one or two rows. If there is no 1 below 

the last 0 in row 1, change that 0 to a 1 to obtain a new tableau P'. (For 

p < L n12 J this will always be the case.) Next apply Algorithm 20 to (P', Q) to obtain 

a string of p + II's and n - p - 1 D's. This string corresponds to a p + 1 element 

subset B of [n]. Let g(A) = B. 

For example, if n = 8 and A = {I, 4, 7, 8}, the binary string is 10010011. 

Algorithm 19 gives 
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Then switching the last 0 of P to a 1 gives 

Applying Algorithm 20 to P' and Q yields 11010011, which corresponds to B = 

g(A) = {l, 2, 4, 7, 8}. Note that f(A) = g(A), where f is the matching from §2.2. 

THEOREM 7.5 If g is defined as above, then g = f, the matching in the Boolean 

algebra of §2.2. 

Proof We will show that the Schensted encoding algorithm, when applied to f(A), 

yields (P', Q). By Theorem 6.2, this implies that f(A) = g(A). 

To do this, we need to find out how the peaks of the graph of A (as in §2.2) 

are related to the encoding algorithm. Let ~ be the initial segment of A of length i. 

Put Pi(A) = Schp(~) and Qi(A) = SchQ(Ai). Let hi(A) be the height of the graph 

of A after the ith step. The following technical lemma is central to the proof. 

LEMMA 7.6 Suppose that A and B are subsets of [nJ and 1:S; i < j :S; n, j - i = 

2k. Suppose also that ~(A) = hj(A) and hi(A) ~ hm(A) for i:S; m :S; j. Finally, 

suppose that A and B agree between i and j, and that the shapes of Pi(A) and 

Pi(B) are identical. Then 

(1) Pj(A) = Pi(A) with k O's added to row 1 and k l's added to row 2, 

(2) Pj(B) = Pi(B) with k O's added to row 1 and k l's added to row 2, and 

(3) the part of Qj(A) which was added to Qi(A) is identical to the part of Qj(B) 

which was added to Qi(B). 

Note: the hypotheses on the heights just mean that there is a "valley" between the 

"peaks" i and j in the graphs of A or B. The conclusion of the lemma is that the P 

and Q tableaux of A and B are built identically (in a simple way) between these 

peaks. 

Proof Let Pi(A) be the following tableau. 

v w 

u 
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Insertion of O's increases the string (v) of O's in row 1. Because hi(A) ~ hm(A) 

for i ~ m ~ j, we have always added at least 'is many O's as l's. Thus, no 1 can 

bump a 1 in row 1, and all of the l's are added to row 2. This proves (1). 

Because the shapes of Pi(A) and Pi(B) are identical, we also have shown (2). 

By (1) and (2), inserting a 0 will create a new entry of Q in row 1, and 

inserting a 1 will create a new entry of Q in row 2. The same sequence of 

insertions is done for A and B because A and B agree between i and j. This 

proves (3). 

• 
Lemma 7.6 means that if we are constructing P and Q for A and B = f(A), 

we can ignore what happens between the peaks where A and B agree. For the 

graph of A, we replace all edges between such i and j by horizontal edges. For 

example, A = 1100111010001001011010010 

is replaced by: 

Generally, there will be a sequence of rising terraces followed by a sequence of falling 

terraces. The falling edge e of the highest terrace is the edge which is switched to 

construct f(A). 
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To prove Theorem 7.5, we need to show that Schp(f(A» = P' and SchQ(f(A)) 

= Q. Let the initial endpoint of the edge e have coordinates (i, j). Since A and f(A) 

agree up to e, PiCA) = Pi(f(A)) and Qi(A) = Qi(f(A». Lemma 7.6 implies that 

P;CA) is the following tableau. 

We insert a 0 into PiCA) to obtain Pi+1 (A), and 1 into PiCA) to obtain 

P i+1 (f(A». 

j+1 

The cell in which Pi+1 (A) and Pi+1 (f(A)) do not agree has been outlined. The new 

cell created in Pi+1 (A) and Pi+1 (f(A)) is at the end of the first row, so Qi+1 (A) = 

Qi+1 (f(A)). 

What happens as we continue to insert the remaining O's and 1 's of A? 

(Since f(A) agrees with A past e, we are inserting the same O's and l's as in 

f(A).) If we insert the D's after e which are before the next terrace, they are placed 

in the fIrst row of the P-tableau of A and f(A). Again the only difference in these 

two tableaux will be the outlined entry. If we insert the entries of a terrace, Lemma 

7.6 implies that the P and Q tableaux of A and f(A) are built identically. Thus, 

Schp(A) and Schp(f(A)) differ in only the outlined entry. This was our definition of 

P', so Schp(f(A» = P'. We also conclude that SchQ(f(A)) = Q, which completes 

the proof of Theorem 7.5. 
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Notes 

Two good references for bijections are Berge [Be] and Lothaire [Lot]. It is an 

active area of research (see, for example, the papers of Foata, Viennot or Zeilberger). 

The result for n-cycles and trees appears in Berge. Goulden and Jackson [G-1] also 

contains bijections with particular attention paid to generating functions. Knuth [Knl 

is a rich source for constructions on permutations and the Schensted correspondence. 

The Schensted correspondence was equivalent to a correspondence of Robinson, who 

stated his correspondence with no proof. Knuth generalized it to two line arrays as in 

Exercise 41 below. It is sometimes referred to as the Robinson-Schensted-Knuth 

correspondence. The result of Exercise 30 is due to MacMahon in 1913. Foata [Fo] 

gave a bijective proof. Andrews [An] is the standard source for partitions. Many of 

the relationships between tableaux and permutations are given in James and Kerber 

[Ja-K]. 

Exercises 

1.[2] Prove by a bijection that 

n-l 

C n L C k Cn-k-l . 
k=O 

2.[1] Use a bijection to show that the number of terminal vertices in a full binary 

tree is one more than the number of internal vertices. 

3.[1] Given the sequence of well-formed parentheses « ( ) ( ) } ( ) } ( ) ( ( ) ( ) }, 
construct the corresponding 

(a) binary tree, 

(b) ordered tree, 

(c) standard tableau. 

4.[3] A function f: [nl ~ [n] called monotone if f(x} ~ fey} whenever x ~ y. 

Give a bijection which shows that the number of monotone functions f: [nl ~ [n] 

which satisfy f(i} ~ i, i E [n], is Cn. How many elements does Young's lattice \I:\. 

have, A. = (n-l, n-2, ... , I)? 
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5.[2] A rooted labeled binary tree T is called increasing if x> y whenever x is 

below Y in T. Thus 1 is the root of T. Give a bijection which proves that the 

number of increasing binary trees with n vertices is nL 

6.[3C] (Viennot and Zeilberger [Z3]) From §3.1 we know that there is a bijection 

between ordered trees on n + 1 vertices and full binary trees on 2n + 1 vertices. 

Write a program to investigate the following statistics on these trees. 

Ordered Trees: Afilament of a rooted tree T is a maximal path from a terminal 

vertex, not including the root, all of whose vertices have degree ::;; 2. The filaments of 

the tree below have been circled. 

If the filaments of an ordered tree are deleted, another ordered tree results. The 

filament number of an ordered tree T is the number of successive filament deletions 

which reduce T to its root. The filament number of the above tree is 2. Here are the 

5 ordered trees on 4 vertices and their filament numbers. 

Full Binary Trees: The decomposition number of a full binary tree is defined 

inductively. Label the terminal vertices of T with O. Label any other vertex v of T 

by the maximum of the labels of the two sons of v, if these labels are not the same, 

and by the label + 1 if these two labels are the same. The decomposition number of T 

is the label of the root of T. Here are the 5 full binary trees on 7 vertices with their 

appropriate labelings. 
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1 1 2 

1 ~ 700 iO\ A ~ \ ~I\ 0 00 0 

o o o o 

1 1 

~ ~ 
o o o o 

7.[3] Using a bijection, prove 

8.[1] Find the Priifer code of the following labeled tree. 

1 

utr 
7 5 

9.[2] How many labeled trees on [n] have the degree sequence dt'dz, ... ,~ 

where di ~ 1 and d1 + dz + ... + ~ = 2n - 2? 

10.[2] How many labeled trees on n vertices are there such that vertex 1 has 

degree k? 

11.[2] Use Exercise 9 to fmd the generating function 
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where the sum is over all labeled trees T on [n], and dieT) is the degree of vertex i 

in T? 

12.[3] Let Tn = nn-2. By considering ordered pairs (T, e) oflabeled trees T and 

edges e of T, give a bijective proof that 

13.[1] Let f be a function from [n] to [nl, f: [n] 4 [n]. Thefunctional digraph 

of f is the directed graph Of whose vertex set is [n] and with edge i 4 j if and 

only if f(i) = j. The graph 01t in the proof of Theorem 2.4 was a functional digraph. 

What does a typical functional digraph look like? 

14.[2] Find a bijection between all functional digraphs (see Exercise 13) on [n] 

with k loops (fixed points of f) and all function digraphs on [n] where -1 has 

in-degree k. 

15.[2] The following bijective proof of Cayley's theorem is due to O. Labelle [La]. 

A weighted version of it can be used to give a bijective proof of the Lagrange inversion 

formula. 

Let S be the set of all (T, r, x), where T is a rooted labeled tree on n 

vertices, r is the root of T, and x is any vertex of T. Clearly, to prove Cayley's 

theorem it is sufficient to prove that lSI = nn. So we need a bijection <1>: S 4 F, 

where F is the set of all functions f: [n] 4 [n]. We will give the functional digraph 

(see Exercise 13) of f = <I>((T, r, x». 

First, direct each edge of T toward the root r. Next, order the vertices of the 

unique path P in T from r to x. This gives a permutation of the vertices of P, 

whose cycles are the cycles of f. Attach the remaining vertices of T to these cycles in 

exactly the same way that they are attached in T, to complete the definition of f. 

Show that the map <I> is a bijection. 

Example: Let n = 16, r = 4, x = 9, and T be the tree (whose edges have 

already been directed) 
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4 

If" 
/1" "'8 

13 6 10 /' /T TTl 12 

14 5 1/9" ( '7 
15 3 

Then the path P from r to x is 41610 9, whose cycle decomposition is 

(4) (916) (10). So we attach the rest of T to these cycles to define f. 

10 

U 
3---+ 9 --+ 16 

/ /1 
15 13 6 

/T T 
14 5 11 

16.[3C] Write a program to compute, for various values of m and n, the 

generating function Gmn(q) of §3.3. What do rank symmetry and unimodality of 

Young's lattice \lA, for the shape A = nm imply about Gmn(q)? Conjecture and 

prove an explicit formula for Gmn(q). (Hint: A useful polynomial is (1 - q) (1 - q2) 

... (1 - qD).) What justification can you give for Gmn(q) being called the q-binomial 

coefficient? 

17.[2] Prove that the number of partitions of n into k distinct parts is equal to the 

number of partitions of n - k (k + 1) 12 with at most k parts. What generating 

function identity does this imply? 

18.[2] Use Theorem 4.1 to conclude that the inversion poset ~ is rank 

symmetric and rank unimodal. 

19.[1] If 1t = 372459168, find the corresponding <!>(1t) of §3.4. 

20.[2] Prove by a bijection that e(n, k) = e(n, n + 1 - k). What is the average 
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number of falls of a pennutation 1t of n? 

21.[3] Give a bijective proof of (4.4) for positive integral values of x. Then 

conclude that (4.4) holds as a polynomial identity in x. 

22.[3] Prove by a bijection that 

Sen, m)m! 
m 

L 
k = 1 

(n-k) 
e(n, k) m- k . 

23.[1] Prove the recurrence fonnulas (4.1) and (4.2) as outlined in §3.4. 

24.[3] Can you find an orthogonality fonnula for the binomial coefficients? 

25.[3] Can you find another orthogonality fonnula for the Stirling numbers? 

26.[2] Prove (4.6) by using (4.5) and (4.3). 

27.[3] Prove (4.4) from Exercise 22 above and Vandennonde's Theorem (Exercise 

26 of Chapter 1). 

28.[3C] Let ;(n, p, k) be the number of multiset pennutations on m = 

{IP, 2P, ... ,nP} that have k falls. For fixed values of nand p, write a program 

to find the values of ;(n, p, k). State and prove as many conjectures as you can. 

(This is called Simon Newcomb's problem.) 

29.[ 4C] Let Ti1. be the multiset of m D's and n l's. For w E m, let q,-l(w) 

be the corresponding partition of Theorem 3.2. Show that q,-l(w) partitions the 

number inv(w). Write a program to find the generating function for the inversion 

number of a multiset of m D's, n 1 's, and k 2's. State and prove as many 

conjectures as you can. 

30.[3C] (MacMahon, 1913; Foata [Fo]) The index of a pennutation 1t = 1t17C2••• 1to 

is the sum of all subscripts j such that 1tj > 7Cj+l' 1 ~ j ~ n - 1. For example, the 

index of 47816325 is 3 + 5 + 6 = 14. Write a program which finds, for a given n, 

the number of pennutations aCn, k) which have index k. State and prove your 

conjectures. What is the generating function 



31.[1] 

32.[2] 

L a(n, k) qk ? 
k=O 
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Give the Kostka table for n = 4. 

Prove the Gale-Ryser Theorem (see, for example, [Ja-K)): KA,!J. > 0 if and 

only if A ~ 11 in the dominance lattice. 

33.[4] Prove that KA,!J. ~ KA, p if P ~ 11 in the dominance lattice. (Hint: 

characterize p .> 11, and then show that KA,!J. ~ KA, p if P .> 11·) 

34.[ 4C] Write a program which finds the number of column strict tableaux of shape 

A whose entries are ~ N. State and prove your conjectures. 

35.[1] Suppose that 1t = 443511242. Find the P and Q tableaux of 1t in the 

generalized Schensted correspondence. 

36.[1] Suppose 

P= 
2 2 4 4 
3 4 
4 5 
6 

Q= 
1 459 
2 6 
3 7 
8 

Find the multiset permutation 1t which corresponds to (P, Q). 

37.[2] From the Schensted correspondence prove the Erdos-Szekeres Theorem: 

any sequence of n2 + 1 distinct real numbers has either an increasing subsequence or 

decreasing subsequence of length ~ n + 1. 

38.[3C] Use Algorithm 19 to list all involutions of [n] and the corresponding 

tableaux. Is there any relationship between the shape of the tableau and the cycle 

structure of the permutation? 

39.[2] A lattice permutation is a multi set permutation 1t of AIl's, },,2 2's, .. , , 

\ n's, such that for any initial segment of 1t, the number of 1 's ~ the number of 

2's ~ ... ~ the number of n's. Thus, 1121233213 is a lattice permutation while 
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11212331321 is not Find a bijection between all such lattice pennutations and 

standard tableaux of shape A.. 

40.[3C] (Schiitzenberger [Sc]) It is clear that a row insertion algorithm exists which 

is completely analogous to the column insertion algorithm. Write a program to 

investigate this problem: if 1t corresponds to (p, Q) under column insertion, and 1t' 

corresponds to (p, Q) under row insertion, how are 1t and 1t' related? 

