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 POISSON APPROXIMATION FOR SOME EPIDEMIC MODELS

 FRANK BALL,* University of Nottingham
 A. D. BARBOUR,** Universitdt Zurich

 Abstract

 The Daniels' Poisson limit theorem for the final size of a severe general stochastic

 epidemic is extended to the Martin-L6f epidemic, and an order of magnitude for the
 error in the approximation is also given. The argument consists largely of showing
 that the number of survivors of a severe epidemic is essentially the same as the
 number of isolated vertices in a random directed graph. Poisson approximation for
 the latter quantity is proved using the Stein-Chen method and a suitable coupling.

 STEIN-CHEN METHOD; EPIDEMIC SIZE; RANDOM GRAPH

 1. Isolated vertices in a random directed graph

 Let a random directed graph G on n vertices be constructed as follows. The sets Ei of
 links (i,j) emanating from the vertices 1 5 i 5 n are determined independently of one
 another. The value of Ni = I E I is selected at random from a given distribution F,,

 and, given that Ni = k, a k-subset Li of the vertices (j : 1 5j < n, j # i} is chosen from
 the uniform distribution on all such k-subsets, and E is set equal to ((i, j): jE Li). The

 set U i.., E thus obtained is a realization of G: the presence of a link (i, j) in G is thought
 of as the presence of a route in the direction from i to j, but not vice versa.

 For each i, define

 Thus the vertices with X, = 1 are isolated, in the sense that they cannot be reached from

 any other vertex, and W counts the number of isolated vertices. In the Bernoulli
 undirected random graph G(n, p), the number of isolated vertices was shown to be

 approximately Poisson distributed by Erd6s and Renyi (1960), provided that np > 1. In
 this section, we show that a similar result also holds for the directed graphs defined
 above.
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 480 FRANK BALL AND A. D. BARBOUR

 We start by considering the case where N = (Ni)I i<,, is not random, but consists of a
 given set of constants. Define

 n

 pi(N) =N,(n - 1), i(N) = EX, = (1 - p,(N)), A(N) = EW = i ,(N),
 joi i=1

 and let dTv denote the total variation distance between probability distributions:
 dTr(P, Q) = sup I P(A)- Q(A)I. Then we can prove the following theorem.

 Theorem 1. In the case of fixed N,

 dT v(S( W), Po(1A(N)))
 (1.1)

 - max 7ri(N) + - I 1 , 1 -- l-i n nj t ij n - 1 t)ij n - 2'
 where 2:,j denotes the sum over all pairs (i, j) with i # j.

 Proof. For fixed N, the indicator random variables Xi are negatively related, in
 the sense of Barbour et al. (1990). Hence, by their Corollary G.2 of Chapter II,
 1 - Var W/E W is an upper bound for dTv(.( W), Po(A(N))). Now direct calculation
 shows that

 EW - Var W= (IEW)2 - E(W(W- 1))

 n N, N,

 -= ~r (N)+,E ,r(N)7,r (N) 1) -1 1 N . i-i i,j tfi,j n-2 n-l "
 Dividing by IEW = i, 7rt(N), the first term of the estimate is immediate, and the
 second follows after observing that E W > n7r(N), where 7r(N) = r-i., (1 - pi(N)).

 Corollary 1.1. Suppose now that the N, are not fixed, so that the distributions F, are no
 longer concentrated at single points. Then

 dr (f( W), Po(A)) {c1 + c2i /(1 i)
 where

 n

 (1.2) p, = Ep,(N) = EN,/(n - 1); 7r = Eir(N) = i (1 - p);
 i-i

 c = exp 1+- p2/(1 - Pi) Var N } p ,-1 -1, 2(1 - p,)(n - 1)2]'
 1 n 1

 C2

 and Po(A) denotes the mixed Poisson distribution with mean A distributed as A(N).
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 Poisson approximation for some epidemic models 481

 Proof. It suffices to take the expectation of the right-hand side of (1.1). For the first

 term, we have the estimates

 E max 7ri(N)_ : E max exp - Nj/(n - 1) 1l i5n l_5Iin j i

 < eEexp- Ni1(n -1)) i=1

 n

 = e IE exp( - Nl(n - 1))
 i= 1

 n Ni NiZ

 i=1 n- 1 2(n- 1))
 = eh Pi + 1P+VarN
 i=1 2(n - 1)2

 < C17r.

