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Abstract The Nash equilibrium in pure strategies represents an important solution
concept in nonzero sum matrix games. Existence of Nash equilibria in games with
known and with randomly selected payoff entries have been studied extensively. In
many real games, however, a player may know his own payoff entries but not the
payoff entries of the other player. In this paper, we consider nonzero sum matrix
games where the payoff entries of one player are known, but the payoff entries of the
other player are assumed to be randomly selected. We are interested in determining
the probabilities of existence of pure Nash equilibria in such games. We characterize
these probabilities by first determining the finite space of ordinal matrix games that
corresponds to the infinite space of matrix games with random entries for only one
player. We then partition this space into mutually exclusive spaces that correspond
to games with no Nash equilibria and with r Nash equilibria. In order to effectively
compute the sizes of these spaces, we introduce the concept of top-rated preferences
minimal ordinal games. We then present a theorem which provides a mechanism for
computing the number of games in each of these mutually exclusive spaces, which
then can be used to determine the probabilities. Finally, we summarize the results by
deriving the probabilities of existence of unique, nonunique, and no Nash equilibria,
and we present an illustrative example.

Keywords Matrix games · Pure Nash equilibria · Ordinal games · Random payoffs

1 Introduction

Game theory has been researched extensively since it was first established in 1947
by Von Neumann and Morgenstern [1]. In 1956, Nash introduced the concept of an
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equilibrium solution, which became known as the Nash equilibrium for nonzero sum
games [2]. Matrix games represent a fundamental special problem in game theory
and are used to describe games where the strategy spaces are discrete. Strategies in
matrix games can be either pure (deterministic) or mixed (probabilistic). It is well
known that a matrix game may or may not have a pure Nash equilibrium (PNE), and
if it does, the PNE may or may not be unique [2].

Consider a two-player nonzero-sum n × m matrix game where players P1 and P2
have strategies xi and yj which can take on values from the sets X = {x1, . . . , xn} and
Y = {y1, . . . , ym} respectively. Let the payoff entries for P1 and P2 corresponding to
a strategy pair {xi, yj } be J1(xi, yj ) and J2(xi, yj ) respectively. A Nash equilibrium
for such a game is defined as a pair of strategies {xN,yN } ∈ X × Y which satisfies
the following inequalities:

J1(x
N , yN) ≤ J1(xi, y

N), ∀xi ∈ X, (1)

J2(x
N , yN) ≤ J2(x

N , yj ), ∀yj ∈ Y. (2)

If the payoff entries of both players are known, it is easy to determine the PNEs if
they exist. If, on the other hand, the payoff entries are not known then one possible
approach would be to assume that they are selected randomly from a continuous dis-
tribution over an interval. We refer to these types of games as random entries games
or RE-games. A RE-game can have a unique PNE, nonunique PNEs, or no PNE. As
a result, one would be interested in computing the probability of existence of PNEs
when the payoffs are selected randomly. This problem has received considerable at-
tention in the literature [3–11] especially for the case when the J1 entries in each
column are distinct and the J2 entries in each row are also distinct. An expression
for the probability that the game has exactly r PNEs, where r is an integer such that
r ≤ Min(n,m), has been derived in [8]. It is also shown in [8] that as n and m → ∞,
this probability converges to e−1/r!. This basically means that as n and m → ∞ the
probability of existence of a unique PNE converges to e−1 = 0.36517, the probability

of existence of nonunique PNEs converges to
∑∞

r=2
e−1

r! = 1 − 2e−1 = 0.26965, and
the probability of existence of no PNE converges to e−1 = 0.36517.

