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Preface

In	 writing	 this	 book	 our	 target	 was	 to	 deliver	 an	 accessible,	 introductory	 text	 on	 the
fundamentals	of	machine	learning,	and	the	ways	that	machine	learning	is	used	in	practice
to	solve	predictive	data	analytics	problems	in	business,	science,	and	other	organizational
contexts.	As	such,	the	book	goes	beyond	the	standard	topics	covered	in	machine	learning
books	 and	 also	 covers	 the	 lifecycle	 of	 a	 predictive	 analytics	 project,	 data	 preparation,
feature	design,	and	model	deployment.

The	 book	 is	 intended	 for	 use	 on	 machine	 learning,	 data	 mining,	 data	 analytics,	 or
artificial	 intelligence	 modules	 on	 undergraduate	 and	 post-graduate	 computer	 science,
natural	 and	 social	 science,	 engineering,	 and	 business	 courses.	 The	 fact	 that	 the	 book
provides	case	studies	 illustrating	 the	application	of	machine	 learning	within	 the	 industry
context	 of	 data	 analytics	 also	 makes	 it	 a	 suitable	 text	 for	 practitioners	 looking	 for	 an
introduction	to	the	field	and	as	a	text	book	for	industry	training	courses	in	these	areas.

The	 design	 of	 the	 book	 is	 informed	 by	 our	 many	 years	 of	 experience	 in	 teaching
machine	learning,	and	the	approach	and	material	in	the	book	has	been	developed	and	road-
tested	 in	 the	 classroom.	 In	 writing	 this	 book	 we	 have	 adopted	 the	 following	 guiding
principles	to	make	the	material	accessible:

1.	 Explain	the	most	important	and	popular	algorithms	clearly,	rather	than	overview	the
full	breadth	of	machine	 learning.	As	 teachers	we	believe	 that	giving	a	student	deep
knowledge	of	the	core	concepts	underpinning	a	field	provides	them	with	a	solid	basis
from	which	 they	 can	 explore	 the	 field	 themselves.	This	 sharper	 focus	 allows	 us	 to
spend	 more	 time	 introducing,	 explaining,	 illustrating	 and	 contextualizing	 the
algorithms	that	are	fundamental	to	the	field,	and	their	uses.

2.	 Informally	explain	what	an	algorithm	is	trying	to	do	before	presenting	the	technical
formal	 description	 of	 how	 it	 does	 it.	 Providing	 this	 informal	 introduction	 to	 each
topic	gives	students	a	solid	basis	 from	which	 to	attack	 the	more	 technical	material.
Our	 experience	 with	 teaching	 this	 material	 to	mixed	 audiences	 of	 undergraduates,
post-graduates	and	professionals	has	shown	that	these	informal	introductions	enable
students	to	easily	access	the	topic.

3.	 Provide	 complete	 worked	 examples.	 In	 this	 book	 we	 have	 presented	 complete
workings	 for	 all	 examples,	 because	 this	 enables	 the	 reader	 to	 check	 their
understanding	in	detail.



Structure	of	the	Book
When	 teaching	a	 technical	 topic,	 it	 is	 important	 to	 show	 the	application	of	 the	concepts
discussed	 to	 real-life	problems.	For	 this	 reason,	we	present	machine	 learning	within	 the
context	 of	 predictive	 data	 analytics,	 an	 important	 and	 growing	 industry	 application	 of
machine	 learning.	 The	 link	 between	 machine	 learning	 and	 data	 analytics	 runs	 through
every	chapter	 in	 the	book.	 In	Chapter	1	we	 introduce	machine	 learning	 and	 explain	 the
role	 it	 has	within	 a	 standard	 data	 analytics	 project	 lifecycle.	 In	Chapter	2	we	 provide	 a
framework	 for	 designing	 and	 constructing	 a	 predictive	 analytics	 solution,	 based	 on
machine	learning,	that	meets	a	business	need.	All	machine-learning	algorithms	assume	a
dataset	is	available	for	training,	and	in	Chapter	3	we	explain	how	to	design,	construct,	and
quality	check	a	dataset	before	using	it	to	a	build	prediction	model.

Chapters	4,	5,	6,	and	7	are	 the	main	machine	 learning	chapters	 in	 the	book.	Each	of
these	 chapters	 presents	 a	 different	 approach	 to	 machine	 learning:	 Chapter	 4,	 learning
through	 information	gathering;	Chapter	5,	 learning	 through	analogy;	Chapter	6,	 learning
by	predicting	probable	outcomes;	and	Chapter	7,	 learning	by	searching	for	solutions	 that
minimize	error.	All	of	these	chapters	follow	the	same	two	part	structure

Part	 1	 presents	 an	 informal	 introduction	 to	 the	 material	 presented	 in	 the	 chapter,
followed	by	a	detailed	explanation	of	 the	fundamental	 technical	concepts	required	to
understand	the	material,	and	then	a	standard	machine	learning	algorithm	used	in	that
learning	approach	is	presented,	along	with	a	detailed	worked	example.
Part	 2	 of	 each	 chapter	 explains	 different	 ways	 that	 the	 standard	 algorithm	 can	 be
extended	and	well-known	variations	on	the	algorithm.

The	motivation	 for	 structuring	 these	 technical	 chapters	 in	 two	parts	 is	 that	 it	 provides	 a
natural	break	in	 the	chapter	material.	As	a	result,	a	 topic	can	be	included	in	a	course	by
just	covering	Part	1	of	a	chapter	(‘Big	Idea’,	fundamentals,	standard	algorithm	and	worked
example);	and	then—time	permitting—the	coverage	of	the	topic	can	be	extended	to	some
or	 all	 of	 the	material	 in	Part	 2.	Chapter	8	 explains	 how	 to	 evaluate	 the	 performance	 of
prediction	models,	and	presents	a	range	of	different	evaluation	metrics.	This	chapter	also
adopts	the	two	part	structure	of	standard	approach	followed	by	extensions	and	variations.
Throughout	these	technical	chapters	the	link	to	the	broader	predictive	analytics	context	is
maintained	through	detailed	and	complete	real-world	examples,	along	with	references	 to
the	datasets	and/or	papers	that	the	examples	are	based	on.

The	 link	between	 the	broader	 business	 context	 and	machine	 learning	 is	most	 clearly
seen	 in	 the	 case	 studies	 presented	 in	 Chapters	 9	 (predicting	 customer	 churn)	 and	 10
(galaxy	classification).	In	particular,	these	case	studies	highlight	how	a	range	of	issues	and
tasks	 beyond	model	 building—such	 as	 business	 understanding,	 problem	definition,	 data
gathering	and	preparation,	and	communication	of	insight—are	crucial	to	the	success	of	a
predictive	analytics	project.	Finally,	Chapter	11	discusses	a	range	of	fundamental	topics	in
machine	learning	and	also	highlights	that	the	selection	of	an	appropriate	machine	learning
approach	for	a	given	task	involves	factors	beyond	model	accuracy—we	must	also	match
the	characteristics	of	the	model	to	the	needs	of	the	business.



How	to	Use	this	Book
Through	our	years	of	teaching	this	material	we	have	developed	an	understanding	of	what
is	a	reasonable	amount	of	material	to	cover	in	a	one-semester	introductory	module	and	on
two-semester	more	advanced	modules.	To	facilitate	the	use	of	the	book	in	these	different
contexts,	 the	 book	 has	 been	 designed	 to	 be	 modular—with	 very	 few	 dependencies
between	chapters.	As	a	result,	a	lecturer	using	this	book	can	plan	their	course	by	simply
selecting	the	sections	of	the	book	they	wish	to	cover	and	not	worry	about	the	dependencies
between	the	sections.	When	presented	in	class,	the	material	in	Chapters	1,	2,	9,	10	and	11
typically	take	two	to	three	lecture	hours	to	cover;	and	the	material	in	Chapters	3,	4,	5,	6,	7,
8	normally	take	four	to	six	lecture	hours	to	cover.

In	 Table	 1	 we	 have	 listed	 a	 number	 of	 suggested	 course	 plans	 targeting	 different
contexts.	All	of	 these	courses	 include	Chapter	1	 (Machine	Learning	 for	Predictive	Data
Analytics)	and	Chapter	11	(The	Art	of	Machine	Learning	for	Predictive	Data	Analytics).
The	first	course	listed	(M.L.	short	deep)	is	designed	to	be	a	one-semester	machine	learning
course	with	 a	 focus	 on	 giving	 the	 students	 a	 deep	 understanding	 of	 two	 approaches	 to
machine	 learning,	 along	with	 an	understanding	of	 the	 correct	methodology	 to	use	when
evaluating	a	machine	learning	model.	In	our	suggested	course	we	have	chosen	to	cover	all
of	 Chapters	 4	 (Information-based	 Learning)	 and	 7	 (Error-based	 Learning).	 However,
Chapter	 5	 (Similarity-based	 Learning)	 and/or	 6	 (Probability-based	 Learning)	 could	 be
used	 instead.	 The	M.L.	 short	 deep	 is	 also	 an	 ideal	 course	 plan	 for	 a	 short	 (1	 week)
professional	 training	 course.	 The	 second	 course	 (M.L.	 short	 broad)	 is	 another	 one-
semester	 machine	 learning	 course.	 Here,	 however,	 the	 focus	 is	 on	 covering	 a	 range	 of
machine	learning	approaches	and,	again,	evaluation	is	covered	in	detail.	For	a	longer	two-
semester	 machine	 learning	 course	 (M.L.	 long)	 we	 suggest	 covering	 data	 preparation
(Section	3.6),	all	the	machine	learning	chapters,	and	the	evaluation	chapter.

There	are	contexts,	however,	where	the	focus	of	a	course	is	not	primarily	on	machine
learning.	 We	 also	 present	 to	 course	 paths	 that	 focus	 on	 the	 context	 of	 predictive	 data
analytics.	 The	 course	 P.D.A	 short	 defines	 a	 one-semester	 course.	 This	 course	 gives
students	an	introduction	to	predictive	data	analytics,	a	solid	understanding	of	how	machine
learning	solutions	should	be	designed	to	meet	a	business	need,	insight	into	how	prediction
models	work	 and	 should	 be	 evaluated,	 and	 includes	 one	 of	 the	 case	 studies.	The	P.D.A
short	is	also	an	ideal	course	plan	for	a	short	(1	week)	professional	training	course.	If	there
is	more	time	available	then	P.D.A	long	expands	on	the	P.D.A.	short	course	so	that	students
gain	 a	 deeper	 and	 broader	 understanding	 of	 machine	 learning,	 and	 also	 includes	 the
second	case	study.



Online	Resources
The	website:

www.machinelearningbook.com

provides	access	to	a	wide	range	of	material	that	supports	the	book.	This	material	includes:
lecture	 slides,	 the	complete	 set	of	 images	used	 in	 the	book,	video	 lectures	based	on	 the
book,	code	samples,	and	an	errata	 list	 (hopefully	short).	Worked	solutions	for	all	end	of
chapter	exercises	are	available.	For	questions	 that	are	not	marked	with	an	✻	a	solutions
manual	is	available	from	the	book	website.	Solutions	for	those	questions	that	are	marked
with	an	✻	are	contained	in	an	instructors	manual	available	from	MIT	Press	on	request.

http://www.machinelearningbook.com
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Notation

In	this	section	we	provide	a	short	overview	of	the	technical	notation	used	throughout	this
book.



Notational	Conventions
Throughout	 this	 book	 we	 discuss	 the	 use	 of	 machine	 learning	 algorithms	 to	 train
prediction	models	based	on	datasets.	The	following	list	explains	the	notation	used	to	refer
to	different	elements	in	a	dataset.	Figure	1[xix]	 illustrates	the	key	notation	using	a	simple
sample	dataset.

Figure	1

How	the	notation	used	in	the	book	relates	to	the	elements	of	a	dataset.



Datasets

The	symbol	 	denotes	a	dataset.
A	 dataset	 is	 composed	 of	 n	 instances,	 (d1,	 t1)	 to	 (dn,	 tn),	 where	 d	 is	 a	 set	 of	 m
descriptive	features	and	t	is	a	target	feature.
A	subset	of	a	dataset	 is	denoted	using	 the	 symbol	 	with	a	 subscript	 to	 indicate	 the
definition	of	the	subset.	For	example,	 f=l	represents	the	subset	of	instances	from	the
dataset	 	where	the	feature	f	has	the	value	l.



Vectors	of	Features

Lowercase	 boldface	 letters	 refer	 to	 a	 vector	 of	 features.	 For	 example,	 d	 denotes	 a
vector	of	descriptive	 features	 for	 an	 instance	 in	a	dataset,	 and	q	 denotes	 a	 vector	 of
descriptive	features	in	a	query.



Instances

Subscripts	are	used	to	index	into	a	list	of	instances.
xi	refers	to	the	ith	instance	in	a	dataset.
di	refers	to	the	descriptive	features	of	the	ith	instance	in	a	dataset.



Individual	Features

Lowercase	letters	represent	a	single	feature	(e.g.,	f,	a,	b,	c	…).
Square	brackets	 []	are	used	 to	 index	 into	a	vector	of	 features	 (e.g.,	d	 [j]	denotes	 the
value	of	the	jth	feature	in	the	vector	d).
t	represents	the	target	feature.



Individual	Features	in	a	Particular	Instance

di	[j]	denotes	the	value	of	the	jth	descriptive	feature	of	the	ith	instance	in	a	dataset.
ai	refers	to	the	value	for	feature	a	of	the	ith	instance	in	a	dataset.
ti	refers	to	the	value	of	the	target	feature	of	the	ith	instance	in	a	dataset



Indexes

Typically	i	is	used	to	index	instances	in	a	dataset,	and	j	is	used	to	index	features	in	a
vector.



Models

We	use	 	to	refer	to	a	model.
w	refers	to	a	model	 	parameterized	by	a	parameter	vector	w.
w(d)	refers	to	the	output	of	a	model	 	parameterized	by	parameters	w	for	descriptive

features	d.



Set	Size

Vertical	bars	 |	 |	 refer	 to	counts	of	occurrences	 (e.g.,	 |a	=	 l|	 represents	 the	number	of
times	that	a	=	l	occurs	in	a	dataset).



Feature	Names	and	Feature	Values

We	use	 a	 specific	 typography	when	 referring	 to	 a	 feature	 by	 name	 in	 the	 text	 (e.g.,
POSITION,	CREDITRATING,	and	CLAIM	AMOUNT).
For	 categorical	 features,	 we	 use	 a	 specific	 typography	 to	 indicate	 the	 levels	 in	 the
domain	of	the	feature	when	referring	to	a	feature	by	name	in	the	text	(e.g.,	center,	aa,
and	soft	tissue).



Notational	Conventions	for	Probabilities
For	 clarity	 there	 are	 some	 extra	 notational	 conventions	 used	 in	 Chapter	 6[247]	 on
probability.



Generic	Events

Uppercase	 letters	 denote	 generic	 events	 where	 an	 unspecified	 feature	 (or	 set	 of
features)	is	assigned	a	value	(or	set	of	values).	Typically	we	use	letters	from	the	end	of
the	alphabet—e.g.,	X,	Y,	Z—for	this	purpose.
We	use	 subscripts	on	uppercase	 letters	 to	 iterate	over	events.	So,	Σi	P(Xi)	 should	be
interpreted	as	 summing	over	 the	 set	of	 events	 that	 are	 a	 complete	 assignment	 to	 the
features	in	X	(i.e.,	all	the	possible	combinations	of	value	assignments	to	the	features	in
X).



Named	Features

Features	explicitly	named	in	the	text	are	denoted	by	the	uppercase	initial	letters	of	their
names.	For	example,	a	feature	named	MENINGITIS	is	denoted	by	M.



Events	Involving	Binary	Features

Where	a	named	feature	is	binary,	we	use	the	lowercase	initial	letter	of	the	name	of	the
feature	 to	 denote	 the	 event	where	 the	 feature	 is	 true	 and	 the	 lowercase	 initial	 letter
preceded	by	the	¬	symbol	to	denote	the	event	where	it	is	false.	So,	m	will	represent	the
event	MENINGITIS	=	true,	and	¬m	will	denote	MENINGITIS	=	false.



Events	Involving	Non-Binary	Features

We	use	 lowercase	 letters	with	 subscripts	 to	 iterate	 across	 values	 in	 the	 domain	 of	 a
feature.
So	Σi	P(mi)	=	P(m)	+	P(¬m).
In	situations	where	a	letter,	for	example	X,	denotes	a	joint	event,	then	Σi	P(Xi)	should
be	interpreted	as	summing	over	all	the	possible	combinations	of	value	assignments	to
the	features	in	X.



Probability	of	an	Event

The	probability	that	the	feature	f	is	equal	to	the	value	v	is	written	P(f	=	v).



Probability	Distributions

We	use	bold	notation	P()	 to	 distinguish	 a	 probability	 distribution	 from	a	probability
mass	function	P().
We	use	the	convention	that	the	first	element	in	a	probability	distribution	vector	is	the
probability	 for	 a	 true	 value.	 For	 example,	 the	 probability	 distribution	 for	 a	 binary
feature,	A,	with	a	probability	of	0.4	of	being	true	would	be	written	as	P(A)	=<	0.4,	0.6
>.





1	Machine	Learning	for	Predictive	Data	Analytics

Study	the	past	if	you	would	define	the	future.

—Confucius

Modern	 organizations	 collect	 massive	 amounts	 of	 data.	 For	 data	 to	 be	 of	 value	 to	 an
organization,	 they	must	 be	 analyzed	 to	 extract	 insights	 that	 can	 be	 used	 to	make	better
decisions.	 The	 progression	 from	 data	 to	 insights	 to	 decisions	 is	 illustrated	 in	 Figure
1.1[1].	 Extracting	 insights	 from	data	 is	 the	 job	 of	data	analytics.	 This	 book	 focuses	 on
predictive	data	analytics,	which	is	an	important	subfield	of	data	analytics.

Figure	1.1

Predictive	data	analytics	moving	from	data	to	insight	to	decision.



1.1	What	Is	Predictive	Data	Analytics?
Predictive	data	analytics	 is	 the	art	of	building	and	using	models	 that	make	predictions
based	on	patterns	extracted	from	historical	data.	Applications	of	predictive	data	analytics
include

Price	Prediction:	Businesses	such	as	hotel	chains,	airlines,	and	online	retailers	need	to
constantly	 adjust	 their	 prices	 in	 order	 to	maximize	 returns	 based	 on	 factors	 such	 as
seasonal	 changes,	 shifting	 customer	 demand,	 and	 the	 occurrence	 of	 special	 events.
Predictive	analytics	models	can	be	trained	to	predict	optimal	prices	based	on	historical
sales	records.	Businesses	can	then	use	these	predictions	as	an	input	into	their	pricing
strategy	decisions.
Dosage	Prediction:	Doctors	and	scientists	frequently	decide	how	much	of	a	medicine
or	other	chemical	to	include	in	a	treatment.	Predictive	analytics	models	can	be	used	to
assist	 this	 decision	making	 by	 predicting	 optimal	 dosages	 based	 on	 data	 about	 past
dosages	and	associated	outcomes.
Risk	 Assessment:	 Risk	 is	 one	 of	 the	 key	 influencers	 in	 almost	 every	 decision	 an
organization	 makes.	 Predictive	 analytics	 models	 can	 be	 used	 to	 predict	 the	 risk
associated	with	decisions	such	as	 issuing	a	 loan	or	underwriting	an	insurance	policy.
These	 models	 are	 trained	 using	 historical	 data	 from	 which	 they	 extract	 the	 key
indicators	of	risk.	The	output	from	risk	prediction	models	can	be	used	by	organizations
to	make	better	risk	judgements.
Propensity	Modeling:	Most	business	decision	making	would	be	made	much	easier	if
we	 could	 predict	 the	 likelihood,	 or	 propensity,	 of	 individual	 customers	 to	 take
different	 actions.	 Predictive	 data	 analytics	 can	 be	 used	 to	 build	models	 that	 predict
future	 customer	 actions	 based	 on	 historical	 behavior.	 Successful	 applications	 of
propensity	 modeling	 include	 predicting	 the	 likelihood	 of	 customers	 to	 leave	 one
mobile	phone	operator	for	another,	to	respond	to	particular	marketing	efforts,	or	to	buy
different	products.
Diagnosis:	Doctors,	engineers,	and	scientists	regularly	make	diagnoses	as	part	of	their
work.	Typically,	 these	diagnoses	are	based	on	 their	extensive	 training,	expertise,	and
experience.	Predictive	analytics	models	can	help	professionals	make	better	diagnoses
by	leveraging	large	collections	of	historical	examples	at	a	scale	beyond	anything	one
individual	 would	 see	 over	 his	 or	 her	 career.	 The	 diagnoses	 made	 by	 predictive
analytics	models	 usually	 become	 an	 input	 into	 the	 professional’s	 existing	 diagnosis
process.
Document	 Classification:	 Predictive	 data	 analytics	 can	 be	 used	 to	 automatically
classify	 documents	 into	 different	 categories.	 Examples	 include	 email	 spam	 filtering,
news	 sentiment	 analysis,	 customer	 complaint	 redirection,	 and	 medical	 decision
making.	 In	 fact,	 the	 definition	 of	 a	 document	 can	 be	 expanded	 to	 include	 images,
sounds,	 and	 videos,	 all	 of	 which	 can	 be	 classified	 using	 predictive	 data	 analytics
models.

All	these	examples	have	two	things	in	common.	First,	in	each	case	a	model	is	used	to
make	 a	 prediction	 to	 help	 a	 person	 or	 organization	make	 a	 decision.	 In	 predictive	 data



analytics	we	use	a	broad	definition	of	the	word	prediction.	In	everyday	usage,	the	word
prediction	has	a	temporal	aspect—we	predict	what	will	happen	in	the	future.	However,	in
data	 analytics	 a	 prediction	 is	 the	 assignment	 of	 a	 value	 to	 any	 unknown	 variable.	 This
could	be	predicting	the	price	that	something	will	be	sold	for	in	the	future	or,	alternatively,
it	 could	 mean	 predicting	 the	 type	 of	 document.	 So,	 in	 some	 cases	 prediction	 has	 a
temporal	 aspect	 but	 not	 in	 all.	The	 second	 thing	 that	 the	 examples	 listed	 above	have	 in
common	 is	 that	 a	 model	 is	 trained	 to	 make	 predictions	 based	 on	 a	 set	 of	 historical
examples.	We	use	machine	learning	to	train	these	models.



1.2	What	Is	Machine	Learning?
Machine	learning	is	defined	as	an	automated	process	that	extracts	patterns	from	data.	To
build	 the	 models	 used	 in	 predictive	 data	 analytics	 applications,	 we	 use	 supervised
machine	learning.	Supervised	machine	learning1	techniques	automatically	learn	a	model
of	the	relationship	between	a	set	of	descriptive	features	and	a	target	feature	based	on	a
set	of	historical	examples,	or	instances.	We	can	then	use	this	model	to	make	predictions
for	new	instances.	These	two	separate	steps	are	shown	in	Figure	1.2[3].

Figure	1.2

The	two	steps	in	supervised	machine	learning.

Table	1.1[4]	lists	a	set	of	historical	instances,	or	dataset,	of	mortgages	that	a	bank	has
granted	in	the	past.2	This	dataset	includes	descriptive	features	that	describe	the	mortgage,
and	a	target	feature	that	indicates	whether	the	mortgage	applicant	ultimately	defaulted	on
the	loan	or	paid	it	back	in	full.	The	descriptive	features	tell	us	three	pieces	of	information
about	the	mortgage:	the	OCCUPATION	(which	can	be	professional	or	industrial)	and	AGE	of
the	applicant	and	the	ratio	between	the	applicant’s	salary	and	the	amount	borrowed	(LOAN-
SALARY	RATIO).	The	target	feature,	OUTCOME,	is	set	to	either	default	or	repay.	In	machine
learning	 terms,	 each	 row	 in	 the	 dataset	 is	 referred	 to	 as	 a	 training	 instance,	 and	 the
overall	dataset	is	referred	to	as	a	training	dataset.

Table	1.1

A	credit	scoring	dataset.

ID OCCUPATION AGE LOAN-SALARY	RATIO OUTCOME



1 industrial 34 2.96 repay

2 professional 41 4.64 default

3 professional 36 3.22 default

4 professional 41 3.11 default

5 industrial 48 3.80 default

6 industrial 61 2.52 repay

7 professional 37 1.50 repay

8 professional 40 1.93 repay

9 industrial 33 5.25 default

10 industrial 32 4.15 default

An	example	of	a	very	simple	prediction	model	for	this	domain	would	be

if	LOAN-SALARY	RATIO	>	3	then

OUTCOME	=	default

else

OUTCOME	=	repay

We	can	say	that	this	model	is	consistent	with	the	dataset	as	there	are	no	instances	in	the
dataset	 for	 which	 the	 model	 does	 not	 make	 a	 correct	 prediction.	When	 new	 mortgage
applications	are	made,	we	can	use	this	model	to	predict	whether	the	applicant	will	repay
the	mortgage	or	default	on	it	and	make	lending	decisions	based	on	this	prediction.

Machine	learning	algorithms	automate	the	process	of	learning	a	model	that	captures
the	 relationship	 between	 the	 descriptive	 features	 and	 the	 target	 feature	 in	 a	 dataset.	 For
simple	datasets	like	the	one	in	Table	1.1[4],	we	may	be	able	to	manually	create	a	prediction
model,	and	in	an	example	of	this	scale,	machine	learning	has	little	to	offer	us.

Consider,	 however,	 the	 dataset	 in	 Table	 1.2[6],	 which	 shows	 a	 more	 complete
representation	of	the	same	problem.	This	dataset	lists	more	instances,	and	there	are	extra
descriptive	features	describing	the	AMOUNT	that	a	mortgage	holder	borrows,	the	mortgage
holder’s	SALARY,	 the	 type	of	PROPERTY	 that	 the	mortgage	relates	 to	 (which	can	be	 farm,
house,	or	apartment)	and	the	TYPE	of	mortgage	(which	can	be	ftp	for	first-time	buyers	or
stb	for	second-time	buyers).

The	 simple	 prediction	 model	 using	 only	 the	 loan-salary	 ratio	 feature	 is	 no	 longer
consistent	with	the	dataset.	It	turns	out,	however,	that	there	is	at	least	one	prediction	model



that	is	consistent	with	the	dataset;	it	is	just	a	little	harder	to	find	than	the	previous	one:

if	LOAN-SALARY	RATIO	<	1.5	then

OUTCOME	=	repay

else	if	LOAN-SALARY	RATIO	>	4	then

OUTCOME	=	default

else	if	AGE	<	40	and	OCCUPATION	=industrial	then

OUTCOME	=	default

else

OUTCOME	=	repay

To	manually	learn	this	model	by	examining	the	data	is	almost	impossible.	For	a	machine
learning	 algorithm,	 however,	 this	 is	 simple.	When	we	want	 to	 build	 prediction	models
from	large	datasets	with	multiple	features,	machine	learning	is	the	solution.



1.3	How	Does	Machine	Learning	Work?
Machine	 learning	 algorithms	 work	 by	 searching	 through	 a	 set	 of	 possible	 prediction
models	for	the	model	that	best	captures	the	relationship	between	the	descriptive	features
and	 target	 feature	 in	 a	dataset.	An	obvious	 criteria	 for	 driving	 this	 search	 is	 to	 look	 for
models	that	are	consistent	with	the	data.	There	are,	however,	at	least	two	reasons	why	just
searching	for	consistent	models	is	not	sufficient	in	order	to	learn	useful	prediction	models.
First,	when	we	are	dealing	with	large	datasets,	it	is	likely	that	there	will	be	noise3	in	the
data,	 and	 prediction	 models	 that	 are	 consistent	 with	 noisy	 data	 will	 make	 incorrect
predictions.	 Second,	 in	 the	 vast	 majority	 of	 machine	 learning	 projects,	 the	 training	 set
represents	only	a	small	sample	of	the	possible	set	of	instances	in	the	domain.	As	a	result,
machine	learning	is	an	ill-posed	problem.	An	ill-posed	problem	is	a	problem	for	which	a
unique	solution	cannot	be	determined	using	only	the	information	that	is	available.

Table	1.2

A	more	complex	credit	scoring	dataset.

Table	1.3

A	simple	retail	dataset

ID BBY ALC ORG GRP



1 no no no couple

2 yes no yes family

3 yes yes no family

4 no no yes couple

5 no yes yes single

We	can	 illustrate	how	machine	 learning	 is	an	 ill-posed	problem	using	an	example	 in
which	 the	 analytics	 team	 at	 a	 supermarket	 chain	wants	 to	 be	 able	 to	 classify	 customer
households	 into	 the	demographic	groups	 single,	couple,	 or	 family,	 based	 solely	 on	 their
shopping	habits.4	The	dataset	 in	Table	1.3[7]	 contains	descriptive	 features	describing	 the
shopping	habits	of	5	customers.	The	descriptive	features	measure	whether	a	customer	buys
baby	food,	BBY,	alcohol,	ALC,	or	organic	vegetable	products,	ORG.	Each	feature	can	take
one	of	the	two	values:	yes	or	no.	Alongside	 these	descriptive	features	 is	a	 target	feature,
GRP,	 that	describes	the	demographic	group	for	each	customer	(single,	couple,	or	 family).
The	dataset	in	Table	1.3[7]	is	referred	to	as	a	labeled	dataset	because	it	includes	values	for
the	target	feature.

Imagine	we	attempt	to	learn	a	prediction	model	for	this	retail	scenario	by	searching	for
a	model	that	is	consistent	with	the	dataset.	The	first	thing	we	need	to	do	is	figure	out	many
different	possible	models	actually	exist	for	the	scenario.	This	defines	the	set	of	prediction
models	the	machine	learning	algorithm	will	search.	From	the	perspective	of	searching	for
a	consistent	model,	the	most	important	property	of	a	prediction	model	is	that	it	defines	a
mapping	from	every	possible	combination	of	descriptive	feature	values	to	a	prediction	for
the	target	feature.	For	the	retail	scenario,	there	are	only	three	binary	descriptive	features,
so	there	are	23	=	8	possible	combinations	of	descriptive	feature	values.	However,	for	each
of	 these	 8	 possible	 descriptive	 feature	 value	 combinations,	 there	 are	 3	 possible	 target
feature	 values,	 so	 this	means	 that	 there	 are	 38	 =	 6,561	 possible	 prediction	models	 that
could	be	used.	Table	1.4(a)[8]	illustrates	the	relationship	between	descriptive	feature	value
combinations	 and	 prediction	 models	 for	 the	 retail	 scenario.	 The	 descriptive	 feature
combinations	are	listed	on	the	left	hand	side	of	the	table	and	the	set	of	potential	models	for
this	 domain	 are	 shown	 as	 1	 to	 6,561	 on	 the	 right	 hand	 side	 of	 the	 table.	 Using	 the
training	dataset	from	Table	1.3[7]	a	machine	learning	algorithm	will	reduce	the	full	set	of
6,561	possible	prediction	models	 for	 this	 scenario	down	 to	 just	 those	 that	are	consistent
with	the	training	instances.	Table	1.4(b)[8],	illustrates	this;	the	blanked	out	columns	in	the
table	indicate	the	models	that	are	not	consistent	with	the	training	data.

Table	1.4

Potential	prediction	models	(a)	before	and	(b)	after	training	data	becomes	available.



	

Table	 1.4(b)[8]	 also	 illustrates	 the	 fact	 that	 the	 training	 dataset	 does	 not	 contain	 an
instance	for	every	possible	descriptive	feature	value	combination	and	that	there	are	still	a
large	 number	 of	 potential	 prediction	 models	 that	 remain	 consistent	 with	 the	 training
dataset	 after	 the	 inconsistent	 models	 have	 been	 excluded.5	 Specifically,	 there	 are	 three
remaining	descriptive	feature	value	combinations	for	which	the	correct	target	feature	value
is	not	known,	and	therefore	there	are	33	=	27	potential	models	that	remain	consistent	with
the	training	data.	Three	of	these— 2,	 4,	and	 5—are	shown	in	Table	1.4(b)[8].	Because
a	single	consistent	model	cannot	be	found	based	on	the	sample	training	dataset	alone,	we
say	that	machine	learning	is	fundamentally	an	ill-posed	problem.

We	might	be	tempted	to	think	that	having	multiple	models	that	are	consistent	with	the
data	is	a	good	thing.	The	problem	is,	however,	that	although	these	models	agree	on	what
predictions	 should	 be	made	 for	 the	 instances	 in	 the	 training	 dataset,	 they	 disagree	with
regard	 to	 what	 predictions	 should	 be	 returned	 for	 instances	 that	 are	 not	 in	 the	 training
dataset.	For	example,	if	a	new	customer	starts	shopping	at	the	supermarket	and	buys	baby
food,	 alcohol,	 and	 organic	 vegetables,	 our	 set	 of	 consistent	models	will	 contradict	 each
other	with	respect	to	what	prediction	should	be	returned	for	this	customer,	for	example,	 2
will	return	GRP	=	single,	 4	will	return	GRP	=	family,	and	 5	will	return	GRP	=	couple.

The	criterion	of	consistency	with	the	training	data	doesn’t	provide	any	guidance	with
regard	 to	 which	 of	 the	 consistent	 models	 to	 prefer	 when	 dealing	 with	 queries	 that	 are
outside	 the	 training	 dataset.	 As	 a	 result,	 we	 cannot	 use	 the	 set	 of	 consistent	models	 to
make	 predictions	 for	 these	 queries.	 In	 fact,	 searching	 for	 predictive	 models	 that	 are



consistent	with	 the	 dataset	 is	 equivalent	 to	 just	memorizing	 the	 dataset.	As	 a	 result,	 no
learning	 is	 taking	 place	 because	 the	 set	 of	 consistent	models	 tells	 us	 nothing	 about	 the
underlying	relationship	between	the	descriptive	and	target	features	beyond	what	a	simple
look-up	of	the	training	dataset	would	provide.

If	a	predictive	model	is	to	be	useful,	it	must	be	able	to	make	predictions	for	queries	that
are	not	present	in	the	data.	A	prediction	model	that	makes	the	correct	predictions	for	these
queries	 captures	 the	 underlying	 relationship	 between	 the	 descriptive	 and	 target	 features
and	 is	 said	 to	 generalize	 well.	 Indeed,	 the	 goal	 of	 machine	 learning	 is	 to	 find	 the
predictive	model	that	generalizes	best.	In	order	to	find	this	single	best	model,	a	machine
learning	 algorithm	must	 use	 some	 criteria	 for	 choosing	 among	 the	 candidate	models	 it
considers	during	its	search.

Given	 that	consistency	with	 the	dataset	 is	not	an	adequate	criterion	 to	select	 the	best
prediction	model,	what	criteria	should	we	use?	There	are	a	lot	of	potential	answers	to	this
question,	 and	 that	 is	why	 there	 are	 a	 lot	 of	 different	machine	 learning	 algorithms.	Each
machine	 learning	algorithm	uses	different	model	selection	criteria	 to	drive	 its	 search	 for
the	 best	 predictive	model.	 So,	 when	we	 choose	 to	 use	 one	machine	 learning	 algorithm
instead	of	another,	we	are,	in	effect,	choosing	to	use	one	model	selection	criterion	instead
of	another.

All	 the	 different	 model	 selection	 criteria	 consist	 of	 a	 set	 of	 assumptions	 about	 the
characteristics	 of	 the	 model	 that	 we	 would	 like	 the	 algorithm	 to	 induce.	 The	 set	 of
assumptions	 that	defines	 the	model	 selection	criteria	of	 a	machine	 learning	algorithm	 is
known	as	the	 inductive	bias6	of	the	machine	learning	algorithm.	There	are	two	types	of
inductive	 bias	 that	 a	 machine	 learning	 algorithm	 can	 use,	 a	 restriction	 bias	 and	 a
preference	 bias.	A	 restriction	 bias	 constrains	 the	 set	 of	models	 that	 the	 algorithm	will
consider	during	the	learning	process.	A	preference	bias	guides	the	learning	algorithm	to
prefer	certain	models	over	others.	For	example,	in	Chapter	7[323]	we	introduce	a	machine
learning	algorithm	called	multivariable	linear	regression	with	gradient	descent,	which
implements	 the	 restriction	 bias	 of	 only	 considering	 prediction	 models	 that	 produce
predictions	based	on	a	linear	combination	of	the	descriptive	feature	values	and	applies	a
preference	 bias	 over	 the	 order	 of	 the	 linear	 models	 it	 considers	 in	 terms	 of	 a	 gradient
descent	 approach	 through	 a	 weight	 space.	 As	 a	 second	 example,	 in	 Chapter	 4[117]	 we
introduce	the	Iterative	Dichotomizer	3	 (ID3)	machine	 learning	algorithm,	which	uses	a
restriction	bias	of	only	considering	 tree	prediction	models	where	each	branch	encodes	a
sequence	of	checks	on	individual	descriptive	features	but	also	utilizes	a	preference	bias	by
considering	shallower	 (less	complex)	 trees	over	 larger	 trees.	 It	 is	 important	 to	 recognize
that	 using	 an	 inductive	 bias	 is	 a	 necessary	 prerequisite	 for	 learning	 to	 occur;	 without
inductive	bias,	a	machine	learning	algorithm	cannot	learn	anything	beyond	what	is	in	the
data.

In	summary,	machine	learning	works	by	searching	through	a	set	of	potential	models	to
find	 the	 prediction	 model	 that	 best	 generalizes	 beyond	 the	 dataset.	 Machine	 learning
algorithms	use	two	sources	of	information	to	guide	this	search,	the	training	dataset	and	the
inductive	bias	assumed	by	the	algorithm.



1.4	What	Can	Go	Wrong	with	Machine	Learning?
Different	 machine	 learning	 algorithms	 encode	 different	 inductive	 biases.	 Because	 a
machine	 learning	 algorithm	 encodes	 an	 inductive	 bias,	 it	 can	 induce	 models	 that
generalize	 beyond	 the	 instances	 in	 a	 training	 dataset.	 An	 inappropriate	 inductive	 bias,
however,	can	lead	to	mistakes.	It	has	been	shown	that	there	is	no	particular	inductive	bias
that	on	average	is	the	best	one	to	use.7	Also,	in	general,	there	is	no	way	of	knowing	for	a
given	predictive	task	which	inductive	bias	will	work	best.	Indeed,	the	ability	to	select	the
appropriate	 machine	 learning	 algorithm	 (and	 hence	 inductive	 bias)	 to	 use	 for	 a	 given
predictive	task	is	one	of	the	core	skills	that	a	data	analyst	must	develop.

There	 are	 two	 kinds	 of	 mistakes	 that	 an	 inappropriate	 inductive	 bias	 can	 lead	 to:
underfitting	and	overfitting.	Underfitting	occurs	when	the	prediction	model	selected	by
the	 algorithm	 is	 too	 simplistic	 to	 represent	 the	 underlying	 relationship	 in	 the	 dataset
between	 the	 descriptive	 features	 and	 the	 target	 feature.	 Overfitting,	 by	 contrast,	 occurs
when	the	prediction	model	selected	by	the	algorithm	is	so	complex	that	the	model	fits	to
the	dataset	too	closely	and	becomes	sensitive	to	noise	in	the	data.

To	 understand	 underfitting	 and	 overfitting,	 consider	 the	 task	 of	 inducing	 a	model	 to
predict	a	person’s	INCOME	(the	target	feature)	based	on	AGE	(a	single	descriptive	feature).
Table	 1.5[12]	 lists	 a	 simple	 dataset	 that	 gives	 ages	 and	 salaries	 for	 five	 people.	 A
visualization8	of	this	dataset	is	shown	in	Figure	1.3(a)[13].

The	line	in	Figure	1.3(b)[13]	represents	one	model	of	the	relationship	between	the	AGE
and	INCOME	 features.	This	line	illustrates	a	very	simple	linear	function	that	maps	AGE	to
INCOME.	Although	this	simple	model	goes	some	way	toward	capturing	the	general	trend	of
the	 relationship	 between	 AGE	 and	 INCOME,	 it	 does	 not	 manage	 to	 capture	 any	 of	 the
subtlety	 of	 the	 relationship.	This	model	 is	 said	 to	 underfit	 the	 data	 as	 it	 is	 not	 complex
enough	 to	 fully	 capture	 the	 relationship	 between	 the	 descriptive	 feature	 and	 the	 target
feature.	 By	 contrast,	 the	 model	 shown	 in	 Figure	 1.3(c)[13],	 while	 consistent	 with	 the
training	 instances,	 seems	much	more	 complicated	 than	 necessary.	This	model	 is	 said	 to
overfit	the	training	data.

Table	1.5

The	age-income	dataset.

ID AGE INCOME

1 21 24,000

2 32 48,000

3 62 83,000

4 72 61,000



5 84 52,000

Models	that	either	underfit	or	overfit	do	not	generalize	well	and	so	will	not	be	able	to
make	good	predictions	for	query	 instances	beyond	what	was	 in	 the	 training	dataset.	The
prediction	model	 shown	 in	Figure	1.3(d)[13],	 however,	 is	 a	Goldilocks	model:	 it	 is	 just
right,	 striking	 a	 good	 balance	 between	 underfitting	 and	 overfitting.	 We	 find	 these
Goldilocks	 models	 by	 using	 machine	 learning	 algorithms	 with	 appropriate	 inductive
biases.	This	is	one	of	the	great	arts	of	machine	learning	and	something	that	we	return	to
throughout	this	book.



1.5	The	Predictive	Data	Analytics	Project	Lifecycle:	CRISP-
DM
Building	 predictive	 data	 analytics	 solutions	 for	 the	 kinds	 of	 applications	 described	 in
Section	1.1[1]	involves	a	lot	more	than	just	choosing	the	right	machine	learning	algorithm.
Like	any	other	significant	project,	the	chances	of	a	predictive	data	analytics	project	being
successful	are	greatly	increased	if	a	standard	process	is	used	to	manage	the	project	through
the	 project	 lifecycle.	 One	 of	 the	 most	 commonly	 used	 processes	 for	 predictive	 data
analytics	 projects	 is	 the	Cross	 Industry	 Standard	Process	 for	Data	Mining	 (CRISP-
DM).9	 Key	 features	 of	 the	CRISP-DM	process	 that	make	 it	 attractive	 to	 data	 analytics
practitioners	are	that	it	is	non-proprietary;	it	is	application,	industry,	and	tool	neutral;	and
it	 explicitly	 views	 the	 data	 analytics	 process	 from	 both	 an	 application-focused	 and	 a
technical	perspective.

Figure	1.3

Striking	 a	balance	between	overfitting	 and	underfitting	when	 trying	 to	predict	 age	 from
income.

Figure	1.4[14]	 shows	 six	 key	 phases	 of	 the	 predictive	 data	 analytics	 project	 lifecycle
that	are	defined	by	the	CRISP-DM:



Figure	1.4

A	 diagram	 of	 the	 CRISP-DM	 process	 that	 shows	 the	 six	 key	 phases	 and	 indicates	 the
important	relationships	between	them.	This	figure	is	based	on	Figure	2	of	Wirth	and	Hipp
(2000).

Business	Understanding:	 Predictive	 data	 analytics	 projects	 never	 start	 out	with	 the
goal	of	building	a	prediction	model.	 Instead,	 they	are	 focused	on	 things	 like	gaining
new	customers,	selling	more	products,	or	adding	efficiencies	to	a	process.	So,	during
the	first	phase	in	any	analytics	project,	the	primary	goal	of	the	data	analyst	is	to	fully
understand	the	business	(or	organizational)	problem	that	is	being	addressed,	and	then
to	design	a	data	analytics	solution	for	it.
Data	Understanding:	Once	the	manner	in	which	predictive	data	analytics	will	be	used
to	address	a	business	problem	has	been	decided,	 it	 is	 important	 that	 the	data	analyst
fully	 understand	 the	 different	 data	 sources	 available	 within	 an	 organization	 and	 the
different	kinds	of	data	that	are	contained	in	these	sources.
Data	Preparation:	Building	predictive	data	analytics	models	 requires	specific	kinds
of	 data,	 organized	 in	 a	 specific	 kind	 of	 structure	 known	 as	 an	analytics	 base	 table
(ABT).10	This	phase	of	CRISP-DM	includes	all	 the	activities	required	to	convert	the
disparate	 data	 sources	 that	 are	 available	 in	 an	 organization	 into	 a	well-formed	ABT
from	which	machine	learning	models	can	be	induced.
Modeling:	 The	 modeling	 phase	 of	 the	 CRISP-DM	 process	 is	 when	 the	 machine
learning	work	occurs.	Different	machine	learning	algorithms	are	used	to	build	a	range
of	prediction	models	from	which	the	best	model	will	be	selected	for	deployment.
Evaluation:	 Before	 models	 can	 be	 deployed	 for	 use	 within	 an	 organization,	 it	 is
important	that	they	are	fully	evaluated	and	proved	to	be	fit	for	the	purpose.	This	phase
of	CRISP-DM	covers	all	the	evaluation	tasks	required	to	show	that	a	prediction	model
will	 be	 able	 to	make	 accurate	 predictions	 after	 being	 deployed	 and	 that	 it	 does	 not
suffer	from	overfitting	or	underfitting.



Deployment:	 Machine	 learning	 models	 are	 built	 to	 serve	 a	 purpose	 within	 an
organization,	and	the	last	phase	of	CRISP-DM	covers	all	the	work	that	must	be	done	to
successfully	 integrate	 a	 machine	 learning	 model	 into	 the	 processes	 within	 an
organization.

Figure	1.4[14]	 also	 illustrates	 the	 flow	between	 each	 of	 these	 phases	 and	 emphasizes
that	 data	 is	 at	 the	 heart	 of	 the	 process.	 Certain	 phases	 in	 CRISP-DM	 are	more	 closely
linked	 together	 than	 others.	 For	 example,	 Business	 Understanding	 and	 Data
Understanding	are	 tightly	coupled,	and	projects	 typically	 spend	some	 time	moving	back
and	forth	between	these	phases.	Similarly,	the	Data	Preparation	and	Modeling	phases	are
closely	linked,	and	analytics	projects	often	spend	some	time	iterating	between	these	two
phases.	 Using	 the	 CRISP-DM	 process	 improves	 the	 likelihood	 that	 predictive	 data
analytics	projects	will	be	successful,	and	we	recommend	its	use.



1.6	Predictive	Data	Analytics	Tools
Throughout	 this	book	we	discuss	 the	many	different	ways	we	can	use	machine	 learning
techniques	to	build	predictive	data	analytics	models.	In	these	discussions	we	do	not	refer
to	 specific	 tools	 or	 implementations	 of	 these	 techniques.	 There	 are,	 however,	 many
different,	 easy-to-use	 options	 for	 implementing	machine	 learning	models	 that	 interested
readers	can	use	to	follow	along	with	the	examples	in	this	book.

The	 first	 decision	 that	 must	 be	 made	 in	 choosing	 a	 machine	 learning	 platform	 is
whether	to	use	an	application-based	solution	or	to	use	a	programming	language.	We	will
look	 at	 application-based	 solutions	 first.	Well-designed	 application-based,	 or	point-and-
click,	 tools	make	it	very	quick	and	easy	to	develop	and	evaluate	models,	and	to	perform
associated	 data	 manipulation	 tasks.	 Using	 one	 of	 these	 tools,	 it	 is	 possible	 to	 train,
evaluate,	 and	 deploy	 a	 predictive	 data	 analytics	 model	 in	 less	 than	 an	 hour!	 Important
application-based	 solutions	 for	 building	 predictive	 data	 analytics	 models	 include	 IBM
SPSS,	Knime	Analytics	Platform,	RapidMiner	Studio,	SAS	Enterprise	Miner,	and	Weka.11
The	 tools	 by	 IBM	 and	 SAS	 are	 enterprise-wide	 solutions	 that	 integrate	 with	 the	 other
offerings	by	these	companies.	Knime,	RapidMiner,	and	Weka	are	interesting	as	they	are	all
open-source,	freely	available	solutions	that	readers	can	begin	to	use	without	any	financial
investment.

An	interesting	alternative	to	using	an	application-based	solution	for	building	predictive
data	analytics	models	is	to	use	a	programming	language.	Two	of	the	most	commonly	used
programming	 languages	 for	 predictive	 data	 analytics	 are	 R	 and	 Python.12	 Building
predictive	 data	 analytics	 models	 using	 a	 language	 like	 R	 or	 Python	 is	 not	 especially
difficult.	For	example,	 the	 following	simple	 lines	of	code	use	 the	R	 language	 to	build	a
predictive	model	for	a	simple	task:

creditscoring.train	<-	read.csv(“creditScoringTrain.csv”)

glm.mod	<-	glm(Outcome~Amount+Salary+Age+LoanSalaryRatio,

family=binomial(link=“logit”),	data=creditscoring.train)

creditscoring.test	<-	read.csv(“creditScoringTest.csv”)

predicted.values	<-	predict(glm.mod,	creditscoring.test)

The	advantage	of	using	a	programming	language	for	predictive	data	analytics	projects
is	that	it	gives	the	data	analyst	huge	flexibility.	Anything	that	the	analyst	can	imagine	can
be	 implemented.	This	 is	 in	 contrast	 to	 application-based	 solutions,	 in	which	 the	 analyst
can	only	really	achieve	what	the	tool	developers	had	in	mind	when	they	designed	the	tool.
The	 other	main	 advantage	 of	 using	 a	 programming	 language	 is	 that,	 in	most	 cases,	 the
newest	 advanced	 analytics	 techniques	will	 become	 available	 in	 programming	 languages
long	before	they	will	be	implemented	in	application-based	solutions.

Obviously,	 though,	 using	 programming	 languages	 also	 has	 disadvantages	 associated
with	it.	The	main	disadvantage	is	that	programming	is	a	skill	that	takes	time	and	effort	to
learn.	Using	 a	programming	 language	 for	 advanced	 analytics	 has	 a	 significantly	 steeper
learning	curve	than	using	an	application-based	solution.	The	second	disadvantage	is	 that



using	 a	 programming	 language	means	we	have	very	 little	 of	 the	 infrastructural	 support,
such	 as	 data	management,	 that	 is	 present	 in	 application-based	 solutions	 available	 to	 us.
This	puts	an	extra	burden	on	developers	to	implement	these	supports	themselves.



1.7	The	Road	Ahead
Predictive	 data	 analytics	 projects	 use	machine	 learning	 algorithms	 to	 induce	 prediction
models	from	historical	data.	The	insights	that	these	prediction	models	produce	are	used	to
help	 organizations	 make	 data-driven	 decisions.	 Machine	 learning	 algorithms	 learn
prediction	models	 by	 inducing	 a	generalized	model	 of	 the	 relationship	between	 a	 set	 of
descriptive	features	and	a	target	feature	from	a	set	of	specific	training	instances.	Machine
learning,	however,	is	made	difficult	because	there	is	usually	more	than	one	model	that	is
consistent	with	the	training	dataset—because	of	this,	machine	learning	is	often	described
as	an	 ill-posed	problem.	Machine	 learning	algorithms	address	 this	 issue	by	encoding	an
inductive	bias—or	set	of	assumptions—that	guide	the	algorithm	to	prefer	certain	models
over	others.	We	will	see	as	we	proceed	through	this	book	that	the	selection	of	a	machine
learning	 algorithm	 is	 not	 the	 only	 way	 that	 we	 can	 bias	 the	 predictive	 data	 analytics
process.	 All	 the	 other	 choices	 that	 we	 make,	 such	 as	 the	 data	 to	 use,	 the	 descriptive
features	to	use,	and	the	way	in	which	we	deploy	a	model	bias	the	outcome	of	the	overall
process,	and	this	is	something	we	need	to	be	keenly	aware	of.

The	 purpose	 of	 this	 book	 is	 to	 give	 readers	 a	 solid	 grounding	 in	 the	 theoretical
underpinnings	of	the	most	commonly	used	machine	learning	techniques	and	a	clear	view
of	 how	 machine	 learning	 techniques	 are	 used	 in	 practice	 in	 predictive	 data	 analytics
projects.	With	this	in	mind,	readers	can	view	the	book	as	three	parts	that	are	mapped	to	the
phases	of	the	CRISP-DM	process.

The	 first	 part—Chapters	 2[21]	 and	 3[55]—covers	 the	 Business	 Understanding,	 Data
Understanding,	and	Data	Preparation	phases	of	the	process.	In	this	part	we	discuss	how	a
business	problem	is	converted	into	a	data	analytics	solution,	how	data	can	be	prepared	for
this	task,	and	the	data	exploration	tasks	that	should	be	performed	during	these	phases.

The	second	part	of	 the	book	covers	 the	Modeling	phase	of	CRISP-DM.	We	consider
four	main	families	of	machine	learning	algorithm:

Information-based	learning	(Chapter	4[117])
Similarity-based	learning	(Chapter	5[179])
Probability-based	learning	(Chapter	6[247])
Error-based	learning	(Chapter	7[323])

By	looking	at	 these	four	key	families,	we	cover	 the	most	commonly	used	approaches	to
inductive	 machine	 learning	 that	 can	 be	 used	 to	 build	 most	 predictive	 data	 analytics
solutions.

The	 third	part	of	 the	book	covers	 the	Evaluation	and	Deployment	phases	of	CRISP-
DM.	 Chapter	 8[397]	 describes	 a	 range	 of	 different	 approaches	 to	 evaluating	 prediction
models.	 Chapters	 9[463]	 and	 10[483]	 present	 case	 studies	 describing	 specific	 predictive
analytics	 projects	 from	 Business	 Understanding	 right	 up	 to	 Deployment.	 These	 case
studies	 will	 demonstrate	 how	 everything	 described	 in	 the	 preceding	 chapters	 comes
together	in	a	successful	predictive	data	analytics	project.



Finally,	Chapter	11[511]	 provides	 some	overarching	perspectives	on	machine	 learning
for	 predictive	 data	 analytics	 and	 summarizes	 some	 of	 the	 key	 differences	 between	 the
different	approaches	covered	in	this	book.





1.8	Exercises
1.	What	is	predictive	data	analytics?

2.	What	is	supervised	machine	learning?

3.	Machine	learning	is	often	referred	to	as	an	ill-posed	problem.	What	does	this
mean?

4.	The	following	table	lists	a	dataset	from	the	credit	scoring	domain	we	discussed	in
the	chapter.	Underneath	the	table	we	list	two	prediction	models	that	are	consistent	with
this	dataset,	Model	1	and	Model	2.

ID OCCUPATION AGE LOAN-SALARY	RATIO OUTCOME

1 industrial 39 3.40 default

2 industrial 22 4.02 default

3 professional 30 2.7	0 repay

4 professional 27 3.32 default

5 professional 40 2.04 repay

6 professional 50 6.95 default

7 industrial 27 3.00 repay

8 industrial 33 2.60 repay

9 industrial 30 4.5	0 default

10 professional 45 2.78 repay

Model	1
if	LOAN-SALARY	RATIO	>	3.00	then

OUTCOME	=	default

else

OUTCOME	=	repay

Model	2
if	AGE=	50	then

OUTCOME	=	default



else	if	AGE=	39	then

OUTCOME	=	default

else	if	AGE=	30	and	OCCUPATION	=	industrial	then

OUTCOME	=	default

else	if	AGE=	27	and	OCCUPATION	=	professional	then

OUTCOME	=	default

else

OUTCOME	=	repay

a.	Which	of	these	two	models	do	you	think	will	generalise	better	to	instances	not
contained	in	the	dataset?

b.	Propose	an	inductive	bias	that	would	enable	a	machine	learning	algorithm	to	make
the	same	preference	choice	as	you	did	in	part	(a).

c.	Do	you	think	that	the	model	that	you	rejected	in	part	(a)	of	this	question	is
overfitting	or	underfitting	the	data?

✻	5.	What	is	meant	by	the	term	inductive	bias?

✻	6.	How	do	machine	learning	algorithms	deal	with	the	fact	that	machine	learning
is	an	ill-posed	problem?

✻	7.	What	can	go	wrong	when	an	inappropriate	inductive	bias	is	used?

✻	8.	It	is	often	said	that	80%	of	the	work	done	on	predictive	data	analytics	projects
is	done	in	the	Business	Understanding,	Data	Understanding,	and	Data	Preparation
phases	of	CRISP-DM,	and	just	20%	is	spent	on	the	Modeling,	Evaluation,	and
Deployment	phases.	Why	do	you	think	this	would	be	the	case?

	

	

	

	

	

________________

1	 Other	 types	 of	 machine	 learning	 include	 unsupervised	 learning,	 semi-supervised
learning,	 and	reinforcement	 learning.	 In	 this	 book,	 however,	we	 focus	 exclusively	 on
supervised	machine	learning	and	use	the	terms	supervised	machine	learning	and	machine
learning	interchangeably.

2	 This	 dataset	 has	 been	 artificially	 generated	 for	 this	 example.	 Siddiqi	 (2005)	 gives	 an
excellent	 overview	 of	 building	 predictive	 data	 analytics	 models	 for	 financial	 credit
scoring.



3	For	example,	some	of	the	feature	values	will	be	mislabeled.

4	This	kind	of	classification	is	not	unusual	given	that	supermarket	chains	can	collect	huge
amounts	of	data	about	customers’	shopping	habits	through	a	loyalty	card	scheme	but	find
it	 expensive	 and	 time	 consuming	 to	 collect	 more	 personal	 data,	 such	 as	 demographic
classifications.	Demographic	classifications,	however,	 are	extremely	useful	 to	marketing
departments	when	designing	special	offers	and	other	customer	incentives.

5	In	this	simple	example	it	is	easy	to	imagine	collecting	a	training	instance	to	match	every
possible	combination	of	descriptive	features;	because	 there	are	only	3	binary	descriptive
features,	 there	are	only	23	=	8	combinations.	 In	more	 realistic	 scenarios,	however,	 there
are	 usually	 many	 more	 descriptive	 features,	 which	 means	 many	 more	 possible
combinations.	 In	 the	 credit	 scoring	 dataset	 in	 Table	 1.2[6],	 for	 example,	 a	 conservative
estimate	of	the	number	of	possible	combinations	of	descriptive	features	is	over	3.6	billion!

6	Learning	a	general	rule	from	a	finite	set	of	examples	is	called	inductive	learning.	This
is	 why	 machine	 learning	 is	 sometimes	 described	 as	 inductive	 learning,	 and	 the	 set	 of
assumptions	used	by	the	machine	algorithm	that	biases	it	towards	selecting	a	single	model
is	called	the	inductive	bias	of	the	algorithm.

7	This	is	known	as	the	No	Free	Lunch	Theorem	(Wolpert,	1996).

8	We	discuss	this	exact	type	of	visualization,	a	scatter	plot,	in	detail	in	Chapter	3[55].	For
this	 example	 it	 is	 sufficient	 to	 say	 that	 a	 point	 is	 shown	 for	 each	 person	 in	 the	 dataset
placed	to	represent	their	age	(horizontally)	and	their	salary	(vertically).

9	While	 the	name	CRISP-DM	refers	 to	data	mining	 (a	 field	 that	 overlaps	 significantly
with	predictive	data	analytics),	it	is	equally	applicable	to	predictive	analytics	projects.

10	All	datasets	presented	in	this	chapter	have	been	structured	as	ABTs.

11	 For	 further	 details,	 see	 www.ibm.com/software/ie/analytics/spss,
www.knime.org,	 www.rapidminer.com,	 www.sas.com,	 and
www.cs.waikato.ac.nz/ml/weka.

12	 The	 website	 kdnuggets.com	 runs	 a	 regular	 poll	 on	 the	 most	 popular	 programming
languages	 for	 predictive	 data	 analytics,	 which	 R	 and	 Python	 regularly	 top
www.kdnuggets.com/polls/2013/languages-analytics-data-
mining-data-science.html.	For	further	details	about	R	and	Python,	see	www.r-
project.org	and	www.python.org.

http://www.ibm.com/software/ie/analytics/spss
http://www.knime.org
http://www.rapidminer.com
http://www.sas.com
http://www.cs.waikato.ac.nz/ml/weka
http://www.kdnuggets.com/polls/2013/languages-analytics-data-mining-data-science.html
http://www.r-project.org
http://www.python.org




2	Data	to	Insights	to	Decisions

We	cannot	solve	our	problems	with	the	same	thinking	we	used	when	we	created	them.

—Albert	Einstein

Predictive	 data	 analytics	 projects	 are	 not	 handed	 to	 data	 analytics	 practitioners	 fully
formed.	Rather,	analytics	projects	are	initiated	in	response	to	a	business	problem,	and	it	is
our	job—as	analytics	practitioners—to	decide	how	to	address	this	business	problem	using
analytics	techniques.	In	the	first	part	of	this	chapter	we	present	an	approach	to	developing
analytics	solutions	that	address	specific	business	problems.	This	involves	an	analysis	of
the	 needs	 of	 the	 business,	 the	 data	 we	 have	 available	 for	 use,	 and	 the	 capacity	 of	 the
business	to	use	analytics.	Taking	these	factors	into	account	helps	to	ensure	that	we	develop
analytics	solutions	that	are	effective	and	fit	for	purpose.	In	the	second	part	of	this	chapter
we	move	our	attention	to	the	data	structures	that	are	required	to	build	predictive	analytics
models,	and	in	particular	the	analytics	base	table	(ABT).	Designing	ABTs	that	properly
represent	 the	 characteristics	 of	 a	 prediction	 subject	 is	 a	 key	 skill	 for	 analytics
practitioners.	We	present	an	approach	in	which	we	first	develop	a	set	of	domain	concepts
that	 describe	 the	 prediction	 subject,	 and	 then	 expand	 these	 into	 concrete	 descriptive
features.	Throughout	 the	chapter	we	return	 to	a	case	study	 that	demonstrates	how	these
approaches	are	used	in	practice.



2.1	Converting	Business	Problems	into	Analytics	Solutions
Organizations	don’t	exist	to	do	predictive	data	analytics.	Organizations	exist	to	do	things
like	make	more	money,	 gain	 new	 customers,	 sell	more	 products,	 or	 reduce	 losses	 from
fraud.	Unfortunately,	 the	predictive	analytics	models	 that	we	can	build	do	not	do	any	of
these	things.	The	models	that	analytics	practitioners	build	simply	make	predictions	based
on	 patterns	 extracted	 from	 historical	 datasets.	 These	 predictions	 do	 not	 solve	 business
problems;	rather,	they	provide	insights	that	help	the	organization	make	better	decisions	to
solve	their	business	problems.

A	key	step,	then,	in	any	data	analytics	project	is	to	understand	the	business	problem
that	 the	organization	wants	 to	 solve	and,	based	on	 this,	 to	determine	 the	kind	of	 insight
that	 a	 predictive	 analytics	 model	 can	 provide	 to	 help	 the	 organization	 address	 this
problem.	This	defines	the	analytics	solution	that	the	analytics	practitioner	will	set	out	to
build	using	machine	learning.	Defining	the	analytics	solution	is	the	most	important	task	in
the	Business	Understanding	phase	of	the	CRISP-DM	process.

In	general,	converting	a	business	problem	into	an	analytics	solution	involves	answering
the	following	key	questions:

1.	 What	 is	 the	 business	 problem?	What	 are	 the	 goals	 that	 the	 business	wants	 to
achieve?	 These	 first	 two	 questions	 are	 not	 always	 easy	 to	 answer.	 In	many	 cases
organizations	begin	analytics	projects	because	they	have	a	clear	issue	that	they	want
to	 address.	 Sometimes,	 however,	 organizations	 begin	 analytics	 projects	 simply
because	somebody	 in	 the	organization	feels	 that	 this	 is	an	 important	new	technique
that	 they	 should	 be	 using.	Unless	 a	 project	 is	 focused	 on	 clearly	 stated	 goals,	 it	 is
unlikely	 to	 be	 successful.	 The	 business	 problem	 and	 goals	 should	 always	 be
expressed	in	business	terms	and	not	yet	be	concerned	with	the	actual	analytics	work
at	this	stage.

2.	 How	 does	 the	 business	 currently	 work?	 It	 is	 not	 feasible	 for	 an	 analytics
practitioner	 to	 learn	 everything	 about	 the	businesses	with	which	 they	work	 as	 they
will	 probably	 move	 quickly	 between	 different	 areas	 of	 an	 organization,	 or	 even
different	industries.	Analytics	practitioners	must,	however,	possess	what	is	referred	to
as	situational	fluency.	This	means	that	they	understand	enough	about	a	business	so
that	 they	 can	 converse	 with	 partners	 in	 the	 business	 in	 a	 way	 that	 these	 business
partners	understand.	For	example,	in	the	insurance	industry,	insurance	policy	holders
are	usually	referred	to	as	members	rather	than	customers.	Although	from	an	analytics
perspective,	 there	 is	 really	 little	 difference,	 using	 the	 correct	 terminology	makes	 it
much	 easier	 for	 business	 partners	 to	 engage	 with	 the	 analytics	 project.	 Beyond
knowing	the	correct	terminology	to	use,	an	analytics	practitioner	who	is	situationally
fluent	will	have	sufficient	knowledge	of	the	quirks	of	a	particular	domain	to	be	able
to	competently	build	analytics	solutions	for	that	domain.

3.	 In	what	ways	 could	 a	 predictive	 analytics	model	 help	 to	 address	 the	 business
problem?	 For	 any	 business	 problem,	 there	 are	 a	 number	 of	 different	 analytics
solutions	 that	 we	 could	 build	 to	 address	 it.	 It	 is	 important	 to	 explore	 these



possibilities	 and,	 in	 conjunction	 with	 the	 business,	 to	 agree	 on	 the	 most	 suitable
solution	for	the	business.	For	each	proposed	solution,	the	following	points	should	be
described:	 (1)	 the	predictive	model	 that	will	be	built;	 (2)	how	 the	predictive	model
will	 be	 used	 by	 the	 business;	 and	 (3)	 how	 using	 the	 predictive	 model	 will	 help
address	the	original	business	problem.	The	next	section	provides	a	case	study	of	the
process	for	converting	a	business	problem	into	a	set	of	candidate	analytics	solutions.



2.1.1	Case	Study:	Motor	Insurance	Fraud

Consider	the	following	business	problem:	in	spite	of	having	a	fraud	investigation	team	that
investigates	up	to	30%	of	all	claims	made,	a	motor	insurance	company	is	still	losing	too
much	money	due	to	fraudulent	claims.	The	following	predictive	analytics	solutions	could
be	proposed	to	help	address	this	business	problem:

[Claim	prediction]	A	model	could	be	built	to	predict	the	likelihood	that	an	insurance
claim	 is	 fraudulent.	This	model	could	be	used	 to	assign	every	newly	arising	claim	a
fraud	likelihood,	and	those	that	are	most	 likely	to	be	fraudulent	could	be	flagged	for
investigation	by	the	insurance	company’s	claims	investigators.	In	this	way	the	limited
claims	 investigation	 time	 could	 be	 targeted	 at	 the	 claims	 that	 are	most	 likely	 to	 be
fraudulent,	thereby	increasing	the	number	of	fraudulent	claims	detected	and	reducing
the	amount	of	money	lost	to	fraud.
[Member	prediction]	A	model	could	be	built	to	predict	the	propensity	of	a	member1
to	commit	fraud	in	the	near	future.	This	model	could	be	run	every	quarter	to	identify
those	members	most	likely	to	commit	fraud,	and	the	insurance	company	could	take	a
risk	mitigation	action	ranging	from	contacting	the	member	with	some	kind	of	warning
to	canceling	the	member’s	policies.	By	identifying	members	likely	to	make	fraudulent
claims	before	they	make	them,	the	company	could	save	significant	amounts	of	money.
[Application	prediction]	A	model	could	be	built	to	predict,	at	the	point	of	application,
the	 likelihood	 that	 a	 policy	 someone	 has	 applied	 for	 will	 ultimately	 result	 in	 a
fraudulent	claim.	The	company	could	run	this	model	every	time	a	new	application	is
made	 and	 reject	 those	 applications	 that	 are	 predicted	 likely	 to	 result	 in	 a	 fraudulent
claim.	 The	 company	 would	 therefore	 reduce	 the	 number	 of	 fraudulent	 claims	 and
reduce	the	amount	of	money	they	would	lose	to	these	claims.
[Payment	prediction]	Many	fraudulent	 insurance	claims	simply	over-exaggerate	 the
amount	 that	 should	actually	be	paid	out.	 In	 these	cases	 the	 insurance	company	goes
through	an	expensive	investigation	process	but	still	must	make	a	reduced	payment	in
relation	to	a	claim.	A	model	could	be	built	to	predict	the	amount	most	likely	to	be	paid
out	by	an	insurance	company	after	having	investigated	a	claim.	This	model	could	be
run	whenever	 new	 claims	 arise,	 and	 the	 policy	 holder	 could	 be	 offered	 the	 amount
predicted	 by	 the	 model	 as	 settlement	 as	 an	 alternative	 to	 going	 through	 a	 claims
investigation	 process.	 Using	 this	 model,	 the	 company	 could	 save	 on	 claims
investigations	and	reduce	the	amount	of	money	paid	out	on	fraudulent	claims.



2.2	Assessing	Feasibility
Once	 a	 set	 of	 candidate	 analytics	 solutions	 that	 address	 a	 business	 problem	 have	 been
defined,	 the	 next	 task	 is	 to	 evaluate	 the	 feasibility	 of	 each	 solution.	 This	 involves
considering	the	following	questions:

Is	the	data	required	by	the	solution	available,	or	could	it	be	made	available?
What	 is	 the	capacity	of	 the	business	 to	utilize	 the	 insights	 that	 the	analytics	solution
will	provide?

The	first	question	addresses	data	availability.	Every	analytics	solution	will	have	its	own
set	of	data	requirements,	and	it	is	useful,	as	early	as	possible,	to	determine	if	the	business
has	 sufficient	 data	 available	 to	 meet	 these	 requirements.	 In	 some	 cases	 a	 lack	 of
appropriate	data	will	simply	rule	out	proposed	analytics	solutions	to	a	business	problem.
More	likely,	the	easy	availability	of	data	for	some	solutions	might	favor	them	over	others.
In	 general,	 evaluating	 the	 feasibility	 of	 an	 analytics	 solution	 in	 terms	 of	 it	 data
requirements	involves	aligning	the	following	issues	with	the	requirements	of	the	analytics
solution:

The	key	objects	 in	 the	 company’s	data	model	 and	 the	data	 available	 regarding
them.	For	example,	in	a	bricks-and-mortar	retail	scenario,	the	key	objects	are	likely	to
be	customers,	products,	sales,	suppliers,	stores,	and	staff.	In	an	insurance	scenario,	the
key	 objects	 are	 likely	 to	 be	 policy	 holders,	 policies,	 claims,	 policy	 applications,
investigations,	brokers,	members,	investigators,	and	payments.
The	connections	that	exist	between	key	objects	in	the	data	model.	For	example,	in
a	 banking	 scenario	 is	 it	 possible	 to	 connect	 the	 multiple	 accounts	 that	 a	 single
customer	might	own?	Similarly,	in	an	insurance	scenario	is	it	possible	to	connect	the
information	from	a	policy	application	with	the	details	(e.g.,	claims,	payments,	etc)	of
the	resulting	policy	itself?
The	granularity	of	the	data	that	the	business	has	available.	In	a	bricks-and-mortar
retail	 scenario,	 data	 on	 sales	 might	 only	 be	 stored	 as	 a	 total	 number	 of	 sales	 per
product	type	per	day,	rather	than	as	individual	items	sold	to	individual	customers.
The	volume	of	data	 involved.	 The	 amount	 of	 data	 that	 is	 available	 to	 an	 analytics
project	is	important	because	(a)	some	modern	datasets	are	so	large	that	they	can	stretch
even	state	of	the	art	machine	learning	tools;	and	(b)	conversely,	very	small	datasets	can
limit	our	ability	to	evaluate	the	expected	performance	of	a	model	after	deployment.
The	time	horizon	for	which	data	is	available.	It	is	important	that	the	data	available
covers	the	period	required	for	the	analytics	solution.	For	example,	in	an	online	gaming
scenario,	it	might	be	possible	to	find	out	every	customer’s	account	balance	today	but
utterly	impossible	to	find	out	what	their	balance	was	last	month,	or	even	yesterday.

The	second	issue	affecting	 the	feasibility	of	an	analytics	solution	 is	 the	ability	of	 the
business	 to	 utilize	 the	 insight	 that	 the	 solution	 provides.	 If	 a	 business	 is	 required	 to
drastically	revise	all	their	processes	to	take	advantage	of	the	insights	that	can	be	garnered
from	a	predictive	model,	the	business	may	not	be	ready	to	do	this	no	matter	how	good	the
model	is.	In	many	cases	the	best	predictive	analytics	solutions	are	those	that	fit	easily	into



an	existing	business	process.

Based	 on	 analysis	 of	 the	 associated	 data	 and	 capacity	 requirements,	 the	 analytics
practitioner	 can	 assess	 the	 feasibility	 of	 each	 predictive	 analytics	 solution	 proposed	 to
address	a	business	problem.	This	analysis	will	eliminate	some	solutions	altogether	and	for
those	solutions	that	appear	feasible	will	generate	a	list	of	the	data	and	capacity	required	for
successful	 implementation.	 Those	 solutions	 that	 are	 deemed	 feasible	 should	 then	 be
presented	to	the	business,	and	one	or	more	should	be	selected	for	implementation.

As	part	of	the	process	of	agreeing	on	the	solution	to	pursue,	the	analytics	practitioner
must	 agree	with	 the	 business,	 as	 far	 as	 possible,	 the	 goals	 that	will	 define	 a	 successful
model	implementation.	These	goals	could	be	specified	in	terms	of	the	required	accuracy	of
the	model	and/or	the	impact	of	the	model	on	the	business.



2.2.1	Case	Study:	Motor	Insurance	Fraud

Returning	 to	 the	 motor	 insurance	 fraud	 detection	 case	 study,	 below	 we	 evaluate	 the
feasibility	 of	 each	 proposed	 analytics	 solution	 in	 terms	 of	 data	 and	 business	 capacity
requirements.

[Claim	 prediction]	 Data	 Requirements:	 This	 solution	 would	 require	 that	 a	 large
collection	 of	 historical	 claims	 marked	 as	 fraudulent	 and	 non-fraudulent	 exist.
Similarly,	the	details	of	each	claim,	the	related	policy,	and	the	related	claimant	would
need	 to	 be	 available.	 Capacity	 Requirements:	 Given	 that	 the	 insurance	 company
already	 has	 a	 claims	 investigation	 team,	 the	 main	 requirements	 would	 be	 that	 a
mechanism	could	be	put	in	place	to	inform	claims	investigators	that	some	claims	were
prioritized	above	others.	This	would	also	require	that	information	about	claims	become
available	 in	 a	 suitably	 timely	manner	 so	 that	 the	 claims	 investigation	process	would
not	be	delayed	by	the	model.
[Member	prediction]	Data	Requirements:	This	solution	would	not	only	require	that	a
large	collection	of	claims	labeled	as	either	fraudulent	or	non-fraudulent	exist	with	all
relevant	details,	but	also	that	all	claims	and	policies	can	be	connected	to	an	identifiable
member.	It	would	also	require	that	any	changes	to	a	policy	are	recorded	and	available
historically.	Capacity	Requirements:	This	 solution	 first	 assumes	 that	 it	 is	 possible	 to
run	a	process	every	quarter	that	performs	an	analysis	of	the	behavior	of	each	customer.
More	challenging,	there	is	the	assumption	that	the	company	has	the	capacity	to	contact
members	 based	 on	 this	 analysis	 and	 can	 design	 a	 way	 to	 discuss	 this	 issue	 with
customers	 highlighted	 as	 likely	 to	 commit	 fraud	 without	 damaging	 the	 customer
relationship	 so	 badly	 as	 to	 lose	 the	 customer.	 Finally,	 there	 are	 possibly	 legal
restrictions	associated	with	making	this	kind	of	contact.
[Application	prediction]	Data	Requirements:	Again,	a	historical	collection	of	claims
marked	 as	 fraudulent	 or	 non-fraudulent	 along	 with	 all	 relevant	 details	 would	 be
required.	 It	would	 also	 be	 necessary	 to	 be	 able	 to	 connect	 these	 claims	 back	 to	 the
policies	to	which	they	belong	and	to	the	application	details	provided	when	the	member
first	applied.	It	is	likely	that	the	data	required	for	this	solution	would	stretch	back	over
many	years	as	the	time	between	making	a	policy	application	and	making	a	claim	could
cover	 decades.	 Capacity	 Requirements:	 The	 challenge	 in	 this	 case	 would	 be	 to
integrate	 the	 automated	 application	 assessment	 process	 into	 whatever	 application
approval	process	currently	exists	within	the	company.
[Payment	prediction]	Data	Requirements:	This	solution	would	require	the	full	details
of	policies	and	claims	as	well	as	data	on	the	original	amount	specified	in	a	claim	and
the	amount	ultimately	paid	out.	Capacity	Requirements:	Again,	this	solution	assumes
that	the	company	has	the	potential	to	run	this	model	in	a	timely	fashion	whenever	new
claims	 rise	 and	 also	 has	 the	 capacity	 to	make	 offers	 to	 claimants.	 This	 assumes	 the
existence	of	a	customer	contact	center	or	something	similar.

For	the	purposes	of	the	case	study,	we	assume	that	after	the	feasibility	review,	it	was
decided	to	proceed	with	the	claim	prediction	solution,	in	which	a	model	will	be	built	that
can	predict	the	likelihood	that	an	insurance	claim	is	fraudulent.



2.3	Designing	the	Analytics	Base	Table
Once	we	have	decided	which	analytics	solution	we	are	going	to	develop	in	response	to	a
business	problem,	we	need	to	begin	to	design	the	data	structures	that	will	be	used	to	build,
evaluate,	 and	 ultimately	 deploy	 the	 model.	 This	 work	 sits	 primarily	 in	 the	 Data
Understanding	 phase	 of	 the	CRISP-DM	 process	 (see	Figure	 1.4[14])	 but	 also	 overlaps
with	 the	 Business	 Understanding	 and	 Data	 Preparation	 phases	 (remember	 that	 the
CRISP-DM	process	is	not	strictly	linear).

The	basic	data	requirements	for	predictive	models	are	surprisingly	simple.	To	build	a
predictive	model,	we	need	a	large	dataset	of	historical	examples	of	the	scenario	for	which
we	will	make	predictions.	Each	of	these	historical	examples	must	contain	sufficient	data	to
describe	 the	 scenario	 and	 the	 outcome	 that	 we	 are	 interested	 in	 predicting.	 So,	 for
example,	 if	we	 are	 trying	 to	 predict	whether	 or	 not	 insurance	 claims	 are	 fraudulent,	we
require	 a	 large	 dataset	 of	 historical	 insurance	 claims,	 and	 for	 each	 one	 we	must	 know
whether	or	not	that	claim	was	found	to	be	fraudulent.

The	basic	structure	in	which	we	capture	these	historical	datasets	is	the	analytics	base
table	(ABT),	a	schematic	of	which	is	shown	in	Table	2.1[28].	An	analytics	base	table	is	a
simple,	flat,	tabular	data	structure	made	up	of	rows	and	columns.	The	columns	are	divided
into	a	set	of	descriptive	features	and	a	single	target	feature.	Each	row	contains	a	value
for	each	descriptive	feature	and	the	target	feature	and	represents	an	instance	about	which
a	prediction	can	be	made.

Table	2.1

The	basic	structure	of	an	analytics	base	table—descriptive	features	and	a	target	feature.

	

Although	 the	ABT	 is	 the	 key	 structure	 that	 we	 use	 in	 developing	machine	 learning
models,	 data	 in	 organizations	 is	 rarely	 kept	 in	 neat	 tables	 ready	 to	 be	 used	 to	 build
predictive	models.	Instead,	we	need	to	construct	the	ABT	from	the	raw	data	sources	that
are	 available	 in	 an	 organization.	 These	 may	 be	 very	 diverse	 in	 nature.	 Figure	 2.1[28]
illustrates	some	of	the	different	data	sources	that	are	typically	combined	to	create	an	ABT.



Figure	2.1

The	different	data	sources	typically	combined	to	create	an	analytics	base	table.

Before	 we	 can	 start	 to	 aggregate	 the	 data	 from	 these	 different	 sources,	 however,	 a
significant	amount	of	work	is	required	to	determine	the	appropriate	design	for	the	ABT.	In
designing	 an	 ABT,	 the	 first	 decision	 an	 analytics	 practitioner	 needs	 to	 make	 is	 on	 the
prediction	subject	for	the	model	they	are	trying	to	build.	The	prediction	subject	defines
the	basic	level	at	which	predictions	are	made,	and	each	row	in	the	ABT	will	represent	one
instance	 of	 the	 prediction	 subject—the	 phrase	 one-row-per-subject	 is	 often	 used	 to
describe	 this	 structure.	 For	 example,	 for	 the	 analytics	 solutions	 proposed	 for	 the	motor
insurance	 fraud	 scenario,	 the	 prediction	 subject	 of	 the	 claim	 prediction	 and	 payment
prediction	models	 would	 be	 an	 insurance	 claim;	 for	 the	 member	 prediction	model,	 the
prediction	subject	would	be	a	member;	and	for	the	application	prediction	model,	it	would
be	an	application.

Each	row	in	an	ABT	is	composed	of	a	set	of	descriptive	features	and	a	target	feature.
The	 actual	 features	 themselves	 can	 be	 based	 on	 any	 of	 the	 data	 sources	 within	 an
organization,	 and	 defining	 them	 can	 appear	 a	 mammoth	 task	 at	 first.	 This	 task	 can	 be
made	easier	by	making	a	hierarchical	distinction	between	the	actual	features	contained	in
an	ABT	and	a	set	of	domain	concepts	upon	which	features	are	based—see	Figure	2.2[29].



Figure	2.2

The	 hierarchical	 relationship	 between	 an	 analytics	 solution,	 domain	 concepts,	 and
descriptive	features.

A	domain	concept	is	a	high-level	abstraction	that	describes	some	characteristic	of	the
prediction	subject	from	which	we	derive	a	set	of	concrete	features	that	will	be	included	in
an	ABT.	 If	we	keep	 in	mind	 that	 the	ultimate	goal	of	an	analytics	 solution	 is	 to	build	a
predictive	model	 that	predicts	a	 target	 feature	 from	a	set	of	descriptive	features,	domain
concepts	are	the	characteristics	of	the	prediction	subject	that	domain	experts	and	analytics
experts	believe	are	likely	to	be	useful	in	making	this	prediction.	Often,	in	a	collaboration
between	analytics	experts	and	domain	experts,	we	develop	a	hierarchy	of	domain	concepts
that	 starts	 from	 the	 analytics	 solution,	 proceeds	 through	 a	 small	 number	 of	 levels	 of
abstraction	to	result	in	concrete	descriptive	features.	Examples	of	domain	concepts	include
customer	 value,	 behavioral	 change,	 product	 usage	 mix,	 and	 customer	 lifecycle	 stage.
These	are	abstract	concepts	 that	are	understood	 to	be	 likely	 important	 factors	 in	making
predictions.	At	this	stage	we	do	not	worry	too	much	about	exactly	how	a	domain	concept
will	be	converted	 into	a	concrete	 feature,	but	 rather	 try	 to	enumerate	 the	different	 areas
from	which	features	will	arise.

Obviously,	 the	 set	 of	 domain	 concepts	 that	 are	 important	 change	 from	one	 analytics
solution	to	another.	However,	there	are	a	number	of	general	domain	concepts	that	are	often
useful:

Prediction	Subject	Details:	Descriptive	details	of	any	aspect	of	the	prediction	subject.
Demographics:	 Demographic	 features	 of	 users	 or	 customers	 such	 as	 age,	 gender,
occupation,	and	address.
Usage:	The	frequency	and	recency	with	which	customers	or	users	have	interacted	with
an	organization.	The	monetary	value	of	a	customer’s	interactions	with	a	service.	The
mix	 of	 products	 or	 services	 offered	 by	 the	 organization	 that	 a	 customer	 or	 user	 has
used.
Changes	 in	Usage:	Any	 changes	 in	 the	 frequency,	 recency,	 or	monetary	 value	 of	 a
customer’s	 or	 user’s	 interactions	with	 an	 organization	 (for	 example,	 has	 a	 cable	TV
subscriber	changed	packages	in	recent	months?).
Special	 Usage:	 How	 often	 a	 user	 or	 customer	 used	 services	 that	 an	 organization
considers	special	in	some	way	in	the	recent	past	(for	example,	has	a	customer	called	a
customer	complaints	department	in	the	last	month?).



Lifecycle	Phase:	The	position	of	a	customer	or	user	in	their	lifecycle	(for	example,	is
a	customer	a	new	customer,	a	loyal	customer	or	a	lapsing	customer?).
Network	Links:	 Links	 between	 an	 item	 and	 other	 related	 items	 (for	 example,	 links
between	 different	 customers	 or	 different	 products,	 or	 social	 network	 links	 between
customers).

The	actual	process	 for	determining	domain	concepts	 is	essentially	one	of	knowledge
elicitation—attempting	to	extract	from	domain	experts	the	knowledge	about	the	scenario
we	 are	 trying	 to	 model.	 Often,	 this	 process	 will	 take	 place	 across	 multiple	 meetings,
involving	the	analytics	and	domain	experts,	where	the	set	of	relevant	domain	concepts	for
the	analytics	solution	are	developed	and	refined.



2.3.1	Case	Study:	Motor	Insurance	Fraud

At	this	point	in	the	motor	insurance	fraud	detection	project,	we	have	decided	to	proceed
with	 the	 proposed	 claim	 prediction	 solution,	 in	 which	 a	 model	 will	 be	 built	 that	 can
predict	the	likelihood	that	an	insurance	claim	is	fraudulent.	This	system	will	examine	new
claims	as	 they	arise	and	 flag	 for	 further	 investigation	 those	 that	 look	 like	 they	might	be
fraud	risks.	In	this	instance	the	prediction	subject	is	an	insurance	claim,	and	so	the	ABT
for	this	problem	will	contain	details	of	historical	claims	described	by	a	set	of	descriptive
features	 that	 capture	 likely	 indicators	of	 fraud,	 and	a	 target	 feature	 indicating	whether	 a
claim	was	ultimately	considered	fraudulent.	The	domain	concepts	in	this	instance	will	be
concepts	from	within	the	insurance	domain	that	are	likely	to	be	important	in	determining
whether	a	claim	is	fraudulent.	Figure	2.3[31]	shows	some	domain	concepts	that	are	likely
to	be	useful	in	this	case.	This	set	of	domain	concepts	would	have	been	determined	through
consultations	between	the	analytics	practitioner	and	domain	experts	within	the	business.

Figure	2.3

Example	domain	concepts	for	a	motor	insurance	fraud	prediction	analytics	solution.

The	domain	concepts	shown	here	are	Policy	Details,	which	covers	information	relating
to	the	policy	held	by	the	claimant	(such	as	the	age	of	the	policy	and	the	type	of	the	policy);
Claim	Details,	which	covers	the	details	of	the	claim	itself	(such	as	the	incident	type	and
claim	amount);	Claimant	History,	which	includes	information	on	previous	claims	made	by
the	 claimant	 (such	 as	 the	 different	 types	 of	 claims	 they	 have	made	 in	 the	 past	 and	 the
frequency	of	past	claims);	Claimant	Links,	which	captures	links	between	the	claimant	and
any	other	people	 involved	 in	 the	claim	(for	example,	 the	same	people	being	 involved	 in
multiple	 insurance	 claims	 together	 is	 often	 an	 indicator	 of	 fraud);	 and	 Claimant
Demographics,	which	covers	the	demographic	details	of	the	claimant	(such	as	age,	gender,
and	 occupation).	 Finally,	 a	 domain	 concept,	 Fraud	 Outcome,	 is	 included	 to	 cover	 the
target	feature.	It	is	important	that	this	is	included	at	this	stage	because	target	features	often
need	to	be	derived	from	multiple	raw	data	sources,	and	the	effort	that	will	be	involved	in
this	should	not	be	forgotten.

In	Figure	2.3[31]	the	domain	concepts	Claimant	History	and	Claimant	Links	have	both
been	 broken	 down	 into	 a	 number	 of	 domain	 subconcepts.	 In	 the	 case	 of	 Claimant
History,	 the	 domain	 subconcept	 of	Claim	Types	 explicitly	 recognizes	 the	 importance	 of
designing	 descriptive	 features	 to	 capture	 the	 different	 types	 of	 claims	 the	 claimant	 has
been	involved	in	 in	 the	past,	and	the	Claim	Frequency	domain	subconcept	 identifies	 the



need	 to	 have	 descriptive	 features	 relating	 to	 the	 frequency	with	which	 the	 claimant	 has
been	involved	in	claims.	Similarly,	under	Claimant	Links	the	Links	with	Other	Claims	and
Links	with	Current	Claim	domain	subconcepts	highlight	the	fact	that	the	links	to	or	from
this	claimant	can	be	broken	down	into	links	related	to	the	current	claim	and	links	relating
to	other	claims.	The	expectation	is	that	each	domain	concept,	or	domain	subconcept,	will
lead	 to	one	or	more	actual	descriptive	 features	derived	directly	 from	organizational	data
sources.	Together	these	descriptive	features	will	make	up	the	ABT.



2.4	Designing	and	Implementing	Features
Once	 domain	 concepts	 have	 been	 agreed	 on,	 the	 next	 task	 is	 to	 design	 and	 implement
concrete	 features	 based	 on	 these	 concepts.	 A	 feature	 is	 any	 measure	 derived	 from	 a
domain	 concept	 that	 can	be	directly	 included	 in	 an	ABT	 for	 use	by	 a	machine	 learning
algorithm.	 Implementing	 features	 is	often	a	process	of	approximation	 through	which	we
attempt	to	express	as	much	of	each	domain	concept	as	possible	from	the	data	sources	that
are	available	to	us.	Often	it	will	take	multiple	features	to	express	a	domain	concept.	Also,
we	may	have	to	use	some	proxy	features	to	capture	something	that	is	closely	related	to	a
domain	concept	when	direct	measurement	is	not	possible.	In	some	extreme	cases	we	may
have	 to	 abandon	 a	 domain	 concept	 completely	 if	 the	 data	 required	 to	 express	 it	 isn’t
available.	 Consequently,	 understanding	 and	 exploring	 the	 data	 sources	 related	 to	 each
domain	concept	that	are	available	within	an	organization	is	a	fundamental	component	of
feature	 design.	Although	 all	 the	 factors	 relating	 to	 data	 that	were	 considered	during	 the
feasibility	 assessment	 of	 the	 analytics	 solution2	 are	 still	 relevant,	 three	 key	 data
considerations	are	particularly	important	when	we	are	designing	features.

The	 first	 consideration	 is	data	availability,	 because	we	must	 have	 data	 available	 to
implement	any	feature	we	would	like	to	use.	For	example,	in	an	online	payments	service
scenario,	we	might	 define	 a	 feature	 that	 calculates	 the	 average	 of	 a	 customer’s	 account
balance	 over	 the	 past	 six	months.	 Unless	 the	 company	maintains	 a	 historical	 record	 of
account	balances	 covering	 the	 full	 six-month	period,	however,	 it	will	 not	be	possible	 to
implement	this	feature.

The	 second	 consideration	 is	 the	 timing	 with	 which	 data	 becomes	 available	 for
inclusion	in	a	feature.	With	the	exception	of	the	definition	of	the	target	feature,	data	that
will	be	used	to	define	a	feature	must	be	available	before	the	event	around	which	we	are
trying	to	make	predictions	occurs.	For	example,	if	we	were	building	a	model	to	predict	the
outcomes	of	soccer	matches,	we	might	consider	including	the	attendance	at	the	match	as	a
descriptive	feature.	The	final	attendance	at	a	match	is	not	available	until	midway	through
the	game,	so	if	we	were	trying	to	make	predictions	before	kick-off,	this	feature	would	not
be	feasible.

The	third	consideration	is	the	longevity	of	any	feature	we	design.	There	is	potential	for
features	 to	 go	 stale	 if	 something	 about	 the	 environment	 from	which	 they	 are	 generated
changes.	For	example,	to	make	predictions	of	the	outcome	of	loans	granted	by	a	bank,	we
might	use	the	borrower’s	salary	as	a	descriptive	feature.	Salaries,	however,	change	all	the
time	based	on	inflation	and	other	socio-economic	factors.	If	we	were	to	use	a	model	that
includes	salary	values	over	an	extended	period	(for	example,	10	years)	 the	salary	values
used	 to	 initially	 train	 the	model	 may	 have	 no	 relationship	 to	 the	 values	 that	 would	 be
presented	to	the	model	later	on.	One	way	to	extend	the	longevity	of	a	feature	is	to	use	a
derived	ratio	 instead	of	a	raw	feature.	For	example,	 in	 the	 loan	scenario	a	ratio	between
salary	 and	 requested	 loan	 amount	 might	 have	 a	 much	 longer	 useful	 life	 span	 than	 the
salary	and	loan	amount	values	alone.

As	a	 result	of	 these	considerations,	 feature	design	and	 implementation	 is	an	 iterative



process	 in	 which	 data	 exploration	 informs	 the	 design	 and	 implementation	 of	 features,
which	in	turn	inform	further	data	exploration,	and	so	on.



2.4.1	Different	Types	of	Data

The	data	that	the	features	in	an	ABT	contain	can	be	of	a	number	of	different	types:

Numeric:	True	numeric	values	that	allow	arithmetic	operations	(e.g.,	price,	age)
Interval:	Values	that	allow	ordering	and	subtraction,	but	do	not	allow	other	arithmetic
operations	(e.g.,	date,	time)
Ordinal:	Values	that	allow	ordering	but	do	not	permit	arithmetic	(e.g.,	size	measured
as	small,	medium,	or	large)
Categorical:	 A	 finite	 set	 of	 values	 that	 cannot	 be	 ordered	 and	 allow	 no	 arithmetic
(e.g.,	country,	product	type)
Binary:	A	set	of	just	two	values	(e.g.,	gender)
Textual:	Free-form,	usually	short,	text	data	(e.g.,	name,	address)

Figure	 2.4[35]	 shows	 examples	 of	 these	 different	 data	 types.	 We	 often	 reduce	 this
categorization	to	just	two	data	types:	continuous	(encompassing	the	numeric	and	interval
types),	and	categorical	(encompassing	the	categorical,	ordinal,	binary,	and	textual	types).
When	 we	 talk	 about	 categorical	 features,	 we	 refer	 to	 the	 set	 of	 possible	 values	 that	 a
categorical	feature	can	take	as	the	levels	of	the	feature	or	the	domain	of	the	feature.	For
example,	in	Figure	2.4[35]	the	levels	of	the	CREDIT	RATING	feature	are	{aa,	a,	b,	c}	and	the
levels	 of	 the	GENDER	 feature	 are	 {male,	 female}.	 As	we	will	 see	 when	we	 look	 at	 the
machine	learning	algorithms	covered	in	Chapters	4[117]	to	7[323],	the	presence	of	different
types	of	descriptive	and	target	features	can	have	a	big	impact	on	how	an	algorithm	works.



2.4.2	Different	Types	of	Features

The	 features	 in	 an	 ABT	 can	 be	 of	 two	 types:	 raw	 features	 or	derived	 features.	 Raw
features	are	features	that	come	directly	from	raw	data	sources.	For	example,	customer	age,
customer	gender,	loan	amount,	or	insurance	claim	type	are	all	descriptive	features	that	we
would	most	likely	be	able	to	transfer	directly	from	a	raw	data	source	to	an	ABT.

Derived	 descriptive	 features	 do	 not	 exist	 in	 any	 raw	 data	 source,	 so	 they	 must	 be
constructed	 from	data	 in	one	or	more	 raw	data	 sources.	For	 example,	 average	 customer
purchases	 per	month,	 loan-to-value	 ratios,	 or	 changes	 in	 usage	 frequencies	 for	 different
periods	 are	 all	 descriptive	 features	 that	 could	 be	 useful	 in	 an	ABT	but	 that	most	 likely
need	to	be	be	derived	from	multiple	raw	data	sources.	The	variety	of	derived	features	that
we	might	wish	 to	use	 is	 limitless.	For	example,	consider	 the	number	of	 features	we	can
derive	from	the	monthly	payment	a	customer	makes	on	an	electricity	bill.	From	this	single
raw	 data	 point,	 we	 can	 easily	 derive	 features	 that	 store	 the	 average	 payment	 over	 six
months;	the	maximum	payment	over	six	months;	the	minimum	payment	over	six	months;
the	 average	 payment	 over	 three	months;	 the	maximum	payment	 over	 three	months;	 the
minimum	 payment	 over	 three	 months;	 a	 flag	 to	 indicate	 that	 a	 missed	 payment	 has
occurred	over	the	last	six	months;	a	mapping	of	the	last	payment	made	to	a	low,	medium,
or	high	level;	the	ratio	between	the	current	and	previous	bill	payments,	and	many	more.