 For the second, we obtain the estimate

 1 n-1 ] I E l(I - pI) - 1 -R 1-- p
 n i,ji li ,j t 19,i,j n - 2 A

 n i, (1 - PA)(1 - pj) I ? (n - 2)(1 - pl)
 1 7r PI

 ni,(1 - p;)(1 - py) =1 (n - 2)(1 - pl)
 n

 Sc 7r Pi /(l - pi), i-1

 which completes the proof.

 Approximation by a mixed Poisson distribution is less convenient than by a single
 Poisson distribution. However, if the variance of A is not too large, replacing A by its
 mean does not introduce much further error. This is the substance of the next theorem.

 Theorem 2. Let

 (1.3) A -- EA = IEA(N).
 Then

 (1.4) dGv(f(W), Po(A)) 1 e = r c, + c _ p,/(1 - p) + c1c3- Y ,
 -1 nr i (1 - p)

 where
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 482 FRANK BALL AND A. D. BARBOUR

 c3 n Var Ni
 iC3 - (n - 1)2 (1 - pi)2

 Proof. We combine Corollary 1.1 with the triangle inequality and the estimate

 dTv(Po(A), Po(A)) _ A-) Var A,
 which follows from Barbour et al. (1990), Chapter I, Theorem G. Thus all that remains is
 to estimate Var A. Now it is immediate that

 VarA = VarA (N) = E{ 7r?(N) + E7r,(N)7rj(N) i-I i,j t

 - 7r2(1- _ p)-27_ r2(1- _ p)-(1 p-1
 i-1 i,j

 and the expectation is evaluated by noting that

 E(1 I Ni\ 2 ( Var Ni Var N, 1( n-l (1- p (n - 1)2 (n - 1)2(1 - pi)2
 This yields the inequality

 VarA n2 [ 1 ]2n Var N )
 -Var1A(1 -P i) ){I (n+ 1)2(l-)2- 0-P- i- (n - 1)2(1 - pi)2

 n Var Ni
 5 (n - 2)2c2r2 Var NEC3,

 and, since >- nnr, the theorem follows.

 Remark. If the distributions F, were all the binomial distribution B(n - 1, p), with
 1 ~ np = O(log n), the case analogous to the undirected Bernoulli random graph
 G(n, p), we would have pi = P, 7i - e-3" and Var Ni = (n - 1) p(1 - p), giving cl - e

 and c2 -c3 ' 1: hence, in this case,

 dTrv(f(W), Po(A)) = O(npe-"P).

 This is an estimate of the same order of magnitude as is obtained for the graph G(n, p)

 (Barbour (1982), Theorem 1), where a rather simpler argument suffices, suggesting that
 not too much precision has been lost, despite the generality of the setting considered.

 2. The survivors of a severe epidemic

 The Martin-L6f (1986) epidemic is constructed from a random directed graph G by

 choosing one or more vertices initially at random to represent the set Io of initial
 infectives, the remaining set of vertices So representing the initially susceptible members

 of the population. The sets S, and I representing the susceptibles and infectives in thejth

 generation of the infection, j > 1, are then generated recursively, by setting
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 Poisson approximation for some epidemic models 483

 iEIj_ 1

 we define also sj = I Si I, ij = I I I. The epidemic terminates when, for some j, i, = 0. The
 Reed-Frost epidemic (see Bailey (1975); and En'ko (1889) for a forerunner of this
 model) is obtained if the F, are all B(n - 1, p), and a discrete skeleton of the general
 stochastic epidemic if the F, all have a common almost geometric distribution.

 The final size distribution of this epidemic has been studied by Martin-L6f (1986), in

 the range where normal approximation is suitable. However, Daniels (1967) has shown
 for the general stochastic epidemic that, in severe epidemics, a Poisson approximation
 for the number s. of survivors can also be appropriate. His argument does not yield any
 simple explanation as to why Poisson approximation should be expected. One intuitive
 justification is given in Cane (1966), and a formal, yet natural, proof is to be found in
 Sellke (1983): see also Ball (1986) for a heuristic argument, which allows the infectious
 periods of the different infectives to have different distributions. This paper is concerned

 with extending Daniels' result to the Martin-L6f model, and with quantifying the
 accuracy of the approximation. The essential idea is that, in a large epidemic, effectively

 only those individuals escape infection which correspond to vertices isolated in G (and
 not members of Io), and the distribution of their number can thus be approximated by
 using Theorem 2. The main effort lies in making this intuitive idea precise, under

 appropriate assumptions on the contact distributions F,. The key fact to be established is
 that s. is small enough with high enough probability.