In this paper, we consider nonzero sum matrix games where the payoff entries of
one player are known and fixed while the payoff entries of the other are unknown,
selected randomly from a continuous distribution over an interval. We refer to these
types of games as one player RE-games, or OPRE-games. OPRE-games are more
realistic than general RE-games since in most cases, a player may typically know his
payoff entries but may have no knowledge of the payoff entries of the other player,
and therefore assumes that they are randomly selected. In this paper, we are interested
in characterizing the probabilities that an OPRE-game has no PNE or r PNEs. We
approach the derivation of these probabilities using concepts from ordinal games [12].
In Sect. 2, we discuss the relationship between a RE-game and its corresponding
Minimal Ordinal game. In Sect. 3, we introduce the concept of top-rated preferences
minimal ordinal games and in Sect. 4 we exploit this concept to determine the number
of top-rated preferences minimal ordinal games of each type in OPRE-games. The
probabilities of existence of no PNE and r PNEs are then easily determined. We
summarize the results by deriving expression for the probabilities of existence of a
unique PNE, nonunique PNEs, and no PNE and we present an illustrative example.
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2 Minimal Ordinal Games

It is well known that any RE-game can be transformed into an equivalent ordinal
game by replacing the payoff entries with a rank ordering of these entries. It is also
well known that there is a one-to-one correspondence between the PNEs of a matrix
game and the Nash equilibria of its equivalent ordinal game [12]. Clearly, while the
number of RE-games of a given size is infinite, the number of ordinal matrix games
of the same size is finite. Thus, instead of characterizing the PNEs within the infinite
space of RE-games of a given size, we will exploit this property and characterize
these equilibria in the equivalent, but finite, space of ordinal matrix games of the
same size.

Following [12], a minimal ordinal game, or MO-game, is one where J1(xi, yj ) are
column ordered and J2(xi, yj ) are row ordered. That is, for every yj ∈ Y , the entries
J1(xi, yj ) are replaced by a rank ordering from 1 to n, and for every xi ∈ X, the
entries J2(xi, yj ) are replaced by a rank ordering from 1 to m. Here (and throughout
this paper) we assume that the J1 entries in each column are distinct and the J2 entries
in each row are also distinct (i.e. the game is strictly ordinal). Let the pairs of entries
in the MO-game be labeled {J co

1 (xi, yj ), J
ro
2 (xi, yj )}. Clearly, if a PNE {xN,yN } in

the original matrix game exists, it would appear where the pair (1,1) is located in
the MO-game. The maximum number of PNEs that the game can have is therefore
bounded by Min(n,m). Now, since MO-games of a given size are defined in terms
of a finite number of preference values, only a finite number of possible MO-games
of a given size exist. For example, to determine the total number of different 2 × 2
MO-games, consider the general 2 × 2 MO-game shown in Fig. 1.

Here the values a, b, c, d and p,q,w, z represent the possible rank ordering of the
preferences of P1 and P2, respectively. If the game is represented in its MO form,
then these preferences are restricted to take values from the set {1, 2}. Consequently,
there are a total of four possible column-rank ordered matrices J co

1 and four possible
row rank-ordered matrices J ro

2 as follows:

J co
1A =

[
1 1
2 2

]

, J co
1B =

[
1 2
2 1

]

, J co
1C =

[
2 2
1 1

]

, or J co
1D =

[
2 1
1 2

]

, (3)

J ro
2A =

[
1 2
1 2

]

, J ro
2B =

[
1 2
2 1

]

, J ro
2C =

[
2 1
2 1

]

, or J ro
2D =

[
2 1
1 2

]

, (4)

yielding a total of 42 = 16 possible 2 × 2 MO-games. These 16 MO-games are listed
in the Appendix and labeled according to their relationship to the column and row
rank-ordered matrices J co

1 and J ro
2 in (3) and (4). For example, the MO-game labeled

1B,2A corresponds to the game where the players use strategies that yield J co
1B and

J ro
2A. Note that the PNEs for these 16 MO-games have been highlighted in bold type.