Figure	2.4

Sample	descriptive	feature	data	illustrating	numeric,	binary,	ordinal,	interval,	categorical,
and	textual	types.

Despite	this	limitless	variety,	however,	there	are	a	number	of	common	derived	feature
types:

Aggregates:	 These	 are	 aggregate	measures	 defined	 over	 a	 group	 or	 period	 and	 are
usually	 defined	 as	 the	 count,	 sum,	 average,	 minimum,	 or	 maximum	 of	 the	 values
within	a	group.	For	example,	the	total	number	of	insurance	claims	that	a	member	of	an
insurance	company	has	made	over	his	or	her	lifetime	might	be	a	useful	derived	feature.



Similarly,	the	average	amount	of	money	spent	by	a	customer	at	an	online	retailer	over
periods	of	one,	three,	and	six	months	might	make	an	interesting	set	of	derived	features.
Flags:	 Flags	 are	 binary	 features	 that	 indicate	 presence	 or	 absence	 of	 some
characteristic	within	a	dataset.	For	 example,	 a	 flag	 indicating	whether	or	not	 a	bank
account	has	ever	been	overdrawn	might	be	a	useful	descriptive	feature.
Ratios:	 Ratios	 are	 continuous	 features	 that	 capture	 the	 relationship	 between	 two	 or
more	raw	data	values.	Including	a	ratio	between	two	values	can	often	be	much	more
powerful	in	a	predictive	model	than	including	the	two	values	themselves.	For	example,
in	a	banking	scenario,	we	might	include	a	ratio	between	a	loan	applicant’s	salary	and
the	amount	for	which	they	are	requesting	a	loan	rather	than	including	these	two	values
themselves.	 In	 a	 mobile	 phone	 scenario,	 we	 might	 include	 three	 ratio	 features	 to
indicate	the	mix	between	voice,	data,	and	SMS	services	that	a	customer	uses.
Mappings:	Mappings	are	used	to	convert	continuous	features	into	categorical	features
and	are	often	used	 to	 reduce	 the	number	of	unique	values	 that	 a	model	will	have	 to
deal	with.	For	 example,	 rather	 than	using	a	 continuous	 feature	measuring	 salary,	we
might	 instead	 map	 the	 salary	 values	 to	 low,	medium,	 and	 high	 levels	 to	 create	 a
categorical	feature.
Other:	There	are	no	restrictions	to	the	ways	in	which	we	can	combine	data	to	make
derived	features.	One	especially	creative	example	of	feature	design	was	when	a	large
retailer	 wanted	 to	 use	 the	 level	 of	 activity	 at	 a	 competitor’s	 stores	 as	 a	 descriptive
feature	 in	one	of	 their	 analytics	 solutions.	Obviously,	 the	competitor	would	not	give
them	 this	 information,	 and	 so	 the	 analytics	 team	 at	 the	 retailer	 sought	 to	 find	 some
proxy	feature	that	would	give	them	much	the	same	information.	Being	a	large	retailer,
they	 had	 considerable	 resources	 at	 their	 disposable,	 one	 of	which	was	 the	 ability	 to
regularly	 take	 high-resolution	 satellite	 photos.	 Using	 satellite	 photos	 of	 their
competitor’s	premises,	they	were	able	to	count	the	number	of	cars	in	their	competitor’s
parking	 lots	 and	 use	 this	 as	 a	 proxy	 measure	 of	 activity	 within	 their	 competitor’s
stores!

Although	in	some	applications	the	target	feature	is	a	raw	value	copied	directly	from	an
existing	data	source,	in	many	others	it	must	be	derived.	Implementing	the	target	feature	for
an	ABT	can	demand	significant	effort.	For	example,	consider	a	problem	in	which	we	are
trying	 to	predict	whether	a	customer	will	default	on	a	 loan	obligation.	Should	we	count
one	missed	payment	as	a	default	or,	to	avoid	predicting	that	good	customers	will	default,
should	we	consider	 a	 customer	 to	have	defaulted	only	after	 they	miss	 three	consecutive
payments?	Or	 three	payments	 in	 a	 six-month	period?	Or	 two	payments	 in	 a	 five-month
period?	Just	like	descriptive	features,	target	features	are	based	on	a	domain	concept,	and
we	must	determine	what	actual	 implementation	is	useful,	feasible,	and	correct	according
to	 the	 specifics	 of	 the	 domain	 in	 question.	 In	 defining	 target	 features,	 it	 is	 especially
important	to	seek	input	from	domain	experts.



2.4.3	Handling	Time

Many	of	 the	 predictive	models	 that	we	build	 are	propensity	models,	which	 predict	 the
likelihood	 (or	 propensity)	 of	 a	 future	 outcome	 based	 on	 a	 set	 of	 descriptive	 features
describing	the	past.	For	example,	the	goal	in	the	insurance	claim	fraud	scenario	we	have
been	considering	is	to	make	predictions	about	whether	an	insurance	claim	will	turn	out	to
be	fraudulent	after	investigation	based	on	the	details	of	the	claim	itself	and	the	details	of
the	claimant’s	behavior	in	the	time	preceding	the	claim.	Propensity	models	inherently	have
a	 temporal	 element,	 and	 when	 this	 is	 the	 case,	 we	 must	 take	 time	 into	 account	 when
designing	the	ABT.	For	propensity	modeling,	there	are	two	key	periods:	the	observation
period,	 over	 which	 descriptive	 features	 are	 calculated,	 and	 the	 outcome	 period,	 over
which	the	target	feature	is	calculated.3

In	some	cases	the	observation	period	and	outcome	period	are	measured	over	the	same
time	 for	 all	 prediction	 subjects.	 Consider	 the	 task	 of	 predicting	 the	 likelihood	 that	 a
customer	will	buy	a	new	product	based	on	past	shopping	behavior:	features	describing	the
past	 shopping	 behavior	 are	 calculated	 over	 the	 observation	 period,	 while	 the	 outcome
period	is	the	time	during	which	we	observe	whether	the	customer	bought	the	product.	In
this	situation,	the	observation	period	for	all	the	prediction	subjects,	in	this	case	customers,
might	 be	 defined	 as	 the	 six	 months	 prior	 to	 the	 launch	 of	 the	 new	 product,	 and	 the
outcome	 period	might	 cover	 the	 three	months	 after	 the	 launch.	 Figure	 2.5(a)[38]	 shows
these	two	different	periods,	assuming	that	the	customer’s	shopping	behavior	was	measured
from	August	2012	through	January	2013,	and	whether	they	bought	the	product	of	interest
was	 observed	 from	 February	 2013	 through	April	 2013;	 and	 Figure	 2.5(b)[38]	 illustrates
how	 the	 observation	 and	 outcome	 period	 for	multiple	 customers	 are	measured	 over	 the
same	period.

Figure	2.5

Modeling	points	in	time	using	an	observation	period	and	an	outcome	period.



Often,	 however,	 the	 observation	 period	 and	 outcome	 period	 will	 be	 measured	 over
different	dates	 for	each	prediction	subject.	Figure	2.6(a)[39]	 shows	an	example	 in	which,
rather	than	being	defined	by	a	fixed	date,	the	observation	period	and	outcome	period	are
defined	relative	to	an	event	that	occurs	at	different	dates	for	each	prediction	subject.	The
insurance	claims	fraud	scenario	we	have	been	discussing	throughout	this	section	is	a	good
example	 of	 this.	 In	 this	 example	 the	 observation	 period	 and	 outcome	 period	 are	 both
defined	 relative	 to	 the	date	of	 the	claim	event,	which	will	happen	on	different	dates	 for
different	claims.	The	observation	period	is	the	time	before	the	claim	event,	across	which
the	 descriptive	 features	 capturing	 the	 claimant’s	 behavior	 are	 calculated,	 while	 the
outcome	period	is	the	time	immediately	after	the	claim	event,	during	which	it	will	emerge
whether	the	claim	is	fraudulent	or	genuine.	Figure	2.6(a)[39]	 shows	an	 illustration	of	 this
kind	 of	 data,	 while	 Figure	 2.6(b)[39]	 shows	 how	 this	 is	 aligned	 so	 that	 descriptive	 and
target	features	can	be	extracted	to	build	an	ABT.	Note	that	in	Figure	2.6(b)[39]	the	month
names	 have	 been	 abstracted	 and	 are	 now	 defined	 relative	 to	 the	 transition	 between	 the
observation	and	outcome	periods.

Figure	2.6

Observation	and	outcome	periods	defined	by	an	event	rather	than	by	a	fixed	point	in	time
(each	line	represents	a	prediction	subject	and	stars	signify	events).

When	time	is	a	factor	in	a	scenario,	the	descriptive	features	and	the	target	feature	will
not	necessarily	both	be	time	dependent.	In	some	cases	only	the	descriptive	features	have	a
time	component	to	them,	and	the	target	feature	is	time	independent.	Conversely,	the	target
feature	may	have	a	time	component	and	the	descriptive	features	may	not.

Next-best-offer	models	 provide	 an	 example	 scenario	where	 the	 descriptive	 features
are	 time	 dependent	 but	 the	 target	 feature	 is	 not.	 A	 next-best-offer	 model	 is	 used	 to
determine	 the	 least	 expensive	 incentive	 that	 needs	 to	 be	 offered	 to	 a	 customer	 who	 is
considering	canceling	a	service,	 for	example,	a	mobile	phone	contract,	 in	order	 to	make
them	reconsider	and	stay.	In	this	case	the	customer	contacting	the	company	to	cancel	their
service	is	the	key	event	in	time.	The	observation	period	that	the	descriptive	features	will
be	 based	 on	 is	 the	 customer’s	 entire	 behavior	 up	 to	 the	 point	 at	 which	 they	make	 this
contact.	 There	 is	 no	 outcome	 period	 as	 the	 target	 feature	 is	 determined	 by	whether	 the
company	 is	 able	 to	 entice	 the	 customer	 to	 reconsider	 and,	 if	 so,	 the	 incentive	 that	was
required	to	do	this.	Figure	2.7[40]	illustrates	this	scenario.



Loan	default	prediction	is	an	example	where	the	definition	of	the	target	feature	has	a
time	element	but	the	descriptive	features	are	time	independent.	In	loan	default	prediction,
the	likelihood	that	an	applicant	will	default	on	a	loan	is	predicted	based	on	the	information
the	applicant	provides	on	the	application	form.	There	really	isn’t	an	observation	period	in
this	case	as	all	descriptive	features	will	be	based	on	information	provided	by	the	applicant
on	the	application	form,	rather	than	on	observing	the	applicant’s	behavior	over	time.4	The
outcome	 period	 in	 this	 case	 is	 considered	 the	 period	 of	 the	 lifetime	 of	 the	 loan	 during
which	the	applicant	will	have	either	fully	repaid	or	defaulted	on	the	loan.	In	order	to	build
an	 ABT	 for	 such	 a	 problem,	 a	 historical	 dataset	 of	 application	 details	 and	 subsequent
repayment	behavior	is	required	(this	might	stretch	back	over	multiple	years	depending	on
the	terms	of	the	loans	in	question).	This	scenario	is	illustrated	in	Figure	2.8[40].

Figure	2.7

Modeling	points	in	time	for	a	scenario	with	no	real	outcome	period	(each	line	represents	a
customer,	and	stars	signify	events).

Figure	2.8

Modeling	 points	 in	 time	 for	 a	 scenario	 with	 no	 real	 observation	 period	 (each	 line
represents	a	customer,	and	stars	signify	events).



2.4.4	Legal	Issues

Data	 analytics	 practitioners	 can	 often	 be	 frustrated	 by	 legislation	 that	 stops	 them	 from
including	features	that	appear	to	be	particularly	well	suited	to	an	analytics	solution	in	an
ABT.	 Organizations	 must	 operate	 within	 the	 relevant	 legislation	 that	 is	 in	 place	 in	 the
jurisdictions	 in	which	 they	operate,	 and	 it	 is	 important	 that	models	 are	not	 in	breach	of
this.	There	are	significant	differences	in	legislation	in	different	jurisdictions,	but	a	couple
of	key	relevant	principles	almost	always	apply.

The	first	 is	 related	 to	anti-discrimination	 legislation.	Anti-discrimination	 legislation
in	most	 jurisdictions	 prohibits	 discrimination	 on	 the	 basis	 of	 some	 set	 of	 the	 following
grounds:	 sex,	 age,	 race,	 ethnicity,	 nationality,	 sexual	orientation,	 religion,	disability,	 and
political	opinions.	For	example,	the	United	States	Civil	Rights	Act	of	19645	made	it	illegal
to	discriminate	against	a	person	on	the	basis	of	race,	color,	religion,	national	origin,	or	sex.
Subsequent	legislation	has	added	to	this	list	(for	example,	disability	was	later	added	as	a
further	 basis	 for	 non-discrimination).	 In	 the	 European	 Union	 the	 1999	 Treaty	 of
Amsterdam6	prohibits	discrimination	on	the	basis	of	sex,	racial	or	ethnic	origin,	religion	or
belief,	 disability,	 age,	 or	 sexual	 orientation.	 The	 exact	 implementation	 details	 of	 anti-
discrimination	law	change,	however,	across	the	countries	in	the	European	Union.

The	 impact	 this	has	on	designing	 features	 for	 inclusion	 in	an	ABT	 is	 that	 the	use	of
some	 features	 in	 analytics	 solutions	 that	 leads	 to	 some	 people	 being	 given	 preferential
treatment	is	in	breach	of	anti-discrimination	law.	For	example,	credit	scoring	models	such
as	the	one	discussed	in	Section	1.2[3]	cannot	use	race	as	a	descriptive	feature	because	this
would	discriminate	against	people	on	this	basis.

The	second	important	principle	relates	to	data	protection	legislation,	and	in	particular
the	rules	surrounding	the	use	of	personal	data.	Personal	data	is	defined	as	data	that	relates
to	an	identified	or	identifiable	individual,	who	is	known	as	a	data	subject.	Although,	data
protection	 legislation	 changes	 significantly	 across	 different	 jurisdictions,	 there	 are	 some
common	 tenets	on	which	 there	 is	broad	agreement.	The	Organisation	 for	Economic	Co-
operation	and	Development	(OECD,	2013)	defines	a	set	of	eight	general	principles	of	data
protection	 legislation.7	 For	 the	 design	 of	 analytics	 base	 tables,	 three	 are	 especially
relevant:	the	collection	limitation	principle,	the	purpose	specification	principle,	and	the
use	limitation	principle.

The	collection	limitation	principle	states	that	personal	data	should	only	be	obtained	by
lawful	means	with	the	knowledge	and	consent	of	a	data	subject.	This	can	limit	the	amount
of	 data	 that	 an	 organization	 collects	 and,	 sometimes,	 restricts	 implementing	 features	 to
capture	 certain	 domain	 concepts	 because	 consent	 has	 not	 been	 granted	 to	 collect	 the
required	 data.	 For	 example,	 the	 developers	 of	 a	 smartphone	 app	 might	 decide	 that	 by
turning	 on	 location	 tracking,	 they	 could	 gather	 data	 that	 would	 be	 extremely	 useful	 in
predicting	future	usage	of	 the	app.	Doing	this	without	 the	permission	of	 the	users	of	 the
app,	however,	would	be	in	breach	of	this	principle.

The	purpose	specification	principle	states	that	data	subjects	should	be	informed	of	the
purpose	 for	 which	 data	 will	 be	 used	 at	 the	 time	 of	 its	 collection.	 The	 use	 limitation



principle	adds	that	collected	data	should	not	subsequently	be	used	for	purposes	other	than
those	 stated	 at	 the	 time	 of	 collection.	 Sometimes	 this	 means	 that	 data	 collected	 by	 an
organization	cannot	be	included	in	an	ABT	because	this	would	be	incompatible	with	the
original	use	for	which	the	data	was	collected.	For	example,	an	insurance	company	might
collect	data	on	customers’	travel	behaviors	through	their	travel	insurance	policy	and	then
use	 this	 data	 in	 a	 model	 that	 predicts	 personalized	 prices	 for	 life	 insurance.	 Unless,
however,	this	second	use	was	stated	at	the	time	of	collection,	this	use	would	be	in	breach
of	this	principle.

The	 legal	 considerations	 surrounding	 predictive	 analytics	 are	 of	 growing	 importance
and	need	to	be	seriously	considered	during	the	design	of	any	analytics	project.	Although
larger	 organizations	 have	 legal	 departments	 to	 whom	 proposed	 features	 can	 be	 handed
over	 for	 assessment,	 in	 smaller	 organizations	 analysts	 are	 often	 required	 to	make	 these
assessments	themselves,	and	consequently	they	need	to	be	aware	of	the	legal	implications
relating	to	their	decisions.



2.4.5	Implementing	Features

Once	 the	 initial	design	for	 the	features	 in	an	ABT	has	been	completed,	we	can	begin	 to
implement	 the	 technical	 processes	 that	 are	 needed	 to	 extract,	 create,	 and	 aggregate	 the
features	 into	 an	 ABT.	 It	 is	 at	 this	 point	 that	 the	 distinction	 between	 raw	 and	 derived
features	becomes	apparent.	Implementing	a	raw	feature	is	simply	a	matter	of	copying	the
relevant	raw	value	into	the	ABT.	Implementing	a	derived	feature,	however,	requires	data
from	multiple	sources	to	be	combined	into	a	set	of	single	feature	values.

A	 few	 key	 data	 manipulation	 operations	 are	 frequently	 used	 to	 calculate	 derived
feature	values:	joining	data	sources,	filtering	rows	in	a	data	source,	filtering	fields	in	a	data
source,	 deriving	 new	 features	 by	 combining	 or	 transforming	 existing	 features,	 and
aggregating	data	sources.	Data	manipulation	operations	are	implemented	in	and	performed
by	 database	 management	 systems,	 data	 management	 tools,	 or	 data	 manipulation
tools,	and	are	often	referred	to	as	an	extract-transform-load	(ETL)	process.



2.4.6	Case	Study:	Motor	Insurance	Fraud

Let’s	 return	 to	 the	motor	 insurance	 fraud	 detection	 solution	 to	 consider	 the	 design	 and
implementation	of	the	features	that	will	populate	the	ABT.	As	we	noted	in	our	discussion
regarding	handling	time,	the	motor	insurance	claim	prediction	scenario	is	a	good	example
of	 a	 situation	 in	 which	 the	 observation	 period	 and	 outcome	 period	 are	 measured	 over
different	 dates	 for	 each	 insurance	 claim	 (the	 prediction	 subject	 for	 this	 case	 study).	For
each	claim	the	observation	and	output	periods	are	defined	relative	to	the	specific	date	of
that	 claim.	 The	 observation	 period	 is	 the	 time	 prior	 to	 the	 claim	 event,	 over	which	 the
descriptive	 features	 capturing	 the	 claimant’s	 behavior	 are	 calculated,	 and	 the	 outcome
period	is	the	time	immediately	after	the	claim	event,	during	which	it	will	emerge	whether
the	claim	is	fraudulent	or	genuine.

The	Claimant	History	domain	concept	that	we	developed	for	this	scenario	indicates	the
importance	of	information	regarding	the	previous	claims	made	by	the	claimant	to	the	task
of	identifying	fraudulent	claims.	This	domain	concept	is	inherently	related	to	the	notion	of
an	 observation	 period,	 and	 as	 we	 will	 see,	 the	 descriptive	 features	 derived	 from	 the
domain	subconcepts	under	Claimant	History	are	time	dependent.	For	example,	the	Claim
Frequency	domain	subconcept	under	the	Claimant	History	concept	should	capture	the	fact
that	the	number	of	claims	a	claimant	has	made	in	the	past	has	an	impact	on	the	likelihood
of	a	new	claim	being	 fraudulent.	This	could	be	expressed	 in	a	single	descriptive	feature
counting	the	number	of	claims	that	the	claimant	has	made	in	the	past.	This	single	value,
however,	may	not	capture	all	 the	relevant	 information.	Adding	extra	descriptive	features
that	 give	 a	 more	 complete	 picture	 of	 a	 domain	 concept	 can	 lead	 to	 better	 predictive
models.	In	this	example	we	might	also	include	the	number	of	claims	made	by	the	claimant
in	the	last	three	months,	the	average	number	of	claims	made	by	the	claimant	per	year,	and
the	 ratio	 of	 the	 average	 number	 of	 claims	made	 by	 the	 claimant	 per	 year	 to	 the	 claims
made	 by	 the	 claimant	 in	 the	 last	 twelve	months.	 Figure	 2.9[44]	 shows	 these	 descriptive
features	in	a	portion	of	the	domain	concept	diagram.



Figure	2.9

A	 subset	 of	 the	 domain	 concepts	 and	 related	 features	 for	 a	 motor	 insurance	 fraud
prediction	analytics	solution.

The	Claim	Types	subconcept	of	the	Claim	History	is	also	time	dependent.	This	domain
subconcept	captures	the	variety	of	claim	types	made	by	the	claimant	in	the	past,	as	these
might	 provide	 evidence	 toward	 possible	 fraud.	 The	 features	 included	 under	 this
subconcept,	all	of	which	are	derived	features,	are	shown	in	Figure	2.10[45].	The	features
place	 a	 particular	 emphasis	 on	 claims	 relating	 to	 soft	 tissue	 injuries	 (for	 example,
whiplash)	because	it	is	understood	within	the	insurance	industry	that	these	are	frequently
associated	with	fraudulent	claims.	The	number	of	soft	tissue	injury	claims	the	claimant	has
made	in	the	past	and	the	ratio	between	the	number	of	soft	tissue	injury	claims	and	other
claims	made	by	the	claimant	are	both	included	as	descriptive	features	in	the	ABT.	A	flag	is
also	included	to	indicate	that	 the	claimant	has	had	at	 least	one	claim	refused	in	the	past,
because	 this	 might	 be	 indicative	 of	 a	 pattern	 of	 making	 speculative	 claims.	 Finally,	 a
feature	is	included	that	expresses	the	variety	of	different	claim	types	made	by	the	claimant
in	the	past.	This	uses	the	entropy	measure	that	is	discussed	in	Section	4.2[120]	as	it	does	a
good	job	of	capturing	in	a	single	number	the	variety	in	a	set	of	objects.



Figure	2.10

A	 subset	 of	 the	 domain	 concepts	 and	 related	 features	 for	 a	 motor	 insurance	 fraud
prediction	analytics	solution.

However,	not	all	the	domain	concepts	in	this	scenario	are	time	dependent.	The	Claim
Details	domain	concept,	for	example,	highlights	the	importance	of	the	details	of	the	claim
itself	in	distinguishing	between	fraudulent	and	genuine	claims.	The	type	of	the	claim	and
amount	of	the	claim	are	raw	features	calculated	directly	from	a	claims	table	contained	in
one	 of	 the	 insurance	 company’s	 operational	 databases.	A	derived	 feature	 containing	 the
ratio	between	 the	claim	amount	and	 the	 total	value	of	 the	premiums	paid	 to	date	on	 the
policy	 is	 included.	This	 is	based	on	an	expectation	 that	 fraudulent	 claims	may	be	made
early	in	the	lifetime	of	a	policy	before	too	much	has	been	spent	on	premiums.	Finally,	the
insurance	 company	 divides	 their	 operations	 into	 a	 number	 of	 geographic	 areas	 defined
internally	based	on	the	location	of	their	branches,	and	a	feature	is	included	that	maps	raw
address	data	to	these	regions.

Table	2.2[47]	illustrates	the	structure	of	the	final	ABT	that	was	designed	for	the	motor
insurance	 claims	 fraud	detection	 solution.8	 The	 table	 contains	more	 descriptive	 features
than	 the	 ones	 we	 have	 discussed	 in	 this	 section.9	 The	 table	 also	 shows	 the	 first	 four
instances.	 If	 we	 examine	 the	 table	 closely,	 we	 see	 a	 number	 of	 strange	 values	 (for
example,	−99,999)	and	a	number	of	missing	values.	In	the	next	chapter,	we	describe	the
process	we	should	follow	to	evaluate	the	quality	of	the	data	in	the	ABT	and	the	actions	we
can	take	if	the	quality	isn’t	good	enough.



Figure	2.11

A	 subset	 of	 the	 domain	 concepts	 and	 related	 features	 for	 a	 motor	 insurance	 fraud
prediction	analytics	solution.



2.5	Summary
It	 is	 important	 to	 remember	 that	 predictive	 data	 analytics	 models	 built	 using	 machine
learning	 techniques	 are	 tools	 that	 we	 can	 use	 to	 help	 make	 better	 decisions	 within	 an
organization	 and	 are	 not	 an	 end	 in	 themselves.	 It	 is	 paramount	 that,	 when	 tasked	with
creating	a	predictive	model,	we	fully	understand	the	business	problem	that	 this	model	 is
being	constructed	to	address	and	ensure	that	it	does	address	it.	This	is	the	goal	behind	the
process	of	converting	business	problems	 into	analytics	 solutions	 as	part	 of	 the	Business
Understanding	 phase	 of	 the	 CRISP-DM	 process.	 When	 undertaking	 this	 process,	 it	 is
important	to	take	into	account	the	availability	of	data	and	the	capacity	of	a	business	to	take
advantage	of	insights	arising	from	analytics	models	as	otherwise	it	is	possible	to	construct
an	apparently	accurate	prediction	model	that	is	in	fact	useless.

Table	2.2

The	ABT	for	the	motor	insurance	claims	fraud	detection	solution.

	

Predictive	data	analytics	models	are	reliant	on	the	data	that	is	used	to	build	them—the
analytics	base	 table	 (ABT)	 is	 the	 key	 data	 resource	 in	 this	 regard.	An	ABT,	 however,
rarely	comes	directly	from	a	single	source	already	existing	within	an	organization.	Instead,
the	ABT	has	to	be	created	by	combining	a	range	of	operational	data	sources	together.	The
manner	 in	 which	 these	 data	 resources	 should	 be	 combined	 must	 be	 designed	 and



implemented	 by	 the	 analytics	 practitioner	 in	 collaboration	 with	 domain	 experts.	 An
effective	 way	 in	 which	 to	 do	 this	 is	 to	 start	 by	 defining	 a	 set	 of	 domain	 concepts	 in
collaboration	with	the	business,	and	then	designing	features	that	express	these	concepts	in
order	to	form	the	actual	ABT.	Domain	concepts	cover	the	different	aspects	of	a	scenario
that	are	likely	to	be	important	in	the	modeling	task	at	hand.

Figure	2.12

A	 summary	 of	 the	 tasks	 in	 the	 Business	Understanding,	 Data	Understanding,	 and	Data
Preparation	phases	of	the	CRISP-DM	process.

Features	(both	descriptive	and	target)	are	concrete	numeric	or	symbolic	representations
of	domain	concepts.	Features	can	be	of	many	different	types,	but	it	is	useful	to	think	of	a
distinction	 between	 raw	 features	 that	 come	 directly	 from	 existing	 data	 sources	 and
derived	features	that	are	constructed	by	manipulating	values	from	existing	data	sources.
Common	 manipulations	 used	 in	 this	 process	 include	 aggregates,	 flags,	 ratios,	 and
mappings,	although	any	manipulation	is	valid.	Often	multiple	features	are	required	to	fully
express	a	single	domain	concept.

The	 techniques	 described	 in	 this	 chapter	 cover	 the	Business	Understanding,	Data
Understanding,	 and	 (partially)	Data	 Preparation	 phases	 of	 the	CRISP-DM	 process.
Figure	 2.12[48]	 shows	 how	 the	 major	 tasks	 described	 in	 this	 chapter	 align	 with	 these
phases.	 The	 next	 chapter	 will	 describe	 the	 data	 understanding	 and	 data	 preparation
techniques	 mentioned	 briefly	 in	 this	 chapter	 in	 much	 more	 detail.	 It	 is	 important	 to
remember	 that	 in	 reality,	 the	Business	Understanding,	Data	Understanding,	 and	Data
Preparation	 phases	 of	 the	 CRISP-DM	 process	 are	 performed	 iteratively	 rather	 than
linearly.	 The	 curved	 arrows	 in	 Figure	 2.12[48]	 show	 the	most	 common	 iterations	 in	 the
process.



2.6	Further	Reading
On	the	 topic	of	converting	business	problems	into	analytics	solutions,	Davenport	 (2006)
and	 Davenport	 and	 Kim	 (2013)	 are	 good	 business-focused	 sources.	 Levitt	 and	 Dubner
(2005),	 Ayres	 (2008),	 Silver	 (2012),	 and	 Siegel	 (2013)	 all	 provide	 nice	 dicusssions	 of
different	applications	of	predictive	data	analytics.

The	 CRISP-DM	 process	 documentation	 (Chapman	 et	 al.,	 2000)	 is	 surprisingly
readable,	and	adds	a	lot	of	extra	detail	to	the	tasks	described	in	this	chapter.	For	details	on
developing	 business	 concepts	 and	 designing	 features,	 Svolba	 (2007)	 is	 excellent	 (the
approaches	 described	 can	 be	 applied	 to	 any	 tool,	 not	 just	 SAS,	 which	 is	 the	 focus	 of
Svolba’s	book).

For	 further	 discussion	 of	 the	 legal	 issues	 surrounding	 data	 analytics,	 Tene	 and
Polonetsky	(2013)	and	Schwartz	(2010)	are	useful.	Chapter	2	of	Siegel	 (2013)	discusses
the	ethical	issues	surrounding	predictive	analytics.





2.7	Exercises
1.	An	online	movie	streaming	company	has	a	business	problem	of	growing

customer	churn—subscription	customers	canceling	their	subscriptions	to	join	a
competitor.	Create	a	list	of	ways	in	which	predictive	data	analytics	could	be	used	to
help	address	this	business	problem.	For	each	proposed	approach,	describe	the
predictive	model	that	will	be	built,	how	the	model	will	be	used	by	the	business,	and
how	using	the	model	will	help	address	the	original	business	problem.

2.	A	national	revenue	commission	performs	audits	on	public	companies	to	find	and
fine	tax	defaulters.	To	perform	an	audit,	a	tax	inspector	visits	a	company	and	spends	a
number	of	days	scrutinizing	the	company’s	accounts.	Because	it	takes	so	long	and
relies	on	experienced,	expert	tax	inspectors,	performing	an	audit	is	an	expensive
exercise.	The	revenue	commission	currently	selects	companies	for	audit	at	random.
When	an	audit	reveals	that	a	company	is	complying	with	all	tax	requirements,	there	is
a	sense	that	the	time	spent	performing	the	audit	was	wasted,	and	more	important,	that
another	business	who	is	not	tax	compliant	has	been	spared	an	investigation.	The
revenue	commissioner	would	like	to	solve	this	problem	by	targeting	audits	at
companies	who	are	likely	to	be	in	breach	of	tax	regulations,	rather	than	selecting
companies	for	audit	at	random.	In	this	way	the	revenue	commission	hopes	to
maximize	the	yield	from	the	audits	that	it	performs.

To	help	with	situational	fluency	for	this	scenario	here	is	a	brief	outline	of	how
companies	interact	with	the	revenue	commission.	When	a	company	is	formed,	it
registers	with	the	company	registrations	office.	Information	provided	at	registration
includes	the	type	of	industry	the	company	is	involved	in,	details	of	the	directors	of	the
company,	and	where	the	company	is	located.	Once	a	company	has	been	registered,	it
must	provide	a	tax	return	at	the	end	of	every	financial	year.	This	includes	all	financial
details	of	the	company’s	operations	during	the	year	and	is	the	basis	of	calculating	the
tax	liability	of	a	company.	Public	companies	also	must	file	public	documents	every
year	that	outline	how	they	have	been	performing,	details	of	any	changes	in
directorship,	and	so	on.

a.	Propose	two	ways	in	which	predictive	data	analytics	could	be	used	to	help	address
this	business	problem.10	For	each	proposed	approach,	describe	the	predictive	model
that	will	be	built,	how	the	model	will	be	used	by	the	business,	and	how	using	the
model	will	help	address	the	original	business	problem.

b.	For	each	analytics	solution	you	have	proposed	for	the	revenue	commission,	outline
the	type	of	data	that	would	be	required.

c.	For	each	analytics	solution	you	have	proposed,	outline	the	capacity	that	the	revenue
commission	would	need	in	order	to	utilize	the	analytics-based	insight	that	your
solution	would	provide.

3.	The	table	below	shows	a	sample	of	a	larger	dataset	containing	details	of	policy
holders	at	an	insurance	company.	The	descriptive	features	included	in	the	table



describe	each	policy	holders’	ID,	occupation,	gender,	age,	the	value	of	their	car,	the
type	of	insurance	policy	they	hold,	and	their	preferred	contact	channel.

a.	State	whether	each	descriptive	feature	contains	numeric,	interval,	ordinal,
categorical,	binary,	or	textual	data.

b.	How	many	levels	does	each	categorical	and	ordinal	feature	have?

4.	Select	one	of	the	predictive	analytics	models	that	you	proposed	in	your	answer	to
Question	2	about	the	revenue	commission	for	exploration	of	the	design	of	its	analytics
base	table	(ABT).

a.	What	is	the	prediction	subject	for	the	model	that	will	be	trained	using	this	ABT?

b.	Describe	the	domain	concepts	for	this	ABT.

c.	Draw	a	domain	concept	diagram	for	the	ABT.

d.	Are	there	likely	to	be	any	legal	issues	associated	with	the	domain	concepts	you
have	included?

✻	5.	Although	their	sales	are	reasonable,	an	online	fashion	retailer	is	struggling	to
generate	the	volume	of	sales	that	they	had	originally	hoped	for	when	launching	their
site.	List	a	number	of	ways	in	which	predictive	data	analytics	could	be	used	to	help
address	this	business	problem.	For	each	proposed	approach,	describe	the	predictive
model	that	will	be	built,	how	the	model	will	be	used	by	the	business,	and	how	using
the	model	will	help	address	the	original	business	problem.

✻	6.	An	oil	exploration	company	is	struggling	to	cope	with	the	number	of
exploratory	sites	that	they	need	to	drill	in	order	to	find	locations	for	viable	oil	wells.
There	are	many	potential	sites	that	geologists	at	the	company	have	identified,	but
undertaking	exploratory	drilling	at	these	sites	is	very	expensive.	If	the	company	could
increase	the	percentage	of	sites	at	which	they	perform	exploratory	drilling	that	actually
lead	to	finding	locations	for	viable	wells,	they	could	save	a	huge	amount	of	money.

Currently	geologists	at	the	company	identify	potential	drilling	sites	by	manually
examining	information	from	a	variety	of	different	sources.	These	include	ordinance
survey	maps,	aerial	photographs,	characteristics	of	rock	and	soil	samples	taken	from
potential	sites,	and	measurements	from	sensitive	gravitational	and	seismic	instruments.



a.	Propose	two	ways	in	which	predictive	data	analytics	could	be	used	to	help	address
the	problem	that	the	oil	exploration	company	is	facing.	For	each	proposed	approach,
describe	the	predictive	model	that	will	be	built,	how	the	model	will	be	used	by	the
company,	and	how	using	the	model	will	help	address	the	original	problem.

b.	For	each	analytics	solution	you	have	proposed,	outline	the	type	of	data	that	would
be	required.

c.	For	each	analytics	solution	you	have	proposed,	outline	the	capacity	that	would	be
needed	in	order	to	utilize	the	analytics-based	insight	that	your	solution	would
provide.

✻	7.	Select	one	of	the	predictive	analytics	models	that	you	proposed	in	your	answer
to	the	previous	question	about	the	oil	exploration	company	for	exploration	of	the
design	of	its	analytics	base	table.

a.	What	is	the	prediction	subject	for	the	model	that	will	be	trained	using	this	ABT?

b.	Describe	the	domain	concepts	for	this	ABT.

c.	Draw	a	domain	concept	diagram	for	the	ABT.

d.	Are	there	likely	to	be	any	legal	issues	associated	with	the	domain	concepts	you
have	included?

	

	

	

	

	

	

	

_______________

1	Remember	that	in	insurance	we	don’t	refer	to	customers!

2	See	the	discussion	in	Section	2.1[21]	relating	to	data	availability,	data	connections,	data
granularity,	data	volume,	and	data	time	horizons.

3	It	is	important	to	remember	for	this	discussion	that	all	the	data	from	which	we	construct
an	ABT	for	training	and	evaluating	a	model	will	be	historical	data.

4	 Some	 might	 argue	 that	 the	 information	 on	 the	 application	 form	 summarizes	 an
applicant’s	entire	life,	so	this	constitutes	the	observation	period	in	this	case!

5	 The	 full	 text	 of	 the	 Civil	 Rights	 Act	 of	 1964	 is	 available	 at
www.gpo.gov/fdsys/granule/STATUTE-78/STATUTE-78-
Pg241/content-detail.html.

http://www.gpo.gov/fdsys/granule/STATUTE-78/STATUTE-78-Pg241/content-detail.html


6	The	 full	 text	of	 the	EU	Treaty	of	Amsterdam	 is	 available	 at	www.europa.eu/eu-
law/	 decision-
making/treaties/pdf/treaty_of_amsterdam/treaty_of_amsterdam_en.pdf

7	 The	 full	 discussion	 of	 these	 principles	 is	 available	 at
www.oecd.org/sti/ieconomy/privacy.htm.

8	The	table	is	too	wide	to	fit	on	a	page,	so	it	has	been	split	into	three	sections.

9	The	mapping	 between	 the	 features	we	 have	 discussed	 here	 and	 the	 column	 names	 in
Table	2.2[47]	is	as	follows:	NUMBER	OF	CLAIMANTS:	NUM.	CLMNTS.;	NUMBER	OF	CLAIMS	IN
CLAIMANT	LIFETIME:	NUM.	CLAIMS;	NUMBER	OF	CLAIMS	BY	CLAIMANT	IN	LAST	3	MONTHS:
NUM.	CLAIMS	 3	MONTHS;	AVERAGE	CLAIMS	PER	 YEAR	 BY	 CLAIMANT:	 AVG.	 CLAIMS	 PER
YEAR;	RATIO	OF	AVERAGE	CLAIMS	PER	YEAR	TO	NUMBER	OF	CLAIMS	 IN	LAST	12	MONTHS:
AVG.	CLAIMS	RATIO;	NUMBER	OF	SOFT	TISSUE	CLAIMS:	NUM.	SOFT	TISSUE;	RATIO	OF	SOFT
TISSUE	CLAIMS	TO	OTHER	CLAIMS:	%	SOFT	TISSUE;	UNSUCCESSFUL	CLAIM	MADE:	UNSUCC.
CLAIMS;	DIVERSITY	OF	CLAIM	TYPES:	CLAIM	DIV.;	CLAIM	AMOUNT:	CLAIM	AMT.;	CLAIM	TO
PREMIUM	PAID	RATIO:	CLAIM	TO	PREM.;	ACCIDENT	REGION:	REGION.

10	Revenue	commissioners	around	 the	world	use	predictive	data	analytics	 techniques	 to
keep	their	processes	as	efficient	as	possible.	Cleary	and	Tax	(2011)	is	a	good	example.

http://www.europa.eu/eu-law/ decision-making/treaties/pdf/treaty_of_amsterdam/treaty_of_amsterdam_en.pdf
http://www.oecd.org/sti/ieconomy/privacy.htm




3	Data	Exploration

Fail	to	prepare,	prepare	to	fail.

—Roy	Keane

In	 Chapter	 2[21]	 we	 described	 the	 process	 of	 moving	 from	 a	 business	 problem	 to	 an
analytics	 solution	 and,	 from	 there,	 to	 the	 design	 and	 construction	 of	 an	 analytics	 base
table	(ABT).	An	ABT	for	a	predictive	analytics	solution	contains	a	set	of	 instances	 that
are	represented	by	a	set	of	descriptive	features	and	a	target	feature.	Before	attempting	to
build	 predictive	 models	 based	 on	 an	 ABT	 it	 is	 important	 that	 we	 undertake	 some
exploratory	 analysis,	 or	 data	 exploration,	 of	 the	 data	 contained	 in	 the	 ABT.	 Data
exploration	is	a	key	part	of	both	the	Data	Understanding	and,	Data	Preparation	phases
of	CRISP-DM.

There	 are	 two	 goals	 in	 data	 exploration.	 The	 first	 goal	 is	 to	 fully	 understand	 the
characteristics	of	the	data	in	the	ABT.	It	is	important	that	for	each	feature	in	the	ABT,	we
understand	characteristics	such	as	 the	 types	of	values	a	 feature	can	 take,	 the	 ranges	 into
which	 the	 values	 in	 a	 feature	 fall,	 and	 how	 the	 values	 in	 a	 dataset	 for	 a	 feature	 are
distributed	across	the	range	that	they	can	take.	We	refer	to	this	as	getting	to	know	the	data.
The	 second	goal	of	data	 exploration	 is	 to	determine	whether	or	not	 the	data	 in	 an	ABT
suffer	from	any	data	quality	issues	that	could	adversely	affect	the	models	that	we	build.
Examples	of	typical	data	quality	issues	include	an	instance	that	is	missing	values	for	one
or	more	descriptive	features,	an	instance	that	has	an	extremely	high	value	for	a	feature,	or
an	instance	that	has	an	inappropriate	level	for	a	feature.	Some	data	quality	issues	arise	due
to	invalid	data	and	will	be	corrected	as	soon	as	we	discover	them.	Others,	however,	arise
because	 of	 perfectly	 valid	 data	 that	 may	 cause	 difficulty	 to	 some	 machine	 learning
techniques.	We	 note	 these	 types	 of	 data	 quality	 issues	 during	 exploration	 for	 potential
handling	when	we	reach	the	modeling	phase	of	a	project.

The	most	important	tool	used	during	data	exploration	is	the	data	quality	report.	This
chapter	begins	by	describing	the	structure	of	a	data	quality	report	and	explaining	how	it	is
used	 to	 get	 to	 know	 the	 data	 in	 an	 ABT	 and	 to	 identify	 data	 quality	 issues.	 We	 then
describe	a	number	of	strategies	for	handling	data	quality	issues	and	when	it	is	appropriate
to	use	them.	Throughout	the	discussion	of	the	data	quality	report	and	how	we	use	it,	we
return	to	the	motor	insurance	fraud	case	study	from	Chapter	2[21].	Toward	the	end	of	the
chapter,	we	introduce	some	more	advanced	data	exploration	techniques	that,	although	not
part	of	the	standard	data	quality	report,	can	be	useful	at	this	stage	of	an	analytics	project
and	present	some	data	preparation	 techniques	 that	can	be	applied	 to	 the	data	 in	an	ABT
prior	to	modeling.



3.1	The	Data	Quality	Report
The	data	quality	report	is	the	most	important	tool	of	the	data	exploration	process.	A	data
quality	report	includes	tabular	reports	(one	for	continuous	features	and	one	for	categorical
features)	 that	 describe	 the	 characteristics	 of	 each	 feature	 in	 an	 ABT	 using	 standard
statistical	 measures	 of	 central	 tendency	 and	 variation.	 The	 tabular	 reports	 are
accompanied	 by	 data	 visualizations	 that	 illustrate	 the	 distribution	 of	 the	 values	 in	 each
feature	in	an	ABT.	Readers	who	are	not	already	familiar	with	standard	measures	of	central
tendency	 (mean,	 mode,	 and	 median),	 standard	 measures	 of	 variation	 (standard
deviation	and	percentiles),	and	standard	data	visualization	plots	(bar	plots,	histograms,
and	box	plots)	should	read	Appendix	A[525]	for	the	necessary	introduction.

The	 table	 in	a	data	quality	 report	 that	describes	continuous	 features	should	 include	a
row	 containing	 the	 minimum,	 1st	 quartile,	 mean,	 median,	 3rd	 quartile,	 maximum,	 and
standard	deviation	statistics	for	that	feature	as	well	as	the	total	number	of	instances	in	the
ABT,	the	percentage	of	instances	in	the	ABT	that	are	missing	a	value	for	each	feature	and
the	 cardinality	 of	 each	 feature,	 (cardinality	 measures	 the	 number	 of	 distinct	 values
present	in	the	ABT	for	a	feature).	Table	3.1(a)[57]	shows	the	structure	of	the	table	in	a	data
quality	report	that	describes	continuous	features.

The	table	in	the	data	quality	report	that	describes	categorical	features	should	include	a
row	for	each	feature	in	the	ABT	that	contains	the	two	most	frequent	levels	for	the	feature
(the	 mode	 and	 2nd	 mode)	 and	 the	 frequency	 with	 which	 these	 appear	 (both	 as	 raw
frequencies	and	as	a	proportion	of	the	total	number	of	instances	in	the	dataset).	Each	row
should	also	include	the	percentage	of	instances	in	the	ABT	that	are	missing	a	value	for	the
feature	and	the	cardinality	of	the	feature.	Table	3.1(b)[57]	shows	the	structure	of	the	table
in	a	data	quality	report	that	describes	categorical	features.

The	data	quality	report	should	also	include	a	histogram	for	each	continuous	feature	in
an	ABT.	For	continuous	features	with	cardinality	less	than	10,	we	use	bar	plots	instead	of
histograms	 as	 this	 usually	 produces	 more	 informative	 data	 visualization.	 For	 each
categorical	feature	in	an	ABT,	a	bar	plot	should	be	included	in	the	data	quality	report.

Table	3.1

The	structures	of	the	tables	included	in	a	data	quality	report	to	describe	(a)	continuous
features	and	(b)	categorical	features.





3.1.1	Case	Study:	Motor	Insurance	Fraud

Table	3.2[58]	shows	a	portion	of	the	ABT	that	has	been	developed	for	the	motor	insurance
claims	 fraud	 detection	 solution	 based	 on	 the	 design	 described	 in	Section	 2.4.6[43].1	 The
data	 quality	 report	 for	 this	 ABT	 is	 shown	 across	 Table	 3.3[59]	 (tabular	 reports	 for
continuous	and	categorical	features)	and	Figure	3.1[60]	(data	visualizations	for	each	feature
in	the	dataset).

Table	3.2

Portions	of	the	ABT	for	the	motor	insurance	claims	fraud	detection	problem	discussed	in
Section	2.4.6[43].

Table	3.3

A	data	quality	report	for	the	motor	insurance	claims	fraud	detection	ABT	displayed	in
Table	3.2[58].





Figure	3.1

Visualizations	 of	 the	 continuous	 and	 categorical	 features	 in	 the	motor	 insurance	 claims
fraud	detection	ABT	in	Table	3.2[58].



3.2	Getting	to	Know	the	Data
The	data	quality	 report	gives	 an	 in-depth	picture	of	 the	data	 in	 an	ABT,	 and	we	 should
study	it	in	detail	in	order	to	get	to	know	the	data	that	we	will	work	with.	For	each	feature,
we	should	examine	 the	central	 tendency	and	variation	 to	understand	 the	 types	of	values
that	each	feature	can	take.	For	categorical	features,	we	should	first	examine	the	mode,	2nd

mode,	mode	%,	and	2nd	mode	%	in	the	categorical	features	table	in	the	data	quality	report.
These	tell	us	the	most	common	levels	within	these	features	and	will	identify	if	any	levels
dominate	the	dataset	(these	levels	will	have	a	very	high	mode	%).	The	bar	plots	shown	in
the	data	quality	report	are	also	very	useful	here.	They	give	us	a	quick	overview	of	all	the
levels	in	the	domain	of	each	categorical	feature	and	the	frequencies	of	these	levels.

For	 continuous	 features	we	 should	 first	 examine	 the	mean	and	 standard	deviation	of
each	feature	to	get	a	sense	of	the	central	tendency	and	variation	of	the	values	within	the
dataset	 for	 the	 feature.	We	 should	 also	 examine	 the	minimum	 and	maximum	 values	 to
understand	the	range	that	is	possible	for	each	feature.	The	histograms	for	each	continuous
feature	included	in	a	data	quality	report	are	a	very	easy	way	for	us	to	understand	how	the
values	 for	 a	 feature	 are	 distributed	 across	 the	 range	 they	 can	 take.2	When	we	 generate
histograms	of	 features,	 there	 are	 a	 number	 of	 common,	well-understood	 shapes	 that	we
should	 look	 out	 for.	 These	 shapes	 relate	 to	 well-known	 standard	 probability
distributions,3	and	recognizing	that	the	distribution	of	the	values	in	an	ABT	for	a	feature
closely	matches	 one	 of	 these	 standard	 distributions	 can	 help	 us	when	 building	machine
learning	models.	 During	 data	 exploration	we	 don’t	 need	 to	 go	 any	 further	 than	 simply
recognizing	that	features	seem	to	follow	particular	distributions,	and	this	can	be	done	from
examining	 the	histogram	 for	 each	 feature.	Figure	3.2[62]	 shows	 a	 selection	 of	 histogram
shapes	 that	 exhibit	 characteristics	 commonly	 seen	when	 analyzing	 features	 and	 that	 are
indicative	of	standard,	well-known	probability	distributions.

Figure	 3.2(a)[62]	 shows	 a	 histogram	 exhibiting	 a	 uniform	 distribution.	 A	 uniform
distribution	 indicates	 that	a	 feature	 is	equally	 likely	 to	 take	a	value	 in	any	of	 the	 ranges
present.	 Sometimes	 a	 uniform	 distribution	 is	 indicative	 of	 a	 descriptive	 feature	 that
contains	an	ID	rather	than	a	measure	of	something	more	interesting.



Figure	3.2

Histograms	 for	 six	 different	 sets	 of	 data,	 each	 of	 which	 exhibit	 well-known,	 common
characteristics.

Figure	 3.2(b)[62]	 shows	 a	 shape	 indicative	 of	 a	 normal	 distribution.	 Features
following	 a	 normal	 distribution	 are	 characterized	by	 a	 strong	 tendency	 toward	 a	 central
value	and	symmetrical	variation	to	either	side	of	this	central	tendency.	Naturally	occurring
phenomena—for	example,	the	heights	or	weights	of	a	randomly	selected	group	of	men	or
women—tend	 to	 follow	 a	 normal	 distribution.	 Histograms	 that	 follow	 a	 normal
distribution	can	also	be	described	as	unimodal	because	they	have	a	single	peak	around	the
central	 tendency.	 Finding	 features	 that	 exhibit	 a	 normal	 distribution	 is	 a	 good	 thing,	 as
many	of	the	modeling	techniques	we	discuss	in	later	chapters	work	particularly	well	with
normally	distributed	data.

Figures	3.2(c)[62]	and	3.2(d)[62]	show	unimodal	histograms	that	exhibit	skew.	Skew	is
simply	a	tendency	toward	very	high	(right	skew	as	seen	in	Figure	3.2(c)[62])	or	very	low
(left	skew	as	seen	in	Figure	3.2(d)[62])	values.	Features	 recording	salaries	often	follow	a
right	 skewed,	 distribution	 as	 most	 people	 are	 paid	 salaries	 near	 a	 well-defined	 central
tendency,	but	there	are	usually	a	small	number	of	people	who	are	paid	very	large	salaries.
Skewed	distributions	are	often	said	to	have	long	tails	toward	these	very	high	or	very	low
values.

In	a	feature	following	an	exponential	distribution,	as	shown	in	Figure	3.2(e)[62],	 the
likelihood	of	low	values	occurring	is	very	high	but	diminishes	rapidly	for	higher	values.
Features	such	as	the	number	of	times	a	person	has	made	an	insurance	claim	or	the	number
of	times	a	person	has	been	married	tend	to	follow	an	exponential	distribution.	Recognizing
that	a	feature	follows	an	exponential	distribution	is	another	clear	warning	sign	that	outliers
are	likely.	As	shown	in	Figure	3.2(e)[62],	exponential	distributions	have	a	long	tail,	and	so



very	high	values	are	not	uncommon.

Finally,	 a	 feature	 characterized	by	 a	multimodal	distribution	 has	 two	or	more	 very
commonly	occurring	ranges	of	values	that	are	clearly	separated.	Figure	3.2(f)[62]	shows	a
bi-modal	 distribution	 with	 two	 clear	 peaks—we	 can	 think	 of	 this	 as	 two	 normal
distributions	 pushed	 together.	 Multimodal	 distributions	 tend	 to	 occur	 when	 a	 feature
contains	a	measurement	made	across	a	number	of	distinct	groups.	For	example,	if	we	were
to	measure	the	heights	of	a	randomly	selected	group	of	Irish	men	and	women,	we	would
expect	a	bi-modal	distribution	with	a	peak	at	around	1.635m	for	women	and	1.775m	for
men.

Observing	 a	 multimodal	 distribution	 is	 cause	 for	 both	 caution	 and	 optimism.	 The
caution	comes	from	the	fact	that	measures	of	central	tendency	and	variation	tend	to	break
down	for	multimodal	data.	For	example,	consider	that	the	mean	value	of	the	distribution
shown	in	Figure	3.2(f)[62]	 is	 likely	to	sit	right	 in	the	valley	between	the	two	peaks,	even
though	very	few	instances	actually	have	this	value.	The	optimism	associated	with	finding
multimodally	distributed	data	stems	from	the	fact	that,	if	we	are	lucky,	the	separate	peaks
in	 the	 distribution	 will	 be	 associated	 with	 the	 different	 target	 levels	 we	 are	 trying	 to
predict.	 For	 example,	 if	 we	 were	 trying	 to	 predict	 gender	 from	 a	 set	 of	 physiological
measurements,	height	would	most	 likely	be	a	very	predictive	value,	as	it	would	separate
people	into	male	and	female	groups.

This	stage	of	data	exploration	is	mostly	an	information-gathering	exercise,	the	output
of	which	is	just	a	better	understanding	of	the	contents	of	an	ABT.	It	does,	however,	also
present	 a	good	opportunity	 to	discuss	 anything	unusual	 that	we	notice	 about	 the	 central
tendency	and	variation	of	 features	within	 the	ABT.	For	example,	a	salary	 feature	with	a
mean	 of	 40	would	 seem	 unlikely	 (40,000	would	 seem	more	 reasonable)	 and	 should	 be
investigated.



3.2.1	The	Normal	Distribution

The	normal	distribution	(also	known	as	a	Gaussian	distribution)	is	so	important	that	it
is	 worth	 spending	 a	 little	 extra	 time	 discussing	 its	 characteristics.	 Standard	 probability
distributions	 have	 associated	 probability	 density	 functions,	 which	 define	 the
characteristics	 of	 the	 distribution.	 The	 probability	 density	 function	 for	 the	 normal
distribution	is

where	x	is	any	value,	and	μ	and	σ	are	parameters	that	define	the	shape	of	the	distribution.
Given	 a	 probability	 density	 function,	 we	 can	 plot	 the	 density	 curve	 associated	 with	 a
distribution,	 which	 gives	 us	 a	 different	 way	 to	 visualize	 standard	 distributions	 like	 the
normal.	 Figure	 3.3[65]	 shows	 the	 density	 curves	 for	 a	 number	 of	 different	 normal
distributions.	The	higher	the	curve	for	a	particular	value	on	the	horizontal	axis,	the	more
likely	that	value	is.

The	 curve	defined	by	 a	normal	probability	distribution	 is	 symmetric	 around	a	 single
peak	value.	The	location	of	the	peak	value	is	defined	by	the	parameter	μ	(pronounced	mu),
which	denotes	the	population	mean	(in	other	words,	the	mean	value	of	the	feature	if	we
had	access	to	every	value	that	could	possibly	occur).	The	height	and	slope	of	the	curve	is
dependent	 on	 the	 parameter	 σ	 (pronounced	 sigma),	 which	 denotes	 the	 population
standard	deviation.	The	larger	the	value	of	σ,	the	lower	the	maximum	height	of	the	curve
and	 the	 shallower	 the	 slope.	 Figure	 3.3(a)[65]	 illustrates	 how	 the	 location	 of	 the	 peak
moves	as	 the	value	 for	μ	 changes,	 and	Figure	3.3(b)[65]	 illustrates	 how	 the	 shape	of	 the
curve	 changes	 as	 we	 vary	 the	 value	 for	 σ.	 Notice	 that	 in	 both	 figures,	 the	 normal
distribution	plotted	with	the	continuous	black	line	has	mean	μ	=	0	and	standard	deviation	σ
=	1.	This	normal	distribution	is	known	as	the	standard	normal	distribution.	The	notation
X	is	N(μ,	σ)	is	often	used	as	a	shorthand	for	X	is	a	normally	distributed	feature	with	mean
μ	 and	 standard	 deviation	 σ.4	 One	 important	 characteristic	 of	 the	 normal	 distribution	 is
often	 described	 as	 the	 68−95−99.7	 rule.	 The	 rule	 states	 that	 approximately	 68%	of	 the
values	in	a	sample	that	follows	a	normal	distribution	will	be	within	one	σ	of	μ,	95%	of	the
values	will	be	within	two	σ	of	μ,	and	99.7%	of	values	will	be	within	three	σ	of	μ.	Figure
3.4[65]	 illustrates	 this	 rule.	 This	 rule	 highlights	 that	 in	 data	 that	 follows	 a	 normal
distribution,	there	is	a	very	low	probability	of	observations	occurring	that	differ	from	the
mean	by	more	than	two	standard	deviations.



Figure	3.3

(a)	Three	normal	distributions	with	different	means	but	identical	standard	deviations;	(b)
three	normal	distributions	with	identical	means	but	different	standard	deviations.

Figure	3.4

An	 illustration	 of	 the	 68−95−99.7	 rule.	The	 gray	 region	 defines	 the	 area	where	 95%	of
values	in	a	sample	are	expected.



3.2.2	Case	Study:	Motor	Insurance	Fraud

The	data	quality	report	in	Table	3.3[59]	and	in	Figure	3.1[60]	and	allows	us	to	very	quickly
become	familiar	with	the	central	tendency	and	variation	of	each	feature	in	the	ABT.	These
were	all	broadly	as	the	business	expected.	In	the	bar	plots	in	Figure	3.1[60],	 the	different
levels	in	the	domain	of	each	categorical	feature,	and	how	these	levels	are	distributed,	are
obvious.	 For	 example,	 INJURY	 TYPE	 has	 four	 levels.	 Three	 of	 these,	 broken	 limb,	 soft
tissue,	and	back,	are	quite	frequent	in	the	ABT,	while	serious	is	quite	rare.	The	distribution
of	INSURANCE	TYPE	is	a	little	strange,	as	it	displays	only	one	level.

From	the	histograms	in	Figure	3.1[60],	we	see	that	all	the	continuous	features	except	for
INCOME	and	FRAUD	FLAG	seem	to	follow	an	exponential	distribution	pretty	closely.	INCOME
is	interesting	as	it	seems	to	follow	what	looks	like	a	normal	distribution	except	that	there
is	one	large	bar	at	about	0.	The	distribution	of	the	FRAUD	FLAG	feature	that	can	be	seen	in
its	histogram	is	not	typical	of	a	continuous	feature.

By	analyzing	 the	data	quality	 report,	we	are	able	 to	understand	 the	characteristics	of
the	data	 in	 the	ABT.	We	will	 return	 to	 the	features	 that	seemed	to	have	slightly	peculiar
distributions.



3.3	Identifying	Data	Quality	Issues
After	getting	to	know	the	data,	the	second	goal	of	data	exploration	is	to	identify	any	data
quality	 issues	 in	 an	ABT.	A	data	 quality	 issue	 is	 loosely	 defined	 as	 anything	 unusual
about	 the	data	 in	 an	ABT.	The	most	 common	data	quality	 issues,	however,	 are	missing
values,	irregular	cardinality	problems,	and	outliers.	In	this	section	we	describe	each	of
these	data	quality	 issues	and	outline	how	 the	data	quality	 report	can	be	used	 to	 identify
them.

The	data	quality	issues	we	identify	from	a	data	quality	report	will	be	of	two	types:	data
quality	issues	due	to	invalid	data	and	data	quality	issues	due	to	valid	data.	Data	quality
issues	due	to	invalid	data	typically	arise	because	of	errors	in	the	process	used	to	generate
an	ABT,	usually	in	relation	to	calculating	derived	features.	When	we	identify	data	quality
issues	due	to	invalid	data,	we	should	take	immediate	action	to	correct	them,	regenerate	the
ABT,	and	recreate	the	data	quality	report.	Data	quality	issues	due	to	valid	data	can	arise
for	a	range	of	domain-specific	reasons	(we	discuss	some	of	these	later	in	this	section),	and
we	do	not	necessarily	need	to	take	any	corrective	action	to	address	these	issues.	We	do	not
correct	data	quality	issues	due	to	valid	data	unless	the	predictive	models	we	will	use	the
data	 in	 the	 ABT	 to	 train	 require	 that	 particular	 data	 quality	 issues	 be	 corrected.	 For
example,	we	cannot	train	error-based	models	with	data	that	contains	missing	values,	and
data	 that	 contains	 outliers	 significantly	 damages	 the	 performance	 of	 similarity-based
models.	At	this	stage	we	simply	record	any	data	quality	issues	due	to	valid	data	in	a	data
quality	plan	so	that	we	remain	aware	of	them	and	can	handle	them	later	if	required.	Table
3.4[67]	shows	the	structure	of	a	data	quality	plan.	For	each	of	the	data	quality	issues	found,
we	include	the	feature	it	was	found	in	and	the	details	of	the	data	quality	issue.	Later	we
add	information	on	potential	handling	strategies	for	each	data	quality	issue.

Table	3.4

The	structure	of	a	data	quality	plan.

Feature Data	Quality	Issue Potential	Handling	Strategies
—— ———————— ————————————————
—— ———————— ————————————————
—— ———————— ————————————————
—— ———————— ————————————————



3.3.1	Missing	Values

Often	when	an	ABT	is	generated,	some	instances	will	be	missing	values	for	one	or	more
features.	 The	%	Miss.	 columns	 in	 the	 data	 quality	 report	 highlight	 the	 percentage	 of
missing	values	for	each	feature	(both	continuous	and	categorical)	in	an	ABT,	and	so	it	is
very	easy	to	identify	which	features	suffer	from	this	issue.	If	features	have	missing	values,
we	 must	 first	 determine	 why	 the	 values	 are	 missing.	 Often	 missing	 values	 arise	 from
errors	in	data	integration	or	in	the	process	of	generating	values	for	derived	fields.	If	this	is
the	case,	these	missing	values	are	due	to	invalid	data,	so	the	data	integration	errors	can	be
corrected,	and	the	ABT	can	be	regenerated	to	populate	the	missing	values.	Missing	values
can	 also	 arise	 for	 legitimate	 reasons,	 however.	 Sometimes	 in	 an	 organization,	 certain
values	will	only	have	been	collected	after	a	certain	date,	and	the	data	used	to	generate	an
ABT	might	cover	time	both	before	and	after	 this	date.	In	other	cases,	particularly	where
data	arises	from	manual	entry,	certain	personally	sensitive	values	(for	example,	salary,	age,
or	weight)	may	be	entered	only	for	a	small	number	of	instances.	These	missing	values	are
due	to	valid	data,	so	they	do	not	need	to	be	handled	but	should	instead	be	recorded	in	the
data	quality	plan.

There	is	one	case	in	which	we	might	deal	directly	with	missing	values	that	arise	from
valid	data	during	data	exploration.	If	the	proportion	of	missing	values	for	a	feature	is	very
high,	a	good	rule	of	thumb	is	anything	in	excess	of	60%,	then	the	amount	of	information
stored	in	the	feature	is	so	low	that	it	is	probably	a	good	idea	to	simply	remove	that	feature
from	the	ABT.



3.3.2	Irregular	Cardinality

The	Card.	column	in	the	data	quality	report	shows	the	number	of	distinct	values	present
for	a	feature	within	an	ABT.	A	data	quality	issue	arises	when	the	cardinality	for	a	feature
does	 not	match	what	we	 expect,	 a	mismatch	 called	 an	 irregular	 cardinality.	 The	 first
things	 to	 check	 the	 cardinality	 column	 for	 are	 features	 with	 a	 cardinality	 of	 1.	 This
indicates	a	feature	that	has	the	same	value	for	every	instance	and	contains	no	information
useful	 for	 building	 predictive	 models.	 Features	 with	 a	 cardinality	 of	 1	 should	 first	 be
investigated	 to	ensure	 that	 the	 issue	 is	not	due	 to	an	ABT	generation	error.	 If	 this	 is	 the
case,	 then	 the	 error	 should	 be	 corrected,	 and	 the	 ABT	 should	 be	 regenerated.	 If	 the
generation	process	proves	to	be	error-free,	then	features	with	a	cardinality	of	1,	although
valid,	should	be	removed	from	an	ABT	because	they	will	not	be	of	any	value	in	building
predictive	models.

The	 second	 things	 to	 check	 for	 in	 the	 cardinality	 column	 are	 categorical	 features
incorrectly	 labeled	 as	 continuous.	 Continuous	 features	 will	 usually	 have	 a	 cardinality
value	 close	 to	 the	 number	 of	 instances	 in	 the	 dataset.	 If	 the	 cardinality	 of	 a	 continuous
feature	is	significantly	less	than	the	number	of	instances	in	the	dataset,	 then	it	should	be
investigated.	Sometimes	a	feature	is	actually	continuous	but	in	practice	can	assume	only	a
small	 range	 of	 values—for	 example,	 the	 number	 of	 children	 a	 person	 has.	 In	 this	 case
there	 is	 nothing	wrong,	 and	 the	 feature	 should	 be	 left	 alone.	 In	 other	 cases,	 however,	 a
categorical	 feature	will	 have	 been	 developed	 to	 use	 numbers	 to	 indicate	 categories	 and
might	be	mistakenly	identified	as	a	continuous	feature	in	a	data	quality	report.	Checking
for	 features	with	 a	 low	 cardinality	will	 highlight	 these	 features.	 For	 example,	 a	 feature
might	record	gender	using	1	for	female	and	0	for	male.	If	treated	as	a	continuous	feature	in
a	data	 quality	 report,	 this	would	have	 a	 cardinality	 of	 2.	Once	 identified,	 these	 features
should	be	recoded	as	categorical	features.

The	third	way	in	which	a	data	quality	issue	can	arise	due	to	an	irregular	cardinality	is	if
a	 categorical	 feature	 has	 a	 much	 higher	 cardinality	 than	 we	 would	 expect	 given	 the
definition	 of	 the	 feature.	 For	 example,	 a	 categorical	 feature	 storing	 gender	 with	 a
cardinality	of	6	is	worthy	of	further	investigation.	This	issue	often	arises	because	multiple
levels	are	used	to	represent	the	same	thing—for	example,	in	a	feature	storing	gender,	we
might	find	levels	of	male,	female,	m,	f,	M,	and	F,	which	all	represent	male	and	female	in
slightly	different	ways.	This	is	another	example	of	a	data	quality	issue	due	to	invalid	data.
It	should	be	corrected	through	a	mapping	to	a	standard	set	of	levels,	and	the	ABT	should
be	regenerated.

The	 final	 example	 of	 a	 data	 quality	 issue	 due	 to	 an	 irregular	 cardinality	 is	 when	 a
categorical	 feature	simply	has	a	very	high	number	of	 levels—anything	over	50	 is	worth
investigation.	 There	 are	 many	 genuine	 examples	 of	 features	 that	 will	 have	 such	 high
cardinality,	but	some	of	the	machine	learning	algorithms	that	we	will	look	at	will	struggle
to	effectively	use	features	with	such	high	cardinality.	This	 is	an	example	of	a	data	 issue
due	to	valid	data,	so	if	this	occurs	for	features	in	an	ABT,	it	should	be	noted	in	the	data
quality	plan.



3.3.3	Outliers

Outliers	are	values	that	lie	far	away	from	the	central	tendency	of	a	feature.	There	are	two
kinds	of	outliers	that	might	occur	in	an	ABT:	invalid	outliers	and	valid	outliers.	 Invalid
outliers	are	values	that	have	been	included	in	a	sample	through	error	and	are	often	referred
to	 as	 noise	 in	 the	 data.	 Invalid	 outliers	 can	 arise	 for	 all	 sorts	 of	 different	 reasons.	 For
example,	 during	 a	manual	 data	 entry	 process,	 a	 fat	 fingered5	 analyst	may	 have	 entered
100,000	 instead	of	1,000.	Valid	outliers	are	correct	values	 that	are	simply	very	different
from	 the	 rest	 of	 the	 values	 for	 a	 feature,	 for	 example,	 a	 billionaire	who	 has	 a	massive
salary	compared	to	everyone	else	in	a	sample.

There	are	 two	main	ways	 that	 the	data	quality	 report	can	be	used	 to	 identify	outliers
within	 a	 dataset.	 The	 first	 is	 to	 examine	 the	 minimum	 and	 maximum	 values	 for	 each
feature	and	use	domain	knowledge	 to	determine	whether	 these	are	plausible	values.	For
example,	a	minimum	age	value	of	−12	would	jump	out	as	an	error.	Outliers	identified	in
this	way	 are	 likely	 to	 be	 invalid	 outliers	 and	 should	 immediately	 be	 either	 corrected,	 if
data	 sources	 allow	 this,	 or	 removed	 and	marked	 as	 missing	 values	 if	 correction	 is	 not
possible.	In	some	cases	we	might	even	remove	a	complete	instance	from	a	dataset	based
on	the	presence	of	an	outlier.

The	 second	 approach	 to	 identifying	 outliers	 is	 to	 compare	 the	 gaps	 between	 the
median,	minimum,	maximum,	1st	quartile,	and	3rd	quartile	values.	If	the	gap	between	the
3rd	quartile	and	the	maximum	value	is	noticeably	larger	than	the	gap	between	the	median
and	the	3rd	quartile,	this	suggests	that	the	maximum	value	is	unusual	and	is	likely	to	be	an
outlier.	Similarly,	if	the	gap	between	the	1st	quartile	and	the	minimum	value	is	noticeably
larger	than	the	gap	between	the	median	and	the	1st	quartile,	this	suggests	that	the	minimum
value	is	unusual	and	is	likely	to	be	an	outlier.	The	outliers	shown	in	box	plots	also	help	to
make	 this	 comparison.	Exponential	 or	 skewed	distributions	 in	 histograms	 are	 also	 good
indicators	of	the	presence	of	outliers.

It	is	likely	that	outliers	found	using	the	second	approach	are	valid	outliers,	so	they	are	a
data	 quality	 issue	 due	 to	 valid	 data.	 Some	machine	 learning	 techniques	 do	 not	 perform
well	 in	 the	 presence	 of	 outliers,	 so	 we	 should	 note	 these	 in	 the	 data	 quality	 plan	 for
possible	handling	later	in	the	project.



3.3.4	Case	Study:	Motor	Insurance	Fraud

Using	 the	 data	 quality	 report	 in	 Table	 3.3[59]	 and	 Figure	 3.1[60]	 together	with	 the	ABT
extract	in	Table	3.2[58],	we	can	perform	an	analysis	of	this	ABT	for	data	quality	issues.	We
do	this	by	describing	separately	missing	values,	irregular	cardinality,	and	outliers.

3.3.4.1	Missing	Values

The	%	Miss.	column	of	the	data	quality	report	in	Table	3.3[59]	shows	that	MARITAL	STATUS
and	NUM.	SOFT	TISSUE	are	the	only	features	with	an	obvious	problem	with	missing	values.
Indeed,	 over	60%	of	 the	values	 for	MARITAL	STATUS	 are	missing,	 so	 this	 feature	 should
almost	certainly	be	removed	from	the	ABT	(we	return	to	this	feature	shortly).	Only	2%	of
the	values	for	the	NUM.	SOFT	TISSUE	feature	are	missing,	so	removal	would	be	extreme	in
this	case.	This	issue	should	be	noted	in	the	data	quality	plan.

An	examination	of	 the	histogram	for	 the	 INCOME	 feature	 (shown	 in	Figure	3.1(a)[60])
and	 the	 actual	 data	 for	 this	 feature	 in	Table	3.2[58]	 reveals	 an	 interesting	 pattern.	 In	 the
histogram	we	can	see	an	unusual	number	of	zero	values	for	INCOME	 that	seems	set	apart
from	the	central	tendency	of	the	data,	which	appears	to	be	at	about	40,000.	Examining	the
INCOME	row	in	the	data	quality	report	also	shows	a	large	difference	between	the	mean	and
median	 values,	which	 is	 unusual.	Examining	 the	 actual	 raw	data	 in	Table	3.2[58]	 shows
that	these	zeros	always	co-occur	with	missing	values	in	the	MARITAL	STATUS	feature.	This
pattern	was	investigated	with	the	business	to	understand	whether	this	was	an	issue	due	to
valid	or	invalid	data.	It	was	confirmed	by	the	business	that	the	zeros	in	the	INCOME	feature
actually	 represent	missing	 values	 and	 that	MARITAL	 STATUS	 and	 INCOME	 were	 collected
together,	leading	to	their	both	being	missing	for	the	same	instances	in	the	ABT.	No	other
data	 source	 existed	 from	which	 these	 features	 could	 be	 populated,	 so	 it	was	 decided	 to
remove	both	of	them	from	the	ABT.

3.3.4.2	Irregular	Cardinality

Reading	down	the	Card.	column	of	the	data	quality	report,	we	can	see	that	the	cardinality
of	the	INSURANCE	TYPE	feature	is	1,	aa	obvious	data	problem	that	needs	investigation.	The
cardinality	 value	 indicates	 that	 every	 instance	 has	 the	 same	 value	 for	 this	 feature,	 ci.
Investigation	of	this	issue	with	the	business	revealed	that	nothing	had	gone	wrong	during
the	ABT	 generation	 process,	 and	 that	 ci	 refers	 to	 car	 insurance.	 Every	 instance	 in	 this
ABT	should	have	that	value,	and	this	feature	was	removed	from	the	ABT.

Many	of	the	continuous	features	in	the	dataset	also	have	very	low	cardinality	values.
NUM.	CLAIMANTS,	NUM.	CLAIMS,	NUM.	SOFT	TISSUE,	%	SOFT	TISSUE,	and	FRAUD	FLAG	all
have	cardinality	 less	 than	10,	which	 is	unusual	 in	a	dataset	of	500	 instances.	These	 low
cardinalities	 were	 investigated	 with	 the	 business.	 The	 low	 cardinality	 for	 the	 NUM.
CLAIMANTS,	NUM.	CLAIMS,	and	NUM.	SOFT	TISSUE	features	was	found	to	be	valid,	because
these	are	categorical	features	and	can	only	take	values	in	a	small	range	as	people	tend	not
to	make	very	many	claims.	The	%	SOFT	TISSUE	feature	is	a	ratio	of	the	NUM.	CLAIMS	and
NUM.	SOFT	TISSUE	features,	and	its	low	cardinality	arises	from	their	low	cardinality.



The	cardinality	of	2	for	the	FRAUD	FLAG	feature	highlights	the	fact	that	this	is	not	really
a	continuous	feature.	Rather,	FRAUD	FLAG	is	a	categorical	feature	that	just	happens	to	use
0	and	1	as	its	category	labels	which	has	led	to	its	being	treated	as	continuous	in	the	ABT.
FRAUD	FLAG	was	changed	to	be	a	categorical	feature.	This	is	particularly	important	in	this
case	because	FRAUD	FLAG	is	the	target	feature,	and	as	we	will	see	in	upcoming	chapters,
the	 type	 of	 the	 target	 feature	 has	 a	 big	 impact	 on	 how	 we	 apply	 machine	 learning
techniques.

3.3.4.3	Outliers

From	an	examination	of	the	minimum	and	maximum	values	for	each	continuous	feature	in
Table	 3.3(a)[59],	 CLAIM	 AMOUNT	 jumps	 out	 as	 having	 an	 unusual	 minimum	 value	 of
−99,999.	A	 little	 investigation	 revealed	 that	 this	minimum	value	arises	 from	d3	 in	Table
3.2[58].	The	absence	of	a	large	bar	at	−99,999	in	Figure	3.1(c)[60]	confirms	 that	 there	are
not	multiple	occurrences	of	this	value.	The	pattern	99,999	also	suggests	that	this	is	most
likely	a	data	entry	error	or	 a	 system	default	 remaining	 in	 the	ABT.	This	was	confirmed
with	the	business	in	this	case,	and	this	value	was	treated	as	a	invalid	outlier	and	replaced
with	a	missing	value.

Table	3.5

The	data	quality	plan	for	the	motor	insurance	fraud	prediction	ABT.

Feature Data	Quality	Issue Potential	Handling	Strategies
NUM.	SOFT	TISSUE Missing	values	(2%)
CLAIM	AMOUNT Outliers	(high)
AMOUNT	RECEIVED Outliers	(high)

CLAIM	 AMOUNT,	 TOTAL	 CLAIMED,	 NUM.	 CLAIMS	 and	AMOUNT	 RECEIVED	 all	 seem	 to
have	unusually	high	maximum	values,	especially	when	compared	to	their	median	and	3rd
quartile	values.	To	investigate	outliers,	we	should	always	start	by	locating	the	instance	in
the	 dataset	 that	 contains	 the	 strange	 maximum	 or	 minimum	 values.	 In	 this	 case	 the
maximum	 values	 for	 TOTAL	 CLAIMED	 and	NUM.	 CLAIMS	 both	 come	 from	d460	 in	 Table
3.2[58].	This	policy	holder	seems	to	have	made	many	more	claims	than	anyone	else,	and
the	total	amount	claimed	reflects	this.	This	deviation	from	the	norm	was	investigated	with
the	 business,	 and	 it	 turned	 out	 that	 although	 these	 figures	were	 correct,	 this	 policy	was
actually	 a	 company	 policy	 rather	 than	 an	 individual	 policy,	 which	 was	 included	 in	 the
ABT	by	mistake.	For	this	reason,	instance	d460	was	removed	from	the	ABT.

The	offending	large	maximums	for	CLAIM	AMOUNT	and	AMOUNT	RECEIVED	both	come
from	d302	in	Table	3.2[58].	Investigation	of	this	claim	with	the	business	revealed	that	this	is
in	 fact	 a	 valid	 outlier	 and	 represents	 an	 unusually	 large	 claim	 for	 a	 very	 serious	 injury.
Examination	 of	 the	 histograms	 in	 Figures	 3.1(c)[60]	 and	 3.1(h)[60]	 show	 that	 the	 CLAIM
AMOUNT	and	AMOUNT	RECEIVED	features	have	a	number	of	large	values	(evidenced	by	the
small	bars	 to	 the	right	hand	side	of	 these	histograms)	and	 that	d302	 is	not	unique.	These



outliers	should	be	noted	in	the	data	quality	plan	for	possible	handling	later	in	the	project.

3.3.4.4	The	Data	Quality	Plan

Based	on	the	analysis	described	in	the	preceding	sections,	the	data	quality	plan	shown	in
Table	3.5[72]	was	created.	This	records	each	of	the	data	quality	issues	due	to	valid	data	that
have	been	identified	in	the	motor	insurance	fraud	ABT.	During	the	Modeling	phase	of	the
project,	we	will	use	this	table	as	a	reminder	of	data	quality	issues	that	could	affect	model
training.	At	the	end	of	the	next	section	we	complete	this	table	by	adding	potential	handling
strategies.



3.4	Handling	Data	Quality	Issues
When	we	find	data	quality	issues	due	to	valid	data	during	data	exploration,	we	should	note
these	 issues	 in	 a	 data	 quality	 plan	 for	 potential	 handling	 later	 in	 the	 project.	 The	most
common	issues	in	this	regard	are	missing	values	and	outliers,	which	are	both	examples	of
noise	 in	 the	 data.	 Although	 we	 usually	 delay	 handling	 noise	 issues	 until	 the	 modeling
phase	 of	 a	 project	 (different	 predictive	 model	 types	 require	 different	 levels	 of	 noise
handling,	and	we	should	in	general	do	as	little	noise	handling	as	we	can),	in	this	section
we	describe	the	most	common	techniques	used	to	handle	missing	values	and	outliers.	It	is
a	good	idea	to	add	suggestions	for	the	best	technique	to	handle	each	data	quality	issue	in
the	data	quality	plan	during	data	exploration	as	it	will	save	time	during	modeling.



3.4.1	Handling	Missing	Values

The	 simplest	 approach	 to	 handling	missing	 values	 is	 to	 simply	 drop	 from	 an	ABT	 any
features	that	have	them.	This,	however,	can	result	in	massive,	and	frequently	needless,	loss
of	data.	For	example,	if	in	an	ABT	containing	1,000	instances,	one	value	is	missing	for	a
particular	feature,	 it	would	be	pretty	extreme	to	remove	that	whole	feature.	As	a	general
rule	of	 thumb,	only	features	 that	are	missing	in	excess	of	60%	of	 their	values	should	be
considered	for	complete	removal,	and	more	subtle	handling	techniques	should	be	used	for
features	missing	less	data.

An	alternative	 to	entirely	deleting	features	 that	suffer	 from	large	numbers	of	missing
values	 is	 to	a	derive	a	missing	 indicator	 feature	 from	them.	This	 is	a	binary	feature	 that
flags	whether	the	value	was	present	or	missing	in	the	original	feature.	This	can	be	useful	if
the	reason	that	specific	values	for	a	feature	are	missing	might	have	some	relationship	to
the	target	feature—for	example,	if	a	feature	that	has	missing	values	represented	sensitive
personal	 data,	 people’s	 readiness	 to	 provide	 this	 data	 (or	 not)	 might	 tell	 us	 something
about	 them.	 When	 missing	 indicator	 features	 are	 used,	 the	 original	 feature	 is	 usually
discarded.

Another	simple	approach	to	handling	missing	values	is	complete	case	analysis,	which
deletes	 from	 an	 ABT	 any	 instances	 that	 are	 missing	 one	 or	 more	 feature	 values.	 This
approach,	however,	can	result	in	significant	amounts	of	data	loss	and	can	introduce	a	bias
into	 the	 dataset	 if	 the	 distribution	 of	 missing	 values	 in	 the	 dataset	 is	 not	 completely
random.	 In	 general,	 we	 recommend	 the	 use	 of	 complete	 case	 analysis	 only	 to	 remove
instances	 that	 are	missing	 the	 value	 of	 the	 target	 feature.	 Indeed,	 any	 instances	 with	 a
missing	value	for	the	target	feature	should	always	be	removed	from	an	ABT.

Imputation	replaces	missing	feature	values	with	a	plausible	estimated	value	based	on
the	feature	values	that	are	present.	The	most	common	approach	to	imputation	is	to	replace
missing	values	 for	 a	 feature	with	 a	measure	of	 the	 central	 tendency	of	 that	 feature.	For
continuous	 features,	 the	mean	 or	median	 are	most	 commonly	 used,	 and	 for	 categorical
features,	the	mode	is	most	commonly	used.

Imputation,	however,	should	not	be	used	for	features	that	have	very	large	numbers	of
missing	values	because	 imputing	a	very	 large	number	of	missing	values	will	change	 the
central	 tendency	 of	 a	 feature	 too	 much.	 We	 would	 be	 reluctant	 to	 use	 imputation	 on
features	missing	in	excess	of	30%	of	their	values	and	would	strongly	recommend	against
the	use	of	imputation	on	features	missing	in	excess	of	50%	of	their	values.

There	are	other,	more	complex	approaches	to	imputation.	For	example,	we	can	actually
build	 a	 predictive	model	 that	 estimates	 a	 replacement	 for	 a	missing	 value	 based	 on	 the
feature	values	that	are	present	in	a	dataset	for	a	given	instance.	We	recommend,	however,
using	simple	approaches	first	and	turning	to	more	complex	ones	only	if	required.

Imputation	techniques	tend	to	give	good	results	and	avoid	the	data	loss	associated	with
deleting	 features	 or	 complete	 case	 analysis.	 It	 is	 important	 to	 note,	 however,	 that	 all
imputation	techniques	suffer	from	the	fact	that	they	change	the	underlying	data	in	an	ABT
and	can	cause	 the	variation	within	a	 feature	 to	be	underestimated,	which	can	negatively



bias	the	relationships	between	a	descriptive	feature	and	a	target	feature.



3.4.2	Handling	Outliers

The	 easiest	 way	 to	 handle	 outliers	 is	 to	 use	 a	 clamp	 transformation.	 This	 clamps	 all
values	above	an	upper	 threshold	and	below	a	 lower	 threshold	 to	 these	 threshold	values,
thus	removing	the	offending	outliers:

where	ai	 is	 a	 specific	 value	 of	 feature	a,	 and	 lower	 and	upper	 are	 the	 lower	 and	 upper
thresholds.

The	upper	and	 lower	 thresholds	can	be	set	manually	based	on	domain	knowledge	or
can	be	calculated	from	data.	One	common	way	to	calculate	clamp	thresholds	is	to	set	the
lower	threshold	to	the	1st	quartile	value	minus	1.5	times	the	inter-quartile	range	and	the
upper	 threshold	 to	 the	 3rd	 quartile	 plus	 1.5	 times	 the	 inter-quartile	 range.	 This	 works
effectively	and	takes	into	account	the	fact	that	the	variation	in	a	dataset	can	be	different	to
either	side	of	a	central	tendency.

If	this	approach	were	to	be	used	for	the	CLAIM	AMOUNT	feature	from	the	motor	claims
insurance	fraud	detection	scenario,	then	the	upper	and	lower	thresholds	would	be	defined
as	follows:

lower	=	3,322.3	−	1.5	×	8,923.2	=	−10,062.5

upper	=	12,245.5	+	1.5	×	8,923.2	=	25,630.3

where	 the	 values	 used	 are	 extracted	 from	 Table	 3.3[59].	 Any	 values	 outside	 these
thresholds	would	be	converted	to	the	threshold	values.	Examining	the	histogram	in	Figure
3.1(c)[60]	 is	useful	 in	considering	 the	 impact	of	applying	 the	clamp	transformation	using
these	thresholds.	Locating	25,630.3	on	the	horizontal	axis	shows	that	this	upper	threshold
would	cause	a	relatively	large	number	of	values	to	be	changed.	The	impact	of	the	clamp
transformation	can	be	reduced	by	changing	the	multiplier	used	to	calculate	the	thresholds
from	1.5	to	a	larger	value.

Another	commonly	used	approach	to	setting	the	upper	and	lower	thresholds	is	 to	use
the	 mean	 value	 of	 a	 feature	 plus	 or	 minus	 2	 times	 the	 standard	 deviation.6	 Again	 this
works	well,	but	it	does	assume	that	the	underlying	data	follows	a	normal	distribution.

If	 this	 approach	were	 to	 be	 used	 for	 the	AMOUNT	 RECEIVED	 feature	 from	 the	motor
claims	insurance	fraud	detection	scenario,	 then	the	upper	and	lower	thresholds	would	be
defined	as	follows:

lower	=	13,051.9	−	2	×	30,547.2	=	−48,042.5

upper	=	13,051.9	+	2	×	30,547.2	=	74,146.3

where	the	values	used	are	again	extracted	from	Table	3.3[59].	Examining	the	histogram	in
Figure	3.1(h)[60]	is	again	a	good	indication	of	the	impact	of	using	this	transformation.	This



impact	can	be	reduced	by	changing	the	multiplier	used	to	calculate	the	thresholds	from	2
to	a	larger	value.

Opinions	vary	widely	on	when	transformations	like	the	clamp	transformation	should	be
used	 to	 handle	 outliers	 in	 data.	Many	 argue	 that	 performing	 this	 type	 of	 transformation
may	 remove	 the	 most	 interesting	 and,	 from	 a	 predictive	 modeling	 point	 of	 view,
informative	 instances	 from	 a	 dataset.	On	 the	 other	 hand,	 some	 of	 the	machine	 learning
techniques	 that	 we	 discuss	 in	 upcoming	 chapters	 perform	 poorly	 in	 the	 presence	 of
outliers.	 We	 recommend	 only	 applying	 the	 clamp	 transformation	 in	 cases	 where	 it	 is
suspected	that	a	model	is	performing	poorly	due	to	the	presence	of	outliers.	The	impact	of
the	 clamp	 transformation	 should	 then	 be	 evaluated	 by	 comparing	 the	 performance	 of
different	models	trained	on	datasets	where	the	transformation	has	been	applied	and	where
it	has	not.



3.4.3	Case	Study:	Motor	Insurance	Fraud

If	we	needed	 to	do	 it,	 the	most	 sensible	 approach	 to	handling	 the	missing	values	 in	 the
NUM.	SOFT	TISSUE	feature	would	be	to	use	imputation.	There	are	very	few	missing	values
for	 this	 feature	 (2%),	 so	 replacing	 them	with	 an	 imputed	 value	 should	 not	 excessively
affect	 the	 variance	 of	 the	 feature.	 In	 this	 case	 the	median	value	 of	 0.0	 (shown	 in	Table
3.3(a)[59])	is	the	most	appropriate	value	to	use	to	replace	the	missing	values;	because	this
feature	only	actually	takes	discrete	values,	the	mean	value	of	0.2	never	naturally	occurs	in
the	dataset.

The	outliers	present	 in	 the	CLAIM	AMOUNT	and	AMOUNT	RECEIVED	 features	 could	 be
easily	handled	using	a	clamp	transformation.	Both	features	follow	a	broadly	exponential
distribution,	however,	which	means	that	the	methods	described	for	setting	the	thresholds
of	 the	 clamp	 will	 not	 work	 especially	 well	 (both	 methods	 work	 best	 for	 normally
distributed	data).	Therefore,	manually	setting	upper	and	lower	thresholds	based	on	domain
knowledge	is	most	appropriate	in	this	case.	The	business	advised	that	for	both	features,	a
lower	threshold	of	0	and	an	upper	threshold	of	80,000	would	make	sense.

We	 completed	 the	 data	 quality	 plan	 by	 including	 these	 potential	 handling	 strategies.
The	final	data	quality	plan	is	shown	in	Table	3.6[77].	Together	with	the	data	quality	report,
these	are	the	outputs	of	the	data	exploration	work	for	the	motor	insurance	fraud	detection
project.

Table	3.6

The	data	quality	plan	with	potential	handling	strategies	for	the	motor	insurance	fraud
prediction	ABT.

Feature Data	Quality	Issue Potential	Handling	Strategies
NUM.	SOFT	TISSUE Missing	values	(2%) Imputation	(median:	0.0)
CLAIM	AMOUNT Outliers	(high) Clamp	transformation	(manual:	0,	80,000)
AMOUNT	RECEIVED Outliers	(high) Clamp	transformation	(manual:	0,	80,000)



3.5	Advanced	Data	Exploration
All	 the	 descriptive	 statistics	 and	 data	 visualization	 techniques	 that	we	 have	 used	 in	 the
previous	sections	of	this	chapter	have	focused	on	the	characteristics	of	individual	features.
This	 section	will	 introduce	 techniques	 that	 enable	 us	 to	 examine	 relationships	 between
pairs	of	features.



3.5.1	Visualizing	Relationships	Between	Features

In	 preparing	 to	 create	 predictive	 models,	 it	 is	 always	 a	 good	 idea	 to	 investigate	 the
relationships	between	pairs	of	features.	This	can	help	indicate	which	descriptive	features
might	be	useful	for	predicting	a	 target	feature	and	help	find	pairs	of	descriptive	features
that	are	closely	related.	Identifying	pairs	of	closely	related	descriptive	features	is	one	way
to	reduce	the	size	of	an	ABT	because	if	the	relationship	between	two	descriptive	features
is	strong	enough,	we	may	not	need	to	include	both.	In	this	section	we	describe	approaches
to	visualizing	the	relationships	between	pairs	of	continuous	features,	pairs	of	categorical
features,	and	pairs	including	one	categorical	and	one	continuous	feature.

For	 the	examples	 in	 this	section,	we	introduce	a	new	dataset.	Table	3.7[78]	 shows	 the
details	of	thirty	players	in	a	professional	basketball	team.	The	dataset	includes	the	HEIGHT,
WEIGHT,	 and	 AGE	 of	 each	 player;	 the	 POSITION	 that	 the	 player	 normally	 plays	 (guard,
center,	or	forward);	the	CAREER	STAGE	of	the	player	(rookie,	mid-career,	or	veteran);	 the
average	weekly	SPONSORSHIP	EARNINGS	of	each	player;	and	whether	the	player	has	a	SHOE
SPONSOR	(yes	or	no).

Table	3.7

The	details	of	a	professional	basketball	team.



3.5.1.1	Visualizing	Pairs	of	Continuous	Features

The	scatter	plot	 is	one	of	the	most	important	tools	in	data	visualization.	A	scatter	plot	 is
based	 on	 two	 axes:	 the	 horizontal	 axis	 represents	 one	 feature,	 and	 the	 vertical	 axis
represents	 a	 second.	 Each	 instance	 in	 a	 dataset	 is	 represented	 by	 a	 point	 on	 the	 plot
determined	by	the	values	for	that	instance	of	the	two	features	being	plotted.	Figure	3.5(a)
[79]	shows	an	example	scatter	plot	for	the	HEIGHT	and	WEIGHT	features	from	the	dataset	in
Table	 3.7[78].	 The	 points	 in	 this	 scatter	 plot	 are	 arranged	 in	 a	 broadly	 linear	 pattern
diagonally	 across	 the	 scatter	 plot.	 This	 suggests	 that	 there	 is	 a	 strong,	 positive,	 linear
relationship	 between	 the	 HEIGHT	 and	 WEIGHT	 features—as	 height	 increases,	 so	 does
weight.	We	say	that	features	with	this	kind	of	relationship	are	positively	covariant.	Figure
3.5(b)[79]	shows	a	scatter	plot	for	the	SPONSORSHIP	EARNINGS	and	AGE	features	from	Table
3.7[78].	These	features	are	strongly	negatively	covariant.	Figure	3.5(c)[79]	 shows	a	scatter
plot	 of	 the	 HEIGHT	 and	 AGE	 features.	 These	 features	 are	 not	 strongly	 covariant	 either
positively	or	negatively.

Figure	3.5

Example	scatter	plots	for	pairs	of	features	from	the	dataset	in	Table	3.7[78],	showing	(a)	the
strong	 positive	 covariance	 between	 HEIGHT	 and	 WEIGHT;	 (b)	 the	 strong	 negative
covariance	between	SPONSORSHIP	EARNINGS	and	AGE;	and	(c)	the	lack	of	strong	covariance
between	HEIGHT	and	AGE.

A	scatter	plot	matrix	(SPLOM)	shows	scatter	plots	for	a	whole	collection	of	features
arranged	 into	 a	matrix.	This	 is	 useful	 for	 exploring	 the	 relationships	between	groups	of
features—for	 example,	 all	 the	 continuous	 features	 in	 an	 ABT.	 Figure	 3.6[80]	 shows	 an
example	 scatter	 plot	matrix	 for	 the	 continuous	 features	 from	 the	 professional	 basketball
team	 dataset	 in	 Table	 3.7[78]:	 HEIGHT,	WEIGHT,	 AGE,	 and	 SPONSORSHIP	 EARNINGS.	 Each
row	 and	 column	 represent	 the	 feature	 named	 in	 the	 cells	 along	 the	 diagonal.	 The	 cells
above	and	below	the	diagonal	show	scatter	plots	of	the	features	in	the	row	and	column	that
meet	at	that	cell.

A	scatter	plot	matrix	is	a	very	quick	way	to	explore	the	relationships	within	a	whole	set
of	 continuous	 features.	 The	 effectiveness	 of	 scatter	 plot	 matrices,	 however,	 diminishes
once	 the	 number	 of	 features	 in	 the	 set	 goes	 beyond	 8	 because	 the	 graphs	 become	 too
small.	Using	interactive	tools	that	aid	data	exploration	can	help	overcome	this	limitation.



Figure	3.6

A	scatter	plot	matrix	showing	scatter	plots	of	the	continuous	features	from	the	professional
basketball	team	dataset	in	Table	3.7[78].

3.5.1.2	Visualizing	Pairs	of	Categorical	Features

The	simplest	way	to	visualize	the	relationship	between	two	categorical	features	is	to	use	a
collection	of	bar	plots.	This	is	often	referred	to	as	a	small	multiples	visualization.	First,
we	draw	a	simple	bar	plot	showing	the	densities	of	the	different	levels	of	the	first	feature.
Then,	 for	 each	 level	of	 the	 second	 feature,	we	draw	a	bar	plot	of	 the	 first	 feature	using
only	 the	 instances	 in	 the	 dataset	 for	which	 the	 second	 feature	 has	 that	 level.	 If	 the	 two
features	being	visualized	have	a	strong	relationship,	then	the	bar	plots	for	each	level	of	the
second	feature	will	look	noticeably	different	to	one	another	and	to	the	overall	bar	plot	for
the	first	feature.	If	there	is	no	relationship,	then	we	should	expect	that	the	levels	of	the	first
feature	will	be	evenly	distributed	amongst	the	instances	having	the	different	levels	of	the
second	feature,	so	all	bar	plots	will	look	much	the	same.