41.[3C] (Knuth [Knl]) The Schensted correspondence may be generalized to give a 

bijection between all pairs (p, Q) of column strict tableaux of the same shape and 

contents (11, p), and integral matrices A whose row sums are 11 and column sums 

are p. We define a two line array 1t from A by using ~j pairs (i, j) in 1t. We 

order these pairs in 1t to be increasing in i, and for a fixed i, decreasing in j. Then 

we apply the column insertion algorithm to 1t (using the top line of 1t for the entries 

of Q). For example, if 

11 = 554 

A 

p = 653 6 5 3 

5 

5 

4 

then 1t has 2 pairs (1, 1), 2 pairs (1, 2), 1 pair (1, 3), etc., so 

and 

1 1 
2 2 
3 

1t = (11111222223333) 
32211321113221 

1 1 
Q= 2 2 

I-=-If-=-I~....::.J 

3 

If A corresponds to (p, Q), what matrix corresponds to (Q, P)? Also, give an 

expression for the number of such matrices (with a general 11 and p) which involves 

the Kostka numbers. 
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Involutions 

Many combinatorial fonnulas include positive and negative values. It might fIrst 

seem that a bijection is not the proper tool for dealing with these formulas. This is not 

the case, however. Such formulas can sometimes be proved by using an involution on 

a signed set. In fact, involutions may be used to prove t'leorems seemingly unrelated 

to combinatorics. This will be done in Section 3 for the Cayley-Hamilton Theorem. 

A signed set A is a set which has been partitioned into two subsets, A + and 

A- with A+ u A- = A and A+ n A- = 0. The elements of A+ and A- are 

called positive and negative, respectively. We are interested in the value IIAII = 

IA+I-IA-I. 

If some of the elements of A-can be paired with some of the elements of A +, 

then the total size of the sets that we have to count to compute IIAII is reduced. In fact, 

if A + is bigger than A-and if we pair up all of A -, then IIAII is just the number of 

elements of A + which are unpaired. More formally, such a matching is an involution 
<p on A, that is, a permutation <p on A such that <p2 = id. This involution has the 

property that whenever <p(x) ¢ x, then x E A + if and only if <p(x) E A -. Note that 

this means that if x E A-then <p(x) E A +. 

Notice that IIAII is precisely the number of fIxed points of <p in A + minus the 

number of fIxed points of <p in A -. If we write F(<p) for the fixed point set of <p, 

and F(<p)+=F(<p)nA+and F(<p)-=F(<p)nA-, then F(<p) is anew signed set and 

IIF(<p)1I = IIAII. Typically, one or both of F(<p)+ or F(<p)- is empty. Such an 

involution <p is called sign-reversing, for if x is not fixed by <p, then <p(x) has the 

sign opposite from x. 

An important formula from elementary enumeration theory is the principle of 
inclusion-exclusion. This principle can easily be proved with a sign-reversing 

involution. Suppose X is some fInite set of objects and each of these objects is 

endowed with certain properties. A property may be thought of as a subset of X. 

Suppose P denotes the collection of properties. So associated with x E X there is a 

subset P xC P of properties with which x is endowed. For any subset T c P of 

properties let NjT) = {x EX: Px= T} and N::>(T) = {x EX: Px=> T}. Thus, 
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N=(T) is the set of objects in X whose list of properties is exactly T, while N::>(T) 

is the set whose list contains T. The principle of inclusion-exclusion can now be 

stated: 

(0.1) N_(0) = :E (-dTl N;,(T). 
TcP 

Equation (0.1) is usually expressed in basic combinatorics texts as an alternating 

sum of various set unions and is generally proved by induction. In the form given 

here, it is quite easy to prove using an involution [Z2]. Let A = {(x, T) : x e X and 

T c Px}. This set can be made into a signed set by defining sgn(x, T) = (-l)rrl. 

Then A+ = {(x, T) e A: sgn(x, T) = +1} and A- = {(x, T): sgn(x, T) = -I}. The 

right-hand side of (0.1) clearly computes IIAII. 
We now give a sign-reversing involution <p on A. Suppose the properties P 

are linearly ordered For (x, T) e A, let t be the largest property in P x. If t e T, 

then <p(x,T)= (x,T-{t}). IftePx-T, then <p(x,T)=(x,Tu{t}). Since ITI 

changes by one, <p is sign-reversing. Two applications of <p will clearly restore 

(x, T). This construction cannot be accomplished if P x is empty. In this case, T 

must be empty and sgn(x, T) = +1. These elements of A are the fixed points of <p 

and are all positive. They are clearly counted by the left-hand side of (0.1). This 

completes the proof. 

§4.1 The Euler Pentagonal Number Theorem 

In Exercise 15 of Chapter 1 you were asked to discover a relationship between 

partitions of n into an odd number of distinct parts and partitions of n into an even 

number of distinct parts. This relationship is called Euler's pentagonal number 

theorem. In this section we give a famous classical proof of it due to Franklin, which 

uses a sign-reversing involution. 

THEOREM 1.1 Let PDE(n) (pOO(n» be the set of partitions of n into distinct parts 

with an even (odd) number of parts. Then 

{ 0 if n '" (3k2± k)/2 
PDE(n)-POO(n) = (_l)k if n = (3k2±k)/2. 

Note: It is easy to see that Theorem 1.1 is equivalent to 



(1.1) 
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1 + L (_I)k X(3k2± k)12 • 
k = 1 

which is a special case of the Jacobi triple product identity [AnJ. It is called the 

pentagonal number theorem because the numbers (3k2:tk)/2 arise when constructing 

larger regular pentagons from smaller ones. 

Proof Let PD(n) be the set of all partitions of n into distinct parts. Let PD(n)+ = 

PDE(n) and PD(n)- = POO(n). This makes PD(n) into a signed set with Sgn(A) = 
(-1)# of parts in A.. The idea of this proof will be to construct a sign-reversing 

involution cP on PD(n) with no fixed points, unless n is of the form n = (3k2:tk)/2, 

in which case cP will have exactly one ftxed point The sign of this ftxed point will be 

(_I)k. Clearly, if cp has these properties, Theorem 1.1 follows. 

Suppose A e PD(n). Recall that we write A = (AI' ~, ... ) with 

Al > ~ > .... (The inequalities are strict here because the parts of A are dlliin&t.) 

Let a(A) = maxU : Aj = Al + 1 - j} and b(A.) = min{Aj}. Thus b(A.) is the smallest 

part of A and a(A) is the length of the "staircase" on the border of the Ferrers 

diagram of A. For A = (7, 6, 5, 3, 2), a(A.) = 3 and b(A) = 2. 

If b(A) S a(A), create a new partition cp(A) of n by moving the b(A) part 

adjacent to a(A). Thus cp(7, 6, 5, 3, 2) = (8,7,5,3): 

cp(A) = 

· . . . . . ~ 
• ••••• <!/' 
• • • • • 
• • • 

Note that since A has distinct parts, b(cp(A» > a(cp(A» = b(A.). The reader should 

carefully check this. 

If b(A) > a(A), then cp(A) is obtained by creating a "part" consisting of the 

a(A) cells at the end of the ftrst a(A) rows. This part is placed under the b(A) part, 

i. e., this new part is now the smallest part of cp(A). For example, cp(9, 8, 6, 3) = 

(8,7,6,3,2): 



a(A) . . . . . . . ~ 
· · · · · · · u 
~J 

b(A) 

113 

• • • • • • • • 
<peA) = •• • • • • • • • • • • • 

• • • 
8 

Since <p changes the number of parts by one, it is clear that it is sign-reversing. 

Furthermore, <p reverses the two cases above, i. e., if b(A) :;;; a(A) then b(<p(A» > 

a(<p(A» and conversely. But is <p defined on all of PD(n)? If it is not, we can 

extend <p by defining <p to fix these remaining partitions. Certainly <p is. 
well-defined when the cells counted by a(A) and b(A) do not overlap. The reader 

should also check to see that it is well-defined if a(A) < b(A) - I or a(A) > b(A), 

whether or not these cells overlap. 

But if b(A) = a(A) and these cells overlap, <p is not defined. Nor is it defined 

if a(A) = b(A) - 1 and these cells overlap. In the former case, if b(A) = k, then A = 
(2k-l, 2k-2, ... , k+ 1, k) so A partitions (3k2 - k) 12 and A has k parts which 

means the sign of A is (-I)k. For example, A might be (7,6,5,4) and k = 4: 

b(A) 

Moving the b(A) cells up will not give a proper partition. 

In the latter case, if b(A) = k + 1, then A = (2k, 2k-l, ... , k+l), so A is a 

partition of (3k2 + k) 1 2, A has k parts, and the sign of A is (_I)k. For example, 

A might be (6,5,4) and k = 3: 

b(A) 
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As an application of Theorem 1.1, recall that the generating function for all 

partitions is given by 

(1.2) ii (l_x i r1 

i = 1 
1: p(n) XD. 

D=O 

Clearing the fraction and substituting (1.1) gives 

(1.3) i p(n)xD ~ (_1)kx (3k2 +k)12 = 1. 
D=O k=-co 

Equating coefftcients in (1.3) gives, for n > 0, 

(1.4) 1: (_1)k p(n-(3k2+k)/2) = O. 
k=--

For any given value of n, this sum is actually finite and gives a recurrence for p(n). 

§4.2 Vandermonde's Determinant 

Sign-reversing involutions are a natural tool for handling identities involving 

determinants because the terms in the expansion automatically have signs attached. In 

this section we give a proof due to Gessel [Gel which establishes Vandermonde's 

determinant using a sign-reversing involution. 

Vandermonde's determinant is 

(2.1) 

It is clear that the product side of (2.1) has 

terms, while the determinant has only n! terms. We need a sign-reversing involution 

cp that cancels 

{D _ n! 
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terms on the product side of (2.1). But first we must interpret the product as a 

generating function for an appropriate class of combinatorial objects. 

A tournament T is a labeled directed graph on [n] such that any pair {i, j}, 

i #- j, has exactly one directed edge, either i ~ j or j ~ i. The word tournament is 

appropriate if we interpret i ~ j as "i beats j." Then each player i must play one 

game with each of the other n - 1 players. For each pair (i, j), i < j, there is a 

corresponding term, xi - xi' on the product side of (2.1). To each edge e of T 

assign a weight wee), with wee) = xi if e = i ~ j. That is, the weight of an edge is 

x subscripted by the winner. To each edge e of T we assign a sign, sgn(e), with 

sgn(e)=+1 if e=i~j and i<j and sgn(e) =-1 if e=i~j and j<i. The 

weight of a tournament T is defined by 

(2.2) weT) = II wee). 
edges e 

It is clear that 

(2.3) weT) 

where ai = the number of games player i wins. The sign of T, sgn(T), is defined 

similarly. It is (_l)m where m is the number of ordered pairs (i, j) such that i < j 

but j beats i. So we have shown that 

(2.4) 

afthe 

L weT) sgn(T). 
T 

possible tournaments T, there are n! special tournaments: call T transitive if there. 

is a ranking of players, It\lt2 •·• ltn' such that lti beats ltj if and only if i < j. 

Here is a transitive tournament T with ranking 35142: 
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2 

T = 

5 4 

To prove (2.1), we need a sign-reversing involution cp on non-transitive tournaments 

which preserves the weight. If such a cp exists, (2.4) becomes 

(2.5) II (x.-x.) 
l~i<j~n 1 J 

L weT) sgn(T). 
T 

transitive 

Any transitive T corresponds to a ranking pennutation 1t = 1tl 1t2 ... 1tn, such that 

1ti wins n - i games. For such T, 

n-l 0 
weT) = x··· L 1t 1 ·"'1t n 

Also, sgn(T) = (_l)m, where m is the number of inversions of 1t. This is precisely 

the definition of the sign of the pennutation 1t, so (2.5) becomes 

(2.6) II ) ~ .1 0 (x. -x. = ~ sgn(1t) Xx •.. x . 
l~i<j~n 1 J It 1 1t n 

But the right-hand side of (2.6) is the definition of the determinant in (2.1). 

The proof then hinges on the involution cp. We need first a characterization of 

non-transitive tournaments that you are asked to show in Exercise 17. 

PROPOSITION 2.1 T is a non-transitive tournament if and only if T has two vertices 

with equal out-degree. 

Proof Exercise. 

The sequence of out-degrees, or wins, (al'~' .. , ,an) is called the score 

vector a of T. Choose the lexicographically first pair (i, j), i < j, such that ai = aj" 

For example, the tournament below has score vector (2, 3, 0, 3, 2, 6, 5); choose i = 

1 and j = 5. 
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1 

7 

3 

5 

Assume, without loss of generality, that the directed edge between i and j is i ~ j. 

Consider all the other vertices k. The vertices i, j and k will form one of four 

kinds of triangles: 

k k 

& 
J 

& 
1 J 

j 

The tournament <p(T) is obtained from T by reversing all of the directed edges 

on triangles of types (I) and (II). At least one such triangle must exist because i and j 

have the same out-degrees, but the edge i ~ j contributes one to the out-degree of i 

and zero to the out-degree of j. In the example above, i = 1 and j = 5; the triangles 

1-5-7, 1-5-6, and 1-5-2 are type (III); the triangle 1-5-3 is type (IV); and the 

triangle 1-5-4 is type (I). There are no type (II) triangles. These triangles are 

indicated in the drawing below; all other triangles have been omitted. 
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7 

5 

The involution cp reverses the edges of the 1-5-4 triangle: 

5 

Thus cp produces this tournament: 
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1 2 

7 

3 

5 

Certainly the out-degrees of all vertices k:l- i or j are unchanged by cpo But 

what about ~ and ~? Let ~i and ~ denote the out-degrees of i and j in cp(T). 

Notice that the only contribution to ~ comes from triangles of type (II) and type (IV), 

plus the i ~ j edge, while the only contribution to ~ comes from triangles of type 

(I) and type (IV). But the only contribution to ~ is from triangles of type (I) and type 

(IV), while the only contribution to ~ is from triangles of type (II) and type (IV), plus 
,., ,., 

the i ~ j edge. This means that ~ = ~ and ~ =~. Since ai = aj , they are all equal. 

This shows that 

(2.7) w(T) = w(cp(T». 

Reversing an edge changes the sign of T. Since cp reverses two edges per type (I) or 

type (II) triangle and also reverses i ~ j, it reverses an odd number of edges and so 

(2.8) sgn(T) = - sgn(cp(T». 

It remains to show that cp is in fact an involution on non-transitive tournaments. 

Since cp fixes the score vector of T, the fIrst pair i < j in cp(T) such that ai = ~ is 

the same as that pair for T. Finally, reversing the edges in types (I) and (II) preserves 

these types. So if cp is applied to cp(T), the same edges are again reversed; thus 

cp(cp(T» = T. 
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§4.3 The Cayley-Hamilton Theorem 

In this section we give a combinatorial proof of the Cayley-Hamilton Theorem. 

This proof once again uses a sign-reversing involution. It is due to Straubing [Str]. 

THEOREM 3.1 Let A be any n x n matrix over any field. Let p A (A.) = det(A.I - A) 

be the characteristic polynomial of A. Then PA(A) = o. 

It might seem surprising that a theorem from linear algebra has a combinatorial 

proof. However, sign-reversing involutions are a perfectly suitable tool for handling 

determinants, because determinants are signed sums of products of the entries of a 

matrix. In fact, it can be argued that the combinatorial proof we give here is the most 

"natural" proof because it does not depend upon the field of scalars. Proofs of this 

theorem from algebra usually fIrst prove a weak: version for diagonal or triangular 

matrices and then "extend" to all matrices. However, this extension requires that the 

scalars be the complex numbers, and some major theorem, such as the Fundamental 

Theorem of Algebra or Taylor's Theorem, must be used to eliminate the dependence 

on the complex numbers. 