 To simplify the argument somewhat, we consider a sequence of epidemics En for
 which the contact distributions are stochastically bounded below. This enables us, for
 each n, to couple En, sample path by sample path, to an epidemic E" which treats the n
 vertices exchangeably, in that all its contact distributions are the common lower bound

 distribution, and in such a way that, for each j, Sj D Sp. We prove for E' that s' is small
 with high probability in a series of lemmas; this entails a similar result for s,, and from
 this the Poisson approximation is established in Theorem 3.

 The assumption on the contact distibutions is that, for each n, the PF"), 1 < i n, are
 stochastically larger than the distibution Fi") of a random variable

 (2.1) Zn") =/ plog n + m(n)X O,
 where 1 > 1/2 and X do not depend on n, !X = 0, Var X 5 1 and 1 5 m(n)
 b, log n for some bl > 0. For the Reed-Frost epidemic, taking pn X log n/(n - 1),
 we have m(n) X (log n)1/2; for the general stochastic epidemic, with mean contact
 number of order log n, m(n) X log n also. The condition L > 1/2 is needed to ensure

 that only isolated vertices are left uninfected, and the condition p < 1 means that there is
 a chance of having a few survivors. From now on, where possible, the subscript n is
 suppressed.

 The first step is to note some inequalities for the distribution of Tk = f- l Z)s, for any fixed 0 < 5 < 1, where the Zi are independent and identically distributed, with

 (2.2) =(Zs) = B(Z, 1 - 5).
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 484 FRANK BALL AND A. D. BARBOUR

 Since X is bounded below, its moment generating function 0(t) = E(elx) exists for t 5 0,

 and hence, for t - 0,

 IE(eetzl} = exp{t6 alog n ~(m(n)tj),
 where

 (2.3) t6 = log(J + (1 - ()et} - 50.
 This enables us to prove the following lemma.

 Lemma 2.1. For any 0 < - ( 1, there exists a > 0 such that

 [T exp 2ax - ka log n]
 L(1 - )m (n) m (n)J

 uniformly in n, k and x > 0.

 Proof. By a routine argument, for t < 0,

 P[Tk, 5 x]exp{tx - kt6 p log n } 5 E exp(tTk - kt6 p log n } = exp(k log 0(m(n)t6)},

 yielding

 P[Tk: 5 x] < exp( - tx + k[t6 p log n + log 0(m(n)t6)]}.

 Now, from (2.3), if t6 = - s/m(n),

 - t = - log(1 + [exp( - s/m(n)) - 1]/(1 - ())} 2(1 - e-sim(n))/(1 - 5)

 < 2s/[m(n)(1 - J)],

 provided that s 5 (1 - ()/2, since m(n) >- 1. Furthermore, since log 0( - s) ~ ?s2 Var X
 near s = 0, there exists 0 < a < (1 - J)/2 such that cp/2b, >= log 0( - a), and hence, for
 all n,

 up log n
 2 log b( - a), 2 m(n)

 since log n/m(n) > 1/b1. Taking t6 = - a/m(n) for this value of a, the lemma follows.

 Now fix 0<( << 1 and let a be as in Lemma 2.1.

 Corollary 2.2. The following inequalities hold:

 (i) if k = [b2n/log n], where b2 = 8//p(1 - J), then, for all n such that b2n - 4 log n,

 P[Tk, _ nd] _ exp( - ~aub2n/m(n)};

 (ii) if k = nd - [b2n/log n] and x = b3n log n, where b3 _ <w/40, then; for all n such
 that p(1 - ()log n _ 20,

 P[Tk x] exp{ -- uan lon m(n)J"
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 Poisson approximation for some epidemic models 485

 The next step is to show that, if so = n(1 - 6) and i6 = nd - [b2n/log n ], then si is
 small, in the sense that E(s(s~s - 1)} ) kIn2-2". In fact, we are able to show the same
 inequality with s" for s,.

 Lemma 2.3. In the epidemic E' with s6 = n(1 - 3) and i = n6 - [b2n/log n],
 E{s'(s" - 1)} = O(n2-2p).

