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 DYNAMICS OF AN EPIDEMIC IN A CLOSED
 POPULATION

 AKE SVENSSON, *Stockholm University

 Abstract

 A simple model for the intensity of infection during an epidemic in a closed
 population is studied. It is shown that the size of an epidemic (i.e. the number of
 persons infected) and the cumulative force of an epidemic (i.e. the amount of
 infectiousness that has to be avoided by a person that will stay uninfected during the
 entire epidemic) satisfy an equation of balance. Under general conditions, small
 deviances from this balance are, in large populations, asymptotically mixed normally
 distributed. For some special epidemic models the size of an asymptotically large
 epidemic is asymptotically normally distributed.

 EPIDEMIC MODELS; COUNTING PROCESSES; MARTINGALE LIMIT THEOREMS; SIZE
 DISTRIBUTION

 AMS 1991 SUBJECT CLASSIFICATION: PRIMARY 60K30

 SECONDARY 60G44, 60F05, 92C99

 1. Introduction

 We consider a population that at time t = 0 consists of W healthy individuals. At
 this time an infectious disease is introduced into the population, and as time goes on
 individuals are infected. They then spread the disease according to some biological
 mechanism that depends on the specific character of the particular infection: in
 other words an epidemic starts. We will study a class of stochastic models for the
 development of such epidemics. The models are studied within the framework of
 counting processes and martingales.

 There is a substantial mathematical theory for the spread of infectious diseases.
 The mathematical methods used include non-stochastic models based on

 differential-difference equations, simulation models and stochastic models built on
 Markov processes (cf. Bailey (1975), Anderson (1982) and Lefivre (1990)).

 We define some fundamental concepts and derive a general 'equation of balance'
 for the relation between the size and the force of an epidemic. We also study the
 asymptotic behaviour of the size of some special epidemics. Some of the results
 obtained are already known, and proved by other methods than the one used here.
 One of the aims of this paper is to illustrate a technique that may be used to derive
 interesting results.

 Received 22 May 1990; revision received 8 May 1992.
 * Postal address; Department of Statistics, Stockholm University, 5106 91 Stockholm, Sweden.
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 304 AKE SVENSSON

 2. A counting process model for an epidemic

 Let N(t) be the number of individuals in the population that have been infected

 up till time t. The process N is assumed to be adapted to a filtration 1 = { f,}=0,
 and to have an intensity function A that is predictable relative to 1. The filtration
 has to be defined for every epidemic model. Typically gi, is generated by the history
 of the process N and by random variables that describe the infectiousness of the
 infected individuals up until time t.

 N(t) is a counting process, and we will assume that its intensity function has the
 form A(t) = (W - N(t-))?(t). The intensity is the product of two factors. The first
 factor W - N(t-) is the number of susceptible individuals which are at risk of
 acquiring the infection immediately before time t. The function ?(t) will be called
 the force of the epidemic at t-, and measures the amount of infectivity that a
 susceptible individual will meet at time t. It will depend on the previous history of
 the epidemic, i.e. how much infectious matter is introduced into the population
 from outside and how much infectivity is generated by individuals inside the
 population. Thus, it is a random function that is predictable relative to 1. ? will
 decide the future of the epidemic. An important implicit assumption is that the
 spread of the infection is homogeneous in the population, i.e. the progress of the
 epidemic is not influenced by which particular persons are infected.

 In the following we will use the fact that N(t) - fo A(s) ds is a martingale relative

 to d. Other (local) martingales can be formed as integrals jo r(s)(dN(s) - A(s) ds)
 where r is a predictable process. If z1, 2, - - - are the successive times when
 individuals become infected and Oi, i= 1, 2, - - - are i,-measurable random
 variables such that E(O I ,,_)= 0 then EY) 0i is a martingale.
 First some examples of epidemic models. In all cases it is assumed that the
 epidemic is influenced by an external infectious force, denoted by B(t).

 Example 1. An individual that is infected will start spreading the disease after a

 latent (constant) time A1 and will then be infectious during a time interval of
 (constant) length A2- A1. During this time his 'infectiousness' will be constant
 equal to P. At time t- there will be N(t - AI) - N(t - A2) infectious persons in the
 population. If the infectiousness is spread homogeneously over the population then

 ?(t) = B(t)/W + P(N(t - A1) - N(t - A2))/W.