Proof We begin by writing the characteristic polynomial as a signed sum of products 

n 

(3.1) L sgn(1t).n (A.I-A)ilt(i)' 
ltESn 1=1 

Each fixed-point i of 1t (i. e., 1t(i) = i) will contribute either A. or -ail to the 

product, while each non-fixed-point i will contribute -ailt(i)' Equation (3.1) can now 

be written 

(3.2) L sgn(1t) L lSI n-ISI 
(-1) A. n ai It(i)' 

iES ltESn Sc[nJ 

where the subset S c [n] is any subset which satisfies 

(3.3) [n] - S c fixed points of 1t = F(1t). 

Note that since 1t fIxes everything in [n] outside of S, we may regard 1t as a 

permutation of the elements of S. Let P(S) denote the set of permutations of S. The 

sign of 1t will be the same when it is regarded as a permutation in P(S). So we may 
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reorder the sum in (3.2) and organize by lSI: 

n 

(3.4) PAO") = 1: ).n-k 1: 1: sgn(1t) (_I)k.n ailt(i). 
k = 0 ISI=k ltep(S) 1 e S 

It is well-known that the sign of a permutation is the product of the signs of its 

cycles,andthatthesignofacycleoflength r is (-ly-l. So each cycle in 1t 

contributes (-IY to (_I)k and (_I)r-l to sgn(1t). Thus the total contribution ofa 

given cycle to (-I)k sgn(1t) is -1 and (-I)k sgn(1t) can be replaced with (_I)d(lt), 

where d(1t) is the number of cycles in 1t 

(3.5) 

We can visualize a typical permutation 1t e peS) as a directed graph on the 

vertices [n], with edges i ~ 1t(i). This is the graph G1t we encountered in §3.2. In 

this graph, each vertex in S will have in-degree and out-degree equal to one. Also, 

each edge i ~ 1t(i) will be given a weight ilm(i); and each cycle 1t will correspond 

to a cycle in the graph and will be given the sign -1. Then the weight of 1t will be 

w(1t) = n ailt(i) 
ieS 

and the sign of 1t will no longer be the ordinary sign of a permutation, but will be 

sgn*(1t)= (_I)d(lt). In the example below, n=9, S={1,4,6,9} and 1t= 

(146) (9). Then w(1t) = a14a46a61~ and sgn*(1t) = +1. 

s/~ 9 " 2 

I" 4 " 6 
'--_________ ---J " 8 

" 3 
" 5 

" 7 
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Next, replace A. in (3.5) with A. We wish to describe the ij-th entry of the 

resulting matrix. 

o 

(3.6) L (Ao-k ) .. L L (_I)d(1t) II atlt(t). 
k = 0 1) ISI=k ItEP(S) t E S 

This involves describing (AO-k)ij" This is clearly 

We visualize a term in this sum combinatorially as a directed path P of length n - k 

from i to j on the vertices [n]. Moreover, let the weight of P, w(P), be the 

product of the weights of the edges of P where the weight of an edge is as above: 

wee) = aij if e = i -7 j. Then w(P) is exactly a term in this sum. 

We may now give a complete combinatorial description of the right hand side of 

(3.6). Let (S, 1t, P) be a triple such that 

(a) S is a subset of [n]; 

(b) 1t is a permutation on S; and 

(c) P is a directed path from i to j oflength n -lSI with vertices in [n]. 

The weight of the triple, w(S, 1t, P), is w(P) w(1t) and the sign of the triple, 

sgn(S, 1t, P), is sgn*(1t). Then the ij-th entry of PA(A) is the generating function 

(3.8) (PA(A»ij = L w(S, 1t, P) sgn(S, 1t, P). 
(S, It, P) 

Clearly, the set of such triples, Sij' is a signed set. To prove the 

Cayley-Hamilton Theorem, we need to show that (3.8) is zero. Thus, we require a 

weight-preserving, sign-reversing involution <p on Sij" 

We can visualize a triple (S, 1t, P) E Sij as a directed multi-graph on the 

vertices [n] with two kinds of edges: the edges from 1t and the edges used in P. 

Note that the path P may use an edge more than once and may also use edges in 1t; 

hence the graph is a multi-graph. As an example, let n = 9, i = 2, k = 4, and j = 5. 

Choose S ={l, 4, 6, 9}, 1t =(146) (9) and P = 211515. 
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:~~"s 0 
• 4 . 6 9 

l=v 

=1& 

=p 

• 5 

As another example with the same n, i, j, S and 1&, let P = 253215. 

If cp is weight-preserving, it should preserve the edges of this multi-graph. If 

cp is sign-reversing, it should change the number of cycles in 1& by one. We look for 

such an involution. 

Note that either the path P intersects 1& or P contains a cycle. For if P did 

not intersect 1&, it would be a graph on n - lSI vertices with n - lSI edges, and 

would therefore have a cycle. 

Let v be the fITst vertex in P such that either 

(1) v is in 1&, or 

(2) v completes a cycle in P. 

By the preceding discussion, at least one vertex satisfying (1) or (2) must exist. So 

we can choose the frrst such vertex. Furthermore, this vertex cannot satisfy bQ1h (1) 

and (2); for if v is in 1& and completes a cycle in P, it was encountered in P before 

and would have satisfied (1) at that point. In the frrst example above, v = 1 and is 

chosen by (1); in the second example, v = 2 and is chosen by (2). 

We can now define cp(S, 1&, P) = (S, ;t, P). Suppose v satisfies (1); let C be 
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the cyCle of 1t containing v. Let P be P with C inserted at the position of v. Let 

S be S with the vertices in C removed. Let it be 1t with C removed. Note that 

the second occurrence of v in P now completes a cycle in P. No earlier vertex in 

P satisfies (2): those up to and including the first occurrence of v are the same as in 

P and they did not satisfy (2) in P; those between the two occurrences of v were on 

C and therefore could not have been encountered before v in P. Therefore 

(S, it, P) satisfies (2). In our first example, S = {9} and P = 214611515: 

7 
3 

Now suppose v satisfies (2); let C be the cycle in P just completed. Then C 

will be a cycle from v to v in P. Let P be P with C removed (including one 

occurrence of v). Let S be S with the vertices in C added. Let it be 1t with the 

cycle C added. This construction is legal because no vertex before the second 

occurrence of v could be in 1t or could be a repetition in P. Note that the first 

occurrence of v in P now satisfies (1) because v is now in 1t. In our second 

example, S = {I, 2, 3, 4, 5, 6, 9} and P = 215: 

7 

8 . 
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Since <p sends triples satisfying (1) to triples satisfying (2) and vice versa, <p 

is an involution. Furthermore, <p either removes or adds one cycle to 1t, so it is 

sign-reversing. Finally, all the edges of the graph of the triple remain, so it is 

weight-preserving. 

§4.4. The Matrix-Tree Theorem 

Suppose G is a labeled graph. A spanning tree of G is a tree with the same 

vertex set as Gand with an edge set that is a subset of the edges set of G. We may 

then ask how many spanning trees does G have? The answer is given by the 

matrix-tree theorem. 

nmOREM 4.1 Let G be a labeled graph on [n]. Then the number of spanning trees 

of G is any cofactor of the n x n matrix D - A, where D is diagonal, (D)ii = di, 

the degree of vertex i, and (A)ij = 1 if i - j, i;t j, is an edge of G and (A)ij = 0 

otherwise. 

For example, if G = K3, the complete graph on 3 vertices, then 

[ 
2 -1 -1 1 

(4.1) D-A= -12-1 

-1 -1 2 

and any cofactor of D - A has the value 3. So K3 has 3 spanning trees. 

If G =~, Theorem 4.1 gives nn-2 as the number of spanning trees (see 

Exercise 22). So Theorem 4.1 gives another proof of Cayley's Theorem (Theorem 

2.1 in Chapter 3). 

In this section, we prove Theorem 4.1 using a sign-reversing involution <p. 

This proof is due to Chaiken [Ch] and is very similar to the proof of the previous 

section. However, this time <p will have a fIxed point set. 

Proof It is more convenient to work with rooted labeled trees. Let ('In be the rooted 

trees on [n] with root n. Such trees will be considered directed, with each edge 

directed toward the root. Suppose T E ('In' For each directed edge e = i ~ j of T, 

assign the weight wee) = aij. As in the previous section, weT) is the product of the 

weights of edges in T. For example, if n = 7 and 
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7 

T ~3 - /-, -, 
5 - - -2 6 

then w(T) = a17a47a37~4a64a53. Thus, w(T) is a monomial in the variables aij' 

1 :::; i ;t j :::; n. 

Let it denote the variables aij' 1:::; i, j :::; n. The generating function for the 

trees in <l n is given by 

(4.2) 

To count the number of spanning trees of G, merely put aij = aji = 1 for each pair 

(i, j) that is an edge in G and aij = aji = 0 for each pair (i, j) that is not an edge in 

G. 

Let us now identify fn+ 1 (it) as an n x n determinant. 

PROPOSITION 4.2 Let ~ = ail + ai2 + ... + ai n+ l' 1:::; i :::; n. Then fn+ 1 (it) = 

det (Ri 0ij - aij), 1:::; i, j :::; n. 

Note: For n = 2, Proposition 4.2 is 

(4.3) 

which is the generating function for the three rooted labeled trees on [3]. 
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Clearly, Proposition 4.2 implies the matrix-tree theorem for the (n+ 1, n+ 1) cofactor 

and thus for the (i, i) cofactor. It can be adapted for the (i, j) cofactor, but we do 

not do so here. 

Proof of Proposition 4.2 Proceeding as in the derivation of (3.5) in §4.3, we get 

(4.4) det (Ri8ij-aij) = L L 
Sc [n] 7tEP(S) 

(_I)d(7t) w(1t) n Ri , 
i E [n]-S 

where S is a subset of [n], 1t is a permutation of S with d(1t) cycles, and the 

weight of 1t, w(1t), is 

(4.5) w(1t) = n ai7t(i)' 
iES 

The only difference between (4.4) and (3.5) is that 

n Ri 
i E [n]-S 

replaces A. o-ISI. Expanding this product gives 

(4.6) 

where 

(4.7) 

So 

n Ri 
i E [n]-S 

L w(f), 
f:[n]-S ~ [n+1] 

w(f) n ai f(i)' 
i E [n]-S 

(4.8) det (Ri8ij-aij) = L L L (_I)d(lt) w(1t) w(f). 
Sc [n] 7tEP(S) f:[n]-S ~ [n+1] 

The combinatorial description of the right-hand side of (4.8) is the set of triples 

(S, 1t, f) such that 

(a) S is a subset of [n]; 

(b) 1t is a permutation on S; and 

(c) f is a function from [n] - S to [n+ 1]. 
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The weight of a triple, w(S, 1t, t), is w(t) w(1t); the sign of a triple, sgn(S, 1t, t), 

is sgn*(1t) = (_l)d(7t), as in §4.3. To prove Proposition 4.2, we must find a 

weight-preserving, sign-reversing involution cp on these triples. 

Such a triple can be represented as a directed graph on [n+ 1] with two kinds of 

edges: those which represent 1t, as in §4.3; and those which represent f, that is, an 

edge i ~ j if f(i) = j, or the functional digraph of f (see Exercise 13 of Chapter 3). 

For example, if n = 10, S = {3, 5, 7, 8, 9}, 1t = (398) (5) (7) and 

f=(1246lO) 
114237 ' 

then this triple can be represented: 

./,\.~ 
11 

t 
-,... ! 1 

=f 

=1t 

8 3 6 2 • 

c· . 
(~) 7 10 

C·5 [n]-S 4 

As another example, let n = lO, S = {3, 5, 7, 8, 9}, 1t = (398) (5) (7) and 

f = ( 1 2 4 6 10) 
4 1118 10 . 

3 S 

./c,\ .. 
9 8 

C· 5 

C· 7 

11 

t 
-. 14 

6/ o ·1 . i [n]-S 
lO ·2 
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Once again, <p will change the number of cycles of It by exactly one and will 

preserve all the edges in the graph. Let C be the cycle in this graph with the smallest 

vertex. Define <peS, It, f) = (S, it, f) as follows. If C is in It, let S be S with 

C removed, l be f with C added, and it be It with C removed. If C is in f, 

let S be S with C added, l be f with C removed, and it be 1t with C added. 

In the first example, S = {2, 3, 4, S, 7, 8, 9}, it = (24) (398) (S) (7) and 

l = (1 6 10) 
113 7 

to give the graph: 

2 .... C '. 4 ...... .... 
S ? 

./~.~ I---. 
8 3 6 

a . 10 
7 

C·s 

In the second example, S = {5, 7}, it = (S) (7) and 

f = (1 2 3 4 6 8 9 10) 
4191183810 

to give the graph: 

S 

C·s 
C·7 

t11 

! 1 

[n]-S 

.11 
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Clearly, <p is sign-reversing and weight-preserving; also <p2 = id because C 

will move back to its original position. What are the fIxed-points of <p? They will be 

those triples (S, 1t, f) with IlQ cycles. Thus, 1t is empty, S = 0, and the graph of 

f: [n] ~ [n+l] has no cycles. This graph must then be a tree, with every edge 

directed along the path toward n + 1, that is, a tree in Cln+1• Conversely, any tree in 

Cl 1 naturally defines such a function f. The example at the beginning of this 
n+ 

section corresponds to the function 

f = ( 123456) 
747734· 

So the right-hand side of (4.8) becomes 

(4.9) 

which is exactly what Proposition 4.2 claimed. 

§4.S Lattice Paths 

Franklin's proof of the pentagonal number theorem appeared in 1881. Another 

early sign-reversing involution, called the reflection principle, was given by Andre in 

1887. This time the signed set S = S+ u S- consists of certain lattice paths in the 

plane. The involution reflects a lattice path through a line to obtain a new lattice path. 

In this section we use the reflection principle for the generalized ballot problem. We 

also use a related idea (due to Gessel and Viennot) to relate determinants of binomial 

coefficients to non-intersecting lattice paths and column strict tableaux. We prove a 

formula of Frobenius, which is a precursor of the hook formula for standard tableaux 

(Theorem 5.4 of Chapter 3). 

In Chapter 3, we saw that the Catalan number Cn was the solution to the ballot 

problem: if candidates A and B both receive n votes, how many ways are there to 

count the votes so that A is never behind B? We give an alternative proof here, 

which uses the reflection principle. Represent any sequence of 2n votes as a lattice 

path (up for A, down for B) with unit steps, beginning at the origin. For example, 

ABAABABBAAABBABB is represented by 
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(0,0) (2n, 0) 

Clearly there is a bijection between all sequences of 2n votes and such lattice paths. 

Moreover, if A and B have the same number of votes, n, the lattice path ends at 

(2n, 0). The condition that A is never behind B is equivalent to the lattice path 

remaining at or above the x-axis. 

Before defining the signed set S = S+ u S-, we make a minor change in the 

lattice paths we want to count. Any lattice path on or above the x-axis can be 

displaced vertically by one unit to a lattice path which lies strictly above the x-axis. 

That means there is a bijection between solutions to the ballot problem with 2n votes 

and lattice paths from (0, 1) to (2n, 1) which lie strictly above the x-axis. 

Now let S+ be the set of all lattice paths from (0, 1) to (2n, 1). Let S- be 

the set of alllattice paths from (0, -1) to (2n, 1). Clearly, IS+I is 

(~) 

We will define a sign-reversing involution cp on S+ u S- whose fixed point set 

F(cp) consists exactly of the solutions to the ballot problem, all of which are in S+. 

Thus, 

To define cp, note that any path P in S- 1D.!.W cross the x-axis. Let m be 

the smallest x-coordinate such that P crosses the x-axis at m. Reflect the initial 

segment of P from x = ° to x = m across the x-axis to obtain the new path cp(P). 