Fig. 1 A general 2 × 2
MO-game

P2

y1 y2

P1
x1 a,p c,w

x2 b, q d, z
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By inspection, we can determine that twelve of these games have a unique PNE, two
have 2 PNEs, and two have no PNE. This information is very useful. If the payoff en-
tries of both players in 2×2 game are selected randomly, then it follows that the prob-
ability that the game will have a unique PNE is 0.750, that it will have (nonunique)
2 PNEs is 0.125 and no PNE is also 0.125. Now, what if the payoffs of one player
(say P1) are known but the payoffs of the other player (P2) are selected randomly?
Several possibilities will have to be examined. If the payoffs of P1 correspond to J co

1A

or J co
1C , then clearly the games will have only unique PNEs. That is, the probability

that the game has a unique PNE is 1.0, and the probabilities of a nonunique PNE or
no PNE are 0 and 0 respectively. If, on the other hand, the payoffs of P1 correspond
to J co

1B or J co
1D then the probability that the game will have a unique PNE is 0.50, that

it will have 2 PNEs is 0.25 and no PNE is also 0.25. Clearly, the final probabilities of
existence of PNEs depend on the distribution of the payoff entries of the player whose
payoffs are known. This distribution therefore affects the probabilities of existence or
nonexistence of PNEs in the game.

Let us now examine how this argument can be generalized to an n × m RE-game.
For any given strategy choice by P2, there are n! possible arrangements of the pref-
erences for P1. Since P1 can choose each strategy independently, there are a total
of (n!)m possible arrangements of preferences for P1 corresponding to all possible
strategy choices by P2. Similarly, there are a total of (m!)n possible arrangements of
preferences for P2 corresponding to all possible strategy choices by P1. Thus, the to-
tal number of MO-games of size n×m is (n!)m(m!)n. Classifying the PNEs, whether
one or both payoffs are random, by examining all MO-games as was done above for
the 2×2 case can quickly become unfeasible for games of higher dimensions. For ex-
ample, in the case of 3 × 3 RE-games one has to search a total of 46,656 MO-games.
In the case when one player’s payoffs are known, there are 216 possible MO-games
that need to be considered by that player in determining the probabilities. Clearly
a more efficient search approach is needed. In the next section, we will introduce
the concept of top-rated preferences MO-games, which will considerably reduce the
search space.

3 Top-Rated Preferences Minimal Ordinal Games

One of the main disadvantages in considering all possible MO-games in the search for
PNEs is the high degree of redundancy that exists in classifying these games. As an
illustration, consider the two 3 × 3 MO-games shown in Fig. 2. Note that while these
two MO-games are different, the top-rated preferences (or TRPs) for both players
(i.e. the 1’s in J co

1 and J ro
2 ), are located identically in both games and the strategy

pair {x1, y1} is a unique PNE in both games. Since the TRPs for each player in a
given situation are the only pieces of information necessary to determine the PNEs,
the other preferences can therefore be ignored. For example, in a 3 × 3 game, each
of the nine column-ordered matrices for P1 can be duplicated for the three possible
locations of the top preference in the first column, yielding a total of 27 possible
alternatives for arranging the TRPs of P1. Likewise, there are 27 possible alternatives
for arranging the TRPs of P2. So in order to find the number of games that have no
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P2