 The total amount of infectivity spread by one infected person is in this model

 S = P(A2 - A1).
 The Reed-Frost model is a discrete-time version of this example. The time scale
 is divided into intervals of equal length. For simplicity this length can be assumed to
 equal one unit of time. The epidemic starts at time t = 0 with m infected persons
 entering the population from outside. They will be infectious for one unit of time.
 An infected person starts to be infectious at the start of the time interval following
 his infection and will be infectious during one unit of time. With B(t)= pim when
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 Dynamics of an epidemic in a closed population 305

 t E [0, 1[ and 0 if t - 1 this epidemic will be defined by ?(t) = B(t)IW + fl(N([t]) - N([t - 1]))/W, ([t] is the integer part of t). The Reed-Frost epidemic has been
 thoroughly studied. Many of the results obtained in this paper are already known to
 hold for this epidemic process (cf. von Bahr and Martin-Liof (1980)).

 Example 2. After being infected an individual is infectious according to some
 function f(u) where u is the time since infection. This gives

 S2-

 ?(t) = B(t)/W + f (t - s) dN(s)IW.

 This is a slight generalization of Example 1. The total amount of infectivity spread

 by one infected individual is a? = fof(u) du.

 Example 3: IIDI epidemics. Several models have been suggested where it is
 assumed that the amount of infectivity admitted from one infected individual is not
 constant but a random variable. In the stochastic version of the so-called

 Kermack-McKendrick model an infected individual is assumed to spread the
 infection with a constant intensity during a random time interval. The lengths of
 these time intervals are assumed to be independently identically distributed random
 variables. In the simplest case the distribution is assumed to be exponential (cf.
 Frauenthal (1980)). This model is sometimes referred to as the general (or standard)
 epidemic model (cf. Watson (1981)). Kurtz (1981) assumes a general form of the
 distribution. We will assume that the total amount of infectivity spread by the ith

 infected person is a i=So ff(u) du. The cai's are assumed to be independent
 identically distributed random variables with mean ac = E(aoi) and finite variance o2.
 We will call epidemic models of this kind IIDI (independent identically distributed
 infectivities). The randomized Reed-Frost models studied by von Bahr and
 Martin-L6f (1980) can be viewed as a discrete-time version.

 Example 4: Daley-Kendall and Maki-Thompson rumour models. Daley and
 Kendall (1965) suggested an epidemic model for the spread of rumours. They
 assume that at time t = 0 one person starts spreading a rumour in a population of
 size W. An individual that has heard of the rumour tells it until he encounters a

 person who already knows of the rumour. The behaviour of epidemic models of this
 kind have been studied by Watson (1988) and Pittel (1990). Maki and Thompson
 (1973) suggested a modification of this model. They assume that if two active
 spreaders meet, only one of them stops spreading the rumour (cf. Watson (1988)).

 3. The size and cumulative force of an epidemic

 We will derive asymptotic properties of the epidemic which are valid in large

 populations, i.e. when W--+00. To indicate the dependence on the size of the
 population we use the index W.
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 306 AKE SVENSSON

 The process Nw(t) is increasing and bounded by W. There thus exists a limit

 Sw = lim Nw(t),
 t--oo

 which is the final size of the epidemic, i.e. the total number of persons infected
 before the epidemic dies out.

 Another entity of importance is the cumulative force of the epidemic, i.e.

 Cw = Sfow(t) dt.
 Cw can be interpreted as the total amount of infectiousness encountered by a single
 individual who has stayed non-infected during the entire epidemic. In the case
 where all individuals are eventually infected, we also need to consider the effective
 cumulative force of the epidemic. This number is defined as

 C, = fow(t)I(Nw(t) < W) dt. Of course, Sw and Cw are intimately related. In Examples 1 and 2 the relation

 (3.1) Cw = BIW + caSw/W

 will hold (provided Sw < W). Here B = fo B(t) dt. An epidemic model where
 relation (3.1) holds is called a linear epidemic.
 For an IIDI epidemic (cf. Example 3) the relation Cw = BIW + sw ailW holds.