 Proof. We suppress the primes throughout. Let A, denote the event

 ({EIt/ N, ? b3n log n), where b3 is as in Corollary 2.2(ii): then P[A1] > 1 - e-an for some a > 0, by Corollary 2.2(ii). Hence we have

 E(s2(s2 - 1)} !E({s2(S2 - 1) IA,) + O(nZe-"an).

 Now direct calculation shows that

 E(s2(s2 - 1) A,) = E(E(s2(S2 - 1)s,, A,) IA,) = E({s,(s, - 1)(1 - p2)n('1-)-, IA,},
 where

 S- P2p = 1 V=J(j(2n - 3) - j2> 2u log n j?O (n - 1)(n - 2) (n - 2)

 is the chance of a given pair of susceptibles escaping infection by a given infective, and so
 it is enough to estimate

 Efs,(s, - 1)(1 - p2) -sI A,}.

 First, obseive that, since s, 5 n(1 - 3),

 (2.4) s,(s, - 1)(1 - p2)n(~-' )-sI ? 2s,(s, - 1)(1 - p2)n(-) + n21[s, ? - 2/log(1 - p2)].

 Now, conditional on N = {(N; / E 10), s, = ZieSo I[i U Uieto L1] is a sum of indicator
 random variables which are negatively related in the sense of Barbour et al. (1990). Thus,

 by their Theorem R, Chapter II, for all x - 31,

 P[s, >E x I N] ? 2P[Po(A) > x],

 where

 A = A(N) = E(s, I N) = n(1 - 6) - I N,< n<n(1 -)exp -1N,/(n-1). lElo n - lelo

 This immediately implies the crude estimate E(s1,(s, - 1) I N) 5 11 A2(N), giving

 2E(s,(s, - 1)1A,I } 22EI(2(N)}/P[A,]

 (2.5) ? 22n2 (1 32exp { io logn +iologp( -2m(]f
 X (1 + O(e-a")) >< n2-2p

 Also, on A1, 2(N) nfl-b3(1 - 3), whereas - 2/log(1 - p2) -(n - 2)/[2u log n], pro- vided that 2ji log n/(n - 2) ? 1/2. Thus, for all n sufficiently large,
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 486 FRANK BALL AND A. D. BARBOUR

 n2P[sl > - 2/log(1 - 2)A1 2n2P Po(nl-1 - l
 (2.6)

 = O(n2e-za2)

 for any a2 < b3/2p, where the last estimate uses the general inequality P[P _ y] 5
 E(e"P)e-"Y, with a = c log n and c < b3. Combining (2.4)-(2.6), it follows that

 E(sl(s, - 1)(1 - p2)"n('-)-s I A,} = O(n2-2pJ(1 - p2)n(l -)) + O(n2e-"2z)

 = O(n 2-20n - 24 +20)9

 and hence that IE(s2(s2 - 1)) = O(n -2"+22n2-20) also, as required.

 The third step is to show that, with high probability, the epidemic E' with iI = 1 and

 s = n - 1 is at least as severe as that with i' = n6 - [b2n/log n] and s' = n(1 - 6). The
 idea is to compare E' in its early stages with a branching process with offspring
 distribution given by (2.2), an idea originating with Whittle (1955) and used also by
 Sellke (1983). In order to do this, we measure time in the epidemic in terms of the
 number of removals; that is, in terms of the number of individuals who have transmitted

 their infection. Thus many of the new time steps may occur during a single 'generation'
 of infection. In the new time scale, we stop the process either at the time T,(6), when for

 the first time there are fewer than n(1 - 6) susceptibles left, or at the time Tz when there
 are no infectives remaining, whichever is the smaller. Until this time, the epidemic
 generates new infectives at least as fast as a process in which, at the jth time step, Zjj new

 infectives are produced and one previous infective removed, where the (Zj)j_>I are as defined before Lemma 2.1.