Figure	3.7(a)[81]	shows	an	example	for	the	CAREER	STAGE	and	SHOE	SPONSOR	 features
from	 the	 professional	 basketball	 team	 dataset	 in	 Table	 3.7[78].	 The	 bar	 plot	 on	 the	 left
shows	the	distribution	of	the	different	levels	of	the	CAREER	STAGE	feature	across	the	entire
dataset.	 The	 two	 plots	 on	 the	 right	 show	 the	 distributions	 for	 those	 players	 with	 and
without	 a	 shoe	 sponsor.	 Since	 all	 three	 plots	 show	 very	 similar	 distributions,	 we	 can
conclude	that	no	real	relationship	exists	between	these	two	features	and	that	players	of	any
career	stage	are	equally	likely	to	have	a	shoe	sponsor	or	not.



Figure	3.7

Examples	 of	 using	 small	 multiple	 bar	 plot	 visualizations	 to	 illustrate	 the	 relationship
between	two	categorical	features:	(a)	the	CAREER	STAGE	and	SHOE	SPONSOR	 features;	and
(b)	the	POSITION	and	SHOE	SPONSOR	features.	All	data	comes	from	Table	3.7[78].

Figure	3.7(b)[81]	shows	another	example,	for	the	POSITION	and	SHOE	SPONSOR	 features
from	the	same	dataset.	In	this	case,	the	three	plots	are	very	different,	so	we	can	conclude
that	there	is	a	relationship	between	these	two	features.	It	seems	that	players	who	play	in
the	guard	position	are	much	more	likely	to	have	a	shoe	sponsor	than	forwards	or	centers.

When	using	small	multiples,	it	is	important	that	all	the	small	charts	are	kept	consistent
because	this	ensures	that	only	genuine	differences	within	the	data	are	highlighted,	rather
than	 differences	 that	 arise	 from	 formatting.	 For	 example,	 the	 scales	 of	 the	 axes	 must
always	be	kept	consistent,	as	should	the	order	of	the	bars	in	the	individual	bar	plots.	It	is
also	important	that	densities	are	shown	rather	than	frequencies	as	the	overall	bar	plots	on
the	left	of	each	visualization	cover	much	more	of	the	dataset	than	the	other	two	plots,	so
frequency-based	plots	would	look	very	uneven.



Figure	3.8

Examples	of	using	stacked	bar	plot	visualizations	to	illustrate	the	relationship	between	two
categorical	features:	(a)	CAREER	STAGE	and	SHOE	SPONSOR	features;	and	(b)	POSITION	and
SHOE	SPONSOR	features,	all	from	Table	3.7[78].

If	the	number	of	levels	of	one	of	the	features	being	compared	is	small	(we	recommend
no	more	than	three),	we	can	use	stacked	bar	plots	as	an	alternative	to	the	small	multiples
bar	plots	 approach.	When	 this	 approach	 is	 used,	we	 show	a	bar	plot	 of	 the	 first	 feature
above	 a	 bar	 plot	 that	 shows	 the	 relative	 distribution	 of	 the	 levels	 of	 the	 second	 feature
within	each	level	of	the	first.	Because	relative	distributions	are	used,	the	bars	in	the	second
bar	plot	cover	 the	full	 range	of	 the	space	available—these	are	often	referred	to	as	100%
stacked	 bar	 plots.	 If	 two	 features	 are	 unrelated,	 then	we	would	 expect	 to	 see	 the	 same
proportion	of	each	level	of	the	second	feature	within	the	bars	for	each	level	of	the	first.

Figure	 3.8[82]	 shows	 two	 examples	 of	 using	 stacked	 bar	 plots.	 In	 the	 first	 example,
Figure	3.8(a)[82],	a	bar	plot	of	the	CAREER	STAGE	feature	is	shown	above	a	100%	stacked
bar	plot	showing	how	the	levels	of	the	SHOE	SPONSOR	feature	are	distributed	in	instances
having	each	level	of	CAREER	STAGE.	The	distributions	of	the	levels	of	SHOE	SPONSOR	are
almost	the	same	for	each	level	of	CAREER	STAGE,	and	therefore	we	can	conclude	that	there
is	 no	 relationship	 between	 these	 two	 features.	 The	 second	 example,	 Figure	 3.8(b)[82],
shows	the	POSITION	and	SHOE	SPONSOR	features.	In	this	case	we	can	see	that	distributions
of	the	levels	of	the	SHOE	SPONSOR	feature	are	not	the	same	for	each	position.	From	this	we
can	again	conclude	that	guards	are	more	likely	to	have	a	shoe	sponsor	than	players	in	the
other	positions.

3.5.1.3	Visualizing	a	Categorical	Feature	and	a	Continuous	Feature



The	best	way	to	visualize	the	relationship	between	a	continuous	feature	and	a	categorical
feature	is	to	use	a	small	multiples	approach,	drawing	a	density	histogram	of	the	values	of
the	continuous	feature	 for	each	 level	of	 the	categorical	 feature.	Each	histogram	includes
only	those	instances	in	the	dataset	that	have	the	associated	level	of	the	categorical	feature.
Similar	 to	using	small	multiples	for	categorical	 features,	 if	 the	features	are	unrelated	(or
independent)	then	the	histograms	for	each	level	should	be	very	similar.	If	the	features	are
related,	however,	 then	the	shapes	and/or	 the	central	 tendencies	of	 the	histograms	will	be
different.

Figure	3.9(a)[84]	shows	a	histogram	of	the	AGE	feature	from	the	dataset	in	Table	3.7[78].
We	 can	 see	 from	 this	 histogram	 that	AGE	 follows	 a	 uniform	distribution	 across	 a	 range
from	about	19	to	about	35.	Figure	3.9(c)[84]	shows	small	multiple	histograms	for	values	of
AGE	broken	down	by	the	different	levels	of	the	POSITION	feature.	These	histograms	show	a
slight	 tendency	 for	 centers	 to	 be	 a	 little	 older	 than	 guards	 and	 forwards,	 but	 the
relationship	does	not	appear	very	strong	as	each	of	 the	smaller	histograms	are	similar	 to
the	overall	uniform	distribution	of	the	AGE	feature.	Figures	3.9(b)[84]	and	3.9(d)[84]	show	a
second	example,	this	time	for	the	HEIGHT	and	POSITION	features.	From	Figure	3.9(b)[84]	we
can	 see	 that	 HEIGHT	 follows	 a	 normal	 distribution	 centered	 around	 a	 mean	 of
approximately	194.	The	three	smaller	histograms	depart	from	this	distribution	and	suggest
that	centers	tend	to	be	taller	than	forwards,	who	in	turn	tend	to	be	taller	than	guards.

An	alternative	approach	to	using	small	multiples	to	visualize	the	relationship	between	a
categorical	 feature	and	a	continuous	feature	 is	 to	use	a	collection	of	box	plots.	For	each
level	of	the	categorical	feature,	a	box	plot	of	the	corresponding	values	of	the	continuous
feature	is	drawn.	This	gives	multiple	box	plots	that	offer	an	easy	comparison	of	how	the
central	tendency	and	variation	of	the	continuous	feature	change	for	the	different	levels	of
the	categorical	feature.	When	a	relationship	exists	between	the	two	features,	the	box	plots
should	show	differing	central	tendencies	and	variations.	When	no	relationship	exists,	the
box	plots	should	all	appear	similar.



Figure	3.9

Example	 of	 using	 small	 multiple	 histograms	 to	 visualize	 the	 relationship	 between	 a
categorical	feature	and	a	continuous	feature.	All	examples	use	data	from	the	professional
basketball	team	dataset	in	Table	3.7[78]:	(a)	a	histogram	of	the	AGE	feature;	(b)	a	histogram
of	 the	HEIGHT	 feature;	 (c)	 histograms	 of	 the	 AGE	 feature	 for	 instances	 displaying	 each
level	 of	 the	 POSITION	 feature;	 and	 (d)	 histograms	 of	 the	 HEIGHT	 feature	 for	 instances
displaying	each	level	of	the	POSITION	feature.



Figure	3.10

Using	box	plots	to	visualize	the	relationships	between	categorical	and	continuous	features
from	Table	3.7[78]:	(a)	the	relationship	between	the	POSITION	feature	and	the	AGE	 feature;
and	(b)	the	relationship	between	the	POSITION	feature	and	the	HEIGHT	feature.

In	Figures	3.10(a)[85]	and	3.10(b)[85]	we	illustrate	the	multiple	box	plot	approach	using
the	AGE	and	POSITION	features	from	the	dataset	in	Table	3.7[78].	Figure	3.10(a)[85]	shows	a
box	 plot	 for	AGE	 across	 the	 full	 dataset,	 while	 Figure	 3.10(b)[85]	 shows	 individual	 box
plots	for	AGE	 for	each	 level	of	 the	POSITION	 feature.	Similar	 to	 the	histograms	 in	Figure
3.9[84],	 this	 visualization	 shows	 a	 slight	 indication	 that	 centers	 tend	 to	 be	 older	 than
forwards	 and	 guards,	 but	 the	 three	 box	 plots	 overlap	 significantly,	 suggesting	 that	 this
relationship	is	not	very	strong.

Figures	3.10(c)[85]	and	3.10(d)[85]	show	a	similar	pair	of	visualizations	for	the	HEIGHT

and	 POSITION	 features.	 Figure	 3.10(d)[85]	 is	 typical	 of	 a	 series	 of	 box	 plots	 showing	 a
strong	 relationship	 between	 a	 continuous	 and	 a	 categorical	 feature.	We	 can	 see	 that	 the
average	height	of	centers	is	above	that	of	forwards,	which	in	turn	is	above	that	of	guards.
Although	the	whiskers	show	that	there	is	some	overlap	between	the	three	groups,	they	do
appear	to	be	well	separated.

Histograms	show	more	detail	than	box	plots,	so	small	multiple	histograms	offer	a	more
detailed	view	of	the	relationship	between	two	features.	The	differences	in	central	tendency



and	variation	between	levels	can,	however,	be	easier	to	see	in	box	plots.	Box	plots	are	also
better	 suited	 when	 the	 categorical	 feature	 has	 many	 levels—beyond	 four	 levels,	 small
multiple	histograms	tend	to	be	difficult	to	interpret.	A	good	approach	is	to	use	box	plots	to
initially	 determine	 which	 pairs	 of	 features	 might	 have	 a	 strong	 relationship	 and	 then
further	investigate	these	pairs	using	small	multiple	histograms.



3.5.2	Measuring	Covariance	and	Correlation

As	 well	 as	 visually	 inspecting	 scatter	 plots,	 we	 can	 calculate	 formal	 measures	 of	 the
relationship	between	two	continuous	features	using	covariance	and	correlation.	For	two
features,	a	and	b,	in	a	dataset	of	n	instances,	the	sample	covariance	between	a	and	b	is

where	ai	and	bi	are	values	of	features	a	and	b	for	the	ith	instance	in	a	dataset,	and	a	and	b
are	the	sample	means	of	features	a	and	b.	Covariance	values	fall	 into	 the	range	[−∞,	∞]
where	negative	values	indicate	a	negative	relationship,	positive	values	indicate	a	positive
relationship,	and	values	near	zero	indicate	that	there	is	little	or	no	relationship	between	the
features.

Table	 3.8[87]	 shows	 the	 workings	 for	 the	 calculation	 of	 the	 covariance	 between	 the
HEIGHT	 feature	and	 the	WEIGHT	and	AGE	 features	 from	 the	dataset	 in	Table	3.7[78].	 The
table	shows	how	the	((ai	−	a)	×	(bi	−	b))	portion	of	Equation	(3.3)[86]	is	calculated	for	each
instance	 in	 the	 dataset	 for	 the	 two	 covariance	 calculations.	 Given	 this	 table	 we	 can
calculate	the	covariances	as	follows:

Table	3.8

Calculating	covariance.

The	table	shows	how	the	((ai	−	a)	×	(bi	−	b))	portion	of	Equation	(3.3)[86]	is	calculated	for
each	instance	in	a	dataset	to	arrive	at	the	sum	required	in	the	calculation.	The	relevant
means	and	standard	deviations	are	also	shown	(standard	deviation	is	not	required	to
calculate	covariance	but	is	included	as	it	will	be	useful	later	for	calculating	correlation).

These	figures	 indicate	 that	 there	 is	a	strong	positive	relationship	between	the	height	and



weight	of	a	player,	and	a	much	smaller	positive	relationship	between	height	and	age.	This
supports	the	relationships	suggested	by	the	scatter	plots	of	these	pairs	of	features	shown	in
Figures	3.5(a)[79]	and	3.5(c)[79].

This	example	also	illustrates	a	problem	with	using	covariance.	Covariance	is	measured
in	 the	same	units	as	 the	features	 that	 it	measures.	As	a	 result,	comparing	 the	covariance
between	 pairs	 of	 features	 only	makes	 sense	 if	 each	 pair	 of	 features	 is	 composed	 of	 the
same	 mixture	 of	 units.	 Correlation7	 is	 a	 normalized	 form	 of	 covariance	 that	 ranges
between	 −1	 and	 +1.	We	 calculate	 the	 correlation	 between	 two	 features	 by	 dividing	 the
covariance	 between	 the	 two	 features	 by	 the	 product	 of	 their	 standard	 deviations.	 The
correlation	between	two	features,	a	and	b,	can	be	calculated	as

where	cov(a,	b)	 is	 the	 covariance	between	 features	a	 and	b	 and	 sd(a)	 and	 sd(b)	 are	 the
standard	 deviations	 of	 a	 and	 b	 respectively.	 Because	 correlation	 is	 normalized,	 it	 is
dimensionless	 and,	 consequently,	 does	 not	 suffer	 from	 the	 interpretability	 difficulties
associated	with	 covariance.	Correlation	 values	 fall	 into	 the	 range	 [−1,	 1],	where	 values
close	 to	−1	 indicate	a	very	strong	negative	correlation	(or	covariance),	values	close	 to	1
indicate	 a	 very	 strong	 positive	 correlation,	 and	 values	 around	 0	 indicate	 no	 correlation.
Features	that	have	no	correlation	are	said	to	be	independent.

The	correlations	between	the	HEIGHT	and	WEIGHT	and	AGE	features	can	be	calculated,
using	the	covariances	and	standard	deviations	from	Table	3.8[87],	as	follows:

These	correlation	values	are	much	more	useful	than	the	covariances	calculated	previously
because	 they	 are	 on	 a	 normalized	 scale,	 which	 allows	 us	 compare	 the	 strength	 of	 the
relationships	 to	 each	 other.	 There	 is	 a	 strong	 positive	 correlation	 between	 HEIGHT	 and
WEIGHT	features,	but	very	little	correlation	between	HEIGHT	and	AGE.

In	 the	 majority	 of	 ABTs	 there	 are	 multiple	 continuous	 features	 between	 which	 we
would	like	to	explore	relationships.	Two	tools	that	can	be	useful	for	this	are	the	covariance
matrix	and	the	correlation	matrix.	A	covariance	matrix	contains	a	row	and	column	for	each
feature,	 and	 each	 element	 of	 the	matrix	 lists	 the	 covariance	 between	 the	 corresponding
pairs	 of	 features.	 As	 a	 result,	 the	 elements	 along	 the	main	 diagonal	 list	 the	 covariance
between	a	 feature	and	 itself,	 in	other	words,	 the	variance	of	 the	 feature.	The	covariance
matrix,	usually	denoted	as	Σ,	between	a	set	of	continuous	features,	{a,	b,	…,	z},	is	given
as



Similarly,	the	correlation	matrix	is	just	a	normalized	version	of	the	covariance	matrix
and	shows	the	correlation	between	each	pair	of	features:

The	covariance	and	correlation	matrices	for	the	HEIGHT,	WEIGHT	and	AGE	features	are

and

The	 scatter	 plot	 matrices	 (SPLOMs)	 described	 in	 Section	 3.5.1[77]	 are	 really	 a
visualization	of	 the	correlation	matrix.	This	can	be	made	more	obvious	by	 including	 the
correlation	coefficients	in	SPLOMs	in	the	cells	above	the	diagonal.	In	Figure	3.11[90]	 the
cells	 above	 the	diagonal	 show	 the	 correlation	 coefficients	 for	 each	pair	of	 features.	The
font	sizes	of	the	correlation	coefficients	are	scaled	according	to	the	absolute	value	of	the
strength	of	 the	correlation	 to	draw	attention	 to	 those	pairs	of	 features	with	 the	strongest
relationships.

Correlation	is	a	good	measure	of	the	relationship	between	two	continuous	features,	but
it	 is	not	by	any	means	perfect.	First,	 the	correlation	measure	given	 in	Equation	 (3.4)[88]
responds	only	to	linear	relationships	between	features.	In	a	linear	relationship	between	two
features,	as	one	feature	increases	or	decreases,	the	other	feature	increases	or	decreases	by
a	 corresponding	 amount.	 Frequently,	 features	 will	 have	 very	 strong	 non-linear
relationships	that	correlation	does	not	respond	to.	Also,	peculiarities	in	a	dataset	can	affect
the	 calculation	 of	 the	 correlation	 between	 two	 features.	This	 problem	 is	 illustrated	 very
clearly	in	the	famous	example	of	Anscombe’s	quartet,8	shown	in	Figure	3.12[91].	This	is	a
series	 of	 four	 pairs	 of	 features	 that	 all	 have	 the	 same	 correlation	 value	 of	 0.816,	 even
though	they	exhibit	very	different	relationships.



Figure	3.11

A	scatter	plot	matrix	showing	scatter	plots	of	the	continuous	features	from	the	professional
basketball	team	dataset	in	Table	3.7[78]	with	correlation	coefficients	included.

Perhaps	 the	 most	 important	 thing	 to	 remember	 in	 relation	 to	 correlation	 is	 that
correlation	does	not	necessarily	imply	causation.	Just	because	the	values	of	two	features
are	 correlated	 does	 not	mean	 that	 an	 actual	 causal	 relationship	 exists	 between	 the	 two.
There	are	two	main	ways	in	which	causation	can	be	mistakenly	assumed.	The	first	is	by
mistaking	 the	 order	 of	 a	 causal	 relationship.	 For	 example,	 based	 on	 correlations	 tests
alone,	we	might	conclude	that	the	presence	of	swallows	cause	hot	weather,	that	spinning
windmills	 cause	 wind,	 and	 that	 playing	 basketball	 causes	 people	 to	 be	 tall.	 In	 fact,
swallows	 migrate	 to	 warmer	 countries,	 windmills	 are	 made	 to	 spin	 by	 wind,	 and	 tall
people	often	choose	to	play	basketball	because	of	the	advantage	their	height	gives	them	in
that	game.



Figure	3.12

Anscombe’s	quartet.	For	all	four	samples,	the	correlation	measure	returns	the	same	value
(0.816)	even	though	the	relationship	between	the	features	is	very	different	in	each	case.

The	second	kind	of	mistake	that	makes	people	incorrectly	infer	causation	between	two
features	is	ignoring	a	third	important,	but	hidden,	feature.	In	a	famous	example	of	this,	an
article	 was	 published	 in	 the	 prestigious	 journal	 Nature	 outlining	 a	 causal	 relationship
between	 young	 children	 sleeping	 with	 a	 night-light	 turned	 on	 and	 these	 children
developing	short-sightedness	 in	 later	 life	 (Quinn	et	al.,	1999).	Later	studies	 (Gwiazda	et
al.,	 2000;	 Zadnik	 et	 al.,	 2000),	 however,	 could	 not	 replicate	 this	 link,	 and	 eventually	 a
more	 plausible	 explanation	 for	 the	 correlation	 between	 night-light	 use	 and	 short-
sightedness	was	uncovered.	Short-sighted	parents,	because	of	their	poor	night	vision,	tend
to	 favor	 the	 use	 of	 night-lights	 to	 help	 them	 find	 their	 way	 around	 their	 children’s
bedrooms	at	 night.	Short-sighted	parents	 are	more	 likely	 to	have	 short-sighted	 children,
and	it	is	this	that	accounts	for	the	correlation	between	night-light	use	and	short-sightedness
in	 children,	 rather	 than	 any	 causal	 link.	This	 is	 an	 example	 of	 a	 confounding	 feature,	 a
feature	that	influences	two	others	and	so	leads	to	the	appearance	of	a	causal	relationship.
Confounding	 features	 are	 a	 common	 explanation	 of	 mistaken	 conclusions	 about	 causal
relationships.	The	lesson	to	be	learned	here	is	that	before	causation	is	concluded	based	on
a	strong	correlation	between	two	features,	 in-depth	studies	 involving	domain	experts	are
required—correlation	alone	 is	 just	not	enough.	 In	spite	of	 these	difficulties,	 for	machine
learning	 purposes,	 correlation	 is	 a	 very	 good	 measure	 of	 the	 relationship	 between	 two
continuous	features.9



3.6	Data	Preparation
Instead	of	explicitly	handling	problems	 like	noise	within	 the	data	 in	an	ABT,	some	data
preparation	techniques	change	the	way	data	is	represented	just	to	make	it	more	compatible
with	certain	machine	learning	algorithms.	This	section	describes	two	of	the	most	common
such	 techniques:	 binning	 and	 normalization.	 Both	 techniques	 focus	 on	 transforming	 an
individual	 feature	 in	 some	 way.	 There	 are	 also	 situations,	 however,	 where	 we	 wish	 to
change	 the	 size	 and/or	 the	distributions	of	 target	 values	within	 the	ABT.	We	describe	 a
range	of	different	sampling	techniques	that	can	be	used	to	do	this.	As	with	the	techniques
described	in	the	previous	section,	sometimes	these	techniques	are	performed	as	part	of	the
Data	Preparation	phase	of	CRISP-DM,	but	 sometimes	 they	are	performed	as	part	of	 the
Modeling	phase.



3.6.1	Normalization

Having	continuous	features	in	an	ABT	that	cover	very	different	ranges	can	cause	difficulty
for	some	machine	learning	algorithms.	For	example,	a	feature	representing	customer	ages
might	 cover	 the	 range	 [16,	 96],	whereas	 a	 feature	 representing	 customer	 salaries	might
cover	 the	 range	 [10,000,	 100,000].	Normalization	 techniques	 can	 be	 used	 to	 change	 a
continuous	 feature	 to	 fall	 within	 a	 specified	 range	 while	 maintaining	 the	 relative
differences	between	the	values	for	the	feature.	The	simplest	approach	to	normalization	is
range	 normalization,	 which	 performs	 a	 linear	 scaling	 of	 the	 original	 values	 of	 the
continuous	 feature	 into	 a	 given	 range.	We	 use	 range	 normalization	 to	 convert	 a	 feature
value	into	the	range	[low,	high]	as	follows:

Table	3.9

A	small	sample	of	the	HEIGHT	and	SPONSORSHIP	EARNINGS	features	from	the	professional
basketball	team	dataset	in	Table	3.7[78],	showing	the	result	of	range	normalization	and
standardization.

where	 	 is	 the	normalized	feature	value,	ai	 is	 the	original	value,	min(a)	 is	 the	minimum
value	of	 feature	a,	max(a)	 is	 the	maximum	value	of	 feature	a,	and	 low	and	high	are	 the
minimum	and	maximum	values	of	the	desired	range.	Typical	ranges	used	for	normalizing
feature	 values	 are	 [0,1]	 and	 [−1,1].	 Table	 3.9[93]	 shows	 the	 effect	 of	 applying	 range
normalization	to	a	small	sample	of	the	HEIGHT	and	SPONSORSHIP	EARNINGS	 features	 from
the	dataset	in	Table	3.7[78].

Range	 normalization	 has	 the	 drawback	 that	 it	 is	 quite	 sensitive	 to	 the	 presence	 of
outliers	 in	 a	 dataset.	Another	way	 to	 normalize	 data	 is	 to	 standardize	 it	 into	 standard
scores.10	A	standard	score	measures	how	many	standard	deviations	a	feature	value	is	from
the	 mean	 for	 that	 feature.	 To	 calculate	 a	 standard	 score,	 we	 compute	 the	 mean	 and
standard	 deviation	 for	 the	 feature	 and	 normalize	 the	 feature	 values	 using	 the	 following
equation:



where	 	is	the	normalized	feature	value,	ai	is	the	original	value,	is	the	mean	for	feature	a,
and	 sd(a)	 is	 the	 standard	 deviation	 for	 a.	 Standardizing	 feature	 values	 in	 this	 ways
squashes	 the	 values	 of	 the	 feature	 so	 that	 the	 feature	 values	 have	 a	 mean	 of	 0	 and	 a
standard	deviation	of	1.	This	results	in	the	majority	of	feature	values	being	in	a	range	of
[−1,1].	We	should	take	care	when	using	standardization	as	it	assumes	that	data	is	normally
distributed.	 If	 this	 assumption	 does	 not	 hold,	 then	 standardization	may	 introduce	 some
distortions.	Table	3.9[93]	also	shows	 the	effect	of	applying	standardization	 to	 the	HEIGHT
and	SPONSORSHIP	EARNINGS	features.

In	 upcoming	 chapters	 we	 use	 normalization	 to	 prepare	 data	 for	 use	 with	 machine
learning	 algorithms	 that	 require	 descriptive	 features	 to	 be	 in	 particular	 ranges.	As	 is	 so
often	the	case	in	data	analytics,	 there	is	no	hard	and	fast	rule	that	says	which	is	the	best
normalization	technique,	and	this	decision	is	generally	made	based	on	experimentation.



3.6.2	Binning

Binning	 involves	converting	a	continuous	 feature	 into	a	categorical	 feature.	To	perform
binning,	 we	 define	 a	 series	 of	 ranges	 (called	 bins)	 for	 the	 continuous	 feature	 that
correspond	to	the	levels	of	the	new	categorical	feature	we	are	creating.	The	values	for	the
new	categorical	feature	are	then	created	by	assigning	to	instances	in	the	dataset	the	level
of	the	new	feature	that	corresponds	to	the	range	that	their	value	of	the	continuous	feature
falls	 into.	There	are	many	different	approaches	 to	binning.	We	will	 introduce	 two	of	 the
more	popular:	equal-width	binning	and	equal-frequency	binning.

Both	equal-width	and	equal-frequency	binning	require	 that	we	manually	specify	how
many	 bins	we	would	 like	 to	 use.	Deciding	 on	 the	 number	 of	 bins	 can	 be	 difficult.	 The
general	trade-off	is	this:

If	we	set	the	number	of	bins	to	a	very	low	number—for	example	2	or	3	bins—(in	other
words,	we	abstract	to	a	very	low	level	of	resolution),	we	may	lose	a	lot	of	information
with	 respect	 to	 the	distribution	of	 values	 in	 the	original	 continuous	 feature.	Using	 a
small	 number	 of	 bins,	 however,	 has	 the	 advantage	 of	 having	 a	 large	 number	 of
instances	in	each	bin.
If	we	set	 the	number	of	bins	 to	a	high	number—for	example	10	or	more—then,	 just
because	there	are	more	bin	boundaries,	it	is	more	likely	that	at	least	some	of	our	bins
will	 align	 with	 interesting	 features	 of	 the	 distribution	 of	 the	 original	 continuous
feature.	This	means	that	our	binning	categories	will	provide	a	better	representation	of
this	distribution.	However,	the	more	bins	we	have,	the	fewer	instances	we	will	have	in
each	bin.	Indeed,	as	the	number	of	bins	grows,	we	can	end	up	with	empty	bins.

Figure	 3.13[96]	 illustrates	 the	 effect	 of	 using	 different	 numbers	 of	 bins.11	 In	 this
example,	 the	 dashed	 line	 represents	 a	 multimodal	 distribution	 from	 which	 a	 set	 of
continuous	feature	values	has	been	generated.	The	histogram	represents	 the	bins.	Ideally
the	histogram	heights	should	follow	the	dashed	line.	In	Figure	3.13(a)[96]	 there	are	 three
bins	 that	 are	 each	 quite	wide,	 and	 the	 histogram	heights	 don’t	 really	 follow	 the	 dashed
line.	This	indicates	that	this	binning	does	not	accurately	represent	the	real	distribution	of
values	 in	 the	 underlying	 continuous	 feature.	 In	 Figure	 3.13(b)[96]	 there	 are	 14	 bins.	 In
general,	 the	 histogram	 heights	 follow	 the	 dashed	 line,	 so	 the	 resulting	 bins	 can	 be
considered	a	reasonable	representation	of	the	continuous	feature.	Also,	there	are	no	gaps
between	the	histogram	bars,	which	indicates	that	there	are	no	empty	bins.	Finally,	Figure
3.13(c)[96]	 illustrates	what	happens	when	we	used	60	bins.	The	histogram	heights	fit	 the
contour	line	to	an	extent,	but	 there	is	a	greater	variance	in	the	heights	across	the	bins	in
this	 image.	Some	of	 the	bins	are	very	 tall	 and	other	bins	are	empty,	as	 indicated	by	 the
gaps	between	the	bars.	When	we	compare,	the	three	images,	14	bins	seems	to	best	model
the	data.	Unfortunately,	there	is	no	guaranteed	way	of	finding	the	optimal	number	of	bins
for	 a	 set	 of	 values	 for	 a	 continuous	 feature.	Often,	 choosing	 the	 number	 of	 bins	 comes
down	to	intuition	and	a	process	of	trial	and	error	experimentation.

Once	the	number	of	bins,	b,	has	been	chosen,	the	equal-width	binning	algorithm	splits
the	range	of	the	feature	values	into	b	bins	each	of	size	 .	For	example,	if	the	values	for	a



feature	fell	between	zero	and	100	and	we	wished	to	have	10	bins,	then	bin	1	would	cover
the	 interval12	 [0,10),	 bin	 2	would	 cover	 the	 interval	 [10,	 20),	 and	 so	 on,	 up	 to	 bin	 10,
which	would	cover	the	interval	[90,	100].	Consequently,	an	instance	with	a	feature	value
of	18	would	be	placed	into	bin	2.

Figure	3.13

The	effect	of	using	different	numbers	of	bins	when	using	binning	to	convert	a	continuous
feature	into	a	categorical	feature.

Equal-width	binning	is	simple	and	intuitive,	and	can	work	well	in	practice.	However,
as	 the	 distribution	 of	 values	 in	 the	 continuous	 feature	 moves	 away	 from	 a	 uniform
distribution,	then	some	bins	will	end	up	with	very	few	instances	in	them,	and	other	bins
will	 have	 a	 lot	 of	 instances	 in	 them.	 For	 example,	 imagine	 our	 data	 followed	 a	 normal
distribution:	 then	 the	 bins	 covering	 the	 intervals	 of	 the	 feature	 range	 at	 the	 tails	 of	 the
normal	distribution	will	have	very	few	instances,	and	the	bins	covering	the	intervals	of	the
feature	range	near	the	mean	will	contain	a	lot	of	instances.	This	scenario	is	illustrated	in
Figures	3.14(a)[97]	 to	 3.14(c)[97],	 which	 shows	 a	 continuous	 feature	 following	 a	 normal
distribution	 converted	 into	 different	 numbers	 of	 bins	 using	 equal-width	 binning.	 The
problem	with	this	is	that	we	are	essentially	wasting	bins	because	some	of	the	bins	end	up
representing	a	very	small	number	of	instances	(the	height	of	the	bars	in	the	diagram	shows
the	 number	 of	 instances	 in	 each	 bin).	 If	we	were	 able	 to	merge	 the	 bins	 in	 the	 regions
where	there	are	very	few	instances,	then	the	resulting	spare	bins	could	be	used	to	represent
the	 differences	 between	 instances	 in	 the	 regions	 where	 lots	 of	 instances	 are	 clustered
together.	Equal-frequency	binning	does	this.

Equal-frequency	binning	first	sorts	the	continuous	feature	values	into	ascending	order
and	 then	 places	 an	 equal	 number	 of	 instances	 into	 each	 bin,	 starting	 with	 bin	 1.	 The
number	of	instances	placed	in	each	bin	is	simply	the	total	number	of	instances	divided	by
the	number	of	bins,	b.	For	example,	if	we	had	10,000	instances	in	our	dataset	and	we	wish
to	have	10	bins,	then	bin	1	would	contain	the	1,000	instances	with	the	lowest	values	for
the	 feature,	 and	 so	 on,	 up	 to	 bin	 10,	which	would	 contain	 the	 1,000	 instances	with	 the
highest	 feature	 values.	 Figures	 3.14(d)[97]	 to	 3.14(f)[97]	 show	 the	 same	 normally
distributed	continuous	feature	mentioned	previously	binned	into	different	numbers	of	bins
using	equal-frequency	binning.13



Figure	3.14

(a)–(c)	 Equal-frequency	 binning	 of	 normally	 distributed	 data	with	 different	 numbers	 of
bins;	 (d)–(f)	 the	 same	 data	 binned	 into	 the	 same	 number	 of	 bins	 using	 equal-width
binning.	 The	 dashed	 lines	 illustrate	 the	 distribution	 of	 the	 original	 continuous	 feature
values,	and	the	gray	boxes	represent	the	bins.

Using	Figure	3.14[97]	to	compare	these	two	approaches	to	binning,	we	can	see	that	by
varying	the	width	of	the	bins,	equal-width	binning	uses	bins	to	more	accurately	model	the
heavily	 populated	 areas	 of	 the	 range	 of	 values	 the	 continuous	 feature	 can	 take.	 The
downside	to	this	is	that	the	resulting	bins	can	appear	slightly	less	intuitive	because	they	are
of	varying	sizes.

Regardless	of	the	binning	approach	used,	once	the	values	for	a	continuous	feature	have
been	 binned,	 the	 continuous	 feature	 is	 discarded	 and	 replaced	 by	 a	 categorical	 feature,
which	has	a	level	for	each	bin—the	bin	numbers	can	be	used	or	a	more	meaningful	label
can	 be	 manually	 generated.	We	 will	 see	 in	 forthcoming	 chapters	 that	 using	 binning	 to
transform	a	continuous	feature	into	a	categorical	feature	is	often	the	easiest	way	for	some
of	the	machine	learning	approaches	to	handle	a	continuous	feature.	Another	advantage	of
binning,	 especially	 equal-frequency	 binning,	 is	 that	 it	 goes	 some	 way	 toward	 handling
outliers.	Very	large	or	very	small	values	simply	end	up	in	the	highest	or	lowest	bin.	It	is
important	to	remember	though	that	no	matter	how	well	it	is	done,	binning	always	discards
information	 from	 the	 dataset	 because	 it	 abstracts	 from	 a	 continuous	 representation	 to	 a
coarser	categorical	resolution.



3.6.3	Sampling

In	some	predictive	analytics	scenarios,	the	dataset	we	have	is	so	large	that	we	do	not	use
all	the	data	available	to	us	in	an	ABT	and	instead	sample	a	smaller	percentage	from	the
larger	dataset.	We	need	to	be	careful	when	sampling,	however,	to	ensure	that	the	resulting
datasets	 are	 still	 representative	 of	 the	 original	 data	 and	 that	 no	 unintended	 bias	 is
introduced	during	this	process.	Biases	are	introduced	when,	due	to	the	sampling	process,
the	distributions	of	features	in	the	sampled	dataset	are	very	different	to	the	distributions	of
features	 in	 the	 original	 dataset.	 The	 danger	 of	 this	 is	 that	 any	 analysis	 or	modeling	we
perform	on	this	sample	will	not	be	relevant	to	the	overall	dataset.

The	simplest	 form	of	 sampling	 is	 top	sampling,	which	 simply	 selects	 the	 top	 s%	of
instances	 from	 a	 dataset	 to	 create	 a	 sample.	 Top	 sampling	 runs	 a	 serious	 risk	 of
introducing	bias,	however,	as	the	sample	will	be	affected	by	any	ordering	of	the	original
dataset.	For	this	reason,	we	recommend	that	top	sampling	be	avoided.

A	better	choice,	and	our	recommended	default,	is	random	sampling,	which	randomly
selects	 a	 proportion	 of	 s%	of	 the	 instances	 from	 a	 large	 dataset	 to	 create	 a	 smaller	 set.
Random	sampling	is	a	good	choice	in	most	cases	as	the	random	nature	of	the	selection	of
instances	should	avoid	introducing	bias.

Sometimes	there	are	very	specific	relationships	in	a	dataset	that	we	want	to	maintain	in
a	sample.	For	example,	if	we	have	a	categorical	target	feature,	we	may	want	to	ensure	that
the	sample	has	exactly	the	same	distribution	of	the	different	levels	of	the	target	feature	as
the	original	dataset.	In	most	cases	random	sampling	will	maintain	distributions;	however,
if	there	are	one	or	more	levels	of	a	categorical	feature	that	only	a	very	small	proportion	of
instances	in	a	dataset	have,	there	is	a	chance	that	these	will	be	omitted	or	underrepresented
by	 random	 sampling.	 Stratified	 sampling	 is	 a	 sampling	 method	 that	 ensures	 that	 the
relative	frequencies	of	 the	 levels	of	a	specific	stratification	feature	are	maintained	in	 the
sampled	dataset.

To	perform	stratified	sampling,	the	instances	in	a	dataset	are	first	divided	into	groups
(or	 strata),	where	each	group	contains	only	 instances	 that	have	a	particular	 level	 for	 the
stratification	feature.	The	s%	of	the	instances	in	each	stratum	are	then	randomly	selected,
and	these	selections	are	combined	to	give	an	overall	sample	of	s%	of	the	original	dataset.
Remember	that	each	stratum	will	contain	a	different	number	of	instances,	so	by	sampling
on	a	percentage	basis	from	each	stratum,	the	number	of	instances	taken	each	from	stratum
will	be	proportional	to	the	number	of	instances	in	each	stratum.	As	a	result,	this	sampling
strategy	 is	 guaranteed	 to	maintain	 the	 relative	 frequencies	 of	 the	 different	 levels	 of	 the
stratification	feature.

In	 contrast	 to	 stratified	 sampling,	 sometimes	 we	 would	 like	 a	 sample	 to	 contain
different	relative	frequencies	of	the	levels	of	a	particular	feature	to	the	distribution	in	the
original	dataset.	For	 example,	we	may	wish	 to	 create	 a	 sample	 in	which	 the	 levels	of	 a
particular	 categorical	 feature	 are	 represented	 equally,	 rather	 than	 with	 whatever
distribution	 they	had	 in	 the	original	 dataset.	To	do	 this,	we	 can	use	under-sampling	 or
over-sampling.



Like	 stratified	 sampling,	 under-sampling	 begins	 by	 dividing	 a	 dataset	 into	 groups,
where	each	group	contains	only	instances	that	have	a	particular	level	for	the	feature	to	be
under-sampled.	The	number	of	instances	in	the	smallest	group	is	the	under-sampling	target
size.	 Each	 group	 containing	 more	 instances	 than	 the	 smallest	 one	 is	 then	 randomly
sampled	by	the	appropriate	percentage	to	create	a	subset	that	is	the	under-sampling	target
size.	These	under-sampled	groups	are	then	combined	to	create	the	overall	under-sampled
dataset.

Over-sampling	 addresses	 the	 same	 issue	 as	 under-sampling	 but	 in	 the	 opposite	 way
around.	After	dividing	the	dataset	into	groups,	the	number	of	instances	in	the	largest	group
becomes	the	over-sampling	target	size.	From	each	smaller	group,	we	then	create	a	sample
containing	that	number	of	instances.	To	create	a	sample	that	is	larger	than	the	size	of	the
group	that	we	are	sampling	from,	we	use	random	sampling	with	replacement.	This	means
that	when	an	instance	is	randomly	selected	from	the	original	dataset,	it	is	replaced	into	the
dataset	so	 that	 it	might	be	 selected	 again.	The	consequence	of	 this	 is	 that	 each	 instance
from	the	original	dataset	can	appear	more	than	once	in	the	sampled	dataset.14	After	having
created	 the	 larger	samples	from	each	group,	we	combine	 these	 to	form	the	overall	over-
sampled	dataset.

Sampling	 techniques	 can	 be	 used	 to	 reduce	 the	 size	 of	 a	 large	 ABT	 to	 make
exploratory	analysis	easier,	to	change	the	distributions	of	target	features	in	an	ABT,	and	to
generate	different	portions	of	an	ABT	to	use	for	training	and	evaluating	a	model.



3.7	Summary
For	a	data	analytics	practitioner,	the	key	outcomes	of	the	data	exploration	process	(which
straddles	the	Data	Understanding	and	Data	Preparation	phases	of	CRISP-DM)	are	that
the	practitioner	should

1.	 Have	gotten	to	know	the	features	within	the	ABT,	especially	their	central	tendencies,
variations,	and	distributions.

2.	 Have	 identified	 any	 data	 quality	 issues	 within	 the	 ABT,	 in	 particular	 missing
values,	irregular	cardinality,	and	outliers.

3.	 Have	corrected	any	data	quality	issues	due	to	invalid	data.
4.	 Have	recorded	any	data	quality	issues	due	to	valid	data	in	a	data	quality	plan	along

with	potential	handling	strategies.
5.	 Be	confident	that	enough	good	quality	data	exists	to	continue	with	a	project.

Although	 the	data	quality	 report	 is	 just	 a	 collection	 of	 simple	 descriptive	 statistics
and	visualizations	of	the	features	in	an	analytics	base	table,	it	is	a	very	powerful	tool	and
the	 key	 to	 achieving	 the	 outcomes	 listed	 above.	 By	 examining	 the	 data	 quality	 report,
analytics	practitioners	can	get	a	complete	picture	of	the	data	that	they	will	work	with	for
the	rest	of	an	analytics	project.	In	this	chapter	we	have	focused	on	using	the	data	quality
report	to	explore	the	data	in	an	ABT.	A	data	quality	report,	however,	can	also	be	used	to
explore	any	dataset	and	is	commonly	used	to	understand	the	data	in	the	raw	data	sources
that	are	used	to	populate	an	ABT.

We	also	took	our	first	steps	toward	building	predictive	models	in	this	chapter	when	we
looked	at	correlation.	A	descriptive	feature	 that	correlates	strongly	with	a	 target	 feature
would	be	a	good	place	to	start	building	a	predictive	model,	and	we	return	to	correlations	in
later	chapters.	Examining	correlation	between	features	as	part	of	data	exploration	allows
us	to	add	extra	outcomes	to	the	list	at	the	beginning	of	this	section:

1.	 Be	aware	of	the	relationships	between	features	in	an	ABT.
2.	 Have	begun	the	feature	selection	exercise	by	removing	some	features	from	the	ABT.

The	 previous	 section	 of	 the	 chapter	 (Section	 3.6[92])	 focused	 on	 data	 preparation
techniques	that	we	can	use	on	the	data	in	an	ABT.	It	is	important	to	remember	that	when
we	 perform	 data	 preparations	 (such	 as	 those	 in	 Section	 3.6[92]	 or	 those	 described	 in
Section	3.4[73]),	we	are	changing	the	data	that	we	will	use	to	subsequently	train	predictive
models.	If	we	change	the	data	too	much,	then	the	models	that	we	build	will	not	relate	well
to	the	original	data	sources	when	we	deploy	them.	There	is,	therefore,	a	delicate	balance
that	we	 need	 to	 strike	 between	 preparing	 the	 data	 so	 that	 it	 is	 appropriate	 for	 use	with
machine	 learning	 algorithms	 and	 keeping	 the	 data	 true	 to	 the	 underlying	 processes	 that
generate	it.	Well	designed	evaluation	experiments	are	the	best	way	to	find	this	balance	(we
discuss	evaluation	in	detail	in	Chapter	8[397]).

The	last	point	worth	mentioning	is	that	this	chapter	relates	to	deployment.	The	data	in
an	ABT	is	historical	data	from	the	disparate	data	sources	within	an	organization.	We	use



this	data	to	train	and	evaluate	a	machine	learning	model	that	will	then	be	deployed	for	use
on	newly	arising	data.	For	example,	in	the	motor	insurance	fraud	detection	example	that
we	used	in	 this	chapter,	 the	claims	in	 the	ABT	were	all	historical.	The	prediction	model
that	we	would	build	using	this	data	would	be	deployed	to	predict	whether	newly	arising
claims	are	 likely	 to	be	fraudulent.	 It	 is	 important	 that	 the	details	of	any	data	preparation
techniques	we	perform	on	the	data	in	the	ABT	be	saved	(usually	in	the	data	quality	plan)
so	that	we	can	also	apply	the	same	techniques	to	newly	arising	data.	This	is	an	important
detail	 of	 model	 deployment	 that	 is	 sometimes	 overlooked,	 which	 can	 lead	 to	 strange
model	performance.



3.8	Further	Reading
The	basis	of	data	exploration	is	statistics.	Montgomery	and	Runger	(2010)	is	an	excellent
applied	 introductory	 text	 in	 statistics	 and	 covers,	 in	more	 detail,	 all	 the	 basic	measures
used	in	this	chapter.	It	also	covers	advanced	topics,	such	as	the	χ2	 test	and	ANOVA	test
mentioned	 in	 the	 notes	 for	 Section	 3.5.2[86].	 Rice	 (2006)	 provides	 a	 good—if	 more
theoretical—treatment	of	statistics.

For	the	practical	details	of	building	a	data	quality	report,	Svolba	(2007,	2012)	are	very
good,	even	if	the	SAS	language	is	not	being	used.	Similarly,	Dalgaard	(2008)	is	very	good
even	if	the	R	language	is	not	being	used.	As	an	example	of	a	detailed	investigation	into	the
impact	of	applying	data	preparation	techniques,	Batista	and	Monard	(2003)	is	interesting.

Data	 visualization	 is	 a	mix	 of	 statistics,	 graphic	 design,	 art,	 and	 psychology.	 Chang
(2012)	 and	 Fry	 (2007)	 both	 provide	 great	 detail	 on	 visualization	 in	 general	 and	 the	 R
language	in	particular	(the	visualizations	in	this	book	are	almost	all	generated	in	R).	For
more	 conceptual	 discussions	 of	 data	 visualization,	 Tufte	 (2001)	 and	 Bertin	 (2010)	 are
important	works	in	the	field.





3.9	Exercises
1.	The	table	below	shows	the	age	of	each	employee	at	a	cardboard	box	factory.

Based	on	this	data	calculate	the	following	summary	statistics	for	the	AGE	feature:

a.	Minimum,	maximum	and	range

b.	Mean	and	median

c.	Variance	and	standard	deviation

d.	1st	quartile	(25th	percentile)	and	3rd	quartile	(75th	percentile)

e.	Inter-quartile	range

f.	12th	percentile

2.	The	table	below	shows	the	policy	type	held	by	customers	at	a	life	assurance
company.

ID POLICY

1 Silver

2 Platinum

3 Gold

4 Gold

5 Silver

6 Silver

7 Bronze

8 Silver

9 Platinum

10 Platinum

11 Silver



12 Gold

13 Platinum

14 Silver

15 Platinum

16 Silver

17 Platinum

18 Platinum

19 Gold

20 Silver

a.	Based	on	this	data	calculate	the	following	summary	statistics	for	the	POLICY
feature:

i.	Mode	and	2nd	mode

ii.	Mode	%	and	2nd	mode	%

b.	Draw	a	bar	plot	for	the	POLICY	feature.

3.	An	analytics	consultant	at	an	insurance	company	has	built	an	ABT	that	will	be
used	to	train	a	model	to	predict	the	best	communications	channel	to	use	to	contact	a
potential	customer	with	an	offer	of	a	new	insurance	product.15	The	following	table
contains	an	extract	from	this	ABT—the	full	ABT	contains	5,200	instances.



The	descriptive	features	in	this	dataset	are	defined	as	follows:

AGE:	The	customer’s	age
GENDER:	The	customer’s	gender	(male	or	female)
LOC:	The	customer’s	location	(rural	or	urban)
OCC:	The	customer’s	occupation
MOTORINS:	 Whether	 the	 customer	 holds	 a	 motor	 insurance	 policy	 with	 the
company	(yes	or	no)
MOTORVALUE:	The	value	of	the	car	on	the	motor	policy
HEALTHINS:	 Whether	 the	 customer	 holds	 a	 health	 insurance	 policy	 with	 the
company	(yes	or	no)
HEALTHTYPE:	The	type	of	the	health	insurance	policy	(PlanA,	PlanB,	or	PlanC)
HEALTHDEPSADULTS:	 How	 many	 dependent	 adults	 are	 included	 on	 the	 health
insurance	policy
HEALTHDEPSKIDS:	 How	 many	 dependent	 children	 are	 included	 on	 the	 health
insurance	policy
PREFCHANNEL:	The	customer’s	preferred	contact	channel	(email,	phone,	or	sms)



The	consultant	generated	the	following	data	quality	report	from	the	ABT
(visualizations	of	binary	features	have	been	omitted	for	space	saving).

Discuss	this	data	quality	report	in	terms	of	the	following:

a.	Missing	values

b.	Irregular	cardinality

c.	Outliers

d.	Feature	distributions

4.	The	following	data	visualizations	are	based	on	the	channel	prediction	dataset
given	in	Question	3.	Each	visualization	illustrates	the	relationship	between	a
descriptive	feature	and	the	target	feature,	PREFCHANNEL.	Each	visualization	is
composed	of	four	plots:	one	plot	of	the	distribution	of	the	descriptive	feature	values	in



the	entire	dataset,	and	three	plots	illustrating	the	distribution	of	the	descriptive	feature
values	for	each	level	of	the	target.	Discuss	the	strength	of	the	relationships	shown	in
each	visualizations.

a.	The	visualization	below	illustrates	the	relationship	between	the	continuous	feature
AGE	and	the	target	feature,	PREFCHANNEL.

b.	The	visualization	below	illustrates	the	relationship	between	the	categorical	feature
GENDER	and	the	target	feature	PREFCHANNEL.

c.	The	visualization	below	illustrates	the	relationship	between	the	categorical	feature
LOC	and	the	target	feature,	PREFCHANNEL.

5.	The	table	below	shows	the	scores	achieved	by	a	group	of	students	on	an	exam.



Using	this	data,	perform	the	following	tasks	on	the	SCORE	feature:

a.	A	range	normalization	that	generates	data	in	the	range	(0,	1)

b.	A	range	normalization	that	generates	data	in	the	range	(−1,	1)

c.	A	standardization	of	the	data

6.	The	following	table	shows	the	IQs	for	a	group	of	people	who	applied	to	take	part
in	a	television	general	knowledge	quiz.

Using	this	dataset,	generate	the	following	binned	versions	of	the	IQ	feature:

a.	An	equal-width	binning	using	5	bins.

b.	An	equal-frequency	binning	using	5	bins

✻	7.	Comment	on	the	distributions	of	the	features	shown	in	each	of	the	following
histograms.

a.	The	height	of	employees	in	a	truck	driving	company.

b.	The	number	of	prior	criminal	convictions	held	by	people	given	prison	sentences	in	a
city	district	over	the	course	of	a	full	year.

c.	The	LDL	cholesterol	values	for	a	large	group	of	patients,	including	smokers	and
non-smokers.



d.	The	employee	ID	numbers	of	the	academic	staff	at	a	university.

e.	The	salaries	of	motor	insurance	policy	holders.

✻	8.	The	table	below	shows	socio-economic	data	for	a	selection	of	countries	for	the
year	2009,16	using	the	following	features:

COUNTRY:	The	name	of	the	country
LIFEEXPECTANCY:	The	average	life	expectancy	(in	years)
INFANTMORTALITY:	The	infant	mortality	rate	(per	1,000	live	births)
EDUCATION:	Spending	per	primary	student	as	a	percentage	of	GDP
HEALTH:	Health	spending	as	a	percentage	of	GDP
HEALTHUSD:	Health	spending	per	person	converted	into	US	dollars

a.	Calculate	the	correlation	between	the	LIFEEXPECTANCY	and	INFANT-MORTALITY
features.

b.	The	image	below	shows	a	scatter	plot	matrix	of	the	continuous	features	from	this
dataset	(the	correlation	between	LIFEEXPECTANCY	and	INFANTMORTALITY	has	been
omitted).	Discuss	the	relationships	between	the	features	in	the	dataset	that	this
scatter	plot	highlights.



✻	9.	Tachycardia	is	a	condition	that	causes	the	heart	to	beat	faster	than	normal	at
rest.	The	occurrence	of	tachycardia	can	have	serious	implications	including	increased
risk	of	stroke	or	sudden	cardiac	arrest.	An	analytics	consultant	has	been	hired	by	a
major	hospital	to	build	a	predictive	model	that	predicts	the	likelihood	that	a	patient	at	a
heart	disease	clinic	will	suffer	from	tachycardia	in	the	month	following	a	visit	to	the
clinic.	The	hospital	will	use	this	model	to	make	predictions	for	each	patient	when	they
visit	the	clinic	and	offer	increased	monitoring	for	those	deemed	to	be	at	risk.	The
analytics	consultant	has	generated	an	ABT	to	be	used	to	train	this	model.17	The
descriptive	features	in	this	dataset	are	defined	as	follows:

AGE:	The	patient’s	age
GENDER:	The	patient’s	gender	(male	or	female)
WEIGHT:	The	patient’s	weight
HEIGHT:	The	patient’s	height

BMI:	 The	 patient’s	 body	mass	 index	 (BMI)	 which	 is	 calculated	 as	 	where
weight	is	measured	in	kilograms	and	height	in	meters.
SYS.	B.P.:	The	patient’s	systolic	blood	pressure
DIA.	B.P.:	The	patient’s	diastolic	blood	pressure
HEART	RATE:	The	patient’s	heart	rate
H.R.	DIFF.:	The	difference	between	the	patient’s	heart	rate	at	this	visit	and	at	their
last	visit	to	the	clinic
PREV.	TACHY.:	Has	the	patient	suffered	from	tachycardia	before?
TACHYCARDIA:	Is	the	patient	at	high	risk	of	suffering	from	tachycardia	in	the	next
month?

The	following	table	contains	an	extract	from	this	ABT—the	full	ABT	contains	2,440
instances.



The	consultant	generated	the	following	data	quality	report	from	the	ABT.



Discuss	this	data	quality	report	in	terms	of	the	following:

a.	Missing	values

b.	Irregular	cardinality

c.	Outliers

d.	Feature	distributions

✻	10.	The	following	data	visualizations	are	based	on	the	tachycardia	prediction
dataset	from	Question	9	(after	the	instances	with	missing	TACHYCARDIA	values	have
been	removed	and	all	outliers	have	been	handled).	Each	visualization	illustrates	the
relationship	between	a	descriptive	feature	and	the	target	feature,	TACHYCARDIA	and	is
composed	of	three	plots:	a	plot	of	the	distribution	of	the	descriptive	feature	values	in
the	full	dataset,	and	plots	showing	the	distribution	of	the	descriptive	feature	values	for
each	level	of	the	target.	Discuss	the	relationships	shown	in	each	visualizations.



a.	The	visualization	below	illustrates	the	relationship	between	the	continuous	feature
DIA.	B.P.	and	the	target	feature,	TACHYCARDIA.

b.	The	visualization	below	illustrates	the	relationship	between	the	continuous	HEIGHT
feature	and	the	target	feature	TACHYCARDIA.

c.	The	visualization	below	illustrates	the	relationship	between	the	categorical	feature
PREV.	TACHY.	and	the	target	feature,	TACHYCARDIA.



	

	

	

	

	



	

	

_______________

1	In	order	to	allow	this	dataset	fit	on	one	page,	only	a	subset	of	the	features	described	in
the	domain	concept	diagrams	in	Figures	2.9[44],	2.10[45],	and	2.11[46]	are	included.

2	Note	that	in	a	density	histogram,	the	height	of	each	bar	represents	the	likelihood	that	a
value	in	the	range	defining	that	bar	will	occur	in	a	data	sample,	see	Section	A.4.2[535].

3	We	discuss	probability	distributions	in	more	depth	in	Chapter	6[247].

4	Sometimes,	the	variance	of	a	feature,	σ2,	rather	than	its	standard	deviation,	σ,	is	listed	as
the	parameter	for	the	normal	distribution.	In	this	text	we	always	use	the	standard	deviation
σ.

5	Fat	finger	is	a	phrase	often	used	in	financial	trading	to	refer	to	mistakes	that	arise	when
a	 trader	 enters	 extra	 zeros	 by	 mistake	 and	 buys	 or	 sells	 much	 more	 of	 a	 stock	 than
intended.

6	Recall	 that	 in	Section	 3.2[61]	we	 discussed	 the	 68−	 95−	 99.7	 rule	 associated	with	 the
normal	distribution.	This	approach	to	handling	outliers	is	based	directly	on	this	rule.

7	The	correlation	coefficient	presented	here	is	more	fully	known	as	the	Pearson	product-
moment	correlation	coefficient	or	Pearson’s	r	and	is	named	after	Karl	Pearson,	one	of	the
giants	of	statistics.

8	 Francis	 Anscombe	 was	 a	 famous	 statistician	 who	 published	 his	 quartet	 in	 1973
(Anscombe,	1973).

9	 There	 are	 approaches	 to	 formally	 measuring	 the	 relationship	 between	 a	 pair	 of
categorical	features	(for	example,	the	χ2	test)	and	for	measuring	the	relationship	between	a
categorical	 feature	and	a	continuous	 feature	 (for	example,	 the	ANOVA	test).	We	do	not
cover	these	in	this	book,	however,	and	readers	are	directed	to	the	further	reading	section	at
the	end	of	this	chapter	for	information	on	these	approaches.

10	A	standard	score	is	equivalent	to	a	z-score,	and	standardizing	in	the	way	described	here
is	also	known	as	applying	a	z-transform	to	the	data.

11	 These	 images	 were	 generated	 using	 equal-width	 binning.	 However,	 the	 points
discussed	in	the	text	are	also	relevant	to	equal-frequency	binning.

12	 In	 interval	 notation,	 a	 square	 bracket,	 [	 or	 ],	 indicates	 that	 the	 boundary	 value	 is
included	in	the	interval,	and	a	curved	bracket,	(	or	),	indicates	that	it	is	excluded	from	the
interval.

13	The	bins	 created	when	 equal	 frequency	binning	 is	 used	 are	 equivalent	 to	 percentiles
(discussed	in	Section	A.1[525]).

14	Although	we	didn’t	mention	 it	explicitly	 in	other	cases	where	we	mentioned	random
sampling,	we	meant	random	sampling	without	replacement.



15	The	data	used	 in	 this	question	has	been	 artificially	generated	 for	 this	 book.	Channel
propensity	modeling	is	used	widely	in	industry;	for	example,	see	Hirschowitz	(2001).

16	The	data	listed	in	this	table	is	real	and	was	amalgamated	from	a	number	of	reports	that
were	retrieved	from	Gapminder	(www.gapminder.org).	The	EDUCATION	data	is	based
on	 a	 report	 from	 the	 World	 Bank
(data.worldbank.org/indicator/SE.XPD.PRIM.PC.ZS);	 the	 HEALTH	 and
HEALTHUSD	 data	 are	 based	 on	 reports	 from	 the	 World	 Health	 Organization
(www.who.int);	all	the	other	features	are	based	on	reports	created	by	Gapminder.

17	The	data	used	in	this	question	has	been	artificially	generated	for	this	book.	This	type	of
application	 of	 machine	 learning	 techniques,	 however,	 is	 common;	 for	 example	 see
Osowski	et	al.	(2004).

http://www.gapminder.org
http://www.who.int




4	Information-based	Learning

Information	is	the	resolution	of	uncertainty.

—Claude	Elwood	Shannon

In	 this	chapter	we	discuss	 the	ways	 in	which	concepts	 from	 information	theory	can	be
used	 to	build	prediction	models.	We	start	by	discussing	decision	trees,	 the	 fundamental
structure	used	in	information-based	machine	learning,	before	presenting	the	fundamental
measures	of	 information	content	 that	are	used:	entropy	and	 information	gain.	We	 then
present	 the	ID3	 algorithm,	 the	 standard	algorithm	used	 to	 induce	a	decision	 tree	 from	a
dataset.	The	extensions	and	variations	to	this	standard	approach	that	we	present	describe
how	different	data	 types	can	be	handled,	how	overfitting	can	be	avoided	using	decision
tree	 pruning,	 and	 how	 multiple	 prediction	 models	 can	 be	 combined	 in	 ensembles	 to
improve	prediction	accuracy.



4.1	Big	Idea
We’ll	start	off	by	playing	a	game.	Guess	Who	 is	a	two-player	game	in	which	one	player
chooses	a	card	with	a	picture	of	a	character	on	it	from	a	deck	and	the	other	player	tries	to
guess	which	character	is	on	the	card	by	asking	a	series	of	questions	to	which	the	answer
can	only	be	yes	or	no.	The	player	asking	 the	questions	wins	by	guessing	who	 is	on	 the
card	within	a	small	number	of	questions	and	loses	otherwise.	Figure	4.1[118]	shows	the	set
of	 cards	 that	we	will	 use	 for	 our	 game.	We	 can	 represent	 these	 cards	 using	 the	 dataset
given	in	Table	4.1[118].

Now,	imagine	that	we	have	picked	one	of	these	cards	and	you	have	to	guess	which	one
by	asking	questions.	Which	of	the	following	questions	would	you	ask	first?

1.	 Is	it	a	man?
2.	 Does	the	person	wear	glasses?

Most	people	would	ask	Question	1	first.	Why	is	this?	At	first,	this	choice	of	question
might	seem	ineffective.	For	example,	if	you	ask	Question	2,	and	we	answer	yes,	you	can
be	sure	that	we	have	picked	Brian	without	asking	any	more	questions.	The	problem	with
this	reasoning,	however,	is	that,	on	average,	the	answer	to	Question	2	will	be	yes	only	one
out	of	every	four	 times	you	play.	That	means	 that	 three	out	of	every	four	 times	you	ask
Question	2,	the	answer	will	be	no,	and	you	will	still	have	to	distinguish	between	the	three
remaining	characters.

Figure	4.1

Cards	showing	character	faces	and	names	for	the	Guess	Who	game.

Table	4.1

A	dataset	that	represents	the	characters	in	the	Guess	Who	game.

Man Long	Hair Glasses Name

Yes No Yes Brian

Yes No No John

No Yes No Aphra



No No No Aoife

Figure	 4.2[119]	 illustrates	 the	 possible	 question	 sequences	 that	 can	 follow	 in	 a	 game
beginning	with	Question	 2.	 In	 Figure	4.2(a)[119]	 we	 next	 ask,	 Is	 it	 a	man?	 and	 then,	 if
required,	Do	they	have	 long	hair?	 In	Figure	4.2(b)[119]	we	 reverse	 this	order.	 In	both	of
these	diagrams,	one	path	to	an	answer	about	the	character	on	a	card	is	1	question	long,	one
path	 is	 2	 questions	 long,	 and	 two	 paths	 are	 3	 questions	 long.	 Consequently,	 if	 you	 ask
Question	2	first,	the	average	number	of	questions	you	have	to	ask	per	game	is

On	the	other	hand,	if	you	ask	Question	1	first,	there	is	only	one	sequence	of	questions
with	 which	 to	 follow	 it.	 This	 sequence	 is	 shown	 in	 Figure	 4.3[120].	 Irrespective	 of	 the
answers	to	the	questions,	you	always	have	to	follow	a	path	through	this	sequence	that	is	2
questions	 long	 to	 reach	an	answer	about	 the	character	on	a	card.	This	means	 that	 if	you
always	ask	Question	1	first,	the	average	number	of	questions	you	have	to	ask	per	game	is

Figure	4.2

The	different	question	sequences	that	can	follow	in	a	game	of	Guess	Who	beginning	with
the	question	Does	the	person	wear	glasses?

What	is	interesting	here	is	that	no	matter	what	question	you	ask,	the	answer	is	always
either	yes	or	no,	but,	on	average,	an	answer	to	Question	1	seems	to	carry	more	information
than	 an	 answer	 to	Question	 2.	 This	 is	 not	 because	 of	 the	 literal	message	 in	 the	 answer
(either	yes	or	no).	Rather,	it	is	because	of	the	way	that	the	answer	to	each	question	splits
the	 character	 cards	 into	 different	 sets	 based	 on	 the	 value	 of	 the	 descriptive	 feature	 the
question	is	asked	about	(MAN,	LONG	HAIR	or	GLASSES)	and	the	likelihood	of	each	possible
answer	to	the	question.



An	answer	to	Question	1,	Is	it	a	man?,	splits	the	game	domain	into	two	sets	of	equal
size:	one	containing	Brian	 and	John	 and	one	 containing	Aphra	 and	Aoife.	One	of	 these
sets	contains	the	solution,	which	leaves	you	with	just	one	more	question	to	ask	to	finish
the	 game.	 By	 contrast,	 an	 answer	 to	 Question	 2	 splits	 the	 game	 domain	 into	 one	 set
containing	one	element,	Brian,	 and	 another	 set	 containing	 three	 elements:	 John,	Aphra,
and	Aoife.	This	works	out	really	well	when	the	set	containing	the	single	element	contains
the	 solution.	 In	 the	more	 likely	 case	 that	 the	 set	 containing	 three	 elements	 contains	 the
solution,	 however,	 you	 may	 have	 to	 ask	 two	 more	 questions	 to	 uniquely	 identify	 the
answer.	So,	when	you	consider	both	the	likelihood	of	an	answer	and	how	an	answer	splits
up	the	domain	of	solutions,	it	becomes	clear	that	an	answer	to	Question	2	leaves	you	with
more	work	to	do	to	solve	the	game	than	an	answer	to	Question	1.

Figure	4.3

The	different	question	sequences	that	can	follow	in	a	game	of	Guess	Who	beginning	with
the	question	Is	it	a	man?

So,	the	big	idea	here	is	 to	figure	out	which	features	are	the	most	informative	ones	to
ask	questions	about	by	considering	the	effects	of	the	different	answers	to	the	questions,	in
terms	of	how	the	domain	is	split	up	after	the	answer	is	received	and	the	likelihood	of	each
of	the	answers.	Somewhat	surprisingly,	people	seem	to	be	able	to	easily	do	this	based	on
intuition.	 Information-based	 machine	 learning	 algorithms	 use	 the	 same	 idea.	 These
algorithms	 determine	 which	 descriptive	 features	 provide	 the	 most	 information	 about	 a
target	 feature	 and	make	predictions	by	 sequentially	 testing	 the	 features	 in	order	of	 their
informativeness.



4.2	Fundamentals
In	 this	 section	 we	 introduce	 Claude	 Shannon’s	 approach	 to	measuring	 information,1	 in
particular	his	model	of	entropy	 and	how	 it	 is	used	 in	 the	 information	gain	measure	 to
capture	 the	 informativeness	 of	 a	 descriptive	 feature.	 Before	 this	 we	 introduce	decision
trees,	the	actual	prediction	models	that	we	are	trying	to	build.

Table	4.2

An	email	spam	prediction	dataset.

ID SUSPICIOUS	WORDS UNKNOWN	SENDER CONTAINS	IMAGES CLASS

376 true false true spam

489 true true false spam

541 true true false spam

693 false true true ham

782 false false false ham

976 false false false ham



4.2.1	Decision	Trees

Just	as	we	did	when	we	played	Guess	Who,	an	effective	way	to	generate	a	prediction	is	to
carry	 out	 a	 series	 of	 tests	 on	 the	 values	 of	 the	 descriptive	 features	 describing	 a	 query
instance,	 and	 use	 the	 answers	 to	 these	 tests	 to	 determine	 the	 prediction.	Decision	 trees
take	this	approach.	To	illustrate	how	a	decision	tree	works,	we	will	use	the	dataset	listed	in
Table	4.2[121].	This	dataset	contains	a	set	of	training	instances	that	can	be	used	to	build	a
model	to	predict	whether	emails	are	spam	or	ham	(genuine).	The	dataset	has	three	binary
descriptive	features:	SUSPICIOUS	WORDS	is	true	if	an	email	contains	one	or	more	words	that
are	 typically	 found	 in	 spam	 email	 (e.g.,	 casino,	 viagra,	 bank,	 or	 account);	 UNKNOWN
SENDER	is	true	if	the	email	is	from	an	address	that	is	not	listed	in	the	contacts	of	the	person
who	received	the	email;	and	CONTAINS	 IMAGES	 is	 true	 if	 the	email	contains	one	or	more
images.

Figure	 4.4[122]	 shows	 two	 decision	 trees	 that	 are	 consistent	 with	 the	 spam	 dataset.
Decision	trees	look	very	like	the	game	trees	that	we	developed	for	the	Guess	Who	game.
As	with	all	tree	representations,	a	decision	tree	consists	of	a	root	node	(or	starting	node),
interior	nodes,	 and	 leaf	nodes	 (or	 terminating	 nodes)	 that	 are	 connected	 by	branches.
Each	non-leaf	 node	 (root	 and	 interior)	 in	 the	 tree	 specifies	 a	 test	 to	 be	 carried	out	 on	 a
descriptive	 feature.	 The	 number	 of	 possible	 levels	 that	 a	 descriptive	 feature	 can	 take
determines	 the	 number	 of	 downward	 branches	 from	 a	 non-leaf	 node.	 Each	 of	 the	 leaf
nodes	specifies	a	predicted	level	of	the	target	feature.

In	 the	 diagrams	 in	 Figure	 4.4[122],	 ellipses	 represent	 root	 or	 interior	 nodes,	 and
rectangles	 represent	 leaf	 nodes.	 The	 labels	 of	 the	 ellipses	 indicate	 which	 descriptive
feature	 is	 tested	at	 that	node.	The	 labels	on	 the	each	branch	 indicate	one	of	 the	possible
feature	 levels	 that	 the	 descriptive	 feature	 at	 the	 node	 above	 can	 take.	The	 labels	 on	 the
rectangular	leaf	nodes	indicate	the	target	level	that	should	be	predicted	when	the	tests	on
the	interior	nodes	create	a	path	that	terminates	at	that	leaf	node.

Figure	4.4

Two	decision	trees	(a)	and	(b)	that	are	consistent	with	the	instances	in	the	spam	dataset;	(c)
the	path	 taken	through	the	 tree	shown	in	(a)	 to	make	a	prediction	for	 the	query	instance
SUSPICIOUS	WORDS	=	true,	UNKNOWN	SENDER	=	true,	CONTAINS	IMAGES	=	true.



The	process	of	using	a	decision	tree	to	make	a	prediction	for	a	query	instance	starts	by
testing	the	value	of	the	descriptive	feature	at	the	root	node	of	the	tree.	The	result	of	this
test	 determines	 which	 of	 the	 root	 node’s	 children	 the	 process	 should	 then	 descend	 to.
These	two	steps	of	testing	the	value	of	a	descriptive	feature	and	descending	a	level	in	the
tree	are	then	repeated	until	the	process	comes	to	a	leaf	node	at	which	a	prediction	can	be
made.

To	 demonstrate	 how	 this	 process	 works,	 imagine	 we	 were	 given	 the	 query	 email
SUSPICIOUS	WORDS	=	true,	UNKNOWN	SENDER	=	true,	CONTAINS	IMAGES	=	true,	and	asked
to	predict	whether	it	is	spam	or	ham.	Applying	the	decision	tree	from	Figure	4.4(a)[122]	to
this	query,	we	see	that	 the	root	node	of	 this	 tree	 tests	 the	CONTAINS	 IMAGES	 feature.	The
query	instance	value	for	CONTAINS	IMAGES	is	true	so	the	process	descends	the	left	branch
from	 the	 root	 node,	 labeled	 true,	 to	 an	 interior	 node	 that	 tests	 the	 SUSPICIOUS	 WORDS
feature.	The	query	instance	value	for	this	feature	is	true,	so	based	on	the	result	of	the	test
at	 this	 node,	 the	 process	 descends	 the	 left	 branch,	 labeled	 true,	 to	 a	 leaf	 node	 labeled
spam.	As	the	process	has	arrived	at	a	leaf	node,	it	terminates,	and	the	target	level	indicated
by	the	leaf	node,	spam,	is	predicted	for	the	query	instance.	The	path	through	the	decision
tree	for	this	query	instance	is	shown	in	figure	4.4(c)[122].

The	decision	tree	in	Figure	4.4(b)[122]	would	have	returned	the	same	prediction	for	the
query	instance.	Indeed,	both	of	the	decision	trees	in	Figures	4.4(a)[122]	and	4.4(b)[122]	are
consistent	 with	 the	 dataset	 in	 Table	 4.2[121]	 and	 can	 generalize	 sufficiently	 to	 make
predictions	for	query	instances	like	the	one	considered	in	our	example.	The	fact	that	there
are,	 at	 least,	 two	 decision	 trees	 that	 can	 do	 this	 raises	 the	 question:	How	do	we	 decide
which	is	the	best	decision	tree	to	use?

We	can	apply	almost	the	same	approach	that	we	used	in	the	Guess	Who	game	to	make
this	decision.	Looking	at	the	decision	trees	in	Figures	4.4(a)[122]	and	4.4(b)[122],	we	notice
that	 the	 tree	 in	 Figure	 4.4(a)[122]	 performs	 tests	 on	 two	 features	 in	 order	 to	 make	 a
prediction,	while	the	decision	tree	in	Figure	4.4(b)[122]	only	ever	needs	to	test	the	value	of
one	feature.	The	reason	for	this	is	that	SUSPICIOUS	WORDS,	the	descriptive	feature	tested	at
the	root	node	of	the	tree	in	Figure	4.4(b)[122],	perfectly	splits	the	data	into	a	pure	group	of
spam	emails	and	a	pure	group	of	ham	emails.	We	can	say	that	because	of	the	purity	of	the
splits	 that	 it	makes,	 the	SUSPICIOUS	WORDS	 feature	provides	more	 information	about	 the
value	of	the	target	feature	for	an	instance	than	the	CONTAINS	IMAGES	feature,	so	a	tree	that
tests	this	descriptive	feature	at	the	root	node	is	preferable.

This	 gives	 us	 a	way	 to	 choose	 between	 a	 set	 of	 different	 decision	 trees	 that	 are	 all
consistent	with	a	set	of	training	instances.	We	can	introduce	a	preference	for	decision	trees
that	 use	 fewer	 tests,	 in	 other	 words,	 trees	 that	 are	 on	 average	 shallower.2	 This	 is	 the
primary	 inductive	 bias	 that	 a	 machine	 learning	 algorithm	 taking	 an	 information-based
approach	encodes.	To	build	shallow	trees,	we	need	to	put	the	descriptive	features	that	best
discriminate	between	instances	that	have	different	target	feature	values	toward	the	top	of
the	 tree.	 To	 do	 this	 we	 need	 a	 formal	 measure	 of	 how	 well	 a	 descriptive	 feature
discriminates	between	the	levels	of	the	target	feature.	Similar	to	the	way	we	analyzed	the



questions	 in	 the	 Guess	 Who	 game,	 we	 will	 measure	 the	 discriminatory	 power	 of	 a
descriptive	feature	by	analyzing	 the	size	and	probability	of	each	set	of	 instances	created
when	we	test	the	value	of	the	feature	and	how	pure	each	set	of	instances	is	with	respect	to
the	target	feature	values	of	the	instances	it	contains.	The	formal	measure	we	will	use	to	do
this	is	Shannon’s	entropy	model.



4.2.2	Shannon’s	Entropy	Model

Claude	Shannon’s	entropy	model	defines	a	computational	measure	of	the	impurity	of	the
elements	in	a	set.	Before	we	examine	the	mathematical	definition	of	entropy,	we	will	first
provide	an	intuitive	explanation	of	what	it	means.	Figure	4.5[125]	illustrates	a	collection	of
sets	of	playing	cards	of	contrasting	entropy.	An	easy	way	to	understand	the	entropy	of	a
set	is	to	think	in	terms	of	the	uncertainty	associated	with	guessing	the	result	if	you	were	to
make	a	random	selection	from	the	set.	For	example,	if	you	were	to	randomly	select	a	card
from	the	set	in	Figure	4.5(a)[125],	you	would	have	zero	uncertainty,	as	you	would	know	for
sure	that	you	would	select	an	ace	of	spades.	So,	this	set	has	zero	entropy.	If,	however,	you
were	to	randomly	select	an	element	from	the	set	in	Figure	4.5(f)[125],	you	would	be	very
uncertain	 about	 any	 prediction	 as	 there	 are	 twelve	 possible	 outcomes,	 each	 of	which	 is
equally	likely.	This	is	why	this	set	has	very	high	entropy.	The	other	sets	in	Figure	4.5[125]
have	entropy	values	between	these	two	extremes.

This	gives	us	a	clue	as	to	how	we	should	define	a	computational	model	of	entropy.	We
can	 transform	 the	 probabilities3	 of	 the	 different	 possible	 outcomes	 when	 we	 randomly
select	an	element	from	a	set	to	entropy	values.	An	outcome	with	a	large	probability	should
map	to	a	 low	entropy	value,	while	an	outcome	with	a	small	probability	should	map	to	a
large	entropy	value.	The	mathematical	 logarithm,	or	 log,	 function4	 does	 almost	 exactly
the	transformation	that	we	need.

Figure	4.5

The	entropy	of	different	sets	of	playing	cards	measured	in	bits.

If	 we	 examine	 the	 graph	 of	 the	 binary	 logarithm	 (a	 logarithm	 to	 the	 base	 2)	 of
probabilities	ranging	from	0	to	1	in	Figure	4.6(a)[126],	we	see	that	the	logarithm	function
returns	large	negative	numbers	for	low	probabilities,	and	small	negative	numbers	for	high
probabilities.	 Ignoring	 the	 fact	 that	 the	 logarithm	function	 returns	negative	numbers,	 the



magnitude	of	 the	numbers	 it	 returns	 is	 ideal	as	a	measure	of	entropy:	 large	numbers	 for
low	probabilities	and	small	numbers	 (near	zero)	 for	high	probabilities.	 It	 should	also	be
noted	that	the	range	of	values	for	the	binary	logarithm	of	a	probability,	[−∞,	0],	is	much
larger	 than	 those	 taken	 by	 the	 probability	 itself	 [0,	 1].	 This	 is	 also	 an	 attractive
characteristic	of	 this	function.	It	will	be	more	convenient	for	us	 to	convert	 the	output	of
the	log	function	to	positive	numbers	by	multiplying	them	by	−1.	Figure	4.6(b)[126]	 shows
the	impact	of	this.

Figure	4.6

(a)	 A	 graph	 illustrating	 how	 the	 value	 of	 a	 binary	 log	 (the	 log	 to	 the	 base	 2)	 of	 a
probability	changes	across	 the	range	of	probability	values;	 (b)	 the	 impact	of	multiplying
these	values	by	−	1.

Shannon’s	model	of	entropy	is	a	weighted	sum	of	the	logs	of	the	probabilities	of	each
possible	outcome	when	we	make	a	random	selection	from	a	set.	The	weights	used	in	the
sum	 are	 the	 probabilities	 of	 the	 outcomes	 themselves	 so	 that	 outcomes	 with	 high
probabilities	 contribute	 more	 to	 the	 overall	 entropy	 of	 a	 set	 than	 outcomes	 with	 low
probabilities.	Shannon’s	model	of	entropy	is	defined	as

where	P(t	=	i)	is	the	probability	that	the	outcome	of	randomly	selecting	an	element	t	is	the
type	 i,	 l	 is	 the	 number	 of	 different	 types	 of	 things	 in	 the	 set,	 and	 s	 is	 an	 arbitrary
logarithmic	 base.	 The	 minus	 sign	 at	 the	 beginning	 of	 the	 equation	 is	 simply	 added	 to
convert	the	negative	numbers	returned	by	the	log	function	to	positive	ones	(as	described
above).	We	will	always	use	2	as	the	base,	s,	when	we	calculate	entropy,	which	means	that
we	measure	entropy	in	bits.5	Equation	(4.1)[126]	is	the	cornerstone	of	modern	information
theory	and	is	an	excellent	measure	of	the	impurity,	heterogeneity,	of	a	set.

To	understand	how	Shannon’s	entropy	model	works,	consider	the	example	of	a	set	of
52	different	playing	cards.	The	probability	of	randomly	selecting	any	specific	card	i	from
this	 set,	P(card	 =	 i),	 is	 quite	 low,	 just	 .	 The	 entropy	 of	 the	 set	 of	 52	 playing	 cards	 is
calculated	as



In	this	calculation,	for	each	possible	card	Shannon’s	model	multiplies	a	small	probability,
P(card)	=	i,	by	a	 large	negative	number,	 log2(P(card)	=	 i),	 resulting	 in	a	 relatively	 large
negative	number.	The	individual	relatively	large	negative	numbers	calculated	for	each	card
are	then	summed	to	return	one	large	negative	number.	The	sign	of	this	is	inverted	to	give	a
large	positive	value	for	the	entropy	of	this	very	impure	set.

By	 contrast,	 consider	 the	 example	 of	 calculating	 the	 entropy	 of	 a	 set	 of	 52	 playing
cards	if	we	only	distinguish	between	cards	based	on	their	suit	(hearts	♥,	clubs	♣,	diamonds
♦	 or,	 spades	 ♠).	 This	 time	 there	 are	 only	 4	 possible	 outcomes	 when	 a	 random	 card	 is
selected	 from	 this	 set,	 each	 with	 a	 reasonably	 large	 probability	 of	 .	 The	 entropy
associated	with	this	set	can	be	calculated	as

In	this	calculation	Shannon’s	model	multiples	the	large	probability	of	selecting	a	specific
suit,	P(suit	=	l),	by	a	small	negative	number,	log2(P(suit	=	l)),	to	return	a	relatively	small
negative	 number.	 The	 relatively	 small	 negative	 numbers	 associated	 with	 each	 suit	 are
summed	 to	 result	 in	 a	 small	negative	number	overall.	Again,	 the	 sign	of	 this	number	 is
inverted	to	result	in	a	small	positive	value	for	the	entropy	of	this	much	purer	set.

To	further	explore	the	entropy,	we	can	return	to	look	at	the	entropy	values	of	each	set
of	cards	shown	in	Figure	4.5[125].	In	the	set	in	Figure	4.5(a)[125],	all	the	cards	are	identical.
This	means	that	there	is	no	uncertainty	as	to	the	result	when	a	selection	is	made	from	this
set.	Shannon’s	model	of	 information	is	designed	to	reflect	 this	 intuition,	and	the	entropy
value	 for	 this	 set	 is	0.00	bits.	 In	 the	 sets	 in	Figures	4.5(b)[125]	and	4.5(c)[125],	 there	 is	 a
mixture	 of	 two	 different	 types	 of	 cards,	 so	 these	 have	 higher	 entropy	 values,	 in	 these
instances,	 0.81	 bits	 and	 1.00	 bit.	 The	 maximum	 entropy	 for	 a	 set	 with	 two	 types	 of
elements	is	1.00	bit,	which	occurs	when	there	are	equal	numbers	of	each	type	in	the	set.

The	 sets	 in	 Figures	 4.5(d)[125]	 and	 4.5(e)[125]	 both	 have	 three	 types	 of	 cards.	 The



maximum	entropy	 for	 sets	with	 three	 elements	 is	 1.58	 and	occurs	when	 there	 are	 equal
numbers	of	each	 type	 in	 the	set,	as	 is	 the	case	 in	Figure	4.5(e)[125].	 In	Figure	4.5(d)[125]
one	card	type	is	more	present	than	the	others,	so	the	overall	entropy	is	slightly	lower,	1.50
bits.	Finally,	the	set	in	Figure	4.5(f)[125]	has	a	large	number	of	card	types,	each	represented
only	once,	which	leads	to	the	high	entropy	value	of	3.58	bits.

This	 discussion	 highlights	 the	 fact	 that	 entropy	 is	 essentially	 a	 measure	 of	 the
heterogeneity	of	a	set.	As	the	composition	of	the	sets	changed	from	the	set	with	only	one
type	of	 element	 (Figure	4.5(a)[125])	 to	 a	 set	with	many	different	 types	 of	 elements	 each
with	 an	 equal	 likelihood	of	 being	 selected	 (Figure	4.5(f)[125]),	 the	 entropy	 score	 for	 the
sets	increased.



4.2.3	Information	Gain

What	 is	 the	 relationship	 between	 a	 measure	 of	 heterogeneity	 of	 a	 set	 and	 predictive
analytics?	If	we	can	construct	a	sequence	of	tests	that	splits	the	training	data	into	pure	sets
with	respect	to	the	target	feature	values,	then	we	can	label	queries	by	applying	the	same
sequence	of	tests	to	a	query	and	labeling	it	with	the	target	feature	value	of	instances	in	the
set	it	ends	up	in.

To	 illustrate	 this	we’ll	 return	 to	 the	 spam	dataset	 from	Table	4.2[121].	Figure	 4.7[129]
shows	how	the	instances	in	the	spam	dataset	are	split	when	we	partition	it	using	each	of
the	three	descriptive	features.	Looking	at	4.7(a)[129],	we	can	see	that	splitting	the	dataset
based	on	 the	SUSPICIOUS	WORDS	 feature	provides	 a	 lot	 of	 information	 about	whether	 an
email	is	spam	or	ham.	In	fact,	partitioning	the	data	by	this	feature	creates	two	pure	sets:
one	containing	only	instances	with	the	target	level	spam	and	the	other	set	containing	only
instances	with	the	target	level	ham.	This	indicates	that	the	SUSPICIOUS	WORDS	feature	is	a
good	 feature	 to	 test	 if	 we	 are	 trying	 to	 decide	 whether	 a	 new	 email—not	 listed	 in	 the
training	dataset—is	spam	or	not.

Figure	4.7

How	the	instances	in	the	spam	dataset	split	when	we	partition	using	each	of	the	different
descriptive	features	from	the	spam	dataset	in	Table	4.2[121].

What	 about	 the	 other	 features?	 Figure	 4.7(b)[129]	 shows	 how	 the	UNKNOWN	 SENDER
feature	partitions	the	dataset.	The	resulting	sets	both	contain	a	mixture	of	spam	and	ham
instances.	 This	 indicates	 that	 the	 UNKNOWN	 SENDER	 feature	 is	 not	 as	 good	 at
discriminating	between	spam	and	ham	emails	as	the	SUSPICIOUS	WORDS	feature.	Although
there	 is	 a	 mixture	 in	 each	 of	 these	 sets,	 however,	 it	 seems	 to	 be	 the	 case	 that	 when
UNKNOWN	SENDER	=	true,	the	majority	of	emails	are	spam,	and	when	UNKNOWN	SENDER	=
false,	 the	 majority	 of	 emails	 are	 ham.	 So	 although	 this	 feature	 doesn’t	 perfectly
discriminate	between	spam	and	ham	 it	does	give	us	some	 information	 that	we	might	be
able	to	use	in	conjunction	with	other	features	to	help	decide	whether	a	new	email	is	spam
or	 ham.	 Finally,	 if	 we	 examine	 the	 partitioning	 of	 the	 dataset	 based	 on	 the	 CONTAINS
IMAGES	feature,	Figure	4.7(c)[129],	 it	 looks	like	this	feature	is	not	very	discriminatory	for
spam	and	ham	at	all.	Both	of	 the	 resulting	sets	contain	a	balanced	mixture	of	spam	and
ham	instances.



What	we	need	to	do	now	is	to	develop	a	formal	model	that	captures	the	intuitions	about
the	 informativeness	 of	 these	 features	 described	 above.	Unsurprisingly,	we	 do	 this	 using
Shannon’s	entropy	model.	The	measure	of	 informativeness	 that	we	will	use	 is	known	as
information	 gain	 and	 is	 a	measure	 of	 the	 reduction	 in	 the	 overall	 entropy	 of	 a	 set	 of
instances	that	is	achieved	by	testing	on	a	descriptive	feature.	Computing	information	gain
is	a	three-step	process:

1.	 Compute	 the	 entropy	of	 the	original	dataset	with	 respect	 to	 the	 target	 feature.	This
gives	 us	 an	measure	of	 how	much	 information	 is	 required	 in	 order	 to	 organize	 the
dataset	into	pure	sets.

2.	 For	each	descriptive	feature,	create	the	sets	that	result	by	partitioning	the	instances	in
the	 dataset	 using	 their	 feature	 values,	 and	 then	 sum	 the	 entropy	 scores	 of	 each	 of
these	sets.	This	gives	a	measure	of	the	information	that	remains	required	to	organize
the	instances	into	pure	sets	after	we	have	split	them	using	the	descriptive	feature.

3.	 Subtract	the	remaining	entropy	value	(computed	in	step	2)	from	the	original	entropy
value	(computed	in	step	1)	to	give	the	information	gain.

We	need	to	define	three	equations	to	formally	specify	information	gain	(one	for	each	step).
The	first	equation	calculates	the	entropy	for	a	dataset	with	respect	to	a	target	feature6

where	levels(t)	is	the	set	of	levels	in	the	domain	of	the	target	feature	t,	and	P(t	=	l)	is	the
probability	of	a	randomly	selected	instance	having	the	target	feature	level	l.

The	second	equation	defines	how	we	compute	the	entropy	remaining	after	we	partition
the	dataset	using	a	particular	descriptive	feature	d.	When	we	partition	the	dataset	 	using
the	descriptive	feature	d	we	create	a	number	of	partitions	(or	sets)	 ,	where	l1
…	lk	are	the	k	levels	that	feature	d	can	take.	Each	partition,	 ,	contains	the	instances	in	
	that	have	a	value	of	level	li	for	the	d	feature.	The	entropy	remaining	after	we	have	tested
d	is	a	weighted	sum	of	the	entropy,	still	with	respect	to	the	target	feature,	of	each	partition.
The	 weighting	 is	 determined	 by	 the	 size	 of	 each	 partition—so	 a	 large	 partition	 should
contribute	more	to	the	overall	remaining	entropy	than	a	smaller	partition.	We	use	the	term
rem	(d,	 )	to	denote	this	quantity	and	define	it	formally	as

Using	Equation	(4.2)[130]	and	Equation	(4.3)[130],	we	can	now	formally	define	information
gain	made	from	splitting	the	dataset	 	using	the	feature	d	as

To	 illustrate	 how	 information	 gain	 is	 calculated,	 and	 to	 check	 how	well	 it	 models	 our
intuitions	described	at	the	beginning	of	this	section,	we	will	compute	the	information	gain
for	each	descriptive	feature	in	 the	spam	dataset.	The	first	step	is	 to	compute	the	entropy
for	the	whole	dataset	using	Equation	(4.2)[130]:



The	next	step	is	to	compute	the	entropy	remaining	after	we	split	the	dataset	using	each	of
the	descriptive	features.	The	computation	for	the	SUSPICIOUS	WORDS	feature	is7

The	remaining	entropy	for	the	UNKNOWN	SENDER	feature	is

The	remaining	entropy	for	the	CONTAINS	IMAGES	feature	is



We	can	now	complete	the	information	gain	calculation	for	each	descriptive	feature	as

The	 information	gain	of	 the	SUSPICIOUS	WORDS	 feature	 is	1	bit.	This	 is	equivalent	 to
the	 total	 entropy	 for	 the	 entire	 dataset.	 An	 information	 gain	 score	 for	 a	 feature	 that
matches	 the	 entropy	 for	 the	 entire	 dataset	 indicates	 that	 the	 feature	 is	 perfectly
discriminatory	with	 respect	 to	 the	 target	 feature	 values.	Unfortunately,	 in	more	 realistic
datasets,	finding	a	feature	as	powerful	as	the	SUSPICIOUS	WORDS	feature	is	very	rare.	The
feature	UNKNOWN	SENDER	 has	 an	 information	 gain	 of	 0.0817	 bits.	 An	 information	 gain
score	this	low	suggests	that	although	splitting	on	this	feature	provides	some	information,	it
is	 not	 particularly	 useful.	 Finally,	 the	CONTAINS	 IMAGES	 feature	 has	 an	 information	 gain
score	of	0	bits.	This	ranking	of	the	features	by	information	gain	mirrors	the	intuitions	we
developed	about	the	usefulness	of	these	features	during	our	earlier	discussion.

We	started	this	section	with	the	idea	that	if	we	could	construct	a	sequence	of	tests	that
splits	the	training	data	into	pure	sets	with	respect	to	the	target	feature	values,	then	we	can
do	prediction	by	applying	the	same	sequence	of	tests	to	the	prediction	queries	and	labeling
them	with	the	target	feature	of	the	set	they	end	up	in.	A	key	part	of	doing	this	is	being	able
to	 decide	 which	 tests	 should	 be	 included	 in	 the	 sequence	 and	 in	 what	 order.	 The
information	gain	model	we	have	developed	allows	us	to	decide	which	test	we	should	add
to	 the	 sequence	 next	 because	 it	 enables	 us	 to	 select	 the	 best	 feature	 to	 use	 on	 a	 given
dataset.	In	the	next	section,	we	introduce	the	standard	algorithm	for	growing	decision	trees



in	this	way.



4.3	Standard	Approach:	The	ID3	Algorithm
Assuming	 that	we	want	 to	 use	 shallow	 decision	 trees,	 is	 there	 a	way	 in	which	we	 can
automatically	 create	 them	 from	 data?	 One	 of	 the	 best	 known	 decision	 tree	 induction
algorithms	is	the	Iterative	Dichotomizer	3	(ID3)	algorithm.8	This	algorithm	attempts	 to
create	the	shallowest	decision	tree	that	is	consistent	with	the	data	given.

The	ID3	algorithm	builds	the	tree	in	a	recursive,	depth-first	manner,	beginning	at	the
root	node	and	working	down	to	the	leaf	nodes.	The	algorithm	begins	by	choosing	the	best
descriptive	 feature	 to	 test	 (i.e.,	 the	 best	 question	 to	 ask	 first).	 This	 choice	 is	 made	 by
computing	the	information	gain	of	the	descriptive	features	in	the	training	dataset.	A	root
node	 is	 then	 added	 to	 the	 tree	 and	 labeled	 with	 the	 selected	 test	 feature.	 The	 training
dataset	 is	 then	partitioned	using	the	 test.	There	 is	one	partition	created	for	each	possible
test	result,	which	contains	the	training	instances	that	returned	that	result.	For	each	partition
a	branch	is	grown	from	the	node.	The	process	is	then	repeated	for	each	branch	using	the
relevant	partition	of	the	training	set	in	place	of	the	full	training	set	and	with	the	selected
test	feature	excluded	from	further	testing.	This	process	is	repeated	until	all	the	instances	in
a	partition	have	 the	 same	 target	 level,	 at	which	point	 a	 leaf	node	 is	 created	and	 labeled
with	that	level.

The	design	of	the	ID3	algorithm	is	based	on	the	assumption	that	a	correct	decision	tree
for	a	domain	will	classify	instances	from	that	domain	in	the	same	proportion	as	the	target
level	occurs	 in	 the	domain.	So,	given	a	dataset	 	 representing	a	domain	with	 two	 target
levels	C1	 and	C2,	 an	 arbitrary	 instance	 from	 the	 domain	 should	 be	 classified	 as	 being

associated	with	target	level	C1	with	the	probability	 	and	to	target	level	C2	with	the

probability	 ,	where	 |C1|	 and	 |C2|	 refer	 to	 the	number	of	 instances	 in	 	associated
with	C1	 and	C2	 respectively.	 To	 ensure	 that	 the	 resulting	 decision	 tree	 classifies	 in	 the
correct	proportions,	the	decision	tree	is	constructed	by	repeatedly	partitioning9	the	training
dataset,	until	every	instance	in	a	partition	maps	to	the	same	target	level.

Algorithm	4.1[135]	 lists	 a	pseudocode	description	of	 the	 ID3	algorithm.	Although	 the
algorithm	 looks	 quite	 complex,	 it	 essentially	 does	 one	 of	 two	 things	 each	 time	 it	 is
invoked:	it	either	stops	growing	the	current	path	in	the	tree	by	adding	a	 leaf	node	to	 the
tree,	Lines	1–6,	or	 it	extends	 the	current	path	by	adding	an	 interior	node	 to	 the	 tree	and
growing	the	branches	of	this	node	by	repeatedly	rerunning	the	algorithm,	Lines	7–13.