 Unless the distribution for the ai's is degenerate, this model will not be linear.
 From Kolmogorov's inequality it follows that ~,w (ai - ca)/W 4 0 as W-- oo. Thus
 an IIDI epidemic satisfies the relation

 (3.2) Cw - aSw/W O 0

 as W - oo. An epidemic model with this property will be called asymptotically
 proportional. The Maki-Thompson rumour model is also an asymptotically propor-
 tional epidemic model with ac = 2 (see Section 5.2).

 4. Some limit theorems

 Lemma 4.1. Let Mw(s) be a sequence of zero-mean martingales, such that
 E([Mw](s)) 5 Kw, where Kw - 0, for all s E [0, oo[, then M(oo) P-0 as W -- +.

 Proof. If a martingale M has uniformly bounded second moments, i.e.

 E(M2(s)) = E((M)(s)) = E([M](s)) _ K < cx for all s E [0, 00[, then lims.,.. M(s) =
 M(oo) exists almost surely and E(M2(oo)) K. (cf. Jacod and Shiryaev (1987),
 Theorem 1.42).

 Since E(M2,(oo)) < Kw -~0, the lemma follows from Chebyshev's inequality.

 Lemma 4.2. SE=O 1/(W - n) - CL has uniformly bounded variances.
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 Dynamics of an epidemic in a closed population 307

 Proof. The martingale

 Mw(t) = dNw(s)I(W - N(s-)) - w(s)I(Nw(S-) < W) ds

 is square integrable with optional quadratic variation

 t W--1 2 00 [Mw](t) = dNw(s)I(W - Nw(s-))2 I 1/(W - n)2 1/n2 < oo.
 n=O 1

 Now

 Sw -1

 Mw(mO) = 1/(W - n) - Cv. n=O

 Since E(M2w(oo)) = E([Mw](oo)) 5 E 1/n2 < oo the lemma follows.

 Theorem 4.3. If In(W)-Cw-+o as W-oo, then W-Sw-+oo and In(1-
 Sw/W) + Cw P-* as W -- oo.

 Proof. First observe that

 SW Sw-1 fW W
 dx/x >-? 1/(W - n) - dx/x -- dx/x2. W- Sw n =0 W-Sw -W-Sw

 From Lemma 4.2 and Chebyshev's inequality it follows that E so' 1/(W - n) -

 C*=_ In (W) - Cw - In (W - Sw) - Sw/(W(W - Sw)) is bounded from above in
 probability. If In (W) - Cw - o00, this can only happen if W - Sw _ +oo. Furthermore
 Cw - C*P- 0, since these two numbers differ only when W = Sw.
 If W - Sw P- o

 [Mw](t) = dNw(s)I(W - Nw(s-))2
 Sw -1

 - C 1/(W - n)2 - I(Sw = W) + 1/(W - Sw + 1) - 0 n=O

 as W -- oo.

 By Lemma 4.1 it follows that Mw(oo) O0. Another consequence of the inequality
 above is that

 (4.1) VW( 1/(W - n) + n (1 - Sw/W)) P-0
 and thus In (1 - Sw/W) + Cw - 0 as W -+ oo.

 Theorem 4.4. If Sw/W 4 P where P is a random variable with support on [0, K[

 with K < 1, and if there exists a sequence, r/w, of stopping times such that
 (i) N(rw)/W - 0 and

 (ii) E(Sw/W [ M,w) -Sw/W 0
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 308 AKE SVENSSON

 then W (In (1 - Sw/IW) + Cw) 4 Z/P/(1 - P) as W-+ m, where Z is a N(0, 1)-
 distributed random variable that is independent of P.

 Proof. We start by defining the stopping time

 rw = inf {t; Nw(t)IW W> (1 + K)/2}.

 Since the asymptotic distribution of Sw/W is concentrated on [0, K[ it follows that

 rw equals oo with a probability that tends to 1 as W - +oo.
 The martingales

 M )(t) = Wr/2 (dNw(s) - Aw(S) ds)I(W - Nw(s-))r

 have optional quadratic variations

 [M(r](t) = Wr dN(s)/(W - Nw(s-))2r 2 W-r'N(t)(1 - Nw(t)/W)-2r

 Applying Lemma 4.1 to the stopped martingales MW)(t A rw) it follows that

 M,(rw) 0 as W-- oo if r > 1. Define the cumulative function

 (4.2) Kw(, t) = f(exp {i/I(W - Nw(s-))} - 1 - ip(W - Nw(s-)))Aw(s) ds,

 then Zw(y, t) = exp {i4Mw(t) - Kw(,, t)} is the Dol6ans-Dade exponential of the

 martingale fo (exp {i/(W - Nw(s-))}- 1)(dNw(s) - Aw(s) ds) (cf. Jacod and
 Shiryaev (1987)). This means that

 Zw(y, t)= Zw(y, t) - 1

 (4.3)= fZw(y, s)(exp {ip/(W - Nw(s-))} - 1)(dNw(s) - Aw(S) ds).