 To see this, consider the evolution of the epidemic at the 'new' time k, when

 individuals i(1), ... , i(k - 1) have been removed, individual i(k) is infecting and
 individuals i(k + 1),.. *,i(Uk- ) have previously been infected by one of the in-
 dividuals i(1),..., i(k- 1), but have not yet transmitted their infection. Let Sk-1 =
 (1, 2, ... , n } \ {i(1), . ., i(Uk_ 1)) denote the set of susceptibles following the first k - 1

 infections. We suppose that k _ min(Tz(6), to), which implies that k 5 Uk :_5 n6.
 Suppose that Ni(k) = 1: then the I members j(1), .. ., j(l) of Li(k) are chosen uniformly at

 random from (1, 2,. - , n} \ (i(k)}. Suppose that j(1), -.. ,j(r - 1) have already been

 chosen, and consider the choice ofj(r). If Uk-l + ISk-l (nj(1),...,j(r - 1)) _- n6,
 j(r) has probability at least 1 - 6 of belonging to Sk-1. Construct a Bernoulli random

 variable Bk, with distribution Be(1 - () satisfying Bk, I[j(r)ESk-_] by, for instance,
 setting Bk, = 1 with probability (1 - 5)/P[j(r)ESk-l] ifj(r)ESkl, and Bk, = 0 other-
 wise, the additional randomization being made independently of everything else. Note

 that Bk, is thus independent of (Bi,;j <k, s > O} U (Bk,;S < r}. Then, on Uk - n(,
 Uk - Uk-_ I C, Bkr, and since, from (2.1), the distribution fi(k) is stochastically larger than F, it is possible, by further randomization, to realize a random variable Zkb with

 distribution given by (2.2) in such a way that, on Uk < n(,
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 Ni(k)

 Uk k-  Bkr ZkJ ,
 r-=

 with Z, independent of (Z; j < k) }. Hence we arrive at the construction of a sequence
 of random variables Tk = I Zj6, with the same distributions as for Lemma 2.1,
 satisfying Uk Tkj + 1 whenever Uk < n3.
 Thus, if Uk = k, implying that to = k, it follows that

 To aco = min(j: Tj = j - 1),

 and, if Uk > n3 but U, : n3 for all j < k, it follows that

 tl() = k < a,() = min j : T! -, n}),

 since then Tj6 + 1 < Uj 5 n3 for all j < k. Hence, on Tl,() < To, z,(3) is stochastically
 smaller than au(3), and on to < z1(3), To is stochastically larger than co(3). Thus

 (2.7) P[Tz,() > Tol -- P[ao(3) < oc]
 and, for any K &>_ 1,
 (2.8) P[T,(3) : z0, t,(3) 2 K] < P[al(3) ? K] - P[TKr < n3].
 This is enough to establish the following lemma.

 Lemma 2.4. Consider the epidemic E' with s" = n - 1 and i6 = 1, and let Ai =

 (t1(3) _5- to A b2n/log n). Then we have (i) P[Ai] 21I - P[ac0() < c] - e-a3nlm(n);
 (ii) E(s (s" - 1) A;} = O(n2-2y).

 Proof. Part (i) follows from (2.7), (2.8) and Corollary 2.2(i). However, if tzI,()
 b2n/log n, the number of infectives at this time is at least n3 - [b2n/log n], and so part
 (ii) follows from Lemma 2.3.

 Note that the probability P[ac(3) < cx] can be evaluated as usual for the extinction

 probability of the branching process with offspring distribution that of ZI6. In particular, the quick estimate

 (2.9) P[ao(6) < c] ? P[Z16 = 0]/P[Z6a > 1],

 combined with Lemma 2.1, gives the weak inequality

 P[ao(J) < oc] -< e-?og n/m(n)

 which can nonetheless be useful if m(n), log n.
 With the help of Lemma 2.4, it is now possible to prove the following theorem.

 Theorem 3. In the sequence of epidemics E, with (s'"), iv")) = (n - 1, 1), and with
 contact distributions satisfying (2.1),

 dTv(('(sm), Po(G (")))= O(-l),

 where
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 488 FRANK BALL AND A. D. BARBOUR

 n. = P[o(,p)()< oo] + n'2 2 pu: ) + n-'-I" + "(n) i-I

 and pn"), i(") and e(") are defined as in (1.2), (1.3) and (1.4).

 Remark. The first term in the expression for r, bounds the probability that the
 epidemic is not severe, the second the probability that non-isolated individuals may also

 be left uninfected in a severe epidemic, and the third the probability that an isolated
 individual may be infected through being chosen to be the original infective. The last
 term bounds the error in the Poisson approximation of the number of isolated
 individuals, using Theorem 2.