y1 y2 y3

P1
x1 1,1 3,3 2,2

x2 3,2 2,3 3,1

x3 2,1 1,3 1,2

P2

y1 y2 y3

P1
x1 1,1 3,2 3,3

x2 2,3 2,2 2,1

x3 3,1 1,2 1,3

Fig. 2 Two 3 × 3 Mo-games with the same top-rated preferences

PNE or r PNEs we need to consider only 272 = 729 games. We will refer to these
games as Top-Rated Preferences MO-games, or TRP-MO-games. Note that for 3 × 3
games the number of TPR-MO games is much smaller that the number of MO-games
(729 vs. 46,656), and in the case where one player’s payoffs are known there are
only 27 possible games by that player that need to be considered in determining the
probabilities. This corresponds to a 64-fold reduction in the search when both payoffs
are random and 8-fold reduction when only one player’s payoffs are random. As in
the 2 × 2 case, all 729 different 3 × 3 TRP-MO-games can be listed (see [13] for a
complete listing). By inspection of these games, we can determine that 156 have no
PNE, 423 have a unique PNE, 144 have 2 PNEs, and 6 have 3 PNEs. Thus, for a
3 × 3 RE-game the probabilities of existence of PNEs are as follows: The probability
for no PNE is 0.21399, for a unique PNE is 0.58025, for 2 PNEs is 0.19753, and for
3 PNEs is 0.00823. In the case where only the payoffs of P2 are randomly selected,
a similar approach can be used to determine these probabilities for each of the 27
possible arrangements of TRPs for P1.

In order to generalize the above, we first need to determine the number of
TRP-MO-games in an n × m RE-game. Note that for P1, there is a TRP (i.e. a 1)
in each column of his matrix J co

1 in any of the n rows. Since J co
1 has m columns,

P1 can have his TRPs positioned in nm ways. Likewise P2 can have his TRPs po-
sitioned in mn ways. Thus, the total number of TRP-MO games of size n × m is
NR×R

n×m = (nm)(mn). The R ×R superscript in NR×R
n×m denotes that the payoffs of both

players are randomly selected. If one player’s payoffs are known (say P1), then for
each of the nm positions of his TRPs, a search has to be done for the distribution of
PNEs within the NF×R

n×m = mn possible TRP-MO games that exist. The superscript
F × R in NF×R

n×m indicates that the payoffs of P1 are known (or fixed) while the pay-
offs of P2 are randomly selected. In the next section, we will exploit this concept of
TRP-MO games to determine the probability distribution of the number of PNEs in
OPRE-games.

4 Characterization of Pure Nash Equilibria in n × m OPRE-Games

Without loss of generality let us assume that in the n × m OPRE-game the payoffs
of P1 (i.e. J1(xi, yj )) are known and the payoffs of P2 (i.e. J2(xi, yj )) are randomly
selected. In the previous section, we showed that for each of the nm TRPs for P1, a
search for the distribution of the PNEs within the mn resulting TRP-MO games must
be carried out. Let NF×R

n×m (0) and NF×R
n×m (r) denote the number of TRP-MO games
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with no PNE and r PNEs respectively. Then:

P F×R
n×m (0) = 1

mn
NF×R

n×m (0), (5a)

P F×R
n×m (r) = 1

mn
NF×R

n×m (r), r = 1, . . . ,Min(n,m). (5b)

The following theorem provides a mechanism for computing these probabilities by
first computing NF×R

n×m (0) and NF×R
n×m (r).

Theorem 4.1 Consider an n × m two player nonzero sum matrix game with no re-
peated entries. If the payoffs of P1 are known and the payoffs of P2 are randomly
selected, then the probability that the game has no PNE is

P F×R
n×m (0) = 1

mn

n∏

i=1

(m − ki), (6)

and the probability that the game has exactly r PNEs is

P F×R
n×m (r) = 1

mn

m∑

j=1

{
∑

u∈�

[
n∏

i=1
i �=wj

i /∈Su
j

(m − ki)

]}

, (7)

where ki is the number of TRPs in row i,wj is the row number of the j th TRP, vj is
the number of rows greater than wj in J co

1 containing TRPs such that vj �= 0,Uj =
( vj

r−1

)
for j = 1, . . . ,m,� = {Uj , j = 1, . . . ,m such that Uj is defined}, and Su

j for
u ∈ � is a set containing r − 1 elements {su

j (1), . . . , su
j (t), . . . , su

j (r − 1)} whose

t th element (i.e. su
j (t)) is the row number of each TRP that satisfies su

j (t) > wj for
t = 1, . . . , r − 1 and u ∈ �.