Note that cp(P) E S+. Clearly cp is similarly defined for all P E S+ which touch or 

cross the x-axis and cp2 = id. The fixed points of cp are those paths P in S+ which 

do not touch or cross the x-axis. 
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,';'~~ <P(p) 
A.,' ~~ , ~V ~ 

~~ 
(2n, 1) (0, 1) 

(0,-1) 

It is clear that this principle works for a more general ballot problem. Suppose 

A and B receive nand m votes respectively, n ~ m. How many ways are there to 

count the votes so that A is never behind B? This time we consider lattice paths from 

(0,1) to (n+m, n-m+l). The reflection principle gives us the answer immediately: 

( n+m) _ (n+m) = n+ I-m (n+m) 
n n+l n+ 1 n· 

The reflection principle was generalized by Gessel and Viennot [Ge-V] to allow 

k-tuples of lattice paths. They showed that there are many relationships between lattice 

paths, determinants and tableaux. We will present a few of these. 

It is more convenient if we "tilt" our pictures 45°. A lattice path P will no 

longerconsistofsteps (1,1) (up) and (1,-1) (down), but horizontal (1,0) and 

vertical (0, 1) steps. For example, a lattice path P from (1, 1) to (4,3) could be: 

(4,3) 

(1, 1) 

(0,0) 

It is easy to see that such lattice paths are equivalent to the up-down lattice paths of the 

ballot problem. In fact, a solution to the ballot problem corresponds to a lattice path P 

from (0, 0) to (n, n) which always lies at or above the line y = x. 

The lattice paths we will consider always begin on the line y = 1. Let us write 

P: (a, 1) ~ (b, N) to mean a lattice path from (a, 1) to (b, N). How many P are 

there such that P: (a, 1) ~ (b, N)? Clearly, this number is 
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( N+b-a-l) 
b-a . 

Now fix integers 0 < al < ~ < ... < ak and 0 < bl < b2< ... < bk and N, and let S 

be the set of pairs (0, (Pl , P2, ... , Pk» where 0 is a permutation of [k] and 

(Pl' P2, .•. ,Pk) is a k-tuple oflattice paths such that Pi: (ai' 1) ~ (ba(i)' N). For 

example, let k = 4, (al' a2, a3, a4) = (1, 3, 4, 5), (bi' b2, b3, b4) = (3, 5, 6, 7), 

N = 5 and 0 = (1) (2) (34). 

(3, 5) (5,5) (6,5)(7, 5) 

(1, 1) (3, 1) (4, 1) (5, 1) 

How many such k-tuples are there such that!lQill< of the lattice paths intersect? 

THEOREM 5.1 The number of k-tuples of lattice paths (Pl' P2, ••• ,Pk) such that 

(i) Pi: (ai' 1) ~ (bi, N), 1 ~ i ~ k, and 

(ii) any two paths Pi and Pj do not intersect 

is det M, where M = ~j) is a k x k matrix with 

Proof Let's begin with a simple example: al = 3, ~ = 4, bl = 4, b2 = 6 and N = 

4. Then Theorem 5.1 says there are 

(1)(g) - (6)(~) =20 

such pairs (P l' P 2)' This special case is easy to prove and tells us how to proceed in 
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general. There are certainly 

(i)(~) 

pairsofpaths (Pl'P2) such that Pl:(3,1)~(4,4) and P2:(4,1)~(6,4). 

From these pairs we must exclude all pairs (there will be 

(6)(~) 

of them) (PI' P 2) which intersect. If PI and P 2 intersect, let m be the last point of 

intersection. Construct (PI' P 2) = <p(P l' P 2) by interchanging the paths from m to 

the endpoints. Then PI: (3, 1) ~ (6, 4) and P2 : (4, 1) ~ (4,4). 

(4,4) (6,4) (4,4) (6,4) 

Plr~ 
(3,1) (4,1) 

cp _..t-:J 
PI I I 1'2 
(3,1) (4,1) 

Any such pair (PI' P2) must intersect so <p is a bijection to all such pairs. There are 

clearly 

(6)(~) 

pairs (PI' P2). 

Recall that S is the set of k-tuples of paths (P l' P 2' ... , P k)' together with 

the permutation o. The sign of 0 makes S into a signed set. Clearly, 

which is det M in Theorem 5.1. All that is necessary is a sign-reversing involution <p 

on S whose fixed point set F(<p) is given by (i) and (ii) of Theorem 5.1. 

The "bad" elements of S are those with paths which intersect. These are the 

ones on which we must define <po Let (0, (P1' '" ,Pk» E S be such that at least 

two paths of (PI' ... ,P k) intersect. Choose the first pair i < j in lex order such that 
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Pi intersects Pi. Construct new paths i\ and Pi as before by switching the tails 

after the last point of intersection of Pi and Pi. Now the path Pi will end at 

(baO)' N) and Pi will end at (ba(i)' N). Since ao(i j) sends i to aU), j to a(i), 

and t to a(t) for t ¢ i, j, we let 

Clearly cp is now sign-reversing. Since the first intersecting pair i < j is not affected 

by cp, cp is an involution. The only paths (Pl' ... ,Pk) which do not intersect have 

a = the identity. 

Consider the example given earlier where k = 4, (al' a2, a3, a4) = (1, 3,4,5), 

(hi' b2, b3, b4) = (3,5,6,7), N = 5 and a = (1) (2) (34). The first pair i < j of 

intersecting paths occurs when i = 2 and j = 3. The last point of intersection of Pi 

and Pi is at (5,3). The new 4-tuple of paths is given below. The new permutation 

will be (34) (23) = (243). 

(3, 5) (5,5) (6,5) (7, 5) 

(1, 1) (3, 1) (4, 1) (5, 1) 

The involutions in §§4.2, 4.3 and 4.4 were not only sign-reversing, but also 

weight-preserving. Is there a version of Theorem 5.1 that involves weights, i.e, 

generating functions? Can we find a weight w such that w(a, (Pi' ... ,Pk)) = 

w(cp(a, (Pi' ... ,Pk)))? Since cp preserves all the edges in the lattice paths 

(P l' ... ,Pk), any weight which depends upon this set of edges will be preserved by 

cpo Let us describe such a weight Given a path P: (a, 1) ~ (b, N), let Hory(p) be 

the multiset of the y-coordinates of the horizontal steps of P. Let 
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(5.3) w(P)= II 

In this example 

(7,7) 
6 

3 3 

1 
(3, 1) 

Nowextend w to S by w(O', (PI' ... ,Pk» = w(Pl) w(P2) ... w(Pk). By the 

preceding remarks, w is preserved by <po We can now replace the binomial 

coefficients that appear in Theorem 5.1 by generating functions. Given (a, 1) and 

(b, N), we saw that there are 

( N+b-a-1) 
b-a 

lattice paths P: (a, 1) ~ (b, N). But we can also describe the generating function of 

all such paths: 

(5.4) I: w(P). 
P 

Any path P is uniquely determined by its horizontal steps. Thus the terms in (5.4) 

will be monomials 

such that ml + IDz + ... + mN = b - a. Note in particular that (5.4) depends only on 

xl' x2' ... ,xN and b - a. Write 



137 

So Theorem 5.1 can be generalized as follows. 

THEOREM 5.2 Given integers 0 < a1 < liz < ... < ak and 0 < b1 < b2 < ... < bk, let 

M = (Mij) be the k x k matrix with 

Then 

det(M) l: w(Pl)'" w(Pk)' 
(P1 , .. ·,Pk ) 

where the sum is taken over all sequences (PI"" ,P k) of non-intersecting lattice 

paths Pi: (~, 1) ~ (bi, N). 

The function ~(xl' x2' ... ,xN) is called the complete or homogeneous 

symmetric function of degree n; it has the generating function 

There is a surprising connection between a special case of Theorem 5.2 and 

column strict tableaux. Put ~ = i and bi = ~+I-i' 1 ~ i ~ k, for some partition A. 

with k parts, 1.1 ::!: ~ ::!: ... ::!: ~. 

PROPOSITION 5.3 There is a weight-preserving bijection !p between 

non-intersecting paths (PI"" ,Pk), Pi: (i, 1) ~ (~+I-i + i, N) and column strict 

tableaux of shape A. with entries from [N]. 

Proof The bijection !p is easy to describe. Take as an example k = 4, A. = 
(5, 3, 2, 2) and N = 6. Here is a set of 4 non-intersecting paths: 
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6 6 

4 4 4 4 

3 3 

2 

Each horizontal edge is labeled with its y-coordinate. Place these entries of path 

Pk+1- i into row i of the tableau T, 

1 2 

T = 3 3 5 
4 4 
6 6 

Why is T column strict? Certainly it has shape A. and is weakly increasing 

across rows. Let Tij be the entry in row i, column j of T. Then the paths P k-i 

and Pk- i+1 (which correspond to rows i + 1 and i respectively in T) begin their 

jth horizontal edge at x = k - i + j -1 and x = k - i + j respectively. Since Pk- i is 

to the left of Pk- i+1, the jth horizontal edge of Pk- i must be strictly above the jth 

horizontal edge of Pk- i+1• Thus Tij < T i+1j. 

The inverse of <p is also easy. Given a tableau T, the entries in row i of T 

determine the horizontal steps of Pk- i+l' and thus the entire path Pk- i+1• The paths 

again do not intersect because T is column strict. 

The weight of a column strict tableau T, w(T), is defmed by 

(5.7) w(T) = II xi' 

In our example, 

entries 
i ofT 
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w(T) = 

This obviously makes <p weight-preserving. 

Theorem 5.2 can now be applied to tableaux. 

COROLLARY 5.4 If A is a partition of N with k parts, 

where 1 ~ i, j ~ k and KA, p is the Kostka number of §3.5. 

• 
In Corollary 5.2 of Chapter 3 we showed that KA, p = KA, p" if p' is any 

reordering of p. This statement is obvious from Corollary 5.4, because each entry in 

the determinant is a symmetric polynomial in Xl' X2' ... , XN. 

The symmetric polynomial in Corollary 5.4 is called the Schur function and is 

denoted sA,(xl' ... , xN)· 

Corollary 5.4 can now be used to prove a formula of Frobenius (1899) for the 

number of standard tableaux of shape A. 

PROPOSITION 5.5 For any partition A of N, 

k 
dA,= N! II [(At+k-t)!rl II (A.-i-A.+j), 

t = 1 l~i<j~k 1 J 

Note: For A = (4, 2, 2), Proposition 5.5 gives d422 = 56, which agrees with the 

result from the hook formula of §3.5. In fact, the Frobenius formula can be shown to 

be equivalent to the hook formula, Theorem 5.4 of Chapter 3. You are asked to do 

this in Exercise 29. 

Proof Since dA, = KA, P' P = IN, we see that dA, is the coefficient of Xl X2 ••• xN in 
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(5.8) 

Such a monomial can be created by selecting a square-free monomial from each 

hk, k = Ai - i + o(i), with the product of these monomials equal to Xl X2 ... xN. The 

number of ways of doing this is easily seen to be the multinomial coefficient 

So (5.8) implies 

(5.9) dA. = N! det [[(Ai - i + j)W1], 1 ~ i, j ~ k. 

By factoring out entries in the last column, we get 

(5.10) 
k 

dA.= N! II [(At+k-t)!r1det[(A.-i+j+I) ···(A.-i+k)], 
t = 1 I I 

where 1 ~ i, j ~ k. Let P kj(x) be the polynomial in X of degree k - j 

(5.11) Pkj(x) = (x + j + 1) ... (x + k) 

so that 

k 
(5.12) d A. = N! II [( At+k-t )!] -1 det [Pk. (A i - i)], 1 ~ i, j ~ k. 

t = 1 J 

By column operations which do not change the value of the determinant, 

(5.13) 
k 

d A. = N! II [( At+k-t )!r1 det [( A i -i )k-j], 1 ~ i, j ~ k. 
t = 1 

This determinant is Vandermonde's; the evaluation given in (2.1) gives Proposition 

5.5. 

The reader can try to evaluate det M for Xl = x2 = ... = xN = 1 in Theorem 

5.2. The result is the number of column strict tableaux of shape A with entries in 

[N]. 
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§4.6 The Involution Principle 

Thus far we have seen several examples of sign-reversing involutions on signed 

sets. Now suppose we have two signed sets, A = A + U A-and B = B+ U B-. We 

say that there is a signed bijection between A and B if there is a sign-reversing 

involution cp with no fixed-points on Au B, where (A u B)+ = A + u B- and 

(A u B)- = A - U B+. Notice that this implies that IIAII = IIBII. For example, any 

point in A + is identified with either a point in A - (a cancellation) or a point in B+. 

When A and B are not signed, i. e., A + = A and B+ = B, then cp is an ordinary 

bijection between A and B. 

Garsia and Milne [Ga-M] discovered a general method of constructing signed 

bijections. 

THEOREM 6.1 Let A beafinitesignedset, A=A+uA-, with sign-reversing 

involutions cp and 'I' whoseflXed-pointsetsare F(cp) and F(W) respectively. Then 

there is a signed bijection y between F(cp) and F(W). Funhermore, y can be 

constructed using the following algorithm: 

ALGoRITHM 21: Involution Principle 

begin 

if cp(x) = x then 

yf-X 

repeat 

z f- W(y) 

y f- cp(z) 

until cp(z) = z or W(y) = y 

if cp(z) = z then 

')'(x) f- z 

else 

')'(x) f- Y 

else if W(x) = x then 

yf-X 

repeat 

Z f- cp(y) 

Y f- W(z) 

until W(z) = z or cp(y) = y 

if W(z) = z then 

')'(x) f- z 
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else 

y(x) f- y 

else 

{x is not a fixed point of cp or V} 

end. 

Proof We construct a graph G whose vertices are elements of A. The edges of G 

are labeled cp or '1', with the cp-edges given by (x, cp(x)) for x E A - F(cp) and the 

v-edges by (x, Vex)) for x E A - F(V). For example, if the involution cp is given 

by this picture: 

and the involution 'I' by this picture: 

1 3 12 
11 

2 

15 
13 23 

14 24 

then the graph G looks like this: 
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<p + '" - <p +'" - <p + 

22 11 23 12 24 10 
+ + <p - '" + <p -'" + 

• 
9 19 7 18 6 

'" <p 
+ '" -

<p 
+ '" -. 

5 16 4 17 

t ... ... 
8 20 21 

+ 

Oearly the degree of any vertex of G is at most 2, so the connected components of 

G consist of isolated points, chains or cycles. Also, elements of F( <p) and F(",) 

will be isolated points or endpoints of chains. If x E A is isolated, then 

XE F(<p) nF(",) so Algorithm 21 will give y(x) = x. 

Suppose x E F( <p) is the end of a chain. The edges of this chain must alternate 

labels <p and ",. If the last edge in the chain is labeled "', the other endpoint y of 

the chain must be in F( <p). In this case there will be an odd number of edges in the 

chain, so x and y have opposite signs. In the example above, x = 5 and y = 17 

are connected by such a chain. 

If the last edge in the chain is labeled <p, the other endpoint y of the chain must 

be in F(",). There will be an even number of edges in the chain, so x and y have 

the same signs. In the example above, x = 6 and y = 9 is such a chain. 

Note that Algorithm 21 merely constructs values along the chain until the other 

end is reached. 

Frequently, the involution principle gives an explicit bijection between two 

apparently unrelated sets. In practice, the sets F(<p) and F(",) may be very small 

subsets of A. The number of iterations in Algorithm 21 can be very large, and 

depends on the element chosen. 

Garsia and Milne used the involution principle to give the first proof using a 

bijection of the Rogers-Ramanujan identities. 