 This follows from general theory, but is also easily checked in this particular case.
 Thus Zw(w, t) is, for any M, a local zero-mean martingale.

 From the elementary inequality Iexp {ix } - 1 - ix + x2/21 - 1x13/6 it follows that

 Kw(\/W , t) + W(s2/2) 1/(W - Nw(s-))2dNw(s)

 - Kw(VNW , t) + W(12/2) 1/(W - Nw(s-))2Xw(s) ds + (i2/2) IMj(t)

 - (,2/2) LM (t)| + / 3 /6 MV W(t)l + Wi I3/6f 1/(W - Nw(s-))3 dNw(s).
 If

 ow = inf {t; IM)(t)I > 1, IM??(t)I > 1} A rw
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 Dynamics of an epidemic in a closed population 309

 then it follows from the inequality

 P(sup IM )(t) >-- 1) --_5 E([M )](-rw))
 that ,w = rw with a probability that tends to 1 as W--+oo, i.e. ow equals oo
 asymptotically.

 We can conclude that Kw(VW L, aw) is uniformly bounded in W and asymptoti-

 cally equivalent to -W(i2/2) fo~dNw(s)/(W - Nw(s-))2. These two random
 variables are also asymptotically equivalent to - W(12/2) fo dNw(s)/(W - Nw(s-))2
 and -(M2/2)Sw/(W - Sw). If Pw =E(Sw/IW I ,) then it is also asymptotically
 equivalent to -(M2/2)Pw/(1 - Pw) due to condition (ii).

 By dominated convergence it follows that

 E(exp {Kw(VW , aw)})- E(exp{-(M2/2)P/(1 - P)}).

 Observe that this is the characteristic function of the random variable Z/P/(1 - P),
 where Z is N(0, 1)-distributed and independent of P.

 Now

 E(exp {iVW iMw(o(w)}) - E(exp {Kw(VrW y, ow)})

 = E(exp {Kw (V-W , aow)}Zw(VW O, aw)) (4.4)
 = E((exp {Kw(V-W Mi, aow)

 - exp {-(,i2/2)Pw/(1 - Pw)});Zw(VW i, aw))

 + E(E(exp {-(i2/2)Pw/(1 - Pw)}Zw(VW i, t) I iw)).

 The first term of (4.4) tends to 0 as W -- +o due to the asymptotic equivalence proved

 above. The second term equals E(exp {-(,i2/2)Pw/(1 - Pw)}Z2w(VWL, qrw))

 since Pw is ,w,-measurable and Zww(VW , -) is a martingale. Due to (4.3) and since
 Kw(VW, rlw) is bounded

 [Zw(VW i; -)](rqw) 5 const. M2Nw(rlw)(W - Nw(rlw)).

 This random variable tends to 0 as W - oo due to condition (i) and also the second

 term of (4.4) is asymptotically small. Thus V/MwM(oo)4 Z+/P/(1 - P). This
 together with (4.1) proves the theorem.

 This theorem implies that VW(In (1- Sw/IW)+ Cw) is asymptotically mixed
 normally distributed.

 5. Limit theorems for special epidemic models

 Theorem 5.1. In an asymptotically proportional epidemic model Sw/W is asymp-

 totically concentrated on the (at most two) roots of the equation

 (5.1) ar + In (1 - x) = 0.
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 310 AKE SVENSSON

 Proof. In an asymptotically proportional epidemic model, Cw - aSw/W 0P- as
 W- oo. Since Sw -5 W it follows that Cw is asymptotically bounded in probability.
 Thus, we can apply Theorem 4.3. It follows that In (1 - Sw/W) + aSw /WP 0. The
 equation In (1 - r) + an = 0 has only the root r = 0 if a ~ 1. If ac > 1 it also has one

 positive root. The distribution of Sw/W has to be asymptotically concentrated on
 these roots.