 Proof. Once again, we compare the epidemic E with that E' for which each contact

 distribution is F") as defined in (2.1), coupling sample path by sample path, so that
 Sf j Sj for each j. Using Lemma 2.4 for E', we see that, for an event A' of probability

 1 - O(tq), E{(s(s" - 1)1 A') = O(n2-24). By the exchangeability of the vertices in E', it
 follows that

 P[ 3 i,jES: ie Lj Is', A;] 5 s'(s - 1)1 - pp) ani-

 and hence, since S \ c SI,

 P[S, = 6 \Io | AI] i E s' (s, - 1)- 1 Zpp) JA AI = ),

 where J denotes the set of isolated vertices in the graph of E. Thus we find that

 P[S, # J] = O(r,), and the theorem now follows from Theorem 2.

 Corollary 2.5. In the Reed-Frost epidemic with (so, io)= (n - 1, 1) and with p. =

 # log n/(n - 1), 1/2 < < 1,

 dTv('(sm), Po(n'-u)) = O(nl- 2 log n).

 Proof. Apply Theorem 3 with the common contact distribution B(n - 1, p).

 Corollary 2.6. In the general stochastic epidemic with (so, io)= (n - 1, 1) and with
 contact distribution given by

 P[N, = r] = e-t(l+losgn) (n- 1 {etMlonI/(n-l) - 1}dt

 __( 1 ( log n \{ .r2+lOgn+, 1 + p~logn 1 + p~log n 1+ n

 1/2 < i _ 1, we have the estimate
 dv('(s~,), Po(n'-")) = O(1/log n).

 Proof. Apply Theorem 3 with the common almost geometric contact distribution.
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 Poisson approximation for some epidemic models 489

 Remark. The lack of precision in Corollary 2.6 is purely due to the chance of the
 epidemic failing to take hold. If io(n) initial infectives are present, the error estimate
 becomes

 O(nl-2p log n, n-u log2 n, n -io(n), (log n)-io(n)),

 which is the same as in Corollary 2.5 if io(n) " log n and p < 1, for instance. The natural
 approximation in such circumstances is of course to use a mixture of the Poisson
 distribution and the 'small epidemic' branching process approximation for the final size.

 The argument already given shows that, with io = 1 and conditional on there being a

 'large' outbreak, the Poisson approximation holds to an accuracy of order qr*, where rq* is
 the same as I,,, but for the absence of the term P[a")(3) < c0]. If the mean of the
 approximating Poisson distribution is multiplied by the factor (1 - io(n)/n), to allow for

 the fact that some members of I0 may be isolated, the term n -'A(")io(n) can also be
 eliminated from the error estimate.

 The difference between the Reed-Frost epidemic and the general stochastic epidemic
 lies in the modelling of the infectious period. In the Reed-Frost model, the infectious
 period is assumed to be fixed, say of length one time unit, and, with a uniform contact

 rate of y log n/(n - 1) between any given pair of individuals, and with indepen-

 dence between pairs, the contact distribution is B(n -1, 1-e-?log"/("-n-))
 B(n - 1, p log n/(n - 1)). In the general stochastic epidemic, the assumptions are the
 same, except that the variable, exponentially distributed, infectious period introduces
 dependence between the events that i contacts j and i contacts k. A more realistic model

 for the length of the infectious period would be to take independent random lengths
 from a distribution concentrated on an interval [a, b], where typically 0 < a < b < c~. If

 the distribution has a smooth density g, we find, with a uniform contact rate
 ,u log n/(n - 1) and for r > log n, that

 P[Ni = r] = g(t)e-tlog" ){etIog"n/((n) - 1}rdt
 1 b

 r! g(t)e -tog n (tl log n }'dt

 1 ( r)
 p log n g log n '

 so that the distribution of Ni/p log n is well approximated by the density g. In particular,
 if fb g(t)dt = 1, such a contact distribution leads naturally to an approximation of the
 form (2.1) with m(n) > log n, apart from the limiting case of the Reed-Frost model,

 where g is concentrated at 1 and m(n) " log n. Thus the methods of this section can
 easily be applied to such epidemics also. Note also that the approximation (2.9) then
 gives a bound of order n -"/log n for the probability of a small epidemic, indicating that
 the poor approximation in Corollary 2.6, occasioned by the relatively large probability
 of having only a small outbreak, is due to the possibility of very short infectious periods

 (a = O, g(O)> 0).
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