'DIEOREM 6.2 The number of partitions of n whose parts are congruent to 1 or 4 
mod 5 is the same as the number of partitions of n into distinct parts whose 
consecutive parts differ by at least two. 

Garsia and Milne discovered a large signed set A which contained the two sets 

of partitions in question, and they found two involutions whose fixed point sets were 
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these two sets. Thus, they had found a bijection between the two sets. 

As an example of Theorem 6.2, if n = 12, there are 9 partitions in each set: 

111,913,62,6412,616,43,4214,418 and 112 with parts congruent to 1 

or 4 mod 5; and 12, 11 1, 102, 93, 84, 83 1, 75, 74 1 and 642 whose 

parts differ by at least two. 

We will now give three examples of the involution principle. First we prove 

Euler's theorem. 

THEOREM 6.3 The number of partitions of n into odd parts equals the number of 
partitions of n into distinct parts. 

Proof Let P k be the set of all partitions of k and let EDn-k be the set of partitions 

of n - k into even, distinct parts. Let 

n 

A = U Pk X EDn_k 
k=O 

and define the sign of an element x = (PI' P2) e A by 

sgn(x) = (_l)number of parts of P2 . 

For the involution <p, take the smallest even part e of PI or P2 and move e from 

PI to P2 if e is not in P2. Otherwise move e from P2 to Pl. Clearly <p changes 

the number of parts of P2 by one, so <p is sign-reversing. Also, F(<p) = 

{(P1'0):PI hasonlyoddparts}cA+. As an example, let n=26 and k= 12: 

• • • • • • • • • • • • 
PI • • • P •• • • 

• • • 2~ 

• • 

~1 • 

• • • • • • • • • • • • 
• • • • • • • 
• • • 
• • 

B 
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Now we need the involution V whose fIxed-point set F(V) is 

{(PI,0):PI has distinct parts}. Given (Pl'P2)' let (i,i) be the smallest repeated 

part in PI and let 2j be the smallest part of P2' If i < j or P2 = 0, move (i, i) 

from PI to P2 by creating a part of size 2i; if i ~ j, move 2j from l'2 to PI by 

creating two parts, (j, j), in Pl' In the example below, n = 26 and k = 12. 

• • • • • • • • • • • • 
PI • • • P •• • • 

• • • 2~ 
• • 1 • 

'V 
• • • • • • • • • • • • 
• • • • • • • 
• • • 
• • 

~ 
Again V changes the number of parts of P2 by one. The fIxed point set is what we 

wanted. This completes the proof. 

• 
The involution principle can be extended so that the involutions cp and V act 

on different signed sets A and B respectively. If there is a signed bijection ~ 

between A and B, then there is a signed bijection between F(cp) and F(V). In 

Algorithm 21, replace cp and V with sign-reversing versions of ~, cp 0 ~ and 

V o~. The proof of Theorem 6.1 is much the same, and the picture below gives an 

example. You are asked in Exercise 31 to do a related problem. 

B+ 

V V 
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Remmel [Re] has used this version of the involution principle to give several 

bijections. Here are two. The fIrst is a theorem due to Schur. 

THEOREM 6.3 The number of partitions of n into parts congruent to 1 or 5 mod 

6 equals the number of partitions of n into distinct parts congruent to I or 2 mod 

3. 

Proof The idea of the proof is to defme two signed sets, A and B: A related to the 

mod 6 condition and B to the mod 3 condition. Let us begin with A. Since F(cp) 

c A +, the involution cp should move any partition in A with parts 2, 3,4, 6, 8, .... 

For any partition A. of n, let SA (A.) be the set of these "illegal" parts of A.. For 

example, if A. = 982 73 6212, then S = {9, 8, 6, 2}. 

Now defIne A = {(A, S) : A. partitions n, S c SA (A)} and put sgn(A., S) = 
(-1)151. The involution cp on A merely changes S. Suppose (A., S) E A. If SA(A.) 

is non-empty, insert (delete) its largest element into (from) S to obtain S; cp(A., S) = 

(A., S). For example, 

The fIxed points of cp are those (A., S) such that SA (A.) is empty, that is, A has no 

"illegal" parts. 

The set B is defmed in a similar way. The "illegal" parts are somewhat more 

complicated. There are two kinds of illegal parts: multiples of three, i. e., 3, 6, 9, 

... ; and Wlin of equal parts congruent to 1 or 2 mod 3, i. e., 12,22,42,52, •..• 

For any partition A. of n, let 

11(1..)= {k:k is apart of A and k==O mod 3} and 

Iz(A.) = U2 : j is a repeated part of A., j == 1 or 2 mod 3}. 

Let SB(A.) = 11(1..) u Iz(A.). Put B = {(A., S) : A. partitions n, S c SB(A.)} and put 

sgn(A., S) = (-1 )ISI. Again, the involution 'I' either inserts or deletes an element from 

S. To see which element, we need a weight w on SB(A.). If k E 11(1..), let w(k) = 

k; if j2 E 12(1..), let wU2) = j + j. Given (A., S) E B, if SB(A.) is non-empty, either 

delete or insert the element of SB(A.) with largest weight from S. For example, if A. 

= 6543 31 and S = {6, 42}, then '1'(1.., S) = (6543 3 I, {6}), since SB(A.) = 

{6,42,3} and w(42) = 8 is the largest weight in SB(A.). The fixed points of 'I' are 

those (A., S) such that SB(A.) is empty. 

It remains to construct the signed bijection ~ between A and B. But all that is 
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necessary is to identify the elements XES A (A.) with elements ;;: E SB(A.) in such a 

way that x = we;;:). This bijection is 

6i+2 H (3i+1f; 

6i+4 H (3i+2)2; 

6iH6i; 

6i+3 H6i+3. 

So for (A., S) E A, let ~(A., S) = «A. - S) u S, S) where S is constructed from S 

by the bijection above. Then ~ identifies elements of A with elements of B. Since 

lSI = lSI, the sign is preserved and since the weights are maintained, n is unchanged. 

For example, 

For the last example we take Exercise 16 of Chapter 1: the number of partitions 

of n whose even parts must be distinct is equal to the number of partitions of n such 

that no part is repeated more than three times. Using the previous example as a model, 

we need only identify the "illegal" parts. For the set A, the illegal parts are pairs of 

even parts: {22, 42, 62, ••• }; for the set B, they are quadruples: {14, 24, 34, ••• }. 

The bijection between these two sets is obvious. Thus, the involutions cp and 'If and 

signed bijection ~ can be defined as before. 

Notes 

As the reader can see, there has been much recent interest in involutions. These 

techniques have become particularly popular among a group of French and French 

Canadian mathematicians, including Foata, Joyal, G. Labelle, J. Labelle, Leroux and 

Viennot Other mathematicians who have developed and used these techniques are 

Garsia, Gessel, Milne, Wilf and Zeilberger, to name just a few. 

Andre's example appears in Feller [Fe]. 

Equation (5.8) is called the lacobi-Trudi identity. Schur functions have many 

important applications in and outside mathematics and are closely related to the 

character theory of the symmetric group. Moreover, sign-reversing involutions seem 

to arise frequently and naturally in this theory. 
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Remmel [Re] has given several other applications of the involution principle. 

New applications of the principle are being found with increasing frequency. Many of 

these are too involved to be given here. 

Exercises 

1.[2] Let A be the Boolean algebra Bn with sgn(a) = (-l)lal. Find a 

sign-reversing involution <p on A such that lal and 1<p(a)1 differ by exactly one for 

all a E A. Use the involution given in the introduction to this chapter which proved 

the principle of inclusion-exclusion. What famous identity involving binomial 

coefficients have you proved? 

2.[2] Let A be the k-element subsets of [n], with n even. For each a E A, 

define val (a) to be 

val(a) = ~ i. 
iEa 

Let A+ = {a E A: val(a) is even} and A- = {a E A: val(a) is odd}. Construct a 

sign-reversing involution <p on A which will prove 

+ _ {o ifkisodd 
Ii\: 1- Ii\: I = f/2( nl2) if k . (-1 k/2 IS even. 

In each of the next five exercises, give a generating function proof of the identity 

and then prove it combinatorially with a sign-reversing involution. In each case all the 

parameters may be considered positive integers. Recall from Chapters 1 and 3 the 

combinatorial interpretations of binomial coefficients and Stirling numbers. 

3.[2] 

£ (n) ( k) (_I)k 
k=p k P 

~np (-I)P. 

4.[3] 

o ifmisodd, 

{( ~) (-It ifm = 2k. 



5.[3] 

6.[3] 

7.[3] 
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n 

L Sen, k) s(k, j) Onj . 
k = j 

n 

L sen, k) S(k, j) 0nj . 
k = j 

8.[3] Give a combinatorial proof using a weight-preserving, sign-reversing 

involution. 

n 
xn L Sen, k) (x)(k) (_l)n-k. 

k=O 

9.[3] Give a combinatorial proof using a weight-preserving, sign-reversing 

involution. 
n 

(x)n L sen, k) xk. 
k=O 

10.[2] Give a sign-reversing involution which proves the more general version of 

the principle of inclusion-exclusion: 

N=(S) = L (_dTI-ISI N:;l(T). 
ScTcP 

11.[2] Let P be the set of all partitions and PD be the set of all partitions with 

distinct parts. Let Ilpl\ denote the number that PEP partitions. Then we know 

L x liPIl 
pEP 

1 

O-x)(1-x2) ... 

As in the Euler pentagonal number theorem, PD is a signed set and 



Prove that 

L sgn(p) x iiPIi 
pePD 

(l-x)(I-x2) .. . 

(l-x)(I-x2) .. . 
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(l_x)(I_x2) ... 

1, 

by finding an appropriate involution on the set of ordered pairs (PI' P2)' Pl E P and 

P2E PD. 

12.[2] It is also clear that 

(l_x2)(1_x4 ) .•• 

(l-x)(I-x2) ... 

1 

(1-x)(I-x3 ) ... 

Define a signed set and an involution <p which proves this identity. You should 

consider ordered pairs of partitions, as in Exercise 11. 

13.[2] Define a signed set and an involution <p which proves this identity: 

(l-x)(I-x2) ... (l_xD) 

(l-x)(l-x2) ... 

As in Exercises 11 and 12, consider ordered pairs of partitions. 

14.[3] Write down eight different versions of the identity in Exercise 13. For 

example, here is another: 

(l_xD+l)(1_xD+2) ... 
2 (1- x)(I- x ) ... 

Interpret each of these as an identity involving partitions and give a combinatorial 

proof of each. Some will require sign-reversing involutions. 

15.[3] Define a signed set and an involution <p which proves: 

1 1 1 
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As in Exercises 11 and 12, consider ordered pairs of partitions. 

16.[3] Repeat Exercise 14 for the identity in Exercise 15. 

17.[2] Prove Proposition 2.1. 

18.[1] Let a be the score vector of a tournament T. Show that if exactly one 

three-cycle of T is reversed, a remains unchanged. 

19.[2] (Gessel [Gel) Let G be the bipartite graph whose vertices are the 

non-transitive tournaments on [n], and edges T - TifT can be obtained from T 

by reversing exactly one three-cycle. Show that any connected component of G is 

regular. (An important theorem from graph theory, the matching theorem, then 

implies that G has a complete match.) 

20.[3] The purpose of this exercise is to show that the inversion poset .!In is a 

lattice. For 1t and (J in .!In' we must define their join and meet. Let T 1t be the 

transitive tournament with ranking 1t. Color the edges of T1t blue and red: i -4 j, 

i < j is blue; i -4 j, i > j is red (the upsets). 

(a) Show that (J covers 1t if and only if T (J and T 1t are identical, except 

for a blue directed edge of T 1t which is red and reversed in T (J. 

(b) For a given 1t and (J, show that any transitive tournament T whose 

red edges contain the red edges of T 1t and T (J corresponds to a permutation which 

lies above 1t and (J in .!In. 

(c) Show that there is a unique transitive tournament T satisfying (b) 

whose red set is minimal. This tournament corresponds to the join of 1t and (J. 

(d) How do you define the meet of 1t and (J? 

21.[3] (Zeilberger [Zll) Let Sn denote the permutations of n and for 1t E Sn' 

put w(1t) = al1l(l) ... ~1l(n)' so that 

det(A) = L sgn(7t) w(1t). 
neSn 
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(a) Define a weight-preserving, sign-reversing involution on Sn which 

proves det A = 0 if ali = ~ for 1 SiS n. 

(b) Give a combinatorial proof of det (AB) = (det A) (det B). 

(c) Define A* = ('Yij) with 'Yij= (-li+j det (Aji), where Aji is the ji-th 

minor. Give a combinatorial proof that A * A = (det A) I. 

(d) Give a combinatorial proof of the expansion fonnula for det A along 

the jth row of A. 

22.[2] Prove Cayley's Theorem (Theorem 2.1 of Chapter 3) using Theorem 4.1. 

23.[1] Let hk(xl' ... , xN) be the complete homogeneous symmetric function in 

Xl' ... , xN of degree k. From Section 5 we see that hk(l, 1, ... , 1) = 

24.[2] Use Exercise 23 and (5.8) to find a detenninantal expression for 

:I: qllPll 
P , 

where the sum is over all column strict tableaux P of shape A. and IIPII is the sum of 

entries in P. Can you evaluate your detenninant? 

25.[1] Let Il be a partition of n, III ~ ~ ~ ... ~ Ilk. Define the homogeneous 

symmetric function 

Interpret hll(xl , ... ,xN) as a generating function for a class of multiset pennutations. 

26.[2] Use the Schensted correspondence (Chapter 3) to conclude 
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where sA is as defined in §4.5. 

27.[3] Defme the elementary symmetric functions, ej(xl' ... , xN): 

I: x i1x i2 ... Xij , 

£il'i2····· i j} 
distinct 
in [N] 

and, as in Exercise 25, defme el1(x1, .•• ,xN): 

Interpret el1(x1, •.• ,xN) as an appropriate generating function and use the Schensted 

correspondence to prove 

28.[3] This exercise shows that 

where d(Xl' ... ,xN) is Vandermonde's determinant. Write the left-hand side as 

I: w(1t)w(A 1) .•• w(Ak )sgn(1t), 
(It.A1 ·····A k) 

where 1t E SN (see Exercise 21), Ai C [N], IAil = Ili' 

( N-1 0 
w 1t) = Xn(l) ••• xlt(N) 

and 

Find a sign-reversing involution cp on this set such that F(cp) consists of those 

(1t, A1, ..• ,Ak) such that for all 1 ~ j ~ k, w(1t) w(A1 ) ••• w(Aj) has distinct 

exponents. Show that F(cp) is exactly what is counted by the right-hand side. 
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29.[3] Prove the hook formula (Theorem 5.4 of Chapter 3) using the Frobenius 

formula (Proposition 5.5). 

30.[1] Show that the existence of sign-reversing involutions <p and 'V 

immediately implies IF(<p)1 = IF('V)I, without the explicit bijection given by the 

involution principle. 

31.[2] Suppose A, Band C are three signed sets and suppose <p and 'V are 

signed bijections between A and B and between B and C, respectively. 

(a) Prove that there is a signed bijection between A and C, which might 

be considered the "composition" of <p and 'V. 

(b) The signed bijections <p and 'V might be degenerate in some sense. 

For example, <p might be a "pure" bijection, i. e., <peA +) = B+ and <p(A) = B-. 

Or <p might be a sign-reversing involution on A or B: <p(B+) c A + and 

<pCB) cA -. Determine under what conditions the composition described in (a) 

requires the involution principle. 