Algorithm	4.1	Pseudocode	description	of	the	ID3	algorithm.
Require:	set	of	descriptive	features	d
Require:	set	of	training	instances	

1:	if	all	the	instances	in	 	have	the	same	target	level	C	then

2:				return	a	decision	tree	consisting	of	a	leaf	node	with	label	C

3:	else	if	d	is	empty	then



4:				return	a	decision	tree	consisting	of	a	leaf	node	with	the	label	of	the	majority
target	level	in	

5:	else	if	 	is	empty	then

6:				return	a	decision	tree	consisting	of	a	leaf	node	with	the	label	of	the	majority
target	level	of	the	dataset	of	the	immediate	parent	node

7:	else

8:				d	[best]	←	arg	max	IG	(d,	 )

d∈d
9:				make	a	new	node,	Noded[best],	and	label	it	with	d	[best]

10:				partition	 	using	d	[best]

11:				remove	d	[best]	from	d

12:				for	each	partition	 i	of	 	do

13:				grow	a	branch	from	Noded[best]	to	the	decision	tree	created	by	rerunning	ID3	with	
=	 i

Lines	1–6	of	Algorithm	4.1[135]	control	when	a	new	leaf	node	is	created	in	the	tree.	We
have	already	mentioned	that	the	ID3	algorithm	constructs	the	decision	tree	by	recursively
partitioning	the	dataset.	An	important	decision	to	be	made	when	designing	any	recursive
process	is	what	the	base	cases	that	stop	the	recursion	will	be.	In	the	ID3	algorithm	the	base
cases	are	the	situations	where	we	stop	splitting	the	dataset	and	construct	a	leaf	node	with
an	 associated	 target	 level.	There	 are	 two	 important	 things	 to	 remember	when	designing
these	base	cases.	First,	the	dataset	of	training	instances	considered	at	each	of	the	interior
nodes	in	the	tree	is	not	the	complete	dataset;	rather,	it	is	the	subset	of	instances	considered
at	its	parent	node	that	had	the	relevant	feature	value	for	the	branch	from	the	parent	to	the
current	 node.	 Second,	 once	 a	 feature	 has	 been	 tested,	 it	 is	 not	 considered	 for	 selection
again	along	that	path	in	the	tree.	A	feature	will	only	be	tested	once	on	any	path	in	the	tree,
but	it	may	occur	several	times	in	the	tree	on	different	paths.	Based	on	these	constraints,	the
algorithm	defines	three	situations	where	the	recursion	stops	and	a	leaf	node	is	constructed:

1.	 All	the	instances	in	the	dataset	have	the	same	target	feature	level.	In	this	situation,	the
algorithm	returns	a	single	leaf	node	tree	with	that	target	level	as	its	label	(Algorithm
4.1[135]	Lines	1–2).

2.	 The	set	of	features	left	to	test	is	empty.	This	means	that	we	have	already	tested	every
feature	on	 the	path	between	 the	 root	node	and	 the	 current	node.	We	have	no	more
features	we	can	use	 to	distinguish	between	 the	 instances,	so	we	return	a	single	 leaf
node	 tree	with	 the	majority	 target	 level	of	 the	dataset	as	 its	 target	 level	 (Algorithm
4.1[135]	Lines	3–4).

3.	 The	dataset	 is	empty.	This	can	occur	when,	 for	a	particular	partition	of	 the	dataset,
there	 are	no	 instances	 that	 have	 a	particular	 feature	value.	 In	 this	 case	we	 return	 a
single	 leaf	node	 tree	with	 the	majority	 target	 level	of	 the	dataset	at	 the	parent	node



that	made	the	recursive	call	(Algorithm	4.1[135]	Lines	5–6).

If	none	of	these	cases	hold,	the	algorithm	continues	to	recursively	create	interior	nodes,
Lines	7–13	of	Algorithm	4.1[135].	The	 first	 step	 in	creating	an	 interior	node	 is	 to	decide
which	 descriptive	 feature	 should	 be	 tested	 at	 this	 node	 (Line	 8	 of	 Algorithm	 4.1[135]).
When	we	first	mentioned	the	ID3	algorithm,	we	stated	that	it	tries	to	create	the	shallowest
decision	tree	that	is	consistent	with	the	data	given.	The	feature	of	the	ID3	algorithm	that
biases	it	toward	shallow	trees	is	the	mechanism	that	it	uses	to	determine	which	descriptive
feature	 is	 the	most	 informative	 one	 to	 test	 at	 a	 new	 node.	 The	 ID3	 algorithm	 uses	 the
information	 gain	 metric	 to	 choose	 the	 best	 feature	 to	 test	 at	 each	 node	 in	 the	 tree.
Consequently,	the	selection	of	the	best	feature	to	split	a	dataset	on	is	based	on	the	purity,
or	homogeneity,	of	the	resulting	partitions	in	the	datasets.	Again,	remember	that	each	node
is	constructed	in	a	context	consisting	of	a	dataset	of	instances	containing	a	subset	of	the
instances	used	to	construct	its	parent	node	and	the	set	of	descriptive	features	that	have	not
been	 tested	 on	 the	 path	 between	 the	 root	 node	 and	 parent	 node.	 As	 a	 result,	 the
information	gain	for	a	particular	descriptive	feature	may	be	different	at	different	nodes	in
the	tree	because	it	will	be	computed	on	different	subsets	of	the	full	training	dataset.	One
consequence	of	this	is	 that	a	feature	with	a	low	information	gain	at	 the	root	node	(when
the	full	dataset	is	considered)	may	have	a	high	information	gain	score	at	one	of	the	interior
nodes	because	it	is	predictive	on	the	subset	of	instances	that	are	considered	at	that	interior
node.

Once	the	most	informative	feature,	d	[best],	has	been	chosen,	the	algorithm	adds	a	new
node,	labeled	with	the	feature	d	[best],	 to	 the	tree	(Line	9).	It	 then	splits	 the	dataset	 that
was	considered	at	 this	node,	 ,	 into	partitions,	 1,	…,	 k,	according	 to	 the	 levels	 that	d
[best]	can	take,	{l1,	…,	lk}	(Line	10).	Next,	it	removes	the	feature	d	[best]	from	the	set	of
features	considered	for	testing	later	on	this	path	in	the	tree;	this	enforces	the	constraint	that
a	feature	can	be	tested	only	once	on	any	particular	path	in	 the	tree	(Line	11).	Finally,	 in
Lines	12	and	13,	 the	algorithm	grows	a	branch	 in	 the	 tree	 for	 each	of	 the	values	 in	 the
domain	of	d	[best]	by	recursively	calling	itself	for	each	of	the	partitions	created	at	Line	10.
Each	of	these	recursive	calls	uses	the	partition	it	is	called	on	as	the	dataset	it	considers	and
is	restricted	to	selecting	from	the	set	of	features	that	have	not	been	tested	so	far	on	the	path
from	the	root	node.	The	node	returned	by	the	recursive	call	 to	 the	algorithm	may	be	the
root	of	a	subtree	or	a	leaf	node.	Either	way,	it	is	joined	to	the	current	node	with	a	branch
labeled	with	the	appropriate	level	of	the	selected	feature.



4.3.1	A	Worked	Example:	Predicting	Vegetation	Distributions

In	this	section	we	will	work	through	an	example	to	illustrate	how	the	ID3	is	used	to	induce
a	 decision	 tree.	 This	 example	 is	 based	 on	 ecological	 modeling,	 an	 area	 of	 scientific
research	 that	 applies	 statistical	 and	 analytical	 techniques	 to	model	 ecological	 processes.
One	of	 the	problems	faced	by	ecological	management	practitioners	 is	 that	 it	 is	often	too
expensive	 to	 do	 large-scale,	 high-resolution	 land	 surveys.	 Using	 predictive	 analytics,
however,	 the	 results	of	 small-scale	 surveys	can	be	used	 to	create	predictive	models	 that
can	 be	 applied	 across	 large	 regions.	 These	 models	 are	 used	 to	 inform	 resource
management	 and	 conservation	 activities10,	 such	 as	managing	 the	 distribution	 of	 animal
species	and	vegetation	across	geographic	regions.	The	descriptive	features	used	by	these
models	are	often	features	that	can	be	automatically	extracted	from	digitized	maps,	aerial
photographs,	 or	 satellite	 imagery—for	 example,	 the	 elevation,	 steepness,	 color,	 and
spectral	 reflection	of	 the	 terrain,	 and	 the	presence	or	 absence	of	 features	 such	as	 rivers,
roads,	or	lakes.

Table	 4.3	 lists	 an	 example	 dataset	 from	 the	 ecological	 modeling	 domain.11	 In	 this
example,	 the	 prediction	 task	 is	 to	 classify	 the	 type	 of	 vegetation	 that	 is	 likely	 to	 be
growing	 in	 areas	 of	 land	based	only	on	descriptive	 features	 extracted	 from	maps	of	 the
areas.	Ecological	modelers	can	use	information	about	the	type	of	vegetation	that	grows	in
a	region	as	a	direct	input	into	their	animal	species	management	and	conservation	programs
because	areas	covered	in	different	types	of	vegetation	support	different	animal	species.	By
using	a	predictive	model	 that	only	 requires	 features	 from	maps,	 the	ecological	modelers
can	avoid	expensive	ground-based	or	aerial	 surveys.	There	are	 three	 types	of	vegetation
that	should	be	recognized	by	this	model.	First,	chapparal	is	a	type	of	evergreen	shrubland
that	can	be	fire-prone.	The	animal	species	typically	found	in	this	vegetation	include	gray
foxes,	bobcats,	skunks,	and	rabbits.	Second,	riparian	vegetation	occurs	near	streams	and	is
characterized	by	trees	and	shrubs.	It	is	usually	home	to	small	animals,	including	raccoons,
frogs,	 and	 toads.	 Finally,	 conifer	 refers	 to	 forested	 areas	 that	 contain	 a	 variety	 of	 tree
species	(including	pine,	cedar,	and	fir	trees),	with	a	mixture	of	shrubs	on	the	forest	floor.
The	animals	that	may	be	found	in	these	forests	include	bears,	deer,	and	cougars.	The	type
of	vegetation	in	an	area	is	stored	in	the	target	feature,	VEGETATION.

Table	4.3

The	vegetation	classification	dataset.

ID STREAM SLOPE ELEVATION VEGETATION

1 false steep high chapparal

2 true moderate low riparian

3 true steep medium riparian

4 false steep medium chapparal



5 false flat high conifer

6 true steep highest conifer

7 true steep high chapparal

There	 are	 three	 descriptive	 features	 in	 the	 dataset.	 STREAM	 is	 a	 binary	 feature	 that
describes	whether	or	not	there	is	a	stream	in	the	area.	SLOPE	describes	the	steepness	of	the
terrain	 in	 an	 area	 and	 has	 the	 levels	 flat,	moderate,	 and	 steep.	 ELEVATION	 describes	 the
elevation	of	an	area	and	has	the	levels	low,	medium,	high,	and	highest.

The	first	step	in	building	the	decision	tree	is	to	determine	which	of	the	three	descriptive
features	is	the	best	one	to	split	the	dataset	on	at	the	root	node.	The	algorithm	does	this	by
computing	the	information	gain	for	each	feature.	The	total	entropy	for	this	dataset,	which
is	required	to	calculate	information	gain,	is	computed	as

Table	4.4

Partition	sets	(Part.),	entropy,	remainder	(Rem.),	and	information	gain	(Info.	Gain)	by
feature	for	the	dataset	in	Table	4.3[138].

	



Table	 4.4[139]	 shows	 the	 calculation	 of	 the	 information	 gain	 for	 each	 feature	 using	 this
result.

We	can	see	from	Table	4.4[139]	that	ELEVATION	has	the	largest	information	gain	of	the
three	 features	 and	 so	 is	 selected	 by	 the	 algorithm	 at	 the	 root	 node	 of	 the	 tree.	 Figure
4.8[140]	illustrates	the	state	of	the	tree	after	the	dataset	is	split	using	ELEVATION.	Notice	that
the	 full	 dataset	 has	 been	 split	 into	 four	 partitions	 (labeled	 6,	 7,	 8,	 and	 9	 in	 Table
4.4[139])	 and	 that	 the	 feature	 ELEVATION	 is	 no	 longer	 listed	 in	 these	 partitions	 as	 it	 has
already	been	used	to	split	the	data.	The	 6	and	 9	partitions	each	contain	just	one	instance.
Consequently,	 they	 are	 pure	 sets,	 and	 these	 partitions	 can	 be	 converted	 into	 leaf	 nodes.
The	 7	 and	 8	 partitions,	 however,	 contain	 instances	 with	 a	 mixture	 of	 target	 feature
levels,	 so	 the	 algorithm	 needs	 to	 continue	 splitting	 these	 partitions.	 To	 do	 this,	 the
algorithm	 needs	 to	 decide	 which	 of	 the	 remaining	 descriptive	 features	 has	 the	 highest
information	gain	for	each	partition.

Figure	4.8

The	decision	tree	after	the	data	has	been	split	using	ELEVATION.

Table	4.5

Partition	sets	(Part.),	entropy,	remainder	(Rem.),	and	information	gain	(Info.	Gain)	by
feature	for	the	dataset	 7	in	Figure	4.8[140].

	

To	address	partition	 7,	first	the	algorithm	computes	the	entropy	of	 7	as



The	information	gained	by	splitting	 7	for	using	STREAM	and	SLOPE	 is	 then	computed	as
detailed	in	Table	4.5[140].

Figure	4.9

The	state	of	the	decision	tree	after	the	 7	partition	has	been	split	using	STREAM.

The	calculations	in	Table	4.5[140]	show	that	STREAM	has	a	higher	information	gain	than
SLOPE	and	so	is	the	best	feature	with	which	to	split	 7.	Figure	4.9[141]	depicts	the	state	of
the	 decision	 tree	 after	 the	 7	 partition	 has	 been	 split.	 Splitting	 7	 creates	 two	 new
partitions	( 10	and	 11).	Notice	that	SLOPE	is	the	only	descriptive	feature	that	is	listed	in	
10	and	 11.	This	 reflects	 the	fact	 that	ELEVATION	and	STREAM	have	already	been	used	on
the	path	from	the	root	node	to	each	of	these	partitions	and	so	cannot	be	used	again.	Both
of	these	new	partitions	are	pure	sets	with	respect	 to	the	target	feature	(indeed,	 they	only
contain	one	instance	each),	and	consequently,	these	sets	do	not	need	to	be	split	any	further
and	can	be	converted	into	leaf	nodes.

At	 this	point	 8	 is	 the	only	partition	 that	 is	not	a	pure	set.	There	are	 two	descriptive
features	that	can	be	used	to	split	 8:	STREAM	and	SLOPE.	The	decision	regarding	which	of
these	features	to	split	on	is	made	by	calculating	which	feature	has	the	highest	information
gain	for	 8.	The	overall	entropy	for	 8	is	calculated	as



Table	4.6

Partition	sets	(Part.),	entropy,	remainder	(Rem.),	and	information	gain	(Info.	Gain)	by
feature	for	the	dataset	D8	in	Figure	4.9[141].

	

Table	4.6[142]	details	the	calculation	of	the	information	gain	for	each	descriptive	feature	in	
8	using	this	result.	 It	 is	clear	from	Table	4.6[142]	 that	 in	 the	context	of	 8,	SLOPE	has	a

higher	information	gain	than	STREAM.

Figure	4.10[143]	illustrates	the	state	of	the	decision	tree	after	 8	has	been	split.	Notice
that	 one	 of	 the	 partitions	 created	 by	 splitting	 8	 based	 on	SLOPE	 is	 empty:	 18.	 This	 is
because	there	were	no	instances	in	 8	that	had	a	value	of	moderate	for	the	SLOPE	feature.
This	 empty	 partition	will	 result	 in	 a	 leaf	 node	 that	 returns	 a	 prediction	 of	 the	majority
target	level	in	 8,	chapparal.	The	other	two	partitions	created	by	splitting	 8	are	pure	with
respect	to	the	target	feature:	 17	contains	one	instance	with	a	conifer	target	level,	and	 19
contains	two	instances,	both	of	which	have	a	chapparal	target	level.

At	 this	 point	 all	 the	 remaining	 partitions	 are	 pure	with	 respect	 to	 the	 target	 feature.
Consequently,	the	algorithm	now	converts	each	partition	into	a	leaf	node	and	returns	the
final	 decision	 tree.	 Figure	 4.11[143]	 shows	 this	 decision	 tree.	 If	 the	 prediction	 strategy
encoded	 in	 this	 tree	 is	 applied	 to	 the	 original	 dataset	 in	 Table	 4.3[138],	 it	 will	 correctly
classify	all	 the	 instances	 in	 the	dataset.	 In	machine	 learning	 terms,	 the	 induced	model	 is
consistent	with	the	training	data.



Figure	4.10

The	state	of	the	decision	tree	after	the	 8	partition	has	been	split	using	SLOPE.

Figure	4.11

The	final	vegetation	classification	decision	tree.

One	final	point:	remember	that	 the	empty	partition	in	Figure	4.10[143]	 ( 18)	has	been
converted	 into	 a	 leaf	 node	 that	 returns	 the	 chapparal	 target	 level.	 This	 is	 because
chapparal	 is	 the	majority	 target	 level	 in	 the	partition	at	 the	parent	node	( 8)	of	 this	 leaf
node.	Consequently,	this	tree	will	return	a	prediction	of	VEGETATION	=	chapparal	 for	 the
following	query:

STREAM	=	true,	SLOPE	=	moderate,	ELEVATION	=	high

This	 is	 interesting	because	 there	 are	no	 instances	 listed	 in	Table	4.3[138]	where	SLOPE	=
moderate	 and	VEGETATION	 =	 chapparal.	 This	 example	 illustrates	 one	way	 in	which	 the
predictions	made	by	the	model	generalize	beyond	the	dataset.	Whether	the	generalizations
made	by	the	model	are	correct	will	depend	on	whether	the	assumptions	used	in	generating
the	model	(i.e.,	the	inductive	bias)	are	appropriate.

The	 ID3	 algorithm	 works	 in	 exactly	 the	 same	 way	 for	 larger,	 more	 complicated
datasets;	 there	 is	 simply	more	 computation	 involved.	 Since	 it	 was	 first	 proposed,	 there
have	been	many	modifications	to	the	original	ID3	algorithm	to	handle	variations	that	are
common	in	real-world	datasets.	We	explore	the	most	important	of	these	modifications	in



the	following	sections.



4.4	Extensions	and	Variations
The	ID3	decision	tree	induction	algorithm	described	in	the	previous	section	provides	the
basic	approach	to	decision	tree	induction:	a	top-down,	recursive,	depth-first	partitioning	of
the	 dataset	 beginning	 at	 the	 root	 node	 and	 finishing	 at	 the	 leaf	 nodes.	 Although	 this
algorithm	works	quite	well	as	presented,	it	assumes	categorical	features	and	clean	data.	It
is	relatively	easy,	however,	to	extend	the	ID3	algorithm	to	handle	continuous	descriptive
features	and	continuous	target	features.	A	range	of	techniques	can	also	be	used	to	make	a
decision	tree	more	robust	to	noise	in	the	data.	In	this	section	we	describe	the	techniques
used	 to	 address	 these	 issues	 as	 well	 as	 the	 use	 of	 ensemble	 methods	 that	 allow	 us	 to
combine	 the	 predictions	made	 by	multiple	models.	We	 begin,	 however,	 by	 introducing
some	of	the	metrics,	other	than	entropy-based	information	gain,	that	can	be	used	to	select
which	feature	to	split	on	next	as	we	build	the	tree.



4.4.1	Alternative	Feature	Selection	and	Impurity	Metrics

The	 information	 gain	measure	 described	 in	 Section	 4.2.3[128]	 uses	 entropy	 to	 judge	 the
impurity	 of	 the	 partitions	 that	 result	 from	 splitting	 a	 dataset	 using	 a	 particular	 feature.
Entropy-based	 information	 gain,	 however,	 does	 have	 some	 drawbacks.	 In	 particular,	 it
preferences	features	with	many	levels	because	these	features	will	split	the	data	into	many
small	 subsets,	 which	 will	 tend	 to	 be	 pure,	 irrespective	 of	 any	 correlation	 between	 the
descriptive	 feature	 and	 the	 target	 feature.	 One	 way	 of	 addressing	 this	 issue	 is	 to	 use
information	 gain	 ratio	 instead	 of	 entropy.	 The	 information	 gain	 ratio	 is	 computed	 by
dividing	the	information	gain	of	a	feature	by	the	amount	of	information	used	to	determine
the	value	of	the	feature

where	IG	(d,	 )	is	the	information	gain	of	the	feature	d	for	the	dataset	 	(computed	using
Equation	(4.4)[131]	from	Section	4.2.3[128]),	and	the	divisor	is	the	entropy	of	the	dataset	
with	respect	to	the	feature	d	(note	that	levels	(d)	is	the	set	of	levels	that	the	feature	d	can
take).	This	divisor	biases	 information	gain	 ratio	away	 from	features	 that	 take	on	a	 large
number	 of	 values	 and	 as	 such	 counteracts	 the	 bias	 in	 information	 gain	 toward	 these
features.

To	illustrate	how	information	gain	ratio	is	computed,	we	will	compute	the	information
gain	 ratio	 for	 the	 descriptive	 features	 STREAM,	 SLOPE,	 and	 ELEVATION	 in	 the	 vegetation
classification	 dataset	 in	 Table	 4.3[138].	We	 already	 know	 the	 information	 gain	 for	 these
features	(see	Table	4.4[139]):

To	convert	these	information	gain	scores	into	information	gain	ratios,	we	need	to	compute
the	entropy	of	each	feature	and	then	divide	the	information	gain	scores	by	the	respective
entropy	values.	The	entropy	calculations	for	these	descriptive	features	are



Using	these	results,	we	can	now	compute	 the	information	gain	ratio	for	each	descriptive
feature	by	dividing	the	feature’s	information	gain	by	the	entropy	for	that	feature:

From	these	calculations	we	can	see	that	SLOPE	has	the	highest	information	gain	ratio	score,
even	though	ELEVATION	has	the	highest	information	gain.	The	implication	of	this	is	that	if
we	build	a	decision	tree	for	the	dataset	in	Table	4.3[138]	using	information	gain	ratio,	then
SLOPE	(rather	than	ELEVATION)	would	be	the	feature	chosen	for	the	root	of	the	tree.	Figure
4.12[147]	illustrates	the	tree	that	would	be	generated	for	this	dataset	using	information	gain
ratio.



Figure	4.12

The	vegetation	classification	decision	tree	generated	using	information	gain	ratio.

Notice	 that	 there	 is	a	chapparal	 leaf	node	at	 the	end	of	 the	branch	ELEVATION	=	 low
even	though	there	are	no	instances	in	the	dataset	where	ELEVATION	=	low	and	VEGETATION
=	chapparal.	This	leaf	node	is	the	result	of	an	empty	partition	being	generated	when	the
partition	 at	 the	 ELEVATION	 node	was	 split.	 This	 leaf	 node	was	 assigned	 the	 target	 level
chapparal	because	this	was	the	majority	target	level	in	the	partition	at	the	ELEVATION	node.

If	we	compare	this	decision	tree	to	the	decision	tree	generated	using	information	gain
(see	Figure	4.11[143]),	it	is	obvious	that	the	structure	of	the	two	trees	is	very	different.	This
difference	illustrates	the	effect	of	the	metric	used	to	select	which	feature	to	split	on	during
tree	construction.	Another	interesting	point	of	comparison	between	these	two	trees	is	that
even	though	they	are	both	consistent	with	the	dataset	in	Table	4.3[138],	they	do	not	always
return	the	same	prediction.	For	example,	given	the	following	query:

STREAM	=	false,	SLOPE	=	moderate,	ELEVATION	=	highest

the	tree	generated	using	information	gain	ratio	(Figure	4.12[147])	will	return	VEGETATION	=
riparian,	whereas	the	tree	generated	using	information	gain	(Figure	4.11[143])	will	 return
VEGETATION	=	conifer.	The	combination	of	features	listed	in	this	query	does	not	occur	in
the	 dataset.	 Consequently,	 both	 of	 the	 trees	 are	 attempting	 to	 generalize	 beyond	 the
dataset.	This	 illustrates	how	two	different	models	 that	are	both	consistent	with	a	dataset
can	make	different	generalizations.12	So,	which	 feature	 selection	metric	 should	be	used,
information	gain	or	 information	gain	ratio?	Information	gain	has	 the	advantage	 that	 it	 is
computationally	less	expensive	than	information	gain	ratio.	If	there	is	variation	across	the
number	 of	 values	 in	 the	 domain	 of	 the	 descriptive	 features	 in	 a	 dataset,	 however,
information	 gain	 ratio	may	 be	 a	 better	 option.	 These	 factors	 aside,	 the	 effectiveness	 of
descriptive	 feature	 selection	 metrics	 can	 vary	 from	 domain	 to	 domain.	 So	 we	 should
experiment	with	 different	metrics	 to	 find	which	 one	 results	 in	 the	 best	models	 for	 each



dataset.

Another	commonly	used	measure	of	impurity	is	the	Gini	index:

where	 	is	a	dataset	with	a	target	feature	t;	levels(t)	is	the	set	of	levels	in	the	domain	of	the
target	feature;	and	P(t	=	l)	is	the	probability	of	an	instance	of	 	having	the	target	level	l.
The	Gini	index	can	be	understood	as	calculating	how	often	the	target	levels	of	instances	in
a	dataset	would	be	misclassified	if	predictions	were	made	based	only	on	the	distribution	of
the	 target	 levels	 in	 the	 dataset.	 For	 example,	 if	 there	were	 two	 target	 levels	with	 equal
likelihood	 in	 a	 dataset,	 then	 the	 expected	 rate	 of	misclassification	would	 be	 0.5,	 and	 if
there	 were	 four	 target	 levels	 with	 equal	 likelihood,	 then	 the	 expected	 rate	 of
misclassification	would	be	0.75.	The	Gini	index	is	0	when	all	the	instances	in	the	dataset
have	 the	 same	 target	 level	 and	 	when	 there	 are	 k	 possible	 target	 levels	 with	 equal
likelihood.	 Indeed,	 a	nice	 feature	of	 the	Gini	 index	 is	 that	Gini	 index	 scores	are	always
between	0	and	1,	and	in	some	contexts	this	may	make	it	easier	to	compare	Gini	indexes
across	features.	We	can	calculate	the	Gini	index	for	the	dataset	in	Table	4.3[138]	as

Table	4.7

Partition	sets	(Part.),	entropy,	Gini	index,	remainder	(Rem.),	and	information	gain	(Info.
Gain)	by	feature	for	the	dataset	in	Table	4.3[138].

	

The	 information	 gain	 for	 a	 feature	 based	 on	 the	Gini	 index	 can	 be	 calculated	 in	 the



same	way	 as	 it	 is	 using	 entropy:	 calculate	 the	 Gini	 index	 for	 the	 full	 dataset	 and	 then
subtract	 the	sum	of	the	weighted	Gini	 index	scores	for	 the	partitions	created	by	splitting
with	 the	 feature.	 Table	 4.7[149]	 shows	 the	 calculation	 of	 the	 information	 gain	 using	 the
Gini	index	for	the	descriptive	features	in	the	vegetation	classification	dataset.	Comparing
these	results	to	the	information	gain	calculated	using	entropy	(see	Table	4.4[139]),	we	can
see	that	although	the	resulting	numbers	are	different,	the	relative	ranking	of	the	features	is
the	 same—in	 both	 cases	 ELEVATION	 has	 the	 highest	 information	 gain.	 Indeed,	 for	 the
vegetation	dataset,	the	decision	tree	that	will	be	generated	using	information	gain	based	on
the	 Gini	 index	 will	 be	 identical	 to	 the	 one	 generated	 using	 information	 gain	 based	 on
entropy	(see	Figure	4.11[143]).

So,	which	impurity	measure	should	be	used,	Gini	or	entropy?	The	best	advice	that	we
can	give	is	that	it	is	good	practice	when	building	decision	tree	models	to	try	out	different
impurity	metrics	and	compare	the	results	to	see	which	suits	a	dataset	best.



4.4.2	Handling	Continuous	Descriptive	Features

The	easiest	way	to	handle	a	continuous	descriptive	feature	in	a	decision	tree	is	to	define	a
threshold	 within	 the	 range	 of	 values	 that	 the	 continuous	 feature	 can	 take	 and	 use	 this
threshold	to	partition	the	instances	based	on	whether	their	values	for	the	feature	are	above
or	 below	 the	 threshold.13	 The	 only	 challenge	 is	 to	 determine	 the	 best	 threshold	 to	 use.
Ideally,	we	should	use	the	threshold	that	results	in	the	highest	information	gain	when	the
feature	 is	 used	 to	 split	 the	 dataset.	 The	 problem,	 however,	 is	 that	 with	 a	 continuous
feature,	there	is	an	infinite	number	of	thresholds	to	choose	from.

There	is,	though,	a	simple	way	to	find	the	optimal	threshold,	which	avoids	testing	an
infinite	 number	 of	 possible	 thresholds.	 First,	 the	 instances	 in	 the	 dataset	 are	 sorted
according	to	 the	values	of	 the	continuous	feature.	The	adjacent	 instances	 in	 the	ordering
that	 have	different	 target	 feature	 levels	 are	 then	 selected	 as	 possible	 threshold	points.	 It
can	be	shown	that	the	optimal	threshold	value	must	lie	at	one	of	the	boundaries	between
adjacent	 instances	 with	 different	 target	 levels.	 The	 optimal	 threshold	 is	 found	 by
computing	 the	 information	 gain	 for	 each	 of	 the	 target	 level	 transition	 boundaries	 and
selecting	 the	 boundary	 with	 the	 highest	 information	 gain	 as	 the	 threshold.	 Once	 a
threshold	 has	 been	 set,	 the	 continuous	 feature	 can	 compete	 with	 the	 other	 categorical
features	for	selection	as	the	splitting	feature	at	any	node.	To	illustrate	how	this	is	done,	we
will	use	a	modified	version	of	the	vegetation	classification	dataset	from	Table	4.3[138]	 in
which	the	ELEVATION	feature	now	contains	actual	elevations	in	feet.	This	dataset	is	listed	in
Table	4.8[151].

To	 select	 the	 best	 feature	 to	 use	 at	 the	 root	 of	 the	 tree,	 we	 need	 to	 calculate	 the
information	gain	for	each	feature.	We	know	from	our	earlier	calculations	that	the	entropy
for	this	dataset	is	1.5567	bits	(see	Equation	(4.5)[139])	and	that	the	information	gain	for	the
categorical	features	are	IG	(STREAM,	 )	=	0.3060	and	IG	(SLOPE,	 )	=	0.5774	(see	Table
4.4[139]).	This	leaves	us	with	the	tasks	of	calculating	the	best	threshold	on	which	to	split
the	ELEVATION	feature,	and	calculating	the	information	gain	when	we	partition	the	dataset
with	ELEVATION	using	this	optimal	threshold.	Our	first	task,	is	to	sort	the	dataset	based	on
the	ELEVATION	feature.	This	is	shown	in	Table	4.9[151].

Table	4.8

Dataset	for	predicting	the	vegetation	in	an	area	with	a	continuous	ELEVATION	feature
(measured	in	feet).

ID STREAM SLOPE ELEVATION VEGETATION

1 false steep 3,900 chapparal

2 true moderate 300 riparian

3 true steep 1,500 riparian



4 false steep 1,200 chapparal

5 false flat 4,450 conifer

6 true steep 5,000 conifer

7 true steep 3,000 chapparal

Table	4.9

Dataset	for	predicting	the	vegetation	in	an	area	sorted	by	the	continuous	ELEVATION
feature.

ID STREAM SLOPE ELEVATION VEGETATION

2 true moderate 300 riparian

4 false steep 1,200 chapparal

3 true steep 1,500 riparian

7 true steep 3,000 chapparal

1 false steep 3,900 chapparal

5 false flat 4,450 conifer

6 true steep 5,000 conifer

Once	 the	 instances	 have	 been	 sorted,	 we	 look	 for	 adjacent	 pairs	 that	 have	 different
target	 levels.	 In	 Table	 4.9[151]	 we	 can	 see	 that	 four	 pairs	 of	 adjacent	 instances	 have	 a
transition	between	the	target	levels,	instances	d2	and	d4,	d4	and	d3,	d3	and	d7,	and	d1	and
d5.	 The	 boundary	 value	 between	 each	 of	 these	 pairs	 is	 simply	 the	 average	 of	 their
ELEVATION	values:

the	boundary	between	d2	and	d4	is	

the	boundary	between	d4	and	d3	is	

the	boundary	between	d3	and	d7	is	

the	boundary	between	d1	and	d5	is	

Table	4.10



Partition	sets	(Part.),	entropy,	remainder	(Rem.),	and	information	gain	(Info.	Gain)	for	the
candidate	ELEVATION	thresholds:	≥750,	≥1,350,	≥2,250	and	≥4,175.

Split	by	Threshold Part. Instances Partition	Entropy Rem. Info.	Gain

≥750
1 d2 0.0

1.2507 0.3060
2 d4,	d3,	d7,	d1,	d5,	d6 1.4591

≥1,350
3 d2,	d4 1.0

1.3728 0.1839
4 d3,	d7,	d1,	d5,	d6 1.5219

≥2,250
5 d2,	d4,	d3 0.9183

0.9650 0.5917
6 d7,	d1,	d5,	d6 1.0

≥4,175
7 d2,	d4,	d3,	d7,	d1 0.9710

0.6935 0.8631
8 d5,	d6 0.0

Figure	4.13

The	vegetation	classification	decision	tree	after	the	dataset	has	been	split	using	ELEVATION
≥	4,175.

This	 results	 in	 four	 candidate	 thresholds:	 ≥750,	 ≥1,350,	 ≥2,250,	 and	 ≥4,175.	 Table
4.10[152]	 shows	 the	 computation	 of	 information	 gain	 for	 a	 split	 using	 each	 of	 these
thresholds.	The	threshold	≥4,175	has	the	highest	information	gain	of	any	of	the	candidate
thresholds	(0.8631	bits),	and	this	information	gain	is	also	higher	than	the	information	gain
for	either	of	 the	other	 two	descriptive	features.	So,	we	should	use	ELEVATION	≥	4,175	as
the	test	at	the	root	node	of	the	tree,	as	shown	in	Figure	4.13[152].

Unlike	categorical	features,	continuous	features	can	be	used	at	multiple	points	along	a
path	in	a	decision	tree,	although	the	threshold	applied	to	the	feature	at	each	of	these	tests
will	 be	 different.	 This	 is	 important	 as	 it	 allows	 multiple	 splits	 within	 a	 range	 of	 a



continuous	feature	 to	be	considered	on	a	path.	Consequently,	as	we	build	 the	rest	of	 the
tree,	we	may	reuse	the	ELEVATIONfeature.	This	 is	why	 that	ELEVATION	 feature	 is	 listed	 in
both	 the	partitions	( 7	and	 8)	 in	Figure	4.13[152].	We	can	continue	 to	build	 the	 tree	by
recursively	 extending	 each	 branch	 as	 we	 did	 in	 the	 previous	 decision	 tree	 examples.
Figure	 4.14[153]	 shows	 the	 decision	 tree	 that	 is	 ultimately	 generated	 from	 this	 process.
Notice	 that	 the	 tree	 uses	 a	mixture	 of	 continuous	 and	 categorical	 features	 and	 that	 the
ELEVATION	feature	is	used	twice	with	different	thresholds	in	each	case.

Figure	4.14

The	decision	tree	that	would	be	generated	for	the	vegetation	classification	dataset	listed	in
Table	4.9[151]	using	information	gain.



4.4.3	Predicting	Continuous	Targets

When	we	use	a	decision	tree	to	make	predictions	for	a	continuous	target,	we	refer	to	the
tree	as	a	regression	tree.14	Typically	the	value	output	by	the	leaf	node	of	a	regression	tree
is	the	mean	of	the	target	feature	values	of	the	instances	from	the	training	set	that	reached
that	node.	This	means	 that	 the	error	of	a	regression	tree	when	making	a	prediction	for	a
query	instance	is	the	difference	between	the	mean	of	the	training	instances	that	reached	the
leaf	node	that	returns	the	prediction	and	the	correct	value	that	should	have	been	returned
for	 that	 query.	 Assuming	 that	 the	 set	 of	 training	 instances	 reaching	 a	 leaf	 node	 are
indicative	 of	 the	 queries	 that	 will	 be	 labeled	 by	 the	 node,	 it	 makes	 sense	 to	 construct
regression	trees	in	a	manner	that	reduces	the	variance	 in	 the	 target	feature	values	of	 the
set	of	training	instances	at	each	leaf	node	in	the	tree.	We	can	do	this	by	adapting	the	ID3
algorithm	to	use	a	measure	of	variance15	rather	than	a	measure	of	entropy	when	selecting
the	best	feature.	Using	variance	as	our	measure	of	impurity,	the	impurity	at	a	node	can	be
calculated	as

where	 	is	the	dataset	that	has	reached	the	node,	n	is	the	number	of	instances	in	 ,	t	is	the
mean	of	the	target	feature	for	the	dataset	 ,	and	ti	iterates	across	the	target	value	of	each
instance	in	 .	Using	variance	as	our	measure	of	impurity,	we	can	select	which	feature	to
split	on	at	a	node	by	selecting	the	feature	that	minimizes	the	weighted	variance	across	the
resulting	partitions.	The	weighted	variance	is	computed	by	summing	the	variance	of	the
target	 feature	within	each	partition	created	by	splitting	a	dataset	on	a	descriptive	feature
multiplied	by	the	fraction	of	the	dataset	in	each	partition.	So,	at	each	node	the	algorithm
will	 choose	 the	 feature	 to	 split	 on	 by	 selecting	 the	 feature	 with	 the	 lowest	 weighted
variance	for	the	target	feature:

where	var	 (t,	 d=l)	 is	 the	 variance	 of	 the	 target	 feature	 in	 the	 partition	 of	 the	 dataset	
containing	the	instances	where	d	=	l,	| d=l|	is	the	size	of	this	partition	and	| |	is	the	size	of
the	dataset.	This	means	that	at	each	decision	node,	the	algorithm	will	select	the	feature	that
partitions	 the	dataset	 to	most	reduce	the	weighted	variance	of	 the	partitions.	This	causes
the	algorithm	to	cluster	instances	with	similar	target	feature	values.	As	a	result,	leaf	nodes
with	small	variance	in	the	target	feature	values	across	the	set	of	instances	at	the	node	are
preferred	over	leaf	nodes	where	the	variance	in	the	target	feature	values	across	the	set	of
instances	at	the	node	is	large.	To	change	the	ID3	algorithm	in	Algorithm	4.1[135]	to	select
features	to	split	on	based	on	variance,	we	replace	Line	8	with	Equation	4.11[154].

The	other	change	we	need	to	make	to	Algorithm	4.1[135]	 to	handle	continuous	targets
relates	to	the	base	cases	that	cause	the	algorithm	to	stop	processing	data	partitions	and	to
create	 a	 leaf	 node.	 In	 the	 ID3	 algorithm	 we	 created	 a	 leaf	 node	 when	 there	 were	 no
instances	left	in	the	partition	being	processed	(Line	5),	when	there	were	no	features	left	on
which	to	split	the	data	(Line	3),	or	when	we	had	created	a	pure	partition	of	the	dataset	with



respect	 to	 the	 target	 feature	 levels	 (Line	 1).	 An	 algorithm	 to	 learn	 decision	 trees	 for	 a
continuous	target	can	use	the	first	two	base	cases.	When	these	cases	occur,	the	algorithm
will	create	a	leaf	node	that	returns	the	mean	value	of	the	target	feature	in	a	data	partition,
rather	than	the	majority	level.	For	continuous	targets	there	is	no	such	thing	as	a	pure	split,
so	we	will	need	to	change	the	final	base	case.

Figure	4.15[156]	 illustrates	 the	 type	of	partitioning	we	are	 trying	 to	 achieve	when	we
use	a	variance	measure	to	select	the	features	to	split	on	in	a	decision	tree.	Figure	4.15(a)
[156]	depicts	a	set	of	 instances	on	the	continuous	number	line.	Figure	4.15(b)[156]	depicts
one	of	the	extremes	for	grouping	these	instances,	where	we	treat	them	all	as	belonging	to
one	partition.	The	large	gap	between	the	two	apparent	clusters	in	this	dataset	results	in	a
large	 variance,	which	 indicates	 that	we	 are	 probably	 underfitting	with	 this	 grouping.	 In
Figure	4.15(c)[156]	the	instances	have	been	gathered	into	two	groups	that	have	a	relatively
low	variance	compared	 to	 the	single	group	 in	Figure	4.15(b)[156].	 Intuitively	we	can	see
that	 this	grouping	 is,	 as	Goldilocks	put	 it,	 just	right	 and	 is	 the	 type	of	 grouping	we	 are
trying	to	generate	when	we	use	a	variance	measure	to	select	the	splitting	point.

Figure	4.15(d)[156]	depicts	one	of	the	problems	that	can	arise	when	a	variance	measure
is	used	to	split	a	continuous	target	feature.	In	this	example	each	instance	has	been	put	into
an	individual	partition,	and	although	these	partitions	each	have	a	variance	of	zero,	this	is
indicative	 of	 overfitting	 the	 data.	 This	 extreme	 partitioning	 of	 the	 dataset	 into	 sets	 of
single	 instances	can	happen	 if	 there	are	a	 lot	of	descriptive	 features	 in	 the	dataset,	or	 if
there	are	one	or	more	continuous	descriptive	features	that	the	algorithm	is	allowed	to	split
on	repeatedly.	The	reason	that	partitioning	the	dataset	into	single	instances	is	indicative	of
overfitting	is	that	if	there	is	any	noise	in	the	training	data	(something	that	is	likely	in	real
applications),	then	the	leaf	nodes	generated	due	to	noisy	instances	will	result	in	unreliable
predictions	for	queries.	To	avoid	this	kind	of	extreme	partitioning,	we	introduce	an	early
stopping	 criterion	 into	 the	 algorithm	 for	 building	 regression	 trees.	 The	 simplest	 early
stopping	criterion	is	to	stop	partitioning	the	dataset	if	the	number	of	training	instances	in
the	partition	at	the	node	we	are	processing	is	less	than	some	threshold,	usually	around	5%
of	the	overall	dataset	size.16	This	early	stopping	criterion	replaces	the	base	case	on	Line	1
of	the	ID3	algorithm.



Figure	4.15

(a)	A	 set	 of	 instances	on	 a	 continuous	number	 line;	 (b),	 (c),	 and	 (d)	depict	 some	of	 the
potential	groupings	that	could	be	applied	to	these	instances.

Table	4.11

A	dataset	listing	the	number	of	bike	rentals	per	day.

	

The	change	to	the	mechanism	for	selecting	the	best	feature	to	split	on	(made	on	Line	8)
and	 the	 introduction	of	 an	 early	 stopping	 criterion	 (which	 replaces	Line	1)	 are	 the	only
modifications	we	 need	 to	make	 to	 the	 ID3	 algorithm	 (Algorithm	4.1[135])	 to	 allow	 it	 to
handle	continuous	target	features.	To	see	how	this	revised	algorithm	can	induce	a	decision
tree,	we	will	use	the	example	of	predicting	the	number	of	bike	rentals	per	day	for	a	city
bike	sharing	program	based	on	the	SEASON	and	whether	it	is	a	WORK	DAY.	Predicting	the
number	of	bike	rentals	on	a	given	day	is	useful	because	it	can	give	the	administrators	of
the	bike	sharing	program	an	insight	into	the	number	of	resources	they	need	to	have	ready
each	day.	Table	4.11[156]	lists	a	small	dataset	from	this	domain.17

Table	4.12

The	partitioning	of	the	dataset	in	Table	4.11[156]	based	on	SEASON	and	WORK	DAY	features
and	the	computation	of	the	weighted	variance	for	each	partitioning.



Figure	4.16

The	 decision	 tree	 resulting	 from	 splitting	 the	 data	 in	 Table	 4.11[156]	 using	 the	 feature
SEASON.

Table	4.12[157]	 illustrates	 the	 computation	 of	 the	weighted	 variance	 that	 results	 from
partitioning	 the	 data	 by	 SEASON	 and	WORK	 DAY.	 It	 is	 evident	 from	Table	 4.12[157]	 that
partitioning	the	data	using	SEASON	 results	 in	a	lower	weighted	variance	than	partitioning
by	WORK	DAY.	This	 tells	us	 that	splitting	by	SEASON	 results	 in	a	better	clustering	of	 the
target	data	than	splitting	by	WORK	DAY.	Figure	4.16[157]	illustrates	the	state	of	the	decision
tree	after	the	root	node	has	been	created	using	SEASON.

Figure	4.17

The	final	decision	 tree	 induced	 from	 the	dataset	 in	Table	4.11[156].	To	 illustrate	how	the
tree	generates	predictions,	this	tree	lists	the	instances	that	ended	up	at	each	leaf	node	and
the	prediction	(PRED.)	made	by	each	leaf	node.

Figure	4.17[158]	illustrates	the	final	decision	tree	that	will	be	generated	for	this	dataset.



This	 tree	 will	 predict	 the	 mean	 target	 feature	 value	 of	 the	 leaf	 node	 indicated	 by	 the
descriptive	features	of	a	query	instance.	For	example,	given	a	query	instance	with	SEASON
=	summer	and	WORK	DAY	=	 true,	 this	decision	 tree	will	predict	 that	 there	will	be	6,000
bike	rentals	on	that	day.



4.4.4	Tree	Pruning

A	predictive	model	overfits	the	training	set	when	at	least	some	of	the	predictions	it	returns
are	 based	 on	 spurious	 patterns	 present	 in	 the	 training	 data	 used	 to	 induce	 the	 model.
Overfitting	happens	for	a	number	of	reasons,	including	sampling	variance18	and	noise	in
the	training	set.19	The	problem	of	overfitting	can	affect	any	machine	learning	algorithm;
however,	the	fact	that	decision	tree	induction	algorithms	work	by	recursively	splitting	the
training	data	means	that	they	have	a	natural	tendency	to	segregate	noisy	instances	and	to
create	leaf	nodes	around	these	instances.	Consequently,	decision	trees	overfit	by	splitting
the	data	on	irrelevant	features	that	only	appear	relevant	due	to	noise	or	sampling	variance
in	the	training	data.	The	likelihood	of	overfitting	occurring	increases	as	a	tree	gets	deeper
because	the	resulting	predictions	are	based	on	smaller	and	smaller	subsets	as	the	dataset	is
partitioned	after	each	feature	test	in	the	path.

Tree	pruning	identifies	and	removes	subtrees	within	a	decision	tree	that	are	likely	to
be	due	to	noise	and	sample	variance	in	the	training	set	used	to	induce	it.	In	cases	where	a
subtree	is	deemed	to	be	overfitting,	pruning	the	subtree	means	replacing	the	subtree	with	a
leaf	node	 that	makes	 a	prediction	based	on	 the	majority	 target	 feature	 level	 (or	 average
target	feature	value)	of	the	dataset	created	by	merging	the	instances	from	all	the	leaf	nodes
in	 the	subtree.	Obviously,	pruning	will	 result	 in	decision	 trees	being	created	 that	are	not
consistent	 with	 the	 training	 set	 used	 to	 build	 them.	 In	 general,	 however,	 we	 are	 more
interested	 in	creating	prediction	models	 that	generalize	well	 to	new	data	rather	 than	 that
are	 strictly	 consistent	 with	 training	 data,	 so	 it	 is	 common	 to	 sacrifice	 consistency	 for
generalization	capacity.

The	 simplest	 way	 to	 prune	 a	 decision	 tree	 is	 to	 introduce	 early	 stopping	 criteria
(similar	 to	 the	 one	 discussed	 in	 the	 previous	 section)	 into	 the	 tree	 induction	 algorithm.
This	is	often	known	as	pre-pruning.	There	are	a	range	of	simple	pre-pruning	strategies.
For	example,	we	can	stop	creating	subtrees	when	 the	number	of	 instances	 in	a	partition
falls	 below	 a	 threshold,	when	 the	 information	 gain	 (or	whatever	 other	 feature	 selection
metric	 is	 being	 used)	 measured	 at	 a	 node	 is	 not	 deemed	 to	 be	 sufficient	 to	 make
partitioning	the	data	worthwhile,20	or	when	the	depth	of	the	tree	goes	beyond	a	predefined
limit.	 More	 advanced	 approaches	 to	 pre-pruning	 use	 statistical	 significance	 tests	 to
determine	 the	 importance	 of	 subtrees,	 for	 example,	 χ2	 pruning	 (pronounced	 chi-
squared).21

Pre-pruning	 approaches	 are	 computationally	 efficient	 and	 can	 work	 well	 for	 small
datasets.	By	stopping	the	partitioning	of	the	data	early,	however,	induction	algorithms	that
use	pre-pruning	can	fail	 to	create	 the	most	effective	 trees	because	 they	miss	 interactions
between	features	that	emerge	within	subtrees	that	are	not	obvious	when	the	parent	nodes
are	being	considered.	Pre-pruning	can	mean	that	these	useful	subtrees	are	never	created.

Post-pruning	 is	 an	 alternative	 approach	 to	 tree	 pruning	 in	which	 the	 tree	 induction
algorithm	 is	 allowed	 to	 grow	 a	 tree	 to	 completion,	 and	 then	 each	 branch	 on	 the	 tree	 is
examined	 in	 turn.	 Branches	 that	 are	 deemed	 likely	 to	 be	 due	 to	 overfitting	 are	 pruned.
Post-pruning	relies	on	a	criteria	that	can	distinguish	between	subtrees	that	model	relevant



aspects	of	the	data	and	subtrees	that	model	irrelevant	random	patterns	in	the	data.	There
are	 a	 range	 of	 different	 criterion	 that	 can	 be	 used	 from	 a	 very	 simple	 threshold	 on	 the
number	 of	 instances	 at	 a	 node	 in	 the	 tree,	 to	 statistical	 significance	 texts	 like	 χ2.	 We
recommend	the	use	of	criteria	 that	compare	 the	error	rate	 in	 the	predictions	made	by	a
decision	 tree	when	a	given	 subtree	 is	 included	and	when	 it	 is	pruned.	To	measure	 error
rate,	 we	 set	 aside	 some	 of	 the	 training	 data	 as	 a	 validation	 dataset22	 that	 is	 not	 used
during	 tree	 induction.	We	can	measure	 the	performance	of	a	decision	 tree	by	presenting
the	instances	in	the	validation	to	the	decision	tree	and	comparing	the	predictions	made	for
these	instances	with	the	actual	target	feature	values	in	the	dataset.	The	error	rate	measures
the	number	of	predictions	made	by	 the	 tree	 that	are	 incorrect.	A	subtree	 is	pruned	 if	 the
error	rate	on	the	validation	set	of	the	decision	tree	with	the	subtree	removed	is	no	greater
than	the	error	rate	of	the	decision	tree	when	the	subtree	is	included.	Because	the	instances
in	 the	 validation	 set	 are	 not	 used	 during	 training,	 the	 error	 rate	 on	 the	 validation	 set
provides	a	good	estimate	of	the	generalization	capability	of	a	decision	tree.

Reduced	error	pruning	(Quinlan,	1987)	is	a	popular	version	of	post-pruning	based	on
error	rates.	In	reduced	error	pruning,	a	decision	tree	is	built	to	completion	and	then	the	tree
is	searched	in	an	iterative,	bottom-up,	left-to-right	manner	for	subtrees	that	can	be	pruned.
The	error	rate	resulting	from	predictions	for	the	instances	in	the	validation	dataset	made	at
the	root	node	of	each	subtree	is	compared	to	the	error	rate	resulting	from	predictions	made
at	the	leaves	of	the	subtree.	If	the	error	rate	at	the	subtree	root	node	is	less	than	or	equal	to
the	combined	error	rate	at	the	leaves,	the	subtree	is	pruned.

To	 show	 how	 reduced	 error	 pruning	works,	 we	will	 consider	 the	 task	 of	 predicting
whether	 a	 post-operative	 patient	 should	 be	 sent	 to	 an	 intensive	 care	 unit	 (ICU)	 or	 to	 a
general	ward	for	recovery.23	Hypothermia	is	a	major	concern	for	post-operative	patients,
so	 many	 of	 the	 descriptive	 features	 relevant	 to	 this	 domain	 relate	 to	 a	 patient’s	 body
temperature.	 In	 our	 example	 CORE-TEMP	 describes	 the	 core	 temperature	 of	 the	 patient
(which	 can	 be	 low	 or	 high)	 and	 STABLE-TEMP	 describes	 whether	 the	 patient’s	 current
temperature	is	stable	(true	or	false).	We	also	 include	 the	GENDER	of	 the	patient	 (male	or
female).	The	target	feature	in	this	domain,	DECISION,	 records	the	decision	of	whether	 the
patient	is	sent	to	the	icu	or	to	a	general	ward	(gen)	for	recovery.	Figure	4.18[161]	illustrates
a	decision	tree	that	has	been	trained	for	this	post-operative	patient	routing	task.	The	target
level	in	square	brackets	at	each	interior	node	in	the	tree	shows	the	majority	target	level	for
the	data	partition	at	that	node.



Figure	4.18

The	decision	tree	for	the	post-operative	patient	routing	task.

Table	4.13

An	example	validation	set	for	the	post-operative	patient	routing	task.

ID CORE-TEMP STABLE-TEMP GENDER DECISION

1 high true male gen

2 low true female icu

3 high false female icu

4 high false male icu

5 low false female icu

6 low true male icu

Table	4.13[161]	lists	a	validation	dataset	for	this	domain,	and	Figure	4.19[162]	illustrates
how	this	validation	dataset	is	used	to	perform	reduced	error	pruning.	In	Figure	4.19(a)[162]
the	pruning	algorithm	considers	the	subtree	under	the	GENDER	node	for	pruning.	The	path
through	 the	 tree	 to	 make	 predictions	 for	 instances	 d2,	 d5,	 and	 d6	 from	 the	 validation
dataset	 leads	 to	 this	 subtree.	The	majority	 target	 level	predicted	at	 the	 root	node	of	 this
subtree	(the	GENDER	node)	gives	a	correct	prediction	of	icu	for	each	of	the	three	instances,
so	the	error	rate	on	the	validation	set	for	the	root	node	of	the	subtree	is	0.	In	contrast,	the
predictions	made	at	the	leaf	nodes	of	this	subtree	are	incorrect	for	d2	and	d5	(because	these
patients	 are	 female,	 the	 prediction	 made	 is	 gen	 which	 does	 not	 match	 the	 validation
dataset),	so	the	error	rate	for	the	leaf	nodes	of	this	subtree	is	0	+	2	=	2.	Because	the	error
rate	 for	 the	 leaf	nodes	 is	higher	 than	 the	error	 rate	 for	 the	 root	node	of	 the	subtree,	 this
subtree	is	pruned	and	replaced	by	a	leaf	node.	The	result	of	this	pruning	is	visible	on	the
left	branch	of	the	tree	in	Figure	4.19(b)[162].



Figure	4.19

The	iterations	of	reduced	error	pruning	for	the	decision	tree	in	Figure	4.18[161]	using	 the
validation	set	in	Table	4.13[161].	The	subtree	that	is	being	considered	for	pruning	in	each
iteration	is	highlighted	in	black.	The	prediction	returned	by	each	non-leaf	node	is	listed	in
square	brackets.	The	error	rate	for	each	node	is	given	in	round	brackets.

In	 the	 second	 iteration	 of	 the	 algorithm,	 the	 subtree	 under	 the	 STABLE-TEMP	 node	 is
considered	for	pruning	(highlighted	in	Figure	4.19(b)[162]).	In	this	instance,	the	error	rate
for	the	root	node	of	this	subtree	(the	STABLE-TEMP	node)	is	2,	whereas	the	error	rate	of	the
leaf	nodes	of	the	tree	is	0	+	0	=	0.	As	the	error	rate	of	the	root	node	of	the	subtree	is	higher
than	the	error	rate	of	 the	 leaf	nodes,	 the	 tree	 is	not	pruned.	Figure	4.19(c)[162]	 illustrates
the	final	iteration	of	the	algorithm.	In	this	iteration	the	subtree	underneath	the	root	node	of
the	decision	 tree	 (the	CORE-TEMP	 node)	 is	 considered	 for	 pruning	 (i.e.,	 the	 full	 decision
tree).	In	this	iteration,	the	error	rate	of	the	root	node	(1)	is	greater	than	the	error	rate	of	the
three	leaf	nodes,	(0	+	0	+	0	=	0),	so	the	tree	is	left	unchanged.

Post-pruning	 using	 an	 error	 rate	 criteria	 is	 probably	 the	most	 popular	way	 to	 prune
decision	 trees.24	 One	 of	 the	 advantages	 of	 pruning	 decision	 trees	 is	 that	 it	 keeps	 trees
smaller,	which	in	 turn	makes	them	easier	 to	 interpret.	Another	advantage	is	 that	pruning
often	increases	the	accuracy	of	the	trees	when	there	is	noise	in	the	training	dataset.	This	is
because	pruning	typically	affects	the	lower	parts	of	the	decision	tree,	where	noisy	training
data	 is	 most	 likely	 to	 cause	 overfitting.	 As	 such,	 pruning	 can	 be	 viewed	 as	 a	 noise
dampening	mechanism	that	removes	nodes	that	have	been	created	because	of	a	small	set
of	noisy	instances.



4.4.5	Model	Ensembles

Much	 of	 the	 focus	 of	 machine	 learning	 is	 on	 developing	 the	 single	 most	 accurate
prediction	model	 possible	 for	 a	 given	 task.	The	 techniques	we	 introduce	 in	 this	 section
take	a	slightly	different	approach.	Rather	than	creating	a	single	model,	they	generate	a	set
of	 models	 and	 then	 make	 predictions	 by	 aggregating	 the	 outputs	 of	 these	 models.	 A
prediction	model	that	is	composed	of	a	set	of	models	is	called	a	model	ensemble.

The	motivation	behind	using	ensemble	methods	is	the	idea	that	a	committee	of	experts
working	together	on	a	problem	are	more	likely	to	solve	it	successfully	than	a	single	expert
working	 alone.	As	 is	 always	 the	 case	when	 a	 committee	 is	working	 together,	 however,
steps	should	be	taken	to	guard	against	group	think.	 In	 the	context	of	ensemble	models,
this	means	that	each	model	should	make	predictions	independently	of	the	other	models	in
the	ensemble.	Given	a	large	population	of	independent	models,	an	ensemble	can	be	very
accurate	even	if	the	individual	models	in	the	ensemble	perform	only	marginally	better	than
random	guessing.

There	are	two	defining	characteristics	of	ensemble	models:

1.	 They	build	multiple	different	models	from	the	same	dataset	by	inducing	each	model
using	a	modified	version	of	the	dataset.

2.	 They	make	a	prediction	by	aggregating	the	predictions	of	the	different	models	in	the
ensemble.	 For	 categorical	 target	 features,	 this	 can	 be	 done	 using	 different	 types	 of
voting	 mechanisms,	 and	 for	 continuous	 target	 features,	 this	 can	 be	 done	 using	 a
measure	of	the	central	tendency	of	the	different	model	predictions,	such	as	the	mean
or	the	median.

There	are	two	standard	approaches	to	creating	ensembles:	boosting	and	bagging.	The
remainder	of	this	section	explains	each	of	these.

4.4.5.1	Boosting

When	we	use	boosting,25	 each	new	model	 added	 to	 an	ensemble	 is	biased	 to	pay	more
attention	 to	 instances	 that	 previous	models	misclassified.	This	 is	 done	 by	 incrementally
adapting	the	dataset	used	to	train	the	models.	To	do	this	we	use	a	weighted	dataset	where
each	instance	has	an	associated	weight	wi	≥	0,	initially	set	to	 	where	n	is	the	number	of
instances	in	the	dataset.	These	weights	are	used	as	a	distribution	over	which	the	dataset	is
sampled	to	create	a	replicated	training	set,	in	which	the	number	of	times	an	instance	is
replicated	is	proportional	to	its	weight.

Boosting	works	by	iteratively	creating	models	and	adding	them	to	the	ensemble.	The
iteration	 stops	 when	 a	 predefined	 number	 of	 models	 have	 been	 added.	 During	 each
iteration	the	algorithm	does	the	following:

1.	 Induces	a	model	using	the	weighted	dataset	and	calculates	the	total	error,	∈,	in	the	set
of	predictions	made	by	 the	model	 for	 the	 instances	 in	 the	 training	dataset.26	The	∈
value	 is	 calculated	by	 summing	 the	weights	of	 the	 training	 instances	 for	which	 the



predictions	made	by	the	model	are	incorrect.
2.	 Increases	the	weights	for	the	instances	misclassified	by	the	model	using

and	decreases	the	weights	for	the	instances	correctly	classified	by	the	model	using27

3.	 Calculates	a	confidence	factor,	α,	for	the	model	such	that	α	increases	as	∈	decreases.
A	common	way	to	calculate	the	confidence	factor	is

Once	 the	 set	 of	 models	 has	 been	 created,	 the	 ensemble	 makes	 predictions	 using	 a
weighted	aggregate	of	the	predictions	made	by	the	individual	models.	The	weights	used	in
this	 aggregation	 are	 the	 confidence	 factors	 associated	with	 each	model.	 For	 categorical
target	features,	 the	ensemble	returns	the	majority	target	 level	using	a	weighted	vote,	and
for	continuous	target	features,	the	ensemble	returns	the	weighted	mean.

4.4.5.2	Bagging

When	we	use	bagging	(or	bootstrap	aggregating),	each	model	in	the	ensemble	is	trained
on	a	random	sample28	of	the	dataset	where,	importantly,	each	random	sample	is	the	same
size	 as	 the	dataset	 and	 sampling	with	 replacement	 is	 used.	These	 random	 samples	 are
known	as	bootstrap	samples,	and	one	model	is	induced	from	each	bootstrap	sample.	The
reason	that	we	sample	with	replacement	is	that	this	will	result	in	duplicates	within	each	of
the	bootstrap	samples,	and	consequently,	every	bootstrap	sample	will	be	missing	some	of
the	instances	from	the	dataset.	As	a	result,	each	bootstrap	sample	will	be	different,	and	this
means	that	models	trained	on	different	bootstrap	samples	will	also	be	different.29

Decision	 tree	 induction	 algorithms	 are	 particularly	 well	 suited	 to	 use	 with	 bagging.
This	is	because	decision	trees	are	very	sensitive	to	changes	in	the	dataset:	a	small	change
in	the	dataset	can	result	in	a	different	feature	being	selected	to	split	the	dataset	at	the	root,
or	high	up	in	the	tree,	and	this	can	have	a	ripple	effect	throughout	the	subtrees	under	this
node.	 Frequently,	 when	 bagging	 is	 used	 with	 decision	 trees,	 the	 sampling	 process	 is
extended	 so	 that	 each	 bootstrap	 sample	 only	 uses	 a	 randomly	 selected	 subset	 of	 the
descriptive	features	in	the	dataset.	This	sampling	of	the	feature	set	is	known	as	subspace
sampling.	 Subspace	 sampling	 further	 encourages	 the	 diversity	 of	 the	 trees	 within	 the
ensemble	and	has	the	advantage	of	reducing	the	training	time	for	each	tree.

Figure	4.20[166]	illustrates	the	process	of	creating	a	model	ensemble	using	bagging	and
subspace	sampling.	The	combination	of	bagging,	subspace	sampling,	and	decision	trees	is
known	 as	 a	 random	forest	model.	Once	 the	 individual	models	 have	 been	 induced,	 the
ensemble	makes	predictions	by	 returning	 the	majority	vote	or	 the	median	depending	on
the	type	of	prediction	required.	For	continuous	target	features,	the	median	is	preferred	to



the	mean	because	the	mean	is	more	heavily	affected	by	outliers.

Figure	4.20

The	process	of	creating	a	model	ensemble	using	bagging	and	subspace	sampling.

4.4.5.3	Summary

Which	 approach	 should	 we	 use?	 Bagging	 is	 simpler	 to	 implement	 and	 parallelize	 than
boosting,	so	it	may	be	better	with	respect	to	ease	of	use	and	training	time.	With	respect	to
the	general	ability	of	bagging	and	boosting	ensembles	 to	make	accurate	predictions,	 the
results	 reported	 in	 Caruana	 et	 al.	 (2008)	 indicate	 that	 boosted	 decision	 tree	 ensembles
were	 the	 best	 performing	 model	 of	 those	 tested	 for	 datasets	 containing	 up	 to	 4,000
descriptive	 features.	 For	 datasets	 containing	 more	 that	 4,000	 features,	 random	 forest
ensembles	 (based	 on	 bagging)	 performed	 better.	 Caruana	 et	 al.	 (2008)	 suggest	 that	 a
potential	 explanation	 for	 this	 pattern	 of	 results	 is	 that	 boosted	 ensembles	 are	 prone	 to
overfitting,	and	in	domains	with	large	numbers	of	features,	overfitting	becomes	a	serious
problem.30



4.5	Summary
We	have	introduced	information	theory	as	a	method	of	determining	the	shortest	sequence
of	 descriptive	 feature	 tests	 required	 to	 make	 a	 prediction.	 We	 have	 also	 introduced
decision	 tree	 models,	 which	 make	 predictions	 based	 on	 sequences	 of	 tests	 on	 the
descriptive	 feature	 values	 of	 a	 query.	 Consequently,	 decision	 trees	 naturally	 lend
themselves	to	being	trained	using	information-based	metrics.	We	also	introduced	the	ID3
algorithm	 as	 a	 standard	 algorithm	 for	 inducing	 decision	 trees	 from	 a	 dataset.	 The	 ID3
algorithm	uses	a	top-down,	recursive,	depth-first	partitioning	of	the	dataset	to	build	a	tree
model	beginning	at	the	root	node	and	finishing	at	the	leaf	nodes.	Although	this	algorithm
works	quite	well	as	presented,	it	assumes	categorical	features	with	no	missing	values	and
clean	 data.	 The	 algorithm	 can,	 however,	 be	 extended	 to	 handle	 continuous	 descriptive
features	and	continuous	target	features.	We	also	discussed	how	tree	pruning	can	be	used
to	help	with	the	problem	of	overfitting.

The	C4.5	 algorithm	 is	 a	 well-known	 variant	 of	 the	 ID3	 algorithm	 that	 uses	 these
extensions	to	handle	continuous	and	categorical	descriptive	features	and	missing	features.
It	also	uses	post-pruning	to	help	with	overfitting.	J48	is	an	open	source	implementation	of
the	 C4.5	 algorithm	 that	 is	 used	 in	 many	 data	 analytics	 toolkits.	 Another	 well-known
variant	of	the	ID3	algorithm	is	the	CART	algorithm.	The	CART	algorithm	uses	the	Gini
index	 (introduced	 in	Section	4.4.1[144])	 instead	 of	 information	 gain	 to	 select	 features	 to
add	to	the	tree.	This	algorithm	can	also	handle	continuous	target	features.	The	variant	of
the	decision	 tree	 algorithm	 that	 should	be	used	 for	 a	particular	problem	depends	on	 the
nature	 of	 the	 problem	 and	 the	 dataset	 being	 used.	 Performing	 evaluation	 experiments
using	different	model	 types	 is	 really	 the	only	way	 to	determine	which	variant	will	work
best	for	a	specific	problem.

The	 main	 advantage	 of	 decision	 tree	 models	 is	 that	 they	 are	 interpretable.	 It	 is
relatively	easy	to	understand	the	sequences	of	tests	a	decision	tree	carried	out	in	order	to
make	a	prediction.	This	interpretability	is	very	important	in	some	domains.	For	example,
if	 a	 prediction	model	 is	 being	 used	 as	 a	 diagnostic	 tool	 in	 a	medical	 scenario,	 it	 is	 not
sufficient	for	the	system	to	simply	return	a	diagnosis.	In	these	contexts	both	the	doctor	and
the	patient	would	want	 the	 system	 to	provide	 some	explanation	of	how	 it	 arrives	 at	 the
predictions	it	makes.	Decision	tree	models	are	ideal	for	these	scenarios.

Decision	 tree	 models	 can	 be	 used	 for	 datasets	 that	 contain	 both	 categorical	 and
continuous	descriptive	 features.	A	 real	advantage	of	 the	decision	 tree	approach	 is	 that	 it
has	the	ability	to	model	the	interactions	between	descriptive	features.	This	arises	from	the
fact	that	the	tests	carried	out	at	each	node	in	the	tree	are	performed	in	the	context	of	the
results	of	the	tests	on	the	other	descriptive	features	that	were	tested	at	the	preceding	nodes
on	the	path	from	the	root.	Consequently,	if	there	is	an	interaction	effect	between	two	or
more	descriptive	features,	a	decision	tree	can	model	this.	It	is	worth	noting	that	this	ability
is	diminished	if	pre-pruning	is	employed,	as	pre-pruning	may	stop	subtrees	that	capture
descriptive	 feature	 interactions	 from	 forming.	 Finally,	 as	 noted	 earlier,	 decision	 tree
induction	is,	relatively,	robust	to	noise	in	the	dataset	if	pruning	is	used.



There	are,	however,	some	situations	where	decision	tree	models	are	not	the	best	option.
Although	decision	trees	can	handle	both	categorical	and	continuous	features,	they	tend	to
become	quite	large	when	dealing	with	continuous	descriptive	features.	This	can	result	in
trees	becoming	difficult	to	interpret.	Consequently,	if	dealing	with	purely	continuous	data,
other	prediction	models	may	be	more	appropriate,	for	example,	the	error-based	models	we
will	see	in	Chapter	7[323].

Decision	 trees	 also	 have	 difficulty	 with	 domains	 that	 have	 a	 large	 number	 of
descriptive	features,	particularly	if	the	number	of	instances	in	the	training	dataset	is	small.
In	these	situations	overfitting	becomes	very	likely.	The	probability-based	models	we	will
see	in	Chapter	6[247]	do	a	better	job	of	handling	high-dimensional	data.

Another	potential	issue	with	decision	trees	is	that	they	are	eager	learners.	As	such,	they
are	not	suitable	for	modeling	concepts	that	change	over	time,	because	they	will	need	to	be
retrained.	 In	 these	scenarios,	 the	 similarity-based	prediction	models	 that	are	 the	 topic	of
the	 next	 chapter,	 Chapter	 5[179],	 perform	 better,	 as	 these	 models	 can	 be	 incrementally
retrained.

We	 concluded	 this	 chapter	 by	 explaining	model	 ensembles.	 We	 can	 build	 a	 model
ensemble	using	any	type	of	prediction	model—or,	indeed,	a	mixture	of	model	types.	We
don’t	 have	 to	 use	 decision	 trees.	 However,	 decision	 trees	 are	 often	 used	 in	 model
ensembles,	 due	 to	 the	 sensitivity	 of	 tree	 induction	 to	 changes	 in	 the	 dataset,	 and	 this	 is
why	we	have	introduced	model	ensembles	in	this	chapter.	Model	ensembles	are	amongst
the	 most	 powerful	 machine	 learning	 algorithms:	 Caruana	 and	 Niculescu-Mizil	 (2006)
report	 a	 large-scale	 comparison	 between	 seven	 different	 types	 of	 prediction	 model	 in
which	bagged	and	boosted	tree	ensembles	are	reported	as	among	the	best	performing.	The
cost	of	this	high	performance,	however,	is	increased	learning	and	model	complexity.



4.6	Further	Reading
Gleick	(2011)	provides	an	excellent	and	accessible	introduction	to	information	theory	and
its	history.	Shannon	and	Weaver	(1949)	is	taken	as	the	foundational	book	in	information
theory,	and	Cover	and	Thomas	(1991)	is	a	well-regarded	textbook	on	the	topic.	MacKay
(2003)	is	an	excellent	textbook	on	information	theory	and	machine	learning.

Quinlan	 (1986)	 originally	 described	 the	 ID3	 algorithm,	 and	 Quinlan	 (1993)	 and
Breiman	(1993)	are	two	of	the	best-known	books	on	decision	trees.	Loh	(2011)	provides	a
good	overview	of	more	recent	developments	in	tree	induction	algorithms.

Schapire	 (1990)	 is	 an	 example	 of	 some	 of	 the	 early	 work	 on	 weak	 learners	 and
computational	 learning	 theory.	 Freund	 and	 Schapire	 (1995)	 introduced	 the	 AdaBoost
algorithm,	 which	 is	 one	 of	 the	 seminal	 boosting	 algorithms.	 Friedman	 et	 al.	 (2000)
generalized	 the	AdaBoost	 algorithm	 and	 developed	 another	 popular	 boosting	 algorithm,
the	LogitBoost	 algorithm.	Breiman	 (1996)	developed	 the	use	of	bagging	 for	prediction,
and	Breiman	(2001)	introduced	random	forests.	Kuncheva	(2004)	and	Zhou	(2012)	both
provide	good	overviews	of	ensemble	learning.





4.7	Exercises
1.	The	image	below	shows	a	set	of	eight	Scrabble	pieces.

a.	What	is	the	entropy	in	bits	of	the	letters	in	this	set?

b.	What	would	be	the	reduction	in	entropy	(i.e.,	the	information	gain)	in	bits	if	we
split	these	letters	into	two	sets,	one	containing	the	vowels	and	the	other	containing
the	consonants?

c.	What	is	the	maximum	possible	entropy	in	bits	for	a	set	of	eight	Scrabble	pieces?

d.	In	general,	which	is	preferable	when	you	are	playing	Scrabble:	a	set	of	letters	with
high	entropy	or	a	set	of	letters	with	low	entropy?

2.	A	convicted	criminal	who	reoffends	after	release	is	known	as	a	recidivist.	The
table	below	lists	a	dataset	that	describes	prisoners	released	on	parole,	and	whether	they
reoffended	within	two	years	of	release.31

ID GOOD	BEHAVIOR AGE	<	30 DRUG	DEPENDENT RECIDIVIST

1 false true false true

2 false false false false

3 false true false true

4 true false false false

5 true false true true

6 true false false false

This	dataset	lists	six	instances	where	prisoners	were	granted	parole.	Each	of	these
instances	are	described	in	terms	of	three	binary	descriptive	features	(GOOD	BEHAVIOR,
AGE	<	30,	DRUG	DEPENDENT)	and	a	binary	target	feature,	RECIDIVIST.	The	GOOD
BEHAVIOR	feature	has	a	value	of	true	if	the	prisoner	had	not	committed	any
infringements	during	incarceration,	the	AGE	<	30	has	a	value	of	true	if	the	prisoner
was	under	30	years	of	age	when	granted	parole,	and	the	DRUG	DEPENDENT	feature	is
true	if	the	prisoner	had	a	drug	addiction	at	the	time	of	parole.	The	target	feature,
RECIDIVIST,	has	a	true	value	if	the	prisoner	was	arrested	within	two	years	of	being
released;	otherwise	it	has	a	value	of	false.

a.	Using	this	dataset,	construct	the	decision	tree	that	would	be	generated	by	the	ID3



algorithm,	using	entropy-based	information	gain.

b.	What	prediction	will	the	decision	tree	generated	in	part	(a)	of	this	question	return
for	the	following	query?

GOOD	BEHAVIOR	=	false,	AGE	<	30	=	false,

DRUG	DEPENDENT	=	true

c.	What	prediction	will	the	decision	tree	generated	in	part	(a)	of	this	question	return
for	the	following	query?

GOOD	BEHAVIOR	=	true,	AGE	<	30	=	true,

DRUG	DEPENDENT	=	false

3.	The	table	below	lists	a	sample	of	data	from	a	census.32

ID AGE EDUCATION MARITAL	STATUS OCCUPATION ANNUAL	INCOME

1 39 bachelors never	married transport 25K–50K

2 50 bachelors married professional 25K–50K

3 18 high	school never	married agriculture ≤	25K

4 28 bachelors married professional 25K–50K

5 37 high	school married agriculture 25K–50K

6 24 high	school never	married armed	forces ≤	25K

7 52 high	school divorced transport 25K–50K

8 40 doctorate married professional ≥	50K

There	are	four	descriptive	features	and	one	target	feature	in	this	dataset:

AGE,	a	continuous	feature	listing	the	age	of	the	individual
EDUCATION,	a	categorical	feature	listing	the	highest	education	award	achieved	by
the	individual	(high	school,	bachelors,	doctorate)
MARITAL	STATUS	(never	married,	married,	divorced)
OCCUPATION	 (transport	 =	 works	 in	 the	 transportation	 industry;	 professional	 =
doctors,	 lawyers,	 etc.;	 agriculture	 =	 works	 in	 the	 agricultural	 industry;	 armed
forces	=	is	a	member	of	the	armed	forces)
ANNUAL	INCOME,	the	target	feature	with	3	levels	(<25K,	25K–50K,	>50K)

a.	Calculate	the	entropy	for	this	dataset.

b.	Calculate	the	Gini	index	for	this	dataset.



c.	When	building	a	decision	tree,	the	easiest	way	to	handle	a	continuous	feature	is	to
define	a	threshold	around	which	splits	will	be	made.	What	would	be	the	optimal
threshold	to	split	the	continuous	AGE	feature	(use	information	gain	based	on	entropy
as	the	feature	selection	measure)?

d.	Calculate	information	gain	(based	on	entropy)	for	the	EDUCATION,	MARITAL
STATUS,	and	OCCUPATION	features.

e.	Calculate	the	information	gain	ratio	(based	on	entropy)	for	EDUCATION,	MARITAL
STATUS,	and	OCCUPATION	features.

f.	Calculate	information	gain	using	the	Gini	index	for	the	EDUCATION,	MARITAL
STATUS,	and	OCCUPATION	features.

4.	The	diagram	below	shows	a	decision	tree	for	the	task	of	predicting	heart
disease.33	The	descriptive	features	in	this	domain	describe	whether	the	patient	suffers
from	chest	pain	(CHEST	PAIN)	as	well	as	the	blood	pressure	of	the	patient	(BLOOD
PRESSURE).	The	binary	target	feature	is	HEART	DISEASE.	The	table	beside	the	diagram
lists	a	pruning	set	from	this	domain.

Using	the	pruning	set,	apply	reduced	error	pruning	to	the	decision	tree.	Assume	that
the	algorithm	is	applied	in	a	bottom-up,	left-to-right	fashion.	For	each	iteration	of	the
algorithm,	indicate	the	subtrees	considered	as	pruning	candidates,	explain	why	the
algorithm	chooses	to	prune	or	leave	these	subtrees	in	the	tree,	and	illustrate	the	tree
that	results	from	each	iteration.

5.	The	following	table34	lists	a	dataset	containing	the	details	of	five	participants	in	a
heart	disease	study,	and	a	target	feature	RISK	which	describes	their	risk	of	heart
disease.	Each	patient	is	described	in	terms	of	four	binary	descriptive	features

EXERCISE,	how	regularly	do	they	exercise
SMOKER,	do	they	smoke
OBESE,	are	they	overweight
FAMILY,	did	any	of	their	parents	or	siblings	suffer	from	heart	disease



ID EXERCISE SMOKER OBESE FAMILY RISK

1 daily false false yes low

2 weekly true false yes high

3 daily false false no low

4 rarely true true yes high

5 rarely true true no high

a.	As	part	of	the	study	researchers	have	decided	to	create	a	predictive	model	to	screen
participants	based	on	their	risk	of	heart	disease.	You	have	been	asked	to	implement
this	screening	model	using	a	random	forest.	The	three	tables	below	list	three
bootstrap	samples	that	have	been	generated	from	the	above	dataset.	Using	these
bootstrap	samples	create	the	decision	trees	that	will	be	in	the	random	forest	model
(use	entropy	based	information	gain	as	the	feature	selection	criterion).

b.	Assuming	the	random	forest	model	you	have	created	uses	majority	voting,	what
prediction	will	it	return	for	the	following	query:

EXERCISE=rarely,	SMOKER=false,	OBESE=true,	FAMILY=yes

✻	6.	The	following	table	lists	a	dataset	containing	the	details	of	six	patients.	Each
patient	is	described	in	terms	of	three	binary	descriptive	features	(OBESE,	SMOKER,	and
DRINKS	ALCOHOL)	and	a	target	feature	(CANCER	RISK).35

ID OBESE SMOKER DRINKS	ALCOHOL CANCER	RISK

1 true false true low

2 true true true high

3 true false true low

4 false true true high



5 false true false low

6 false true true high

a.	Which	of	the	descriptive	features	will	the	ID3	decision	tree	induction	algorithm
choose	as	the	feature	for	the	root	node	of	the	decision	tree?

b.	When	designing	a	dataset,	it	is	generally	a	bad	idea	if	all	the	descriptive	features	are
indicators	of	the	target	feature	taking	a	particular	value.	For	example,	a	potential
criticism	of	the	design	of	the	dataset	in	this	question	is	that	all	the	descriptive
features	are	indicators	of	the	CANCER	RISK	target	feature	taking	the	same	level,	high.
Can	you	think	of	any	descriptive	features	that	could	be	added	to	this	dataset	that	are
indicators	of	the	low	target	level?

✻	7.	The	following	table	lists	a	dataset	collected	in	an	electronics	shop	showing
details	of	customers	and	whether	they	responded	to	a	special	offer	to	buy	a	new	laptop.

ID AGE INCOME STUDENT CREDIT BUYS

1 <	31 high no bad no

2 <	31 high no good no

3 31	−	40 high no bad yes

4 >	40 med no bad yes

5 >	40 low yes bad yes

6 >	40 low yes good no

7 31	−	40 low yes good yes

8 <	31 med no bad no

9 <	31 low yes good yes

10 >	40 med yes bad yes

11 <	31 med yes good yes

12 31	−	40 med no good yes

13 31	−	40 high yes bad yes

14 >	40 med no good no



This	dataset	has	been	used	to	build	a	decision	tree	to	predict	which	customers	will
respond	to	future	special	offers.	The	decision	tree,	created	using	the	ID3	algorithm,	is
shown	below.

a.	The	information	gain	(calculated	using	entropy)	of	the	feature	AGE	at	the	root	node
of	the	tree	is	0.247.	A	colleague	has	suggested	that	the	STUDENT	feature	would	be
better	at	the	root	node	of	the	tree.	Show	that	this	is	not	the	case.

b.	Yet	another	colleague	has	suggested	that	the	ID	feature	would	be	a	very	effective	at
the	root	node	of	the	tree.	Would	you	agree	with	this	suggestion?

✻	8.	This	table	lists	a	dataset	of	the	scores	students	achieved	on	an	exam	described
in	terms	of	whether	the	student	studied	for	the	exam	(STUDIED)	and	the	energy	level	of
the	lecturer	when	grading	the	student’s	exam	(ENERGY).

ID STUDIED ENERGY SCORE

1 yes tired 65

2 no alert 20

3 yes alert 90

4 yes tired 70

5 no tired 40

6 yes alert 85

7 no tired 35

Which	of	the	two	descriptive	features	should	we	use	as	the	testing	criterion	at	the	root
node	of	a	decision	tree	to	predict	students’	scores?

✻	9.	Calculate	the	probability	of	a	model	ensemble	that	uses	simple	majority
voting	making	an	incorrect	prediction	in	the	following	scenarios.	(Hint:	Understanding



how	to	use	the	binomial	distribution	will	be	useful	in	answering	this	question.)

a.	The	ensemble	contains	11	independent	models,	all	of	which	have	an	error	rate	of
0.2.

b.	The	ensemble	contains	11	independent	models,	all	of	which	have	an	error	rate	of
0.49.

c.	The	ensemble	contains	21	independent	models,	all	of	which	have	an	error	rate	of
0.49.

	

	

	

	

	

	

	

_______________

1	Claude	Shannon	is	considered	to	be	 the	father	of	 information	theory.	Shannon	worked
for	 AT&T	 Bell	 Labs,	 where	 he	 worked	 on	 the	 efficient	 encoding	 of	 messages	 for
telephone	communication.	 It	was	 this	 focus	on	 encoding	 that	motivated	his	 approach	 to
measuring	 information.	 In	 information	 theory,	 the	 meaning	 of	 the	 word	 information
deliberately	 excludes	 the	 psychological	 aspects	 of	 the	 communication	 and	 should	 be
understood	 as	 measuring	 the	 optimal	 encoding	 length	 of	 a	 message	 given	 the	 set	 of
possible	messages	that	could	be	sent	within	the	communication.

2	In	fact,	it	can	be	argued	that	a	preference	toward	shallower	decision	trees	is	a	good	idea
in	general	and	can	be	viewed	as	following	Occam’s	razor.	Occam’s	razor	is	the	principle
of	keeping	theories	as	simple	as	possible.	It	is	named	after	a	fourteenth	century	Franciscan
monk,	 William	 of	 Occam	 (sometimes	 spelled	 Ockham),	 who	 was	 one	 of	 the	 first	 to
formulate	 this	 principle.	 The	 razor	 in	 the	 title	 comes	 from	 the	 idea	 of	 shaving	 off	 any
unnecessary	assumptions	from	a	theory.

3	We	use	some	simple	elements	of	probability	theory	in	this	chapter.	Readers	unfamiliar
with	the	way	probabilities	are	calculated	based	on	the	relative	frequencies	of	events	should
read	the	first	section	of	Appendix	B[541]	before	continuing	with	this	chapter.

4	The	log	of	a	to	the	base	b,	written	as	logb(a),	is	the	number	to	which	we	must	raise	b	to
get	a.	For	example,	log2(8)	=	3	because	23	=	8	and	log5(625)	=	4	because	54	=	625.

5	Using	binary	logs,	the	maximum	entropy	for	a	set	with	two	types	of	elements	is	1.00	bit,
but	the	entropy	for	a	set	with	more	than	two	types	of	elements	may	be	greater	than	1.00
bit.	The	 choice	of	base	when	using	Shannon’s	model	 in	 the	 context	 that	 it	will	 be	used
later	 in	 this	 chapter	 is	 arbitrary.	 The	 choice	 of	 base	 2	 is	 partly	 due	 to	 a	 conventional



computer	 science	 background	 and	 partly	 because	 it	 allows	 us	 to	 use	 the	 bits	 unit	 of
information.

6	This	is	almost	identical	to	the	definition	of	Shannon’s	entropy	model	given	in	Equation
(4.1)[126].	We	have	extended	the	definition	to	include	an	explicit	parameter	for	the	dataset
D	for	which	we	are	computing	the	entropy,	and	we	have	specified	the	base	as	2.

7	Note	that	we	have	shortened	feature	names	in	these	calculations	to	save	space.

8	This	algorithm	was	first	published	in	Quinlan	(1986).

9	Hence	the	name	Iterative	Dichotomizer.

10	See	Guisan	and	Zimmermann	(2000)	and	Franklin	(2009)	for	an	introduction	to	uses	of
predictive	analytics	in	ecological	modeling.

11	 This	 artificially	 generated	 example	 dataset	 is	 inspired	 by	 the	 research	 reported	 in
Franklin	et	al.	(2000).

12	This	is	an	example	of	how	machine	learning	is	an	ill-posed	problem,	as	discussed	in
Section	1.3[5].

13	This	approach	 is	 related	 to	binning	as	described	 in	Section	3.6.2[94].	Simply	binning
continuous	features	to	convert	them	into	categorical	features	is	another	valid	approach	to
handling	continuous	features	in	decision	trees.

14	Sometimes	the	task	of	predicting	a	continuous	target	is	referred	to	as	a	regression	task.

15	 We	 introduce	 variance	 in	 Section	 A.1.2[527],	 and	 although	 we	 extend	 the	 formal
definition	 of	 variance	 here	 to	 include	 a	 dataset	 parameter	 —we	 do	 this	 to	 explicitly
highlight	 the	 fact	 that	 we	 are	 calculating	 the	 variance	 of	 a	 feature	 within	 a	 particular
dataset,	usually	the	dataset	at	a	node	in	the	tree—the	measure	of	variance	we	are	using	is
identical	to	the	variance	defined	in	Equation	(3)[528].

16	It	is	also	common	to	use	a	minimum	partition	variance	as	an	early	stopping	criterion.	If
the	variance	in	the	partition	being	processed	is	below	a	set	threshold,	then	the	algorithm
will	not	partition	the	data	and	will	instead	create	a	leaf	node.

17	This	example	is	inspired	by	the	research	reported	in	Fanaee-T	and	Gama	(2014).	The
dataset	presented	here	is	synthesized	for	this	example;	however,	a	real	bike	sharing	dataset
for	 this	 task	 is	 available	 through	 the	 UCI	 Machine	 Learning	 Repository	 (Bache	 and
Lichman,	 2013)	 at
archive.ics.uci.edu/ml/datasets/Bike+Sharing+Dataset.

18	 This	 means	 that	 the	 distribution	 over	 the	 target	 feature	 will	 be	 different	 between	 a
training	set	sample	and	the	full	population.

19	For	example,	there	might	be	errors	in	the	target	feature	or	descriptive	feature	values	of
one	or	more	of	the	training	instances.

20	Critical	 value	 pruning	 (Mingers,	 1987)	 is	 a	 well	 known	 version	 of	 this	 pruning
technique.



21	See	Frank	(2000)	for	a	detailed	discussion	and	analysis	on	the	use	of	statistical	tests	in
decision	tree	pruning.

22	 In	 the	 context	 of	 decision	 tree	 pruning,	 the	 validation	 set	 is	 often	 referred	 to	 as	 the
pruning	dataset.

23	The	example	of	predicting	where	post-operative	patients	should	be	sent	is	inspired	by
the	 research	 reported	 in	Woolery	 et	 al.	 (1991).	A	 real	 dataset	 related	 to	 this	 research	 is
available	 through	 the	UCI	Machine	Learning	Repository	 (Bache	and	Lichman,	2013)	 at
archive.ics.	uci.edu/ml/datasets/Post-Operative+Patient/.

24	 See	 Esposito	 et	 al.	 (1997)	 and	 Mingers	 (1989)	 for	 overviews	 and	 empirical
comparisons	of	a	range	of	decision	tree	pruning	methods	based	on	error	rate.

25	Schapire	(1999)	gives	a	readable	introduction	to	boosting	by	one	of	the	originators	of
the	technique.

26	Normally	in	machine	learning,	we	do	not	test	a	model	using	the	same	dataset	that	we
use	to	train	it.	Boosting,	however,	is	an	exception	to	this	rule.

27	 Updating	 the	 weights	 using	 Equations	 (4.12)[164]	 and	 (4.13)[164]	 ensures	 that	 the
weights	always	sum	to	1.

28	See	Section	3.6.3[98].

29	 If	we	have	a	very	 large	dataset	we	may—for	computational	 reasons—want	 to	create
bootstrap	 samples	 that	 are	 smaller	 than	 the	 original	 dataset.	 If	 this	 is	 the	 case,	 then
sampling	without	replacement	is	preferred.	This	is	called	subagging.

30	Question	5,	at	 the	end	of	 this	chapter,	explores	model	ensembles	 in	more	detail,	 and
worked	examples	are	provided	in	the	solution.

31	 This	 example	 of	 predicting	 recidivism	 is	 based	 on	 a	 real	 application	 of	 machine
learning:	parole	boards	do	rely	on	machine	learning	prediction	models	to	help	them	when
they	are	making	 their	decisions.	See	Berk	and	Bleich	 (2013)	 for	a	 recent	comparison	of
different	 machine	 learning	 models	 used	 for	 this	 task.	 Datasets	 dealing	 with	 prisoner
recidivism	are	available	online,	for	example:	catalog.data.gov/dataset/prisoner-recidivism/.
The	dataset	presented	here	is	not	based	on	real	data.

32	This	census	dataset	 is	based	on	 the	Census	Income	Dataset	 (Kohavi,	1996),	which	 is
available	 from	 the	 UCI	 Machine	 Learning	 Repository	 (Bache	 and	 Lichman,	 2013)	 at
archive.ics.uci.edu/ml/datasets/Census+Income/.

33	This	example	is	inspired	by	the	research	reported	in	Palaniappan	and	Awang	(2008).

34	The	data	in	this	table	has	been	artificially	generated	for	this	question,	but	is	inspired	by
the	results	from	the	Framingham	Heart	Study:	www.framinghamheartstudy.org.

35	The	data	 in	 this	 table	has	been	artificially	generated	 for	 this	question.	The	American
Cancer	 Society	 does,	 however,	 provide	 information	 on	 the	 causes	 of	 cancer:
www.cancer.org/cancer/cancercauses/.

http://www.framinghamheartstudy.org
http://www.cancer.org/cancer/cancercauses/




5	Similarity-based	Learning

When	I	see	a	bird	that	walks	like	a	duck	and	swims	like	a	duck	and	quacks	like	a	duck,	I
call	that	bird	a	duck.

—James	Whitcomb	Riley

Similarity-based	approaches	to	machine	learning	come	from	the	idea	that	the	best	way	to
make	a	predictions	is	to	simply	look	at	what	has	worked	well	in	the	past	and	predict	the
same	thing	again.	The	fundamental	concepts	required	to	build	a	system	based	on	this	idea
are	feature	spaces	and	measures	of	similarity,	and	these	are	covered	in	the	fundamentals
section	of	 this	 chapter.	These	 concepts	 allow	us	 to	understand	 the	 standard	 approach	 to
building	 similarity-based	 models:	 the	 nearest	 neighbor	 algorithm.	 After	 covering	 the
standard	algorithm,	we	then	look	at	extensions	and	variations	that	allow	us	to	handle	noisy
data	 (the	k	nearest	neighbor,	or	k-NN,	algorithm),	 to	make	predictions	more	efficiently
(k-d	 trees),	 to	 predict	 continuous	 targets,	 and	 to	 handle	 different	 kinds	 of	 descriptive
features	with	varying	measures	of	similarity.	We	also	 take	 the	opportunity	 to	 introduce
the	 use	 of	data	normalization	 and	 feature	 selection	 in	 the	 context	 of	 similarity-based
learning.	These	techniques	are	generally	applicable	to	all	machine	learning	algorithms	but
are	especially	important	when	similarity-based	approaches	are	used.



5.1	Big	Idea
The	 year	 is	 1798,	 and	 you	 are	 Lieutenant-Colonel	 David	 Collins	 of	 HMS	 Calcutta
exploring	 the	 region	around	Hawkesbury	River,	 in	New	South	Wales.	One	day,	 after	 an
expedition	up	the	river	has	returned	to	the	ship,	one	of	the	men	from	the	expedition	tells
you	that	he	saw	a	strange	animal	near	the	river.	You	ask	him	to	describe	the	animal	to	you,
and	he	 explains	 that	he	didn’t	 see	 it	 very	well	 because,	 as	he	 approached	 it,	 the	 animal
growled	at	him,	so	he	didn’t	approach	too	closely.	However,	he	did	notice	that	the	animal
had	webbed	feet	and	a	duck-billed	snout.

In	order	to	plan	the	expedition	for	the	next	day,	you	decide	that	you	need	to	classify	the
animal	so	that	you	can	determine	whether	it	is	dangerous	to	approach	it	or	not.	You	decide
to	 do	 this	 by	 thinking	 about	 the	 animals	 you	 can	 remember	 coming	 across	 before	 and
comparing	the	features	of	these	animals	with	the	features	the	sailor	described	to	you.	Table
5.1[180]	illustrates	this	process	by	listing	some	of	the	animals	you	have	encountered	before
and	how	they	compare	with	 the	growling,	web-footed,	duck-billed	animal	 that	 the	sailor
described.	For	each	known	animal,	you	count	how	many	features	it	has	in	common	with
the	unknown	animal.	At	 the	end	of	 this	process,	you	decide	 that	 the	unknown	animal	 is
most	similar	to	a	duck,	so	that	is	what	it	must	be.	A	duck,	no	matter	how	strange,	is	not	a
dangerous	animal,	so	you	tell	the	men	to	get	ready	for	another	expedition	up	the	river	the
next	day.

Table	5.1

Matching	animals	you	remember	to	the	features	of	the	unknown	animal	described	by	the
sailor.

Images	created	by	Jan	Gillbank,	English	for	the	Australian	Curriculum	website
(www.e4ac.edu.au).	Used	under	Creative	Commons	Attribution	3.0	license.

The	process	of	classifying	an	unknown	animal	by	matching	the	features	of	the	animal
against	 the	 features	of	animals	you	have	encountered	before	neatly	encapsulates	 the	big

http://www.e4ac.edu.au


idea	underpinning	similarity-based	 learning:	 if	you	are	 trying	 to	make	a	prediction	for	a
current	situation	then	you	should	search	your	memory	to	find	situations	that	are	similar	to
the	 current	 one	 and	 make	 a	 prediction	 based	 on	 what	 was	 true	 for	 the	 most	 similar
situation	in	your	memory.	In	this	chapter	we	are	going	to	see	how	this	type	of	reasoning
can	be	implemented	as	a	machine	learning	algorithm.



5.2	Fundamentals
As	 the	 name	 similarity-based	 learning	 suggests,	 a	 key	 component	 of	 this	 approach	 to
prediction	is	defining	a	computational	measure	of	similarity	between	instances.	Often	this
measure	of	similarity	 is	actually	some	form	of	distance	measure.	A	consequence	of	 this,
and	 a	 somewhat	 less	 obvious	 requirement	 of	 similarity-based	 learning,	 is	 that	 if	we	 are
going	to	compute	distances	between	instances,	we	need	to	have	a	concept	of	space	in	the
representation	of	the	domain	used	by	our	model.	In	this	section	we	introduce	the	concept
of	a	feature	space	as	a	representation	for	a	training	dataset	and	then	illustrate	how	we	can
compute	measures	of	similarity	between	instances	in	a	feature	space.