 Lemma 5.2. In any asymptotically proportional epidemic model, I(Sw -
 6W)VWMw(oo)OP- and in a linear epidemic, with acr 1, I(Sw 5 6W)Sw/VWP- 0
 as W -+oo, for any 6 such that 0 < 6 < 7r, where 7 is the largest root of (5.1).

 Proof. Define the stopping times rw = inf {t; Nw(t)> EW}. Since

 W[Mw](rlw) = W dNw(s)/(W - Nw(s-))2 E/(1 - E)

 it follows from Chebyshev's inequality that

 P(VW Mw (w) >- ?W)-, 0
 as W -- oo for any E > 0. For small epidemics VWMw(iqw) = VW Mw(o). If 6 is any
 number strictly less than the positive root of (5.1) I(Sw/W - 6) --+0 if the epidemic
 is asymptotically large. Thus the first part of the lemma is proved.

 For a linear epidemic VrW (Mw(oo) + In (1 - Sw/W) + c?Sw/W) P-;. If Sw /W is
 small In (1 - Sw/W) + crSw/W (a - 1)Sw/W. This implies the second part of the
 lemma.

 Theorem 5.3. In a linear epidemic with a > 1 the conditional distribution of
 W (S / W - 7r) given that the epidemic is large is asymptotically N(0, 7r(1 - 7)/
 (1 - ar + acir)2), where 7 is the positive root of (5.1).

 Proof. The sequence of stopping times riw = inf {t; Nw(t) > VW} trivially satisfies
 conditions (i) of Theorem 4.4. It follows from Lemma 5.2 that it also satisfies
 condition (ii).

 From a Taylor expansion, around 7r, it is seen that

 (5.2) VW (In (1 - Sw/W) + arSw/W) -VW (Sw/W - .7)(- 1/(1 - Ir) + ar)
 when Sw/W is close to 7.

 From Theorem 4.4 and by identifying the parts of the distribution it is seen that
 the conditional distribution of (5.2) given that the epidemic is large has to be
 N(0, x/(1 - x)). The theorem then follows from simple calculations.

 5.1. IIDI epidemics. To describe these models we will use a filtration where S, is

 generated by the process Nw(s) for s - t and c., ... qw, to.

 Theorem 5.4. In an IIDI epidemic model, with external force B, the asymptotic
 probability of a small epidemic is exp (-B6) where 6 is the smallest positive root of

 (5.3) E(exp (- a6)) = 1 - 6.
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 Dynamics of an epidemic in a closed population 311

 Proof. The probability for a small epidemic, ?(B, W), depends on the initial
 force B and the size of the population. This probability will, for fixed B, be a
 decreasing function of W. There will thus exist a limit, ?(B) which is the asymptotic
 probability for a small epidemic.

 For a small epidemic and any E > 0
 SW n

 (-)/ SU --- sup -)/v
 i=1 n<eW i=1

 with a probability that tends to 1 as W--->c. By Kolmogorov's inequality the
 right-hand side of this expression can be made arbitrarily small by choosing E
 sufficiently small. Thus

 Sw

 I(Sw < 6W) Y (ai - a)/VW-4 0 i=1

 as W---> oo. Since

 / SW

 \/WMw(M) W -In (1 - SIW- /W) - aSwIW - ( - a)/W) i=1

 it follows from Lemma 5.2 that Sw/IW tends to 0 as W-> c if the epidemic is small.
 Let us assume that we can divide the external force into two parts such that

 B = B1 + B2. In order for the entire epidemic to be small, both these initial forces
 will have to generate small epidemics. Let S(1) and S(2) be the sizes of the two
 epidemics. The probability that the epidemics overlap, i.e. they reach the same

 person, is less than SIS / 2lW, which will tend to 0 as W - ->c. Thus, the asymptotic equality ?(B1 + B2)= 1(BI) (B2) will hold. Consequently

 (5.4) ?(B) = exp {-B6}

 for some 6. Until the first individual is infected the intensity of the counting process

 N equals B(t). The probability that no individual in the population will be infected is
 exp {-B}. The amount of infectiousness, b, spent until the first person in the
 population is infected will be (censored) exponentially distributed. When the first
 person in the population is infected the (random) infectious force a, is added. This
 will give the equation

 ?(B) = exp {-B} + f f (B - b + a) exp {-b}db dF(coj),

 where F is the distribution function of the ac's. Together with (5.4) this equation
 implies Equation (5.3).