Proof First, apply the TRP-MO simplification to J1 to get J co
1 . Note that J co

1 will
have one TRP per column, for a total of m TRP entries. For each row i = 1, . . . , n

of J co
1 the number of P2 TRP-MO games that will result in games with no PNE

corresponds to the number of columns where J co
1 does not have a TRP, i.e. (m − ki).

Since the TRP in row i of J ro
2 is independent of the TRP in any other row, the number

of TRP-MO games with no PNE is equal to

NF×R
n×m (0) =

n∏

i=1

(m − ki)

and (6) follows directly from (5a). Now for an arbitrary r such that 1 ≤ r ≤ Min(n,m)

and for the j th TRP, the set Su
j for u ∈ � represents one combination of the r −1 other

rows of J co
1 containing TRPs. So for the j th TRP we sum over each set Su

j for each
of the Uj combinations. For each iteration in the sum, we add the number of P2 TRP-
MO games that do not create another PNE. That is NF×R

n×m (0) with i �= wj and i /∈ Su
j .
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This yields

NF×R
n×m (r) =

m∑

j=1

{
∑

u∈�

[
n∏

i=1
i �=wj

i /∈Su
j

(m − ki)

]}

and (7) follows directly from (5b). �

Remark 4.1 In many situations, especially when n and m are large, one might be
interested more in knowing the probabilities of existence of unique and nonunique
PNEs rather than r PNEs. If we denote the probability of existence of nonunique
PNEs by P F×R

n×m (r > 1), then clearly

P F×R
n×m (r > 1) = 1

mn

Min(n,m)∑

r=2

NF×R
n×m (r) =

Min(n,m)∑

r=2

P F×R
n×m (r). (8)

We note that once P F×R
n×m (0) and P F×R

n×m (1) have been determined using (6), and
(7) with r = 1, the probability of nonunique PNEs, can be easily computed as
P F×R

n×m (r > 1) = 1 − (P F×R
n×m (1) + P F×R

n×m (0)).

We now present an example to illustrate the above results.

Example 4.1 Consider a 4 × 4 matrix game in which the payoffs of P1 are known
and the payoffs of P2 are randomly selected. Assume that the TRPs of P1 are located
as illustrated in the following J co

1 matrix:

J co
1 =

⎡

⎢
⎢
⎣

1 1 × ×
× × × 1
× × 1 ×
× × × ×

⎤

⎥
⎥
⎦ , (9)

where the 1 entries represent the TRPs and the × entries represent lower rated pref-
erences. The row numbers of the TRPs are w1 = 1,w2 = 1,w3 = 3, and w4 = 2, and
k1 = 2, k2 = 1, k3 = 1, and k4 = 0. The probability P F×R

4×4 (0) can be easily computed
from (6),

P F×R
4×4 (0) = 1

44

4∏

i=1

(4 − ki) = 0.28125.

That is, the probability that this game will have no PNE is 0.28125.
For r = 1, it follows that Uj = 1 for j = 1, . . . ,4. Therefore, (7) reduces to

P F×R
4×4 (1) = 1

44

4∑

j=1

{
4∏

i=1
i �=wj

(m − ki)

}

= 0.46875.
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Table 1 Probabilities of PNEs
in a 4 × 4 game Number of PNE Probabilities when both

players have randomly
selected payoffs

Probabilities when P1
has TRPs as in (9) and
P2 has randomly
selected payoffs

No PNE 0.25816 0.28125

1 PNE 0.50635 0.46875

2 PNEs 0.21314 0.21875

3 PNEs 0.02198 0.03125

4 PNEs 0.00037 0.00000

For r = 2, we compute v1 = 2, v2 = 2, v3 = 0, and v4 = 1. This yields U1 = 2,
U2 = 2, and U4 = 1 (U3 is undefined since v3 = 0) and � = {2,2,1}. The sets Su

j for

u ∈ � are S1
1 = {2}, S2

1 = {3}, S1
2 = {2}, S2

2 = {3}, and S1
4 = {3}. Now, the probability

P F×R
4×4 (2) can be easily computed from (7),

P F×R
4×4 (2) = 1

44

4∑

j=1

{
∑

u∈�

[
4∏

i=1
i �=wj

i /∈Su
j

(4 − ki)

]}

= 0.21875.