5.2.1	Feature	Space

Table	5.2[182]	 lists	an	example	dataset	containing	two	descriptive	features,	the	SPEED	and
AGILITY	ratings	for	college	athletes	(both	measures	out	of	10),	and	one	target	feature	that
lists	 whether	 the	 athletes	 were	 drafted	 to	 a	 professional	 team.1	 We	 can	 represent	 this
dataset	 in	a	 feature	space	by	 taking	each	of	 the	descriptive	 features	 to	be	 the	axes	of	a
coordinate	system.	We	can	then	place	each	instance	within	the	feature	space	based	on	the
values	of	its	descriptive	features.	Figure	5.1[182]	is	a	scatter	plot	to	illustrate	the	resulting
feature	 space	when	we	do	 this	using	 the	data	 in	Table	5.2[182].	 In	 this	 figure	 SPEED	has
been	plotted	on	the	horizontal	axis,	and	AGILITY	has	been	plotted	on	the	vertical	axis.	The
value	of	the	DRAFT	feature	is	indicated	by	the	shape	representing	each	instance	as	a	point
in	the	feature	space:	triangles	for	no	and	crosses	for	yes.

There	 is	 always	 one	 dimension	 for	 every	 descriptive	 feature	 in	 a	 dataset.	 In	 this
example,	there	are	only	two	descriptive	features,	so	the	feature	space	is	two-dimensional.
Feature	 spaces	 can,	 however,	 have	many	more	 dimensions—in	 document	 classification
tasks,	 for	 example,	 it	 is	 not	 uncommon	 to	 have	 thousands	 of	 descriptive	 features	 and
therefore	 thousands	 of	 dimensions	 in	 the	 associated	 feature	 space.	 Although	 we	 can’t
easily	draw	feature	spaces	beyond	three	dimensions,	the	ideas	underpinning	them	remain
the	same.

We	 can	 formally	 define	 a	 feature	 space	 as	 an	 abstract	m-dimensional	 space	 that	 is
created	 by	 making	 each	 descriptive	 feature	 in	 a	 dataset	 an	 axis	 of	 an	 m-dimensional
coordinate	system	and	mapping	each	instance	in	 the	dataset	 to	a	point	 in	 this	coordinate
system	based	on	the	values	of	its	descriptive	features.

For	similarity-based	learning,	the	nice	thing	about	the	way	feature	spaces	work	is	that
if	 the	 values	 of	 the	 descriptive	 features	 of	 two	 or	more	 instances	 in	 the	 dataset	 are	 the
same,	then	these	instances	will	be	mapped	to	same	point	in	the	feature	space.	Also,	as	the
differences	between	the	values	of	the	descriptive	features	of	two	instances	grows,	so	too
does	the	distance	between	the	points	in	the	feature	space	that	represent	these	instances.	So
the	distance	between	two	points	in	the	feature	space	is	a	useful	measure	of	the	similarity
of	the	descriptive	features	of	the	two	instances.

Table	5.2

The	SPEED	and	AGILITY	ratings	for	20	college	athletes	and	whether	they	were	drafted	by	a
professional	team.

ID SPEED AGILITY DRAFT

1 2.50 6.00 no

2 3.75 8.00 no

3 2.25 5.50 no



4 3.25 8.25 no

5 2.75 7.50 no

6 4.50 5.00 no

7 3.50 5.25 no

8 3.00 3.25 no

9 4.00 4.00 no

10 4.25 3.75 no

11 2.00 2.00 no

12 5.00 2.50 no

13 8.25 8.50 no

14 5.75 8.75 yes

15 4.75 6.25 yes

16 5.50 6.75 yes

17 5.25 9.50 yes

18 7.00 4.25 yes

19 7.50 8.00 yes

20 7.25 5.75 yes



Figure	5.1

A	feature	space	plot	of	the	college	athlete	data	in	Table	5.2[182].



5.2.2	Measuring	Similarity	Using	Distance	Metrics

The	simplest	way	to	measure	the	similarity	between	two	instances,	a	and	b,	in	a	dataset	is
to	measure	the	distance	between	the	instances	in	a	feature	space.	We	can	use	a	distance
metric	to	do	this:	metric(a,	b)	is	a	function	that	returns	the	distance	between	two	instances
a	and	b.	Mathematically,	a	metric	must	conform	to	the	following	four	criteria:

1.	 Non-negativity:	metric(a,	b)	≥	0
2.	 Identity:	metric(a,	b)	=	0	⇔	a	=	b
3.	 Symmetry:	metric(a,	b)	=	metric(b,	a)
4.	 Triangular	Inequality:	metric(a,	b)	≤	metric(a,	c)	+	metric(b,	c)

One	of	 the	best	 known	distance	metrics	 is	Euclidean	distance,	which	 computes	 the
length	of	the	straight	line	between	two	points.	Euclidean	distance	between	two	instances	a
and	b	in	an	m-dimensional	feature	space	is	defined	as

The	 descriptive	 features	 in	 the	 college	 athlete	 dataset	 are	 both	 continuous,	 which
means	 that	 the	 feature	 space	 representing	 this	data	 is	 technically	known	as	a	Euclidean
coordinate	 space,	 and	 we	 can	 compute	 the	 distance	 between	 instances	 in	 it	 using
Euclidean	distance.	For	example,	the	Euclidean	distance	between	instances	d12	(SPEED	=
5.00,	AGILITY	=	2.50)	and	d5	(SPEED	=	2.75,	AGILITY	=	7.50)	from	Table	5.2[182]	is

Another,	less	well-known,	distance	metric	is	the	Manhattan	distance.2	The	Manhattan
distance	between	two	instances	a	and	b	in	a	feature	space	with	m	dimensions	is	defined	as

where	the	abs()	function	returns	the	absolute	value.	For	example,	the	Manhattan	distance
between	 instances	d12	 (SPEED	=	5.00,	AGILITY	=	2.50)	and	d5	 (SPEED	=	2.75,	AGILITY	=
7.50)	in	Table	5.2[182]	is

Figure	 5.2(a)[184]	 illustrates	 the	 difference	 between	 the	 Manhattan	 and	 Euclidean
distances	between	two	points	in	a	two-dimensional	feature	space.	If	we	compare	Equation
(5.1)[183]	 and	 Equation	 (5.2)[183],	 we	 can	 see	 that	 both	 distance	 metrics	 are	 essentially
functions	of	the	differences	between	the	values	of	the	features.	Indeed,	the	Euclidean	and
Manhattan	distances	are	special	cases	of	the	Minkowski	distance,	which	defines	a	family
of	distance	metrics	based	on	differences	between	features.



Figure	5.2

(a)	 A	 generalized	 illustration	 of	 the	 Manhattan	 and	 Euclidean	 distances	 between	 two
points;	(b)	a	plot	of	the	Manhattan	and	Euclidean	distances	between	instances	d12	and	d5
and	between	d12	and	d17	from	Table	5.2[182].

The	Minkowski	distance	 between	 two	 instances	a	 and	b	 in	 a	 feature	 space	with	m
descriptive	features	is	defined	as

where	the	parameter	p	 is	typically	set	to	a	positive	value	and	defines	the	behavior	of	the
distance	 metric.	 Different	 distance	 metrics	 result	 from	 adjusting	 the	 value	 of	 p.	 For
example,	the	Minkowski	distance	with	p	=	1	is	the	Manhattan	distance,	and	with	p	=	2	is
the	Euclidean	distance.	Continuing	 in	 this	manner,	we	 can	define	 an	 infinite	 number	 of
distance	metrics.

The	 fact	 that	we	 can	 define	 an	 infinite	 number	 of	 distance	metrics	 is	 not	merely	 an
academic	 curiosity.	 In	 fact,	 the	 predictions	 produced	 by	 a	 similarity-based	 model	 will
change	 depending	 on	 the	 exact	Minkowski	 distance	 used	 (i.e.,	p	 =	 1,	 2,	…,	∞).	 Larger
values	of	p	place	more	emphasis	on	large	differences	between	feature	values	than	smaller
values	 of	 p	 because	 all	 differences	 are	 raised	 to	 the	 power	 of	 p.	 Consequently,	 the
Euclidean	distance	(with	p	=	2)	is	more	strongly	influenced	by	a	single	large	difference	in
one	feature	than	the	Manhattan	distance	(with	p	=	1).3

We	 can	 see	 this	 if	 we	 compare	 the	 Euclidean	 and	 Manhattan	 distances	 between
instances	d12	and	d5	with	 the	Euclidean	and	Manhattan	distances	between	 instances	d12
and	 d17	 (SPEED	 =	 5.25,	 AGILITY	 =	 9.50).	 Figure	 5.2(b)[184]	 plots	 the	 Manhattan	 and
Euclidean	distances	between	these	pairs	of	instances.

The	 Manhattan	 distances	 between	 both	 pairs	 of	 instances	 are	 the	 same:	 7.25.	 It	 is
striking,	 however,	 that	 the	 Euclidean	 distance	 between	 d12	 and	 d17	 is	 8.25,	 which	 is
greater	than	the	Euclidean	distance	between	d12	and	d5,	which	is	just	5.48.	This	is	because
the	 maximum	 difference	 between	 d12	 and	 d17	 for	 any	 single	 feature	 is	 7	 units	 (for



AGILITY),	whereas	 the	maximum	difference	between	d12	and	d5	on	any	single	 feature	 is
just	5	units	(for	AGILITY).	Because	these	differences	are	squared	in	the	Euclidean	distance
calculation,	the	larger	maximum	single	difference	between	d12	and	d17	results	in	a	larger
overall	distance	being	calculated	for	this	pair	of	instances.	Overall	the	Euclidean	distance
weights	 features	 with	 larger	 differences	 in	 values	 more	 than	 features	 with	 smaller
differences	 in	values.	This	means	 that	 the	Euclidean	difference	 is	more	 influenced	by	 a
single	large	difference	in	one	feature	rather	than	a	lot	of	small	differences	across	a	set	of
features,	whereas	the	opposite	is	true	of	Manhattan	distance.

Although	we	have	an	infinite	number	of	Minkowski-based	distance	metrics	to	choose
from,	Euclidean	distance	and	Manhattan	distance	are	 the	most	commonly	used	of	 these.
The	question	of	which	is	the	best	one	to	use,	however,	still	remains.	From	a	computational
perspective,	the	Manhattan	distance	has	a	slight	advantage	over	the	Euclidean	distance—
the	 computation	 of	 the	 squaring	 and	 the	 square	 root	 is	 saved—and	 computational
considerations	 can	 become	 important	 when	 dealing	 with	 very	 large	 datasets.
Computational	considerations	aside,	Euclidean	distance	is	often	used	as	the	default.



5.3	Standard	Approach:	The	Nearest	Neighbor	Algorithm
We	 now	 understand	 the	 two	 fundamental	 components	 of	 similarity-based	 learning:	 a
feature	 space	 representation	 of	 the	 instances	 in	 a	 dataset	 and	 a	 measure	 of	 similarity
between	instances.	We	can	put	these	components	together	to	define	the	standard	approach
to	similarity-based	learning:	the	nearest	neighbor	algorithm.	The	training	phase	needed
to	build	a	nearest	neighbor	model	is	very	simple	and	just	involves	storing	all	the	training
instances	 in	memory.	In	 the	standard	version	of	 the	algorithm,	 the	data	structure	used	to
store	training	data	is	a	simple	list.	In	the	prediction	stage,	when	the	model	is	used	to	make
predictions	for	new	query	 instances,	 the	distance	 in	 the	feature	space	between	 the	query
instance	 and	 each	 instance	 in	memory	 is	 computed,	 and	 the	 prediction	 returned	 by	 the
model	is	the	target	feature	level	of	the	instance	that	is	nearest	to	the	query	in	the	feature
space.	The	default	distance	metric	used	in	nearest	neighbor	models	is	Euclidean	distance.
Algorithm	 5.1[186]	 provides	 a	 pseudocode	 definition	 of	 the	 algorithm	 for	 the	 prediction
stage.	The	algorithm	really	is	very	simple,	so	we	can	move	straight	to	looking	at	a	worked
example	of	it	in	action.

Algorithm	5.1	Pseudocode	description	of	the	nearest	neighbor	algorithm.
Require:	a	set	of	training	instances

Require:	a	query	instance

1:	Iterate	across	the	instances	in	memory	to	find	the	nearest	neighbor—this	is	the
instance	with	the	shortest	distance	across	the	feature	space	to	the	query	instance.

2:	Make	a	prediction	for	the	query	instance	that	is	equal	to	the	value	of	the	target
feature	of	the	nearest	neighbor.



5.3.1	A	Worked	Example

Assume	that	we	are	using	the	dataset	in	Table	5.2[182]	as	our	labeled	training	dataset,	and
we	want	to	make	a	prediction	to	tell	us	whether	a	query	instance	with	SPEED	=	6.75	and
AGILITY	=	3.00	is	likely	to	be	drafted	or	not.	Figure	5.3[187]	illustrates	the	feature	space	of
the	training	dataset	with	the	query,	represented	by	the	?	marker.

Figure	5.3

A	feature	space	plot	of	the	data	in	Table	5.2[182],	with	the	position	in	the	feature	space	of
the	query	represented	by	the	?	marker.

Just	by	visually	inspecting	Figure	5.3[187],	we	can	see	that	the	nearest	neighbor	to	the
query	 instance	 has	 a	 target	 level	 of	 yes,	 so	 this	 is	 the	 prediction	 that	 the	model	 should
return.	However,	 let’s	 step	 through	how	the	algorithm	makes	 this	prediction.	Remember
that	 during	 the	 prediction	 stage,	 the	 nearest	 neighbor	 algorithm	 iterates	 across	 all	 the
instances	in	the	training	dataset	and	computes	the	distance	between	each	instance	and	the
query.	These	distances	are	then	ranked	from	lowest	to	highest	to	find	the	nearest	neighbor.
Table	 5.3[188]	 shows	 the	 distances	 between	 our	 query	 instance	 and	 each	 instance	 from
Table	5.2[182]	ranked	from	lowest	to	highest.	Just	as	we	saw	in	Figure	5.3[187],	this	shows
that	the	nearest	neighbor	to	the	query	is	instance	d18,	with	a	distance	of	1.2749	and	a	target
level	of	yes.

When	the	algorithm	is	searching	for	the	nearest	neighbor	using	Euclidean	distance,	it	is
partitioning	 the	 feature	 space	 into	 what	 is	 known	 as	 a	Voronoi	 tessellation4,	 and	 it	 is
trying	 to	 decide	 which	 Voronoi	 region	 the	 query	 belongs	 to.	 From	 a	 prediction
perspective,	the	Voronoi	region	belonging	to	a	training	instance	defines	the	set	of	queries
for	which	 the	 prediction	will	 be	 determined	 by	 that	 training	 instance.	 Figure	 5.4(a)[189]
illustrates	 the	Voronoi	 tessellation	of	 the	 feature	 space	using	 the	 training	 instances	 from
Table	 5.2[182]	 and	 shows	 the	 position	 of	 our	 sample	 query	 instance	 within	 this
decomposition.	We	can	see	in	this	figure	that	the	query	is	inside	a	Voronoi	region	defined
by	an	 instance	with	 a	 target	 level	of	yes.	As	 such,	 the	prediction	 for	 the	query	 instance
should	be	yes.

Table	5.3



The	distances	(Dist.)	between	the	query	instance	with	SPEED	=	6.75	and	AGILITY	=	3.00
and	each	instance	in	Table	5.2[182].

	

The	 nearest	 neighbor	 prediction	 algorithm	 creates	 a	 set	 of	 local	 models,	 or
neighborhoods,	across	 the	 feature	space	where	each	model	 is	defined	by	a	subset	of	 the
training	 dataset	 (in	 this	 case,	 one	 instance).	 Implicitly,	 however,	 the	 algorithm	 is	 also
creating	 a	 global	 prediction	 model	 based	 on	 the	 full	 dataset.	 We	 can	 see	 this	 if	 we
highlight	 the	decision	boundary	within	 the	 feature	 space.	The	decision	boundary	 is	 the
boundary	 between	 regions	 of	 the	 feature	 space	 in	 which	 different	 target	 levels	 will	 be
predicted.	We	 can	 generate	 the	 decision	 boundary	 by	 aggregating	 the	 neighboring	 local
models	 (in	 this	 case	Voronoi	 regions)	 that	make	 the	 same	 prediction.	 Figure	 5.4(b)[189]
illustrates	 the	decision	boundary	within	 the	feature	space	for	 the	 two	target	 levels	 in	 the
college	athlete	dataset.	Given	that	the	decision	boundary	is	generated	by	aggregating	the
Voronoi	regions,	it	is	not	surprising	that	the	query	is	on	the	side	of	the	decision	boundary
representing	 the	 yes	 target	 level.	 This	 illustrates	 that	 a	 decision	 boundary	 is	 a	 global
representation	of	the	predictions	made	by	the	local	models	associated	with	each	instance
in	 the	 training	 set.	 It	 also	 highlights	 the	 fact	 that	 the	 nearest	 neighbor	 algorithm	 uses
multiple	 local	 models	 to	 create	 an	 implicit	 global	 model	 to	 map	 from	 the	 descriptive
feature	values	to	the	target	feature.



Figure	5.4

(a)	The	Voronoi	tessellation	of	the	feature	space	for	the	dataset	in	Table	5.2[182]	with	 the
position	of	 the	query	 represented	by	 the	?	marker;	 (b)	 the	decision	boundary	created	by
aggregating	the	neighboring	Voronoi	regions	that	belong	to	the	same	target	level.

One	 of	 the	 advantages	 of	 the	 nearest	 neighbor	 approach	 to	 prediction	 is	 that	 it	 is
relatively	 straightforward	 to	 update	 the	 model	 when	 new	 labeled	 instances	 become
available—we	 simply	 add	 them	 to	 the	 training	 dataset.	 Table	 5.4[190]	 lists	 the	 updated
dataset	when	 the	 example	 query	 instance	with	 its	 prediction	 of	 yes	 is	 included.5	 Figure
5.5(a)[191]	 illustrates	 the	 Voronoi	 tessellation	 of	 the	 feature	 space	 that	 results	 from	 this
update,	and	Figure	5.5(b)[191]	presents	the	updated	decision	boundary.	Comparing	Figure
5.5(b)[191]	with	Figure	5.4(b)[189],	we	can	see	that	the	main	difference	is	that	the	decision
boundary	 in	 the	 bottom	 right	 region	 of	 the	 feature	 space	 has	 moved	 to	 the	 left.	 This
reflects	the	extension	of	the	yes	region	due	to	the	inclusion	of	the	new	instance.

In	 summary,	 the	 inductive	 bias	 underpinning	 similarity-based	 machine	 learning
algorithms	 is	 that	 things	 that	 are	 similar	 (i.e.,	 instances	 that	 have	 similar	 descriptive
features)	also	have	the	same	target	feature	values.	The	nearest	neighbor	algorithm	creates
an	 implicit	global	predictive	model	by	aggregating	 local	models,	or	neighborhoods.	The
definition	 of	 these	 neighborhoods	 is	 based	 on	 similarity	within	 the	 feature	 space	 to	 the
labeled	training	instances.	Predictions	are	made	for	a	query	instance	using	the	target	level
of	 the	 training	 instance	defining	 the	neighborhood	 in	 the	 feature	 space	 that	 contains	 the
query.

Table	5.4

The	extended	version	of	the	college	athletes	dataset.

ID SPEED AGILITY DRAFT

1 2.50 6.00 no

2 3.75 8.00 no



3 2.25 5.50 no

4 3.25 8.25 no

5 2.75 7.50 no

6 4.50 5.00 no

7 3.50 5.25 no

8 3.00 3.25 no

9 4.00 4.00 no

10 4.25 3.75 no

11 2.00 2.00 no

12 5.00 2.50 no

13 8.25 8.50 no

14 5.75 8.75 yes

15 4.75 6.25 yes

16 5.50 6.75 yes

17 5.25 9.50 yes

18 7.00 4.25 yes

19 7.50 8.00 yes

20 7.25 5.75 yes

21 6.75 3.00 yes



5.4	Extensions	and	Variations
We	now	understand	the	standard	nearest	neighbor	algorithm.	The	algorithm,	as	presented,
can	 work	 well	 with	 clean,	 reasonably	 sized	 datasets	 containing	 continuous	 descriptive
features.	 Often,	 however,	 datasets	 are	 noisy,	 very	 large,	 and	 may	 contain	 a	 mixture	 of
different	data	types.	As	a	result,	a	 lot	of	extensions	and	variations	of	 the	algorithm	have
been	developed	to	address	these	issues.	In	this	section	we	describe	the	most	important	of
these.



5.4.1	Handling	Noisy	Data

Throughout	our	worked	example	using	the	college	athlete	dataset,	the	top	right	corner	of
the	 feature	 space	contained	a	no	 region	 (see	Figure	5.4[189]).	 This	 region	 exists	 because
one	of	the	no	instances	occurs	far	away	from	the	rest	of	the	instances	with	this	target	level.
Considering	that	all	 the	immediate	neighbors	of	this	 instance	are	associated	with	the	yes
target	 level,	 it	 is	 likely	 that	 either	 this	 instance	 has	 been	 incorrectly	 labeled	 and	 should
have	a	target	feature	value	of	yes,	or	one	of	the	descriptive	features	for	this	instance	has	an
incorrect	value	and	hence	it	is	in	the	wrong	location	in	the	feature	space.	Either	way,	this
instance	is	likely	to	be	an	example	of	noise	in	the	dataset.

Figure	5.5

(a)	 The	Voronoi	 tessellation	 of	 the	 feature	 space	when	 the	 dataset	 has	 been	 updated	 to
include	the	query	instance;	(b)	the	updated	decision	boundary	reflecting	the	addition	of	the
query	instance	in	the	training	set.

Fundamentally,	 the	nearest	neighbor	algorithm	 is	a	 set	of	 local	models,	 each	defined
using	 a	 single	 instance.	 Consequently,	 the	 algorithm	 is	 sensitive	 to	 noise	 because	 any
errors	in	the	description	or	labeling	of	training	data	results	in	erroneous	local	models	and
hence	incorrect	predictions.	The	most	direct	way	of	mitigating	against	the	impact	of	noise
in	the	dataset	on	a	nearest	neighbor	algorithm	is	to	dilute	the	dependency	of	the	algorithm
on	 individual	 (possibly	 noisy)	 instances.	 To	 do	 this	we	 simply	modify	 the	 algorithm	 to
return	the	majority	target	level	within	the	set	of	k	nearest	neighbors	to	the	query	q:

where	 k(q)	is	the	prediction	of	the	model	 	for	the	query	q	given	the	parameter	of	 the
model	k;	levels(t)	is	the	set	of	levels	in	the	domain	of	the	target	feature,	and	l	is	an	element
of	this	set;	i	iterates	over	the	instances	di	in	increasing	distance	from	the	query	q;	ti	is	the
value	 of	 the	 target	 feature	 for	 instance	di;	 and	δ(ti,	 l)	 is	 the	Kronecker	 delta	 function,
which	takes	two	parameters	and	returns	1	if	they	are	equal	and	0	otherwise.	Figure	5.6(a)
[192]	demonstrates	how	this	approach	can	regularize	the	decision	boundary	for	the	dataset



in	Table	5.4[190].	In	this	figure	we	have	set	k	=	3,	and	this	modification	has	resulted	in	the
no	region	in	the	top	right	corner	of	the	feature	space	disappearing.

Figure	5.6

The	decision	boundary	using	majority	vote	of	the	nearest	3	and	5	instances.

Although,	 in	 our	 example,	 increasing	 the	 set	 of	 neighbors	 from	 1	 to	 3	 removed	 the
noise	issue,	k	=	3	does	not	work	for	every	dataset.	There	is	always	a	trade-off	in	setting	the
value	of	k.	If	we	set	k	too,	low	we	run	the	risk	of	the	algorithm	being	sensitive	to	noise	in
the	data	and	overfitting.	Conversely,	if	we	set	k	too	high,	we	run	the	risk	of	losing	the	true
pattern	 of	 the	 data	 and	 underfitting.	 For	 example,	 Figure	 5.6(b)[192]	 illustrates	 what
happens	to	the	decision	boundary	in	our	example	feature	space	when	k	=	5.	Here	we	can
see	that	the	decision	boundary	may	have	been	pushed	too	far	back	into	the	yes	region	(one
of	 the	 crosses	 is	 now	 on	 the	 wrong	 side	 of	 the	 decision	 boundary).	 So,	 even	 a	 small
increase	in	k	can	have	a	significant	impact	on	the	decision	boundary.

The	risks	associated	with	setting	k	 to	a	high	value	are	particularly	acute	when	we	are
dealing	 with	 an	 imbalanced	 dataset.	 An	 imbalanced	 dataset	 is	 a	 dataset	 that	 contains
significantly	 more	 instances	 of	 one	 target	 level	 than	 another.	 In	 these	 situations,	 as	 k
increases,	the	majority	target	level	begins	to	dominate	the	feature	space.	The	dataset	in	the
college	athlete	example	is	imbalanced—there	are	13	no	instances	and	only	7	yes	instances.
Although	 this	 differential	 between	 the	 target	 levels	 in	 the	 dataset	 may	 not	 seem
substantial,	it	does	have	an	impact	as	k	increases.	Figure	5.7(a)[193]	illustrates	the	decision
boundary	when	k	=	15.	Clearly,	large	portions	of	the	yes	region	are	now	on	the	wrong	side
of	the	decision	boundary.	Moreover,	if	k	is	set	to	a	value	larger	than	15,	the	majority	target
level	dominates	the	entire	feature	space.	Given	the	sensitivity	of	the	algorithm	to	the	value
of	k,	how	should	we	set	this	parameter?	The	most	common	way	to	tackle	this	issue	is	to
perform	evaluation	 experiments	 to	 investigate	 the	performance	of	models	with	different
values	for	k	and	to	select	the	one	that	performs	best.	We	return	to	these	kinds	of	evaluation
experiments	in	Chapter	8[397].



Figure	5.7

(a)	 The	 decision	 boundary	 using	 majority	 vote	 of	 the	 nearest	 15	 neighbors;	 (b)	 the
weighted	k	nearest	neighbor	model	decision	boundary	(with	k	=	21).

Another	way	 to	address	 the	problem	of	how	 to	 set	k	 is	 to	use	 a	weighted	k	nearest
neighbor	 approach.	 The	 problem	 with	 setting	 k	 to	 a	 high	 value	 arises	 because	 the
algorithm	starts	taking	into	account	neighbors	that	are	far	away	from	the	query	instance	in
the	feature	space.	As	a	result,	 the	algorithm	tends	toward	the	majority	target	level	in	the
dataset.	 One	 way	 of	 counterbalancing	 this	 tendency	 is	 to	 use	 a	 distance
weighted	 k	nearest	 neighbor	 approach.	When	 a	 distance	 weighted	 k	 nearest	 neighbor
approach	is	used,	the	contribution	of	each	neighbor	to	the	prediction	is	a	function	of	the
inverse	 distance	 between	 the	 neighbor	 and	 the	 query.	 So	 when	 calculating	 the	 overall
majority	vote	across	the	k	nearest	neighbors,	 the	votes	of	 the	neighbors	 that	are	close	 to
the	query	get	a	lot	of	weight,	and	the	votes	of	the	neighbors	that	are	further	away	from	the
query	get	 less	weight.	The	easiest	way	to	 implement	 this	weighting	scheme	is	 to	weight
each	neighbor	by	the	reciprocal6	of	the	squared	distance	between	the	neighbor	d	and	 the
query	q:

Using	the	distance	weighted	k	nearest	neighbor	approach,	the	prediction	returned	for	a
given	query	is	the	target	level	with	the	highest	score	when	we	sum	the	weights	of	the	votes
of	 the	 instances	 in	 the	 neighborhood	 of	 k	 nearest	 neighbors	 for	 each	 target	 level.	 The
weighted	k	nearest	neighbor	model	is	defined	as

where	 k(q)	is	the	prediction	of	the	model	 	for	the	query	q	given	the	parameter	of	 the
model	k;	levels(t)	is	the	set	of	levels	in	the	domain	of	the	target	feature,	and	l	is	an	element
of	this	set;	i	iterates	over	the	instances	di	in	increasing	distance	from	the	query	q;	ti	is	the
value	 of	 the	 target	 feature	 for	 instance	di;	 and	δ(ti,	 l)	 is	 the	Kronecker	 delta	 function,
which	takes	two	parameters	and	returns	1	if	they	are	equal	and	0	otherwise.	The	reason	we



multiply	by	the	Kronecker	delta	function	is	to	ensure	that	in	calculating	the	score	for	each
of	the	candidate	target	levels,	we	include	only	the	weights	for	the	instances	whose	target
feature	value	matches	that	level.

When	 we	 weight	 the	 contribution	 to	 a	 prediction	 of	 each	 of	 the	 neighbors	 by	 the
reciprocal	of	the	distance	to	the	query,	we	can	actually	set	k	to	be	equal	to	the	size	of	the
training	set	and	therefore	include	all	the	training	instances	in	the	prediction	process.	The
issue	of	losing	the	true	pattern	of	the	data	is	less	acute	now	because	the	training	instances
that	 are	 very	 far	 away	 from	 the	 query	 naturally	 won’t	 have	 much	 of	 an	 effect	 on	 the
prediction.

Figure	 5.7(b)[193]	 shows	 the	 decision	 boundary	 for	 a	 weighted	 k	 nearest	 neighbor
model	 for	 the	dataset	 in	Table	5.4[190]	with	k	=	21	 (the	 size	of	 the	dataset)	 and	weights
computed	 using	 the	 reciprocal	 of	 the	 squared	 distance.	One	 of	 the	most	 striking	 things
about	 this	 plot	 is	 that	 the	 top-right	 region	 of	 the	 feature	 space	 again	 belongs	 to	 the	no
region.	This	may	not	be	a	good	thing	if	this	instance	is	due	to	noise	in	the	data,	and	this
demonstrates	 that	 there	 is	no	silver	bullet	 solution	 to	 handling	noise	 in	 datasets.	This	 is
one	of	the	reasons	that	creating	a	data	quality	report7	and	spending	time	on	cleaning	the
dataset	 is	 such	 an	 important	 part	 of	 any	machine	 learning	 project.	 That	 said,	 there	 are
some	other	features	of	this	plot	that	are	encouraging.	For	example,	the	size	of	a	no	region
in	the	top	right	of	the	feature	space	is	smaller	than	the	corresponding	region	for	the	nearest
neighbor	model	with	k	=	1	 (see	Figure	5.4(b)[189]).	So	by	giving	all	 the	 instances	 in	 the
dataset	a	weighted	vote,	we	have	a	 least	reduced	the	 impact	of	 the	noisy	instance.	Also,
the	decision	boundary	is	much	smoother	than	the	decision	boundaries	of	the	other	models
we	have	looked	at	in	this	section.	This	may	indicate	that	the	model	is	doing	a	better	job	of
modeling	the	transition	between	the	different	target	levels.

Using	a	weighted	k	nearest	neighbor	model	does	not	require	that	we	set	k	equal	to	the
size	of	the	dataset,	as	we	did	in	this	example.	It	may	be	possible	to	find	a	value	for	k—
using	evaluation	experiments—that	eliminates,	or	further	reduces,	 the	effect	of	 the	noise
on	 the	 model.	 As	 is	 so	 often	 the	 case	 in	 machine	 learning,	 fitting	 the	 parameters	 of	 a
model	is	as	important	as	selecting	which	model	to	use.

Finally,	 it	 is	worth	mentioning	two	situations	where	 this	weighted	k	nearest	neighbor
approach	can	be	problematic.	The	first	is	if	the	dataset	is	very	imbalanced,	then	even	with
a	weighting	applied	to	the	contribution	of	the	training	instances,	the	majority	target	level
may	dominate.	The	second	is	when	the	dataset	is	very	large,	which	means	that	computing
the	 reciprocal	 of	 squared	 distance	 between	 the	 query	 and	 all	 the	 training	 instances	 can
become	too	computationally	expensive	to	be	feasible.



5.4.2	Efficient	Memory	Search

The	fact	 that	 the	nearest	neighbor	algorithm	stores	 the	entire	 training	dataset	 in	memory
has	 a	 negative	 effect	 on	 the	 time	 complexity	 of	 the	 algorithm.	 In	 particular,	 if	 we	 are
working	with	a	large	dataset,	the	time	cost	in	computing	the	distances	between	a	query	and
all	 the	 training	 instances	 and	 retrieving	 the	 k	 nearest	 neighbors	 may	 be	 prohibitive.
Assuming	that	the	training	set	will	remain	relatively	stable,	this	time	issue	can	be	offset	by
investing	 in	 some	 one-off	 computation	 to	 create	 an	 index	 of	 the	 instances	 that	 enables
efficient	retrieval	of	the	nearest	neighbors	without	doing	an	exhaustive	search	of	the	entire
dataset.

The	k-d	tree,8	which	is	short	for	k-dimensional	tree,	is	one	of	the	best	known	of	these
indices.	A	k-d	tree	is	a	balanced	binary	tree9	in	which	each	of	the	nodes	in	the	tree	(both
interior	 and	 leaf	 nodes)	 index	 one	 of	 the	 instances	 in	 a	 training	 dataset.	 The	 tree	 is
constructed	 so	 that	 nodes	 that	 are	 nearby	 in	 the	 tree	 index	 training	 instances	 that	 are
nearby	in	the	feature	space.

To	 construct	 a	 k-d	 tree,	we	 first	 pick	 a	 feature	 and	 split	 the	 data	 into	 two	 partitions
using	 the	median	value	of	 this	 feature.10	We	 then	 recursively	 split	 each	of	 the	 two	new
partitions,	stopping	 the	recursion	when	there	are	fewer	 than	 two	instances	 in	a	partition.
The	main	decision	to	be	made	in	this	process	is	how	to	select	the	feature	to	split	on.	The
most	common	way	to	do	this	is	to	define	an	arbitrary	order	over	the	descriptive	features
before	we	begin	building	the	tree.	Then,	using	the	feature	at	the	start	of	the	list	for	the	first
split,	we	select	 the	next	 feature	 in	 the	 list	 for	each	subsequent	split.	 If	we	get	 to	a	point
where	we	have	already	split	on	all	the	features,	we	go	back	to	the	start	of	the	feature	list.

Every	time	we	partition	the	data,	we	add	a	node	with	two	branches	to	the	k-d	tree.	The
node	indexes	the	instance	that	had	the	median	value	of	the	feature,	the	left	branch	holds	all
the	 instances	 that	 had	 values	 less	 than	 the	 median,	 and	 the	 right	 branch	 holds	 all	 the
instances	 that	had	values	greater	 than	 the	median.	The	recursive	partitioning	 then	grows
each	of	these	branches	in	a	depth-first	manner.

Each	node	in	a	k-d	 tree	defines	a	boundary	that	partitions	the	feature	space	along	the
median	value	of	the	feature	the	data	was	split	on	at	that	node.	Technically	these	boundaries
are	hyperplanes11	and,	as	we	shall	see,	play	an	important	role	when	we	are	using	the	k-d
tree	to	find	the	nearest	neighbor	for	a	query.	In	particular,	the	hyperplane	at	a	node	defines
the	boundary	between	the	instances	stored	on	each	of	the	subtrees	below	the	node.	We	will
find	this	useful	when	we	are	trying	to	decide	whether	to	search	both	branches	of	a	node
when	we	are	looking	for	the	nearest	neighbor	or	whether	we	can	prune	one	of	them.

Figure	5.8[198]	illustrates	the	creation	of	the	first	two	nodes	of	a	k-d	tree	for	the	college
athlete	 dataset	 in	 Table	 5.4[190].	 In	 generating	 this	 figure	 we	 have	 assumed	 that	 the
algorithm	selected	the	features	to	split	on	using	the	following	ordering	over	the	features:
SPEED,	AGILITY.	The	non-leaf	nodes	in	the	trees	list	the	ID	of	the	instance	the	node	indexes
and	 the	 feature	 and	 value	 pair	 that	 define	 the	 hyperplane	 partition	 on	 the	 feature	 space
defined	 by	 the	 node.	 Figure	 5.9(a)[199]	 shows	 the	 complete	 k-d	 tree	 generated	 for	 the



dataset,	and	Figure	5.9(b)[199]	shows	the	partitioning	of	the	feature	space	as	defined	by	the
k-d	tree.	The	lines	in	this	figure	indicate	the	hyperplanes	partitioning	the	feature	space	that
were	created	by	the	splits	encoded	in	the	non-leaf	nodes	in	the	tree.	The	heavier	the	weight
of	the	line	used	to	plot	the	hyperplane,	the	earlier	in	the	tree	the	split	occurred.

Once	we	 have	 stored	 the	 instances	 in	 a	 dataset	 in	 a	k-d	 tree,	we	 can	 use	 the	 tree	 to
quickly	 retrieve	 the	 nearest	 neighbor	 for	 a	 query	 instance.	 Algorithm	 5.2[200]	 lists	 the
algorithm	we	 use	 to	 retrieve	 the	 nearest	 neighbor	 for	 a	 query.	 The	 algorithm	 starts	 by
descending	 through	 the	 tree	 from	 the	 root	node,	 taking	 the	branch	at	 each	 interior	node
that	matches	the	value	of	the	query	for	the	feature	tested	at	that	node,	until	it	comes	to	a
leaf	node	(Line	3	of	the	algorithm).	The	algorithm	stores	the	instance	indexed	by	the	leaf
node	 in	 the	best	variable	and	sets	 the	best-distance	 variable	 to	 the	distance	between	 the
instance	 indexed	 by	 the	 leaf	 node	 and	 the	 query	 instance	 (Lines	 5,	 6,	 and	 7).
Unfortunately,	 there	 is	 no	 guarantee	 that	 this	 instance	 will	 be	 the	 nearest	 neighbor,
although	 it	 should	be	a	good	approximate	neighbor	 for	 the	query.	So	 the	algorithm	then
searches	the	tree	looking	for	instances	that	are	closer	to	the	query	than	the	instance	stored
in	best	(Lines	4-11	of	the	algorithm	control	this	search).

At	each	node	encountered	in	the	search,	the	algorithm	does	three	things.	First,	it	checks
that	 the	node	 is	not	NULL.	 If	 this	 is	 the	case,	 then	 the	algorithm	has	 reached	 the	parent
node	of	the	root	of	the	tree	and	should	terminate	(Line	4)	by	returning	the	instance	stored
in	 best	 (Line	 12).	 Second,	 the	 algorithm	 checks	 if	 the	 instance	 indexed	 by	 the	 node	 is
closer	to	the	query	than	the	instance	at	the	current	best	node.	If	it	is,	best	and	best-distance
are	updated	to	reflect	this	(Lines	5,	6,	and	7).	Third,	the	algorithm	chooses	which	node	it
should	move	to	next:	the	parent	of	the	node	or	a	node	in	the	subtree	under	the	other	branch
of	the	node	(Lines	8,	9,	10,	11).



Figure	5.8

(a)	The	k-d	 tree	generated	for	 the	dataset	 in	Table	5.4[190]	after	 the	 initial	split	using	 the
SPEED	feature	with	a	threshold	of	4.5;	(b)	the	partitioning	of	the	feature	space	by	the	k-d
tree	in	(a);	(c)	the	k-d	tree	after	the	dataset	at	the	left	child	of	the	root	has	been	split	using
the	AGILITY	feature	with	a	threshold	of	5.5;	and	(d)	the	partitioning	of	the	feature	space	by
the	k-d	tree	in	(c).

The	 decision	 of	 which	 node	 to	move	 to	 next	 is	 made	 by	 checking	 if	 any	 instances
indexed	 by	 nodes	 in	 the	 subtree	 on	 the	 other	 branch	 of	 the	 current	 node	 could	 be	 the
nearest	neighbor.	The	only	way	that	this	can	happen	is	if	there	is	at	least	one	instance	on
the	other	side	of	the	hyperplane	boundary	that	bisects	the	node	that	is	closer	to	the	query
than	the	current	best-distance.	Fortunately,	because	the	hyperplanes	created	by	the	k-d	tree
are	all	axis-aligned,	the	algorithm	can	test	for	this	condition	quite	easily.	The	hyperplane
boundary	bisecting	a	node	is	defined	by	the	value	used	to	split	 the	descriptive	feature	at
the	node.	This	means	that	we	only	need	to	test	whether	the	difference	between	the	value
for	 this	 feature	 for	 the	 query	 instance	 and	 the	 value	 for	 this	 feature	 that	 defines	 the
hyperplane	 is	 less	 than	 the	 best-distance	 (Line	 8).	 If	 this	 test	 succeeds,	 the	 algorithm
descends	to	a	leaf	node	of	this	subtree,	using	the	same	process	it	used	to	find	the	original
leaf	 node	 (Line	 9).	 If	 this	 test	 fails,	 the	 algorithm	 ascends	 the	 tree	 to	 the	 parent	 of	 the
current	 node	 and	 prunes	 the	 subtree	 containing	 the	 region	 on	 the	 other	 side	 of	 the
hyperplane	without	testing	the	instances	in	that	region	(Line	11).	In	either	case,	the	search



continues	from	the	new	node	as	before.	The	search	finishes	when	it	reaches	the	root	node
and	 both	 its	 branches	 have	 been	 either	 searched	 or	 pruned.	 The	 algorithm	 returns	 the
instance	stored	in	the	best	variable	as	the	nearest	neighbor.

Figure	5.9

(a)	The	final	k-d	tree	generated	for	the	dataset	in	Table	5.4[190];	(b)	the	partitioning	of	the
feature	space	defined	by	this	k-d	tree.

Algorithm	5.2	Pseudocode	description	of	the	k-d	tree	nearest	neighbor	retrieval
algorithm.

Require:	query	instance	q	and	a	k-d	tree	kdtree

1:	best	=	null

2:	best-distance	=	∞

3:	node	=	descendTree(kdtree,q)

4:	while	node!	=	NULL	do

5:				if	distance(q,node)	<	best-distance	then



6:						best	=	node

7:						best-distance	=	distance(q,node)

8:				if	boundaryDist(q,	node)	<	best-distance	then

9:						node	=	descendtree(node,q)

10:				else

11:						node	=	parent(node)

12:	return	best

We	can	demonstrate	how	this	retrieval	algorithm	works	by	showing	how	the	algorithm
finds	 the	 nearest	 neighbor	 for	 a	 query	 instance	with	 SPEED	 =	 6.00	 and	AGILITY	 =	 3.50.
Figure	5.10(a)[201]	 illustrates	 the	 first	 stage	 of	 the	 retrieval	 of	 the	 nearest	 neighbor.	The
bold	lines	show	the	path	taken	to	descend	the	tree	from	the	root	to	a	leaf	node	based	on	the
values	of	 the	query	instance	(use	Figure	5.9(a)[199]	 to	 trace	 this	path	 in	detail).	This	 leaf
node	 indexes	 instance	 d12	 (SPEED	 =	 5.00,	 AGILITY	 =	 2.50).	 Because	 this	 is	 the	 initial
descent	 down	 the	 tree,	 best	 is	 automatically	 set	 to	 d12,	 and	 best-distance	 is	 set	 to	 the
distance	between	instance	d12	and	the	query,	which	is	1.4142	(we	use	Euclidean	distance
throughout	this	example).	At	this	point	the	retrieval	process	will	have	executed	Lines	1–7
of	the	algorithm.

Figure	5.10(b)[201]	illustrates	the	location	of	the	query	in	the	feature	space	(the	?).	The
dashed	circle	centered	on	 the	query	 location	has	a	 radius	equal	 to	 the	best-distance.	We
can	 see	 in	 Figure	 5.10(b)[201]	 that	 this	 circle	 intersects	 with	 the	 triangle	 marking	 the
location	of	d12,	which	is	currently	stored	in	best	 (i.e.,	 it	 is	our	current	best	guess	for	the
nearest	 neighbor).	 This	 circle	 covers	 the	 area	 in	 the	 feature	 space	 that	 we	 know	 must
contain	all	 the	 instances	 that	are	closer	 to	 the	query	 than	best.	Although	 this	example	 is
just	 two	 dimensional,	 the	 k-d	 tree	 algorithm	 can	 work	 in	 a	 many	 dimensional	 feature
space,	so	we	will	use	the	term	target	hypersphere12	to	denote	the	region	around	the	query
that	 is	 inside	the	best-distance.	We	can	see	in	Figure	5.10(b)[201]	 that	 instance	d12	 is	not
the	 true	 nearest	 neighbor	 to	 the	 query—several	 other	 instances	 are	 inside	 the	 target
hypersphere.



Figure	5.10

(a)	The	path	taken	from	the	root	node	to	a	leaf	node	when	we	search	the	tree	with	a	query
SPEED	=	6.00,	AGILITY	=	3.50;	(b)	the	?	marks	the	location	of	the	query,	the	dashed	circle
plots	the	extent	of	the	target,	and	for	convenience	in	the	discussion,	we	have	labeled	some
of	the	nodes	with	the	IDs	of	the	instances	they	index	(12,	15,	18,	and	21).

The	search	process	must	now	move	to	a	new	node	(Lines	8,	9,	10,	and	11).	This	move
is	 determined	 by	 Line	 8,	 which	 checks	 if	 the	 distance	 between	 the	 query	 and	 the
hyperplane13	 defined	by	 the	 current	 node	 is	 less	 than	 the	value	of	best-distance.	 In	 this
case,	however,	 the	current	node	is	a	leaf	node,	so	it	does	not	define	a	hyperplane	on	the
feature	space.	As	a	result,	the	condition	checked	in	Line	8,	fails	and	the	search	moves	to
the	parent	node	of	the	current	node	(Line	11).

This	 new	 node	 indexes	d15.	 The	 node	 is	 not	NULL,	 so	 the	while	 loop	 on	 Line	 4
succeeds.	The	distance	between	instance	d15	and	the	query	instance	is	3.0208,	which	is	not
less	than	the	current	value	of	best-distance,	so	the	if	statement	on	Line	5	will	fail.	We	can
see	 this	 easily	 in	 Figure	5.10(b)[201],	 as	d15	 is	well	 outside	 the	 target	 hypersphere.	 The
search	will	 then	move	 to	a	new	node	 (Lines	8,	9,	10,	and	11).	To	calculate	 the	distance
between	 the	 query	 instance	 and	 the	 hyperplane	 defined	 by	 the	 node	 indexing	 d15	 (the
boundaryDist	 function	on	Line	8),	we	use	only	 the	AGILITY	 feature	 as	 it	 is	 the	 splitting
feature	at	this	node.	This	distance	is	2.75,	which	is	greater	than	best-distance	(we	can	see
this	 in	Figure	5.10(b)[201],	 as	 the	 hyperplane	 defined	 at	 the	 node	 indexing	d15	 does	 not
intersect	with	 the	 target	hypersphere).	This	means	 that	 the	if	 statement	on	Line	8	fails,
and	the	search	moves	to	the	parent	of	the	current	node	(Line	11).

This	 new	 node	 indexes	 d21,	 which	 is	 not	 NULL,	 so	 the	 while	 loop	 on	 Line	 4
succeeds.	The	distance	between	the	query	instance	and	d21	 is	0.9014,	which	 is	 less	 than
the	value	stored	in	best-distance	(we	can	see	this	in	Figure	5.10(b)[201],	as	d21	is	inside	the
target	hypersphere).	Consequently,	the	if	statement	on	Line	5	succeeds,	and	best	is	set	to
d21,	and	best-distance	 is	 set	 to	0.9014	 (Lines	6	and	7).	Figure	5.11(a)[203]	 illustrates	 the
extent	of	the	revised	target	hypersphere	once	these	updates	have	been	made.

The	 if	 statement	 on	 Line	 8,	 which	 tests	 the	 distance	 between	 the	 query	 and	 the



hyperplane	defined	by	the	current	best	node,	 is	executed	next.	The	distance	between	the
query	 instance	and	 the	hyperplane	defined	by	 the	node	 that	 indexes	 instance	d21	 is	0.75
(recall	that	because	the	hyperplane	at	this	node	is	defined	by	the	SPEED	value	of	6.75,	we
only	 compare	 this	 to	 the	SPEED	 value	 of	 the	 query	 instance,	 6.00).	This	 distance	 is	 less
than	the	current	best-distance	(in	Figure	5.11(a)[203],	 the	hyperplane	defined	by	 the	node
that	indexes	instance	d21	intersects	with	the	target	hypersphere).	The	if	statement	on	line
8	will	succeed,	and	the	search	process	will	descend	down	the	other	branch	of	the	current
node	 (line	9),	because	 there	 is	possibly	an	 instance	closer	 than	 the	current	best	 instance
stored	down	this	branch.

It	is	obvious	from	Figure	5.11(a)[203]	that	the	search	process	will	not	find	any	instances
closer	 to	 the	 query	 than	d21	 nor	 are	 there	 any	 other	 hyperplanes	 that	 intersect	with	 the
target	hypersphere.	So	 the	 rest	of	 the	 search	process	will	 involve	a	descent	down	 to	 the
node,	indexing	d18	and	a	direct	ascent	to	the	root	node	where	the	search	process	will	then
terminate	and	return	d21	as	the	nearest	neighbor	(we	will	skip	the	details	of	these	steps).
Figure	5.11(b)[203]	illustrates	the	parts	of	the	k-d	tree	that	were	checked	or	pruned	during
the	search	process.

Figure	5.11

(a)	The	target	hypersphere	after	instance	d21	has	been	stored	as	best,	and	best-distance	has
been	updated;	(b)	the	extent	of	the	search	process:	white	nodes	were	checked	by	the	search
process,	and	the	node	with	the	bold	outline	indexed	instance	d21,	which	was	returned	as
the	nearest	neighbor	to	the	query.	Grayed-out	branches	indicate	the	portions	of	the	k-d	tree
pruned	from	the	search.

In	this	example,	using	a	k-d	 tree	saved	us	calculating	 the	distance	between	the	query
node	and	fourteen	of	the	instances	in	the	dataset.	This	is	the	benefit	of	using	a	k-d	tree	and
becomes	especially	apparent	when	datasets	are	very	large.	However,	using	a	k-d	tree	is	not
always	appropriate;	k-d	trees	are	reasonably	efficient	when	there	are	a	lot	more	instances
than	there	are	features.	As	a	rough	rule	of	thumb,	we	should	have	around	2m	instances	for
m	 descriptive	 features.	 Once	 this	 ratio	 drops,	 the	 efficiency	 of	 the	 k-d	 tree	 diminishes.
Other	approaches	to	efficient	memory	access	have	been	developed,	for	example,	locality
sensitivity	 hashing,	 R-Trees,	 B-Trees,	M-Trees,	 and	 VoRTrees	 among	 others.	 All	 these



approaches	 are	 similar	 to	 k-d	 trees	 in	 that	 they	 are	 trying	 to	 set	 up	 indexes	 that	 enable
efficient	 retrieval	 from	 a	 dataset.	 Obviously,	 the	 differences	 between	 them	 make	 them
more	 or	 less	 appropriate	 for	 a	 given	 dataset,	 and	 it	 often	 requires	 some	 experiments	 to
figure	out	which	is	the	best	one	for	a	given	problem.

We	 can	 extend	 this	 algorithm	 to	 retrieve	 the	 k	 nearest	 neighbors	 by	 modifying	 the
search	to	use	distance	of	the	kth	closest	instance	found	as	best-distance.	We	can	also	add
instances	 to	 the	 tree	 after	 if	 has	been	 created.	This	 is	 important	 because	one	of	 the	key
advantages	of	a	nearest	neighbor	approach	is	that	it	can	be	updated	with	new	instances	as
more	labeled	data	arrive.	To	add	a	new	instance	to	the	tree,	we	start	at	the	root	node	and
descend	to	a	leaf	node,	taking	the	left	or	right	branch	of	each	node	depending	on	whether
the	value	of	the	instance’s	feature	is	less	than	or	greater	than	the	splitting	value	used	at	the
node.	Once	we	get	to	a	leaf	node,	we	simply	add	the	new	instance	as	either	the	left	or	the
right	 child	 of	 the	 leaf	 node.	Unfortunately,	 adding	 nodes	 in	 this	way	 results	 in	 the	 tree
becoming	unbalanced,	which	can	have	a	detrimental	effect	on	the	efficiency	of	the	tree.	So
if	we	add	a	lot	of	new	instances,	we	may	find	that	the	tree	has	become	too	unbalanced	and
that	we	will	need	to	construct	a	new	tree	from	scratch	using	the	extended	dataset	to	restore
the	efficiency	of	the	retrieval	process.

Table	5.5

A	dataset	listing	salary	and	age	information	for	customers	and	whether	they	purchased	a
product.

ID SALARY AGE PURCH

1 53,700 41 no

2 65,300 37 no

3 48,900 45 yes

4 64,800 49 yes

5 44,200 30 no

6 55,900 57 yes

7 48,600 26 no

8 72,800 60 yes

9 45,300 34 no

10 73,200 52 yes



5.4.3	Data	Normalization

A	financial	institution	is	planning	a	direct	marketing	campaign	to	sell	a	pension	product	to
its	customer	base.	In	preparation	for	this	campaign,	the	financial	institution	has	decided	to
create	 a	 nearest	 neighbor	 model	 using	 a	 Euclidean	 distance	 metric	 to	 predict	 which
customers	are	most	likely	to	respond	to	direct	marketing.	This	model	will	be	used	to	target
the	 marketing	 campaign	 only	 at	 those	 customers	 that	 are	 most	 likely	 to	 purchase	 the
pension	product.	To	train	the	model,	the	institution	has	created	a	dataset	from	the	results	of
previous	 marketing	 campaigns	 that	 list	 customer	 information—specifically	 the	 annual
salary	 (SALARY)	 and	 age	 (AGE)	 of	 the	 customer—and	 whether	 the	 customer	 bought	 a
product	 after	 they	 had	 been	 contacted	 via	 a	 direct	 marketing	 message	 (PURCH).	 Table
5.5[204]	lists	a	sample	from	this	dataset.

Using	this	nearest	neighbor	model,	the	marketing	department	wants	to	decide	whether
they	should	contact	a	customer	with	the	following	profile:

Figure	5.12

(a)	The	 feature	 space	defined	by	 the	SALARY	and	AGE	 features	 in	Table	5.5[204];	 (b)	 the
normalized	SALARY	and	AGE	feature	space	based	on	the	normalized	data	in	Table	5.7[208].
The	 instances	are	 labeled	with	 their	 IDs;	 triangles	 represent	 instances	with	 the	no	 target
level;	and	crosses	represent	instances	with	the	yes	target	level.	The	location	of	the	query
SALARY	=	56,000,	AGE	=	35	is	indicated	by	the	?.

SALARY	=	56,000	and	AGE	=	35.	Figure	5.12(a)[205]	 presents	 a	plot	 of	 the	 feature	 space
defined	 by	 the	 SALARY	 and	 AGE	 features,	 containing	 the	 dataset	 in	 Table	 5.5[204].	 The
location	of	the	query	customer	in	the	feature	space	is	indicated	by	the	?.	From	inspecting
Figure	5.12(a)[205],	it	would	appear	as	if	instance	d1—which	has	a	target	level	no—is	the
closest	neighbor	 to	 the	query.	So	we	would	expect	 that	 the	model	would	predict	no	 and
that	the	customer	would	not	be	contacted.

The	 model,	 however,	 will	 actually	 return	 a	 prediction	 of	 yes,	 indicating	 that	 the
customer	 should	 be	 contacted.	 We	 can	 analyze	 why	 this	 happens	 if	 we	 examine	 the
Euclidean	distance	computations	between	the	query	and	the	instances	in	the	dataset.	Table
5.6[207]	lists	these	distances	when	we	include	both	the	SALARY	and	AGE	features,	only	the



SALARY	 features,	 and	 only	 the	 AGE	 feature	 in	 the	 distance	 calculation.	 The	 nearest
neighbor	model	 uses	 both	 the	SALARY	 and	AGE	 features	when	 it	 calculates	 distances	 to
find	the	nearest	neighbor	to	the	query.	The	SALARY	and	AGE	section	of	Table	5.6[207]	lists
these	distances	and	the	ranking	that	the	model	applies	to	the	instances	in	the	dataset	using
them.	From	the	rankings	we	can	see	that	the	nearest	neighbor	to	the	query	is	instance	d6
(indicated	by	its	rank	of	1).	Instance	d6	has	a	target	value	of	yes,	and	this	is	why	the	model
will	return	a	positive	prediction	for	the	query.

Considering	the	distribution	of	the	instances	in	the	feature	space	as	depicted	in	Figure
5.12(a)[205],	 the	 result	 that	 instance	d6	 is	 the	nearest	neighbor	 to	 the	query	 is	 surprising.
Several	other	instances	appear	to	be	much	closer	to	the	query,	and	importantly,	several	of
these	 instances	have	 a	 target	 level	 of	no,	 for	 example,	 instance	d1.	Why	do	we	get	 this
strange	result?

We	can	get	a	hint	about	what	is	happening	by	comparing	the	distances	computed	using
both	the	SALARY	and	AGE	features	with	the	distances	computed	using	the	SALARY	 feature
only,	 that	 listed	 in	 the	 SALARY	 Only	 section	 of	 Table	 5.6[207].	 The	 distances	 calculated
using	 only	 the	 SALARY	 feature	 are	 almost	 exactly	 the	 same	 as	 the	 distances	 calculated
using	both	the	SALARY	and	AGE	features.	This	is	happening	because	the	salary	values	are
much	 larger	 than	 the	 age	 values.	 Consequently,	 the	 SALARY	 feature	 dominates	 the
computation	of	 the	Euclidean	distance	whether	we	 include	 the	AGE	 feature	or	not.	As	a
result,	AGE	 is	 being	 virtually	 ignored	 by	 the	metric.	 This	 dominance	 is	 reflected	 in	 the
ranking	of	the	instances	as	neighbors.	In	Table	5.6[207],	if	we	compare	the	rankings	based
on	SALARY	and	AGE	with	the	rankings	based	solely	on	SALARY,	we	see	that	the	values	in
these	 two	 columns	 are	 identical.	 The	 model	 is	 using	 only	 the	 SALARY	 feature	 and	 is
ignoring	the	AGE	feature	when	it	makes	predictions.

This	dominance	of	the	distance	computation	by	a	feature	based	solely	on	the	fact	that	it
has	a	 larger	range	of	values	 than	other	features	 is	not	a	good	thing.	We	do	not	want	our
model	to	bias	toward	a	particular	feature	simply	because	the	values	of	that	feature	happen
to	be	large	relative	to	the	other	features	in	the	dataset.	If	we	allowed	this	to	happen,	then
our	model	will	be	affected	by	accidental	data	collection	factors,	such	as	the	units	used	to
measure	 something.	For	 example,	 in	 a	model	 that	 is	 sensitive	 to	 the	 relative	 size	of	 the
feature	values,	a	 feature	 that	was	measured	 in	millimeters	would	have	a	 larger	effect	on
the	resulting	model	predictions	than	a	feature	that	was	measured	in	meters.14	Clearly	we
need	to	address	this	issue.

Fortunately,	we	have	 already	discussed	 the	 solution	 to	 this	 problem.	The	 problem	 is
caused	by	features	having	different	variance.	 In	Section	3.6.1[92]	we	discussed	variance
and	 introduced	a	number	of	normalization	 techniques	 that	normalize	 the	variances	 in	a
set	 of	 features.	 The	 basic	 normalization	 technique	 we	 introduced	 was	 range
normalization,15	and	we	can	apply	it	to	the	pension	plan	prediction	dataset	to	normalize
the	variance	in	the	SALARY	and	AGE	features.	For	example,	range	normalization	using	the
range	[0,	1]	is	applied	to	instance	d1	from	Table	5.5[204]	as	follows:



Table	5.6

The	dataset	from	Table	5.5[204]	with	the	Euclidean	distance	between	each	instance	and	the
query	SALARY	=	56,000,	AGE	=	35	when	we	use	both	the	SALARY	and	AGE	features,	just
the	SALARY	feature,	and	just	the	AGE	feature.

The	Rank	columns	rank	the	distances	of	each	instance	to	the	query	(1	is	closest,	10	is
furthest	away).

Table	 5.7[208]	 lists	 the	 dataset	 from	 Table	 5.5[204]	 after	 we	 have	 applied	 range
normalization	using	a	range	of	[0,	1]	to	the	SALARY	and	AGE	features.	When	we	normalize
the	 features	 in	 a	 dataset,	we	 also	 need	 to	 normalize	 the	 features	 in	 any	 query	 instances
using	 the	 same	normalization	 process	 and	 parameters.	We	normalize	 the	 query	 instance
with	SALARY	=56,000	and	AGE	=	35	as	follows:

Table	5.7

The	updated	version	of	Table	5.6[207]	once	we	have	applied	range	normalization	to	the
SALARY	and	AGE	features	in	the	dataset	and	to	the	query	instance.



The	Rank	columns	rank	the	distances	of	each	instance	to	the	query	(1	is	closest,	10	is
furthest	away).

Figure	 5.12(b)[205]	 shows	 a	 plot	 of	 the	 feature	 space	 after	 the	 features	 have	 been
normalized.	 The	major	 difference	 between	 Figure	 5.12(a)[205]	 and	 Figure	 5.12(b)[205]	 is
that	 the	 axes	 are	 scaled	 differently.	 In	 Figure	 5.12(a)[205]	 the	 SALARY	 axis	 ranged	 from
45,000	to	75,000,	and	the	AGE	axis	ranged	from	25	to	60.	In	Figure	5.12(b)[205],	however,
both	axes	range	from	0	to	1.	Although	this	may	seem	like	an	insignificant	difference,	the
fact	that	both	features	now	cover	the	same	range	has	a	huge	impact	on	the	performance	of
a	similarity-based	prediction	model	that	uses	this	data.

Table	 5.7[208]	 also	 repeats	 the	 calculations	 from	 Table	 5.6[207]	 using	 the	 normalized
dataset	and	the	normalized	query	instance.	In	contrast	with	Table	5.6[207],	where	there	was
a	close	match	between	the	SALARY	and	AGE	distances	and	the	SALARY	only	distances	and
related	rankings,	in	Table	5.7[208]	 there	 is	much	more	variation	between	 the	SALARY	and
AGE	distances	and	the	SALARY	only	distances.	This	increased	variation	is	mirrored	in	the
fact	that	the	rankings	based	on	the	distances	calculated	using	the	SALARY	and	AGE	features
are	quite	different	from	the	rankings	based	on	the	distances	calculated	using	SALARY	only.
These	changes	in	the	rankings	of	the	instances	is	a	direct	result	of	normalizing	the	features
and	reflects	the	fact	that	the	distance	calculations	are	no	longer	dominated	by	the	SALARY
feature.	 The	 nearest	 neighbor	 model	 is	 now	 factoring	 both	 SALARY	 and	 AGE	 into	 the
ranking	of	 the	 instances.	The	 net	 effect	 of	 this	 is	 that	 instance	d1	 is	 now	 ranked	 as	 the
nearest	 neighbor	 to	 the	 query—this	 is	 in	 line	 with	 the	 feature	 space	 representation	 in
Figure	5.12(b)[205].	Instance	d1	has	a	target	level	of	no,	so	the	nearest	neighbor	model	now
predicts	a	 target	 level	of	no	 for	 the	query,	meaning	that	 the	marketing	department	won’t
include	the	customer	in	their	list	of	direct	marketing	prospects.	This	is	the	opposite	of	the
prediction	made	using	the	original	dataset.

In	summary,	distance	computations	are	sensitive	to	the	value	ranges	of	the	features	in
the	dataset.	This	 is	 something	we	need	 to	control	 for	when	we	are	creating	a	model,	 as
otherwise	 we	 are	 allowing	 an	 unwanted	 bias	 to	 affect	 the	 learning	 process.	 When	 we
normalize	 the	 features	 in	 a	 dataset,	we	 control	 for	 the	 variation	 across	 the	 variances	 of



features	 and	 ensure	 that	 each	 feature	 can	 contribute	 equally	 to	 the	 distance	 metric.
Normalizing	 the	 data	 is	 an	 important	 thing	 to	 do	 for	 almost	 all	 machine	 learning
algorithms,	not	just	nearest	neighbor.



5.4.4	Predicting	Continuous	Targets

It	 is	relatively	easy	to	adapt	the	k	nearest	neighbor	approach	to	handle	continuous	target
features.	To	do	this	we	simply	change	the	approach	to	return	a	prediction	of	the	average
target	value	of	the	nearest	neighbors,	rather	than	the	majority	target	level.	The	prediction
for	a	continuous	target	feature	by	a	k	nearest	neighbor	model	is	therefore

where	 k(q)	is	the	prediction	returned	by	the	model	using	parameter	value	k	for	the	query
q,	i	iterates	over	the	k	nearest	neighbors	to	q	in	the	dataset,	and	ti	is	the	value	of	the	target
feature	for	instance	i.

Let’s	look	at	an	example.	Imagine	that	we	are	dealers	in	rare	whiskey,	and	we	would
like	some	assistance	in	setting	the	reserve	price	for	bottles	of	whiskey	that	we	are	selling
at	 auction.	We	 can	 use	 a	 k	 nearest	 neighbor	model	 to	 predict	 the	 likely	 sale	 price	 of	 a
bottle	 of	 whiskey	 based	 on	 the	 prices	 achieved	 by	 similar	 bottles	 at	 previous
auctions.16	Table	5.8[210]	 lists	 a	 dataset	 of	whiskeys	 described	 by	 the	RATING	 they	were
given	 in	 popular	 whiskey	 enthusiasts	 magazine	 and	 their	 AGE	 (in	 years).	 The	 PRICE
achieved	at	auction	by	the	each	bottle	is	also	included.

Table	5.8

A	dataset	of	whiskeys	listing	the	age	(in	years),	the	rating	(between	1	and	5,	with	5	being
the	best),	and	the	bottle	price	of	each	whiskey.

ID AGE RATING PRICE

1 0 2 30.00

2 12 3.5 40.00

3 10 4 55.00

4 21 4.5 550.00

5 12 3 35.00

6 15 3.5 45.00

7 16 4 70.00

8 18 3 85.00

9 18 3.5 78.00



10 16 3 75.00

11 19 5 500.00

12 6 4.5 200.00

13 8 3.5 65.00

14 22 4 120.00

15 6 2 12.00

16 8 4.5 250.00

17 10 2 18.00

18 30 4.5 450.00

19 1 1 10.00

20 4 3 30.00

	

One	 thing	 that	 is	 immediately	 apparent	 in	Table	5.8[210]	 is	 that	 the	AGE	 and	RATING
features	 have	 different	 ranges.	 We	 should	 normalize	 these	 features	 before	 we	 build	 a
model.	 Table	 5.9[211]	 lists	 the	 whiskey	 dataset	 after	 the	 descriptive	 features	 have	 been
normalized,	using	range	normalization	to	the	range	[0,	1].

Let’s	now	make	a	prediction	using	this	model	for	a	2-year-old	bottle	of	whiskey	that
received	a	magazine	rating	of	5.	Having	normalized	the	dataset,	we	first	need	to	normalize
the	descriptive	feature	values	of	this	query	instance	using	the	same	normalization	process.
This	results	in	a	query	with	AGE	=	0.0667	and	RATING	=	1.00.	For	this	example	we	set	k	=
3.	Figure	5.13[212]	 shows	 the	 neighborhood	 that	 this	 defines	 around	 the	 query	 instance.
The	three	closest	neighbors	to	the	query	are	instances	d12,	d16	and	d3.	Consequently,	 the
model	will	return	a	price	prediction	that	is	the	average	price	of	these	three	neighbors:

Table	5.9

The	whiskey	dataset	after	the	descriptive	features	have	been	normalized.

ID AGE RATING PRICE

1 0.0000 0.25 30.00



2 0.4000 0.63 40.00

3 0.3333 0.75 55.00

4 0.7000 0.88 550.00

5 0.4000 0.50 35.00

6 0.5000 0.63 45.00

7 0.5333 0.75 70.00

8 0.6000 0.50 85.00

9 0.6000 0.63 78.00

10 0.5333 0.50 75.00

11 0.6333 1.00 500.00

12 0.2000 0.88 200.00

13 0.2667 0.63 65.00

14 0.7333 0.75 120.00

15 0.2000 0.25 12.00

16 0.2667 0.88 250.00

17 0.3333 0.25 18.00

18 1.0000 0.88 450.00

19 0.0333 0.00 10.00

20 0.1333 0.50 30.00

	

We	 can	 also	 use	 a	 weighted	 k	 nearest	 neighbor	 model	 to	 make	 predictions	 for
continuous	 targets	 that	 take	 into	 account	 the	 distance	 from	 the	 query	 instance	 to	 the
neighbors	(just	like	we	did	for	categorical	target	features	in	Section	5.4.1[190]).	To	do	this,
the	model	prediction	equation	in	Equation	(5.7)[209]	is	changed	to



where	dist(q,	di)	 is	 the	distance	between	 the	query	 instance	and	 its	 ith	 nearest	 neighbor.
This	is	a	weighted	average	of	the	target	values	of	the	k	nearest	neighbors,	as	opposed	to
the	simple	average	in	Equation	(5.7)[209].

Table	5.10[213]	 shows	 the	 calculation	 of	 the	 numerator	 and	 denominator	 of	Equation
(5.8)[211]	for	our	whiskey	bottle	example,	using	the	normalized	dataset	with	k	set	to	20	(the
full	size	of	the	dataset).	The	final	prediction	for	the	price	of	the	bottle	of	whiskey	we	plan
to	sell	is

Figure	5.13

The	AGE	 and	RATING	 feature	 space	 for	 the	 whiskey	 dataset.	 The	 location	 of	 the	 query
instance	is	indicated	by	the	?	symbol.	The	circle	plotted	with	a	dashed	line	demarcates	the
border	of	the	neighborhood	around	the	query	when	k	=	3.	The	three	nearest	neighbors	to
the	query	are	labeled	with	their	ID	values.

The	 predictions	 using	 the	 k	 =	 3	 nearest	 neighbor	model	 and	 the	weighted	 k	 nearest
neighbor	model	with	k	set	to	the	size	of	the	dataset	are	quite	similar:	168.33	and	163.71.
So,	which	model	is	making	the	better	prediction?	In	this	instance,	to	find	out	which	model
is	best,	we	would	 really	need	 to	put	 the	bottle	of	whiskey	up	for	auction	and	see	which
model	predicted	the	closest	price.	In	situations	where	we	have	a	larger	dataset,	however,
we	 could	 perform	 evaluation	 experiments17	 to	 see	 which	 value	 of	 k	 leads	 to	 the	 best
performing	model.	In	general,	standard	k	nearest	neighbor	models	and	weighted	k	nearest
neighbor	models	will	produce	very	similar	results	when	a	feature	space	is	well	populated.
For	 datasets	 that	 only	 sparsely	 populate	 the	 feature	 space,	 however,	weighted	 k	nearest
neighbor	models	usually	make	more	accurate	predictions	as	they	take	into	account	the	fact
that	some	of	the	nearest	neighbors	can	actually	be	quite	far	away.



5.4.5	Other	Measures	of	Similarity

So	 far	 we	 have	 discussed	 and	 used	 the	 Minkowski-based	 Euclidean	 and	 Manhattan
distance	 metrics	 to	 compute	 the	 similarity	 between	 instances	 in	 a	 dataset.	 There	 are,
however,	many	other	ways	in	which	the	similarity	between	instances	can	be	measured.	In
this	 section	we	 introduce	 some	alternative	measures	of	 similarity	and	discuss	when	 it	 is
appropriate	 to	 use	 them.	 Any	 of	 these	 measures	 of	 similarity	 can	 simply	 replace	 the
Euclidean	measure	we	used	in	our	demonstrations	of	the	nearest	neighbor	algorithm.

Table	5.10

The	calculations	for	the	weighted	k	nearest	neighbor	prediction.

ID PRICE Distance Weight PRICE	×	Weight

1 30.00 0.7530 1.7638 52.92

2 40.00 0.5017 3.9724 158.90

3 55.00 0.3655 7.4844 411.64

4 550.00 0.6456 2.3996 1319.78

5 35.00 0.6009 2.7692 96.92

6 45.00 0.5731 3.0450 137.03

7 70.00 0.5294 3.5679 249.75

8 85.00 0.7311 1.8711 159.04

9 78.00 0.6520 2.3526 183.50

10 75.00 0.6839 2.1378 160.33

11 500.00 0.5667 3.1142 1557.09

12 200.00 0.1828 29.9376 5987.53

13 65.00 0.4250 5.5363 359.86

14 120.00 0.7120 1.9726 236.71

15 12.00 0.7618 1.7233 20.68

16 250.00 0.2358 17.9775 4494.38



17 18.00 0.7960 1.5783 28.41

18 450.00 0.9417 1.1277 507.48

19 10.00 1.0006 0.9989 9.99

20 30.00 0.5044 3.9301 117.90

Totals: 99.2604 16,249.85

Throughout	 this	 section	 we	 use	 the	 terms	 similarity	 and	 distance	 almost
interchangeably,	because	we	often	judge	the	similarity	between	two	instances	in	terms	of
the	distance	between	them	in	a	feature	space.	The	only	difference	to	keep	in	mind	is	that
when	we	use	distances,	smaller	values	mean	that	instances	are	closer	together	in	a	feature
space,	whereas	when	we	use	similarities,	larger	values	indicate	this.	We	will,	however,	be
specific	 in	distinguishing	between	metrics	and	 indexes.	Recall	 that	 in	Section	5.2.2[183]
we	defined	four	criteria	 that	a	metric	must	satisfy:	non-negativity,	 identity,	 symmetry,
and	 triangular	 inequality.	 It	 is	 possible,	 however,	 to	 successfully	 use	 measures	 of
similarity	in	similarity-based	models	that	do	not	satisfy	all	four	of	these	criteria.	We	refer
to	measures	of	similarity	of	this	type	as	indexes.	Most	of	the	time	the	technical	distinction
between	a	metric	and	an	index	is	not	that	important;	we	simply	focus	on	choosing	the	right
measure	of	similarity	for	the	type	of	instances	we	are	comparing.	It	is	important,	however,
to	know	if	a	measure	is	a	metric	or	an	index	as	there	are	some	similarity-based	techniques
that	 strictly	 require	 measures	 of	 similarity	 to	 be	 metrics.	 For	 example,	 the	 k-d	 trees
described	in	Section	5.4.2[195]	require	that	the	measure	of	similarity	used	be	a	metric	(in
particular	that	the	measure	conform	to	the	triangular	inequality	constraint).

5.4.5.1	Similarity	Indexes	for	Binary	Descriptive	Features

There	are	lots	of	datasets	that	contain	binary	descriptive	features—categorical	features	that
have	only	two	levels.	For	example,	a	dataset	may	record	whether	or	not	someone	liked	a
movie,	 a	 customer	 bought	 a	 product,	 or	 someone	 visited	 a	 particular	 webpage.	 If	 the
descriptive	features	in	a	dataset	are	binary,	it	is	often	a	good	idea	to	use	a	similarity	index
that	 defines	 similarity	 between	 instances	 specifically	 in	 terms	 of	 co-presence	 or	 co-
absence	of	features,	rather	than	an	index	based	on	distance.

To	illustrate	a	series	of	similarity	indexes	for	binary	descriptive	features,	we	will	use	an
example	of	predicting	upsell	 in	an	online	service.	A	common	business	model	 for	online
services	is	to	allow	users	a	free	trial	period	after	which	time	they	have	to	sign	up	to	a	paid
account	to	continue	using	the	service.	These	businesses	often	try	to	predict	the	likelihood
that	users	coming	to	the	end	of	the	trial	period	will	accept	the	upsell	offer	to	move	to	the
paid	 service.	 This	 insight	 into	 the	 likely	 future	 behavior	 of	 a	 customer	 can	 help	 a
marketing	department	decide	which	customers	coming	close	to	the	end	of	their	trial	period
the	department	should	contact	to	promote	the	benefits	of	signup	to	the	paid	service.



Table	5.11[215]	 lists	a	small	binary	dataset	 that	a	nearest	neighbor	model	could	use	 to
make	predictions	 for	 this	 scenario.	The	descriptive	 features	 in	 this	dataset	are	all	binary
and	record	the	following	information	about	the	behavior	of	past	customers:

PROFILE:	Did	the	user	complete	the	profile	form	when	registering	for	the	free	trial?
FAQ:	Did	the	user	read	the	frequently	asked	questions	page?
HELPFORUM:	Did	the	user	post	a	question	on	the	help	forum?

Table	5.11

A	binary	dataset	listing	the	behavior	of	two	individuals	on	a	website	during	a	trial	period
and	whether	they	subsequently	signed	up	for	the	website.

NEWSLETTER:	Did	the	user	sign	up	for	the	weekly	newsletter?
LIKED:	Did	the	user	Like	the	website	on	Facebook?

The	 target	 feature,	 SIGNUP,	 indicates	whether	 the	 customers	 ultimately	 signed	 up	 to	 the
paid	service	or	not	(yes	or	no).

The	business	has	decided	to	use	a	nearest	neighbor	model	to	predict	whether	a	current
trial	user	whose	free	trial	period	is	about	the	end	is	likely	to	sign	up	for	the	paid	service.
The	query	instance,	q,	describing	this	user	is:

PROFILE	=	true,	FAQ	=	false,	HELPFORUM	=	true,
NEWSLETTER	=	false,	LIKED	=	false

Table	5.12[216]	presents	a	pairwise	analysis	of	similarity	between	the	current	trial	user,
q,	and	the	two	customers	in	the	dataset	in	Table	5.11[215]	in	terms	of

co-presence	 (CP),	 how	often	 a	 true	 value	 occurred	 for	 the	 same	 feature	 in	 both	 the
query	data	q	and	the	data	for	the	comparison	user	(d1	or	d2)
co-absence	 (CA),	how	often	a	 false	value	occurred	 for	 the	 same	 feature	 in	both	 the
query	data	q	and	the	data	for	the	comparison	user	(d1	or	d2)
presence-absence	 (PA),	how	often	a	 true	value	occurred	 in	 the	query	data	q	when	a
false	value	occurred	in	the	data	for	the	comparison	user	(d1	or	d2)	for	the	same	feature
absence-presence	(AP),	how	often	a	false	value	occurred	in	the	query	data	q	when	a
true	value	occurred	in	the	data	for	the	comparison	user	(d1	or	d2)	for	the	same	feature

One	way	of	 judging	 similarity	 is	 to	 focus	 solely	on	co-presence.	For	 example,	 in	 an
online	 retail	 setting,	 co-presence	 could	 capture	what	 two	 users	 jointly	 viewed,	 liked,	 or
bought.	The	Russel-Rao	similarity	index	focuses	on	this	and	is	measured	in	terms	of	the
ratio	 between	 the	 number	 of	 co-presences	 and	 the	 total	 number	 of	 binary	 features
considered:



Table	5.12

The	similarity	between	the	current	trial	user,	q,	and	the	two	users	in	the	dataset,	d1	and	d2,
in	terms	of	co-presence	(CP),	co-absence	(CA),	presence-absence	(PA),	and	absence-
presence	(AP).

	

where	q	 and	d	 are	 two	 instances,	 |q|	 is	 the	 total	 number	 of	 features	 in	 the	 dataset,	 and
CP(q,	d)	measures	the	total	number	of	co-presences	between	q	and	d.	Using	Russel-Rao,
q	has	a	higher	similarity	to	d1	than	to	d2:

This	 means	 that	 the	 current	 trial	 user	 is	 judged	 to	 be	 more	 similar	 to	 the	 customer
represented	by	instance	d1	than	the	customer	represented	by	instance	d2.

In	 some	 domains	 co-absence	 is	 important.	 For	 example,	 in	 a	medical	 domain	when
judging	the	similarity	between	two	patients,	it	may	be	as	important	to	capture	the	fact	that
neither	patient	had	a	particular	symptom	as	it	is	to	capture	the	symptoms	that	the	patients
have	 in	 common.	 The	 Sokal-Michener	 similarity	 index	 takes	 this	 into	 account	 and	 is
defined	 as	 the	 ratio	 between	 the	 total	 number	 of	 co-presences	 and	 co-absences	 and	 the
total	number	of	binary	features	considered:

Using	Sokal-Michener	for	our	online	services	example	q,	is	judged	to	be	more	similar	to
instance	d2	than	instance	d1:

Sometimes,	however,	co-absences	aren’t	that	meaningful.	For	example,	we	may	be	in	a
retail	domain	in	which	there	are	so	many	items	that	most	people	haven’t	seen,	listened	to,
bought,	or	visited	the	vast	majority	of	them,	and	as	a	result,	the	majority	of	features	will
be	 co-absences.	 The	 technical	 term	 to	 describe	 a	 dataset	 in	which	most	 of	 the	 features
have	zero	values	is	sparse	data.	In	these	situations	we	should	use	a	metric	that	ignores	co-
absences.	The	Jaccard	similarity	index	is	often	used	in	these	contexts.	This	index	ignores
co-absences	and	is	defined	as	the	ratio	between	the	number	of	co-presences	and	the	total



number	 of	 features,	 excluding	 those	 that	 record	 a	 co-absence	 between	 a	 pair	 of
instances:18

Using	Jaccard	similarity,	the	current	trial	user	in	the	online	retail	example	is	judged	to	be
equally	similar	to	instance	d1	and	d2:

The	fact	that	the	judgment	of	similarity	between	current	trial	user	and	the	other	users	in
the	 dataset	 changed	 dramatically	 depending	 on	 which	 similarity	 index	 was	 employed
illustrates	the	importance	of	choosing	the	correct	index	for	the	task.	Unfortunately,	beyond
highlighting	that	the	Jaccard	index	is	useful	for	sparse	binary	data,	we	cannot	give	a	hard
and	fast	rule	for	how	to	choose	between	these	indexes.	As	is	so	often	the	case	in	predictive
analytics,	making	 the	 right	 choice	 requires	 an	 understanding	 of	 the	 requirements	 of	 the
task	that	we	are	 trying	 to	accomplish	and	matching	 these	requirements	with	 the	features
we	want	to	emphasize	in	our	model.

5.4.5.2	Cosine	Similarity

Cosine	 similarity	 is	 an	 index	 that	 can	 be	 used	 as	 a	measure	 of	 the	 similarity	 between
instances	 with	 continuous	 descriptive	 features.	 The	 cosine	 similarity	 between	 two
instances	 is	 the	cosine	 of	 the	 inner	 angle	between	 the	 two	vectors	 that	 extend	 from	 the
origin	of	a	feature	space	to	each	instance.	Figure	5.14(a)[220]	illustrates	the	inner	angle,	θ,
between	 the	 vector	 from	 the	 origin	 to	 two	 instances	 in	 a	 feature	 space	 defined	 by	 two
descriptive	features,	SMS	and	VOICE.

Cosine	 similarity	 is	 an	 especially	 useful	 measure	 of	 similarity	 when	 the	 descriptive
features	 describing	 instances	 in	 a	 dataset	 are	 related	 to	 each	 other.	 For	 example,	 in	 a
mobile	telecoms	scenario,	we	could	represent	customers	with	just	two	descriptive	features:
the	 average	 number	 of	 SMS	 messages	 a	 customer	 sends	 per	 month,	 and	 the	 average
number	of	VOICE	 calls	 a	 customer	makes	per	month.	 In	 this	 scenario	 it	 is	 interesting	 to
take	a	perspective	on	 the	 similarity	between	customers	 that	 focuses	on	 the	mix	of	 these
two	 types	of	 services	 they	use,	 rather	 than	 the	volumes	of	 the	services	 they	use.	Cosine
similarity	allows	us	to	do	this.	The	instances	shown	in	Figure	5.14(a)[220]	are	based	on	this
mobile	telecoms	scenario.	The	descriptive	feature	values	for	d1	are	SMS	=	97	and	VOICE	=
21,	and	for	d2	are	SMS	=	181	and	VOICE	=	184.

We	 compute	 the	 cosine	 similarity	 between	 two	 instances	 as	 the	 normalized	 dot
product	of	the	descriptive	feature	values	of	the	instances.	The	dot	product	is	normalized
by	the	product	of	the	lengths	of	the	descriptive	feature	value	vectors.19	The	dot	product	of
two	instances,	a	and	b,	defined	by	m	descriptive	features	is



Geometrically,	 the	 dot	 product	 can	 be	 interpreted	 as	 equivalent	 to	 the	 cosine	 of	 the
angle	between	the	two	vectors	multiplied	by	the	length	of	the	two	vectors:

We	can	rearrange	Equation	(5.13)[219]	 to	calculate	 the	cosine	of	 the	 inner	angle	between
two	vectors	as	the	normalized	dot	product:

So,	in	an	m-dimensional	feature	space,	the	cosine	similarity	between	two	instances	a	and	b
is	defined	as

The	 cosine	 similarity	 between	 instances	 will	 be	 in	 the	 range	 [0,	 1],	 where	 1	 indicates
maximum	similarity	and	0	indicates	maximum	dissimilarity.20	We	can	calculate	the	cosine
similarity	between	d1	and	d2	from	Figure	5.14(a)[220]	as



Figure	5.14

(a)	 The	 θ	 represents	 the	 inner	 angle	 between	 the	 vector	 emanating	 from	 the	 origin	 to
instance	d1	and	the	vector	emanating	from	the	origin	to	instance	d2;	(b)	shows	d1	and	d2
normalized	to	the	unit	circle.

Figure	5.14(b)[220]	highlights	the	normalization	of	descriptive	feature	values	that	takes
place	as	part	of	calculating	cosine	similarity.	This	is	different	from	the	normalization	we
have	 looked	at	 elsewhere	 in	 this	 chapter	 as	 it	 takes	place	within	an	 instance	 rather	 than
across	 all	 the	 values	 of	 a	 feature.	 All	 instances	 are	 normalized	 so	 as	 to	 lie	 on	 a
hypersphere	 of	 radius	 1.0	 with	 its	 center	 at	 the	 origin	 of	 the	 feature	 space.	 This
normalization	 is	 what	 makes	 cosine	 similarity	 so	 useful	 in	 scenarios	 in	 which	 we	 are
interested	in	the	relative	spread	of	values	across	a	set	of	descriptive	features	rather	than	the
magnitudes	of	the	values	themselves.	For	example,	if	we	have	a	third	instance	with	SMS	=
194	 and	 VOICE	 =	 42,	 the	 cosine	 similarity	 between	 this	 instance	 and	 d1	 will	 be	 1.0,
because	even	though	the	magnitudes	of	their	feature	values	are	different,	the	relationship
between	the	feature	values	for	both	instances	is	the	same:	both	customers	use	about	four
times	 as	 many	 SMS	messages	 as	 VOICE	 calls.	 Cosine	 similarity	 is	 also	 an	 appropriate
similarity	 index	 for	 sparse	 data	with	 non-binary	 features	 (i.e.,	 datasets	with	 lots	 of	 zero
values)	because	the	dot	product	will	essentially	ignore	co-absences	in	its	computation	(0	×
0	=	0).

5.4.5.3	Mahalanobis	Distance

The	final	measure	of	similarity	that	we	will	introduce	is	the	Mahalanobis	distance,	which
is	a	metric	that	can	be	used	to	measure	the	similarity	between	instances	with	continuous
descriptive	features.	The	Mahalanobis	distance	is	different	from	the	other	distance	metrics
we	have	looked	at	because	it	allows	us	to	take	into	account	how	spread	out	the	instances	in
a	dataset	are	when	judging	similarities.	Figure	5.15[221]	 illustrates	why	 this	 is	 important.
This	 figure	 shows	 scatter	 plots	 for	 three	 bivariate	 datasets	 that	 have	 the	 same	 central
tendency,	marked	A	and	located	in	the	feature	space	at	(50,	50),	but	whose	instances	are
spread	out	differently	across	 the	 feature	 space.	 In	all	 three	cases	 the	question	we	would
like	to	answer	is,	are	instance	B,	located	at	at	(30,	70),	and	instance	C,	located	at	(70,	70),
likely	 to	 be	 from	 the	 same	population	 from	which	 the	 dataset	 has	 been	 sampled?	 In	 all



three	figures,	B	and	C	are	equidistant	from	A	based	on	Euclidean	distance.

Figure	5.15

Scatter	plots	of	three	bivariate	datasets	with	the	same	center	point	A	and	two	queries	B	and
C	both	equidistant	 from	A;	 (a)	a	dataset	uniformly	spread	around	 the	center	point;	 (b)	a
dataset	with	negative	covariance;	and	(c)	a	dataset	with	positive	covariance.

The	dataset	in	Figure	5.15(a)[221]	is	equally	distributed	in	all	directions	around	A,	and
as	a	result,	we	can	say	that	B	and	C	are	equally	likely	to	be	from	the	same	population	as
the	 dataset.	 The	 dataset	 in	 Figure	5.15(b)[221],	 however,	 demonstrates	 a	 strong	 negative
covariance21	between	the	features.	In	this	context,	instance	B	is	much	more	likely	to	be	a
member	of	 the	dataset	 than	instance	C.	Figure	5.15(c)[221]	 shows	a	dataset	with	a	strong
positive	covariance,	and	for	this	dataset,	instance	C	is	much	more	likely	to	be	a	member
than	 instance	B.	What	 these	 examples	demonstrate	 is	 that	when	we	are	 trying	 to	decide
whether	a	query	belongs	to	a	group,	we	need	to	consider	not	only	the	central	tendency	of
the	 group,	 but	 also	 how	 spread	 out	 the	 members	 in	 a	 group	 are.	 These	 examples	 also
highlight	that	covariance	is	one	way	of	measuring	the	spread	of	a	dataset.

The	Mahalanobis	distance	uses	covariance	to	scale	distances	so	that	distances	along	a
direction	 where	 the	 dataset	 is	 very	 spread	 out	 are	 scaled	 down,	 and	 distances	 along
directions	where	the	dataset	is	tightly	packed	are	scaled	up.	For	example,	in	Figure	5.15(b)
[221]	the	Mahalanobis	distance	between	B	and	A	will	be	less	than	the	Mahalanobis	distance
between	 C	 and	 A,	 whereas	 in	 Figure	 5.15(c)[221]	 the	 opposite	 will	 be	 true.	 The
Mahalanobis	distance	is	defined	as

Let’s	 step	 through	 Equation	 (5.16)[222]	 bit	 by	 bit.	 First,	 this	 equation	 computes	 a
distance	between	 two	 instances	a	 and	b,	 each	with	m	 descriptive	 features.	The	 first	 big
term	we	come	to	in	the	equation	is	[a	[1]	−	b	[1],	…,	a	[m]	−	b	[m]].	This	is	a	row	vector
that	 is	 created	 by	 subtracting	 each	 descriptive	 feature	 value	 of	 instance	 b	 from	 the



corresponding	 feature	 values	 of	 a.	 The	 next	 term	 in	 the	 equation,	 Σ−1,	 represents	 the
inverse	covariance	matrix22	computed	across	all	instances	in	the	dataset.	Multiplying	the
difference	 in	 feature	 values	 by	 the	 inverse	 covariance	matrix	 has	 two	 effects.	 First,	 the
larger	the	variance	of	a	feature,	the	less	weight	the	difference	between	the	values	for	that
feature	 will	 contribute	 to	 the	 distance	 calculation.	 Second,	 the	 larger	 the	 correlation
between	two	features,	the	less	weight	they	contribute	to	the	distance.	The	final	element	of
the	equation	 is	a	column	vector	 that	 is	created	 in	 the	same	way	as	 the	row	vector	at	 the
beginning	 of	 the	 equation—by	 subtracting	 each	 feature	 value	 from	 b	 from	 the
corresponding	 feature	 value	 from	a.	The	motivation	 for	 using	 a	 row	vector	 to	 hold	one
copy	of	the	feature	differences	and	a	column	vector	to	hold	the	second	copy	of	the	features
differences	 is	 to	 facilitate	 matrix	 multiplication.	 Now	 that	 we	 know	 that	 the	 row	 and
column	vector	both	contain	the	difference	between	the	feature	values	of	the	two	instances,
it	should	be	clear	that,	similar	to	Euclidean	distance,	the	Mahalanobis	distance	squares	the
differences	 of	 the	 features.	 The	 Mahalanobis	 distance,	 however,	 also	 rescales	 the
differences	 between	 feature	 values	 (using	 the	 inverse	 covariance	matrix)	 so	 that	 all	 the
features	have	unit	variance,	and	the	effects	of	covariance	are	removed.

The	Mahalanobis	 distance	 can	 be	 understood	 as	 defining	 an	 orthonormal	 coordinate
system	 with	 (1)	 an	 origin	 at	 the	 instance	 we	 are	 calculating	 the	 distance	 from	 (a	 in
Equation	(5.16)[222]);	(2)	a	primary	axis	aligned	with	the	direction	of	the	greatest	spread	in
the	dataset;	 and	 (3)	 the	units	 of	 all	 the	 axes	 scaled	 so	 that	 the	dataset	 has	unit	 variance
along	each	axis.	The	rotation	and	scaling	of	the	axes	are	the	result	of	the	multiplication	by
the	inverse	covariance	matrix	of	the	dataset	(Σ−1).	So,	if	the	inverse	covariance	matrix	is
the	identity	matrix	 ,	 then	no	scaling	or	rotation	occurs.	This	is	why	for	datasets	such	as
the	one	depicted	in	Figure	5.15(a)[221],	where	there	is	no	covariance	between	the	features,
the	Mahalanobis	distance	is	simply	the	Euclidean	distance.23

Figure	 5.16[224]	 illustrates	 how	 the	 Mahalanobis	 distance	 defines	 this	 coordinate
system,	which	is	translated,	rotated,	and	scaled	with	respect	to	the	standard	coordinates	of
a	 feature	space.	The	 three	scatter	plots	 in	 this	 image	are	of	 the	dataset	 in	Figure	5.15(c)
[221].	 In	 each	 case	we	 have	 overlaid	 the	 coordinate	 system	 defined	 by	 the	Mahalanobis
distance	from	a	different	origin.	The	origins	used	for	the	figures	were	(a)	(50,	50),	(b)	(63,
71),	 and	 (c)	 (42,	 35).	 The	 dashed	 lines	 plot	 the	 axes	 of	 the	 coordinate	 system,	 and	 the
ellipses	plot	the	1,	3,	and	5	unit	distance	contours.	Notice	how	the	orientation	of	the	axes
and	the	scaling	of	the	distance	contours	are	consistent	across	the	figures.	This	is	because
the	same	inverse	covariance	matrix	based	on	the	entire	dataset	was	used	in	each	case.



Figure	5.16

The	coordinate	systems	defined	by	the	Mahalanobis	distance	using	the	co-variance	matrix
for	the	dataset	in	Figure	5.15(c)[221]	using	three	different	origins:	(a)	(50,	50),	(b)	(63,	71),
(c)	(42,	35).	The	ellipses	in	each	figure	plot	the	1,	3,	and	5	unit	distance	contours.

Let’s	return	to	the	original	question	depicted	in	Figure	5.15[221]:	Are	B	and	C	likely	to
be	 from	 the	 same	 population	 from	 which	 the	 dataset	 has	 been	 sampled?	 Focusing	 on
Figure	5.15(c)[221],	 for	 this	dataset	 it	appears	reasonable	 to	conclude	 that	 instance	C	 is	a
member	 of	 the	 dataset	 but	 that	 B	 is	 probably	 not.	 To	 confirm	 this	 intuition	 we	 can
calculate	the	Mahalanobis	distance	between	A	and	B	and	A	and	C	using	Equation	(5.16)
[222]	as

where	 the	 inverse	covariance	matrix	used	 in	 the	calculations	 is	based	on	 the	covariance

matrix24	calculated	directly	from	the	dataset:	

Figure	5.17[225]	shows	a	contour	plot	of	these	Mahalanobis	distances.	In	this	figure,	A
indicates	the	central	tendency	of	the	dataset	in	Figure	5.15(c)[221],	and	the	ellipses	plot	the
Mahalanobis	distance	contours	that	the	distances	from	A	to	the	instances	B	and	C	 lie	on.
These	 distance	 contours	 were	 calculated	 using	 the	 inverse	 covariance	 matrix	 for	 the
dataset	and	point	A	as	the	origin.	The	result	is	that	instance	C	is	much	closer	to	A	than	B



and	so	should	be	considered	a	member	of	the	same	population	as	this	dataset.

Figure	5.17

The	effect	of	using	a	Mahalanobis	versus	Euclidean	distance.	A	marks	the	central	tendency
of	the	dataset	 in	Figure	5.15(c)[221].	The	ellipses	plot	 the	Mahalanobis	distance	contours
from	A	that	B	and	C	lie	on.	In	Euclidean	terms,	B	and	C	are	equidistant	from	A;	however,
using	the	Mahalanobis	distance,	C	is	much	closer	to	A	than	B.

To	use	Mahalanobis	distance	in	a	nearest	neighbor	model,	we	simply	use	the	model	in
exactly	 the	 same	 way	 as	 described	 previously	 but	 substitute	 Mahalanobis	 distance	 for
Euclidean	distance.