32.[ 4C] Program the involution principle and apply your program to Euler's 

theorem. Run your program for various values of n. How does the bijection 

compare with the bijection given in Chapter 3? Guess and prove the theorem. 

33.[ 4C] Suppose A is a signed set and X, YeA, with IXI = IYI = IIAII and 

X n Y = 0. Write a program to construct two random involutions <p and 'V such 

that F(<p) = X and F('V) = Y. Investigate 

(a) the average length of a path from an element in X to an element in Y; 

and 

(b) the average number of cycles in the graph of <p and 'V. 

What conjectures can you make and what theorems can you prove? 

34.[4] This problem is due to BIas and Sagan [BI-Sa] and Zeilberger [Z4]. Let G 

be a simple graph with vertex set Y(G) and edge set E(G). A proper coloring of G 

with k colors is a function from Y(G) to the colors such that no two adjacent 

vertices are given the same color. The chromatic polynomial of G is the function 

Pa(x), the number of ways of properly coloring Y(G) with x colors. For example, 
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the chromatic polynomial of ~ is (x)n. (It is easy to see that Po(x) is a 

polynomial.) Whitney's broken circuit theorem [Whn] gives a combinatorial 

interpretation of the coefficients of the chromatic polynomial in terms of broken 

circuits. Suppose the edges of G are ordered in some way. A broken circuit of G is 

a cycle with the largest edge of the cycle removed. Use the involution principle to 

prove the broken circuit theorem: if IV(G)I = n, the coefficient of kn-i in po(k) is 

the number of edge subsets of size i which do not contain a broken circuit Hint: Let 

A = {(S, f) : S cE(G) and f is any coloring of V(G) which is constant on the 

connected components of the graph generated by S}. Make A into a signed set by 

defining sgn(S, f) = (_l)ISI. Find an involution cp with F(cp) = {(0, f) c A: f is a 

proper coloring of G} and another involution 'If with F('If) = {(S, f) c A: S 

contains no broken circuits}. 



Bibliography 

Undergraduate Texts in Combinatorics 

[Bo] K. Bogart, Introductory Combinatorics, Pitman, Pitman, Massachusetts, 1983. 
[Br] R. Brualdi, Introductory Combinatorics, North Holland, New York, 1978. 
[Li] C. liu, Introduction to Combinatorial Mathematics, McGraw-Hill, New York, 1968. 
[Ro] F. Roberts, Applied Combinatorics, Prentice-Hall, Englewood Cliffs, New Jersey, 1984. 
[Tn] A. Tucker, Applied Combinatorics, Second Edition, Wiley, New York, 1984. 

Graduate Texts in Combinatorics 

[Ai] M. Aigner, Combinatorial Theory. Springer, New York, 1979. 
[Be] C. Berge, Principles ofCombinatorics, Academic Press, New York, 1971. 
[Co] L. Comtet, Advanced Combinatorics. Reidel, Dordrect, Boston, 1974. 
[G-J] I. Goulden and D. Jackson, Combinatorial Enumeration. Wiley-Interscience, New York, 1983. 
[Wi] S. G. Williamson, Combinatoricsfor Computer Science. Computer Science Press, Rockville, 

Maryland, 1985. 

Texts on Combinatorial Algorithms 

[E] S. Even, Combinatorial Algorithms, Macmillan, New York, 1973. 
[Kn] D. Knuth, The Art of Computer Programming, Vol. 3, Addison-Wesley, Reading, 

Massachusetts, 1973. 
[N-W] A. Nijenhuis and H. Wilf, Combinatorial Algorithms, Academic Press, New Yorlc, 1978. 
[R-N-D] E. Reingold, J. Nievergelt, and N. Deo, Combinatorial Algorithms, Prentice-Hall, 

Englewood Cliffs, New Jersey, 1977. 

Other References 

[Ai] M. Aigner, Lexicographic matching in Boolean algebras, J. Comb. Th. B 14 (1973), 187-194. 
[An] G. Andrews, The Theory of Partitions. Addison-Wesley, Reading, Massachusetts, 1976. 
[B-Z] E. Bender and D. Zeilberger, Some asymptotic bijections, J. Comb. Th. A 38 (1985), 96-98. 
[BI-Sa] A. Bias and B. Sagan, Bijective proofs of two broken circuit theorems, J. Graph Th., to 

appear. 



157 

[Bre-Z] D. Bressoud and D. Zeilberger, Bijecting Euler's partitions-recwrence, Amer. Malh. Monthly 
92 (1985), 54-55. 

[Cal R. Canfield, On a problem of Rota, AIlv. in Malh. 29 (1978), 1-10. 
[Ch] S. Chaiken, A combinatorial proof of the all minors matrix tree theorem, SIAM J. Alg. Disc. 

Meth. 3 (1982), 319-329. 
[deB-T -K] N. deBruijn, C. van E. Tengbergen, and D. Kruyswijk, On the set of divisors of a number, 

Nieuw Arch. Wisk. (2) 23 (1952), 191-193. 
[Eh] G. Ehrlich, l.oopless algorithms for generating permutations, combinations, and other 

combinatorial configurations, J. Assoc. Comput. Mach. 20 (1973), 500-513. 
[Fe] W. Feller, An Introduction to Probability Theory 41Id its Applications, VoL 1, Wiley, New 

York, 1957. 
[Fo] D. Foata, On the Netto inversion number of a sequence, Proc. Amer. Malh. Soc. 19 (1968), 

236-240. 
[Fo-Schil] D. Foata and M. Schiitzenberger, Major index and inversion number of permutations, 

Malh. Nachr. 83 (1978), 143-159. 
[Fr] P. Frankl, A new short proof for the Kruskal-Katona Theorem, Disc. Math. 48 (1984), 327-329. 
[Frz-Z] D. Franzblau and D. Zeilberger, A bijective proof of the hook-length formula, J. Algorithms 

3 (1982),317-342. 
[Ga-M] A. Garsia and S. Milne, Method for consttucting bijections for classical partition identities, 

Proc. Natl. Acad. Sci. USA 78 (1981), 2026-2028. 
[Ge] I. Gessel, Tournaments and Vandermonde's determinant,J. Graph Theory 3 (1979), 305-307. 
[Ge-V] I. Gessel and G. Viennot, Binomial determinants, paths, and hook length formulae, Adv. in 

Malh., to appear. 
[Gra] F. Gray, Pulse Code Communication, US Patent 2632058, March 17, 1953. 
[Gre-Kl] C. Greene and D. Kleitman, Proof techniques in the theory of finite sets, in Studies in 

Combinatorics, ed. by G.-C. Rota, Mathematical Association of America, 1978,22-79. 
[0re-K2] C. Greene and D. Kleitman, Strong versions of Sperner's theorem, J. Comb. Th. 20· 

(1976), 80-88. 
[Ja-K] G. James and A. Kerber, The Representalion Theory o/the Symmetric Group, 

Addison-Wesley, Reading, Massachusetts, 1981. 
[Joh] S. Johnson, Generation of permutations by adjacent transpositions, Malh. Compo 17 (1963), 

282-285. 
[Jo-Wh-Wi] J. Joichi, D. White and S. Williamson, Combinatorial Gray codes, SIAM J. Compo 9 

(1980),130-141. 
[Knl] D. Knuth, Permutations, matrices and generalized Young tableaux, Pac. J. Malh. 34 (1970), 

709-727. 
[La] G. Labelle, Une nouvelle demonstration combinatoire des formules d'inversion de Lagrange, Adv. 

in Math. 42 (1981), 217-247. 
[Li-O] J. Littlewood and C. Offord, On the number of real roots of a random algebraic equation (111), 

Mal. USSR Sb. 12 (1943), 277-285. 
[Lot] M. Lothaire, Combinatorics on Words, Addison-Wesley, Reading, Massachusetts, 1983. 
[Lov] L. Lovasz, Combinatorial Problems 41Id Exercises, North-Holland, New York, 1979. 
[Mel] I. Macdonald, Sy_tric/unctions 41Id Hall polynomials, Oxford University Press, 1979. 
[MM] P. MacMahon, Combinatory Analysis. Vol. 1 (1917) and Vol. 2 (1918), reprinted by Chelsea, 

New York, third edition, 1984. 
[Mi] S. Milne, Restricted growth functions and incidence relations of the lattice of partitions of an 

n-set, AIlv. in Math. 26 (1977), 290-305. 
[Mo] J. Moon, Counting Labelled Trees, Canadian Math. Monographs, No.1, 1970. 



158 

[Po) M. Pouzet, Application d'une propriete combinatoire des parties d'un ensemble aux groupes et 

aux relations, Math Z. 150 (1976), 117-134. 
[Ra) G. Raney, Functional composition patterns and power series reversion, Trans. Amer. Math. Soc. 

94 (1960), 441-451. 

[Re) J. Remmel, Bijective proofs of classical partition identities, J. Comb. Th. A 33 (1982), 

273-286. 
[Ri) J. Riordan, An Introduction to Combinatorial Analysis, Princeton University Press, 1980. 

[Sch) C. Schensted, Longest increasing and decreasing subsequences, Canad. J. Math. 13 (1961), 

179-191. 
[Sc) M. P. Schiitzenberger, La correspondance de Robinson, Combinatoire et Representation du 

Groupe Symitrique, Strasbourg, 1976 (D. Foata, Ed.), 59-113, Lecture Notes in 

Mathematics, No. 579, Springer-Verlag, Berlin, 1977. 

[Stal) R. Stanley, Weyl groups, the hard Lefsheftz theorem, and the Sperner property, SIAM J. Alg. 
Disc. Meth. 1 (1980), 168-184. 

[Sta2) R. Stanley, On the number of reduced decompositions of elements of Coxeter groups, Europ. 
J. Combinatorics 5 (1984), 359-372. 

[Sta3) R. Stanley, Theory and applications of plane partitions: part 1, Stud. Appl. Math 1 (1971), 

167-188. 

[Sta4) R. Stanley, Theory and applications of plane partitions: part 2, Stud. Appl. Math 1 (1971), 

259-279. 
[Str) H. Straubing, A combinatorial proof of the Cayley-Hamilton theorem, Disc. Math. 43 (1983), 

273-279. 

[T] H. Trotter, Algorithm 115: Perm, Comm. ACM 5 (1962),434-435. 
[Wh-Wi) D. White and S. G. Williamson, Recursive matching algorithms and linear orders on the 

subset lattice, J. Comb. Th. A 23 (1977), 117-127. 

[Whn) H. Whitney, A logical expansion in mathematics, Bull. Amer. Math. Soc. 38 (1932), 
572-579. 

[Zl) D. Zeilberger, A combinatorial approach to matrix algebra, Disc. Math. 56 (1985), 61-72. 

[Z2) D. Zeilberger, Garsia's and Milne's bijective proof of the inclusion-exclusion principle, Disc. 
Math. 51 (1984),109-110. 

[Z3) D. Zeilberger, A truly refmed bijection among trees, to appear. 

[Z4) D. Zeilberger, personal communication. 



Appendix 

In this appendix we give Pascal procedures for each of the algorithms in the text. We have 
grouped the algorithms roughly according to topic. For instance, the Johnson-Trotter algorithm 
(Algorithm 1) together with its Rank and Unrank algorithms (Algorithms 2 and 3) all appear in the 
section called Permutations. 

This appendix contains only the subroutines associated with the algorithms in the text. 
Input-output programs and drivers have been omitted. 

In order to simplify the parameter passing to the algorithms, some structured data typeS (e. g., 
Pascal records) are used. For instance, the data type permutation contains, in addition to the 
permutation itself, the inverse and the direction vector and the activity set. Furthermore, certain 
parameters have been determined to be global, e. g., N for the listing, ranking and unranking of 
permutatiQlls of [N]. 

As thuc:h as possible, standard Pascal has been used. When non-standard constructs appear, we 
clearly identify them. The procedures were developed on Macintosh Pascal©. 

The form of the listing algorithms has been changed somewhat from what appears in the text to 
isolate input/output as much as possible. Instead of a single program which lists all relevant objects, 
two subroutines are used: GetFirst and GetNext. The parameters used by these two procedures are the 
object and a boolean variable which is true if no more objects are in the list and false otherwise. 
The listing programs are all then virtually the same, except for changes in data types. 

A.1 Permutations 

Note the structured data type for permutations. The permutation length is a global variable. 

const 
MaxLength = 12; 

type 
Vector = array[O .. MaxLength] of integer; 
IndexSet = set of O .. MaxLength; 
Permutation = record 
Inverse, Value, Direction: Vector; 
Activity: IndexSet; 
end; {Permutation} 

var 
N: integer; 

{set of active indices} 

{length of permutation} 
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procedure UnrankPenn (Rnk : integer; var Pi : Permutation); 
var 
j, Oir, PrevRank, Remainder, Count, PrevN : integer; 

begin 
with Pi do 
begin 
for j := 1 to N do 
Value[j] := 0; 

PrevRank := Rnk; 

for PrevN := N dOWDtO 1 do 
begin 
Remainder:= PrevRank mod PrevN; 
PrevRank := PrevRank div PrevN; 
if (PrevRank mod 2 = 1) then 
begin 
j :=0; 
Oir:= 1; 
end {if then} 

else 
begin 
j :=N + 1; 
Oir:= -1; 

end; {else} 
Count:= 0; 
repeat 
j:=j+Oir; 
if (Value[j] = 0) then 
Count := Count + 1; 

until (Count = Remainder + 1); 

Value[j] := PrevN; 
end; {for} 

end; {with} 
end; {UnrankPerm} 

{initialize permutation} 

{amount moved up or down} 
{rank of PrevN-l} 
{even means PrevN moving left; odd means right} 

{initialize at left} 
{moving right} 

{initialize at right} 
{moving left} 

{advance left or right one position} 

{advance count for each index not assigned} 
{quit when count reaches amount to be moved} 

procedure RankPenn (Pi : Permutation; var Rnk : integer); 
var 
i, Moves, Remainder: integer; 

lunction MoveCount (p : integer) : integer; {returns number of numbers <p and left of p in Pi} 
var 
j, Count: integer; 

begin 
Count:= 0; 
with Pi do 
ror j := 1 to Inverse[p] do 
if (Value[j] < p) then 
Count := Count + 1; 

MoveCount := Count; 

{Look at values left of p in Pi} 
{increase Count if they are <p} 



end; {MoveCount} 

begin 

Rnk:=O; 

for i := 1 to N do 

begin 

Moves := MoveCount(i); 
if (Rnk mod 2 = 1) then 

remainder:= Moves 

else 

remainder: = i - 1 - Moves; 

Rnk := i * Rnk + remainder; 
end; {for} 

end; {RankPerm} 
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{initialize rank} 

{calculate number of moves i has made} 

{add them from left if previous rank odd} 

{add them from right if previous rank even} 

{ calculate new rank} 

procedure GetFirstPerm (var Pi : Permutation; var Done: boolean); 

var 
i: integer; 

begin 

with Pi do 
begin 

for i := 1 to N + 1 do 
begin 

Value[i) := i; 

Inverse[i) := i; 
Direction[i) := -1; 
end; {for} 

Value[O) := N + 1; 

Activity := [2 .. N); 
end; {with} 

Done := false; 

end; {GetFirstPerm} 

{Initialize permutation, inverse and direction} 

{Initialize the acti ve set} 

procedure GetNextPerm (var Pi : Permutation; var Done: boolean); 

var 

j, m : integer; 

function LargestActive : integer; 

var 
i : integer; 

begin 

i:=N; 
with Pi do 

while not (i in Activity) do 

i:=i-1; 
LargestActive := i; 

end; {LargestActive} 

begin 

with Pi do 

{returns largest integer in Activity set} 



if (Activity <> []) then 

begin 

Done := false; 
m := LargestActive; 

j := Inverse[m]; 