For r = 3, we again use v1 = 2, v2 = 2, v3 = 0, and v4 = 1. This yields U1 = 1 and
U2 = 1 (U3 and U4 are undefined since v3 = 0 and v4 = 1) and � = {1,1}. The sets
Su

j for u ∈ � are S1
1 = {2,3} and S1

2 = {2,3}, and the probability P F×R
4×4 (3) can again

be computed from (7),

P F×R
4×4 (3) = 1

44

4∑

j=1
w for each TRP

{
∑

u∈�

[
4∏

1
i �=w
i /∈Su

j

(4 − ki)

]}

= 0.03125.

Finally for r = 4, we have v1 = 2 which yields U1 = ( 2
3

)
which is undefined. Thus,

the probability that the game will have 4 PNEs will be P F×R
4×4 (4) = 0 ( this is also

obvious from the fact that only three rows of J co
1 contain TRPs).

Note that if the payoffs of both players in a 4 × 4 game are randomly se-
lected, then the probabilities of the game having PNEs of different multiplicities can
also be computed [8, 13]. These, as well as the probabilities when P1 has known
payoffs with TRPs as in (9) and P2 has randomly selected payoffs are listed in
Table 1.

5 Conclusions

In this paper, we considered nonzero-sum n × m matrix games where the pay-
off entries of one player (P1) are known and the payoff entries of the other
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player (P2) are randomly selected. We determined an expression for the prob-
abilities of a game of this type having no pure Nash equilibria and r pure
Nash equilibria. We determined these expressions by partitioning the space of
top-rated preferences minimal ordinal games into mutually exclusive spaces of
each type. We also expressed the results in terms of the probabilities of exis-
tence of a unique pure Nash equilibrium, nonunique pure Nash equilibria, and
no pure Nash equilibria. An example was also presented to illustrate the re-
sults.

Appendix

All 16 possible different 2 × 2 MO-games:

1A,2A
P2

y1 y2

P1
x1 1,1 1,2

x2 2,1 2,2

1A,2B
P2

y1 y2

P1
x1 1,1 1,2

x2 2,2 2,1

1A,2C
P2

y1 y2

P1
x1 1,2 1,1

x2 2,2 2,1

1A,2D
P2

y1 y2

P1
x1 1,2 1,1

x2 2,1 2,2

1B,2A
P2

y1 y2

P1
x1 1,1 2,2

x2 2,1 1,2

1B,2B
P2

y1 y2

P1
x1 1,1 2,2

x2 2,2 1,1

1B,2C
P2

y1 y2

P1
x1 1,2 2,1

x2 2,2 1,1

1B,2D
P2

y1 y2

P1
x1 1,2 2,1

x2 2,1 1,2

1C,2A
P2

y1 y2

P1
x1 2,1 2,2

x2 1,1 1,2

1C,2B
P2

y1 y2

P1
x1 2,1 2,2

x2 1,2 1,1

1C,2C
P2

y1 y2

P1
x1 2,2 2,1

x2 1,2 1,1

1C,2D
P2

y1 y2

P1
x1 2,2 2,1

x2 1,1 1,2

1D,2A
P2

y1 y2

P1
x1 2,1 1,2

x2 1,1 2,2

1D,2B
P2

y1 y2

P1
x1 2,1 1,2

x2 1,2 2,1

1D,2C
P2

y1 y2

P1
x1 2,2 1,1

x2 1,2 2,1

1D,2D
P2

y1 y2

P1
x1 2,2 1,1

x2 1,1 2,2
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