5.4.5.4	Summary

In	 this	section	we	have	 introduced	a	number	of	commonly	used	metrics	and	 indexes	for
judging	 similarity	 between	 instances	 in	 a	 feature	 space.	 These	 are	 typically	 used	 in
situations	where	a	Minkowski	distance	is	not	appropriate.	For	example,	if	we	are	dealing
with	binary	features,	it	may	be	more	appropriate	to	use	the	Russel-Rao,	Sokal-Michener	or
Jaccard	 similarity	metric.	Or	 it	may	be	 that	 the	 features	 in	 the	dataset	 are	 continuous—
typically	indicating	that	a	Minkowski	distance	metric	is	appropriate—but	that	the	majority
of	 the	 descriptive	 features	 for	 each	 instance	 have	 zero	 values,25	 in	which	 case	we	may
want	 to	use	 a	 similarity	 index	 that	 ignores	descriptive	 features	with	 zero	values	 in	both
features,	for	example,	cosine	similarity.	Alternatively,	we	may	be	dealing	with	a	dataset
where	 there	 is	 covariance	 between	 the	 descriptive	 features,	 in	 which	 case	 we	 should
consider	using	 the	Mahalanobis	distance	 as	our	measure	of	 similarity.	There	 are	many
other	 indexes	 and	metrics	 we	 could	 have	 presented,	 for	 example,	Tanimoto	 similarity
(which	is	a	generalization	of	the	Jaccard	similarity	to	non-binary	data),	and	correlation-
based	approaches	such	as	the	Pearson	correlation.	The	key	things	to	remember,	however,
are	 that	 it	 is	 important	 to	 choose	 a	 similarity	metric	or	 index	 that	 is	 appropriate	 for	 the
properties	of	the	dataset	we	are	using	(be	it	binary,	non-binary,	sparse,	covariant,	etc.)	and
second,	experimentation	is	always	required	to	determine	which	measure	of	similarity	will
be	most	effective	for	a	specific	prediction	model.



5.4.6	Feature	Selection

Intuitively,	adding	more	descriptive	features	to	a	dataset	provides	more	information	about
each	instance	and	should	result	in	more	accurate	predictive	models.	Surprisingly,	however,
the	 number	 of	 descriptive	 features	 in	 a	 dataset	 increases,	 there	 often	 comes	 a	 point	 at
which	continuing	to	add	new	features	to	the	dataset	results	in	a	decrease	in	the	predictive
power	of	the	induced	models.	The	reason	for	this	phenomenon	is	that,	fundamentally,	the
predictive	power	of	an	induced	model	is	based	on	one	of	the	following:

1.	 Partitioning	the	feature	space	into	regions	based	on	clusters	of	training	instances	with
the	same	target	value,	and	assigning	a	query	located	in	a	region	the	target	value	of	the
cluster	that	defines	that	region.

2.	 Assigning	 a	 query	 a	 target	 value	 interpolated	 (for	 instance,	 by	 majority	 vote	 or
average)	from	the	target	values	of	individual	training	instances	that	are	near	the	query
in	the	feature	space.

Both	 of	 these	 strategies	 depend	 on	 a	 reasonable	 sampling	 density	 of	 the	 training
instances	across	the	feature	space.	The	sampling	density	is	the	average	density	of	training
instances	across	the	feature	space.	If	the	sampling	density	is	too	low,	then	large	regions	of
the	 feature	 space	 do	 not	 contain	 any	 training	 instances,	 and	 it	 doesn’t	 make	 sense	 to
associate	 such	 a	 region	 with	 any	 cluster	 of	 training	 instances	 nor	 to	 look	 for	 training
instances	 that	 are	 nearby.	 In	 such	 instances	 a	 model	 is	 essentially	 reduced	 to	 guessing
predictions.	We	can	measure	the	sampling	density	across	a	feature	space	in	terms	of	the
average	 density	 of	 a	 unit	 hypercube26	 in	 the	 feature	 space.	 The	 density	 of	 a	 unit
hypercube	is	equal	to

where	 k	 is	 the	 number	 of	 instances	 inside	 the	 hypercube,	 and	 m	 is	 the	 number	 of
dimensions	of	the	feature	space.

Figure	5.18[229]	provides	a	graphical	insight	into	the	relationship	between	the	number
of	descriptive	features	 in	a	dataset	and	the	sampling	density	of	 the	feature	space.	Figure
5.18(a)[229]	 plots	 a	 one-dimensional	 dataset	 consisting	 of	 29	 instances	 spread	 evenly
between	0.0	and	3.0.	We	have	marked	the	unit	hypercube	covering	the	interval	0	to	1	in
this	figure.	The	density	of	this	unit	hypercube	is	 	(there	are	10	instances	inside	the
hypercube).	 If	we	 increase	 the	number	of	descriptive	 features,	 the	dimensionality	of	 the
feature	space	increases.	Figures	5.18(b)[229]	and	5.18(c)[229]	illustrate	what	happens	if	we
increase	the	number	of	descriptive	features	in	a	dataset	but	do	not	increase	the	number	of
instances.	 In	 Figure	 5.18(b)[229]	 we	 have	 added	 a	 second	 descriptive	 feature,	 Y,	 and
assigned	each	of	the	instances	in	the	dataset	a	random	Y	value	in	the	range	[0.0,	3.0].	The
instances	have	moved	away	from	each	other,	and	the	sampling	density	has	decreased.	The
density	of	the	marked	unit	hypercube	is	now	 	(there	are	only	4	instances	inside	the
hypercube).	Figure	5.18(c)[229]	illustrates	the	distribution	of	the	original	29	instances	when
we	move	 to	 a	 three-dimensional	 feature	 space	 (each	 instance	 has	 been	 given	 a	 random
value	in	the	range	[0.0,	3.0]	for	the	Z	feature).	It	is	evident	that	the	instances	are	getting



farther	and	farther	away	from	each	other,	and	the	feature	space	is	becoming	very	sparsely
populated,	with	 relatively	 large	 areas	where	 there	 are	 no	 or	 very	 few	 instances.	 This	 is
reflected	 in	 a	 further	 decrease	 in	 the	 sampling	 density.	 The	 density	 of	 the	 marked
hypercube	is	

Figures	5.18(d)[229]	and	5.18(e)[229]	illustrate	the	cost	we	would	have	to	incur	in	extra
instances	 if	we	wished	 to	maintain	 the	sampling	density	 in	 the	dataset	 in	 line	with	each
increase	in	the	dimensionality	of	the	feature	space.	In	the	two-dimensional	feature	space	in
Figure	5.18(d)[229],	we	have	maintained	 the	sampling	density	 (the	density	of	 the	marked
unit	 hypercube	 is	 )	 at	 the	 expense	 of	 a	 very	 large	 increase	 in	 the	 number	 of
instances—there	are	29	×	29	=	841	instances	plotted	in	this	figure.	This	is	quite	a	dramatic
increase;	 however,	 it	 gets	 even	 more	 dramatic	 when	 we	 increase	 from	 two	 to	 three
descriptive	 features.	 In	 Figure	 5.18(e)[229]	 we	 have,	 again,	 maintained	 the	 sampling
density	(the	density	of	 the	marked	unit	hypercube	is	 )	at	the	expense	of	a	very
large	increase	in	the	number	of	instances—there	are	29	×	29	×	29	=	24,389	instances	in
this	figure!

So,	 in	 order	 to	maintain	 the	 sampling	 density	 of	 the	 feature	 space	 as	 the	 number	 of
descriptive	features	increases,	we	need	to	dramatically,	indeed	exponentially,	increase	the
number	 of	 instances.	 If	 we	 do	 not	 do	 this,	 then	 as	 we	 continue	 to	 increase	 the
dimensionality	 of	 the	 feature	 space,	 the	 instances	 will	 continue	 to	 spread	 out	 until	 we
reach	 a	 point	 in	 a	 high-dimensional	 feature	 space	 where	 most	 of	 the	 feature	 space	 is
empty.	When	 this	 happens,	most	 of	 the	 queries	 will	 be	 in	 locations	where	 none	 of	 the
training	instances	are	nearby,	and	as	a	result,	the	predictive	power	of	the	models	based	on
these	 training	 instances	 will	 begin	 to	 decrease.	 This	 trade-off	 between	 the	 number	 of
descriptive	features	and	the	density	of	the	instances	in	the	feature	space	is	known	as	the
curse	of	dimensionality.

Typically,	we	are	not	able	 to	 increase	 the	number	of	 instances	 in	our	dataset,	and	we
face	the	scenario	of	a	sparsely	populated	feature	space,27	as	illustrated	in	Figures	5.18(b)
[229]	 and	 5.18(c)[229].	 Fortunately,	 several	 features	 of	 real	 data	 can	 help	 us	 to	 induce
reasonable	 models	 in	 high-dimensional	 feature	 spaces.28	 First,	 although	 real	 data	 does
spread	out,	it	doesn’t	spread	out	quite	as	randomly	and	quickly	as	we	have	illustrated	here.
Real	 instances	 tend	 to	 cluster.	 The	 net	 effect	 of	 this	 is	 that	 the	 distribution	 of	 real	 data
tends	to	have	a	lower	effective	dimensionality	than	the	dimensionality	of	the	feature	space.
Second,	within	any	small	region	or	neighborhood	of	the	feature	space,	real	data	tends	to
manifest	 a	 smooth	 correlation	 between	 changes	 in	 descriptive	 feature	 values	 and	 the
values	of	the	target	feature.	In	other	words,	small	changes	in	descriptive	features	result	in
small	changes	in	the	target	feature.	This	means	that	we	can	generate	good	predictions	for
queries	by	interpolating	from	nearby	instances	with	known	target	values.



Figure	5.18

A	set	of	scatter	plots	illustrating	the	curse	of	dimensionality.	Across	(a),	(b),	and	(c),	the
number	 of	 instances	 remains	 the	 same,	 so	 the	 density	 of	 the	 marked	 unit	 hypercubes
decreases	as	 the	number	of	dimensions	 increases;	 (d)	and	(e)	 illustrate	 the	cost	we	must
incur,	 in	 terms	 of	 the	 number	 of	 extra	 instances	 required,	 if	 we	 wish	 to	 maintain	 the
density	of	the	instances	in	the	feature	space	as	its	dimensionality	increases.

Another	 factor	 that	 can	 help	 us	 deal	 with	 the	 curse	 of	 dimensionality	 is	 that	 some
learning	 algorithms	have	 a	 natural	 resistance	 to	 the	 problem.	For	 example,	 the	 decision
tree	 learning	algorithms	we	 looked	at	 in	 the	 last	 chapter	worked	by	selecting	subsets	of
features	from	which	to	build	predictive	trees	and	so	naturally	reduce	dimensionality.	Even
these	 algorithms,	 however,	 do	 eventually	 succumb	 to	 the	 curse	 as	 the	 dimensionality
grows.	 Other	 algorithms,	 such	 as	 the	 nearest	 neighbor	 algorithm,	 that	 use	 all	 the
descriptive	features	when	making	a	prediction	are	particularly	sensitive	to	the	curse.	The
moral	 here	 is	 that	 the	 curse	 of	 dimensionality	 is	 a	 problem	 for	 all	 inductive	 learning
approaches,	and	given	that	acquiring	new	labeled	instances	is	typically	not	an	option,	the
best	way	 to	 avoid	 it	 is	 to	 restrict	 the	 number	 of	 descriptive	 features	 in	 a	 dataset	 to	 the
smallest	set	possible,	while	still	providing	the	learning	algorithm	with	enough	information
about	the	instances	to	be	able	to	build	a	useful	model.	This	is	difficult,	however,	because
when	we	 design	 descriptive	 features,	 we	 tend	 not	 to	 know	 exactly	 which	 ones	 will	 be
predictive	and	which	ones	will	not.

Fortunately,	we	can	use	 feature	selection29	 to	help	reduce	 the	number	of	descriptive
features	in	a	dataset	to	just	the	subset	that	is	most	useful.	Before	we	begin	our	discussion
of	 approaches	 to	 feature	 selection,	 it	 is	 useful	 to	 distinguish	 between	 different	 types	 of
descriptive	features.

Predictive:	 a	 predictive	 descriptive	 feature	 provides	 information	 that	 is	 useful	 in



estimating	the	correct	value	of	a	target	feature.
Interacting:	 by	 itself,	 an	 interacting	descriptive	 feature	 is	 not	 informative	 about	 the
value	of	the	target	feature.	In	conjunction	with	one	or	more	other	features,	however,	it
becomes	informative.
Redundant:	 a	 descriptive	 feature	 is	 redundant	 if	 it	 has	 a	 strong	 correlation	 with
another	descriptive	feature.
Irrelevant:	an	irrelevant	descriptive	feature	does	not	provide	information	that	is	useful
in	estimating	the	value	of	the	target	feature.

The	 goal	 of	 any	 feature	 selection	 approach	 is	 to	 identify	 the	 smallest	 subset	 of
descriptive	features	that	maintains	overall	model	performance.	Ideally,	a	feature	selection
approach	 will	 return	 the	 subset	 of	 features	 that	 includes	 the	 predictive	 and	 interacting
features	while	excluding	the	irrelevant	and	redundant	features.

The	most	 popular	 and	 straight	 forward	 approach	 to	 feature	 selection	 is	 to	rank	 and
prune.	 In	 this	approach	 the	 features	are	 ranked	using	a	measure	of	 their	predictiveness,
and	any	feature	outside	the	top	X%	of	the	features	in	the	list	is	pruned.	The	measures	of
predictiveness	 are	 called	 filters	 because	 they	 are	 used	 to	 filter	 apparently	 irrelevant
features	before	learning	occurs.	Technically,	a	filter	can	be	defined	as	a	heuristic	rule	that
assesses	 the	 predictiveness	 of	 a	 feature	 using	 only	 the	 intrinsic	 properties	 of	 the	 data,
independently	of	the	learning	algorithm	that	will	use	the	features	to	induce	the	model.	For
example,	we	can	use	information	gain30	as	a	filter	in	a	rank	and	prune	approach.

Although	 rank	and	prune	 approaches	using	 filters	 are	 computationally	 efficient,	 they
suffer	from	the	fact	 that	 the	predictiveness	of	each	feature	 is	evaluated	in	 isolation	from
the	 other	 features	 in	 the	 dataset.	 This	 leads	 to	 the	 undesirable	 result	 that	 ranking	 and
pruning	can	exclude	interacting	features	and	include	redundant	features.

To	find	the	ideal	subset	of	descriptive	features	to	use	to	train	a	model,	we	could	attempt
to	build	a	model	using	every	possible	subset,	evaluate	the	performance	of	all	these	models,
and	select	the	feature	subset	that	leads	to	the	best	model.	This	is	unfeasible,	however,	as
for	d	 features,	 there	 are	 2d	 different	 possible	 feature	 subsets,	 which	 is	 far	 too	many	 to
evaluate	unless	d	 is	very	small.	For	example,	with	 just	20	descriptive	features,	 there	are
220	=	1,048,576	possible	feature	subsets.	Instead,	feature	selection	algorithms	often	frame
feature	selection	as	a	greedy	local	search	problem,	where	each	state	in	the	search	space
specifies	a	subset	of	possible	features.	For	example,	Figure	5.19[232]	 illustrates	a	 feature
subset	space	for	a	dataset	with	three	descriptive	features:	X,	Y,	and	Z.	In	this	figure	each
rectangle	 represents	 a	 state	 in	 the	 search	 space	 that	 is	 a	 particular	 feature	 subset.	 For
instance,	 the	 rectangle	 on	 the	 very	 left	 represents	 the	 feature	 subset	 that	 includes	 no
features	at	all,	and	the	rectangle	at	the	top	of	the	second	column	from	the	left	represents
the	 feature	 subset	 including	 just	 the	 feature	X.	 Each	 state	 is	 connected	 to	 all	 the	 other
states	 that	 can	 be	 generated	 by	 adding	 or	 removing	 a	 single	 feature	 from	 that	 state.	 A
greedy	local	search	process	moves	across	a	feature	subset	space	like	this	search	in	order	to
find	the	best	feature	subset.

When	framed	as	a	greedy	local	search	problem,	feature	selection	is	defined	in	terms	of



an	iterative	process	consisting	of	the	following	components:

1.	 Subset	Generation:	This	component	generates	a	set	of	candidate	feature	subsets	that
are	successors	of	the	current	best	feature	subset.

2.	 Subset	Selection:	This	component	selects	the	feature	subset	from	the	set	of	candidate
feature	 subsets	 generated	 by	 the	 subset	 generation	 component	 that	 is	 the	 most
desirable	for	the	search	process	to	move	to.	One	way	to	do	this	(similar	to	the	ranking
and	 pruning	 approach	 described	 previously)	 is	 to	 use	 a	 filter	 to	 evaluate	 the
predictiveness	of	each	candidate	set	of	features	and	select	the	most	predictive	one.	A
more	common	approach	is	to	use	a	wrapper.	A	wrapper	evaluates	a	feature	subset	in
terms	 of	 the	 potential	 performance	 of	 the	 models	 that	 can	 be	 induced	 using	 that
subset.	 This	 involves	 performing	 an	 evaluation	 experiment31	 for	 each	 candidate
feature	subset,	in	which	a	model	is	induced	using	only	the	features	in	the	subset,	and
its	 performance	 is	 evaluated.	 The	 candidate	 feature	 subset	 that	 leads	 to	 the	 best
performing	model	 is	 then	 selected.	Wrapper	 approaches	 are	 more	 computationally
expensive	than	filters,	as	they	involve	training	multiple	models	during	each	iteration.
The	argument	for	using	a	wrapper	approach	is	that	to	get	the	best	predictive	accuracy,
the	 inductive	 bias	 of	 the	 particular	 machine	 learning	 algorithm	 that	 will	 be	 used
should	 be	 taken	 into	 consideration	 during	 feature	 selection.	 That	 said,	 filter
approaches	are	faster	and	often	result	in	models	with	good	accuracy.

3.	 Termination	Condition:	This	component	determines	when	the	search	process	should
stop.	Typically	we	stop	when	the	subset	selection	component	 indicates	 that	none	of
the	 feature	 subsets	 (search	 states)	 that	 can	 be	 generated	 from	 the	 current	 feature
subset	 is	 more	 desirable	 than	 the	 current	 subset.	 Once	 the	 search	 process	 is
terminated,	 the	 features	 in	 the	 dataset	 that	 are	 not	members	 of	 the	 selected	 feature
subset	are	pruned	from	the	dataset	before	the	prediction	model	is	induced.

Figure	5.19

Feature	subset	space	for	a	dataset	with	three	features	X,	Y,	and	Z.

Forward	sequential	selection	is	a	commonly	used	implementation	of	the	greedy	local
search	approach	to	feature	selection.	In	forward	sequential	selection,	the	search	starts	in	a
state	 with	 no	 features	 (shown	 on	 the	 left	 of	 Figure	 5.19[232]).	 In	 the	 subset	 generation
component	 of	 forward	 sequential	 selection,	 the	 successors	 of	 the	 current	 best	 feature
subset	are	the	set	of	feature	subsets	that	can	be	generated	from	the	current	best	subset	by



adding	 just	 a	 single	 extra	 feature.	 For	 example,	 after	 beginning	with	 the	 feature	 subset
including	 no	 features,	 the	 forward	 sequential	 search	 process	 generates	 three	 feature
subsets,	 each	 containing	 just	 one	of	X,	Y,	 or	Z	 (shown	 in	 the	 second	 column	of	Figure
5.19[232]).	The	subset	selection	component	in	forward	sequential	selection	can	use	any	of
the	approaches	described	above	and	moves	the	search	process	to	a	new	feature	subset.	For
example,	after	starting	with	the	feature	subset	including	no	features,	the	process	will	move
to	the	most	desirable	of	the	feature	subsets	containing	just	one	feature.	Forward	sequential
selection	terminates	when	no	accessible	feature	subset	is	better	than	the	current	subset.

Backward	 sequential	 selection	 is	 a	 popular	 alternative	 to	 forward	 sequential
selection.	In	backward	sequential	selection,	we	start	with	a	feature	subset	including	all	the
possible	features	 in	a	dataset	(shown	on	the	right	of	Figure	5.19[232]).	The	successors	of
the	 current	 best	 feature	 subset	 generated	 in	backward	 sequential	 selection	 are	 the	 set	 of
feature	subsets	that	can	be	generated	from	the	current	best	subset	by	removing	just	a	single
extra	feature.	Backward	sequential	selection	terminates	when	no	accessible	feature	subset
is	better	than	or	as	good	as	the	current	subset.

Neither	 forward	 nor	 backward	 sequential	 selection	 consider	 the	 effect	 of	 adding	 or
removing	 combinations	 of	 features,	 and	 as	 a	 result,	 they	 aren’t	 guaranteed	 to	 find	 the
absolute	optimal	subset	of	features.	So	which	approach	should	we	use?	Forward	sequential
selection	is	a	good	approach	if	we	expect	lots	of	irrelevant	features	in	the	dataset,	because
typically	 it	 results	 in	 a	 lower	overall	 computational	 cost	 for	 feature	 selection	due	 to	 the
fact	that	on	average	it	generates	smaller	feature	subsets.	This	efficiency	gain,	however,	is
at	 the	 cost	 of	 the	 likely	 exclusion	of	 interacting	 features.	Backward	 sequential	 selection
has	 the	 advantage	 that	 it	 allows	 for	 the	 inclusion	 of	 sets	 of	 interacting	 features	 that
individually	may	 not	 be	 predictive	 (because	 all	 features	 are	 included	 at	 the	 beginning),
with	 the	 extra	 computational	 cost	 of	 evaluating	 larger	 feature	 subsets.	 So	 if	 model
performance	 is	more	 important	 than	 computational	 considerations,	 backward	 sequential
selection	may	be	the	better	option;	otherwise	use	forward	sequential	selection.



Figure	5.20

The	process	of	model	induction	with	feature	selection.

Figure	5.20[234]	illustrates	how	filter	selection	fits	into	the	model	induction	process.	It
is	important	to	remember	that	feature	selection	can	be	used	in	conjunction	with	almost	any
machine	 learning	 algorithm,	 not	 just	 similarity-based	 approaches.	 Feature	 selection	 is
appropriate	 when	 there	 are	 large	 numbers	 of	 features,	 so	 we	 do	 not	 present	 a	 worked
example	 here.	We	 do,	 however,	 discuss	 the	 application	 of	 feature	 selection	 in	 the	 case
study	in	Chapter	10[483].



5.5	Summary
Similarity-based	prediction	models	attempt	 to	mimic	a	very	human	way	of	reasoning	by
basing	predictions	for	a	target	feature	value	on	the	most	similar	instances	in	memory.	The
fact	 that	 similarity-based	models	 attempt	 to	mimic	a	way	of	 reasoning	 that	 is	natural	 to
humans	 makes	 them	 easy	 to	 interpret	 and	 understand.	 This	 advantage	 should	 not	 be
underestimated.	 In	a	business	context	where	people	are	using	models	 to	 inform	decision
making,	being	able	to	understand	how	the	model	works	gives	people	more	confidence	in
the	model	and,	hence,	in	the	insight	that	it	provides.

The	 standard	 approach	 to	 implementing	 a	 similarity-based	 prediction	 model	 is	 the
nearest	neighbor	algorithm.	This	algorithm	is	built	on	two	fundamental	concepts:	(1)	a
feature	space,	and	(2)	measures	of	similarity	between	instances	within	the	feature	space.
In	this	chapter	we	presented	a	range	of	measures	of	similarity,	including	distance	metrics
(such	as	the	Euclidean,	Manhattan,	and	Mahalanobis)	and	similarity	indexes	(such	as
the	 Russel-Rao,	 Sokal-Michener,	 Jaccard,	 and	 Cosine).	 Each	 of	 these	 measures	 is
suitable	for	different	types	of	data,	and	matching	the	appropriate	measure	to	the	data	is	an
important	step	in	inducing	an	accurate	similarity-based	prediction	model.

A	 point	 that	we	 didn’t	 discuss	 in	 this	 chapter	 is	 that	 it	 is	 possible	 to	 create	 custom
measures	 for	 datasets	 with	 both	 continuous	 and	 categorical	 descriptive	 features	 by
combining	measures.	For	example,	we	might	use	a	Euclidean	distance	metric	to	handle	the
continuous	features	in	a	dataset	and	the	Jaccard	similarity	index	to	handle	the	categorical
features.	The	overall	measure	of	similarity	could	then	be	based	on	a	weighted	combination
of	the	two.	By	combining	measures	in	this	way,	we	can	apply	nearest	neighbor	models	to
any	dataset.

Custom	metrics	aside,	 the	standard	distance	metrics	and	similarity	 indexes	weight	all
features	 equally.	 Consequently,	 the	 predictions	 made	 by	 a	 nearest	 neighbor	 model	 are
based	on	the	full	set	of	descriptive	features	in	a	dataset.	This	is	not	true	of	all	prediction
models.	 For	 example,	 the	 predictions	 made	 by	 decision	 tree	 models	 are	 based	 on	 the
subset	of	descriptive	features	tested	on	the	path	from	the	root	of	the	tree	to	the	leaf	node
that	 specifies	 the	 prediction.	 The	 fact	 that	 nearest	 neighbor	 models	 use	 the	 full	 set	 of
descriptive	 features	when	making	 a	 prediction	makes	 them	 particularly	 sensitive	 to	 the
occurrence	 of	 missing	 descriptive	 feature	 values.	 In	 Section	 3.4[73]	 we	 introduced	 a
number	of	techniques	for	handling	missing	values,	and	particular	care	should	be	taken	to
handle	missing	values	if	a	nearest	neighbor	model	is	being	used.	The	same	is	true	for	large
range	variations	across	the	descriptive	features	in	a	dataset	and	normalization	techniques
(like	 those	described	 in	Section	3.6.1[92])	should	almost	always	be	applied	when	nearest
neighbor	models	are	used.

Nearest	neighbor	models	are	essentially	a	composition	of	a	set	of	local	models	(recall
our	discussion	on	Voronoi	tessellation)	with	the	predictions	made	being	a	function	of	the
target	 feature	value	of	 the	 instance	 in	 the	dataset	closest	 to	 the	query.	As	a	 result,	 these
models	 are	 very	 sensitive	 to	 noise	 in	 the	 target	 feature.	 The	 easiest	 way	 to	 solve	 this
problem	 is	 to	 employ	 a	k	nearest	neighbor	model,	which	 uses	 a	 function	 of	 the	 target



feature	values	of	 the	k	 closest	 instances	 to	a	query.	Care	must	be	 taken,	however,	when
selecting	the	parameter	k,	particularly	when	working	with	imbalanced	datasets.

Nearest	neighbor	models	are	also	sensitive	to	the	presence	of	redundant	and	irrelevant
descriptive	 features	 in	 training	 data.	 Consequently,	 feature	 selection	 is	 a	 particularly
important	process	 for	nearest	neighbor	 algorithms.	Feature	 selection	excludes	 redundant
and	irrelevant	features	from	the	induction	process	and	by	doing	so	alleviates	the	curse	of
dimensionality.	The	fact	 that	we	have	emphasized	feature	selection	 in	 this	chapter	does
not	 mean	 that	 it	 is	 not	 important	 to	 predictive	 analytics	 in	 general.	 The	 issue	 with
redundant	and	irrelevant	features	is	inherent	in	any	large	dataset,	and	the	feature	selection
techniques	described	 in	 this	 chapter	 are	generally	 applicable	when	any	 type	of	machine
learning	algorithm	is	being	used.

Finally,	 the	 nearest	 neighbor	 algorithm	 is	 what	 is	 known	 as	 a	 lazy	 learner.	 This
contrasts	with	eager	learners,	such	as	the	information-based	(Chapter	4[117]),	probability-
based	 (Chapter	 6[247]),	 and	 error-based	 (Chapter	 7[323])	 approaches	 to	machine	 learning
described	 in	other	chapters	 in	 this	book.	The	distinction	between	easy	 learners	and	 lazy
learners	 is	 based	 on	 when	 the	 algorithm	 abstracts	 from	 the	 data.	 The	 nearest	 neighbor
algorithm	delays	abstracting	from	the	data	until	 it	 is	asked	 to	make	a	prediction.	At	 this
point	the	information	in	the	query	is	used	to	define	a	neighborhood	in	the	feature	space,
and	 a	 prediction	 is	 made	 based	 on	 the	 instances	 in	 this	 neighborhood.	 Eager	 learners
abstract	away	from	the	data	during	training	and	use	this	abstraction	to	make	predictions,
rather	 than	 directly	 comparing	 queries	with	 instances	 in	 the	 dataset.	 The	 decision	 trees
described	in	Chapter	4[117]	are	an	example	of	this	type	of	abstraction.	One	consequence	of
abstracting	 away	 from	 the	 training	 data	 is	 that	models	 induced	 using	 an	 eager	 learning
algorithm	are	typically	faster	at	making	predictions	than	models	based	on	a	lazy	learner.	In
the	case	of	a	nearest	neighbor	algorithm,	as	 the	number	of	 instances	becomes	 large,	 the
model	 will	 become	 slower	 because	 it	 has	 more	 instances	 to	 check	 when	 defining	 the
neighborhood.	Techniques	such	as	the	k-d	tree	can	help	with	this	issue	by	creating	a	fast
index	at	 the	cost	of	some	preprocessing.	This	means	 that	a	nearest	neighbor	model	may
not	be	appropriate	in	domains	where	speed	of	prediction	is	of	the	essence.

An	advantage	of	the	lazy	learning	strategy,	however,	 is	 that	similarity-based	machine
learning	 approaches	 are	 robust	 to	 concept	 drift.	 Concept	 drift	 is	 a	 phenomenon	 that
occurs	 when	 the	 relationship	 between	 the	 target	 feature	 and	 the	 descriptive	 features
changes	over	time.	For	example,	the	characteristics	of	spam	emails	change	both	cyclically
through	 the	year	 (typical	 spam	emails	at	Christmas	 time	are	different	 to	 typical	 spam	at
other	times	of	the	year)	and	also	longitudinally	(spam	in	2014	is	very	different	from	spam
in	 1994).	 If	 a	 prediction	 task	 is	 affected	 by	 concept	 drift,	 an	 eager	 learner	may	 not	 be
appropriate	 because	 the	 abstraction	 induced	during	 training	will	 go	 out	 of	 date,	 and	 the
model	will	need	to	be	retrained	at	regular	intervals,	a	costly	exercise.	A	nearest	neighbor
algorithm	can	be	 updated	without	 retraining.	Each	 time	 a	 prediction	 is	made,	 the	 query
instance	can	be	added	into	the	dataset	and	used	in	subsequent	predictions.32	In	this	way,	a
nearest	neighbor	model	can	be	easily	updated,	which	makes	it	relatively	robust	to	concept
drift	(we	will	return	to	concept	drift	in	Section	8.4.6[447]).



To	conclude,	the	weaknesses	of	similarity-based	learning	approaches	are	that	they	are
sensitive	 to	 the	 curse	 of	 dimensionality,	 they	 are	 slower	 than	 other	 models	 at	 making
predictions	(particularly	with	very	large	datasets),	and	they	may	not	be	able	to	achieve	the
same	 levels	 of	 accuracy	 as	 other	 learning	 approaches.	 The	 strengths	 of	 these	 models,
however,	are	that	they	are	easy	to	interpret,	they	can	handle	different	types	of	descriptive
features,	they	are	relatively	robust	to	noise	(when	k	is	set	appropriately),	and	they	may	be
more	robust	to	concept	drift	than	models	induced	by	eager	learning	algorithms.



5.6	Further	Reading
Nearest	 neighbor	models	 are	 based	 on	 the	 concepts	 of	 a	 feature	 space	 and	measures	 of
similarity	within	 this	 feature	 space.	We	have	claimed	 that	 this	 is	 a	very	natural	way	 for
humans	 to	 think,	 and	 indeed,	 there	 is	 evidence	 from	 cognitive	 science	 to	 support	 a
geometric	basis	to	human	thought	(G¨adenfors,	2004).	G¨adenfors	(2004)	also	provides	an
excellent	introduction	and	overview	of	distance	metrics.

Chapter	 13	 of	 Hastie	 et	 al.	 (2009)	 gives	 an	 introduction	 to	 the	 statistical	 theory
underpinning	 nearest	 neighbor	 models.	 The	 measure	 used	 to	 judge	 similarity	 is	 a	 key
element	 in	 a	 nearest	 neighbor	 model.	 In	 this	 chapter,	 we	 have	 described	 a	 number	 of
different	distance	metrics	and	similarity	indexes.	Cunningham	(2009)	provides,	a	broader
introduction	to	the	range	of	metrics	and	indexes	that	are	available.

Efficiently	 indexing	 and	 accessing	memory	 is	 an	 important	 consideration	 in	 scaling
nearest	neighbor	models	 to	 large	datasets.	 In	 this	 chapter	we	have	 shown	how	k-d	 trees
(Bentley,	 1975;	 Friedman	 et	 al.,	 1977)	 can	 be	 used	 to	 speed	 up	 the	 retrieval	 of	 nearest
neighbors.	 There	 are,	 however,	 alternatives	 to	 k-d	 trees.	 Samet	 (1990)	 gives	 an
introduction	 to	r-trees	 and	other	 related	approaches.	More	 recently,	hash-based	 indexes,
such	 as	 locality	 sensitive	 hashing,	 have	 been	 developed.	 Andoni	 and	 Indyk	 (2006)
provides	 a	 survey	 of	 these	 hash	 based	 approaches.	Another	 approach	 to	 scaling	 nearest
neighbor	models	is	to	remove	redundant	or	noisy	instances	from	the	dataset	in	which	we
search	 for	 neighbors.	 For	 example,	 the	 condensed	 nearest	 neighbor	 approach	 (Hart,
1968)	was	one	of	the	earliest	attempts	at	this	and	removes	the	that	instances	not	near	target
level	 boundaries	 in	 a	 feature	 space	 as	 they	 are	 not	 required	 to	make	 predictions.	More
recent	attempts	to	do	this	include	Segata	et	al.	(2009)	and	Smyth	and	Keane	(1995).

Nearest	neighbor	models	are	often	used	in	text	analytics	applications.	Daelemans	and
van	 den	 Bosch	 (2005)	 discuss	 why	 nearest	 neighbor	 models	 are	 so	 suitable	 for	 text
analytics.	 Widdows	 (2004)	 provides	 a	 very	 readable	 and	 interesting	 introduction	 to
geometry	and	linguistic	meaning;	see,	in	particular,	Chapter	4	for	an	excellent	introduction
to	similarity	and	distance.	For	a	more	general	textbook	on	natural	language	processing,
we	recommend	Jurafsky	and	Martin	(2008).	Finally,	nearest	neighbor	models	are	the	basis
of	 case-based	 reasoning	 (CBR),	 which	 is	 an	 umbrella	 term	 for	 applications	 based	 on
similarity-based	machine	learning.	Richter	and	Weber	(2013)	is	a	good	introduction,	and
overview,	to	CBR.





5.7	Epilogue
Returning	 to	 1798	 and	 HMS	Calcutta,	 the	 next	 day	 you	 accompany	 your	 men	 on	 the
expedition	up	the	river,	and	you	encounter	the	strange	animal	the	sailor	had	described	to
you.	This	time	when	you	see	the	animal	yourself,	you	realize	that	it	definitely	isn’t	a	duck!
It	turns	out	that	you	and	your	men	are	the	first	Europeans	to	encounter	a	platypus.33

This	 epilogue	 illustrates	 two	 important,	 and	 related,	 aspects	 of	 supervised	 machine
learning.	 First,	 supervised	 machine	 learning	 is	 based	 on	 the	 stationarity	 assumption
which	 states	 that	 the	 data	 doesn’t	 change—it	 remains	 stationary—over	 time.	 One
implication	of	this	assumption	is	that	supervised	machine	learning	assumes	that	new	target
levels—such	 as	 previously	 unknown	 animals—don’t	 suddenly	 appear	 in	 the	 data	 from
which	queries	that	are	input	to	the	model	are	sampled.	Second,	in	the	context	of	predicting
categorical	 targets,	 supervised	machine	 learning	creates	models	 that	distinguish	between
the	 target	 levels	 that	 are	 present	 in	 the	 dataset	 from	 which	 they	 are	 induced.	 So	 if	 a
prediction	model	is	trained	to	distinguish	between	lions,	frogs	and	ducks,	the	model	will
classify	every	query	instance	as	being	either	a	lion,	a	frog,	or	a	duck—even	if	the	query	is
actually	a	platypus.

Figure	5.21

A	duck-billed	platypus.	This	platypus	image	was	created	by	Jan	Gillbank,	English	for	the
Australian	Curriculum	website	 (www.e4ac.edu.au).	 Used	 under	 Creative	Commons
Attribution	3.0	license.

Creating	models	that	can	identify	queries	as	being	sufficiently	different	from	what	was
in	 a	 training	 dataset	 so	 as	 to	 be	 considered	 a	 new	 type	 of	 entity	 is	 a	 difficult	 research
problem.	Some	of	the	areas	of	research	relevant	to	this	problem	include	outlier	detection
and	one-class	classification.

http://www.e4ac.edu.au




5.8	Exercises
1.	The	table	below	lists	a	dataset	that	was	used	to	create	a	nearest	neighbour	model

that	predicts	whether	it	will	be	a	good	day	to	go	surfing.

ID WAVE	SIZE	(FT) WAVE	PERIOD	(SECS) WIND	SPEED	(MPH) GOOD	SURF

1 6 15 5 yes

2 1 6 9 no

3 7 10 4 yes

4 7 12 3 yes

5 2 2 10 no

6 10 2 20 no

Assuming	that	the	model	uses	Euclidean	distance	to	find	the	nearest	neighbour,	what
prediction	will	the	model	return	for	each	of	the	following	query	instances.

ID WAVE	SIZE	(FT) WAVE	PERIOD	(SECS) WIND	SPEED	(MPH) GOOD	SURF

Q1 8 15 2 ?

Q2 8 2 18 ?

Q3 6 11 4 ?

2.	Email	spam	filtering	models	often	use	a	bag-of-words	representation	for	emails.
In	a	bag-of-words	representation,	the	descriptive	features	that	describe	a	document	(in
our	case,	an	email)	each	represent	how	many	times	a	particular	word	occurs	in	the
document.	One	descriptive	feature	is	included	for	each	word	in	a	predefined
dictionary.	The	dictionary	is	typically	defined	as	the	complete	set	of	words	that	occur
in	the	training	dataset.	The	table	below	lists	the	bag-of-words	representation	for	the
following	five	emails	and	a	target	feature,	SPAM,	whether	they	are	spam	emails	or
genuine	emails:

“money,	money,	money”
“free	money	for	free	gambling	fun”
“gambling	for	fun”
“machine	learning	for	fun,	fun,	fun”
“free	machine	learning”



a.	What	target	level	would	a	nearest	neighbor	model	using	Euclidean	distance	return
for	the	following	email:	“machine	learning	for	free”?

b.	What	target	level	would	a	k-NN	model	with	k	=	3	and	using	Euclidean	distance
return	for	the	same	query?

c.	What	target	level	would	a	weighted	k-NN	model	with	k	=	5	and	using	a	weighting
scheme	of	the	reciprocal	of	the	squared	Euclidean	distance	between	the	neighbor	and
the	query,	return	for	the	query?

d.	What	target	level	would	a	k-NN	model	with	k	=	3	and	using	Manhattan	distance
return	for	the	same	query?

e.	There	are	a	lot	of	zero	entries	in	the	spam	bag-of-words	dataset.	This	is	indicative	of
sparse	data	and	is	typical	for	text	analytics.	Cosine	similarity	is	often	a	good
choice	when	dealing	with	sparse	non-binary	data.	What	target	level	would	a	3-NN
model	using	cosine	similarity	return	for	the	query?

3.	The	predictive	task	in	this	question	is	to	predict	the	level	of	corruption	in	a
country	based	on	a	range	of	macro-economic	and	social	features.	The	table	below	lists
some	countries	described	by	the	following	descriptive	features:

LIFE	EXP.,	the	mean	life	expectancy	at	birth
TOP-10	INCOME,	 the	percentage	of	 the	annual	 income	of	 the	country	 that	goes	 to
the	top	10%	of	earners
INFANT	MORT.,	the	number	of	infant	deaths	per	1,000	births
MIL.	SPEND,	the	percentage	of	GDP	spent	on	the	military
SCHOOL	YEARS,	the	mean	number	years	spent	in	school	by	adult	females

The	target	feature	is	the	Corruption	Perception	Index	(CPI).	The	CPI	measures	the
perceived	levels	of	corruption	in	the	public	sector	of	countries	and	ranges	from	0
(highly	corrupt)	to	100	(very	clean).34



We	will	use	Russia	as	our	query	country	for	this	question.	The	table	below	lists	the
descriptive	features	for	Russia.

a.	What	value	would	a	3-nearest	neighbor	prediction	model	using	Euclidean	distance
return	for	the	CPI	of	Russia?

b.	What	value	would	a	weighted	k-NN	prediction	model	return	for	the	CPI	of	Russia?
Use	k	=	16	(i.e.,	the	full	dataset)	and	a	weighting	scheme	of	the	reciprocal	of	the
squared	Euclidean	distance	between	the	neighbor	and	the	query.

c.	The	descriptive	features	in	this	dataset	are	of	different	types.	For	example,	some	are
percentages,	others	are	measured	in	years,	and	others	are	measured	in	counts	per
1,000.	We	should	always	consider	normalizing	our	data,	but	it	is	particularly
important	to	do	this	when	the	descriptive	features	are	measured	in	different	units.
What	value	would	a	3-nearest	neighbor	prediction	model	using	Euclidean	distance
return	for	the	CPI	of	Russia	when	the	descriptive	features	have	been	normalized
using	range	normalization?

d.	What	value	would	a	weighted	k-NN	prediction	model—with	k	=	16	(i.e.,	the	full
dataset)	and	using	a	weighting	scheme	of	the	reciprocal	of	the	squared	Euclidean
distance	between	the	neighbor	and	the	query—return	for	the	CPI	of	Russia	when	it	is
applied	to	the	range-normalized	data?

e.	The	actual	2011	CPI	for	Russia	was	2.4488.	Which	of	the	predictions	made	was	the
most	accurate?	Why	do	you	think	this	was?



✻	4.	You	have	been	given	the	job	of	building	a	recommender	system	for	a	large
online	shop	that	has	a	stock	of	over	100,000	items.	In	this	domain	the	behavior	of
customers	is	captured	in	terms	of	what	items	they	have	bought	or	not	bought.	For
example,	the	following	table	lists	the	behavior	of	two	customers	in	this	domain	for	a
subset	of	the	items	that	at	least	one	of	the	customers	has	bought.

ID ITEM	107 ITEM	498 ITEM	7256 ITEM	28063 ITEM	75328

1 true true true false false

2 true false false true true

a.	The	company	has	decided	to	use	a	similarity-based	model	to	implement	the
recommender	system.	Which	of	the	following	three	similarity	indexes	do	you	think
the	system	should	be	based	on?

b.	What	items	will	the	system	recommend	to	the	following	customer?	Assume	that	the
recommender	system	uses	the	similarity	index	you	chose	in	the	first	part	of	this
question	and	is	trained	on	the	sample	dataset	listed	above.	Also	assume	that	the
system	generates	recommendations	for	query	customers	by	finding	the	customer
most	similar	to	them	in	the	dataset	and	then	recommending	the	items	that	this	similar
customer	has	bought	but	that	the	query	customer	has	not	bought.

ID ITEM
107

ITEM
498

ITEM
7256

ITEM
28063

ITEM
75328

Query true false true false false

✻	5.	You	are	working	as	an	assistant	biologist	to	Charles	Darwin	on	the	Beagle
voyage.	You	are	at	the	Galápagos	Islands,	and	you	have	just	discovered	a	new	animal
that	has	not	yet	been	classified.	Mr.	Darwin	has	asked	you	to	classify	the	animal	using
a	nearest	neighbor	approach,	and	he	has	supplied	you	the	following	dataset	of	already
classified	animals.



The	descriptive	features	of	the	mysterious	newly	discovered	animal	are	as	follows:

a.	A	good	measure	of	distance	between	two	instances	with	categorical	features	is	the
overlap	metric	(also	known	as	the	hamming	distance),	which	simply	counts	the
number	of	descriptive	features	that	have	different	values.	Using	this	measure	of
distance,	compute	the	distances	between	the	mystery	animal	and	each	of	the	animals
in	the	animal	dataset.

b.	If	you	used	a	1-NN	model,	what	class	would	be	assigned	to	the	mystery	animal?

c.	If	you	used	a	4-NN	model,	what	class	would	be	assigned	to	the	mystery	animal?
Would	this	be	a	good	value	for	k	for	this	dataset?

✻	6.	You	have	been	asked	by	a	San	Francisco	property	investment	company	to
create	a	predictive	model	that	will	generate	house	price	estimates	for	properties	they
are	considering	purchasing	as	rental	properties.	The	table	below	lists	a	sample	of
properties	that	have	recently	been	sold	for	rental	in	the	city.	The	descriptive	features	in
this	dataset	are	SIZE	(the	property	size	in	square	feet)	and	RENT	(the	estimated	monthly
rental	value	of	the	property	in	dollars).	The	target	feature,	PRICE,	lists	the	prices	that
these	properties	were	sold	for	in	dollars.

ID SIZE RENT PRICE

1 2,700 9,235 2,000,000

2 1,315 1,800 820,000



3 1,050 1,250 800,000

4 2,200 7,000 1,750,000

5 1,800 3,800 1,450,500

6 1,900 4,000 1,500,500

7 960 800 720,000

a.	Create	a	k-d	tree	for	this	dataset.	Assume	the	following	order	over	the	features:
RENT	then	SIZE.

b.	Using	the	k-d	tree	that	you	created	in	the	first	part	of	this	question,	find	the	nearest
neighbor	to	the	following	query:	SIZE	=	1,000,	RENT	=	2,200.

	

	

	

	

	

	

	

_______________

1	 This	 example	 dataset	 is	 inspired	 by	 the	 use	 of	 analytics	 in	 professional	 and	 college
sports,	 often	 referred	 to	 as	 sabremetrics.	 Two	 accessible	 introductions	 to	 this	 field	 are
Lewis	(2004)	and	Keri	(2007).

2	The	Manhattan	distance,	or	taxi-cab	distance,	is	so	called	because	it	is	the	distance	that
a	taxi	driver	would	have	to	cover	if	going	from	one	point	to	another	on	a	road	system	that
is	laid	out	in	blocks,	like	the	Manhattan	road	system.

3	 In	 the	 extreme	 case	 with	 p	 =	 ∞	 the	Minkowski	 metric	 simple	 returns	 the	maximum
difference	between	any	of	the	features.	This	is	known	as	the	Chebyshev	distance	but	 is
also	sometimes	called	the	chessboard	distance	because	it	is	the	number	of	moves	a	king
must	make	in	chess	to	go	from	one	square	on	the	board	to	any	other	square.

4	A	Voronoi	tessellation	is	a	way	of	decomposing	a	space	into	regions	where	each	region
belongs	 to	 an	 instance	 and	 contains	 all	 the	 points	 in	 the	 space	 whose	 distance	 to	 that
instance	is	less	than	the	distance	to	any	other	instance.

5	 Instances	 should	 only	 be	 added	 to	 the	 training	 dataset	 if	 we	 have	 determined	 after
making	the	prediction	that	the	prediction	was,	in	fact,	correct.	In	this	example,	we	assume
that	at	the	draft,	the	query	player	was	drafted.



6	When	using	the	reciprocal	of	the	squared	distance	as	a	weighting	function,	we	need	to	be
careful	 to	 avoid	division	by	 zero	 in	 the	 case	where	 the	query	 is	 exactly	 the	 same	as	 its
nearest	neighbor.	Typically	this	problem	case	is	handled	by	assigning	the	query	the	target
level	of	the	training	instance	d	that	it	exactly	matches.

7	See	Section	3.1[56].

8	The	primary	papers	introducing	k-d	trees	are	Bentley	(1975)	and	Friedman	et	al.	(1977).
Also,	 note	 that	 the	 k	 here	 has	 no	 relationship	with	 the	 k	 used	 in	 k	 nearest	 neighbor.	 It
simply	 specifies	 the	 number	 of	 levels	 in	 the	 depth	 of	 the	 tree,	 which	 is	 arbitrary	 and
typically	determined	by	the	algorithm	that	constructs	the	tree.

9	A	binary	tree	is	simply	a	tree	where	every	node	in	the	tree	has	at	most	two	branches.

10	We	use	the	median	value	as	the	splitting	threshold	because	it	is	less	susceptible	to	the
influence	of	outliers	than	the	mean,	and	this	helps	keep	the	tree	as	balanced	as	possible—
having	a	balanced	tree	helps	with	the	efficiency	in	retrieval.	If	more	than	one	instance	in	a
dataset	has	the	median	value	for	a	feature	we	are	splitting	on,	then	we	select	one	of	these
instances	to	represent	the	median	and	place	the	other	instances	with	the	median	value	in
the	set	containing	the	instances	whose	values	are	greater	than	the	median.

11	A	hyperplane	is	a	geometric	concept	that	generalizes	the	idea	of	a	plane	into	different
dimensions.	For	example,	a	hyperplane	in	2D	space	is	a	line	and	in	a	3D	space	is	a	plane.

12	Similar	to	a	hyperplane,	a	hypersphere	is	a	generalization	of	the	geometric	concept	of	a
sphere	 across	 multiple	 dimensions.	 So,	 in	 a	 2D	 space	 the	 term	 hypersphere	 denotes	 a
circle,	in	3D	it	denotes	a	sphere,	and	so	on.

13	Recall	 that	each	non-leaf	node	 in	 the	 tree	 indexes	an	 instance	 in	 the	dataset	and	also
defines	 a	 hyperplane	 that	 partitions	 the	 feature	 space.	 For	 example,	 the	 horizontal	 and
vertical	 lines	 in	Figure	5.9(b)[199]	 plot	 the	hyperplanes	defined	by	 the	non-leaf	nodes	of
the	k-d	tree	in	Figure	5.9(a)[199].

14	Figure	5.12(a)[205]	 further	misleads	us	because	when	we	draw	scatter	plots,	we	scale
the	values	to	make	the	plot	fit	in	a	square-shaped	image.	If	we	were	to	plot	the	axis	for	the
SALARY	feature	to	the	same	scale	as	the	AGE	feature	in	Figure	5.12(a)[205],	it	would	stretch
over	almost	400	pages.

15	For	convenience	we	repeat	Equation	(3.7)[93]	for	range	normalization	here:

16	The	example	given	here	 is	based	on	artificial	data	generated	 for	 the	purposes	of	 this
book.	Predicting	the	prices	of	assets	such	as	whiskey	or	wine	using	machine	learning	is,
however,	 done	 in	 reality.	 For	 example,	 Ashenfelter	 (2008)	 deals	 with	 predicting	 wine
prices	and	was	covered	in	Ayres	(2008).

17	These	will	be	covered	in	Section	8.4.1[405].

18	One	note	of	caution.	The	Jaccard	 similarity	 index	 is	undefined	 for	pairs	of	 instances



where	all	the	features	manifest	co-absence	as	this	leads	to	a	division	by	zero.

19	The	length	of	a	vector,	|a|,	is	computed	as	the	square	root	of	the	sum	of	the	elements	of
the	vector	squared:	 .

20	 If	either	vector	used	 to	calculate	a	cosine	similarity	contains	negative	 feature	values,
then	the	cosine	similarity	will	actually	be	in	the	range	[−	1,	1].	As	before,	1	indicates	high
similarity,	 and	 0	 indicates	 dissimilarity,	 but	 it	 can	 be	 difficult	 to	 interpret	 negative
similarity	 scores.	 Negative	 similarity	 values	 can	 be	 avoided,	 however,	 if	 we	 use	 range
normalization	 (see	 Section	 3.6.1[92])	 to	 ensure	 that	 descriptive	 feature	 values	 always
remain	positive.

21	 Covariance	 between	 features	 means	 that	 knowing	 the	 value	 of	 one	 feature	 tells	 us
something	about	the	value	of	the	other	feature.	See	Section	3.5.2[86]	for	more	information.

22	We	explain	covariance	matrices	in	Section	3.5.2[86].	The	inverse	covariance	matrix
is	the	matrix	such	that	when	the	covariance	matrix	is	multiplied	by	its	inverse,	the	result	is
the	identity	matrix:	Σ	×	Σ−1	=	 .	The	 identity	matrix	 is	a	square	matrix	 in	which	all	 the
elements	of	the	main	diagonal	are	1,	and	all	other	elements	are	0.	Multiplying	any	matrix
by	 the	 identity	 matrix	 leaves	 the	 original	 matrix	 unchanged—this	 is	 the	 equivalent	 of
multiplying	 by	 1	 for	 real	 numbers.	 So	 the	 effect	 of	 multiplying	 feature	 values	 be	 an
inverse	 covariance	matrix	 is	 to	 rescale	 the	 variances	 of	 all	 features	 to	 1	 and	 to	 set	 the
covariance	 between	 all	 feature	 pairs	 to	 0.	 Calculating	 the	 inverse	 of	 a	 matrix	 involves
solving	systems	of	linear	equations	and	requires	the	use	of	techniques	from	linear	algebra
such	 as	 Gauss-Jordan	 elimination	 or	 LU	 decomposition.	 We	 do	 not	 cover	 these
techniques	here,	 but	 they	are	 covered	 in	most	 standard	 linear	 algebra	 textbooks	 such	as
Anton	and	Rorres	(2010).

23	 The	 inverse	 of	 the	 identity	 matrix	 	 is	 .	 So,	 if	 there	 is	 no	 covariance	 between	 the
features,	both	the	covariance	and	the	inverse	covariance	matrix	will	be	equal	to	 .

24	 Section	 3.5.2[86]	 describes	 the	 calculation	 of	 covariance	 matrices.	 The	 inverse
covariance	 matrix	 was	 calculated	 using	 the	 solve	 function	 from	 the	 R	 programming
language.

25	Recall	that	a	dataset	where	the	majority	of	descriptive	features	have	zero	as	the	value	is
known	as	sparse	data.	This	often	occurs	 in	document	classification	 problems,	when	 a
bag-of-words	 representation	 is	 used	 to	 represent	 documents	 as	 the	 frequency	 of
occurrence	of	each	word	in	a	dictionary	(the	eponymous	bag-of-words).	The	bag-of-words
representation	is	covered	more	in	Question	2[240]	at	the	end	of	this	chapter.	One	problem
with	sparse	data	is	that	with	so	few	non-zero	values,	the	variation	between	two	instances
may	be	dominated	by	noise.

26	A	 hypercube	 is	 a	 generalization	 of	 the	 geometric	 concept	 of	 a	 cube	 across	multiple
dimensions.	So	in	a	two-dimensional	space,	the	term	hypercube	denotes	a	square,	in	three-
dimensional	space,	it	denotes	a	cube,	and	so	on.	A	unit	hypercube	is	a	hypercube	in	which
the	length	of	every	side	is	1	unit.

27	 This	 should	 not	 be	 confused	 with	 the	 concept	 of	 sparse	 data	 that	 was	 introduced



earlier.

28	 The	 discussion	 relating	 to	 the	 features	 of	 real	 data	 that	 help	 with	 the	 induction	 of
models	in	high-dimensional	spaces	is	based	on	Bishop	(2006),	pages	33–38.

29	Feature	selection	is	sometimes	also	known	as	variable	selection.

30	See	Section	4.2.3[128].

31	We	discuss	the	design	of	evaluation	experiments	in	details	in	Chapter	8[397].

32	Obviously	we	must	verify	 that	 the	prediction	made	was	correct	before	adding	a	new
instance	to	the	dataset.

33	 The	 story	 recounted	 here	 of	 the	 discovery	 of	 the	 platypus	 is	 loosely	 based	 on	 real
events.	See	Eco	(1999)	for	a	more	faithful	account	of	what	happened	and	for	a	discussion
of	the	implications	of	this	discovery	for	classification	systems	in	general.	The	platypus	is
not	 the	 only	 animal	 from	 Australia	 whose	 discovery	 by	 Europeans	 has	 relevance	 to
predictive	machine	learning.	See	Taleb	(2008)	regarding	the	discovery	of	black	swans	and
its	relevance	to	predictive	models.

34	The	data	listed	in	this	table	is	real	and	is	for	2010/11	(or	the	most	recent	year	prior	to
2010/11	when	 the	data	was	available).	The	data	 for	 the	descriptive	 features	 in	 this	 table
was	 amalgamated	 from	 a	 number	 of	 surveys	 retrieved	 from	 Gapminder
(www.gapminder.org).	 The	 Corruption	 Perception	 Index	 is	 generated	 annually	 by
Transparency	International	(www.transparency.org).

http://www.gapminder.org
http://www.transparency.org




6	Probability-based	Learning

When	my	information	changes,	I	alter	my	conclusions.	What	do	you	do,	sir?

—John	Maynard	Keynes

In	 this	 chapter	 we	 introduce	 probability-based	 approaches	 to	 machine	 learning.
Probability-based	prediction	 approaches	 are	heavily	based	on	Bayes’	Theorem,	 and	 the
fundamentals	 section	 of	 this	 chapter	 introduces	 this	 important	 cornerstone	 of	 computer
science	after	covering	some	other	 fundamentals	of	probability	 theory.	We	 then	 present
the	naive	Bayes	model,	 the	 standard	approach	 to	using	probability-based	approaches	 to
machine	learning.	The	extensions	and	variations	to	this	standard	approach	that	we	describe
are	the	use	of	smoothing	to	combat	overfitting,	the	modifications	required	to	the	standard
naive	 Bayes	 model	 to	 allow	 it	 to	 handle	 continuous	 features,	 and	 Bayesian	 network
models	that	give	us	more	control	than	a	naive	Bayes	model	over	the	assumptions	that	are
encoded	in	a	model.



6.1	Big	Idea
Imagine	that	you	are	at	a	county	fair	and	a	stall	owner	is	offering	all	comers	a	game	of	find
the	lady.	Find	the	lady	is	a	card	game	that	hucksters	have	been	using	to	earn	money	from
unsuspecting	marks	for	centuries.1	In	a	game,	the	dealer	holds	three	cards—one	queen	and
two	aces	(as	shown	in	Figure	6.1(a)[248])—and,	typically	with	a	little	bit	of	flair,	quickly
drops	these	cards	face	down	onto	a	table.	Faced	with	the	backs	of	three	cards	(as	shown	in
Figure	6.1(b)[248]),	 the	player	then	has	to	guess	where	the	queen	has	landed.	Usually	the
player	bets	money	on	their	ability	to	do	this,	and	the	dealer	uses	a	little	manual	trickery	to
misdirect	the	player	toward	the	wrong	card.

When	 you	 first	 see	 the	 game	 played,	 because	 the	 dealer	 lays	 out	 the	 three	 cards	 so
quickly,	you	think	that	there	is	no	way	to	tell	where	the	queen	lands.	In	this	case	you	can
only	assume	that	 the	queen	is	equally	likely	to	be	in	any	of	 the	three	possible	positions:
left,	center,	or	right.	This	 is	shown	in	 the	bar	plot	 in	Figure	6.1(c)[248],	which	 shows	an
equal	 likelihood	 for	 each	 position.	Not	 feeling	 quite	 brave	 enough	 to	 play	 a	 game,	 you
decide	to	instead	study	the	dealer	playing	games	with	other	people.

Figure	6.1

A	game	of	find	the	lady:	(a)	the	cards	used;	(b)	the	cards	dealt	face	down	on	a	table;	(c)	the
initial	likelihoods	of	the	queen	ending	up	in	each	position;	(d)	a	revised	set	of	likelihoods
for	the	position	of	the	queen	based	on	evidence	collected.

After	watching	the	dealer	play	30	games	with	other	players,	you	notice	 that	he	has	a
tendency	 to	drop	 the	queen	 in	 the	position	on	 the	 right	 (19	 times)	more	 than	 the	 left	 (3
times)	or	center	(8	times).	Based	on	this,	you	update	you	beliefs	about	where	the	queen	is
likely	 to	 land	 based	 on	 the	 evidence	 that	 you	 have	 collected.	 This	 is	 shown	 in	 Figure
6.1(d)[248],	where	the	bars	have	been	redistributed	to	illustrate	the	revised	likelihoods.



Confident	that	your	study	will	help	you,	you	lay	a	dollar	down	to	play	a	game,	ready	to
guess	that	the	queen	is	in	the	position	on	the	right.	This	time,	however,	as	the	dealer	drops
the	cards	onto	the	table,	a	sudden	gust	of	wind	turns	over	the	card	on	the	right	to	reveal
that	it	is	the	ace	of	spades	(shown	in	Figure	6.2(a)[249]).	The	extra	piece	of	evidence	means
that	you	need	to	revise	your	belief	about	the	likelihoods	of	where	the	queen	will	be	once
again.	 These	 revised	 likelihoods	 are	 shown	 in	 Figure	 6.2(b)[249].	 As	 you	 know	 that	 the
card	is	not	in	the	position	on	the	right	the	likelihood	of	that	you	had	associated	with	this
position	is	redistributed	amongst	the	other	two	possibilities.	Based	on	the	new	likelihoods,
you	guess	that	the	queen	is	in	the	center	position,	and	happily,	this	turns	out	to	be	correct
(see	 Figure	 6.2(c)[249]).	 The	 dealer	 encourages	 you	 to	 play	 again,	 but	 you	 know	 that
you’ve	 got	 to	 know	when	 to	 walk	 away,	 so	 you	 head	 on	 with	 an	 extra	 dollar	 in	 your
pocket.

Figure	6.2

(a)	 The	 set	 of	 cards	 after	 the	 wind	 blows	 over	 the	 one	 on	 the	 right;	 (b)	 the	 revised
likelihoods	for	the	position	of	the	queen	based	on	this	new	evidence;	(c)	the	final	positions
of	the	cards	in	the	game.

This	illustrates	the	big	idea	underlying	probability-based	machine	learning.	We	can	use
estimates	 of	 likelihoods	 to	 determine	 the	 most	 likely	 predictions	 that	 should	 be	 made.
Most	 importantly,	 though,	 we	 revise	 these	 predictions	 based	 on	 data	 we	 collect	 and
whenever	extra	evidence	becomes	available.



6.2	Fundamentals
In	 this	 section	 we	 describe	 Bayes’	 Theorem	 and	 the	 important	 fundamentals	 of
probability	theory	that	are	required	to	use	it.	This	section	assumes	a	basic	understanding	of
probability	 theory,	 including	 the	 basics	 of	 calculating	 probabilities	 based	 on	 relative
frequencies,	 calculating	 conditional	 probabilities,	 the	 probability	 product	 rule,	 the
probability	chain	rule,	and	the	Theorem	of	Total	Probability.	Appendix	B[541]	provides
a	comprehensive	introduction	to	these	aspects	of	probability	theory,	so	we	recommend	that
readers	unfamiliar	with	them	review	this	appendix	before	continuing	with	this	chapter.

Table	6.1

A	simple	dataset	for	MENINGITIS	diagnosis	with	descriptive	features	that	describe	the
presence	or	absence	of	three	common	symptoms	of	the	disease:	HEADACHE,	FEVER,	and
VOMITING.

ID HEADACHE FEVER VOMITING MENINGITIS

1 true true false false

2 false true false false

3 true false true false

4 true false true false

5 false true false true

6 true false true false

7 true false true false

8 true false true true

9 false true false false

10 true false true true

We	 will	 use	 the	 dataset2	 in	 Table	 6.1[250]	 to	 illustrate	 how	 the	 terminology	 of
probability	is	mapped	into	the	language	of	machine	learning	for	predictive	data	analytics.
The	target	being	predicted	in	this	dataset	is	whether	a	patient	is	suffering	from	MENINGITIS,
and	 the	 descriptive	 features	 are	 common	 symptoms	 associated	 with	 this	 disease
(HEADACHE,	FEVER,	and	VOMITING).

From	a	probability	point	of	view,	each	feature	in	a	dataset	is	a	random	variable,	and
the	sample	space	 for	 the	 domain	 associated	with	 a	 prediction	 problem	 is	 the	 set	 of	 all



possible	 combinations	 of	 assignments	 of	 values	 to	 features.	 Each	 row	 in	 a	 dataset
represents	an	experiment,	which	associates	a	target	feature	value	with	a	set	of	descriptive
feature	values,	and	the	assignment	of	a	set	of	descriptive	features	with	values	is	an	event.
So,	for	example,	each	row	in	Table	6.1[250]	represents	an	experiment	and	the	assignment	of
the	descriptive	 features	 to	 the	values	 shown	 in	each	 row	can	be	 referred	 to	as	a	distinct
event.

A	probability	function,	P(),	returns	the	probability	of	an	event.	For	example,	P(FEVER
=	true)	returns	the	probability	of	the	FEVER	feature	taking	the	value	true.	This	probability,
which	is	0.4,	can	be	counted	directly	from	the	dataset.	Probability	functions	for	categorical
features	 are	 referred	 to	 as	 probability	mass	 functions,	 while	 probability	 functions	 for
continuous	features	are	known	as	probability	density	functions.	In	the	early	part	of	this
chapter,	we	focus	on	categorical	features,	but	we	return	to	continuous	features	in	Section
6.4[272].	A	joint	probability	refers	to	the	probability	of	an	assignment	of	specific	values	to
multiple	different	 features,	 for	 example,	P(MENINGITIS	 =	 true,	HEADACHE	 =	 true)	 =	 0.2.
Last,	a	conditional	probability	 refers	 to	 the	probability	of	one	 feature	 taking	a	specific
value	 given	 that	 we	 already	 know	 the	 value	 of	 a	 different	 feature,	 for	 example,
P(MENINGITIS	=	true	|	HEADACHE	=	true)	=	0.2857.

It	 is	 often	 useful	 to	 talk	 about	 the	 probabilities	 for	 all	 the	 possible	 assignments	 to	 a
feature.	 To	 do	 this	 we	 use	 the	 concept	 of	 a	 probability	 distribution.	 A	 probability
distribution	 is	 a	 data	 structure	 that	 describes	 the	 probability	 of	 each	 possible	 value	 a
feature	 can	 take.	 For	 example,	 the	 probability	 distribution	 for	 the	 binary	 feature
MENINGITIS	from	Table	6.1[250]	is	P(MENINGITIS)	=	〈0.3,	0.7〉	 (by	convention	we	give	the
true	 probability	 first).	 We	 use	 bold	 notation	 to	 distinguish	 between	 a	 probability
distribution,	P(),	 and	 a	 probability	 function,	P().	 The	 sum	 of	 a	 probability	 distribution
must	equal	1.0.

A	 joint	 probability	 distribution	 is	 a	 probability	 distribution	 over	 more	 than	 one
feature	assignment	and	is	written	as	a	multi-dimensional	matrix	in	which	each	cell	lists	the
probability	of	a	particular	combination	of	feature	values	being	assigned.	The	dimensions
of	 the	matrix	 are	dependent	on	 the	number	of	 features	 and	 the	number	of	 values	 in	 the
domains	of	the	features.	The	sum	of	all	the	cells	in	a	joint	probability	distribution	must	be
1.0.	For	example,	the	joint	probability	distribution	for	the	four	binary	features	from	Table
6.1[250]	(HEADACHE,	FEVER,	VOMITING,	and	MENINGITIS)	is	written	as3

Given	a	joint	probability	distribution,	we	can	compute	the	probability	of	any	event	in
the	domain	that	it	covers	by	summing	over	the	cells	in	the	distribution	where	that	event	is



true.	For	example,	to	compute	the	probability	of	P(h)	in	the	domain	specified	by	the	joint
probability	distribution	P(H,	F,	V,	M),	we	simply	sum	the	values	in	the	cells	containing	h
(the	cells	in	the	first	column).	Calculating	probabilities	in	this	way	is	known	as	summing
out.	 We	 can	 also	 use	 summing	 out	 to	 compute	 conditional	 probabilities	 from	 a	 joint
probability	distribution.	To	calculate	the	probability	P(h	|	f	)	from	P(H,	F,	V,	M),	we	sum
the	values	in	all	the	cells	where	h	and	f	are	the	case	(the	top	four	cells	in	the	first	column).

We	are	now	ready	to	take	on	Bayes’	Theorem!



6.2.1	Bayes’	Theorem

Bayes’	Theorem4	is	so	elegant	and	intuitive	that	it	can	be	stated	in	one	sentence	of	plain
English:

the	probability	 that	an	event	has	happened	given	a	set	of	evidence	 for	 it	 is	equal	 to	 the
probability	of	the	evidence	being	caused	by	the	event	multiplied	by	the	probability	of	the
event	itself

or	slightly	more	succinctly:

P(an	event	given	evidence)	=	P(the	evidence	given	the	event)

×	P(the	event)

Reading	from	left	to	right,	the	theorem	shows	us	how	to	calculate	the	probability	of	an
event	 given	 the	 evidence	we	 have	 of	 that	 event	 in	 terms	 of	 the	 likelihood	 of	 the	 event
causing	 this	 evidence.	 This	 is	 useful	 because	 reasoning	 from	 the	 evidence	 to	 events
(inverse	 reasoning)	 is	 often	 much	 more	 difficult	 than	 reasoning	 from	 an	 event	 to	 the
evidence	 it	causes	 (forward	reasoning).	Bayes’	Theorem	allows	us	 to	easily	swap	back
and	forth	between	these	two	types	of	reasoning.

The	formal	definition	of	Bayes’	Theorem	is

Bayes’	Theorem	defines	the	conditional	probability	of	an	event,	X,	given	some	evidence,
Y,	 in	 terms	of	 the	product	of	 the	 inverse	 conditional	probability,	P(Y	 |	X),	 and	 the	prior
probability	of	the	event	P(X).

For	 an	 illustrative	 example	 of	Bayes’	Theorem	 in	 action,	 imagine	 that	 after	 a	 yearly
checkup,	a	doctor	informs	a	patient	that	there	is	both	bad	news	and	good	news.	The	bad
news	is	that	the	patient	has	tested	positive	for	a	serious	disease	and	that	the	test	the	doctor
used	is	99%	accurate	(i.e.,	the	probability	of	testing	positive	when	a	patient	has	the	disease
is	0.99,	as	is	the	probability	of	testing	negative	when	a	patient	does	not	have	the	disease).
The	good	news,	however,	 is	 that	 the	disease	 is	extremely	rare,	striking	only	1	 in	10,000
people.	So	what	is	the	actual	probability	that	the	patient	has	the	disease?	And	why	is	the
rarity	of	the	disease	good	news	given	that	the	patient	has	tested	positive	for	it?

We	 can	 use	 Bayes’	 Theorem	 to	 answer	 both	 of	 these	 questions.	 To	 calculate	 the
probability	that	the	patient	actually	has	the	disease	based	on	the	evidence	of	the	test	result,
P(d	|	t),	we	apply	Bayes’	Theorem:

The	information	about	the	scenario	gives	us	the	probability	of	having	the	disease	as	P(d)	=
0.0001	and	the	probability	of	not	having	the	disease	as	P(	d)	=	0.9999.	The	accuracy	of	the
test	 is	captured	as	P(t	 |	d)	=	0.99	and	P(t	 |	d)	=	0.01.	The	overall	probability	of	 the	 test
returning	a	positive	value,	P(t),	is	not	given	in	the	description	above,	but	it	can	be	easily
calculated	using	the	Theorem	of	Total	Probability5	as



We	can	insert	these	probabilities	into	the	application	of	Bayes’	Theorem	to	give

So,	the	probability	of	actually	having	the	disease,	in	spite	of	the	positive	test	result,	is	less
than	1%.	This	is	why	the	doctor	said	the	rarity	of	the	disease	was	such	good	news.	One	of
the	 important	 characteristics	 of	 Bayes’	 Theorem	 is	 its	 explicit	 inclusion	 of	 the	 prior
probability	of	an	event	when	calculating	the	likelihood	of	that	event	based	on	evidence.6

Let’s	look	at	Bayes’	Theorem	in	a	little	more	detail.	Bayes’	Theorem	is	easily	derived
from	the	product	rule.7	We	know	from	the	product	rule	and	the	logical	symmetry	of	the
and	operation8	that

P(Y	|	X)P(X)	=	P(X	|	Y)P(Y)

If	we	divide	both	sides	of	this	equation	by	the	prior	probability	on	the	left	hand	side,	P(Y),
we	get

The	P(Y)	 terms	on	 the	 left	hand	side	of	 this	equation,	however,	cancel	each	other	out	 to
give	us	Bayes’	Theorem

There	are	two	important	observations	regarding	the	division	in	Bayes’	Theorem	by	the
denominator	P(Y).	The	first	 is	 that	 this	division	functions	as	a	normalization	mechanism
ensuring	that

0	≤	P(X	|	Y)	≤	1

and

where	Σi	P(Xi)	should	be	interpreted	as	summing	over	the	set	of	events	that	are	a	complete
assignment	to	the	features	in	X.	The	reason	that	the	division	functions	as	a	normalization
mechanism	is	that	the	prior	probability	of	the	evidence,	P(Y),	is	not	conditional	on	Xi,	and
as	a	result,	it	is	constant	for	all	Xi.

The	second	interesting	observation	about	the	division	of	the	right	hand	side	of	Bayes’
Theorem	 by	 P(Y)	 is	 that	 we	 can	 calculate	 P(Y)	 in	 two	 different	 ways.	 First,	 we	 can
calculate	P(Y)	directly	from	a	dataset	as



Alternatively,	we	can	use	the	Theorem	of	Total	Probability	to	calculate	P(Y):

Notice	that	ignoring	the	subscripts,	the	expression	we	are	summing	in	Equation	(6.4)[255]
is	 identical	 to	 the	 numerator	 in	 Bayes’	 Theorem.	 This	 gives	 us	 a	 way	 to	 calculate	 the
posterior	probability	distribution	over	the	possible	assignment	of	values	to	the	features
in	event	X	conditioned	on	the	event	Y,	 that	is,	P(X	 |	Y),	 that	avoids	explicitly	calculating
P(Y).	If	we	let

then

where	the	term	η	explicitly	represents	a	normalization	constant.	Because	Bayes’	Theorem
can	be	calculated	in	this	way,	it	is	sometimes	written	as

where	η	is	as	defined	in	Equation	(6.5)[255].

So	 we	 have	 two	 different	 definitions	 of	 Bayes’	 Theorem	 (Equation	 (6.2)[252]	 and
Equation	 (6.7)[255]),	 but	 which	 one	 should	 we	 use?	 The	 choice	 is	 really	 a	 matter	 of
convenience.	If	we	are	calculating	the	probability	of	a	single	event	given	some	evidence,
then	calculating	P(Y)	directly	from	the	data	using	Equation	(6.2)[252]	is	the	easier	option.
If,	however,	we	need	to	calculate	the	posterior	probability	distribution	over	X	given	Y,	that
is	 P(X	 |	 Y),	 then	 we	 will	 be	 actually	 calculating	 each	 of	 the	 P(Y	 |	 Xi)P(Xi)	 values	 in
Equation	(6.5)[255]	as	part	of	this	calculation,	and	it	is	more	efficient	to	use	Equation	(6.7)
[255].

We	are	now	ready	to	use	Bayes’	Theorem	to	generate	predictions	based	on	a	dataset.
The	next	section	will	examine	how	this	is	done.



6.2.2	Bayesian	Prediction

To	 make	 Bayesian	 predictions,	 we	 generate	 the	 probability	 of	 the	 event	 that	 a	 target
feature,	t,	 takes	a	specific	 level,	 l,	given	 the	assignment	of	values	 to	a	set	of	descriptive
features,	q,	from	a	query	instance.	We	can	restate	Bayes’	Theorem	using	this	terminology
and	generalize	the	definition	of	Bayes’	Theorem	so	that	it	can	take	into	account	more	than
one	piece	of	evidence	(each	descriptive	feature	value	is	a	separate	piece	of	evidence).	The
Generalized	Bayes’	Theorem	is	defined	as

To	calculate	a	probability	using	the	Generalized	Bayes’	Theorem,	we	need	 to	calculate
three	probabilities:

1.	 P(t	=	l),	the	prior	probability	of	the	target	feature	t	taking	the	level	l
2.	 P(q[1],	…,	q[m]),	the	joint	probability	of	the	descriptive	features	of	a	query	instance

taking	a	specific	set	of	values
3.	 P(q[1],	…,	q[m]	|	t	=	l),	the	conditional	probability	of	the	descriptive	features	of	a

query	 instance	 taking	a	specific	 set	of	values	given	 that	 the	 target	 feature	 takes	 the
level	l

The	 first	 two	 of	 these	 probabilities	 are	 easy	 to	 calculate.	P(t	 =	 l)	 is	 simply	 the	 relative
frequency	with	which	the	target	feature	takes	the	level	l	in	a	dataset.	P(q[1],	…,	q[m])	can
be	calculated	as	 the	relative	frequency	in	a	dataset	of	 the	 joint	event	 that	 the	descriptive
features	 of	 an	 instance	 take	 on	 the	 values	q[1],	…,	q[m].	 As	 discussed	 in	 the	 previous
section,	it	can	also	be	calculated	using	the	Theorem	of	Total	Probability	(in	this	instance,
summing	 over	 all	 the	 target	 levels	 Σk∈levels(t)	 P(q[1],	 …,	 q[m]	 |	 t	 =	 k)P(t	 =	 k)),	 or
replaced	entirely	with	a	normalization	constant,	η.

The	 final	 probability	 that	 we	 need	 to	 calculate,	 P(q[1],	 …,	 q[m]	 |	 t	 =	 l),	 can	 be
calculated	either	directly	from	a	dataset	(by	calculating	the	relative	frequency	of	the	joint
event	q[1],	…,	q[m]	within	 the	 set	 of	 instances	where	 t	 =	 l),	 or	 alternatively,	 it	 can	 be
calculated	using	the	probability	chain	rule.9	The	chain	rule	states	that	the	probability	of	a
joint	event	can	be	rewritten	as	a	product	of	conditional	probabilities.	So,	we	can	rewrite
P(q[1],	…,	q[m])	as

We	 can	 use	 the	 chain	 rule	 for	 conditional	 probabilities	 by	 just	 adding	 the	 conditioning
term	to	each	term	in	the	expression,	so

This	 transformation	 from	 a	 joint	 probability	 conditioned	 on	 a	 single	 event	 into	 a
product	 of	 conditional	 probabilities	with	 just	 one	 event	 being	 conditioned	 in	 each	 term
may	not	appear	to	achieve	much.	We	will	see	shortly,	however,	that	this	transformation	is



incredibly	useful.

Let’s	look	at	an	example	of	how	we	can	now	use	Bayes’	Theorem	to	make	predictions
based	 on	 the	 meningitis	 diagnosis	 dataset	 in	 Table	 6.1[250]	 for	 a	 query	 instance	 with
HEADACHE	 =	 true,	 FEVER	 =	 false,	 and	 VOMITING	 =	 true.	 Returning	 to	 the	 shortened
notation	that	we	used	previously,	a	predicted	diagnosis	for	this	query	instance	can	be	given
using	Bayes’	Theorem	as

There	are	 two	values	 in	 the	domain	of	 the	MENINGITIS	 feature,	 true	 and	 false,	 so	we
have	to	do	this	calculation	once	for	each.	Considering	first	the	calculation	for	m,	we	need
the	following	probabilities,	which	can	be	computed	directly	from	Table	6.1[250]

We	also	need	to	calculate	the	likelihood	of	the	descriptive	feature	values	of	the	query
given	that	the	target	is	true.	We	could	calculate	this	directly	from	the	dataset,	but	in	this
example,	we	will	 illustrate	 the	 chain	 rule	 approach	 just	 described.	Using	 the	 chain	 rule
approach,	 we	 compute	 the	 overall	 likelihood	 of	 the	 descriptive	 feature	 values	 given	 a
target	value	of	true	as	the	product	of	a	set	of	conditional	probabilities	that	are	themselves
calculated	from	the	dataset

We	 can	 now	 combine	 the	 three	 probabilities	 just	 calculated	 to	 calculate	 the	 overall
probability	of	the	target	feature	taking	the	level	true	given	the	query	instance

The	corresponding	calculation	for	P(¬m	|	h,¬f,	v)	is:

These	 calculations	 tell	 us	 that	 it	 is	 twice	 as	 probable	 that	 the	 patient	 does	 not	 have



meningitis	as	it	is	that	the	patient	does.	This	might	seem	a	little	surprising	given	that	the
patient	 is	 suffering	 from	a	 headache	 and	 is	 vomiting,	 two	key	 symptoms	of	meningitis.
Indeed,	we	have	a	situation	where	the	posterior	for	a	given	prediction	given	the	evidence
is	quite	low	(here	P(m	 |	h,¬f,	v)	=	0.3333),	even	though	the	likelihood	of	the	evidence	if
we	assume	the	prediction	to	be	correct	is	quite	high,	P(h,¬f,	v	|	m)	=	0.6666.

What	is	happening	here	is	that,	as	Bayes’	Theorem	states,	when	calculating	a	posterior
prediction,	we	weight	 the	likelihood	of	the	evidence	given	the	prediction	by	the	prior	of
the	 prediction.	 In	 this	 case,	 although	 the	 likelihood	 of	 suffering	 from	 a	 headache	 and
vomiting	 is	 quite	 high	 when	 someone	 has	 meningitis,	 the	 prior	 probability	 of	 having
meningitis	 is	quite	 low.	So,	even	when	we	 take	 the	 evidence	 into	 account,	 the	posterior
probability	of	having	meningitis	remains	low.	This	can	seem	counter-intuitive	at	first.	The
mistake	 is	 to	 confuse	 the	 probability	 of	 a	 prediction	 given	 the	 evidence	 with	 the
probability	of	the	evidence	given	the	prediction	and	is	another	example	of	the	paradox	of
the	false	positive.10

Calculating	exact	probabilities	for	each	of	the	possible	target	levels	is	often	very	useful
to	a	human	decision	maker,	 for	example,	 a	doctor.	However,	 if	we	are	 trying	 to	build	a
predictive	model	that	automatically	assigns	a	target	level	to	a	query	instance,	then	we	need
to	decide	how	the	model	will	make	a	prediction	based	on	the	computed	probabilities.	The
obvious	way	 to	 do	 this	 is	 to	 have	 the	model	 return	 the	 target	 level	 that	 has	 the	 highest
posterior	probability	given	the	state	of	the	descriptive	features	in	the	query.	A	prediction
model	that	works	in	this	way	is	making	a	maximum	a	posteriori	(MAP)	prediction.11	We
can	formally	define	a	Bayesian	MAP	prediction	model	as

where	 (q)	is	the	prediction	returned	by	the	model	 	using	a	MAP	prediction	mechanism
for	a	query,	q,	composed	of	q[1],	…,	q[m]	descriptive	features;	levels(t)	is	the	set	of	levels
the	target	feature	can	take;	and	arg	maxl∈levelst	specifies	that	we	return	the	level,	l,	that	has
the	maximum	value	computed	using	the	function	on	the	right	of	the	arg	max	term.

Notice	 that	 the	 denominator	 in	 Equation	 (6.10)[259]	 is	 not	 dependent	 on	 the	 target
feature,	so	it	is	functioning	as	a	normalization	constant.	Furthermore,	if	we	want	to	make	a
MAP	prediction,	we	don’t	necessarily	have	 to	 calculate	 the	 actual	probabilities	 for	 each
level	 in	 the	 target	 domain;	 we	 simply	 need	 to	 know	 which	 of	 the	 levels	 in	 the	 target
domain	has	the	largest	probability.	Consequently,	we	don’t	necessarily	have	to	normalize
the	scores	for	each	target	level—something	we	would	have	to	do	if	we	wanted	the	actual
probabilities.	Instead	we	can	simply	return	the	target	level	that	has	the	highest	score	from
the	numerator	term.	Using	this	simplification,	the	Bayesian	MAP	prediction	model	can
be	restated	as

Although	 it	might	 seem	 that	we	 now	 have	 a	 good	 solution	 for	 building	 probability-



based	prediction	models,	we	are	not	quite	done	yet.	There	 is	one	fundamental	flaw	with
the	approach	that	we	have	developed.	To	illustrate	this,	we	will	consider	a	second	query
instance	 for	 the	meningitis	 diagnosis	 problem,	 this	 time	with	 descriptive	 feature	 values
HEADACHE	=	true,	FEVER	=	true,	and	VOMITING	=	false.	The	probability	of	MENINGITIS	=
true	given	this	query	is

and	for	MENINGITIS	=	false

The	calculated	posterior	probabilities	indicate	that	it	is	a	certainty	that	the	patient	does
not	 have	meningitis!	 This	 is	 because	 as	we	 progress	 along	 the	 sequence	 of	 conditional
probabilities	specified	by	the	chain	rule,	the	size	of	the	set	of	conditioning	events	for	each
term	increases.	As	a	result,	the	set	of	events	that	fulfill	the	conditions	for	each	conditional
probability	 in	 the	 sequence,	 and	 hence	 that	 are	 considered	 when	 we	 compute	 the
probability,	get	smaller	and	smaller	as	more	and	more	conditions	are	added.	The	technical
term	for	this	splitting	of	the	data	into	smaller	and	smaller	sets	based	on	larger	and	larger
sets	of	conditions	is	data	fragmentation.	Data	fragmentation	is	essentially	an	instance	of
the	curse	of	dimensionality.	As	the	number	of	descriptive	features	grows,	the	number	of
potential	conditioning	events	grows.	Consequently,	an	exponential	increase	is	required	in
the	 size	 of	 the	 dataset	 as	 each	 new	 descriptive	 feature	 is	 added	 to	 ensure	 that	 for	 any
conditional	 probability,	 there	 are	 enough	 instances	 in	 the	 training	 dataset	 matching	 the
conditions	so	that	the	resulting	probability	is	reasonable.

Returning	 to	 our	 example	 query,	 in	 order	 to	 calculate	P(h,	 f,¬v	 |	m),	 the	 chain	 rule
requires	us	to	define	three	conditional	probabilities,	P(h	 |	m),	P(f	 |	h,	m),	and	P(¬v	 |	 f,	h,
m).	 For	 the	 first	 of	 these	 terms,	P(h	 |	m),	 only	 three	 instances	 in	 the	 dataset	 fulfill	 the
condition	of	m	(d5,	d8	and	d10).	In	two	out	of	these	three	rows	(d8	and	d10),	h	is	the	case,
so	 the	conditional	probability	P(h	 |	m)	=	0.6666.	These	 are	 also	 the	only	 two	 rows	 that
fulfill	 the	conditions	of	 the	second	 term	 in	 the	chain	sequence,	P(f	 |	h,	m).	 In	neither	of
these	 rows	 is	 f	 the	 case,	 so	 the	 conditional	 probability	 for	P(f	 |	h,	m)	 is	 0.	 Because	 the
chain	rule	specifies	the	product	of	a	sequence	of	probabilities,	if	any	of	the	probabilities	in
the	sequence	is	zero,	then	the	overall	probability	will	be	zero.	Even	worse,	because	there
are	no	rows	in	the	dataset	where	f,	h,	and	m	are	true,	there	are	no	rows	in	the	dataset	where
the	 conditions	 for	 the	 third	 term	 P(¬v	 |	 f,	 h,	 m)	 hold,	 so	 this	 probability	 is	 actually
undefined	as	calculating	it	involves	a	division	by	zero.	Trying	to	compute	the	probability
of	P(h,	f,¬v	|	m)	directly	from	the	data	rather	than	using	the	chain	rule	also	suffers	from	the



same	problem.

In	summary,	whether	we	compute	the	likelihood	term	for	this	example	using	the	chain
rule	or	directly	from	the	dataset,	we	will	end	up	with	a	probability	of	zero,	or	worse,	an
undefined	probability.	This	is	because	there	are	no	instances	in	the	dataset	where	a	patient
that	had	meningitis	was	suffering	from	a	headache	and	had	a	fever	but	wasn’t	vomiting.
Consequently,	the	probability	for	the	MENINGITIS	feature	being	true	given	the	evidence	in
the	query	using	this	dataset	was	zero.

Clearly,	the	probability	of	a	patient	who	has	a	headache	and	a	fever	having	meningitis
should	be	greater	than	zero.	The	problem	here	is	that	our	dataset	is	not	large	enough	to	be
truly	representative	of	the	meningitis	diagnosis	scenario,	and	our	model	is	overfitting	 to
the	training	data.	The	problem	is	even	more	serious	than	this,	however,	as	in	practice,	it	is
almost	never	possible	 to	collect	a	dataset	 that	 is	big	enough	 to	sufficiently	cover	all	 the
possible	 combinations	 of	 descriptive	 feature	 values	 that	 can	 occur	 in	 a	 dataset	 so	 as	 to
avoid	 this.	 All	 is	 not	 lost,	 however,	 as	 the	 concepts	 of	 conditional	 independence	 and
factorization	can	help	us	overcome	this	flaw	of	our	current	approach.



6.2.3	Conditional	Independence	and	Factorization

So	far	our	treatment	of	probability	has	assumed	that	the	evidence	we	have	collected	affects
the	 probability	 of	 the	 event	 we	 are	 trying	 to	 predict.	 This	 is	 not	 always	 the	 case.	 For
example,	it	would	seem	reasonable	to	argue	that	the	behavior	of	an	octopus	in	a	swimming
tank	should	not	affect	the	outcome	of	a	soccer	match.12	If	knowledge	of	one	event	has	no
effect	on	the	probability	of	another	event,	and	vice	versa,	then	the	two	events	are	said	to
be	independent	of	each	other.	If	two	events	X	and	Y	are	independent,	then

Full	independence	between	events	is	quite	rare.	A	more	common	phenomenon	is	that
two,	or	more,	events	may	be	independent	if	we	know	that	a	third	event	has	happened.	This
is	 known	 as	 conditional	 independence.	 The	 typical	 situation	 where	 conditional
independence	holds	between	events	is	when	the	events	share	the	same	cause.	For	example,
consider	 the	 symptoms	 of	 meningitis.	 If	 we	 don’t	 know	 whether	 the	 patient	 has
meningitis,	then	knowing	that	the	patient	has	a	headache	may	increase	the	probability	we
assign	to	the	patient	of	suffering	from	a	fever.	This	is	because	having	a	headache	increases
the	probability	of	the	patient	having	meningitis,	which	in	turn	increases	the	probability	of
the	patient	having	a	 fever.	However,	 if	we	already	know	that	 the	patient	has	meningitis,
then	 also	 knowing	 that	 the	 patient	 has	 a	 headache	will	 not	 affect	 the	 probability	 of	 the
patient	 having	 a	 fever.	 This	 is	 because	 the	 information	 we	 get	 from	 knowing	 that	 the
patient	 has	 a	 headache	 is	 already	 contained	within	 the	 information	 that	 the	 patient	 has
meningitis.	 In	 this	 situation,	 knowing	 that	 someone	 has	meningitis	makes	 the	 events	 of
them	having	a	headache	and	having	a	fever	independent	of	each	other.	For	two	events,	X
and	Y,	that	are	conditionally	independent	given	knowledge	of	a	third	event,	here	Z,	we	can
say	that

This	 allows	 us	 an	 important	 reformulation	 of	 the	 chain	rule	 for	 situations	 in	which
conditional	independence	applies.	Recall	that	the	chain	rule	for	calculating	the	probability
that	a	set	of	descriptive	features,	q[1],	…,	q[m],	takes	a	specific	set	of	values	when	a	target
feature,	t,	takes	a	specific	level,	l,	is

If	the	event	of	the	target	feature	t	taking	the	level	l	causes	the	assignment	of	values	to
the	descriptive	features,	q[1],	…,	q[m],	then	the	events	of	each	descriptive	feature	taking	a
value	 are	 conditionally	 independent	 of	 each	 other	 given	 the	 value	 of	 the	 target	 feature.
This	means	that	the	chain	rule	definition	can	be	simplified	as	follows:



The	 reason	 that	 this	 simplification	 is	 so	 important	 is	 that	 it	allows	us	 to	simplify	 the
calculations	 in	 Bayes’	 Theorem,	 under	 the	 assumption	 of	 conditional	 independence
between	the	descriptive	features,	given	the	level	l	of	the	target	feature,	from

to

Where	appropriate,	 conditional	 independence	not	only	 simplifies	 the	calculations	but
also	enables	us	to	compactly	represent	the	full	joint	probability	distribution	for	a	domain.
Rather	than	calculating	and	storing	the	probabilities	of	all	the	joint	events	in	a	domain,	we
can	break	up	the	distribution	into	data	structures	called	factors,	which	define	distributions
over	 subsets	 of	 features.	 We	 can	 then	 compute	 any	 of	 the	 probabilities	 in	 the	 joint
probability	distribution	using	the	product	of	these	factors.

For	 example,	 Equation	 (6.1)[251]	 listed	 the	 joint	 probability	 distribution	 for	 the	 four
binary	 features	 in	 the	 meningitis	 diagnosis	 dataset	 in	 Table	 6.1[250].	 This	 distribution
contained	 16	 entries.	 If,	 however,	 it	 is	 in	 fact	 the	 case	 that	 HEADACHE,	 FEVER,	 and
VOMITING	are	conditionally	 independent	of	each	other	given	MENINGITIS,	 then	we	would
need	to	store	only	four	factors:	P(M),	P(H	|	M),	P(F	|	M),	and	P(V	|	M).	We	can	recalculate
all	the	elements	of	the	joint	probability	distribution	using	the	product	of	these	four	factors:

P(H,	F,	V,	M)	=	P(M)	×	P(H	|	M)	×	P(F	|	M)	×	P(V	|	M)

Because	 all	 the	 features	 in	 this	 example	 are	 binary,	 we	 need	 to	 store	 only	 the
probabilities	for	the	events	where	the	features	are	true	under	the	different	combinations	of
values	for	the	conditioning	cases,	as	the	probabilities	for	the	complementary	events	can	be
computed	 by	 subtracting	 the	 stored	 probabilities	 from	 1.0.	 Consequently,	 under	 this
factorization,	we	need	 to	calculate	only	seven	probabilities	directly	 from	the	data:	P(m),
P(h	|	m),	P(h	|	¬m),	P(f	|	m),	P(f	|	¬m),	P(v	|	m),	and	P(v	|	¬m).	The	four	factors	required	to
represent	 the	 full	 joint	 distribution	 over	 the	 features	HEADACHE,	 FEVER,	 VOMITING,	 and
MENINGITIS	 (when	 the	 first	 three	 are	 assumed	 to	 be	 conditionally	 independent	 given
MENINGITIS)	can	be	stated	as



and	the	product	required	to	calculate	the	probability	of	any	joint	event	in	the	domain	using
these	four	factors	is

P(H,	F,	V,	M)	=	P(M)	×	P(H	|	M)	×	P(F	|	M)	×	P(V	|	M)

So,	the	assumed	conditional	independence	between	the	features	permits	us	to	factorize
the	distribution	and	in	doing	so	reduces	the	number	of	probabilities	we	need	to	calculate
and	store	from	the	data.	The	reduction	from	16	to	7	probabilities	to	represent	this	domain
may	 not	 seem	 to	 achieve	 much,	 but	 there	 are	 two	 things	 to	 bear	 in	 mind.	 First,
individually,	the	7	probabilities	have	fewer	constraints	on	them	than	the	16	in	the	full	joint
probability	 distribution.	As	 a	 result,	 it	 is	 typically	 easier	 to	 collect	 the	 data	 required	 to
calculate	these	probabilities.	Second,	as	the	number	of	features	in	the	domain	grows,	the
difference	between	the	number	of	probabilities	required	for	a	factorized	representation	and
the	 number	 of	 probabilities	 in	 the	 full	 joint	 probability	 distribution	 gets	 larger.	 For
example,	in	a	domain	with	one	target	feature	and	nine	descriptive	features,	all	of	which	are
binary,	 the	 full	 joint	 probability	 distribution	 will	 contain	 210	 =	 1,024	 probabilities.
However,	 if	 all	 the	 descriptive	 features	 are	 conditionally	 independent	 given	 the	 target
feature,	we	can	factorize	the	joint	distribution	and	represent	it	using	just	19	probabilities
(one	 for	 the	 prior	 of	 the	 target	 and	 two	 conditional	 probabilities	 for	 each	 descriptive
feature).