Value[j] := Value[j + Direction[m]]; 

Value[j + Direction[m]] := m; 

162 

{Activity empty when no more in list} 

{There is another permutation} 

{m is value which will move} 

{j is its position} 

{transpose m with value in direction given by 

Direction} 

Inverse[m] := Inverse[m] + Direction[m]; {also transpose position of m with adjacent one} 

Inverse[Value[j]] := j; 
if (m < Value[j + 2 * Direction[m]]) then {has mreached a boundary?} 

begin 
Direction[m] := -Direction[m]; 

Activity := Activity - [m]; 
end; {if then} 

Activity := Activity + [m + l..N]; 

end {if then} 

else 
Done:= true; 

end; {GetNextPerm} 

A.2 Subsets 

{if so, reverse its direction} 

{and make it passive} 

{if not, make all numbers>m active} 

Note that a K-subset of an N-set is a K-tuple. Both N and K are global. The binomial 

coefficients needed for ranking and unranking are global and are assumed to have been computed. 

const 
MaxSetSize = 10; 

type 

Subset = array[O .. MaxSetSize] of integer; 

Matrix = array[O .. MaxSetSize, O .. MaxSetSize] of integer; 

var 

N, K: integer; 

BinCoef: Matrix; 
{k-subsets ofn-set} 

{binomial coefficients} 

procedure RankSubset (A : Subset; var Rnk : integer); 

var 

i: integer; 

begin 

Rnk:=O; 

for i:= 1 to K do 
Rnk := Rnk + BinCoef[A[i] - 1, i]; 

end; {RankSubset} 
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procedure UnrankSubset (Rnk : integer; var A: Subset); 
var 
p, In, i : integer; 

begin 
m:-Rnk; 
lor i := K downto 1 do 
begin 
p:=i-l; 
repeat 
p:=p+ 1 
until (BinCoef[p, i] > m); 
m:= m - BinCoef[p - I, i]; 
A[i] :-p; 

end; {for} 
end; {UnrankSubset} 

{fmd largest binomial coefficient less than m} 

{reduce rank by that binomial coefficient} 
{the parameters in the binomial coefficient give the set 
value} 

procedure GetFirstSubset (var A : Subset; var Done : boolean); 
var 
i: integer; 

begin 
lor i :- 1 to K do 
A[i] :- i; 
A[K+l]:-N+l; 
Done := false; 
end; {GetFirstSubset} 

{fIrSt subset is 1 2 ..• } 

procedure GetNextSubset (var A : Subset; var Done : boolean); 
var 
i, j : integer; 

begin 
il (A[I] < N - K + 1) then 
begin 
Done := false; 
j :=0; 
repeat 
j :=j + 1 
until (AU + 1] > A[j] + 1); 

A[j] := A[j] + 1; 

lor i:= 1 toj -1 do 
A[i]:= i; 

end {if then} 
else 
Done := true; 

end; {GetNextSubset} 

{when A[I] is too big, last set has been reached} 

{find smallest element that can be advanced } 

{advance it} 
{reset all smaller elements} 
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A.3 Set Partitions 

The main data type consists of a restricted growth function and a vector whose ith component 

is the largest entry the restricted growth function may attain in the ith position. The size of the set 

partitioned is a global variable. The matrix D used in ranking and unranking is global and has been 

computed elsewhere. 

const 

MaxSetSize = 12; 

type 
Vector = array[O.MaxSetSize] of integer; 

Partition = record 

Value, Maximum : Vector; 

end; {Partition} 
Matrix = array[O.MaxSetSize, O .. MaxSetSize] of longint; {Iongint is not standard Pascal} 

var 

N: integer; 

D: Matrix; 

procedure UnrankSetPart (Rnk : integer; var p : Partition); 

var 
i: integer; 

begin 
p.Maximum[1]:= 1; 

p.Value[l] := 1; 
for i := 2 to N do 

{start maximum at 1} 
{fIrst value in RG function} 

if (p.Maximum[i - 1] * D[N - i, pMaximum[i - 1]] <= Rnk) then {do too many D's fIt into Rnk?} 

begin 
p.Value[i]:= pMaximum[i - 1] + 1; {if too many, make Value as large as possible} 
Rnk:= Rnk - p.Maximum[i - 1]· D[N - i, pMaximum[i -1]]; {decrease rank} 

p.Maximum[i] := p.Value[i]; {increase max by one} 

end {if then} 

else 
begin 

p.Value[i] := Rnk div (D[N - i, p.Maximum[i - 1]]) + 1; {if not too many, put them into Value} 

Rnk:= Rnkmod(D[N - i, pMaximum[i -1]]); {decrease rank} 

pMaximum[i]:= pMaximum[i -1]; {max stays same} 

end; {else} 
end; {UnrankSetPart} 

procedure RankSetPart (Pi : Partition; var Rnk : integer); 

var 

i, j : integer; 

v, u : Vector; 

begin 
Pi.Maximum[1] := 1; {Set fJl'St max} 
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for i:= 2 to N do {compute Maximum} 

if (pi.Maximum[i - 1] > Pi.Value[i - 1]) then 
Pi.Maximum[i] := Pi.Maximum[i - 1] {Value < Maximum means Maximum unchanged} 

else 
Pi.Maximum[i] := Pi.Value[i - 1]; 

Rnk:= 0; 
for i := N downto 1 do 

{Value <= Maximum means Maximum increases by 

I} 

{start rank at O} 

Rnk:= Rnk + D[N - i, Pi.Maximum[i]] * (pi.Value[i] - 1); {use Maximum as index into D table} 

end; {RankSetPart} 

procedure GetFirstPart (var Pi : Partition; var Done: boolean); 

var 

i: integer; 

begin 

Done := false; 
for i := 1 to N do 

with Pi do 
begin 
Value[i] := 1; 

Maximum[i] := 2; 
end; {with} 

end; {GetFirstPart} 

{flIst RG function is alIt's} 

{so frrstMaximum is alI2's} 
{note: Maximum[I]=2 causes the stopping condition} 

procedure GetNextPart (var Pi : Partition; var Done: boolean); 

var 
i, j : integer; 

begin 

with Pi do 
begin 

j:=N+l; 
repeat 

j := j - 1 
until (ValueGJ <> MaximumG]); 
if (j > 1) then 
begin 

Done := false; 

ValueGJ := ValueGJ + 1; 
for i := j + 1 to N do 

begin 

Value[i] := 1; 
if (ValueGJ = MaximumGJ) then 

Maximum[i] := MaximumGJ + 1 
else 

Maximum[i] := MaximumGJ; 

end; {for} 
end {if then} 

else 

{find largest non-max component} 

{ifj=l, no more partitions} 

{advancejth component} 

{reset to min pastj} 

{is jth component is at its max?} 

{yes-max past j is one more} 

{no-max pastj is same as max atj} 



Done :- true; 
end; {with} 

end; {GetNextPart} 

A.4 Integer Partitions 

166 

The data type representing an integer partition is a record which holds the distinct part sizes, the 

number of each, and the number of distinct parts. The integer partitioned is a global variable. The 
rank and unrank algorithms are not implemented. They are exercises in Chapter 1. 

const 

Maxlnteger = 15; 

type 
vector = array[O .. MaxInteger] of integer; 

Partition = record 
Part, Multiplicity: vector; 
NumberOtparts: integer; 

end; {Partition} 

var 
N: integer; 

procedure GetFirstPart (var mu : Partition; var Done: boolean); 
begin 
with mu do 

begin 
Part[l] := N; 
Multiplicity[l] := 1; 
NumberOtparts:= 1; 
end; {with} 

Done := false; 
end; {GetFirstPart} 

{first partition has one part of size N} 

procedure GetNextPart (var mu : Partition; var Done: boolean); 
var 

k, kl, s, u, v, w : integer; 
begin 
withmudo 
if (part[NumberOtparts] > 1) or (NumberOtparts > 1) then 
begin 

Done:= false; 
if (part[N umberOtparts] = 1) then 
begin {smallest partsize is I} 
s := Part[NumberOtparts - 1] + Multiplicity[NumberOtparts]; {split I's and next larger} 

k:= NumberOtparts - 1; {index of part to reduce by one and divide into s} 
end {if then} 
else 



begin 

s := Part[NumberOfParts]; 

k := NumberOfParts; 
end; {else} 

w := Part[k]- 1; 

u :=s divw; 
v:= s mod w; 
Multiplicity[k] := Multiplicity[k]- 1; 

if (Multiplicity[k] = 0) then 

kl:= k 
else 

kl :=k+ 1; 

Multiplicity[kl] := u; 

Part[kl] := w; 

if (v = 0) then 

NumberOfParts := kl 

else 

begin 

Multiplicity[kl + 1] := 1; 

Part[kl + 1] := v; 
NumberOfParts:= kl + 1; 

end; {else} 

end {if then} 
else 

Done := true; 

end; {GetNextPart} 

A.S Product Spaces 
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{smallest partsize is not I} 

{split last part} 
{reduce this part by one and divide into s} 

{reduce part by one to divide into s} 
{this will be the multiplicity of new partsize} 

{this will be number of leftover l's} 

{reduce number of these parts } 

{if none left. make changes at this component} 

{if some left, make changes in next component} 
{set multiplicity} 

{set part size} 

{no I's} 

{create block of I's} 

An n-tuple in a product space also includes the direction vector and the activity set. Global 

variables include n and the size of each set in the product space. 

const 

MaximumComponent = 15; 

type 

vector = array[O .. MaximumComponent] of integer; 

IndexSet = set of 0 .. MaximumComponent; 
Ntuple = record 

Value, Direction : vector; 

Activity: IndexSet; 

end; {Ntuple} 

var 
N: integer; 

MaximumVector: vector; 

Base: IndexSet; 

{the maximum value at each coordinate} 

{this set is a list of the non-zero coords of 
MaxirnumVector} 
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procedure UnrankProdSpace (Rnk: : integer; var v: Ntuple); 

var 
i, PrevRnk : integer; 

begin 

PrevRnk: := Rnk:; 
for i := N downto 1 do 
begin 
v.Value[i]:= PrevRnk mod MaximumVector[i]; {start with Value as count from O} 
PrevRnk:= PrevRnk div MaximumVector[i]; {calculate previous rank} 
if (PrevRnk mod 2 = 1) then {if previous rank: odd count from top} 

v.Value[i] := MaximumVector[i] - v.Value[i] - 1; 
end; {for} 

end; {UnrankProdSpace} 

procedure RankProdSpace (w : Ntuple; var Rnk : integer); 
var 
i, Count: integer; 

begin 

Rnk:=O; 
for i := 1 to N do 
begin 
if (Rnk mod 2 = 1) then {if odd, read from top; even, from bottom} 
Count:= MaximumVector[i] - w.Value[i] - 1 
else 
Count:= w.Value[i]; 

Rnk := MaxirnumVector[i] * Rnk + Count; {calculate rank: from previous rank: and count} 
end; {for} 

end; {RankProdSpace} 

procedure GetFirstVector (var w : Ntuple; var Done : boolean); 
var 

i: integer; 
begin 

with wdo 
begin 
for i := 1 to N do 

begin 
Value[i] := 0; 
Direction[i] := 1; 
end; {for} 

Activity := Base; 
end; {with} 

Done := false; 
end; {GetFirstVector} 

{first vector is all O} 
{all values going up} 

{all components with non-zero max are active} 

procedure GetNextVector (var w : Ntuple; var Done: boolean); 
var 
p: integer; 



function MaxActive : integer; 
var 
i: integer; 

begin 
i:=N; 
withwdo 
whlle not (i in Activity) do 
i:= i-I; 

MaxActive := i; 
end; {MaxActive} 

begin 
with wdo 
if (Activity <> 0) then 
begin 
Done := false; 
p := MaxActive; 
Value[P] := Value[P] + Direction[p]; 
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{returns largest element of Activity} 

{none active means no more} 

{move largest active component in appropriate 
direction} 

if (Value[p] = MaximumVector[p] - 1) or (Value[p] = 0) then {bit boundary?} 
begin 
Direction[p] := -Direction[p]; 
Activity :- Activity - [P]; 
end; {if then} 

{yes-reverse direction} 

{make p inactive} 

Activity := Activity + [p + 1 .. N] • Base; {no-make all larger than p with non-zero max active} 
end {if then} 
else 
Done := true; 

end; {GetNextVector} 

A.6 Match to First Available 

Lex order is used instead of colex for generating the subsets. However, the structure of the 
algorithm (GetFirst and GetNext) is the same. While the level in the boolean algebra is a global 
variable, the GetFirst subroutine has the subset size as an input parameter because it is called to 
generate the k-subsets and the Ck+1)-subsets. This additional parameter is not necessary in GetNext 
since GetNext computes the size of the subset from the previous one. An additional global variable is 
a set which represents those Ck+1)-subsets which have been matched. The data type used to represent 
a subset is different: we use Pascal subsets here. 

const 
MaxSetSize = 12; 
MaxBinCoef = 1000; 

type 
Subset = set ofO .. MaxSetSize; 
SubsetList = set of l..MaxBinCoef; 
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var 

N, K : integer; 
U sedSubsets : SubsetList; 

procedure GetFirstSubset (p : integer; var S : Subset; var Done: boolean); 

begin 

S:= [1..p]; 

Done := false; 

end; {GetFirstSubset} 

procedure GetNextSubset (var S : Subset; var Done: boolean); 
var 

Count, j, i : integer; 

begin 

j :=N; 
repeat {find largest element that can advance} 

j := j - 1; 

until «j in S) and not (j + 1 in S» or (j = 0); 
if (j > 0) then U=<l means no more subsets} 
begin 

Done := false; 

Count:=O; 
for i := j to N do 
if (i in S) then 

Count:= Count + 1; 

S := (S - [i .. N]) + [j + l..j + Count]; 

end {if then} 

else 

Done:= true 

end; {GetNextSubset} 

{count number in subset past this element} 

{remove these andj and add Count contiguous 

elements} 

function Matched (A : Subset; var B : Subset) : boolean; 
var 

{returns true and subset B if match} 

ListDone, StopLoop : boolean; 

p: integer; 

begin 

GetFirstSubset(K + I, B, StopLoop); 

p:= 1; 
while not StopLoop do {search for frrst match or end of list} 

if (A <= B) and not (p in UsedSubsets) then {A is subsetofB and B is not used} 

StopLoop := true {found a match} 

else 

begin 

GetNextSubset(B, ListDone); 

StopLoop := ListDone; 

p:=p+l; 
end; {else} 

if not ListDone then 

{go to next subset} 

{ListDone will be true if no match found} 



begin 

Matched := true; 
UsedSubsets:= UsedSubsets + [p]; 
end {if then} 

else 

Matched := false; 
end; {Matched} 

procedure MatchToFirst; 

var 
A, B : Subset; 

EndOfList : boolean; 

i: integer; 
begin 

UsedSubsets:= []; 
GetFirstSubset(K, A, EndOfList); 
while not EndOfList do 

begin 

if Matched(A, B) then 

PrintPair(A, B) 

else 
PrintNoMatch(A); 