 Theorem 5.5. For an IIDI epidemic, in which the total amount of infectivity
 spread by an infected person is a random variable with mean a > 1 and variance a2,

 the conditional distribution of VW(SIw/W - ) given that the epidemic is large is
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 312 AKE SVENSSON

 asymptotically N(0, xr(1 - ;)(1 + (1 - 7r)a2)/(1 - ar + crf)2), where r is the positive
 root of (5.1).

 Proof. Let 9p(p) = E(exp {ip(ai - a)}) be the characteristic function of the
 random variables (ai - a). The function

 Xw(pt, t) = exp t ip (ai - o))IW - Nw(t) In (9(p(/W)) + ipMw(t) - Kw(p, t)

 (with Kw defined by (4.2)) is the Dol6ans-Dade exponential of the martingale

 (exp {ip /(W - Nw(s-))} - 1)(dNw(s) - Aw(S) ds)

 Nw(t)

 + exp {ip/(W - n)}(exp {ip(ac, - ca)/W - In (qp(p/~W))} - 1). n=l

 Thus Xw(tp, t) - 1 is a zero-mean martingale. As W--->c, Nw(o)In (Qp(pIV-W)) is
 asymptotically equivalent to - (P2/2)a2Sw/W.
 Let qw = inf {t; Nw(t) > VW} then Xw(VW p, rw)- 1 as W-> c. Using the

 same arguments as in the proof of Theorem 4.4 we can prove that

 E(exp (Sw In (q(p,/I-V-W)) - Kw(VWW p, o))}(Xw(VW C, C) - 1))- 0

 as W -> -. This implies that

 (5.5) (a - a)/IVW+VWM Mw(o))=-Z Zp2WPI(1- P)
 in law as W -> oc. Here P is a random variable concentrated at the two solutions of

 (5.1) and Z is a N(0, 1)-distributed random variable independent of P. Now

 Is (ca - ac)/IW + VW Mw(o) is asymptotically equivalent to -(In (1 - Sw/W) +
 aSw/W). Finally, a Taylor expansion around 7r and the convergence (5.5) yields the
 theorem.

 Results of the kind proved in Theorems 5.4 and 5.5 are given by von Bahr and
 Martin-L6f (1980). The asymptotic distribution of the size of a Reed-Frost process
 is given by Theorem 5.5 with 02 = 0.

 5.2. The Maki-Thompson model. Maki and Thompson's model for rumour
 spread is described in Example 4 of Section 2. Let Nw(t) be the number of
 individuals who have heard the rumour up till time t. We assume that an active
 spreader in the mean tells the rumour to P individuals per time unit.

 The counting process Nw has the intensity

 Aw(t) = P(W - Nw(t-))(Nw(t-)- Dw(t-) + 1),

 where Dw(t) is the number of individuals who know the rumour but have stopped
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 Dynamics of an epidemic in a closed population 313

 spreading it at time t. Dw is also a counting process and has the intensity

 ipw(t) = P(Nw(t) + 1)(Nw(t-) - Dw(t-) + 1).

 The cumulative force of the epidemic is

 Cw= (Nw(s) - Dw(s) + 1) ds.

 We can observe that

 Mw(t) = (Nw(t) + Dw(t))I(W + 1) - f (Nw(s) - Dw(s) + 1) ds

 is a zero-mean martingale. It is easy to verify that Mw satisfies the assumptions in
 Lemma 4.1. Thus A~w(o)P- 0 as W- >c. Since Nw(oc) = Dw(oc) = Sw, it follows that
 Cw - 2Sw / W 0. Thus, we have proved the following lemma.

 Lemma 5.6. The Maki-Thompson model for rumour spread is an asymptotically
 proportional epidemic model with a = 2.

 It is possible to derive the asymptotic distribution of Sw in the Maki-Thompson
 model using the technique with Dol6ans-Dade exponential as in the proof of
 Theorem 5.5. Since this result has already been given by Watson (1988), we do not
 give this proof here.
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