Apart	from	making	a	model	more	compact,	conditional	independence	and	factorization
also	increase	the	coverage	of	a	probability-based	prediction	model	by	allowing	the	model
to	calculate	reasonable	probabilities	for	queries	with	combinations	of	evidence	that	do	not
occur	in	the	training	dataset.	To	illustrate	 this,	 let’s	return	to	the	example	query	instance
for	 the	 meningitis	 diagnosis	 problem,	 where	 HEADACHE	 =	 true,	 FEVER	 =	 true,	 and
VOMITING	 =	 false.	When	 we	 originally	 tried	 to	 calculate	 probabilities	 for	 this	 query,	 a
problem	arose	from	the	requirement	that	we	have	instances	in	the	training	dataset	where
all	the	evidence	events	hold.	If	we	treat	the	evidence	events	as	conditionally	independent
given	the	target	feature,	however,	 then	we	can	factorize	 the	evidence	into	 its	component
events	 and	calculate	probabilities	 for	 each	of	 these	 events	 separately.	By	doing	 this,	we
relax	the	requirement	that,	to	avoid	probabilities	of	zero,	all	the	evidence	events	must	hold
in	at	least	one	instance	for	each	value	in	the	domain	of	the	target.	Instead,	to	avoid	zero
probabilities,	we	require	only	that	for	each	value	in	the	domain	of	the	target	feature,	there
be	 at	 least	 one	 instance	 in	 the	 dataset	 where	 each	 event	 in	 the	 evidence	 holds.	 For
example,	 this	 allows	us	 to	use	 the	probability	of	 a	patient	having	a	 fever	given	 that	 the
patient	 has	 meningitis,	 rather	 than	 the	 more	 constrained	 conditional	 probability	 of	 the
patient	 having	 a	 fever	 given	 that	 the	 patient	 has	 meningitis	 and	 is	 suffering	 from	 a
headache.

We	 reiterate	 the	 factors	 required	 to	 represent	 the	 full	 joint	 distribution	 for	 the
meningitis	 diagnosis	 scenario	 when	 we	 assume	 that	 the	 descriptive	 features	 are



conditionally	 independent	 given	 the	 target,	 this	 time	 including	 the	 actual	 probabilities
calculated	from	the	dataset:

Using	 the	 factors	 in	 Equation	 (6.15)[266],	 we	 calculate	 the	 posterior	 distribution	 for
meningitis	given	the	query	instance	using	Equation	(6.14)[263]	as

As	with	our	previous	calculations,	the	posterior	probabilities	for	meningitis,	calculated
under	 the	 assumption	 of	 conditional	 independence	 of	 the	 evidence,	 indicates	 that	 the
patient	 probably	 does	 not	 have	 meningitis,	 and	 consequently,	 a	 MAP	 Bayesian	 model
would	return	MENINGITIS	=	 false	 as	 the	 prediction	 for	 this	 query	 instance.	However,	 the
posterior	 probabilities	 are	 not	 as	 extreme	 as	 those	 calculated	 when	 we	 did	 not	 assume
conditional	 independence.	What	has	happened	is	 that	asserting	conditional	 independence
has	allowed	the	evidence	of	the	individual	symptoms	to	be	taken	into	account,	rather	than
requiring	 an	 exact	 match	 across	 all	 the	 symptoms	 taken	 together.	 By	 doing	 this,	 the
Bayesian	 prediction	model	 is	 able	 to	 calculate	 reasonable	 probabilities	 for	 queries	with
combinations	of	evidence	that	do	not	occur	in	the	dataset.	This	results	in	the	model	having
a	 higher	 coverage	 with	 respect	 to	 the	 possible	 queries	 it	 can	 handle.	 Furthermore,	 the
conditional	 independence	 assumption	 enables	 us	 to	 factorize	 the	 distribution	 of	 the
domain,	and	consequently	we	need	fewer	probabilities	with	fewer	constraints	to	represent
the	domain.	As	we	will	see,	a	fundamental	component	of	creating	probabilistic	prediction
models	is	deciding	on	the	conditional	independence	assumptions	we	wish	to	make	and	the
resulting	factorization	of	the	domain.

In	the	next	section	we	introduce	the	naive	Bayes	model,	a	probability-based	machine
learning	algorithm	that	asserts	a	global	conditional	independence	between	the	descriptive
features	given	 the	 target.	As	a	 result	of	 this	conditional	 independence	assumption,	naive
Bayes	models	are	very	compact	and	relatively	robust	to	overfitting	the	data,	making	them
one	of	the	most	popular	predictive	modeling	approaches.



6.3	Standard	Approach:	The	Naive	Bayes	Model
A	naive	Bayes	model	returns	a	MAP	prediction	where	 the	posterior	probabilities	for	 the
levels	 of	 the	 target	 feature	 are	 computed	 under	 the	 assumption	 of	 conditional
independence	between	the	descriptive	features	in	an	instance	given	a	target	feature	level.
More	formally,	the	naive	Bayes	model	is	defined	as

where	t	is	a	target	feature	with	a	set	of	levels,	levels(t),	and	q	is	a	query	instance	with	set
of	descriptive	features,	q[1],	…,	q[m].

In	Section	6.2[249]	we	described	how	a	full	joint	probability	distribution	could	be	used
to	compute	the	probability	for	any	event	in	a	domain.	The	problem	with	this,	however,	is
that	generating	full	joint	probability	distributions	suffers	from	the	curse	of	dimensionality,
and	 as	 a	 result,	 this	 approach	 is	 not	 tractable	 for	 domains	 involving	 more	 than	 a	 few
features.	 In	 Section	 6.2.3[262],	 however,	 we	 showed	 how	 conditional	 independence
between	features	allows	us	to	factorize	the	joint	distribution,	and	this	helps	with	the	curse
of	 dimensionality	 problem	 by	 reducing	 the	 number	 of	 probabilities	 we	 are	 required	 to
calculate	 from	 the	 data	 as	 well	 as	 the	 number	 of	 conditioning	 constraints	 on	 these
probabilities.	The	naive	Bayes	model	 leverages	conditional	 independence	 to	 the	extreme
by	 assuming	 conditional	 independence	 between	 the	 assignment	 of	 all	 the	 descriptive
feature	 values	 given	 the	 target	 level.	 This	 assumption	 allows	 a	 naive	 Bayes	 model	 to
radically	reduce	the	number	of	probabilities	it	requires,	resulting	in	a	very	compact,	highly
factored	representation	of	a	domain.

We	 say	 that	 the	 naive	 Bayes	model	 is	 naive	 because	 the	 assumption	 of	 conditional
independence	between	the	features	in	the	evidence	given	the	target	level	is	a	simplifying
assumption	 that	 is	 made	 whether	 or	 not	 it	 is	 incorrect.	 Despite	 this	 simplifying
assumption,	however,	the	naive	Bayes	approach	has	been	found	to	be	surprisingly	accurate
across	 a	 large	 range	 of	 domains.	 This	 is	 partly	 because	 errors	 in	 the	 calculation	 of	 the
posterior	probabilities	for	the	different	target	levels	do	not	necessarily	result	in	prediction
errors.	As	we	noted	when	we	dropped	the	denominator	of	Bayes’	Theorem	from	the	MAP
prediction	model	(Equation	(6.11)[260]),	for	a	categorical	prediction	task,	we	are	primarily
interested	 in	 the	 relative	 size	 of	 the	 posterior	 probabilities	 for	 the	 different	 target	 levels
rather	than	the	exact	probabilities.	Consequently,	the	relative	ranking	of	the	likelihood	of
the	 target	 levels	 are,	 to	 a	 certain	 extent,	 robust	 to	 errors	 in	 the	 calculation	 of	 the	 exact
probabilities.13

The	 assumption	 of	 conditional	 independence	 between	 the	 features	 in	 the	 evidence
given	the	level	of	the	target	feature	also	makes	the	naive	Bayes	model	relatively	robust	to
data	fragmentation	 and	 the	 curse	 of	 dimensionality.	 This	 is	 particularly	 important	 in
scenarios	with	small	datasets	or	with	sparse	data.14	One	application	domain	where	sparse
data	 is	 the	 norm	 rather	 than	 the	 exception	 is	 in	 text	 analytics	 (for	 example,	 spam
filtering),	and	naive	Bayes	models	are	often	successful	in	this	domain.



The	naive	Bayes	model	can	also	be	easily	adapted	to	handle	missing	feature	values:	we
simply	 drop	 the	 conditional	 probabilities	 for	 the	 evidence	 events	 that	 specify	 features
taking	values	that	are	not	in	the	data	from	the	product	of	the	evidence	events.	Obviously,
doing	this	may	have	a	negative	effect	on	the	accuracy	of	posterior	probabilities	computed
by	the	model,	but	again	this	may	not	translate	directly	into	prediction	errors.

A	 final	advantage	of	 the	naive	Bayes	model	 is	how	simple	 it	 is	 to	 train.	For	a	given
prediction	task,	all	that	is	required	to	train	a	naive	Bayes	model	is	to	calculate	the	priors
for	 each	 target	 level	 and	 the	 conditional	 probability	 for	 each	 feature	 given	 each	 target
level.	As	a	result,	a	naive	Bayes	model	can	be	trained	relatively	quickly	compared	to	many
other	 prediction	 models.	 A	 further	 advantage	 that	 results	 from	 this	 simplicity	 is	 the
compactness	of	the	naive	Bayes	model	with	which	a	very	large	dataset	can	be	represented.

Overall,	although	naive	Bayes	models	may	not	be	as	powerful	as	some	other	prediction
models,	 they	 often	 provide	 reasonable	 accuracy	 results,	 for	 prediction	 tasks	 with
categorical	targets,	while	being	robust	to	the	curse	of	dimensionality	and	also	being	easy
to	train.	As	a	result,	a	naive	Bayes	model	is	often	a	good	prediction	model	to	use	to	define
a	baseline	accuracy	score	or	when	working	with	limited	data.



6.3.1	A	Worked	Example

We	will	 use	 the	 dataset	 presented	 in	Table	6.2[270]	 to	 illustrate	 how	 to	 create	 and	 use	 a
naive	 Bayes	model	 for	 a	 prediction	 problem.	 This	 dataset	 relates	 to	 a	 fraud	 detection
scenario	in	which	we	would	like	to	build	a	model	that	predicts	whether	loan	applications
are	fraudulent	or	genuine.	There	are	three	categorical	descriptive	features	in	this	dataset.
CREDIT	HISTORY	 captures	 the	credit	history	of	 the	applicant,	 and	 its	 levels	are	none	 (the
applicant	 has	 no	 previous	 loans),	paid	 (the	 applicant	 had	 loans	 previously	 and	 has	 paid
them	off),	current	 (the	 applicant	 has	 existing	 loans	 and	 are	 current	 in	 repayments),	 and
arrears	 (the	 applicant	 has	 existing	 loans	 and	 are	 in	 arrears	 in	 repayments).	 The
GUARANTOR/COAPPLICANT	 feature	 records	whether	 the	 loan	applicant	has	 a	guarantor	or
coapplicant	 associated	 with	 the	 application.	 The	 levels	 are	 none,	 guarantor,	 and
coapplicant.	 The	 ACCOMMODATION	 feature	 refers	 to	 the	 applicant’s	 current
accommodation,	 and	 the	 levels	 are	own	 (the	 applicant	 owns	 their	 accommodation),	 rent
(the	 applicant	 rents	 their	 accommodation),	 and	 free	 (the	 applicant	 has	 free
accommodation).	The	binary	 target	 feature,	FRAUD,	 tells	us	whether	 the	 loan	application
turned	out	to	be	fraudulent	(true	or	false).

To	 train	 a	 naive	 Bayes	 model	 using	 this	 data,	 we	 need	 to	 compute	 the	 prior
probabilities	 of	 the	 target	 feature	 taking	 each	 level	 in	 its	 domain,	 and	 the	 conditional
probability	of	each	feature	taking	each	level	in	its	domain	conditioned	for	each	level	that
the	 target	 can	 take.	There	 are	 two	 levels	 in	 the	 target	 feature	domain,	 four	 levels	 in	 the
CREDIT	HISTORY	domain,	three	in	the	GUARANTOR/COAPPLICANT	domain,	and	three	in	the
ACCOMMODATION	domain.	This	means	that	we	need	to	calculate	2	+	(2	×	4)	+	(2	×	3)	+	(2
×	3)	=	22	probabilities.	Although	this	sounds	like	a	lot	of	probabilities	considering	the	size
of	 the	 example	 dataset,	 it	 is	 worth	 noting	 that	 these	 22	 probabilities	 would	 suffice	 no
matter	how	many	new	instances	are	added	to	the	dataset,	be	it	hundreds	of	thousands,	or
even	millions.	This	is	an	example	of	the	compactness	of	a	naive	Bayes	representation.	Be
aware,	 however,	 that	 if	 new	 descriptive	 features	 were	 added	 to	 the	 dataset,	 then	 the
number	 of	 probabilities	 required	 would	 grow	 by	 |domain	 of	 target|	 ×	 |domain	 of	 new
feature|,	and,	furthermore,	 if	an	extra	value	were	added	to	the	domain	of	the	target,	 then
the	number	of	probabilities	would	grow	exponentially.	Once	the	required	probabilities	are
calculated,	 our	 naive	 Bayes	 model	 is	 ready	 to	 make	 predictions	 for	 queries.	 It	 is	 that
simple!	Table	6.3[271]	 lists	 the	probabilities	we	need	for	our	naive	Bayes	fraud	detection
model.

Table	6.2

A	dataset	from	a	loan	application	fraud	detection	domain.

ID CREDIT	HISTORY
GUARANTOR
/COAPPLICANT

ACCOMMODATION FRAUD

1 current none own true

2 paid none own false



3 paid none own false

4 paid guarantor rent true

5 arrears none own false

6 arrears none own true

7 current none own false

8 arrears none own false

9 current none rent false

10 none none own true

11 current coapplicant own false

12 current none own true

13 current none rent true

14 paid none own false

15 arrears none own false

16 current none own false

17 arrears coapplicant rent false

18 arrears none free false

19 arrears none own false

20 paid none own false

The	following	is	a	query	instance	for	the	fraud	detection	domain:

CREDIT	HISTORY	=	paid,	GUARANTOR/COAPPLICANT	=	none,	ACCOMMODATION	=	rent

Table	6.4[272]	shows	the	relevant	probabilities	needed	to	make	a	prediction	for	this	query
and	 the	 calculation	 of	 the	 scores	 for	 each	 possible	 prediction.	 Each	 calculation	 applies
Equation	(6.16)[267]	and	can	be	understood	as	a	product	of	the	four	factors	that	the	naive
Bayes	model	represents:	P(FR),	P(CH	 |	FR),	P(GC	 |	FR),	and	P(ACC	 |	FR).	The	scores
are	 0.0139	 for	 a	 prediction	 of	 true	 and	 0.0245	 for	 a	 prediction	 of	 false.	 It	 is	 worth



emphasizing	 that	 the	 scores	calculated	are	not	 the	actual	posterior	probabilities	 for	each
target	 level	 given	 the	 query	 evidence	 (to	 get	 the	 actual	 probabilities	we	would	 need	 to
normalize	 these	 scores),	 but	 they	 do	 give	 us	 enough	 information	 to	 rank	 the	 different
target	levels	based	on	the	relative	posterior	probabilities.	A	naive	Bayes	prediction	model
returns	the	MAP	prediction,	so	our	naive	Bayes	model	would	make	a	prediction	of	 false
and	so	classify	this	loan	application	query	as	not	fraudulent.

Table	6.3

The	probabilities	needed	by	a	naive	Bayes	prediction	model,	calculated	from	the	data	in
Table	6.2[270].

P(fr) = 0.3 P	(¬fr) = 0.7

P(CH	=	none	|	fr) = 0.1666 P(CH	=	none	|	¬fr) = 0

P(CH	=	paid	|	fr) = 0.1666 P(CH	=	paid	|	¬fr) = 0.2857

P(CH	=	current	|	fr) = 0.5 P(CH	=	current	|	¬fr) = 0.2857

P(CH	=	arrears	|	fr) = 0.1666 P(CH	=	arrears	|	¬fr) = 0.4286

P(GC	=	none	|	fr) = 0.8334 P(GC	=	none	|	¬fr) = 0.8571

P(GC	=	guarantor	|	fr) = 0.1666 P(GC	=	guarantor	|	¬fr) = 0

P(GC	=	coapplicant	|	fr) = 0 P(GC	=	coapplicant	|	¬fr) = 0.1429

P(ACC	=	own	|	fr) = 0.6666 P(ACC	=	own	|	¬fr) = 0.7857

P(ACC	=	rent	|	fr) = 0.3333 P(ACC	=	rent	|	¬fr) = 0.1429

P(ACC	=	free	|	fr) = 0 P(ACC	=	free	|	¬fr) = 0.0714

Notation	key:	FR	=	FRAUD,	CH	=	CREDIT	HISTORY,	GC	=	GUARANTOR/COAPPLICANT,	ACC
=ACCOMMODATION.

	

There	is	one,	non-obvious,	aspect	of	this	example	that	is	particularly	interesting.	If	we
look	for	an	instance	in	the	dataset	in	Table	6.2[270]	that	matches	all	the	descriptive	feature
values	in	the	query,	we	won’t	find	one.	The	fact	that	despite	the	lack	of	any	instances	that
perfectly	match	the	evidence,	we	were	still	able	to	calculate	a	score	for	each	target	level
and	 make	 a	 prediction	 for	 the	 query	 highlights	 how	 the	 conditional	 independence
assumption	 between	 the	 evidence	 given	 the	 target	 level	 increases	 the	 coverage	 of	 the
model	and	allows	the	model	to	generalize	beyond	the	data	used	to	induce	it.



Table	6.4

The	relevant	probabilities,	from	Table	6.3[271],	needed	by	the	naive	Bayes	prediction
model	to	make	a	prediction	for	a	query	with	CH	=	paid,	GC	=	none,	and	ACC	=	rent,	and
the	calculation	of	the	scores	for	each	target	level.



6.4	Extensions	and	Variations
In	this	section	we	discuss	extensions	and	variations	of	the	naive	Bayes	model	that	increase
its	 ability	 to	 generalize	 and	 avoid	 overfitting	 (smoothing)	 and	 that	 allow	 it	 to	 handle
continuous	 descriptive	 features.	 We	 also	 describe	 Bayesian	 networks,	 which	 are	 a
probability-based	modeling	approach	that	allows	us	to	include	more	subtle	assumptions	in
a	model	 than	 the	global	assumption	of	conditional	 independence	between	all	descriptive
features	that	the	naive	Bayes	model	makes.



6.4.1	Smoothing

Although	 the	 assumption	 of	 conditional	 independence	 extends	 the	 coverage	 of	 a	 naive
Bayes	model	 and	allows	 it	 to	generalize	beyond	 the	 contents	of	 the	 training	data,	naive
Bayes	models	 still	do	not	have	complete	coverage	of	 the	set	of	all	possible	queries.	We
can	 see	 the	 reason	 for	 this	 in	 in	 Table	 6.3[271],	 where	 there	 are	 still	 some	 probabilities
equal	to	zero,	for	example,	P(CH	=	none	|	¬fr).	These	arise	when	there	are	no	instances	in
the	training	data	that	match	a	specific	combination	of	target	feature	and	descriptive	feature
levels.	Consequently,	a	model	is	likely	to	overfit	the	data	for	any	query	where	one	or	more
of	the	evidence	events	match	the	conditioned	event	of	one	of	these	zero	probabilities.	For
example,	consider	the	following	query:

Table	6.5

The	relevant	probabilities,	from	Table	6.3[271],	needed	by	the	naive	Bayes	prediction
model	to	make	a	prediction	for	the	query	with	CH	=	paid,	GC	=	guarantor,	and	ACC	=
free,	and	the	calculation	of	the	scores	for	each	possible	target	level.

CREDIT	HISTORY	=	paid,	GUARANTOR/COAPPLICANT	=	guarantor,	ACCOMMODATION	=	free

Table	6.5[273]	 lists	 the	 relevant	 probabilities	 needed	 to	make	 a	 prediction	 for	 this	 query,
and	the	calculation	of	the	scores	for	each	of	the	possible	target	levels.	In	this	instance,	both
possible	predictions	have	a	score	of	zero!	Both	scores	are	set	to	zero	because	one	of	the
conditional	probabilities	used	 to	 calculate	 them	 is	 zero.	For	 fr	 the	 probability	P(ACC	=
free	 |	 fr)	causes	 the	problem,	and	 for	¬fr	 the	probability	P(GC	=	guarantor	 |	 ¬fr)	 is	 the
offender.	As	a	result,	the	model	is	unable	to	return	a	prediction	for	this	query.

The	way	 to	solve	 this	problem	 is	by	smoothing	 the	probabilities	used	by	 the	model.
We	know	from	the	definition	of	probability	that	 the	sum	of	the	probabilities	of	a	feature
taking	each	of	its	possible	levels	should	equal	1.0:

where	 f	 is	 a	 feature	 and	 levels(f	 )	 is	 the	 set	 of	 levels	 in	 the	domain	of	 the	 feature.	This
means	that	we	have	a	total	probability	mass	of	1.0	that	is	shared	out	between	the	different



assignments	of	a	level	to	a	feature	based	on	their	relative	frequency.	Smoothing	involves
taking	 some	of	 the	 probability	mass	 from	 the	 assignments	with	 probability	 greater	 than
average	and	spreading	it	across	the	probabilities	that	are	below	average,	or	even	equal	to
zero.

Table	6.6

The	posterior	probability	distribution	for	the	GUARANTOR/COAPPLICANT	feature	under	the
condition	that	FRAUD	=	false.

	

For	 example,	 if	 we	 sum	 across	 the	 posterior	 probability	 distribution	 for	 the
GUARANTOR/COAPPLICANT	 feature	under	 the	condition	 that	FRAUD	=	 false,	we	will	 get	 a
value	of	1.0	 (see	Table	6.6[274]).	Notice	 that	within	 this	set,	P(GC	=	none	 |	¬fr)	 is	 quite
large,	 and	at	 the	other	 extreme,	P(GC	=	guarantor	 |	 ¬fr)	=	 is	 equal	 to	 zero.	Smoothing
takes	some	of	the	probability	mass	from	the	events	with	high	probability	and	shares	this
with	the	events	with	low	probabilities.	If	 this	is	done	correctly,	 then	the	total	probability
mass	for	the	set	will	remain	equal	to	1.0,	but	the	spread	of	probabilities	across	the	set	will
be	smoother	(hence	the	name	smoothing).

There	 are	 several	 different	 ways	 to	 smooth	 probabilities.	 We	 will	 use	 Laplace
smoothing.	 Note,	 that	 in	 general,	 it	 does	 not	 make	 sense	 to	 smooth	 the	 unconditional
(prior)	 probabilities	 for	 the	 different	 target	 feature	 levels,15	 so	 here	 we	 will	 focus	 on
smoothing	the	conditional	probabilities	for	the	features.	Laplace	smoothing	for	conditional
probabilities	is	defined	as

where	count(f	=	l	|	t)	is	how	often	the	event	f	=	l	occurs	in	the	subset	of	rows	in	the	dataset
where	 the	 target	 level	 is	 t,	count(f	 |	 t)	 is	 how	often	 the	 feature,	 f,	 took	 any	 level	 in	 the
subset	of	rows	in	the	dataset	where	the	target	level	is	t,	|Domain(f	)|	is	the	number	of	levels
in	the	domain	of	the	feature,	and	k	is	a	predetermined	parameter.	Larger	values	of	k	mean
that	 more	 smoothing	 occurs—that	 is	 more	 probability	 mass	 is	 taken	 from	 the	 larger
probabilities	and	given	to	the	small	probabilities.	Typically	k	takes	small	values	such	as	1,
2,	or	3.

Table	6.7

Smoothing	the	posterior	probabilities	for	the	GUARANTOR/COAPPLICANT	feature
conditioned	on	FRAUD	=	false.



	

Table	 6.7[275]	 illustrates	 the	 steps	 in	 smoothing	 the	 posterior	 probabilities	 for	 the
GUARANTOR/COAPPLICANT	 feature	when	conditioned	on	FRAUD	 =	 false.	We	 can	 see	 that
after	smoothing,	 the	probability	mass	 is	more	evenly	distributed	across	 the	events	 in	 the
set.	Crucially,	the	posterior	probability	for	P(GC	=	guarantor	|	fr)	is	no	longer	zero,	and	as
a	 result,	 the	 coverage	 of	 the	 model	 has	 been	 extended	 to	 include	 queries	 with
GUARANTOR/COAPPLICANT	values	of	guarantor.

Table	 6.8[276]	 lists	 the	 prior	 and	 smoothed	 conditional	 probabilities	 for	 the	 fraud
domain	 that	 are	 relevant	 to	 a	 naive	 Bayes	 model.	 Notice	 that	 there	 are	 no	 zero
probabilities,	so	the	model	will	be	able	to	return	a	prediction	for	any	query	in	this	domain.
We	can	illustrate	the	extended	coverage	of	the	model	by	returning	to	the	query	from	the
beginning	of	this	section:

Table	6.8

The	Laplace	smoothed	(with	k	=	3)	probabilities	needed	by	a	naive	Bayes	prediction
model,	calculated	from	the	dataset	in	Table	6.2[270].

P(fr) = 0.3 P(¬fr) = 0.7

P(CH	=	none	|	fr) = 0.2222 P(CH	=	none	|	¬fr) = 0.1154



P(CH	=	paid	|	fr) = 0.2222 P(CH	=	paid	|	¬fr) = 0.2692

P(CH	=	current	|	fr) = 0.3333 P(CH	=	current	|	¬fr) = 0.2692

P(CH	=	arrears	|	fr) = 0.2222 P(CH	=	arrears	|	¬fr) = 0.3462

P(GC	=	none	|	fr) = 0.5333 P(GC	=	none	|	¬fr) = 0.6522

P(GC	=	guarantor	|	fr) = 0.2667 P(GC	=	guarantor	|	¬fr) = 0.1304

P(GC	=	coapplicant	|	fr) = 0.2 P(GC	=	coapplicant	|	¬fr) = 0.2174

P(ACC	=	own	|	fr) = 0.4667 P(ACC	=	own	|	¬fr) = 0.6087

P(ACC	=	rent	|	fr) = 0.3333 P(ACC	=	rent	|	¬fr) = 0.2174

P(ACC	=	free	|	fr) = 0.2 P(ACC	=	free	|	¬fr) = 0.1739

Notation	key:	FR	=FRAUD,	CH	=	CREDIT	HISTORY,	GC	=	GUARANTOR/COAPPLICANT,	ACC
=ACCOMMODATION.

CREDIT	HISTORY	=	paid,	GUARANTOR/COAPPLICANT	=	guarantor,	ACCOMMODATION	=	free

Table	 6.9[277]	 illustrates	 how	 a	 naive	 Bayes	model	 would	 calculate	 the	 scores	 for	 each
candidate	target	level	for	this	query	using	the	smoothed	probabilities	from	Table	6.8[276].
Using	our	 smoothed	probabilities	we	are	able	 to	calculate	a	 score	 for	both	 target	 levels:
0.0036	for	true	and	0.0043	for	 false.	The	target	 level	 false	has	 the	highest	score	(if	only
marginally)	and	is	 the	MAP	prediction	for	 this	query.	Therefore,	our	naive	Bayes	model
will	predict	that	this	loan	application	is	not	fraudulent.



6.4.2	Continuous	Features:	Probability	Density	Functions

To	 calculate	 the	 probability	 of	 an	 event,	 we	 have	 simply	 counted	 how	 often	 the	 event
occurred	 and	 divided	 this	 number	 by	 how	 often	 the	 event	 could	 have	 occurred.	 A
continuous	feature	can	have	an	infinite	number	of	values	in	its	domain,	so	any	particular
value	will	 occur	 a	 negligible	 amount	 of	 the	 time.	 In	 fact,	 the	 relative	 frequency	 of	 any
particular	value	for	a	continuous	feature	will	be	indistinguishable	from	zero	given	a	large
dataset.

Table	6.9

The	relevant	smoothed	probabilities,	from	Table	6.8[276],	needed	by	the	naive	Bayes
prediction	model	to	make	a	prediction	for	the	query	with	CH	=	paid,	GC	=	guarantor,	and
ACC	=	free,	and	the	calculation	of	the	scores	for	each	target	levels.

	

The	way	 to	 solve	 the	 problem	 of	 zero	 probabilities	 is	 to	 think	 in	 terms	 of	 how	 the
probability	of	a	continuous	feature	taking	a	value	is	distributed	across	the	range	of	values
that	a	continuous	feature	can	take.	A	probability	density	function	(PDF)	 represents	 the
probability	distribution	of	a	continuous	 feature	using	a	mathematical	 function,	and	 there
are	a	large	number	of	standard,	well-defined	probability	distributions—such	as	the	normal
distribution—that	 we	 can	 use	 to	 model	 the	 probability	 of	 a	 continuous	 feature	 taking
different	values	in	its	range.

Table	6.10[278]	shows	the	definition	of	some	of	the	standard	probability	distributions—
the	normal,	 exponential,	 and	mixture	 of	Gaussians	 distributions—that	 are	 commonly
used	 in	 probabilistic	 prediction	models,	 and	 Figure	 6.3[279]	 illustrates	 the	 shapes	 of	 the
density	 curves	 of	 these	 distributions.	 All	 standard	 PDFs	 have	 parameters	 that	 alter	 the
shape	 of	 the	 density	 curve	 defining	 that	 distribution.	 The	 parameters	 required	 for	 the
normal,	exponential,	and	mixture	of	Gaussians	PDFs	are	shown	in	Table	6.10[278].	In	order
to	use	a	PDF	to	represent	 the	probability	of	a	continuous	feature	taking	different	values,
we	need	to	choose	these	parameters	to	fit	the	characteristics	of	the	data.	We	have	already
described	the	normal	distribution,	in	some	detail,	in	Section	3.2.1[64],	so	we	won’t	repeat



that	introduction	here,	but	we	will	describe	the	other	distributions	in	a	little	detail.

Table	6.10

Definitions	of	some	standard	probability	distributions.

	

The	 student-t	 distribution	 is	 symmetric	 around	 a	 single	 peak.	 In	 fact,	 it	 looks	 very
similar	 to	 a	 normal	 distribution,	 as	 shown	 in	 Figure	 6.3(a)[279].	 The	 definition	 of	 the
student-t	probability	density	function	uses	the	gamma	function,	Γ(),	which	is	a	standard
statistical	function.16	The	student-t	distribution	 is	a	member	of	 the	 location-scale	 family
of	distributions.17	These	distributions	take	two	parameters:	a	location	parameter	ϕ,	which
specifies	 the	 position	 of	 the	 peak	 density	 of	 the	 distribution,	 and	 a	 non-negative	 scale
parameter	ρ,	which	 specifies	how	spread	out	 the	distribution	 is;	 the	higher	 the	 scale	 the
more	 spread	 out	 the	 distribution.	The	 normal	 distribution	 is	 a	member	 of	 this	 location-
scale	family,	with	the	mean	μ	specifying	the	location,	and	the	standard	deviation	σ	acting
as	the	scale	parameter.	We	use	different	notation	for	location	and	scale	parameters,	ϕ	and
ρ,	than	we	do	for	mean	and	standard	deviation	parameters	of	the	normal,	μ	and	σ,	because
the	 values	 of	 these	 parameters	 are	 estimated	 using	 different	 techniques:	 generally,	 the
location	and	scale	parameters	for	distributions	are	fitted	to	the	data	using	a	guided	search
process.18	The	student-t	distribution,	however,	takes	an	extra	parameter	κ.	This	parameter



is	 the	degrees	 of	 freedom	 of	 the	 distribution.	 In	 statistics	 the	 degrees	 of	 freedom	 of	 a
distribution	 is	 the	 number	 of	 variables	 in	 the	 calculation	 of	 the	 statistic	 that	 are	 free	 to
vary.	For	the	student-t	distribution,	the	degrees	of	freedom	is	always	set	to	the	sample	size
(number	of	rows	in	the	dataset)	minus	one.

Figure	6.3

Plots	of	some	well-known	probability	distributions.

From	a	distribution	perspective,	the	main	distinction	between	a	normal	distribution	and
a	student-t	 is	 that	a	normal	distribution	has	 light	 tails	whereas	 the	 student-t	 distribution
has	 fat	 tails.	 Figure	 6.4[280]	 illustrates	 the	 distinction	 between	 fat	 and	 light	 tail
distributions	using	histograms	of	two	datasets.	The	dataset	in	Figure	6.4(a)[280]	 follows	a
light	tail	distribution—the	bars	at	the	extreme	left	and	right	of	the	distribution	have	zero
height.	The	dataset	in	Figure	6.4(b)[280]	has	a	fat	tail	distribution—the	bars	on	the	extreme
left	and	right	of	the	distribution	are	still	above	zero,	if	only	just.	This	distinction	between
fat	 and	 light	 tailed	 distributions	 is	 important	 because	 it	 highlights	 that	 when	 we	 use	 a
normal	 distribution,	we	 are	 implicitly	 assuming	 that	 the	 likelihood	 of	 values	 that	 differ
from	 the	mean	 of	 the	 distribution	 drops	 quite	 dramatically	 as	we	move	 away	 from	 the
mean.	 A	 common	 mistake	 made	 by	 many	 data	 analysts	 is	 to	 automatically	 default	 to
modeling	 unimodally	 distributed	 data	 with	 a	 normal	 distribution.19	 There	 are	 statistical
tests	(such	as	the	Kolmogorov-Smirnov	test)	 that	can	be	use	 to	check	whether	or	not	a
feature	is	normally	distributed,	and	in	cases	where	the	feature	is	not	normally	distributed,
another	unimodal	distribution,	such	as	the	student-t	distribution,	may	be	a	better	fit.

Figure	6.4

Histograms	 of	 two	 unimodal	 datasets:	 (a)	 the	 distribution	 has	 light	 tails;	 (b)	 the
distribution	has	fat	tails.



Another	consequence	of	the	normal	distribution	having	light	tails	is	that	it	is	sensitive
to	outliers	 in	the	data.	Figure	6.5[281]	 illustrates	how	outliers	affect	normal	and	student-t
distributions.	Figure	6.5(a)[281]	shows	a	histogram	of	a	dataset	that	has	been	overlaid	with
the	curves	of	a	normal	and	a	student-t	distribution	 that	have	been	fitted	 to	 the	data.	The
normal	 and	 the	 student-t	 distributions	 are	 both	 very	 similar,	 and	 both	 do	 a	 good	 job	 of
matching	the	shape	of	the	density	histogram.	Figure	6.5(b)[281]	shows	a	histogram	of	 the
same	dataset	after	some	outliers	have	been	added	to	the	extreme	right	of	the	distribution.
Again,	we	have	overlaid	the	histogram	with	plots	of	the	curves	for	a	normal	and	a	student-
t	distribution	that	have	been	fitted	to	the	updated	dataset.	Comparing	Figure	6.5(a)[281]	and
Figure	6.5(b)[281],	we	can	 see	 clearly	 that	 the	 introduction	of	outliers	has	 a	much	 larger
effect	on	the	normal	distribution	than	it	does	on	the	student-t	distribution.	The	robustness
of	the	student-t	to	outliers	is	another	reason	to	consider	using	this	distribution,	as	opposed
to	 a	 normal	 distribution,	 to	 model	 unimodal	 data	 in	 situations	 with	 relatively	 small	 or
possibly	noisy	datasets.

Figure	6.5

Illustration	 of	 the	 robustness	 of	 the	 student-t	 distribution	 to	 outliers:	 (a)	 a	 density
histogram	 of	 a	 unimodal	 dataset	 overlaid	 with	 the	 density	 curves	 of	 a	 normal	 and	 a
student-t	distribution	that	have	been	fitted	to	the	data;	(b)	a	density	histogram	of	the	same
dataset	with	outliers	added,	overlaid	with	 the	density	curves	of	a	normal	and	a	student-t
distribution	 that	 have	 been	 fitted	 to	 the	 data.	 (This	 figure	 is	 inspired	 by	 Figure	 2.16	 in
Bishop	(2006).)

The	 plot	 of	 the	 density	 curve	 for	 the	 exponential	 distribution	 (Figure	 6.3(b)[279])
shows	that	it	assigns	a	high	probability	to	values	near	the	left	of	the	distribution	and	that
the	 probability	 of	 a	 value	 occurring	 drops	 dramatically	 as	 we	 move	 to	 the	 right.	 The
standard	 range	 for	 the	 exponential	 distribution	 is	 from	 zero	 upward	 (i.e.,	 the	 density
assigned	 to	values	 less	 than	zero	 is	zero).	However,	we	can	adjust	 this	by	offsetting	 the
values	 input	 into	 the	 distribution.	 The	 exponential	 distribution	 takes	 one	 parameter,	 λ,
known	as	the	rate.	Varying	the	value	λ	changes	the	rate	at	which	the	density	drops	off.	As
λ	 gets	 larger,	 the	 peak	 of	 the	 distribution	 (on	 the	 left)	 gets	 larger	 and	 the	 drop-off	 in
density	 gets	 steeper.	To	 fit	 an	 exponential	 distribution	 to	 a	 continuous	 feature,	we	 set	λ
equal	to	1	divided	by	the	mean	of	the	feature.	The	exponential	distribution	is	often	used	to
model	waiting	times	(for	example,	how	long	it	will	take	for	a	call	to	be	answered	at	a	help
desk,	how	long	you	will	have	to	wait	for	a	bus,	or	how	long	before	a	piece	of	hardware



fails),	where	 the	 parameter	 λ	 is	 equal	 to	 1	 divided	 by	 the	 average	 time	 it	 takes	 for	 the
event.

As	 the	name	 suggests,	 the	mixture	of	Gaussians	 distribution	 is	 the	 distribution	 that
results	 when	 a	 number	 of	 normal	 (or	 Gaussian)	 distributions	 are	 merged.	 Mixture	 of
Gaussians	 distributions	 are	 used	 to	 represent	 data	 that	 is	 composed	 of	 multiple
subpopulations.	 Figure	 6.6(a)[283]	 illustrates	 the	 profile	 typical	 of	 data	 with	 multiple
subpopulations.	 The	 multiple	 peaks	 in	 the	 density	 curve	 arise	 from	 the	 different
subpopulations	(a	distribution	with	multiple	peaks	is	called	multimodal).	Using	a	mixture
of	Gaussians	 distribution	 assumes	 that	 all	 the	 subpopulations	 in	 the	 data	 are	 distributed
following	a	normal	distribution,	but	that	each	of	these	subpopulation	normal	distributions
has	a	different	mean	and	may	also	have	a	different	standard	deviation.

The	definition	of	 the	mixture	of	Gaussians	distribution	 in	Table	6.10[278]	 shows	how
the	 individual	 normal	 distributions	 in	 a	mixture	 of	Gaussians	 distribution	 are	 combined
using	 a	 weighted	 sum.	 Each	 normal	 that	 is	 merged	 is	 known	 as	 a	 component	 of	 the
mixture.	 The	 weight	 of	 a	 component	 in	 the	 sum	 determines	 the	 contribution	 of	 the
component	 to	 the	 overall	 density	 of	 the	 resulting	 mixture.	 A	 mixture	 of	 Gaussians
distribution	 is	 defined	 by	 three	 parameters	 for	 each	 component:	 a	 mean,	 μ,	 a	 standard
deviation,	σ,	and	a	weight,	ω.	The	set	of	weight	parameters	for	the	mixture	must	sum	to	1.

There	 is	 no	 closed	 form	 solution	 to	 calculate	 the	 parameters	 to	 fit	 a	 mixture	 of
Gaussians	distribution	to	a	set	of	feature	values,	as	there	is	for	the	exponential	and	normal
distributions.	Instead,	given	the	set	of	values	for	a	continuous	feature,	we	fit	a	mixture	of
Gaussians	distribution	to	this	data	by	searching	for	the	number	of	components	and	set	of
parameters	 for	 each	 component	 that	 best	matches	 the	 data.	Guided	 search	 techniques,
such	as	the	gradient	descent	algorithm,	are	used	for	this	task.	Analysts	will	often	input	a
suggested	starting	point	for	this	search	based	on	their	own	analysis	of	the	data	in	order	to
guide	the	process.

In	 Figure	 6.6(b)[283]	 we	 can	 see	 the	 three	 normal	 distributions	 used	 to	 model	 the
multimodal	 distribution	 in	 Figure	 6.6(a)[283].	 Each	 normal	 distribution	 has	 a	 different
mean	but	the	same	standard	deviation.	The	size	of	the	individual	normal	density	curves	is
proportional	to	the	weight	for	that	normal	used	in	the	mixture.	Figure	6.6(c)[283]	overlays
the	multimodal	density	curve	on	 top	of	 the	 three	weighted	normals.	 It	 is	clear	 from	this
figure	 that	 the	weighted	sum	of	 the	 three	normals	does	an	excellent	 job	of	modeling	the
multimodal	density	distribution.

The	fact	that	we	have	a	range	of	parameterized	distributions	to	choose	from	means	that
in	order	to	define	probability	density	function	(PDF),	we	must



Figure	6.6

Illustration	 of	 how	 a	mixture	 of	 Gaussians	model	 is	 composed	 of	 a	 number	 of	 normal
distributions.	 The	 curve	 plotted	 using	 a	 solid	 line	 is	 the	 mixture	 of	 Gaussians	 density
curve,	 created	 using	 an	 appropriately	 weighted	 summation	 of	 the	 three	 normal	 curves,
plotted	using	dashed	and	dotted	lines.

1.	 Select	which	probability	distribution	we	believe	will	 best	model	 the	distribution	of
the	values	of	the	feature.	The	simplest	and	most	direct	way	to	choose	a	distribution
for	a	feature	is	to	create	a	density	histogram	of	the	feature’s	values	and	compare	the
shape	of	this	histogram	to	the	shapes	of	the	standard	distributions.	We	should	choose
whichever	standard	distribution	best	matches	the	shape	of	the	histogram	to	model	the
feature.

2.	 Fit	the	parameters	of	the	selected	distribution	to	the	feature	values	in	the	dataset.	It	is
relatively	straightforward	to	fit	the	parameters,	μ	and	σ,	of	the	normal	distribution	to
a	dataset	by	using	the	sample	mean	and	standard	deviation	of	the	feature	values	in	a
dataset	as	estimates	of	μ	and	σ	respectively.	Similar	to	the	normal	distribution,	the	λ
parameter	for	the	exponential	distribution	can	be	easily	calculated	by	using	the	value
of	 1	 divided	 by	 the	 mean	 of	 the	 data.	 However,	 for	 many	 of	 the	 other	 statistical
distributions,	for	example,	the	mixture	of	Gaussians	distribution,	we	cannot	define	an
equation	 over	 the	 data	 that	 estimates	 the	 parameters	 appropriately.	 For	 these
distributions,	the	parameters	are	set	using	guided	search	techniques	such	as	gradient
descent.	 Fortunately,	most	 data	 analytics	 packages	 and	programming	APIs	provide
functions	that	implement	methods	to	fit	a	specified	distribution	to	a	given	dataset.20

A	PDF	is	an	abstraction	over	a	density	histogram	and,	as	such,	defines	a	density	curve.
The	shape	of	the	curve	is	determined	by	(a)	the	statistical	distribution	that	is	used	to	define
the	 PDF,	 and	 (b)	 the	 values	 of	 the	 statistical	 distribution	 parameters.	 To	 use	 a	 PDF	 to
calculate	a	probability,	we	need	to	think	in	terms	of	the	area	under	an	interval	of	the	PDF
curve.	Consequently,	to	calculate	a	probability	using	a	PDF,	we	need	to	first	decide	on	the
interval	 we	 wish	 to	 calculate	 the	 probability	 for,	 and	 then	 calculate	 the	 area	 under	 the
density	 curve	 for	 that	 interval	 to	 give	 the	 probability	 of	 a	 value	 from	 that	 interval
occurring.	 There	 is	 no	 hard	 and	 fast	 rule	 for	 deciding	 on	 interval	 size.	 Instead,	 this
decision	 is	made	on	 a	 case	 by	 case	 basis	 and	 is	 dependent	 on	 the	 precision	 required	 in
answering	 a	 question.	 In	 some	 cases,	 the	 size	 of	 the	 interval	 is	 defined	 as	 part	 of	 the
problem	we	are	 trying	 to	solve,	or	 there	may	be	a	natural	 interval	 to	use	because	of	 the
domain.	For	example,	when	we	are	dealing	with	a	financial	feature,	we	might	use	intervals



that	 represent	 cents,	 while	 if	 we	 were	 dealing	 with	 temperature,	 we	 might	 define	 the
interval	to	be	1	degree.	Once	we	have	selected	the	interval	size,	we	need	to	calculate	the
area	under	the	density	curve	for	that	interval.21

When	we	use	a	PDF	to	represent	the	probability	distribution	of	a	descriptive	feature	in
a	naive	Bayes	model,	however,	we	don’t	actually	need	to	calculate	exact	probabilities.	We
only	need	to	calculate	the	relative	likelihood	of	a	continuous	feature	taking	a	value	given
different	levels	of	a	target	feature.	The	height	of	the	density	curve	defined	by	a	PDF	at	a
particular	feature	value	gives	us	this,	so	we	can	avoid	the	effort	of	calculating	the	actual
probability.	We	can	use	a	value	from	a	PDF	as	a	 relative	measure	of	 likelihood	because
when	the	interval	is	very	small,	the	actual	area	under	a	PDF	curve	for	that	interval	can	be
approximated	(with	a	small	error	proportional	to	the	width	of	the	interval)	by	the	height	of
the	PDF	curve	at	the	center	of	the	interval	multiplied	by	the	width	of	the	interval.	Figure
6.7[285]	illustrates	this	approximation.

If	we	were	to	include	the	interval	width	when	calculating	conditional	probabilities	for	a
continuous	descriptive	 feature	 in	a	naive	Bayes	prediction	model,	using	Equation	 (6.16)
[267],	we	would	multiply	 the	value	returned	by	 the	PDF	by	 the	same	interval	width	each
time	we	calculated	the	likelihood	score	for	a	level	of	the	target	feature.	Consequently,	we
can	 drop	 this	 multiplication	 and	 just	 use	 the	 value	 returned	 by	 the	 PDF	 as	 a	 relative
measure	of	the	likelihood	that	the	feature	takes	a	specific	value.

Figure	6.7

(a)	The	area	under	a	density	curve	between	the	limits	 	and	 ;	(b)	the	approximation
of	this	area	computed	by	PDF(x)	×	∈;	and	(c)	the	error	in	the	approximation	is	equal	to
the	difference	between	area	A,	the	area	under	the	curve	omitted	from	the	approximation,
and	area	B,	the	area	above	the	curve	erroneously	included	in	the	approximation.	Both	of
these	areas	will	get	smaller	as	the	width	of	the	interval	gets	smaller,	resulting	in	a	smaller
error	in	the	approximation.

To	ground	our	discussion	of	PDFs,	and	 to	 illustrate	how	they	can	be	used	 in	making
naive	 Bayes	 prediction	 models,	 we	 will	 extend	 our	 loan	 application	 fraud	 detection
scenario	 to	have	 two	extra	 continuous	 features:	ACCOUNT	BALANCE,	which	 specifies	 the
amount	of	money	in	the	account	of	the	loan	applicant	at	the	time	of	the	application,	and
LOAN	AMOUNT,	which	specifies	 the	amount	of	 the	loan	being	applied	for.	Table	6.11[286]
lists	 this	 extended	dataset.	We	 first	use	only	 the	extra	ACCOUNT	BALANCE	 feature	 in	 the
dataset	(ignoring	LOAN	AMOUNT,	which	we	return	to	later	in	this	chapter)	to	demonstrate



how	PDFs	allow	us	included	continuous	features	in	a	naive	Bayes	model.

To	enable	the	naive	Bayes	model	to	handle	the	ACCOUNT	BALANCE	feature,	we	have	to
extend	 the	set	of	probabilities	used	by	 the	model	 to	 represent	 the	domain	 to	 include	 the
probabilities	for	this	feature.	Recall	that	the	naive	Bayes	domain	representation	defines	a
conditional	probability	for	each	possible	value	in	the	domain	of	a	descriptive	feature	for
each	level	in	the	domain	of	the	target.	In	our	example,	the	target	feature,	FRAUD,	is	binary,
so	we	need	to	define	two	conditional	probabilities	for	each	value	in	the	domain	of	the	new
descriptive	feature:	P(AB	=	x	 |	 fr)	 and	P(AB	=	x	 |	 ¬fr).	Because	 the	descriptive	 feature
ACCOUNT	BALANCE	 is	 continuous,	 there	 is	 an	 infinite	 number	 of	 values	 in	 the	 feature’s
domain.	However,	we	know	that	using	an	appropriately	defined	PDF,	we	can	approximate
the	probability	of	the	feature	taking	any	value	in	its	domain.	As	a	result,	we	simply	need	to
define	two	PDFs	for	the	new	feature	with	each	PDF	conditioned	on	a	different	level	of	the
target	feature:	P(AB	=	x	|	fr)	=	PDF1(AB	=	x	 |	fr)	and	P(AB	=	x	 |	¬fr)	=	PDF2(AB	=	x	|
¬fr).	These	two	PDFs	do	not	have	to	be	defined	using	the	same	distribution.	Once	we	have
selected	the	distributions	we	wish	to	use,	to	define	a	PDF	for	a	descriptive	feature	that	is
conditioned	on	a	particular	target,	we	fit	the	parameters	of	the	selected	distribution	to	the
subset	of	the	data	where	the	target	has	that	value.

Table	6.11

The	dataset	from	the	loan	application	fraud	detection	domain	(from	Table	6.2[270])	with
two	continuous	descriptive	features	added:	ACCOUNT	BALANCE	and	LOAN	AMOUNT.



	

The	first	step	in	defining	the	two	PDFs	is	to	decide	which	distribution	we	will	use	to
define	 the	 PDFs	 for	 each	 target	 feature	 level.	 To	 make	 this	 decision,	 we	 partition	 the
training	 data	 based	 on	 the	 target	 feature	 and	 generate	 histograms	 of	 the	 values	 of	 the
descriptive	feature	for	each	of	the	splits.	We	then	select	the	statistical	distribution	that	is
most	 similar	 in	 shape	 to	 each	 of	 the	 resulting	 histograms.	 Figure	 6.8[287]	 shows	 the
histograms	of	the	values	of	the	ACCOUNT	BALANCE	feature	partitioned	on	the	two	levels	of
the	FRAUD	 target	 feature.	 It	 is	clear	 from	these	histograms	 that	 the	distribution	of	values
taken	by	the	ACCOUNT	BALANCE	feature	in	the	set	of	instances	where	FRAUD	=	true	follows
an	exponential	distribution;	whereas,	the	distribution	of	the	values	taken	by	the	ACCOUNT
BALANCE	 feature	 in	 the	 set	 of	 instances	where	 the	FRAUD	 =	 false	 is	 similar	 to	 a	normal
distribution.



Figure	6.8

Histograms,	using	a	bin	size	of	250	units,	and	density	curves	for	the	ACCOUNT	BALANCE
feature:	(a)	the	fraudulent	instances	overlaid	with	a	fitted	exponential	distribution;	(b)	the
non-fraudulent	instances	overlaid	with	a	fitted	normal	distribution.

Once	we	have	selected	the	distributions,	the	next	step	is	to	fit	 the	distributions	to	the
data.	 To	 fit	 the	 exponential	 distribution	we	 compute	 the	 sample	mean	 of	 the	ACCOUNT
BALANCE	feature	in	the	set	of	instances	where	FRAUD	=	true	and	set	the	λ	parameter	equal
to	 1	 divided	 by	 this	 value.	 To	 fit	 the	 normal	 distribution	 to	 the	 set	 of	 instances	 where
FRAUD	 =	 false,	 we	 compute	 the	 sample	 mean	 and	 sample	 standard	 deviation	 for	 the
ACCOUNT	BALANCE	 feature	for	 this	set	of	 instances	and	set	 the	parameters	of	 the	normal
distribution	to	these	values.	Table	6.12[288]	shows	how	these	values	are	calculated,	and	the
dashed	lines	in	Figure	6.8[287]	plot	the	density	curves	that	result	from	this	process.	Once
distributions	 have	 been	 fitted	 to	 the	 data,	 we	 can	 extend	 the	 naive	 Bayes	 domain
representation	 to	 include	 the	 PDFs.	 Table	 6.13[289]	 shows	 the	 extended	 domain
representation.

To	 use	 the	 extended	 domain	 representation	 of	 the	model	 to	make	 a	 prediction	 for	 a
query,	we	 calculate	 the	 product	 of	 the	 relevant	 descriptive	 feature	 probabilities	 and	 the
priors	for	the	different	target	levels	as	before,	but	using	PDFs	to	calculate	the	probabilities
for	 the	 continuous	 feature.	 Table	 6.14[290]	 shows	 how	 a	 prediction	 is	 made	 for	 the
following	query:

Table	6.12

Partitioning	the	dataset	based	on	the	value	of	the	target	feature	and	fitting	the	parameters
of	a	statistical	distribution	to	model	the	ACCOUNT	BALANCE	feature	in	each	partition.

(a)	Instances	where	FRAUD	=	true	and	the	fitted	parameters	for	the	exponential	distribution

ID … ACCOUNT	BALANCE FRAUD

1 															 56.75 true

4 749.50 true



6 928.30 true

10 … 405.72 true

12 223.89 true

13 103.23 true

		AB 411.22

		λ	=	1/AB 0.0024

(b)	Instances	where	FRAUD	=	false	and	the	fitted	parameters	for	the	normal	distribution

ID … ACCOUNT	BALANCE FRAUD

2 1,800.11 false

3 1,341.03 false

5 1,150.00 false

7 250.90 false

8 806.15 false

9 1,209.02 false

11 … 550.00 false

14 758.22 false

15 430.79 false

16 675.11 false

17 1,657.20 false

18 1,405.18 false

19 760.51 false

20 985.41 false



AB 984.26

sd(AB) 460.94

Note:	ACCOUNT	BALANCE	has	been	shortened	to	AB	in	these	tables.

CREDIT	HISTORY	=	paid,	GUARANTOR/COAPPLICANT	=	guarantor,	ACCOMMODATION	=	free,
ACCOUNT	BALANCE	=	759.07

The	calculations	for	the	probabilities	for	the	ACCOUNT	BALANCE	feature	are	made	using
the	equations	for	the	normal	and	exponential	distributions	in	Table	6.10[278].	The	result	is
that	FRAUD	=	false	still	has	the	highest	score	and	will	be	returned	as	the	prediction	for	this
query.

Table	6.13

The	Laplace	smoothed	(with	k	=	3)	probabilities	needed	by	a	naive	Bayes	prediction
model,	calculated	from	the	dataset	in	Table	6.11[286],	extended	to	include	the	conditional
probabilities	for	the	new	ACCOUNT	BALANCE	feature,	which	are	defined	in	terms	of	PDFs.

Notation	key:	FR	=	FRAUD,	CH	=	CREDIT	HISTORY,	GC	=	GUARANTOR/COAPPLICANT,	ACC
=ACCOMMODATION,	AB	=ACCOUNT	BALANCE.



6.4.3	Continuous	Features:	Binning

A	 commonly	 used	 alternative	 to	 representing	 a	 continuous	 feature	 using	 a	 probability
density	 function	 is	 to	 convert	 the	 feature	 into	 a	 categorical	 feature	 using	 binning.	 In
Section	 3.6.2[94]	 we	 explained	 two	 of	 the	 best	 known	 binning	 techniques,	 equal-width
binning	and	equal-frequency	binning,	and	discussed	some	of	the	general	advantages	and
disadvantages	of	each	technique.	One	feature	of	equal-width	binning	is	that	it	can	result	in
a	very	uneven	distribution	of	instances	across	the	bins,	with	some	bins	containing	a	large
number	 of	 instances	 and	 other	 bins	 being	 nearly	 empty.	 This	 uneven	 distribution	 of
instances	across	bins	can	have	dramatic	and	unwanted	consequences	for	probability-based
models.	Bins	 that	 contain	 only	 a	 few	 instances	may	have	 extremely	 small	 or	 extremely
large	 conditional	 probabilities	 (depending	 on	 how	 the	 instances	 are	 divided	 when
conditioned	on	the	target	feature),	and	these	extreme	conditional	probabilities	may	bias	a
model	based	on	the	parameters	of	the	binning	technique	(for	example,	the	number	of	bins
we	 choose	 to	 have)	 rather	 than	 on	 real	 distributions	 in	 the	 data.	 For	 this	 reason,	 we
recommend	 the	 use	 of	 equal-frequency	 binning	 to	 convert	 continuous	 features	 to
categorical	ones	for	probability-based	models.

Table	6.14

The	probabilities,	from	Table	6.13[289],	needed	by	the	naive	Bayes	prediction	model	to
make	a	prediction	for	the	query	with	CH	=	paid,	GC	=	guarantor,	ACC	=	free,	and
AB=false,	and	the	calculation	of	the	scores	for	each	candidate	prediction.

	

Returning	to	our	loan	application	fraud	detection	example,	we	will	show	how	binning
can	be	used	 to	 include	 the	LOAN	AMOUNT	 feature	 (see	Table	6.11[286])	 in	 a	 naive	Bayes



prediction	model	 for	 this	 scenario.	Table	6.15[291]	 shows	 the	 discretization	 of	 the	 LOAN
AMOUNT	feature	into	4	equal-frequency	bins.	In	this	table,	the	instances	in	the	dataset	have
been	reordered	in	ascending	order	based	on	their	LOAN	AMOUNT	values.	Even	when	using
equal-frequency	binning,	there	is	still	chance	that	the	partitioning	of	the	data	will	give	rise
to	extreme	conditional	probabilities.	For	example,	all	the	bin3	values	have	a	target	feature
value	 of	 false.	 Consequently,	 the	 posterior	 probability	 of	 LOAN	 AMOUNT	 =	 bin3
conditioned	on	FRAUD	=	true	will	be	0.0	and	LOAN	AMOUNT	=	bin3	conditioned	FRAUD	=
false	will	be	1.0.	Smoothing	should	be	used	in	conjunction	with	binning	to	help	with	these
extreme	probabilities.

Table	6.15

The	LOAN	AMOUNT	continuous	feature	discretized	into	4	equal-frequency	bins.

	

Once	we	have	discretized	the	data	using	binning,	we	need	to	record	the	raw	continuous
feature	thresholds	between	the	bins.	The	reason	for	this	is	that	we	need	to	be	able	to	bin
the	features	of	any	query	instances	appropriately	before	we	make	predictions	for	them.	To
calculate	these	thresholds,	we	take	the	mid-point	in	the	feature	range	between	the	instance
with	the	highest	feature	value	in	one	bin	and	the	feature	with	the	lowest	feature	value	in
the	next	bin.	For	example,	the	instances	in	Table	6.15[291]	are	ordered	in	ascending	order
based	on	the	magnitude	of	their	original	LOAN	AMOUNT	value.	So,	the	threshold	between
bin1	and	bin2	will	be	the	mid-point	between	the	LOAN	AMOUNT	values	for	d12	(9,850)	and
d4	(10,000)	which	is	9,925.	The	threshold	boundaries	for	the	4	bins	used	to	discretize	the
LOAN	AMOUNT	feature	are

Once	 we	 have	 discretized	 the	 continuous	 features	 and	 calculated	 the	 thresholds	 for



binning	query	features,	we	are	ready	to	create	our	predictive	model.	As	before,	for	a	naive
Bayes	model,	we	calculate	the	prior	probability	distribution	for	the	target	feature	and	the
posterior	distribution	for	each	descriptive	feature	conditioned	on	the	target	feature.	Again,
we	should	smooth	the	resulting	probabilities.	Table	6.16[293]	shows	the	Laplace	smoothed
(with	k	=	3)	probabilities	required	by	a	naive	Bayes	prediction	model	calculated	from	the
dataset	 in	 Table	 6.11[286].	 Notice	 that	 in	 this	 domain	 representation,	 we	 blend	 different
approaches	 to	 continuous	 features:	 we	 are	 retaining	 the	 PDFs	 developed	 in	 Section
6.4.2[276]	for	the	ACCOUNT	BALANCE	feature	and	extend	the	representation	with	the	binned
version	of	the	LOAN	AMOUNT	feature,	BINNED	LOAN	AMOUNT.

We	are	now	ready	to	process	a	query	that	has	the	continuous	LOAN	AMOUNT	feature	as
part	of	the	evidence:

CREDIT	HISTORY	=	paid,	GUARANTOR/COAPPLICANT	=	guarantor,	ACCOMMODATION	=	free,
ACCOUNT	BALANCE	=	759.07,	LOAN	AMOUNT	=	8,000

The	 LOAN	 AMOUNT	 value	 for	 this	 query	 (8,000)	 is	 below	 the	 threshold	 for	 bin1.
Consequently,	 the	 query	 LOAN	 AMOUNT	 feature	 will	 be	 treated	 as	 being	 equal	 to	 bin1
during	prediction.	Table	6.17[294]	 lists	 the	calculations	of	 the	naive	Bayes	 scores	 for	 the
candidate	predictions	for	this	query:	0.000000462	for	true	and	0.000000633	for	false.	The
target	level	false	has	the	highest	score	and	will	be	the	prediction	made	by	the	model.



6.4.4	Bayesian	Networks

In	this	chapter	we	have	introduced	two	ways	to	represent	the	probabilities	of	events	in	a
domain,	 a	 full	 joint	 probability	 distribution	 and	 a	 naive	 Bayes	 model.	 A	 full	 joint
probability	distribution	encodes	the	probabilities	for	all	joint	events	in	the	domain.	Using	a
full	 joint	probability	distribution,	we	can	do	probabilistic	 inference	by	 summing	out	 the
features	we	are	not	interested	in.	Full	joint	probability	distributions,	however,	grow	at	an
exponential	 rate	 as	 new	 features	 or	 feature	 levels	 are	 added	 to	 the	 domain.	 This
exponential	growth	rate	is	partially	due	to	the	fact	that	a	full	joint	probability	distribution
ignores	 the	 structural	 relationships	 between	 features,	 such	 as	 direct	 influence	 and
conditional	independence	relationships.	As	a	result,	full	joint	distributions	are	not	tractable
for	any	domain	of	reasonable	complexity.	By	contrast,	a	naive	Bayes	model	uses	a	very
compact	representation	of	a	domain.	The	reason	for	this	is	that	the	model	assumes	that	all
the	descriptive	 features	are	conditionally	 independent	 of	 each	other	given	 the	value	of
the	target	feature.	The	compactness	of	the	representation	is	at	the	cost	of	making	a	naive
assumption	that	may	adversely	affect	the	predictive	accuracy	of	the	model.

Table	6.16

The	Laplace	smoothed	(with	k	=	3)	probabilities	needed	by	a	naive	Bayes	prediction
model,	calculated	from	the	data	in	Tables	6.11[286]	and	6.15[291].



Notation	key:	FR	=FRAUD,	CH	=	CREDIT	HISTORY,	GC	=	GUARANTOR/COAPPLICANT,	ACC
=ACCOMMODATION,	AB	=ACCOUNT	BALANCE,	BLA	=BINNED	LOAN	AMOUNT.

Bayesian	 networks	 use	 a	 graph-based	 representation	 to	 encode	 the	 structural
relationships—such	as	direct	influence	and	conditional	independence—between	subsets	of
features	in	a	domain.	Consequently,	a	Bayesian	network	representation	is	generally	more
compact	 than	 a	 full	 joint	 distribution	 (because	 it	 can	 encode	 conditional	 independence
relationships),	yet	it	is	not	forced	to	assert	a	global	conditional	independence	between	all
descriptive	features.	As	such,	Bayesian	network	models	are	an	intermediary	between	full
joint	distributions	and	naive	Bayes	models	and	offer	a	useful	compromise	between	model
compactness	and	predictive	accuracy.

Table	6.17

The	relevant	smoothed	probabilities,	from	Table	6.16[293],	needed	by	the	naive	Bayes



model	to	make	a	prediction	for	the	query	with	CH	=	paid,	GC	=	guarantor,	ACC	=	free,
AB=759.07,	and	LA=8,000,	and	the	calculation	of	the	scores	for	each	candidate
prediction.

	

A	Bayesian	network	is	a	directed	acyclical	graph	(there	are	no	cycles	in	the	graph)	that
is	composed	of	three	basic	elements:

nodes:	each	feature	in	a	domain	is	represented	by	a	single	node	in	the	graph.
edges:	nodes	are	connected	by	directed	links;	the	connectivity	of	the	links	in	a	graph
encodes	the	influence	and	conditional	independence	relationships	between	nodes.
conditional	probability	 tables:	each	node	has	a	conditional	probability	 table	 (CPT)
associated	with	it.	A	CPT	lists	the	probability	distribution	of	the	feature	represented	by
the	node	conditioned	on	the	features	represented	by	the	other	nodes	to	which	a	node	is
connected	by	edges.

Figure	 6.9(a)[296]	 illustrates	 a	 simple	 Bayesian	 network.	 This	 network	 describes	 a
domain	consisting	of	two	features	A	and	B.	The	directed	link	from	A	to	B	indicates	that
the	value	of	A	directly	 influences	 the	value	of	B.	In	probability	 terms,	 the	directed	edge
from	A	to	B	in	Figure	6.9(a)[296]	states	that

For	example,	the	probability	of	the	event	a	and	¬b	is

P(a,	¬b)	=	P(¬b	|	a)	×	P(a)	=	0.7	×	0.4	=	0.28

where	the	probabilities	used	in	the	calculation	are	read	directly	from	the	CPTs	in	Figure



6.9(a)[296].	In	the	terminology	of	Bayesian	networks,	node	A	is	a	parent	node	of	B,	and
node	B	 is	 a	 child	 node	 of	 A,	 because	 there	 is	 a	 direct	 edge	 from	A	 into	 B.	 The	 CPT
associated	with	each	node	defines	the	probabilities	of	each	feature	taking	a	value	given	the
value(s)	 of	 its	 parent	 node(s).	 Node	 A	 has	 no	 parents,	 so	 the	 CPT	 just	 lists	 the
unconditional	probability	distribution	for	A.	Notice	that	each	row	in	the	CPT	tables	sum	to
1.	Consequently,	for	a	categorical	feature	with	N	levels,	we	need	only	N	−	1	probabilities
in	each	row,	with	the	final	probability	being	understood	as	equal	to	1	minus	the	sum	of	the
other	N	−	1	probabilities.	For	example,	when	dealing	with	binary	features,	we	need	simply
state	 the	 probability	 of	 each	 feature	 being	 true,	 and	 the	 false	 value	 is	 understood	 as	 1
minus	this	probability.	The	network	in	Figure	6.9(a)[296]	could	be	simplified	 in	 this	way,
and	we	will	 use	 this	 simplification	 for	 all	 networks	 drawn	 from	 now	 on.	 The	 standard
approach	for	handling	continuous	features	in	a	Bayesian	network	is	to	use	binning.	As	a
result,	 the	 CPT	 representation	 is	 sufficient	 to	 handle	 both	 categorical	 and	 (binned)
continuous	features.

Equation	(6.17)[295]	 can	be	generalized	 to	 the	 statement	 that	 for	 any	network	with	N
nodes,	the	probability	of	an	event	x1,	…,	xn,	can	be	computed	using	the	following	formula:

where	Parents(xi)	describes	 the	 set	of	nodes	 in	 the	graph	 that	directly	 link	 into	node	xi.
Using	 this	 equation,	we	 can	 compute	 any	 joint	 event	 in	 the	 domain	 represented	 by	 the
Bayesian	 network.	 For	 example,	 using	 the	 slightly	more	 complex	 Bayesian	 network	 in
Figure	6.9(b)[296],	we	can	calculate	the	probability	of	the	joint	event	P(a,	¬b,	¬c,	d)	as

Figure	6.9

(a)	A	Bayesian	network	for	a	domain	consisting	of	 two	binary	features.	The	structure	of
the	network	states	that	the	value	of	feature	A	directly	influences	the	value	of	feature	B.	(b)
A	Bayesian	network	consisting	of	4	binary	features	with	a	path	containing	3	generations	of
nodes:	D,	C,	and	B.



When	we	are	computing	a	conditional	probability,	we	need	to	be	aware	of	the	state	of
both	 the	parents	of	a	node	and	 the	children	of	a	node	and	 their	parents.	This	 is	because
knowledge	of	the	state	of	a	child	node	can	tell	us	something	about	the	state	of	the	parent
node.	For	example,	returning	to	our	simple	Bayesian	network	in	Figure	6.9(a)[296],	we	can
compute	P(a	|	¬b)	using	Bayes’	Theorem	as	follows:

Figure	6.10

A	depiction	of	the	Markov	blanket	of	a	node.	The	gray	nodes	define	the	Markov	blanket	of
the	black	node.	The	black	node	is	conditionally	independent	of	the	white	nodes	given	the
state	of	the	gray	nodes.

Essentially,	 here	 we	 are	 using	 Bayes’	 Theorem	 to	 invert	 the	 dependencies	 between	 the
nodes.	 So,	 for	 a	 conditional	 independence,	 we	 need	 to	 take	 into	 account	 not	 only	 the
parents	of	a	node	but	also	the	state	of	its	children	and	their	parents.	If	we	have	knowledge
of	these	parent	and	children	nodes,	however,	then	the	node	is	conditionally	independent
of	 the	 rest	 of	 the	 nodes	 in	 the	 graph.	 The	 set	 of	 nodes	 in	 a	 graph	 that	 make	 a	 node
independent	of	the	rest	of	the	graph	are	known	as	the	Markov	blanket	of	a	node.	Figure
6.10[297]	illustrates	the	Markov	blanket	of	a	node.

So,	the	conditional	probability	of	a	node	xi	in	a	graph	with	n	nodes	can	be	defined	as

where	Parents(xi)	describes	the	set	of	nodes	in	the	graph	that	directly	link	into	node	xi,	and
Children(xi)	describes	the	set	of	nodes	in	the	graph	that	xi	directly	links	into.	Applying	this



definition	to	the	network	in	Figure	6.9(b)[296],	we	can	calculate	the	probability	of	P(c	|	¬a,
b,	d)	as

We	 already	 used	Equation	 (6.19)[297]	 when	we	were	making	 predictions	 for	 a	 naive
Bayes	classifier.	A	naive	Bayes	classifier	is	a	Bayesian	network	with	a	specific	topological
structure.	Figure	6.11(a)[299]	 illustrates	 the	 network	 structure	 of	 a	 naive	Bayes	 classifier
and	how	it	encodes	 the	conditional	 independence	between	 the	descriptive	features	given
assumed	knowledge	of	 the	 target.	Figure	6.11(b)[299]	 illustrates	 the	 network	 structure	 of
the	 naive	 Bayes	 model	 for	 predicting	 a	 fraudulent	 loan	 application	 that	 was	 built	 in
Section	 6.3.1[269].	 We	 can	 see	 in	 this	 structure	 that	 the	 target	 feature,	 FRAUD,	 has	 no
parents	and	is	the	single	parent	for	all	the	descriptive	feature	nodes.	This	structure	directly
reflects	 the	 assumption,	made	 by	 naive	Bayes	models,	 of	 the	 conditional	 independence
between	 descriptive	 features	 given	 knowledge	 of	 the	 target	 feature	 and	 is	 why	 the
conditional	 probabilities	 of	 the	 descriptive	 features	 in	 a	 naive	 Bayes	 model	 are
conditioned	only	on	the	target	feature.

When	we	computed	a	conditional	probability	for	the	target	feature	using	a	naive	Bayes
model,	we	used	the	following	calculation

This	equation	is	equivalent	to	Equation	(6.19)[297].	The	fact	that	the	probability	P(t)	is
an	 unconditional	 probability	 simply	 reflects	 that	 structure	 of	 the	 naive	 Bayes’	 network
where	the	target	feature	has	no	parent	nodes	(see	Figure	6.11(a)[299]).

Computing	a	conditional	probability	for	a	node	becomes	more	complex	if	the	value	of
one	or	more	of	the	parent	nodes	is	unknown.	In	this	situation	the	node	becomes	dependent
on	the	ancestors	of	it	unknown	parent.	This	is	because	if	a	parent	node	is	unknown,	then	to
compute	 the	distribution	for	 the	node,	we	must	sum	out	 this	parent.	However,	 to	do	this
summing	 out,	 we	 must	 know	 the	 distribution	 for	 the	 unknown	 parent,	 which	 in	 turn
requires	us	to	sum	out	the	parents	of	the	parent,	and	so	on	if	necessary.	As	a	result	of	this
recursive	 summing	 out,	 the	 distribution	 over	 a	 node	 is	 dependent	 on	 knowledge	 of	 the
ancestors	of	any	of	its	parent	nodes.22	For	example,	 in	Figure	6.9(b)[296],	 if	 the	status	of
node	 C	 is	 not	 known,	 then	 node	 B	 becomes	 dependent	 on	 node	 D.	 For	 example,	 to
compute	P(b	|	a,	d)	we	would	do	the	following	calculations



Figure	6.11

(a)	A	Bayesian	network	representation	of	the	conditional	independence	asserted	by	a	naive
Bayes	model	between	the	descriptive	features	given	knowledge	of	the	target	feature;	(b)	a
Bayesian	network	representation	of	the	conditional	independence	assumption	for	the	naive
Bayes	model	in	the	fraud	example.

1.	 Compute	the	distribution	for	C	given	D:	P(c	|	d)	=	0.2,	P(¬c	|	d)	=	0.8
2.	 Compute	P(b	|	a,	C)	by	summing	out	C:	P(b	|	a,	C)	=	ΣiP(b	|	a,	Ci)

This	example	 illustrates	 the	power	of	Bayesian	networks.	When	complete	knowledge	of
the	state	of	all	the	nodes	in	the	network	is	not	available,	we	clamp	the	values	of	nodes	that
we	 do	 have	 knowledge	 of	 and	 sum	 out	 the	 unknown	 nodes.	 Furthermore,	 during	 these
calculations,	we	only	need	to	condition	a	node	on	its	Markov	blanket,	which	dramatically
reduces	the	number	of	probabilities	required	by	the	network.

6.4.4.1	Building	Bayesian	Networks

Bayesian	networks	 can	be	 constructed	by	hand	or	 learned	 from	data.	Learning	both	 the
topology	 of	 a	 Bayesian	 network	 and	 the	 parameters	 in	 the	 CPTs	 in	 the	 network	 is	 a
difficult	 computational	 task.	 One	 of	 the	 things	 that	 makes	 learning	 the	 structure	 of	 a
Bayesian	 network	 so	 difficult	 is	 that	 it	 is	 possible	 to	 define	 several	 different	 Bayesian



networks	as	 representations	 for	 the	same	full	 joint	probability	distribution.	Consider,	 for
example,	a	probability	distribution	for	three	binary	features	A,	B,	and	C.	The	probability
for	a	joint	event	in	this	domain	P(A,	B,	C)	can	be	decomposed	using	the	chain	rule	in	the
following	way:

Figure	6.12

Two	 different	 Bayesian	 networks,	 each	 defining	 the	 same	 full	 joint	 probability
distribution.

The	 chain	 rule,	 however,	 doesn’t	 specify	 any	 constraints	 on	 which	 features	 in	 the
domain	 we	 choose	 to	 condition	 on.	 We	 could	 just	 as	 easily	 have	 decomposed	 the
probability	of	the	joint	event	as	follows:

Both	of	 these	decompositions	are	valid,	and	both	define	different	Bayesian	networks
for	 the	 domain.	 Figure	 6.12(a)[301]	 illustrates	 the	 Bayesian	 network	 representing	 the
decomposition	 defined	 in	 Equation	 (6.20)[300],	 and	 Figure	 6.12(b)[301]	 illustrates	 the
Bayesian	network	representing	the	decompositions	defined	in	Equation	(6.21)[301].

We	 can	 show	 that	 both	 of	 the	 networks	 in	 Figure	 6.12[301]	 represent	 the	 same	 joint
probability	by	using	each	of	them	to	calculate	the	probability	of	an	arbitrarily	chosen	joint
event	from	the	domain.	We	should	get	the	same	probability	for	the	joint	event	from	both
of	the	networks.	For	this	example,	we	will	calculate	the	probability	of	the	event	¬a,	b,	c.
Using	the	Bayesian	network	in	Figure	6.12(a)[301],	we	would	carry	out	the	calculation	as
follows:

Using	the	network	in	Figure	6.12(b)[301],	the	calculation	would	be



Both	networks	return	the	same	probability	for	the	joint	event.	In	fact,	these	networks	will
return	identical	probabilities	for	all	events	in	this	domain.

The	basic	 approach	 to	 learning	 the	 structure	of	 a	Bayesian	network	 is	 to	use	 a	 local
search	algorithm	that	moves	through	the	space	of	possible	networks	and	parameters,	and
searches	for	the	network	topology	and	CPT	parameters,	that	best	fit	with	the	data.	To	start
the	search,	the	algorithm	is	given	a	seed	network	and	then	iteratively	adapts	this	network
by	 adding,	 removing,	 or	 reversing	 links	 (and/or	 adding	 and	 removing	 hidden	 nodes),
accompanied	by	iterations	of	parameter	 learning	after	each	network	structure	adaptation.
One	of	the	difficulties	with	learning	a	network	structure	is	that	we	can	always	improve	the
likelihood	of	the	data	given	a	network	by	simply	adding	new	links	into	the	network.	Each
time	we	add	a	 link	 to	a	network	we	 increase	 the	number	of	CPT	entries	 in	 the	network.
The	CPT	 entries	 are	 essentially	 parameters	 on	 the	 network,	 and	 the	more	 parameters	 a
network	has,	 the	greater	 its	 ability	 to	 fit	 (or	overfit)	 the	data.	So,	 care	must	be	 taken	 to
ensure	that	the	objective	function	used	by	the	search	process	avoids	overfitting	the	data	by
simply	creating	a	very	highly	connected	graph.	Consequently,	the	objective	functions	used
by	these	algorithms	are	often	based	on	the	minimum	description	length	principle,	which
asserts	that	the	solution	with	the	fewest	parameters	(shortest	description)	is	the	best	one.
We	have	already	met	the	minimum	description	length	principle	in	the	more	general	form
of	 Occam’s	 razor.	 A	 popular	 metric	 used	 by	 these	 algorithms	 is	 the	 Bayesian
information	criterion	(BIC):

where	 	denotes	 the	network	graph,	D	 is	 the	 training	data,	 	 is	 the	 set	 of	 entries	 in	 the
CPTs	of	 ,	d	is	the	number	of	parameters	of	 	(i.e.,	how	many	entries	in	the	CPTs	of	 ),
and	n	is	the	number	of	instances	in	D.	This	metric	contains	a	term	describing	how	well	the
model	 predicts	 the	 data	 P(D| ,	 )	 as	 well	 as	 a	 term	 that	 punishes	 complex	 models	

.	As	such,	it	balances	the	search	goals	of	model	accuracy	and	simplicity.	The
term	P(D| ,	 )	 can	 be	 computed	 using	 metrics	 such	 as	 the	Bayesian	 score	 or	 the	K2
score23.	The	search	space	 for	 these	algorithms	 is	exponential	 in	 the	number	of	 features.
Consequently,	 developing	 algorithms	 to	 learn	 the	 structure	 of	 Bayesian	 networks	 is	 an
ongoing	research	challenge.24

It	is	much	simpler	to	construct	a	Bayesian	network	using	a	hybrid	approach,	where	the
topology	of	the	network	is	given	to	the	learning	algorithm,	and	the	learning	task	involves
inducing	 the	CPT	entries	 from	 the	data.	This	 type	of	 learning	 illustrates	one	of	 the	 real
strengths	 of	 the	 Bayesian	 network	 framework,	 namely,	 that	 it	 provides	 an	 approach	 to
learning	 that	 naturally	 accommodates	 human	 expert	 information.	 In	 this	 instance,	 the
human	expert	specifies	 that	 topology	of	 the	network,	and	the	learning	algorithm	induces
the	 CPT	 entries	 for	 nodes	 in	 the	 topology	 in	 the	 same	 way	 that	 we	 computed	 the
conditional	probabilities	for	the	naive	Bayes	model.25



Given	that	there	are	multiple	Bayesian	networks	for	any	domain,	an	obvious	question
to	ask	is	what	is	the	best	topological	structure	to	give	the	algorithm	as	input?	Ideally,	we
would	 like	 to	 use	 the	 network	 whose	 structure	 most	 accurately	 reflects	 the	 causal
relationships	in	the	domain.	Specifically,	if	the	value	of	one	feature	directly	influences,	or
causes,	the	value	taken	by	another	feature,	then	this	should	be	reflected	in	the	structure	of
the	graph	by	having	a	link	from	the	cause	feature	to	the	effect	feature.	Bayesian	networks
whose	topological	structure	correctly	reflects	the	causal	relationships	between	the	features
in	a	dataset	are	called	causal	graphs.	There	are	two	advantages	to	using	a	causal	graph:
(1)	people	find	it	relatively	easy	to	think	in	terms	of	causal	relationships,	and	as	a	result,
networks	 that	 encode	 these	 relationships	 are	 relatively	 easy	 to	 understand;	 (2)	 often
networks	 that	 reflect	 the	causal	 structure	of	a	domain	are	more	compact	 in	 terms	of	 the
number	of	links	between	nodes	and	hence	are	more	compact	with	respect	to	the	number	of
CPT	entries.

We	will	 use	 an	 example	 from	 social	 science	 to	 illustrate	 how	 to	 construct	 a	 causal
graph	using	this	hybrid	approach.	In	this	example,	we	will	build	a	Bayesian	network	that
enables	 us	 to	 predict	 the	 level	 of	 corruption	 in	 a	 country	based	on	 a	 number	 of	macro-
economic	 and	 social	 descriptive	 features.	 Table	 6.18[305]	 lists	 some	 countries	 described
using	the	following	features26

GINI	COEF	measures	the	equality	in	a	society,	where	a	larger	Gini	coefficient	indicates
a	more	unequal	society.
LIFE	EXP	measures	life	expectancy	at	birth.
SCHOOL	YEARS	refers	to	the	mean	number	of	years	spent	in	school	for	adult	females.
CPI	is	the	Corruption	Perception	Index	(CPI),	and	it	is	the	target	feature.	The	CPI
measures	the	perceived	level	of	corruption	in	the	public	sector	of	a	country	and	ranges
from	0	(highly	corrupt)	to	100	(very	clean).

The	 original	 feature	 values	 shown	 in	 Table	 6.18[305]	 are	 continuous,	 so	 we	 use	 the
standard	 approach	 of	 converting	 them	 to	 categorical	 features	 using	 equal-frequency
binning,	 with	 two	 bins	 for	 each	 feature:	 low	 and	 high.	 The	 columns	 labelled	 binned
feature	values	in	Table	6.18[305]	show	the	data	after	it	has	been	binned.

Once	 the	 data	 has	 been	 prepared,	 there	 are	 two	 stages	 to	 building	 the	 Bayesian
network.	 First,	 we	 define	 the	 topology	 of	 the	 network.	 Second,	 we	 create	 the	 network
CPTs.	 The	 topology	 of	 the	 network	will	 be	 a	 causal	 graph	 that	models	 this	 domain.	 In
order	to	build	this,	we	must	have	a	theory	of	the	causal	relationships	between	the	features
in	the	domain.	A	potential	causal	theory	between	the	features	in	this	dataset	is	that
the	more	equal	a	society,	the	higher	the	investment	that	society	will	make	in	health	and	education,	and	this	in	turn	results
in	a	lower	level	of	corruption

Figure	6.13[306]	 illustrates	 a	Bayesian	 network	with	 a	 topology	 that	 encodes	 this	 causal
theory.	Equality	directly	affects	both	health	and	education,	so	there	are	directed	arcs	from
GINI	 COEF	 to	 both	 LIFE	 EXP	 and	 SCHOOL	 YEARS.	 Health	 and	 education	 directly	 affect
corruption,	so	there	is	a	directed	arc	from	LIFE	EXP	and	and	from	SCHOOL	YEARS	 to	CPI.
To	complete	the	network,	we	need	to	add	the	CPTs.	To	do	this,	we	compute	the	required



conditional	probabilities	from	the	binned	data	in	Table	6.18[305].	The	CPTs	are	shown	in
Figure	6.13[306].

Table	6.18

Some	socio-economic	data	for	a	set	of	countries,	and	a	version	of	the	data	after	equal-
frequency	binning	has	been	applied.

6.4.4.2	Using	a	Bayesian	Network	to	Make	Predictions

Once	 a	 network	 has	 been	 created,	 it	 is	 relatively	 straightforward	 to	 use	 to	 make	 a
prediction.	 We	 simply	 compute	 the	 probability	 distribution	 for	 the	 target	 feature
conditioned	 on	 the	 state	 of	 the	 descriptive	 features	 in	 the	 query	 and	 return	 the	 target
feature	level	with	the	maximum	a	posteriori	probability:

where	 (q)	 is	 the	 prediction	made	 by	 the	model	 for	 the	 query	q,	 levels(t)	 is	 the	 set	 of
levels	 in	 the	 domain	 of	 the	 target	 feature	 t,	 and	BayesianNetwork(t	 =	 l,	q)	 returns	 the
probability	computed	by	the	network	for	the	event	t	=	l	given	the	evidence	specified	in	the
query	q.



Figure	6.13

A	 Bayesian	 network	 that	 encodes	 the	 causal	 relationships	 between	 the	 features	 in	 the
corruption	 domain.	 The	 CPT	 entries	 have	 been	 calculated	 using	 the	 binned	 data	 from
Table	6.18[305].

For	 example,	 imagine	we	wanted	 to	use	 the	Bayesian	network	 in	Figure	6.13[306]	 to
predict	the	CPI	for	a	country	with	the	following	profile:

GINI	COEF	=	low,	SCHOOL	YEARS	=	high,	LIFE	EXP	=	high

Because	 both	 the	 parent	 nodes	 for	 CPI	 are	 known	 (SCHOOL	 YEARS	 and	 LIFE	 EXP),	 the
probability	distribution	for	CPI	is	independent	of	the	GINI	COEF	feature.	Therefore,	we	can
read	the	relevant	probability	distribution	for	CPI	directly	from	the	CPT	for	the	CPI	node.
From	this	CPT	we	can	see	that	when	SCHOOL	YEARS	=	high,	and	LIFE	EXP	=	high,	then	the
most	 likely	 level	 is	CPI	=	high.	As	 a	 result,	CPI	=	high	 is	 the	MAP	CPI	 value	 for	 this
query,	and	this	 is	 the	prediction	the	model	will	 return.	In	other	words,	countries	 that	are
relatively	equal	and	that	have	good	education	and	high	life	expectancy	are	likely	to	have	a
low	level	of	corruption.

6.4.4.3	Making	Predictions	with	Missing	Descriptive	Feature	Values

One	real	advantage	of	Bayesian	networks	over	 the	other	predictive	model	 types	 that	we
discuss	in	this	book	is	they	a	provide	an	elegant	solution	to	making	predictions	for	a	target
feature	 when	 one	 or	 more	 of	 the	 descriptive	 feature	 values	 in	 a	 query	 instance	 are
missing.27	For	example,	we	may	wish	to	predict	the	CPI	for	a	country	with	the	following
profile:

GINI	COEF	=	high,	SCHOOL	YEARS	=	high

where	the	value	of	the	LIFE	EXP	feature	is	unknown	for	the	country.	This	means	that	in	the
network,	one	of	the	parents	of	the	target	feature	node,	CPI,	is	unknown.	Consequently,	we
need	to	sum	out	this	feature	for	each	level	of	the	target.	We	can	calculate	the	probability
for	CPI	=	high	as	follows:28



We	calculate	the	numerator	in	this	term	as	follows:

and	denominator	as:

We	can	now	calculate	the	probability	for	CPI	=	high	as

We	know	from	this	result	that	the	probability	for	CPI	=	low	must	be	0.8.	So,	the	network
will	predict	CPI	=	low	as	the	MAP	target	value	for	the	query.	This	tells	us	that	an	unequal
society	 that	 has	 a	good	 education	 system	but	 for	which	we	have	no	 evidence	 about	 the
health	system	is	still	likely	to	suffer	from	corruption.

These	 calculations	 make	 it	 apparent	 that	 even	 in	 this	 small	 example	 domain,	 the
calculation	of	 a	probability	becomes	computationally	 complex	very	quickly,	particularly
when	we	need	to	sum	out	one	or	more	features.	The	complexity	of	the	calculations	can	be
reduced	by	being	careful	with	the	positioning	of	features	with	respect	to	summations	and
by	using	dynamic	programming	techniques	to	avoid	repeated	computations.	A	well-known



algorithm	 that	 focuses	 on	 this	 approach	 to	 reducing	 the	 complexity	 is	 the	 variable
elimination	 algorithm	 (Zhang	 and	 Poole,	 1994).	 However,	 even	 using	 the	 variable
elimination	 algorithm,	 calculating	 exact	 probabilities	 from	 a	 Bayesian	 network	 when
descriptive	feature	values	are	missing	is	prohibitively	complex.

Given	the	complexity	of	exact	probabilistic	inference	for	Bayesian	networks,	a	popular
alternative	 is	 to	 approximate	 the	 probability	 distribution	 required	 for	 a	 prediction	 using
Monte	Carlo	methods.29	Monte	Carlo	methods	generate	a	large	number	of	sample	events
and	 then	 use	 the	 relative	 frequency	 of	 an	 event	 in	 the	 set	 of	 generated	 samples	 as	 the
approximation	 for	 the	 probability	 of	 that	 event	 in	 the	 real	 distribution.	 Monte	 Carlo
methods	work	well	 in	conjunction	with	Bayesian	networks	because	a	Bayesian	network
models	 the	 probability	 distribution	 over	 the	 features.	 More	 specifically,	 a	 Bayesian
network	can	be	viewed	as	defining	a	Markov	chain.	A	Markov	chain	is	a	system	that	has
a	set	of	 finite	 states	and	a	set	of	 transition	probabilities	 that	define	 the	 likelihood	of	 the
system	moving	from	one	state	to	another.	When	we	view	a	Bayesian	network	as	a	Markov
chain,	 a	 state	 is	 a	 complete	 assignment	 of	 values	 to	 all	 the	 nodes	 in	 the	 network	 (for
example,	GINI	COEF	=	high,	SCHOOL	YEARS	=	low,	LIFE	EXP	=	high,	CPI	=	high	would	be	a
state	in	the	Markov	chain	defined	by	the	network	in	Figure	6.13[306]),	and	the	CPTs	of	the
network	provide	a	distributed	representation	of	the	transition	probabilities	of	the	Markov
chain.	 If	 the	 distribution	 used	 to	 generate	 the	 samples	 for	 a	Monte	 Carlo	 method	 is	 a
Markov	 chain,	 then	 the	 specific	 algorithms	 we	 use	 to	 implement	 this	 approach	 come
from	 a	 family	 known	 as	Markov	 chain	 Monte	 Carlo	 (MCMC)	 algorithms.	 Gibbs
sampling	 is	one	of	 the	best	known	MCMC	algorithms	and	 is	particularly	suitable	when
we	wish	 to	 generate	 probabilities	 that	 are	 conditioned	 on	 some	 evidence,	 so	 this	 is	 the
algorithm	we	discuss	in	this	section.

The	Gibbs	sampling	algorithm	initializes	a	Bayesian	network	by	clamping	the	values
of	 the	 evidence	 nodes	 and	 randomly	 assigning	 values	 to	 the	 non-evidence	 nodes.	 The
algorithm	 then	 iteratively	 generates	 samples	 by	 changing	 the	 value	 of	 one	 of	 the	 non-
evidence	nodes.	The	selection	of	which	non-evidence	node	 to	change	can	be	 random	or
follow	 a	 predefined	 list	 through	 which	 the	 algorithm	 iterates.	 The	 new	 value	 for	 the
selected	node	 is	drawn	from	 the	distribution	 for	 the	node	 (the	CPT),	conditioned	on	 the
current	 state	 of	 all	 the	other	 nodes	 in	 the	network.	Each	 time	 a	node	 is	 updated,	 a	 new
sample	state	has	been	generated.	More	formally,	for	a	network	with	three	nodes	x1,	x2,	x3,
using	a	predefined	node	selection	order	of	x1,	x2,	x3,	x1,	…	and	assuming	that	at	iteration	τ

each	node	has	the	values	 ,	the	next	four	states	generated	will	be

1.	

2.	

3.	

4.	

There	 are	 three	 technical	 requirements	 that	 must	 hold	 for	 distribution	 of	 states



generated	 from	Gibbs	 sampling	 to	 converge	with	 the	 distribution	 that	 we	 are	 sampling
from—in	this	case,	the	distribution	defined	by	the	Bayesian	network.	The	first	is	that	the
distribution	we	are	sampling	from	must	be	a	stationary	distribution	 (also	known	as	an
invariant	distribution).	A	stationary	distribution	is	a	distribution	that	doesn’t	change.	The
distribution	defined	by	a	Bayesian	network	doesn’t	change	during	Gibbs	sampling,	so	this
requirement	always	holds	in	this	context.	The	second	requirement	is	that	the	Markov	chain
used	to	generate	the	samples	must	be	ergodic.	A	Markov	chain	is	ergodic	if	every	state	is
reachable	from	every	other	state	and	there	are	no	cycles	in	the	chain.	The	Markov	chain
defined	by	a	Bayesian	network	is	ergodic	if	there	are	no	zero	entries	in	any	of	the	CPTs.30
The	third	requirement	is	that	the	generated	states	should	be	independent	of	each	other.	As
each	generated	state	is	a	modified	version	of	the	preceding	state,	it	is	clear	that	successive
states	will	be	correlated	with	each	other.	So	to	obtain	independent	sample	states,	we	often
subsample	from	the	sequence	(subsampling	in	this	way	is	also	known	as	thinning).	Once
these	three	conditions	hold	(stationary	distribution,	ergodicity,	and	independent	states),	the
samples	generated	will	eventually	converge	with	the	distribution,	and	it	is	appropriate	to
use	Gibbs	sampling.

Because	we	start	sampling	from	a	random	state,	however,	we	do	not	know	whether	the
initial	 state	 is	 an	 appropriate	 state	 from	 which	 to	 start	 generating	 samples.	 It	 may,	 for
example,	be	a	state	that	has	a	very	low	probability	in	the	distribution.	As	a	result,	 it	 is	a
good	 idea	 to	 run	 the	 network	 for	 a	 number	 of	 iterations	 before	 the	 generated	 states	 are
recorded	as	samples.	This	burn-in	time	is	to	allow	the	Markov	chain	to	settle	into	a	state
that	 is	 independent	 of	 the	 initial	 random	 state	 and	 that	 is	 a	 probable	 state	 for	 the
distribution	we	are	 sampling	 from.	The	 time	 it	 takes	 for	 the	Markov	chain	 to	 forget	 the
initial	 random	 state	 is	 called	 the	mixing	 time.	 Unfortunately,	 estimating	 how	 long	 the
burn-in	 should	be	 is	difficult.	For	 some	Markov	chains,	mixing	may	 require	only	a	 few
iterations,	but	for	others,	it	may	require	hundreds	or	thousands	of	iterations.	The	topology
of	the	network	can	provide	some	insight	into	this	problem.	Larger	graphs	will	tend	to	have
longer	mixing	 times.	Also,	 an	evenly	connected	network	 typically	has	 a	 relatively	 short
mixing	time	(for	the	size	of	the	graph).	If,	however,	a	graph	is	composed	of	a	number	of
clusters	 connected	 via	 bottleneck	 nodes,	 this	 would	 typically	 indicate	 a	 longer	 mixing
time.	Another	approach	used	to	determine	the	appropriate	burn-in	time	is	to	start	several
Markov	 chains	 with	 different	 initial	 states	 and	 wait	 until	 all	 the	 chains	 are	 generating
states	 with	 similar	 distribution	 characteristics	 (mean	 state,	 mode	 state,	 etc.).	When	 this
happens,	 it	 indicates	 that	 all	 the	 chains	 are	 sampling	 from	 the	 same	 distribution	 and,
hence,	that	it	is	likely	that	they	have	all	forgotten	their	starting	states.	Once	this	happens,
the	target	probability	can	be	computed	by	calculating	the	relative	frequency	of	the	event
within	the	selected	subset	of	generated	states.

Table	 6.19[312]	 lists	 a	 some	 of	 the	 samples	 generated	 using	 Gibbs	 sampling	 for	 the
Bayesian	network	in	Figure	6.13[306]	for	the	query

GINI	COEF	=	high,	SCHOOL	YEARS	=	high

A	burn-in	of	30	iterations	was	used,	and	the	samples	were	thinned	by	subsampling	every
7th	iteration.	When	the	algorithm	was	used	to	generate	500	samples,	the	relative	frequency



of	CPI	=	high	was	0.196.	When	2,000	samples	were	generated,	the	relative	frequency	rose
to	 0.1975.	 This	 rise	 in	 relative	 frequency	 illustrates	 that,	 as	 the	 number	 of	 samples
generated	 increases,	 the	 resulting	 distribution	 approaches	 the	 actual	 distribution.	 Recall
that	when	we	did	an	exact	calculation	for	this	query	the	probability	of	CPI	=	high	was	0.2.

Table	6.19

Examples	of	the	samples	generated	using	Gibbs	sampling.