GetNextSubset(A, EndOfList); 

end; {while} 

GetFirstSubset(K + I, B, EndOfList); 

i:= 1; 
while not EndOfList do 

begin 

if not (i in UsedSubsets) then 

PrintNoMatch(B); 

i:= i+ 1; 
GetNextSubset(B, EndOfList); 

end; {while} 

end; {MatchToFirst} 

A.7 The Schensted Correspondence 

171 

{found a match} 

{make it unavailable} 

{no match} 

{start with no subsets used} 
{first subset to match} 

{search list ofk-subsets in lex order} 

{fmd matching (k+1)-subset, if exists} 

{no matching subset} 

{now search list of (k+1)-subsets in lex order} 

{list unmatched ones} 

We give here the implementation of the Schensted algorithm, both for encoding a permutation 

as a pair of tableaux and vice versa. A partition is given as a record which contains the number of 

parts and a vector of parts, largest first. A tableau consists of two partitions (the shape and its 

conjugate) and a matrix of entries. A pair of tableaux is the record TableauPair with Bumping and 

Template as its two constituents. Finally, a permutation in two-line notation is kept as the record 

TwoLinePerm consisting of two vectors, TopRow and BottomRow. 
The main work of the algorithm is done in the two procedures Schenstedlnsert and 

SchenstedDelete, which insert a value into a tableau and delete a value from a tableau, respectively. 
The number of cells (or the number of elements in the permutation) is the global variable N. 
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const 

MaximumNumParts = 20; 

type 
vector = array[O . .MaximumNumParts] of integer; 

matrix = array[O .. MaximumNumParts] of vector; 

TwoLinePerm = record 
TopRow, BottomRow : vector; 

end; 
Partition = record 

NumberOfParts : integer; 

Part : vector; 

end; 

Tableau - record 
Shape, Conjugate: Partition; 

CellEntry : matrix; {entries of tableau, in matrix form} 

end; 

TableauPair = record 
Bumping, Template: Tableau; {Bumping sometimes called the P-tableau; Template 

the Q-tableau} 

end; 

var 
N: integer; 

procedure SameShape (var S : Tableau; T : Tableau); 

T} 

begin 

S.Shape := T.Shape; 

S.Conjugate := T.Conjugate; 

end; {SameShape} 

{Makes the tableau S the same shape as 

{changes the kth component of Lambda by plus or minus 1 (TrimSize)} 

{if Shorten is true, changes the number of parts by the same amount} 

{this will happen when part k has size I.} 
procedure TrimShape (var Lambda: Partition; k : integer; Shorten: boolean; TrimSize : integer); 

begin 

with Lambda do 
begin 

Part[k] := Part[k] - TrimSize; 

if Shorten then 
NumberOfParts := NumberOfParts - TrimSize; 

end; {with} 

end; {TrimShape} 

procedure DeleteCell (var P : Tableau; Row, Col : integer); 

Col} 

begin 

withPdo 

begin 

{remove cell from P at Row, 



TrlrnShape(Shape, Row, (Col = 1), 1); 

TrimShape(Conjugate, Col, (Row = I), 1); 

end; {with} 
end; {DeleteCell} 
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{uses Schensted insertion to insert k into tableau P. Rowand Col are new cell added to P} 
procedure SchenstedInsert (var P : Tableau; k: integer; var Row, Col: integer); 

var 

x: integer; 
DoMore : boolean; 

begin 

withPdo 
begin 

Col:= 1; 

DoMore := true; 
whlle DoMore do 

{start at fJrSt column} 

if (k <- CellEntry[Conjugate.Part[Coll, Col]) then {k bumps something} 

begin 
Row := Conjugate.Part[Col}; 

repeat 

Row:=Row-l 
untU (CellEntry[Row, CoIl < k); 

Row:= Row + 1; 

x := CellEntry[Row, Coil; 

CellEntry[Row, Coil := k; 

k:=x; 

Col:= Col + 1; 
end {if then} 

{start looking for value to bump} 

{fmd value to bump} 

{value to bump is one cell down} 

{x is value to bump} 
{replace it with k} 

{move out to next column} 

else {kgoes at end of column} 

begin 
Row:= Conjugate.Part[Coll + 1; {Row is row index} 

CellEntry[Row, CoIl := k; {place k at end of column} 

DoMore:= false; {no more bumping} 

TrlrnShape(Shape, Row, (Col = 1), -1); {add cell to shape and conjugate} 

TrimShape(Conjugate, Col, (Row = 1), -1); 

end; {else} 
end; {with} 

end; {SchensUiITnsert} 

{Schensted deletion; value in cell ofP at Row, Col starts deletion; x is the value removed} 

procedure SchenstedDelete (var P: Tableau; var x : integer; Row, Col: integer); 

var 

i, j, y : integer; 

begin 

withPdo 

begin 

x := CellEntry[Row, CoIl; 
DeleteCell(p, Row, Col); 

tor j := Col - 1 downto 1 do 

{start with x as value in P at Row,Col} 
{remove this cell fromP} 

{bumping} 



begin 

i:= 1; 
repeat 

i:= i + 1 
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{fmd value to bump} 

until (CellEntry[i, j] > x) or (i > Conjugate.Part[j]); {don't go past end of column} 

i:= i-I; {value to bump in row above} 

y := CellEntry[i, j]; {bump it} 

CellEntry[i, j] := x; 

x:=y; 
end; {for} 

end; {with} 
end; {SchenstedDelete} 

{repeat for next column down} 

{convert permutation pi in two-line form to pair of tableaux} 

procedure SchenstedEncode (pi : TwoLinePerm; var Z : TableauPair); 

var 

i, Row, Col: integer; 

procedure Empty (var T : Tableau); 

var 

i: integer; 
begin 

with Tdo 
begin 

Shape.NumberOfParts := 0; 
Conjugate.NumberOfParts := 0; 
for i := 1 to MaximumNumParts do 

begin 
CellEntry[i,O] := 0; 

CellEntry[O, i] := 0; 

Shape.Part[i] := 0; 
Conjugate.Part[i] := 0; 

end; {for} 

CellEntry[O, 0] := 0; 
end; {with} 

end; {Empty} 

begin 
Empty(Z.Bumping); 

Empty(Z.Template); 

for i := 1 to N do 

begin 

{make T the empty tableau} 

{start with empty tableaux} 

Schenstedlnsert(Z.Bumping, pLBottomRow[i], Row, Col); {Schensted insert permutation value} 

Z.Ternplate.CellEntry[Row, Col] := pLTopRow[i]; {insert top row value into new cell} 

end; {for} 

SameShape(Z.Template, Z.Bumping); {Bumping has right shapes; make Template same} 

end; {SchenstedEncode} 

{convert pair of tableaux to a permutation in two-line form} 

procedure SchenstedDecode (Y : TableauPair; var pi : TwoLinePerm); 



var 
i, k, Row, Col: integer; 
Z : TableauPair; 
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procedure FindMaximum (Q : Tableau; var Row, Col: integer); {retums Rowand Col of largest 

memberofQ} 

var 
x, j : integer; 

begin 

x:=O; 
withQdo 
for j := ConjugateNumberOfParts downto 1 do 
if (CellEntry[Conjugate.Part[j], j] > x) then 

begin 
Row:= Conjugate.Part[j];· 
Col :=j; 
x:= CellEntry[Row, Col]; 

end; {if then} 
end; {FindMaximum} 

function NumberOfCells (T : Tableau) : integer; 
var 

{retums number of cells in T} 

i, sum: integer; 
begin 
sum:=O; 
with Tdo 
for i := 1 to Shape.NumberOtParts do 

sum:= sum + Shape.Part[i]; 
NumbelOfCells := sum; 
end; {NumbelOfCells} 

begin 

Z:=Y; 
N := NumbelOfCells(Z.Bumping); 

for i := N downto 1 do 
begin 
FindMaximum(Z.Template, Row, Col); 

{Z is going to be clobbered} 
{computeN} 

{remove each cell of Template} 

pi.TopRow[i] := Z.Template.CellEntry[Row, Col]; {top row value is maximum in template 
tableau} 

SchenstedDelete(Z.Bumping, k, Row, Col); {Schensted delete from this cell} 

pi.BottomRow[i] := k; 
DeleteCell(Z.Template, Row, Col); 
end; {for} 

end; {SchenstedDecode} 

{value bumped out is bottom row value} 
{remove cell from template} 
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A.8 The Priifer Correspondence 

The data type for a tree is a vector of subsets. The vth subset is the set of vertices adjacent to 

vertex v. This is called the adjacency list. The number of vertices, N, is a global variable. 

const 

MaxTreeSize = 20; 

type 
Vertex = O .. MaxTreeSize; 

VertexSet = set of Vertex; 

Tree = array[l..MaxTreeSize] of Vertex Set; {tree is adjacency list} 
Vector = array[l..MaxTreeSize] of Vertex; 

var 

N: integer; 

procedure DecodeVector (a: Vector; var T: Tree); 

var 
i, v, w : Vertex; 

Degree: Vector; 

procedure AddAnEdge (var T: Tree; v, w: Vertex); 

begin 
T[v] := T[v] + [w]; 

T[w] := T[w] + [v]; 

end; {AddAnEdge} 

{add edge (v,w) to T} 

function Largest (Degree: Vector): Vertex; {returns largest terminal vertex of tree with 

var 

i: Vertex; 

begin 

i:=N; 
while (i >= 1) and (Degree[i] <> 1) do 

i:= i-I; 

Largest := i; 
end; {Largest} 

given degrees} 

function Smallest (Degree: Vector) : Vertex; {returns smallest terminal vertex of tree with 

var 

i: Vertex; 

begin 

i:= 1; 

while (i <= N) and (Degree[i] <> 1) do 

i:= i + 1; 

SmalJest := i; 

end; {Smallest} 

degree given} 



begin 

for v := 1 to N do 
Degree[v] := 1; 

for i := 1 to N - 2 do 
Degree[a[i]] := Degree[a[i]] + 1; 

for v := 1 to N do 

T[v]:= 0; 
for i := 1 to N - 2 do 
begin 
w := Largest(Degree); 

AddAnEdge(T. a[i]. w); 
Degree[a[i]] := Degree[a[i]] - 1; 
Degree[w]:= 0; 

end; {for} 

v := Largest(Degree); 

w:= Smallest(Degree); 

AddAnEdge(T. v. w); 
end; {DecodeVector} 
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{compute degrees} 

{start with empty tree} 

{add edge from largest terminal vertex to vertex ali]} 
{educe degree} 
{kill largest terminal vertex} 

{two vertices remain; connect them} 

procedure EncodeTree (T : Tree; var a : Vector); 

var 
k, v : Vertex; 

function Largest (T: Tree) : Vertex; 

var 
i: Vertex; 

{returns largest terminal vertex of tree T} 

function SetSize (S : VertexSet) : Vertex; {returns size of set S} 

var 
m, i : Vertex; 

begin 

m:=O; 

for i := 1 to N do 
if (i in S) then 
m:=m+ 1; 

SetSize := m; 

end; {SetSize} 

begin 

i:=N; 

while (i >= 1) and (SetSize(T[i)) <> 1) do {set size is 1 when vertex is terminal} 

i:=i-l; 

Largest := i; 
end; {Largest} 

function Adjacent (T: Tree; v : Vertex) : Vertex; {returns vertex adjacent to v} 

var 
k: Vertex; 

begin 

k:= 1; 



while (k <= N) and (not (k in T[v])) do 
k:=k+l; 
Adjacent := k; 

end; {Adjacent} 
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procedure RemoveEdge (var T: Tree; v, w: Vertex); 
begin 
T[v] := T[v] - [w]; 
T[w] := T[w] - [v]; 
end; {RemoveEdge} 

begin 
for k := 1 to N - 2 do 
begin 

{remove edge (v,w) from T} 

v := Largest(T); {get largest terminal vertex} 
ark] := Adjacent(T, v); 
RemoveEdge(T, v, ark]); 
end; 

end; {EncodeTree} 

A.9 The Involution Principle 

{set ark] to vertex adjacent to largest terminal vertex} 
{remove this edge} 

We give here only the involution-principle. We omit the definitions of the two involutions Ijl 

and '1'. The underlying set is of type YourDataType. For example, if we were to use this procedure 
to implement the involutions which proves Euler's theorem (§4.6), YourDataType would be pairs of 
partitions: one with only distinct parts of even size and one with no restrictions. 

Pascal imposes some restriction on the way the involution principle can be programmed. 
Because Pascal functions have only a narrow choice of data types as output type, the involutions Ijl 

and 'I' must, in general, be represented as procedures with input and output parameters. 

function AreEqual(p, Q: YourDataType): boolean; 
begin 
{return true if P=Q} 
{return false ifp,tQ} 

end; {AreEqual} 

procedure Phi (p: YourDataType; var Q: YourDataType); 
begin 
{Q=Phi(P)} 
end; {Phi} 

procedure Psi (p: YourDataType; var Q: YourDataType); 
begin 
{Q:=Psi(P)} 
end; {Psi} 
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{input is Lambda; output is Rho; IsFixedPt is false if Lambda is not a fixed point} 

procedure InvolPrin (Lambda: YourDataType; var Rho: YourDataType; var IsFixedPt: 
boolean); 

var 
W, X, Y, Z: YourDataType; 

begin 

X:=Lambda; 
Phi(X, Y); 

if AreEqua1(X, Y) then 

begin 

repeat 

Z:=Y; 

{X is in fixed point set of phi} 

Psi(Z, W); {apply Psi followed by Phi} 

Phi(W, Y); 

until AreEqua1(z, W) or AreEqua1(W, Y); {until a fixed point reached} 
Rho:=W; 

IsFixedPt:= true; 
end {if then} 

else 

begin 
Psi(X, Y); 

if AreEqua1(X, Y) then 

begin 

repeat 

Z:=Y; 

{X is in fixed point set of psi} 

Phi(Z, W); {apply Phifollowed by Psi} 
Psi(W, Y); 

until AreEqua1(Z, W) or AreEqua1(W, Y); {until a fixed point reached} 
Rho:=W; 

IsFixedPt := true; 
end {if then} 

else 

IsFixedPt := false; 
end; {else} 

end; {InvoJPrin} 

{input not fixed point of Phi or Psi} 
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standard, 60, 83 

Tournament, 115 
non-transitive, 116 

transitive, 115 

Transposition, 6 
adjacent, 6 

Tree, 59 

binary, 59 

full binary, 60 

labeled, 64 
ordered, 59 
root of a, 59 
rooted, 59 

spanning, 125 

Unimodal, 31 

Unrank, 1 

Vandermonde's determinant, 114 

Vandermonde's theorem, 25 



Vertex, 58 
adjacent, 58 
internal, 61 
terminal, 61 

Weight, 78, ll5 
-preserving, 58, 78 

Well-formed parentheses, 60 
Whitney number, 51 
Winner, ll5 

Young diagram, 12 
Young's lattice, 29 
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Martin: The Foundations of Geometry and 
the Non-Euclidean Plane. 

Martin: Transformation Geometry: An 
Introduction to Symmetry. 

MillmanlParker: Geometry: A Metric 
Approach with Models. 

Owen: A First Course in the Mathematical 
Foundations of Thermodynamics. 

PrenowitzlJantosciak: Join Geometrics. 

Priestly: Calculus: An Historical 
Approach. 

Protter/Morrey: A First Course in Real 
Analysis. 

ProtterlMorrey: Intermediate Calculus. 

Ross: Elementary Analysis: The Theory 
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Scharlau/Opolka: From Fermat to 
Minkowski. 

Sigler: Algebra. 

Simmonds: A Brief on Tensor 
Analysis. 

SingerlThorpe: Lecture Notes on 
Elementary Topology and Geometry. 

Smith: Linear Algebra. 
Second edition. 

Smith: Primer of Modern Analysis. 

Thorpe: Elementary Topics in Differential 
Geometry. 

Troutman: Variational Calculus 
with Elementary Convexity. 

Wilson: Much Ado About Calculus. 
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