	

We	 can	 make	 predictions	 using	 Gibbs	 sampling	 in	 the	 same	 way	 that	 we	 made
predictions	 using	 exact	 probabilistic	 inference	 by	 predicting	 the	 target	 level	 with	 the
maximum	a	posteriori	probability:

where	 	 (q)	 is	 the	prediction	made	by	 the	model	 for	 the	query	q,	 levels(t)	 is	 the	 set	of
levels	in	the	domain	of	the	target	feature	t,	and	Gibbs(t	=	l,	q)	returns	the	probability	for
the	event	t	=	l	given	the	evidence	specified	in	the	query	q	using	Gibbs	sampling.



6.5	Summary
There	are	two	ways	to	reason	with	probabilities	forward	and	inverse.	Forward	probability
reasons	 from	causes	 to	 effects:	 if	we	know	 that	 a	 particular	 causal	 event	 has	 happened,
then	we	increase	the	probability	associated	with	the	known	effects	that	it	causes.	Inverse
probability	reasons	from	effects	to	causes:	if	we	know	that	a	particular	event	has	occurred,
then	we	can	 increase	 the	probability	 that	one	or	more	of	 the	events	 that	could	cause	 the
observed	 event	 have	 also	 happened.	 Bayes’	 Theorem	 relates	 these	 two	 views	 of
probability	 by	 using	 the	 notion	 of	 a	 prior	 probability.	 Put	 in	 subjective	 terms,	 Bayes’
Theorem	tells	us	that	by	modifying	our	initial	beliefs	about	what	has	happened	(our	prior
beliefs	about	the	world)	proportionally	with	how	our	observations	relate	to	their	potential
causes	 (inverse	 probability),	we	 can	 update	 our	 beliefs	 regarding	what	 has	 happened	 to
cause	our	observations	(forward	probability).	Put	more	formally:

The	use	of	prior	probabilities	in	Bayes’	Theorem	is	what	distinguishes	between	Bayesian
and	maximum	likelihood	approaches	to	probability.

Bayesian	 prediction	 is	 a	 very	 intuitive	 approach	 to	 predicting	 categorical	 targets.	 In
order	to	make	a	prediction,	we	have	to	learn	two	things:

1.	 the	 probability	 of	 an	 instance	 having	 a	 particular	 set	 of	 descriptive	 feature	 values
given	that	it	has	a	particular	target	level	P(d	|	t)

2.	 the	prior	probability	of	that	target	level	P(t)

Given	 these	 two	 pieces	 of	 information,	 we	 can	 compute	 the	 relative	 likelihood	 of	 a
particular	instance	having	a	particular	target	level	as

Once	the	relative	likelihoods	for	each	target	level	have	been	calculated,	we	simply	return
the	maximum	a	posteriori	(MAP)	prediction.

The	 biggest	 challenge	 in	 creating	 a	 Bayesian	 prediction	 model	 is	 overcoming	 the
exponential	growth	in	the	number	of	probabilities	(model	parameters)	that	are	required	as
the	dimensionality	of	the	feature	space	increases.	The	standard	approach	to	addressing	this
problem	is	to	use	the	independence	and	conditional	independence	relationships	between
the	features	in	a	domain	to	factorize	the	full	joint	distribution	of	the	domain.	Factorizing
the	 domain	 representation	 reduces	 the	 number	 of	 interactions	 between	 the	 features	 and
reduces	the	number	of	model	parameters.

A	 naive	 Bayes	 model	 addresses	 this	 problem	 by	 naively	 assuming	 that	 each	 of	 the
descriptive	 features	 in	a	domain	 is	conditionally	 independent	of	all	 the	other	descriptive
features,	 given	 the	 state	 of	 the	 target	 feature.	 This	 assumption,	 although	 often	 wrong,
enables	the	naive	Bayes	model	to	maximally	factorize	the	representation	that	it	uses	of	the
domain—in	other	words,	to	use	the	smallest	possible	number	of	probabilities	to	represent
the	domain.



Surprisingly,	given	the	naivety	and	strength	of	the	assumption	it	depends	upon,	naive
Bayes	models	often	perform	well.	This	is	partly	because	naive	Bayes	models	are	able	to
make	correct	predictions	even	if	the	probabilities	that	they	calculate	are	incorrect,	so	long
as	 the	 error	 in	 the	 calculated	 probabilities	 does	 not	 affect	 the	 relative	 rankings	 of	 the
different	target	levels.	One	consequence	of	this	observation	is	that	naive	Bayes	models	are
not	really	suitable	for	predicting	continuous	targets.	When	predicting	a	continuous	target,
every	error	in	the	calculation	of	a	probability	is	reflected	in	reduced	model	performance.

The	conditional	independence	assumption	means	that	naive	Bayes	models	use	very	few
parameters	to	represent	a	domain.	One	consequence	of	this	is	that	naive	Bayes	models	can
be	trained	using	a	relatively	small	dataset:	with	so	few	parameters	and	so	few	conditions
on	each	parameter—only	the	state	of	the	target	feature—it	is	possible	to	make	reasonable
estimates	 for	 the	 parameters	 using	 a	 small	 dataset.	 Another	 benefit	 of	 the	 reduced
representation	of	the	model	is	that	the	behavior	of	the	model	is	relatively	easy	to	interpret.
It	is	possible	to	look	at	the	probabilities	for	each	descriptive	feature	and	analyze	how	that
value	contributed	to	the	final	prediction.	This	information	can	be	useful	in	informing	the
development	 of	 more	 powerful	 models	 later	 in	 a	 project.	 Consequently,	 a	 naive	 Bayes
model	 is	 often	 a	 good	model	 to	 begin	with:	 it	 is	 easy	 to	 train	 and	 has	 the	 potential	 to
provide	both	a	baseline	accuracy	score	and	some	insight	 into	 the	problem	structure.	The
major	 drawback	 of	 naive	 Bayes	 models	 is	 the	 inability	 of	 the	 model	 to	 handle	 the
interactions	between	features.

Bayesian	networks	provide	a	more	flexible	representation	for	encoding	the	conditional
independence	 assumptions	 between	 the	 features	 in	 a	 domain.	 Ideally,	 the	 topology	 of	 a
network	should	reflect	the	causal	relationships	between	the	entities	in	a	domain.	Properly
constructed	 Bayesian	 networks	 are	 relatively	 powerful	 models	 that	 can	 capture	 the
interactions	between	descriptive	features	in	determining	a	prediction.	Although	the	task	of
inducing	 the	 optimal	 network	 structure	 from	 data	 is	 strictly	 intractable,	 algorithms	 that
encode	various	assumptions	exist	that	allow	good	models	to	be	learned.	Also,	in	domains
where	 the	causal	 relationships	between	 features	are	known,	Bayesian	networks	have	 the
advantage	of	providing	a	natural	framework	for	integrating	expert	human	knowledge	with
data-driven	induction.	Bayesian	networks	have	been	successfully	applied	across	a	range	of
fields,	 including	 medical	 diagnosis,	 object	 recognition,	 and	 natural	 language
understanding.

Several	 parallels	 can	 be	 drawn	 between	 probability-based	 learning	 and	 the	 other
approaches	 to	 machine	 learning	 that	 we	 present	 in	 this	 book.	 Intuitively,	 the	 prior
probability	of	a	nearest	neighbor	model	predicting	a	particular	target	level	is	simply	the
relative	frequency	of	that	target	level	in	the	dataset.	For	this	reason,	in	general	it	is	wrong
to	artificially	balance	the	dataset	used	by	a	nearest	neighbor	model,31	and	doing	so	biases
the	target	level	priors	used	by	the	model.

The	 relationship	between	probability-based	and	 information-based	 learning	 is	 simply
that	the	amount	of	information	provided	by	an	observation—such	as	a	descriptive	feature
taking	 a	 particular	 value—is	 reflected	 in	 the	 difference	 between	 the	 prior	 and	 posterior
probabilities	caused	by	the	observation.	If	the	prior	and	posterior	probabilities	are	similar,



then	 the	 information	 content	 in	 the	 observation	 was	 low.	 If	 the	 prior	 and	 posterior
probabilities	are	very	different,	then	the	information	content	in	the	observation	was	high.

Finally,	 it	 can	 be	 shown	 that,	 under	 some	 assumptions,	 any	 learning	 algorithm	 that
minimizes	the	squared	error	of	the	model	over	the	data	will	output	a	maximum	likelihood
prediction.32	The	 relevance	of	 this	 finding	 is	 that	 it	provides	a	probabilistic	 justification
for	the	approach	to	learning	we	present	in	Chapter	7[323].



6.6	Further	Reading
McGrayne	 (2011)	 is	 an	 accessible	 book	 on	 the	 development	 and	 history	 of	 Bayes’
Theorem.	 All	 data	 analysts	 should	 have	 at	 least	 one	 good	 textbook	 on	 statistics	 and
probability.	We	would	recommend	either	Montgomery	and	Runger	(2010)	or	Tijms	(2012)
(or	 both).	 Jaynes	 (2003)	 deals	 with	 the	 use	 of	 probability	 theory	 in	 science	 and	 is	 a
suitable	text	for	postgraduate	students.

Chapter	 6	 of	Mitchell	 (1997)	 provides	 an	 excellent	 overview	 of	 Bayesian	 learning.
Barber	(2012)	is	a	more	recent	machine	learning	textbook	that	adopts	a	Bayesian	approach
to	learning	and	inference.

Judea	Pearl	is	recognized	as	one	of	the	key	pioneers	in	developing	the	use	of	Bayesian
networks	 in	 the	 field	 of	 artificial	 intelligence,	 and	 his	 books	 (Pearl,	 1988,	 2000)	 are
accessible	 and	 provide	 good	 introductions	 to	 the	 theory	 and	 methods	 of	 Bayesian
networks,	as	well	as	the	more	general	field	of	graphical	models.	Neapolitan	(2004)	 is	a
good	textbook	on	Bayesian	networks.	Kollar	and	Friedman	(2009)	is	a	comprehensive	text
on	 the	 theory	 and	 methods	 of	 graphical	 models	 and	 is	 a	 good	 reference	 text	 for
postgraduate	students	who	are	doing	research	using	graphical	models.





6.7	Exercises
1.	a.	Three	people	flip	a	fair	coin.	What	is	the	probability	that	exactly	two	of	them	will

get	heads?

b.	Twenty	people	flip	a	fair	coin.	What	is	the	probability	that	exactly	eight	of	them
will	get	heads?

c.	Twenty	people	flip	a	fair	coin.	What	is	the	probability	that	at	least	4	of	them	will	get
heads?

2.	The	table	below	gives	details	of	symptoms	that	patients	presented	and	whether
they	were	suffering	from	meningitis.

ID HEADACHE FEVER VOMITING MENINGITIS

1 true true false false

2 false true false false

3 true false true false

4 true false true false

5 false true false true

6 true false true false

7 true false true false

8 true false true true

9 false true false false

10 true false true true

Using	this	dataset	calculate	the	following	probabilities:

a.	P(VOMITING	=	true)

b.	P(HEADACHE	=	false)

c.	P(HEADACHE	=	true,	VOMITING	=	false)

d.	P(VOMITING	=	false	|	HEADACHE	=	true)

e.	P(MENINGITIS	|	FEVER	=	true,	VOMITING	=	false)

3.	Predictive	data	analytics	models	are	often	used	as	tools	for	process	quality



control	and	fault	detection.	The	task	in	this	question	is	to	create	a	naive	Bayes	model
to	monitor	a	waste	water	treatment	plant.33	The	table	below	lists	a	dataset	containing
details	of	activities	at	a	waste	water	treatment	plant	for	14	days.	Each	day	is	described
in	terms	of	six	descriptive	features	that	are	generated	from	different	sensors	at	the
plant.	SS-IN	measures	the	solids	coming	into	the	plant	per	day;	SED-IN	measures	the
sediment	coming	into	the	plant	per	day;	COND-IN	measures	the	electrical	conductivity
of	the	water	coming	into	the	plant.34	The	features	SS-OUT,	SED-OUT,	and	COND-OUT

are	the	corresponding	measurements	for	the	water	flowing	out	of	the	plant.	The	target
feature,	STATUS,	reports	the	current	situation	at	the	plant:	ok,	everything	is	working
correctly;	settler,	there	is	a	problem	with	the	plant	settler	equipment;	or	solids,	there	is
a	problem	with	the	amount	of	solids	going	through	the	plant.

a.	Create	a	naive	Bayes	model	that	uses	probability	density	functions	to	model	the
descriptive	features	in	this	dataset	(assume	that	all	the	descriptive	features	are
normally	distributed).

b.	What	prediction	will	the	naive	Bayes	model	return	for	the	following	query?

SS-IN	=	222,	SED-IN	=	4.5,	COND-IN	=	1,518,	SS-OUT	=	74	SED-OUT	=	0.25,	COND-OUT	=
1,642

4.	The	following	is	a	description	of	the	causal	relationship	between	storms,	the
behavior	of	burglars	and	cats,	and	house	alarms:

Stormy	nights	are	rare.	Burglary	is	also	rare,	and	if	it	is	a	stormy	night,	burglars	are
likely	to	stay	at	home	(burglars	don’t	like	going	out	in	storms).	Cats	don’t	like	storms
either,	and	if	there	is	a	storm,	they	like	to	go	inside.	The	alarm	on	your	house	is
designed	to	be	triggered	if	a	burglar	breaks	into	your	house,	but	sometimes	it	can	be
set	off	by	your	cat	coming	into	the	house,	and	sometimes	it	might	not	be	triggered
even	if	a	burglar	breaks	in	(it	could	be	faulty	or	the	burglar	might	be	very	good).



a.	Define	the	topology	of	a	Bayesian	network	that	encodes	these	causal	relationships.

b.	The	table	below	lists	a	set	of	instances	from	the	house	alarm	domain.	Using	the	data
in	this	table,	create	the	conditional	probability	tables	(CPTs)	for	the	network	you
created	in	part	(a)	of	this	question.

ID STORM BURGLAR CAT ALARM

1 false false false false

2 false false false false

3 false false false false

4 false false false false

5 false false false true

6 false false true false

7 false true false false

8 false true false true

9 false true true true

10 true false true true

11 true false true false

12 true false true false

13 true true false true

c.	What	value	will	the	Bayesian	network	predict	for	ALARM	given	that	there	is	both	a
burglar	and	a	cat	in	the	house	but	there	is	no	storm.

d.	What	value	will	the	Bayesian	network	predict	for	ALARM	given	that	there	is	a	storm
but	we	don’t	know	if	a	burglar	has	broken	in	or	where	the	cat	is?

✻	5.	The	table	below	lists	a	dataset	containing	details	of	policy	holders	at	an
insurance	company.	The	descriptive	features	included	in	the	table	describe	each	policy
holders’	ID,	occupation,	gender,	age,	the	type	of	insurance	policy	they	hold,	and	their
preferred	contact	channel.	The	preferred	contact	channel	is	the	target	feature	in	this
domain.



ID OCCUPATION GENDER AGE POLICY	TYPE PREF	CHANNEL

1 lab	tech female 43 planC email

2 farmhand female 57 planA phone

3 biophysicist male 21 planA email

4 sheriff female 47 planB phone

5 painter male 55 planC phone

6 manager male 19 planA email

7 geologist male 49 planC phone

8 messenger male 51 planB email

9 nurse female 18 planC phone

a.	Using	equal-frequency	binning	transform	the	AGE	feature	into	a	categorical
feature	with	three	levels:	young,	middle-aged,	mature.

b.	Examine	the	descriptive	features	in	the	dataset	and	list	the	features	that	you	would
exclude	before	you	would	use	the	dataset	to	build	a	predictive	model.	For	each
feature	you	decide	to	exclude	explain	why	you	have	made	this	decision.

c.	Calculate	the	probabilities	required	by	a	naive	Bayes	model	to	represent	this
domain.

d.	What	target	level	will	a	naive	Bayes	model	predict	for	the	following	query:

GENDER	=	female,	AGE	=	30,	POLICY	=	planA

✻	6.	Imagine	that	you	have	been	given	a	dataset	of	1,000	documents	that	have	been
classified	as	being	about	entertainment	or	education.	There	are	700	entertainment
documents	in	the	dataset	and	300	education	documents	in	the	dataset.	The	tables
below	give	the	number	of	documents	from	each	topic	that	a	selection	of	words
occurred	in.

Word-document	counts	for	the	entertainment	dataset

fun
415

is
695

machine
35

christmas
0

family
400

learning
70

Word-document	counts	for	the	education	dataset



fun
200

is
295

machine
120

christmas
0

family
10

learning
105

a.	What	target	level	will	a	naive	Bayes	model	predict	for	the	following	query
document:	“machine	learning	is	fun”?

b.	What	target	level	will	a	naive	Bayes	model	predict	for	the	following	query
document:	“christmas	family	fun”?

c.	What	target	level	will	a	naive	Bayes	model	predict	for	the	query	document	in	part
(b)	of	this	question,	if	Laplace	smoothing	with	k	=	10	and	a	vocabulary	size	of	6	is
used?

	

	

	

	

	

	

	

_______________

1	 It	 is	 appropriate	 to	 use	 a	 game	 involving	 gambling	 to	 introduce	 probability-based
machine	 learning.	 The	 origins	 of	 probability	 theory	 come	 from	 attempts	 to	 understand
gambling	and	games	of	chance,	in	particular,	the	work	of	Gerolamo	Cardano	and	the	later
work	of	Pierre	de	Fermat	and	Blaise	Pascal.

2	This	data	has	been	artificially	generated	for	this	example.

3	 To	 save	 space,	 throughout	 this	 chapter,	 named	 features	 are	 denoted	 by	 the	 uppercase
initial	 letters	of	their	names	(e.g.,	 the	MENINGITIS	feature	is	denoted	M).	Where	a	named
feature	 is	 binary,	 we	 use	 the	 lowercase	 initial	 letter	 of	 the	 feature	 name	 to	 denote	 the
feature	 being	 true	 and	 the	 lowercase	 initial	 letter	 preceded	 by	 the	 symbol	 to	 denote	 it
being	false	(e.g.,	m	denotes	MENINGITIS	=	true,	and	m	denotes	MENINGITIS	=	false).

4	Bayes’	Theorem	is	named	after	 the	Reverend	Thomas	Bayes,	who	wrote	an	essay	that
described	how	to	update	beliefs	as	new	information	arises.	After	Thomas	Bayes	died,	this
essay	was	edited	and	published	by	the	Reverend	Richard	Price	(Bayes	and	Price,	1763).
The	modern	mathematical	 form	of	Bayes’	Theorem,	however,	was	developed	by	Simon
Pierre	Laplace.

5	 The	 Theorem	 of	 Total	 Probability	 is	 explained	 in	 detail	 in	 Section	 B.3[548]	 of
Appendix	B[541].

6	 Famously,	 an	 experiment	 in	 which	 doctors	 were	 asked	 this	 question	 about	 the
probability	of	 the	patient	having	 the	disease	showed	 that	most	of	 them	got	 this	question



wrong	(Casscells	et	al.,	1978).

7	The	product	rule	is	explained	in	detail	in	Section	B.3[548]	of	Appendix	B[541].

8	That	is,	a	and	b	=	b	and	a.

9	The	probability	chain	rule	is	explained	in	detail	in	Section	B.3[548]	of	Appendix	B[541].

10	The	paradox	of	the	false	positive	states	that	in	order	to	make	predictions	about	a	rare
event,	 the	 model	 has	 to	 be	 as	 accurate	 as	 the	 prior	 of	 the	 event	 is	 rare	 or	 there	 is	 a
significant	chance	of	false	positive	predictions	(i.e.,	predicting	the	event	when	it	is	not	the
case).	Doctorow	(2010)	provides	an	interesting	discussion	of	this	phenomenon.

11	The	MAP	prediction	is	the	prediction	mechanism	that	we	assume	throughout	this	book.
An	alternative	mechanism	is	the	Bayesian	optimal	classifier,	but	we	won’t	discuss	 it	 in
this	text.	See	Mitchell	(1997)	for	more	details.

12	During	the	European	Soccer	Championships	in	2008	and	the	2010	Soccer	World	Cup,
an	octopus	in	Germany,	called	Paul,	was	attributed	with	achieving	an	85%	success	rate	at
predicting	 the	 results	 of	 the	 matches	 involving	 Germany.	 Paul’s	 impressive	 accuracy
should	not	be	taken	to	suggest	that	octopus	behavior	affects	soccer	matches	but	rather	that
independent	events	may	be	correlated,	at	least	for	an	interval	of	time,	without	the	events
actually	 being	 dependent.	 As	 the	 oft	 quoted	 maxim	 states:	 correlation	 does	 not	 imply
causation!	(See	Section	3.5.2[86]	for	further	discussion.)

13	One	consequence	of	this,	however,	is	that	a	naive	Bayes	model	is	not	a	good	approach
for	predicting	a	continuous	target,	because	errors	in	calculating	posterior	probabilities	do
directly	affect	the	accuracy	of	the	model.	This	is	the	only	modeling	approach	covered	in
this	book	for	which	we	will	not	present	a	way	to	predict	both	continuous	and	categorical
target	features.

14	Recall	 that	 sparse	data,	 discussed	 in	 Section	 5.4.5[212],	 refers	 to	 datasets	where	 the
majority	of	descriptive	features	have	a	value	of	zero.

15	The	 primary	 reason	 that	we	 apply	 smoothing	 is	 to	 remove	 zero	 probabilities	 from	 a
model’s	representation	of	a	domain,	and	in	the	vast	majority	of	cases,	all	the	unconditional
target	level	probabilities	will	be	non-zero	(because	there	will	be	at	least	one	instance	with
each	target	level	in	the	training	data).	Even	in	cases	where	one	of	the	target	levels	is	very
rare,	it	may	not	be	appropriate	to	smooth	the	target	level	priors.	See	Bishop	(2006,	pp.	45)
for	a	discussion	on	how	to	train	a	probability-based	prediction	model	in	situations	where
one	of	the	target	levels	is	rare.

16	See	Tijms	(2012),	or	any	good	probability	textbook,	for	an	introduction	to	the	gamma
function.

17	The	student-t	distribution	can	be	defined	in	a	number	of	ways.	For	example,	it	can	be
defined	 so	 that	 it	 takes	only	one	parameter,	 degrees	of	 freedom.	 In	 this	 text	we	use	 the
extended	location-scale	definition.

18	This	guided	search	process	is	similar	to	the	gradient	descent	search	we	use	to	fit	our
regression	models	in	Chapter	7[323].	Many	data	analytics	packages	and	programming	APIs



provide	functions	that	implement	methods	to	fit	a	distribution	to	a	dataset.

19	Taleb	(2008)	discusses	the	problems	that	arise	when	analysts	use	normal	distributions
to	model	social	and	economic	features,	where	the	assumptions	regarding	light	tails	don’t
hold.

20	 For	 example,	 the	 R	 language	 provides	 the	 fitdistr()	 method,	 as	 part	 of	 the	MASS
package,	 that	 implements	 a	 maximum-likelihood	 fitting	 of	 a	 number	 of	 univariate
distributions	to	a	given	dataset.

21	We	 can	 do	 this	 either	 by	 consulting	 a	 probability	 table	 or	 by	 using	 integration	 to
calculate	 the	 area	 under	 the	 curve	 within	 the	 bounds	 of	 the	 interval.	 There	 are	 many
excellent	 statistical	 textbooks	 that	 explain	 how	 to	 do	 both	 of	 these,	 for	 example,
Montgomery	and	Runger	(2010).

22	 The	 conditional	 independence	 relationship	 between	 any	 two	 nodes	 in	 a	 Bayesian
network	 can	 be	 specified	 using	 the	 framework	 of	 d-separation	 (the	 “d”	 stands	 for
directed)	(Pearl,	1988).	We	don’t	discuss	d-separation	in	this	book	as	it	is	not	required	for
our	discussion.

23	 The	K2	 score	 is	 named	 after	 the	 K2	 algorithm,	 one	 of	 the	 earliest	 and	 best	 known
algorithms	for	learning	Bayesian	networks	(Cooper	and	Herskovits,	1992).

24	See	Kollar	and	Friedman	(2009)	for	a	discussion	of	algorithms	that	seek	to	address	this
research	challenge.

25	 In	 some	cases	we	may	not	 have	data	 for	 all	 the	 features,	 and	 in	 these	 instances,	 the
standard	 approach	 to	 learning	 the	 CPT	 entries	 is	 to	 use	 a	 gradient	 descent	 approach
(similar	 to	 the	 one	we	 introduce	 in	Chapter	7[323]),	 where	 the	 objective	 function	 of	 the
local	 search	 algorithm	 is	 simply	 how	 well	 the	 product	 of	 the	 induced	 conditional
probabilities	match	the	relative	frequency	of	each	joint	event	in	the	data.	In	other	words,
we	choose	the	set	of	conditional	probabilities	that	maximize	the	likelihood	of	the	training
data.

26	The	data	listed	in	this	table	is	real.	The	Gini	coefficient	data	is	for	2013	(or	the	most
recent	year	prior	to	2013	for	which	the	data	was	available	for	a	country)	and	was	retrieved
from	 the	 World	 Bank	 (data.worldbank.org/indicator/SI.POV.GINI);	 the
life	 expectancy	 and	 mean	 years	 in	 school	 data	 was	 retrieved	 from	 Gapminder
(www.gapminder.org)	and	is	for	2010/11	(or	the	most	recent	year	prior	to	2010/11	for
which	the	data	was	available	for	a	country);	and	the	mean	years	in	school	were	originally
sourced	from	the	Institute	for	Health	Metrics	and	Evaluation	(www.healthdata.org).
The	 Corruption	 Perception	 Index	 is	 for	 2011	 and	 was	 retrieved	 from	 Transparency
International	(www.transparency.org).

27	The	most	common	way	to	achieve	this	for	the	other	model	types	covered	in	this	book	is
to	impute	the	missing	values	in	the	query	instance	using	one	of	the	techniques	described
in	Section	3.4.1[73].

28	In	the	following	calculations	we	have	abbreviated	feature	names	as	follows:	GC	=	GINI
COEF,	LE	=	LIFE	EXP,	and	SY	=	SCHOOL	YEARS.

http://www.gapminder.org
http://www.healthdata.org
http://www.transparency.org


29	Monte	Carlo	methods	are	named	after	the	Mediterranean	principality	that	is	famous	for
its	casino.

30	If	there	are	one	or	more	zero	entries	in	the	CPTs,	then	the	Markov	chain	may	still	be
ergodic,	but	it	is	non-trivial	to	prove	ergodicity	in	these	cases.

31	See	Davies	(2005,	pp.	693–696).

32	See	Mitchell	(1997,	pp.	164–167).

33	The	dataset	 in	 this	question	 is	 inspired	by	 the	Waste	Water	Treatment	Dataset	 that	 is
available	 from	 the	 UCI	 Machine	 Learning	 repository	 (Bache	 and	 Lichman,	 2013)	 at
archive.ics.uci.edu/ml/machine-learning-databases/water-
treatment.	The	creators	of	this	dataset	reported	their	work	in	Bejar	et	al.	(1991).

34	 The	 conductivity	 of	 water	 is	 affected	 by	 inorganic	 dissolved	 solids	 and	 organic
compounds,	 such	 as	 oil.	Consequently,	water	 conductivity	 is	 a	 useful	measure	 of	water
purity.





7	Error-based	Learning

Ever	tried.	Ever	failed.	No	matter.	Try	Again.	Fail	again.	Fail	better.

—Samuel	Beckett

In	 error-based	 machine	 learning,	 we	 perform	 a	 search	 for	 a	 set	 of	 parameters	 for	 a
parameterized	model	 that	minimizes	 the	 total	 error	 across	 the	 predictions	made	 by	 that
model	with	respect	to	a	set	of	training	instances.	The	fundamentals	section	of	this	chapter
introduces	 the	 key	 ideas	 of	 a	 parameterized	 model,	 measuring	 error	 and	 an	 error
surface.	We	then	present	the	standard	approach	to	building	error-based	predictive	models:
multivariable	linear	regression	with	gradient	descent.	The	extensions	and	variations	to
this	standard	approach	that	we	describe	are	how	to	handle	categorical	descriptive	features,
the	 use	 of	 logistic	 regression	 to	 make	 predictions	 for	 categorical	 target	 features,	 fine
tuning	 regression	models,	 techniques	 for	 building	non-linear	 and	multinomial	models,
and	support	vector	machines,	which	take	a	slightly	different	approach	to	using	error	 to
build	prediction	models.



7.1	Big	Idea
Anyone	who	has	learned	a	new	sport	will	have	had	the,	sometimes	painful,	experience	of
taking	 an	 error-based	 approach	 to	 learning.	 Take	 surfing,	 for	 example.	 One	 of	 the	 key
skills	 the	 novice	 surfer	 has	 to	 learn	 is	 how	 to	 successfully	catch	a	wave.	This	 involves
floating	on	your	surf	board	until	a	wave	approaches,	and	then	paddling	furiously	to	gain
enough	momentum	for	the	wave	to	pick	up	both	you	and	your	board.	The	position	of	your
body	on	the	board	is	key	to	doing	this	successfully.	If	you	lie	too	far	toward	the	back	of
the	board,	the	board	will	sink	and	create	so	much	drag	that	even	big	waves	will	pass	by,
leaving	you	behind.	If	you	lie	too	far	forward	on	your	board,	you	will	begin	to	make	great
progress	before	the	surf	board	tilts	nose	down	into	the	water	and	launches	you	head	over
heels	 into	 the	 air.	Only	when	 you	 are	 positioned	 at	 the	 sweet	spot	 in	 the	middle	 of	 the
board—neither	 too	 far	 forward	nor	 too	 far	back—will	you	be	able	 to	use	your	paddling
efforts	to	successfully	catch	a	wave.

At	 their	 first	 attempt,	 new	 surfers	 will	 typically	 position	 themselves	 either	 too	 far
forward	or	 too	 far	backward	on	 their	board	when	 they	attempt	 to	catch	 their	 first	wave,
resulting	in	a	bad	outcome.	The	outcome	of	an	attempt	to	catch	a	wave	is	a	judgment	on
how	well	the	surfer	is	doing,	so	an	attempt	constitutes	an	error	function:	lying	too	far	back
on	the	board	leads	to	a	medium	error,	lying	too	far	forward	on	the	board	leads	to	a	more
dramatic	 error,	while	 successfully	 catching	 a	wave	means	 really	 no	 error	 at	 all.	Armed
with	 the	 unsuccessful	 outcome	of	 their	 first	 attempt,	 surfers	 usually	 overcompensate	 on
the	second	attempt,	resulting	in	the	opposite	problem.	On	subsequent	attempts,	surfers	will
slowly	 reduce	 their	 error	 by	 slightly	 adjusting	 their	 position	 until	 they	 home	 in	 on	 the
sweet	 spot	 at	 which	 they	 can	 keep	 their	 board	 perfectly	 balanced	 to	 allow	 a	 seamless
transition	to	tickling	the	face	of	an	awesome	toob!

A	 family	 of	 error-based	 machine	 learning	 algorithms	 takes	 the	 same	 approach.	 A
parameterized	prediction	model	is	initialized	with	a	set	of	random	parameters,	and	an	error
function	 is	used	 to	 judge	how	well	 this	 initial	model	performs	when	making	predictions
for	instances	in	a	training	dataset.	Based	on	the	value	of	the	error	function,	the	parameters
are	iteratively	adjusted	to	create	a	more	and	more	accurate	model.



7.2	Fundamentals
In	 this	 section	 we	 introduce	 a	 simple	 model	 of	 linear	 regression,	 some	 metrics	 for
measuring	the	error	of	a	model,	and	the	concept	of	an	error	surface.	The	discussion	in	this
section,	 and	 in	 the	 rest	 of	 this	 chapter,	 assume	 that	 you	 have	 a	 basic	 understanding	 of
differentiation,	 in	 particular,	 what	 a	 derivative	 is,	 how	 to	 calculate	 a	 derivative	 for	 a
continuous	function,	the	chain	rule	for	differentiation,	and	what	a	partial	derivative	is.	If
you	 don’t	 understand	 any	 of	 these	 concepts,	 see	 Appendix	 C[551]	 for	 the	 necessary
introduction.



7.2.1	Simple	Linear	Regression

Table	7.1[325]	 shows	 a	 simple	 dataset	 recording	 the	 rental	 price	 (in	 Euro	 per	month)	 of
Dublin	 city-center	 offices	 (RENTAL	 PRICE),	 along	with	 a	 number	 of	 descriptive	 features
that	are	likely	to	be	related	to	rental	price:	the	SIZE	of	the	office	(in	square	feet),	the	FLOOR
in	the	building	in	which	the	office	space	is	located,	 the	BROADBAND	 rate	available	at	 the
office	 (in	Mb	 per	 second),	 and	 the	 ENERGY	 RATING	 of	 the	 building	 in	which	 the	 office
space	is	located	(ratings	range	from	A	to	C,	where	A	is	the	most	efficient).	Over	the	course
of	this	chapter,	we	look	at	the	ways	in	which	all	these	descriptive	features	can	be	used	to
train	an	error-based	model	to	predict	office	rental	prices.	Initially,	though,	we	will	focus	on
a	simplified	version	of	this	task	in	which	just	SIZE	is	used	to	predict	RENTAL	PRICE.

Table	7.1

A	dataset	that	includes	office	rental	prices	and	a	number	of	descriptive	features	for	10
Dublin	city-center	offices.

ID SIZE FLOOR BROADBAND	RATE ENERGY	RATING RENTAL	PRICE

1 500 4 8 C 320

2 550 7 50 A 380

3 620 9 7 A 400

4 630 5 24 B 390

5 665 8 100 C 385

6 700 4 8 B 410

7 770 10 7 B 480

8 880 12 50 A 600

9 920 14 8 C 570

10 1,000 9 24 B 620

Figure	7.1(a)[326]	shows	a	scatter	plot	of	 the	office	rentals	dataset	with	RENTAL	PRICE
on	the	vertical	(or	y)	axis	and	SIZE	on	the	horizontal	(or	x)	axis.	From	this	plot,	it	is	clear
that	 there	 is	a	strong	linear	relationship	between	these	two	features:	as	SIZE	 increases	so
too	does	RENTAL	PRICES	 by	 a	 similar	 amount.	 If	we	 could	 capture	 this	 relationship	 in	 a
model,	 we	 would	 be	 able	 to	 do	 two	 important	 things.	 First,	 we	 would	 be	 able	 to
understand	how	office	size	affects	office	rental	price.	Second,	we	would	be	able	to	fill	in
the	gaps	 in	 the	dataset	 to	predict	office	 rental	prices	 for	office	 sizes	 that	we	have	never



actually	 seen	 in	 the	 historical	 data—for	 example,	 how	 much	 would	 we	 expect	 a	 730
square	 foot	 office	 to	 rent	 for?	Both	of	 these	 things	would	be	 of	 great	 use	 to	 real	 estate
agents	 trying	 to	 make	 decisions	 about	 the	 rental	 prices	 they	 should	 set	 for	 new	 rental
properties.

There	 is	 a	 simple,	well-known	mathematical	model	 that	 can	 capture	 the	 relationship
between	 two	continuous	 features	 like	 those	 in	our	dataset.	Many	 readers	will	 remember
from	school	geometry	that	the	equation	of	a	line	can	be	written	as

where	m	 is	 the	 slope	of	 the	 line,	 and	b	 is	 known	 as	 the	y-intercept	 of	 the	 line	 (i.e.,	 the
position	at	which	the	line	meets	the	vertical	axis	when	the	value	of	x	is	set	to	zero).	The
equation	of	a	line	predicts	a	y	value	for	every	x	value	given	the	slope	and	the	y-intercept,
and	we	can	use	this	simple	model	to	capture	the	relationship	between	two	features	such	as
SIZE	and	RENTAL	PRICE.	Figure	7.1(b)[326]	shows	the	same	scatter	plot	as	shown	in	Figure
7.1(a)[326]	 with	 a	 simple	 linear	 model	 added	 to	 capture	 the	 relationship	 between	 office
sizes	and	office	rental	prices.	This	model	is

Figure	7.1

(a)	A	scatter	plot	of	the	SIZE	and	RENTAL	PRICE	features	from	the	office	rentals	dataset;	(b)
the	scatter	plot	from	(a)	with	a	linear	model	relating	RENTAL	PRICE	to	SIZE	overlaid.

where	the	slope	of	the	line	is	0.62	and	the	y-intercept	is	6.47.

This	 model	 tells	 us	 that	 for	 every	 increase	 of	 a	 square	 foot	 in	 SIZE,	 RENTAL	 PRICE
increases	by	0.62	Euro.	We	can	also	use	this	model	to	determine	the	expected	rental	price
of	the	730	square	foot	office	mentioned	previously	by	simply	plugging	this	value	for	SIZE
into	the	model:

So,	we	can	expect	our	730	 square	 foot	office	 to	 rent	 for	 about	460	Euro	per	month.
This	 kind	 of	 model	 is	 known	 as	 a	 simple	 linear	 regression	 model.	 This	 approach	 to
modeling	 the	 relationships	 between	 features	 is	 extremely	 common	 in	 both	 machine



learning	and	statistics.

For	consistency	with	the	notation	we	have	used	in	this	book,	we	can	rewrite	the	simple
linear	regression	model	as

where	w	 is	 the	 vector	 〈w[0],	w[1]〉,	 the	 parameters	 w[0]	 and	 w[1]	 are	 referred	 to	 as
weights,1	d	 is	an	 instance	defined	by	a	single	descriptive	 feature	d[1],	and	 w(d)	 is	 the
prediction	 output	 by	 the	 model	 for	 the	 instance	 d.	 The	 key	 to	 using	 simple	 linear
regression	models	 is	 determining	 the	 optimal	 values	 for	 the	weights	 in	 the	model.	 The
optimal	 values	 for	 the	 weights	 are	 the	 ones	 that	 allow	 the	 model	 to	 best	 capture	 the
relationship	 between	 the	 descriptive	 features	 and	 a	 target	 feature.	A	 set	 of	weights	 that
capture	this	relationship	well	are	said	to	fit	the	training	data.	In	order	to	find	the	optimal
set	of	weights,	we	need	some	way	to	measure	how	well	a	model	defined	using	a	candidate
set	of	weights	fits	a	training	dataset.	We	do	this	by	defining	an	error	function	to	measure
the	error	between	the	predictions	a	model	makes	based	on	the	descriptive	features	for	each
instance	in	the	training	data	and	the	actual	target	values	for	each	instance	in	the	training
data.



7.2.2	Measuring	Error

The	model	shown	in	Equation	(7.2)[326]	is	defined	by	the	weights	w[0]	=	6.47	and	w[1]	=
0.62.	What	tells	us	that	these	weights	suitably	capture	the	relationship	within	the	training
dataset?	Figure	7.2(a)[328]	 shows	a	scatter	plot	of	 the	SIZE	and	RENTAL	PRICE	descriptive
features	from	the	office	rentals	dataset	and	a	number	of	different	simple	linear	regression
models	that	might	be	used	to	capture	this	relationship.	In	these	models	the	value	for	w[0]
is	kept	constant	at	6.47	and	the	values	for	w[1]	are	set	to	0.4,	0.5,	0.62,	0.7,	and	0.8	from
top	to	bottom.	Out	of	the	candidate	models	shown,	the	third	model	from	the	top	(with	w[1]
set	 to	 0.62)	 passes	 most	 closely	 through	 the	 actual	 dataset	 and	 is	 the	 one	 that	 most
accurately	fits	the	relationship	between	office	sizes	and	office	rental	prices,	but	how	do	we
measure	this	formally?

In	order	to	formally	measure	the	fit	of	a	linear	regression	model	with	a	set	of	training
data,	 we	 require	 an	 error	 function.	 An	 error	 function	 captures	 the	 error	 between	 the
predictions	made	by	a	model	and	the	actual	values	in	a	training	dataset.2	There	are	many
different	 kinds	 of	 error	 functions,	 but	 for	 measuring	 the	 fit	 of	 simple	 linear	 regression
models,	the	most	commonly	used	is	the	sum	of	squared	errors	error	function,	or	L2.	To
calculate	L2	we	use	our	candidate	model	 w	to	make	a	prediction	for	each	member	of	the
training	dataset,	 ,	 and	 then	 calculate	 the	 error	 (or	 residual)	 between	 these	 predictions
and	the	actual	target	feature	values	in	the	training	set.

Figure	7.2

(a)	A	scatter	plot	of	the	SIZE	and	RENTAL	PRICE	features	from	the	office	rentals	dataset.	A
collection	of	possible	simple	linear	regression	models	capturing	the	relationship	between
these	two	features	are	also	shown.	For	all	models	w[0]	is	set	to	6.47.	From	top	to	bottom,
the	models	use	0.4,	0.5,	0.62,	0.7,	and	0.8	respectively	for	w[1].	(b)	A	scatter	plot	of	the
SIZE	 and	 RENTAL	 PRICE	 features	 from	 the	 office	 rentals	 dataset	 showing	 a	 candidate
prediction	model	(with	w[0]	=	6.47	and	w[1]	=	0.62)	and	the	resulting	errors.

Figure	7.2(b)[328]	shows	the	office	rentals	dataset	and	the	candidate	model	with	w[0]	=
6.47	and	w[1]	=	0.62	and	also	includes	error	bars	to	highlight	the	differences	between	the
predictions	made	by	 the	model	and	 the	actual	RENTAL	PRICE	 values	 in	 the	 training	data.



Notice	 that	 the	model	 sometimes	 over	 estimates	 the	 office	 rental	 price,	 and	 sometimes
underestimates	the	office	rental	price.	This	means	that	some	of	the	errors	will	be	positive
and	 some	 will	 be	 negative.	 If	 we	 were	 to	 simply	 add	 these	 together,	 the	 positive	 and
negative	errors	would	effectively	cancel	each	other	out.	This	is	why,	rather	than	just	using
the	sum	of	the	errors,	we	use	the	sum	of	the	squared	errors	because	this	means	all	values
will	be	positive.

The	sum	of	squared	errors	error	function,	L2,	is	formally	defined	as

Table	7.2

Calculating	the	sum	of	squared	errors	for	the	candidate	model	(with	w[0]	=	6.47	and	w[1]
=	0.62)	to	make	predictions	for	the	office	rentals	dataset.

ID SIZE RENTAL	PRICE Model	Prediction Error Squared	Error

1 500 320 316.47 3.53 12.46

2 550 380 347.47 32.53 1,058.20

3 620 400 390.87 9.13 83.36

4 630 390 397.07 -7.07 49.98

5 665 385 418.77 -33.77 1,140.41

6 700 410 440.47 -30.47 928.42

7 770 480 483.87 -3.87 14.98

8 880 600 552.07 47.93 2,297.28

9 920 570 576.87 -6.87 47.20

10 1,000 620 626.47 -6.47 41.86

Sum 5,674.15

Sum	of	squared	errors	(Sum/2) 2,837.08

where	 the	 training	 set	 is	 composed	 of	 n	 training	 instances,	 each	 training	 instance	 is
composed	of	descriptive	features	d	and	a	target	feature	t,	 w(di)	is	the	prediction	made	by
a	 candidate	 model	 w	 for	 a	 training	 instance	 with	 descriptive	 features	 di,	 and	 the



candidate	model	 w	is	defined	by	the	weight	vector	w.	For	our	simple	scenario	in	which
each	instance	is	described	with	a	single	descriptive	feature,	Equation	(7.4)[328]	expands	to

Table	7.2[329]	shows	the	calculation	of	the	sum	of	squared	errors	for	the	candidate	model
with	w[0]	 =	 6.47	 and	w[1]	 =	 0.62.	 In	 this	 case,	 the	 sum	 of	 squared	 errors	 is	 equal	 to
2,837.08.

If	we	 perform	 the	 same	 calculation	 for	 the	 other	 candidate	models	 shown	 in	 Figure
7.2(a)[328],	we	find	that	with	w[1]	set	to	0.4,	0.5,	0.7,	and	0.8,	the	sums	of	squared	errors
are	136,218,	42,712,	20,092,	and	90,978	 respectively.	The	 fact	 that	 the	sums	of	 squared
errors	for	 these	models	are	 larger	 than	for	 the	model	with	w[1]	set	 to	0.62	demonstrates
that	our	previous	visual	intuition	that	this	model	most	accurately	fits	the	training	data	was
correct.

The	sum	of	squared	errors	function	can	be	used	to	measure	how	well	any	combination
of	weights	fits	the	instances	in	a	training	dataset.	The	next	section	explains	how	the	values
of	an	error	function	for	many	different	potential	models	can	be	combined	to	form	an	error
surface	 across	which	we	 can	 search	 for	 the	 optimal	weights	with	 the	minimum	 sum	of
squared	errors.3



7.2.3	Error	Surfaces

For	every	possible	combination	of	weights,	w[0]	and	w[1],	 there	is	a	corresponding	sum
of	squared	errors	value.	We	can	think	about	all	these	error	values	joined	to	make	a	surface
defined	 by	 the	weight	 combinations,	 as	 shown	 in	 Figure	 7.3(a)[330].	 Here,	 each	 pair	 of
weights	w[0]	and	w[1]	defines	a	point	on	the	x-y	plane,	and	the	sum	of	squared	errors	for
the	model	 using	 these	weights	 determines	 the	 height	 of	 the	 error	 surface	 above	 the	 x-y
plane	for	that	pair	of	weights.	The	x-y	plane	is	known	as	a	weight	space,	and	the	surface	is
known	 as	 an	 error	 surface.	 The	 model	 that	 best	 fits	 the	 training	 data	 is	 the	 model
corresponding	to	the	lowest	point	on	the	error	surface.

Figure	7.3

(a)	A	3D	surface	plot	and	(b)	a	bird’s-eye	view	contour	plot	of	the	error	surface	generated
by	plotting	 the	sum	of	squared	errors	for	 the	office	rentals	 training	set	 for	each	possible
combination	of	values	for	w[0]	(from	the	range	[−	10,	20])	and	w[1]	(from	the	range	[−	2,
3]).

Although	for	some	simple	problems,	like	that	presented	in	our	office	rentals	dataset,	it
is	 possible	 to	 try	 out	 every	 reasonable	 combination	 of	weights	 and	 through	 this	brute-
force	search	find	the	best	combination,	for	most	real-world	problems	this	is	not	feasible—
the	computation	required	would	take	far	too	long.	Instead,	we	need	a	more	efficient	way	to
find	the	best	combination	of	weights.	Fortunately,	for	prediction	problems	like	that	posed
by	the	office	rentals	dataset,	the	associated	error	surfaces	have	two	properties	that	help	us
find	 the	 optimal	 combination	 of	 weights:	 they	 are	 convex,	 and	 they	 have	 a	 global
minimum.	By	convex	we	mean	that	the	error	surfaces	are	shaped	like	a	bowl.	Having	a
global	minimum	means	that	on	an	error	surface,	there	is	a	unique	set	of	optimal	weights
with	the	lowest	sum	of	squared	errors.	The	reason	that	the	error	surface	always	has	these
properties	is	that	its	overall	shape	is	determined	by	the	linearity	of	the	model,	rather	than
the	properties	of	the	data.	If	we	can	find	the	global	minimum	of	the	error	surface,	we	can
find	the	set	of	weights	defining	the	model	that	best	fits	the	training	dataset.	This	approach
to	finding	weights	is	known	as	least	squares	optimization.

Because	we	can	expect	the	error	surface	to	be	convex	and	possess	a	global	minimum,



we	can	 find	 the	optimal	weights	 at	 the	point	where	 the	partial	derivatives	 of	 the	error
surface	with	respect	to	w[0]	and	w[1]	are	equal	 to	0.	The	partial	derivatives	of	 the	error
surface	with	respect	to	w[0]	and	w[1]	measure	the	slope	of	the	error	surface	at	the	point
w[0]	and	w[1].	The	point	on	the	error	surface	at	which	the	partial	derivatives	with	respect
to	w[0]	and	w[1]	are	equal	to	0	is	simply	the	point	at	the	very	bottom	of	the	bowl	defined
by	 the	 error	 surface—there	 is	 no	 slope	 at	 the	 bottom	 of	 the	 bowl.	 This	 point	 is	 at	 the
global	minimum	of	the	error	surface	and	the	coordinates	of	this	point	define	the	weights
for	 the	 prediction	 model	 with	 the	 lowest	 sum	 of	 squared	 errors	 on	 the	 dataset.	 Using
Equation	(7.5)[329],	we	can	formally	define	this	point	on	the	error	surface	as	the	point	at
which

and

There	are	a	number	of	different	ways	to	find	this	point.	In	this	chapter	we	describe	a
guided	 search	 approach	 known	 as	 the	 gradient	 descent	 algorithm.	 This	 is	 one	 of	 the
most	important	algorithms	in	machine	learning	and,	as	we	will	see	in	other	chapters,	can
be	used	for	many	different	purposes.	The	next	section	describes	how	gradient	descent	can
be	 used	 to	 find	 the	 optimal	 weights	 for	 linear	 regression	 models	 that	 handle	 multiple
descriptive	features:	multivariable	linear	regression	models.



7.3	Standard	Approach:	Multivariable	Linear	Regression
with	Gradient	Descent
The	most	common	approach	to	error-based	machine	learning	for	predictive	analytics	is	to
use	multivariable	linear	regression	with	gradient	descent	to	train	a	best-fit	model	for	a
given	 training	dataset.	This	 section	explains	how	 this	works.	First,	we	describe	how	we
extend	 the	 simple	 linear	 regression	 model	 described	 in	 the	 previous	 section	 to	 handle
multiple	descriptive	features,	and	then	we	describe	the	gradient	descent	algorithm.



7.3.1	Multivariable	Linear	Regression

The	 simple	 linear	 regression	 model	 we	 looked	 at	 in	 Section	 7.2.1[324]	 handled	 only	 a
single	 descriptive	 feature.	 Interesting	 problems	 in	 predictive	 analytics,	 however,	 are
multivariable4	 in	 nature.	 Fortunately,	 extending	 the	 simple	 linear	 regression	model	 to	 a
multivariable	 linear	 regression	model	 is	 straightforward.	We	 can	 define	 a	multivariable
linear	regression	model	as

where	d	is	a	vector	of	m	descriptive	features,	d	[1]	…	d	[m],	and	w[0]	…	w	[m]	are	(m	+
1)	weights.	We	 can	make	Equation	 (7.8)[332]	 look	 a	 little	 neater	 by	 inventing	 a	 dummy
descriptive	feature,	d	[0],	that	is	always	equal	to	1.	This	then	gives	us

where	w	·	d	is	the	dot	product	of	the	vectors	w	and	d.	The	dot	product	of	two	vectors	is
the	sum	of	the	products	of	their	corresponding	elements.

The	expansion	of	the	sum	of	squared	errors	loss	function,	L2,	that	we	gave	in	Equation
(7.5)[329]	changes	slightly	to	reflect	the	new	regression	equation:

where	 the	 training	 dataset	 is	 composed	 of	 n	 training	 instances	 (di,	 ti),	 w(di)	 is	 the
prediction	made	by	a	model	 w	for	a	training	instance	with	descriptive	features	di,	and	the
model	 w	is	defined	by	the	weight	vector	w.

This	multivariable	model	allows	us	to	include	all	but	one	of	the	descriptive	features	in
Table	 7.2[329]	 in	 a	 regression	model	 to	 predict	 office	 rental	 prices	 (we	will	 see	 how	 to
include	the	categorical	ENERGY	RATING	into	the	model	in	Section	7.4.3[351]).	The	resulting
multivariable	regression	model	equation	is

We	will	see	in	the	next	section	how	the	best-fit	set	of	weights	for	this	equation	are	found,
but	 for	 now	we	will	 set	w[0]	 =	−0.1513,	w[1]	 =	 0.6270,	w[2]	 =	 −0.1781,	 and	w	 [3]	 =
0.0714.	This	means	that	the	model	is	rewritten	as



Using	this	model,	we	can,	for	example,	predict	the	expected	rental	price	of	a	690	square
foot	office	on	the	11th	floor	of	a	building	with	a	broadband	rate	of	50	Mb	per	second	as

The	next	section	describes	how	the	weights	can	be	determined	using	the	gradient	descent
algorithm.



7.3.2	Gradient	Descent

In	Section	7.2.3[330]	we	said	that	the	best-fit	set	of	weights	for	a	linear	regression	model
can	 be	 found	 at	 the	 global	 minimum	 of	 the	 error	 surface	 defined	 by	 the	 weight	 space
associated	with	the	relevant	training	dataset.	We	also	mentioned	that	this	global	minimum
can	be	found	at	the	point	at	which	the	partial	derivatives	of	the	error	surface,	with	respect
to	the	weights,	are	equal	to	zero.	Although	it	is	possible	to	calculate	this	point	directly	for
some	simpler	problems,	this	approach	is	not	computationally	feasible	for	most	interesting
predictive	analytics	problems.	The	number	of	instances	in	the	training	set	and	the	number
of	 weights	 for	 which	 we	 need	 to	 find	 values	 simply	 make	 the	 problem	 too	 large.	 The
brute-force	search	approach	that	was	mentioned	in	Section	7.2.3[330]	is	not	feasible	either
—especially	 as	 the	 number	 of	 descriptive	 features,	 and	 subsequently	 the	 number	 of
weights,	increases.

There	is,	however,	a	simple	approach	to	learning	weights	that	we	can	take	based	on	the
facts	 that,	 even	 though	 they	 are	 hard	 to	 visualize,	 the	 error	 surfaces	 that	 correspond	 to
these	high-dimensional	weight	spaces	still	have	 the	convex	shape	seen	 in	Figure	7.3[330]
(albeit	 in	multiple	dimensions),	 and	 that	 a	 single	global	minimum	exists.	This	 approach
uses	a	guided	search	from	a	random	starting	position	and	is	known	as	gradient	descent.

To	 understand	 how	 gradient	 descent	 works,	 imagine	 a	 hiker	 unlucky	 enough	 to	 be
stranded	on	the	side	of	a	valley	on	a	foggy	day.	Because	of	the	dense	fog,	it	is	not	possible
for	 her	 to	 see	 the	way	 to	 her	 destination	 at	 the	 bottom	of	 the	 valley.	 Instead,	 it	 is	 only
possible	to	see	the	ground	at	her	feet	to	within	about	a	three	foot	radius.	It	might,	at	first,
seem	like	all	is	lost	and	that	it	will	be	impossible	for	the	hiker	to	find	her	way	down	to	the
bottom	of	 the	valley.	There	 is,	 however,	 a	 reliable	 approach	 that	 the	hiker	 can	 take	 that
will	guide	her	to	the	bottom	(assuming,	somewhat	ideally,	that	the	valley	is	convex	and	has
a	global	minimum).	If	the	hiker	looks	at	the	slope	of	the	ground	at	her	feet,	she	will	notice
that	 in	some	directions,	 the	ground	slopes	up,	and	 in	other	directions,	 the	ground	slopes
down.	If	she	 takes	a	small	step	 in	 the	direction	in	which	the	ground	slopes	most	steeply
downward	(the	direction	of	the	gradient	of	the	mountain),	she	will	be	headed	toward	the
bottom	of	 the	mountain.	 If	 she	 repeats	 this	 process	 over	 and	 over	 again,	 she	will	make
steady	 progress	 down	 the	mountain	 until	 eventually	 she	 arrives	 at	 the	 bottom.	Gradient
descent	works	in	exactly	the	same	way.

Gradient	descent	starts	by	selecting	a	random	point	within	the	weight	space	(i.e.,	each
weight	 in	 the	multivariable	 linear	regression	equation	 is	assigned	a	random	value	within
some	sensible	range)	and	calculating	the	sum	of	squared	errors	associated	with	this	point
based	on	predictions	made	for	each	instance	in	the	training	set	using	the	randomly	selected
weights	 (as	 shown	 in	 Section	 7.2.2[327]).	 This	 defines	 one	 point	 on	 the	 error	 surface.
Although	the	error	value	at	this	point	in	the	weight	space	can	be	calculated,	we	know	very
little	 else	 about	 the	 relative	 position	 of	 this	 point	 on	 the	 error	 surface.	 Just	 like	 our
imagined	mountain	climber,	 the	algorithm	can	use	only	very	 localized	 information.	 It	 is
possible,	 however,	 to	 determine	 the	 slope	 of	 the	 error	 surface	 by	 determining	 the
derivative	 of	 the	 function	 used	 to	 generate	 it,	 and	 then	 calculating	 the	 value	 of	 this
derivative	at	the	random	point	selected	in	the	weight	space.	This	means	that,	again	like	our



mountain	climber,	the	gradient	descent	algorithm	can	use	the	direction	of	the	slope	of	the
error	 surface	 at	 the	 current	 location	 in	 the	 weight	 space.	 Taking	 advantage	 of	 this
information,	 the	 randomly	 selected	weights	 are	 adjusted	 slightly	 in	 the	 direction	 of	 the
error	 surface	 gradient	 to	 move	 to	 a	 new	 position	 on	 the	 error	 surface.	 Because	 the
adjustments	are	made	in	the	direction	of	the	error	surface	gradient,	this	new	point	will	be
closer	to	the	overall	global	minimum.	This	adjustment	is	repeated	over	and	over	until	the
global	minimum	 on	 the	 error	 surface	 is	 reached.	 Figure	7.4[336]	 shows	 an	 error	 surface
(defined	 over	 just	 two	 weights	 so	 that	 we	 can	 visualize	 the	 error	 surface)	 and	 some
examples	 of	 the	 path	 down	 this	 surface	 that	 the	 gradient	 descent	 algorithm	would	 take
from	different	random	starting	positions.5

For	the	simple	version	of	the	office	rentals	example	that	uses	only	the	SIZE	descriptive
feature,	 described	 in	 Section	 7.2.1[324],	 it	 is	 easy	 to	 visualize	 how	 the	 gradient	 descent
algorithm	would	move	iteratively	toward	a	model	that	best	fits	the	training	data,	making
small	adjustments	each	time—with	each	adjustment	reducing	the	error	of	the	model,	just
as	our	surfer	from	Section	7.1[323]	did.	Figure	7.5[337]	shows	the	journey	across	the	error
surface	 that	 is	 taken	by	 the	gradient	descent	algorithm	when	 training	 this	model.	Figure
7.6[338]	 shows	 a	 series	 of	 snapshots	 of	 the	 candidate	models	 created	 at	 steps	 along	 this
journey	toward	the	best-fit	model	for	 this	dataset.	Notice	how	the	model	gets	closer	and
closer	to	a	model	that	accurately	captures	the	relationship	between	SIZE	and	RENTAL	PRICE.
This	 is	 also	 apparent	 in	 the	 final	 panel	 in	Figure	7.6[338],	which	 shows	how	 the	 sum	of
squared	errors	decreases	as	the	model	becomes	more	accurate.

Figure	7.4

(a)	A	3D	plot	of	an	error	surface	and	(b)	a	bird’s-eye	view	contour	plot	of	the	same	error
surface.	The	lines	indicate	the	path	that	the	gradient	descent	algorithm	would	take	across
this	error	 surface	 from	4	different	 starting	positions	 to	 the	global	minimum—marked	as
the	white	dot	in	the	center.

The	gradient	descent	algorithm	for	training	multivariable	regression	models	is	formally
presented	 in	Algorithm	 7.1[339].	 Each	 weight	 is	 iteratively	 adjusted	 by	 a	 small	 amount



based	on	the	error	in	the	predictions	made	by	the	current	candidate	model	so	as	to	generate
subsequently	more	 and	more	 accurate	 candidate	models.	 Eventually,	 the	 algorithm	will
converge	to	a	point	on	the	error	surface	where	any	subsequent	changes	to	weights	do	not
lead	to	a	noticeably	better	model	(within	some	tolerance).	At	this	point	we	can	expect	the
algorithm	to	have	found	the	global	minimum	of	the	error	surface	and,	as	a	result,	the	most
accurate	predictive	model	possible.

The	most	 important	 part	 to	 the	 gradient	 descent	 algorithm	 is	 the	 line	 on	 which	 the
weights	are	updated,	Line	4[339].	Each	weight	 is	 considered	 independently,	 and	 for	each
one	 a	 small	 adjustment	 is	 made	 by	 adding	 a	 small	 value,	 called	 a	 delta	 value,	 to	 the
current	weight,	w[j].	This	adjustment	should	ensure	that	the	change	in	the	weight	leads	to
a	move	downward	 on	 the	 error	 surface.	The	 learning	 rate,	α,	 determines	 the	 size	 of	 the
adjustments	made	to	weights	at	each	iteration	of	the	algorithm	and	is	discussed	further	in
Section	7.3.3[341].

Figure	7.5

(a)	A	3D	surface	plot	and	(b)	a	bird’s-eye	view	contour	plot	of	 the	error	surface	 for	 the
office	rentals	dataset	showing	the	path	that	the	gradient	descent	algorithm	takes	toward	the
best-fit	model.

The	remainder	of	this	section	focuses	on	the	error	delta	function,	which	calculates	the
delta	value	that	determines	the	direction	(either	positive	or	negative)	and	the	magnitude	of
the	adjustments	made	to	each	weight.	The	direction	and	magnitude	of	the	adjustment	to	be
made	to	a	weight	is	determined	by	the	gradient	of	the	error	surface	at	the	current	position
in	 the	weight	 space.	Recalling	 that	 the	error	 surface	 is	defined	by	 the	error	 function,	L2
(given	in	Equation	(7.10)[333]),	the	gradient	at	any	point	on	this	error	surface	is	given	by
the	value	of	the	partial	derivative	of	the	error	function	with	respect	to	a	particular	weight
at	 that	 point.	 The	 error	 delta	 function	 invoked	 on	 Line	 4[339]	 of	 Algorithm	 7.1[339]
performs	 this	 calculation	 to	 determine	 the	 delta	 value	 by	which	 each	weight	 should	 be
adjusted.



Figure	7.6

A	selection	of	the	simple	linear	regression	models	developed	during	the	gradient	descent
process	for	 the	office	rentals	dataset.	The	bottom-right	panel	shows	the	sums	of	squared
errors	generated	during	the	gradient	descent	process.

To	understand	how	to	calculate	the	value	of	the	partial	derivative	of	the	error	function
with	respect	to	a	particular	weight,	let	us	imagine	for	a	moment	that	our	training	dataset,	
,	contains	just	one	training	instance:	(d,	t),	where	d	is	a	set	of	descriptive	features	and	t	is	a
target	feature.	The	gradient	of	the	error	surface	is	given	as	the	partial	derivative	of	L2	with
respect	to	each	weight,	w[j]:

Equation	(7.12)[338]	is	calculated	from	Equation	(7.11)[338]	by	applying	the	differentiation
chain	 rule.6	 To	 understand	 the	 move	 from	 Equation	 (7.13)[338]	 to	 Equation	 (7.14)[338]
imagine	 a	 problem	 with	 four	 descriptive	 features	 d[1]	…	 d[4].	 Remembering	 that	 we
always	include	the	dummy	feature	d[0]	with	a	value	of	1,	the	dot	product	w	·	d	becomes

Algorithm	7.1	The	gradient	descent	algorithm	for	training	multivariable	linear	regression
models.

Require:	set	of	training	instances	



Require:	a	learning	rate	α	that	controls	how	quickly	the	algorithm	converges

Require:	a	function,	errorDelta,	that	determines	the	direction	in	which	to	adjust	a	given
weight,	w[j],	so	as	to	move	down	the	slope	of	an	error	surface	determined	by	the
dataset,	

Require:	a	convergence	criterion	that	indicates	that	the	algorithm	has	completed

1:	w	←	random	starting	point	in	the	weight	space

2:	repeat

3:				for	each	w[j]	in	w	do

4:						w[j]	←	w[j]	+	α	×	errorDelta( ,	w[j])

5:	until	convergence	occurs

If	 we	 take	 the	 partial	 derivative	 of	 this	 with	 respect	 to	w[0]	 all	 the	 terms	 that	 do	 not
contain	w[0]	are	treated	as	constants,	so

Similarly,	the	partial	derivative	with	respect	to	w	[4]	is

So,	in	the	move	between	Equations	(7.13)[338]	and	(7.14)[338]	 	becomes	−d
[j]	 (remember	 that	 in	 this	 equation,	 t	 is	 a	 constant	 and	 so	 becomes	 zero	 when
differentiated).

Equation	(7.14)[338]	calculates	the	gradient	based	only	on	a	single	training	instance.	To
take	 into	account	multiple	 training	 instances,	we	calculate	 the	sum	of	 the	squared	errors
for	 each	 training	 instance	 (as	we	did	 in	all	our	previous	examples).	So,	Equation	 (7.14)
[338]	becomes

where	(d1,	t1)	…	(dn,	tn)	are	n	training	instances,	and	di[j]	is	the	jth	descriptive	feature	of
training	 instance	 (di,	 ti).	 The	 direction	 of	 the	 gradient	 calculated	 using	 this	 equation	 is
toward	the	highest	values	on	the	error	surface.	The	error	delta	function	from	Line	4[339]	of
Algorithm	7.1[339]	 should	 return	a	 small	 step	 toward	a	 lower	value	on	 the	error	 surface.
Therefore	we	move	in	the	opposite	direction	of	the	calculated	gradient,	and	the	error	delta



function	can	be	written	as

Line	4[339]	of	Algorithm	7.1[339]	can	therefore	be	rewritten	as	what	is	known	as	the	weight
update	rule	for	multivariable	linear	regression	with	gradient	descent:

where	w[j]	 is	 any	weight,	α	 is	 a	 constant	 learning	 rate,	 ti	 is	 the	 expected	 target	 feature
value	for	the	ith	training	instance,	 w(di)	is	the	prediction	made	for	this	training	instance
by	 the	 current	 candidate	 model	 defined	 by	 the	 weight	 vector	 w,	 and	 di[j]	 is	 the	 jth

descriptive	 feature	 of	 the	 ith	 training	 instance	 and	 corresponds	 with	 weight	w[j]	 in	 the
regression	model.

To	intuitively	understand	the	weight	update	rule	given	in	Equation	(7.17)[340],	it	helps
to	think	in	terms	of	what	the	weight	update	rule	does	to	weights	based	on	the	error	in	the
predictions	made	by	the	current	candidate	model:

If	 the	 errors	 show	 that,	 in	general,	 predictions	made	by	 the	 candidate	model	 are	 too
high,	then	w[j]	should	be	decreased	if	di[j]	is	positive	and	increased	if	di[j]	is	negative.
If	 the	 errors	 show	 that,	 in	general,	 predictions	made	by	 the	 candidate	model	 are	 too
low,	then	w[j]	should	be	increased	if	di[j]	is	positive	and	decreased	if	di[j]	is	negative.

The	 approach	 to	 training	 multivariable	 linear	 regression	 models	 described	 so	 far	 is
more	specifically	known	as	batch	gradient	descent.	The	word	batch	is	used	because	only
one	 adjustment	 is	 made	 to	 each	 weight	 at	 each	 iteration	 of	 the	 algorithm	 based	 on
summing	the	squared	error	made	by	the	candidate	model	for	each	instance	in	the	training
dataset.7	 Batch	 gradient	 descent	 is	 a	 straightforward,	 accurate,	 and	 reasonably	 efficient
approach	to	training	multivariable	linear	regression	models	and	is	used	widely	in	practice.
The	inductive	bias	encoded	in	this	algorithm	includes	a	preference	bias	to	prefer	models
that	minimize	the	sum	of	squared	errors	function	and	a	restriction	bias	introduced	by	the
facts	that	we	only	consider	linear	combinations	of	descriptive	features	and	that	we	take	a
single	path	through	the	error	gradient	from	a	random	starting	point.



7.3.3	Choosing	Learning	Rates	and	Initial	Weights

The	values	chosen	for	the	learning	rate	and	initial	weights	can	have	a	significant	impact	on
how	 the	 gradient	 descent	 algorithm	 proceeds.	 Unfortunately,	 there	 are	 no	 theoretical
results	 that	 help	 in	 choosing	 the	 optimal	 values	 for	 these	 parameters.	 Instead,	 these
algorithm	parameters	must	be	chosen	using	rules	of	thumb	gathered	through	experience.

The	 learning	 rate,	 α,	 in	 the	 gradient	 descent	 algorithm	 determines	 the	 size	 of	 the
adjustment	made	to	each	weight	at	each	step	in	the	process.	We	can	illustrate	this	using	the
simplified	 version	 of	 the	 RENTAL	 PRICE	 prediction	 problem	 based	 only	 on	 office	 size
(SIZE).	A	linear	regression	model	for	the	problem	uses	only	two	weights,	w[0]	and	w[1].
Figure	7.7[342]	shows	how	different	learning	rates—0.002,	0.08,	and	0.18—result	in	very
different	journeys	across	the	error	surface.8	The	changing	sum	of	squared	errors	that	result
from	these	journeys	are	also	shown.

Figure	7.7(a)[342]	shows	the	impact	of	a	very	small	learning	rate.	Although	the	gradient
descent	 algorithm	will	 converge	 to	 the	 global	minimum	eventually,	 it	 takes	 a	 very	 long
time	 as	 tiny	 changes	 are	made	 to	 the	weights	 at	 each	 iteration	 of	 the	 algorithm.	Figure
7.7(c)[342]	 shows	 the	 impact	of	 a	 large	 learning	 rate.	The	 large	adjustments	made	 to	 the
weights	 during	 gradient	 descent	 cause	 it	 to	 jump	 completely	 from	one	 side	 of	 the	 error
surface	to	the	other.	Although	the	algorithm	can	still	converge	toward	an	area	of	the	error
surface	 close	 to	 the	global	minimum,	 there	 is	 a	 strong	 chance	 that	 the	global	minimum
itself	will	actually	be	missed,	and	the	algorithm	will	simply	jump	back	and	forth	across	it.
In	 fact,	 if	 inappropriately	 large	 learning	 rates	 are	 used,	 the	 jumps	 from	 one	 side	 of	 the
error	 surface	 to	 the	 other	 can	 actually	 cause	 the	 sum	 of	 squared	 errors	 to	 repeatedly
increase	rather	than	decrease,	leading	to	a	process	that	will	never	converge.	Figure	7.7(b)
[342]	shows	that	a	well-chosen	learning	rate	strikes	a	good	balance,	converging	quickly	but
also	ensuring	that	the	global	minimum	is	reached.	Note	that	even	though	the	shape	of	the
curve	 in	Figure	7.7(e)[342]	 is	 similar	 to	 the	shape	 in	Figure	7.7(d)[342],	 it	 takes	 far	 fewer
iterations	to	reach	the	global	minimum.



Figure	7.7

Plots	of	the	journeys	made	across	the	error	surface	for	the	simple	office	rentals	prediction
problem	for	different	learning	rates:	(a)	a	very	small	learning	rate	(0.002);	(b)	a	medium
learning	rate	(0.08);	and	(c)	a	very	large	learning	rate	(0.18).	The	changing	sum	of	squared
errors	for	these	journeys	are	also	shown.

Unfortunately,	choosing	learning	rates	is	not	a	well-defined	science.	Although	there	are
some	algorithmic	approaches,	most	practitioners	use	rules	of	thumb	and	trial	and	error.	A
typical	 range	 for	 learning	 rates	 is	 [0.00001,	 10],	 and	 practitioners	 will	 usually	 try	 out
higher	values	and	observe	the	resulting	learning	graph.	If	 the	graph	looks	too	much	like
Figure	7.7(f)[342],	a	smaller	value	will	be	tested	until	something	approaching	Figure	7.7(e)
[342]	is	found.

When	 the	 gradient	 descent	 algorithm	 is	 used	 to	 find	 optimal	 weights	 for	 linear
regression	models,	 the	 initial	weights	are	chosen	randomly	from	a	predefined	range	 that
must	be	specified	as	an	input	to	the	algorithm.	The	choice	of	the	range	from	which	these
initial	 weights	 are	 selected	 affects	 how	 quickly	 the	 gradient	 descent	 algorithm	 will
converge	 to	 a	 solution.	Unfortunately,	 as	 is	 the	case	with	 the	 learning	 rate,	 there	 are	no
well-established,	 proven	methods	 for	 choosing	 initial	weights.	Normalization	 also	 has	 a
part	to	play	here.	It	 is	much	easier	to	select	initial	weights	for	normalized	feature	values
than	for	raw	feature	values,	as	 the	range	in	which	weights	for	normalized	feature	values
might	reasonably	fall	 (particularly	for	 the	 intercept	weight,	w[0])	 is	much	better	defined
than	the	corresponding	range	when	raw	feature	values	are	used.	The	best	advice	we	can
give	is	that,	based	on	empirical	evidence,	choosing	random	initial	weights	uniformly	from
the	range	[−0.2,	0.2]	tends	to	work	well.



7.3.4	A	Worked	Example

We	are	now	in	a	position	 to	build	a	 linear	 regression	model	 that	uses	all	 the	continuous
descriptive	features	 in	 the	office	 rentals	dataset	 in	Table	7.1[325]	 (i.e.,	 all	 features	except
for	ENERGY	RATING).	The	general	structure	of	the	model	is

so	there	are	four	weights—w[0],	w[1],	w[2],	and	w[3]—for	which	optimal	values	must	be
found.	For	this	example,	let’s	assume	that	the	learning	rate,	α,	is	0.00000002	and	the	initial
weights	are	chosen	from	a	uniform	random	distribution	in	the	range	[−0.2,	0.2]	to	be	w[0]
=	 −0.146,	w[1]	 =	 0.185,	 w[2]	 =	 −0.044,	 and	w[3]	 =	 0.119.	 Table	 7.3[345]	 details	 the
important	 values	 from	 the	 first	 two	 iterations	 of	 the	 gradient	 descent	 algorithm	 when
applied	to	this	data.9

Using	 the	 initial	 weights	 predictions	 are	 made	 for	 all	 the	 instances	 in	 the	 training
dataset,	as	shown	 in	 the	Predictions	column	(column	3)	of	Table	7.3[345].	By	comparing
these	predicted	values	with	the	actual	RENTAL	PRICE	(column	2),	we	can	compute	an	error
and	a	squared	error	term	for	each	training	instance,	columns	4	and	5	of	the	table.

To	update	the	weights,	we	must	first	calculate	the	delta	value	for	each	weight.	This	is
calculated	 by	 summing	 over	 all	 the	 instances	 in	 the	 training	 set	 the	 prediction	 error
multiplied	by	the	value	of	the	relevant	feature	for	that	instance	(see	Equation	(7.16)[340]).
The	 last	 four	 columns	on	 the	 right	 of	 the	 table	 list	 for	 each	 instance	 the	 product	 of	 the
prediction	 error	 and	 the	 feature	 value.	 Remember	 that	 d	 [0]	 is	 a	 dummy	 descriptive
feature,	added	to	match	w[0],	with	a	value	of	1	for	all	training	instances.	As	a	result,	the
values	in	column	6	are	identical	to	the	values	in	the	error	column.	Focusing	on	the	top	cell
of	column	7,	we	see	the	value	113,370.05.	This	value	was	calculated	by	multiplying	the
prediction	error	for	d1	(226.74)	by	the	SIZE	value	for	this	instance	(500).	The	other	cells	in
these	 columns	are	populated	with	 similar	 calculations.	The	errorDelta( ,	w[j])	 for	 each
weight	is	then	the	summation	of	the	relevant	column,	for	example,	errorDelta( ,	w[0])	=
3,185.61	and	errorDelta( ,	w[1])	=	2,412,073.90

Once	the	errorDelta( ,	w[j])	for	a	weight	has	been	calculated,	we	can	then	update	the
weight	using	Equation	(7.17)[340].	This	weight	update	occurs	on	Line	4[339]	of	Algorithm
7.1[339].	The	update	involves	multiplying	the	errorDelta( ,	w[j])	for	a	given	weight	by	the
learning	 rate	 and	 then	adding	 this	 to	 the	current	weight	 to	give	a	new,	updated,	weight.
The	new	set	of	weights	is	labeled	New	Weights	(after	Iteration	1)	in	Table	7.3[345].

Table	7.3

Details	of	the	first	two	iterations	when	the	gradient	descent	algorithm	is	used	to	train	a
multivariable	linear	regression	model	for	the	office	rentals	dataset	(using	only	the
continuous	descriptive	features).



	

We	 can	 see	 from	 Iteration	 2	 in	 the	 bottom	half	 of	Table	7.3[345]	 that	 the	 new	 set	 of
predictions	made	using	the	updated	set	of	weights	calculated	in	iteration	1	result	in	a	lower
sum	 of	 squared	 errors,	 443,361.52.	 Based	 on	 this	 error	 another	 new	 set	 of	 weights	 is
calculated	using	the	error	deltas	shown.	The	algorithm	then	keeps	iteratively	applying	the
weight	 update	 rule	 until	 it	 converges	 on	 a	 stable	 set	 of	 weights	 beyond	 which	 little
improvement	 in	model	accuracy	is	possible.	 In	our	example,	convergence	occurred	after
100	iterations,	and	the	final	values	for	the	weights	were	w[0]	=	−0.1513,	w[1]	=	0.6270,
w[2]	=	−0.1781,	and	w	[3]	=	0.0714.	The	sum	of	squared	errors	for	the	final	model	was
2,913.5.10

A	last	point	 to	make	about	 this	example	 is	 that	 careful	examination	of	Table	 7.3[345]
shows	 why	 such	 a	 low	 learning	 rate	 is	 used	 in	 this	 example.	 The	 large	 values	 of	 the
RENTAL	PRICE	 feature,	 [320,	620],	 causes	 the	 squared	errors	 and,	 in	 turn,	 the	error	delta



values	to	become	very	large.	This	means	that	a	very	low	learning	rate	is	required	in	order
to	ensure	that	the	changes	made	to	the	weights	at	each	iteration	of	the	learning	process	are
small	 enough	 for	 the	 algorithm	 to	 work	 effectively.	 Using	 normalization	 (see	 Section
3.6.1[92])	on	the	features	can	help	avoid	these	large	squared	errors,	and	we	do	this	in	most
examples	from	now	on.



7.4	Extensions	and	Variations
In	this	section	we	discuss	common	and	useful	extensions	to	the	basic	multivariable	linear
regression	with	 gradient	 descent	 approach	 described	 in	 Section	 7.3[332].	 Topics	 covered
include	interpreting	a	linear	regression	model,	using	weight	decay	to	set	the	learning	rate,
handling	 categorical	 descriptive	 and	 target	 features,	 using	 feature	 selection,	 using
multivariable	 linear	 regression	 models	 to	 model	 non-linear	 relationships,	 and	 using
support	vector	machines	(SVMs)	as	an	alternative	to	linear	regression	models.

Table	7.4

Weights	and	standard	errors	for	each	feature	in	the	office	rentals	model.

Descriptive	Feature Weight Standard	Error t-statistic p-value

SIZE 0.6270 0.0545 11.504 <	0.0001

FLOOR -0.178 12.7042 -0.066 0.949

BROADBAND	RATE 0.071396 0.2969 0.240 0.816



7.4.1	Interpreting	Multivariable	Linear	Regression	Models

A	particularly	useful	 feature	of	 linear	 regression	models	 is	 that	 the	weights	used	by	 the
model	 indicate	 the	 effect	 of	 each	 descriptive	 feature	 on	 the	 predictions	 returned	 by	 the
model.	First,	the	signs	of	the	weights	indicate	whether	different	descriptive	features	have	a
positive	or	a	negative	impact	on	the	prediction.	Table	7.4[347]	repeats	the	final	weights	for
the	office	rentals	model	trained	in	Section	7.3.4[343].	We	can	see	that	increasing	office	size
leads	to	increasing	rental	prices;	that	lower	building	floors	lead	to	higher	rental	prices;	and
that	 rental	 prices	 increase	with	 broadband	 rates.	 Second,	 the	magnitudes	 of	 the	weights
show	how	much	the	value	of	the	target	feature	changes	for	a	unit	change	in	the	value	of	a
particular	descriptive	 feature.	For	 example,	 for	 every	 increase	of	 a	 square	 foot	 in	office
size,	we	 can	 expect	 the	 rental	 price	 to	 go	 up	 by	 0.6270	Euro	 per	month.	 Similarly,	 for
every	floor	we	go	up	in	an	office	building,	we	can	expect	the	rental	price	to	decrease	by
0.1781	Euro	per	month.

It	is	tempting	to	infer	the	relative	importance	of	the	different	descriptive	features	in	the
model	 from	 the	magnitude	of	 the	weights—i.e.,	 the	 descriptive	 features	 associated	with
higher	 weights	 are	 more	 predictive	 than	 those	 with	 lower	 weights.	 This	 is	 a	 mistake,
however,	when	 the	descriptive	 features	 themselves	have	varying	scales.	For	example,	 in
the	office	rentals	dataset,	the	values	of	the	SIZE	feature	range	from	500	to	1,000	while	the
values	for	the	FLOOR	feature	range	from	only	4	to	14.	So,	direct	comparison	of	the	weights
tells	us	little	about	their	relative	importance.	A	better	way	to	determine	the	importance	of
each	descriptive	feature	in	the	model	is	to	perform	a	statistical	significance	test.

A	statistical	significance	test	works	by	stating	a	null	hypothesis	and	then	determining
whether	 there	 is	 enough	 evidence	 to	 accept	 or	 reject	 this	 hypothesis.	 This	 accept/reject
decision	is	carried	out	in	three	steps:

1.	 A	test-statistic	is	computed.
2.	 The	probability	 of	 a	 test-statistic	 value	 as	 big	 as	 or	 greater	 than	 the	 one	 computed

being	the	result	of	chance	is	calculated.	This	probability	is	called	a	p-value.
3.	 The	p-value	is	compared	to	a	predefined	significance	threshold,	and	if	the	p-value	is

less	 than	or	equal	 to	 the	 threshold	(i.e.,	 the	p-value	 is	small),	 the	null	hypothesis	 is
rejected.	These	 thresholds	 are	 typically	 the	 standard	 statistical	 thresholds	 of	 5%	or
1%.

The	 statistical	 significance	 test	 we	 use	 to	 analyze	 the	 importance	 of	 a	 descriptive
feature	d[j]	in	a	linear	regression	model	is	the	t-test.	The	null	hypothesis	that	we	adopt	for
this	 test	 is	 that	 the	 feature	 does	 not	 have	 a	 significant	 impact	 on	 the	 model.	 The	 test
statistic	we	calculate	is	called	the	t-statistic.	In	order	to	calculate	this	test	statistic,	we	first
have	to	calculate	the	standard	error	for	the	overall	model	and	the	standard	error	for	the
descriptive	 feature	 we	 are	 investigating	 the	 importance	 of.	 The	 standard	 error	 for	 the
overall	model	is	calculated	as



where	n	is	the	number	of	instances	in	the	training	dataset.	A	standard	error	calculation	is
then	done	for	a	descriptive	feature	as	follows:

where	d[j]	is	some	descriptive	feature	and	d[j]	is	the	mean	value	of	that	descriptive	feature
in	the	training	set.

The	t-statistic	for	this	test	is	calculated	as	follows:

where	w[j]	 is	 the	 weight	 associated	 with	 descriptive	 feature	 d[j].	 Using	 a	 standard	 t-
statistic	look-up	table,	we	can	then	determine	the	p-value	associated	with	this	test	(this	is	a
two	tailed	t-test	with	degrees	of	freedom	set	to	the	number	of	instances	in	the	training	set
minus	 2).	 If	 the	 p-value	 is	 less	 than	 the	 required	 significance	 level,	 typically	 0.05,	 we
reject	the	null	hypothesis	and	say	that	the	descriptive	feature	has	a	significant	impact	on
the	model;	otherwise	we	say	that	it	does	not.	We	can	see	from	Table	7.4[347]	that	only	the
SIZE	descriptive	feature	has	a	significant	 impact	on	 the	model.	 If	a	descriptive	feature	 is
found	to	have	a	significant	 impact	on	the	model,	 this	 indicates	 that	 there	 is	a	significant
linear	relationship	between	it	and	the	target	feature.



7.4.2	Setting	the	Learning	Rate	Using	Weight	Decay

In	Section	7.3.3[341]	we	illustrated	the	impact	of	a	learning	rate	parameter	on	the	gradient
descent	 algorithm.	 In	 that	 section	we	also	 explained	 that	most	practitioners	use	 rules	of
thumb	and	 trial	 and	error	 to	 set	 the	 learning	 rate.	A	more	 systematic	approach	 is	 to	use
learning	rate	decay,	which	allows	the	learning	rate	to	start	at	a	large	value	and	then	decay
over	time	according	to	a	predefined	schedule.	Although	there	are	different	approaches	in
the	literature,	a	good	approach	is	to	use	the	following	decay	schedule:

where	α0	 is	an	initial	 learning	rate	(this	 is	 typically	quite	large,	e.g.,	1.0),	c	 is	a	constant
that	controls	how	quickly	the	learning	rate	decays	(the	value	of	this	parameter	depends	on
how	quickly	the	algorithm	converges,	but	it	is	often	set	to	quite	a	large	value,	e.g.,	100),
and	τ	 is	 the	current	 iteration	of	 the	gradient	descent	algorithm.	Figure	7.8[350]	 shows	 the
journey	 across	 the	 error	 surface	 and	 related	 plot	 of	 the	 sums	 of	 squared	 errors	 for	 the
office	rentals	problem—using	just	the	SIZE	descriptive	feature—when	error	decay	is	used
with	α0	 =	 0.18	 and	c	 =	 10	 (this	 is	 a	 pretty	 simple	 problem,	 so	 smaller	 values	 for	 these
parameters	are	suitable).	This	example	shows	 that	 the	algorithm	converges	 to	 the	global
minimum	more	quickly	than	any	of	the	approaches	shown	in	Figure	7.7[342].

The	 differences	 between	 Figures	 7.7(f)[342]	 and	 7.8(b)[350]	 most	 clearly	 show	 the
impact	 of	 learning	 rate	 decay	 as	 the	 initial	 learning	 rates	 are	 the	 same	 in	 these	 two
instances.	When	learning	rate	decay	is	used,	 there	 is	much	less	 thrashing	back	and	forth
across	the	error	surface	than	when	the	large	static	learning	rate	is	used.	Using	learning	rate
decay	can	even	address	the	problem	of	inappropriately	large	error	rates	causing	the	sum	of
squared	errors	to	increase	rather	than	decrease.	Figure	7.9[350]	shows	an	example	of	this	in
which	learning	rate	decay	is	used	with	α0	=	0.25	and	c	=	100.	The	algorithm	starts	at	the
position	marked	1	on	the	error	surface,	and	learning	steps	actually	cause	it	to	move	farther
and	farther	up	the	error	surface.	This	can	be	seen	in	the	increasing	sums	of	squared	errors
in	Figure	7.9(b)[350].	As	 the	 learning	 rate	 decays,	 however,	 the	 direction	 of	 the	 journey
across	 the	 error	 surface	moves	 back	 downward,	 and	 eventually	 the	 global	minimum	 is
reached.	Although	 learning	 rate	decay	almost	always	 leads	 to	better	performance	 than	a
fixed	 learning	 rate,	 it	 still	does	 require	 that	problem-dependent	values	are	chosen	 for	α0
and	c.



Figure	7.8

(a)	 The	 journey	 across	 the	 error	 surface	 for	 the	 office	 rentals	 prediction	 problem	when
learning	rate	decay	is	used	(α0	=	0.18,	c	=	10);	(b)	a	plot	of	the	changing	sum	of	squared
errors	during	this	journey.

Figure	7.9

(a)	 The	 journey	 across	 the	 error	 surface	 for	 the	 office	 rentals	 prediction	 problem	when
learning	rate	decay	is	used	(α0	=	0.25,	c	=	100);	(b)	a	plot	of	the	changing	sum	of	squared
errors	during	this	journey.



7.4.3	Handling	Categorical	Descriptive	Features

The	 regression	 equation	 for	 a	multivariable	 linear	 regression	model	 for	 the	 full	 dataset
shown	in	Table	7.1[325]	would	look	like

The	multiplication	of	w	[4]	×	ENERGY	RATING	causes	a	problem	here.	Energy	rating	 is	a
categorical	feature,	so	multiplying	the	values	of	this	feature	by	a	numeric	weight	is	simply
not	 sensible.	The	basic	 structure	of	 the	multivariable	 linear	 regression	model	 allows	 for
only	continuous	descriptive	features.	Obviously,	 though,	 in	real-world	datasets,	we	often
encounter	 categorical	 descriptive	 features,	 so	 for	 the	 linear	 regression	 approach	 to	 be
really	useful,	we	need	a	way	to	handle	these.

The	 most	 common	 approach	 to	 handling	 categorical	 features	 in	 linear	 regression
models	is	to	use	a	transformation	that	converts	a	single	categorical	descriptive	feature	into
a	 number	 of	 continuous	 descriptive	 feature	 values	 that	 can	 encode	 the	 levels	 of	 the
categorical	feature.	This	is	done	by	creating	one	new	binary	descriptive	feature	for	every
level	of	the	categorical	feature.	These	new	features	can	then	be	used	to	encode	a	level	of
the	 original	 categorical	 descriptive	 feature	 by	 setting	 the	 value	 of	 the	 new	 feature
corresponding	 to	 the	 level	 of	 the	 categorical	 feature	 to	 1	 and	 the	 other	 new	 continuous
features	to	0.

For	 example,	 if	 we	 were	 to	 use	 the	 ENERGY	 RATING	 descriptive	 feature	 from	 Table
7.1[325]	 in	 a	 linear	 regression	 model,	 we	 would	 convert	 it	 into	 three	 new	 continuous
descriptive	 features,	 as	 energy	 rating	 can	 have	 one	 of	 three	 distinct	 levels:	A,	B,	 or	C.
Table	7.5[352]	shows	this	transformed	dataset	in	which	the	energy	rating	feature	has	been
replaced	with	ENERGY	RATING	A,	ENERGY	RATING	B	and	ENERGY	RATING	C.	For	 training
instances	 in	which	 the	original	ENERGY	RATING	 feature	 had	 a	 value	A,	 the	 new	ENERGY
RATING	A	feature	has	a	value	of	1,	and	the	ENERGY	RATING	B	and	ENERGY	RATING	C	are
both	set	to	0.	A	similar	rule	is	used	for	instances	with	the	ENERGY	RATING	feature	levels	of
B	and	C.

Table	7.5

The	office	rentals	dataset	from	Table	7.1[325]	adjusted	to	handle	the	categorical	ENERGY
RATING	descriptive	feature	in	linear	regression	models.



	

Returning	to	our	example,	the	regression	equation	for	this	RENTAL	PRICE	model	would
change	to

where	the	newly	added	categorical	features	allow	the	original	ENERGY	RATING	 feature	 to
be	included.	Everything	else	about	using	such	a	model	is	exactly	the	same	as	before.

The	downside	to	this	approach	is	that	it	introduces	a	number	of	extra	weights	for	which
optimal	values	must	be	found—in	this	simple	example	for	only	four	descriptive	features,
we	need	seven	weights.	This	increases	the	size	of	the	weight	space	through	which	we	need
to	search	when	training	the	model.	One	way	we	can	reduce	the	impact	of	this	is	that	for
each	categorical	feature	we	transform,	we	can	reduce	the	number	of	newly	added	features
by	one	by	assuming	that	a	zero	in	all	the	new	features	implies	that	the	original	feature	had
the	final	 level.	So,	 for	example,	 for	our	ENERGY	RATING	 feature,	 instead	of	adding	 three
new	 features	 (ENERGY	RATING	A,	ENERGY	RATING	B,	 and	ENERGY	RATING	 C),	we	 could
just	add	ENERGY	RATING	A	and	ENERGY	RATING	B	 and	 assume	 that	whenever	 they	 both
have	a	value	of	0,	ENERGY	RATING	C	is	implicitly	set.



7.4.4	Handling	Categorical	Target	Features:	Logistic	Regression

In	Section	7.3[332]	we	described	how	a	multivariable	linear	regression	model	trained	using
gradient	descent	can	be	used	to	make	predictions	for	continuous	target	features.	Although
this	is	useful	for	a	range	of	real-world	predictive	analytics	problems,	we	are	also	interested
in	prediction	problems	with	categorical	target	features.	This	section	covers	the	reasonably
simple	adjustments	that	must	be	made	to	the	multivariable	linear	regression	with	gradient
descent	algorithm	to	handle	categorical	target	features,	in	particular,	logistic	regression.

7.4.4.1	Predicting	Categorical	Targets	Using	Linear	Regression

Table	 7.6[354]	 shows	 a	 sample	 dataset	 with	 a	 categorical	 target	 feature.	 This	 dataset
contains	measurements	of	the	revolutions	per	minute	(RPM)	that	power	station	generators
are	running	at,	the	amount	of	vibration	in	the	generators	(VIBRATION),	and	an	indicator	to
show	 whether	 the	 generators	 proved	 to	 be	 working	 or	 faulty	 the	 day	 after	 these
measurements	were	 taken.	 The	RPM	 and	VIBRATION	 measurements	 come	 from	 the	 day
before	 the	generators	 proved	 to	 be	operational	 or	 faulty.	 If	 power	 station	 administrators
could	predict	upcoming	generator	 failures	before	 the	generators	actually	 fail,	 they	could
improve	power	 station	 safety	 and	 save	money	on	maintenance.11	Using	 this	 dataset,	we
would	 like	 to	 train	 a	 model	 to	 distinguish	 between	 properly	 operating	 power	 station
generators	and	faulty	generators	using	the	RPM	and	VIBRATION	measurements.

Figure	7.10(a)[355]	shows	a	scatter	plot	of	this	dataset	in	which	we	can	see	that	there	is
a	good	separation	between	the	two	types	of	generator.	In	fact,	as	shown	in	Figure	7.10(b)
[355],	we	can	draw	a	straight	 line	across	 the	scatter	plot	 that	perfectly	separates	 the	good
generators	from	the	 faulty	ones.	This	 line	 is	known	as	a	decision	boundary,	and	because
we	 can	 draw	 this	 line,	 this	 dataset	 is	 said	 to	 be	 linearly	 separable	 in	 terms	 of	 the	 two
descriptive	features	used.	As	the	decision	boundary	is	a	linear	separator,	it	can	be	defined
using	the	equation	of	the	line	(remember	Equation	(7.2.1)[325]).	In	Figure	7.10(b)[355]	 the
decision	boundary	is	defined	as

or

Table	7.6

A	dataset	listing	features	for	a	number	of	generators.

ID RPM VIBRATION STATUS

1 568 585 good

2 586 565 good

3 609 536 good



4 616 492 good

5 632 465 good

6 652 528 good

7 655 496 good

8 660 471 good

9 688 408 good

10 696 399 good

11 708 387 good

12 701 434 good

13 715 506 good

14 732 485 good

15 731 395 good

16 749 398 good

17 759 512 good

18 773 431 good

19 782 456 good

20 797 476 good

21 794 421 good

22 824 452 good

23 835 441 good

24 862 372 good

25 879 340 good

26 892 370 good



27 913 373 good

28 933 330 good

29 562 309 faulty

30 578 346 faulty

31 593 357 faulty

32 626 341 faulty

33 635 252 faulty

34 658 235 faulty

35 663 299 faulty

36 677 223 faulty

37 685 303 faulty

38 698 197 faulty

39 699 311 faulty

40 712 257 faulty

41 722 193 faulty

42 735 259 faulty

43 738 314 faulty

44 753 113 faulty

45 767 286 faulty

46 771 264 faulty

47 780 137 faulty

48 784 131 faulty

49 798 132 faulty



50 820 152 faulty

51 834 157 faulty

52 858 163 faulty

53 888 91 faulty

54 891 156 faulty

55 911 79 faulty

56 939 99 faulty

Figure	7.10

(a)	 A	 scatter	 plot	 of	 the	 RPM	 and	 VIBRATION	 descriptive	 features	 from	 the	 generators
dataset	shown	in	Table	7.6[354],	where	good	 generators	 are	 shown	as	 crosses,	 and	 faulty
generators	 are	 shown	 as	 triangles;	 (b)	 as	 decision	 boundary	 separating	good	 generators
(crosses)	from	faulty	generators	(triangles).

So,	for	any	instance	that	is	actually	on	the	decision	boundary,	the	RPM	and	VIBRATION

values	 satisfy	 the	 equality	 in	 Equation	 (7.23)[354].	 What	 is	 more	 interesting	 is	 that
instances	 not	 actually	 on	 the	 decision	 boundary	 behave	 in	 a	 very	 regular	 way.	 The
descriptive	 feature	 values	 of	 all	 instances	 above	 the	 decision	 boundary	 will	 result	 in	 a
negative	value	when	plugged	 into	 the	decision	boundary	equation,	while	 the	descriptive
features	of	all	 instances	below	the	decision	boundary	will	 result	 in	a	positive	value.	For
example,	 applying	 Equation	 (7.23)[354]	 to	 the	 instance	 RPM	 =	 810,	 VIBRATION	 =	 495,
which	is	be	above	the	decision	boundary	in	Figure	7.10(b)[355],	gives	the	following	result:

830	−	0.667	×	810	−	495	=	−205.27

By	contrast,	if	we	apply	Equation	(7.23)[354]	to	the	instance	RPM	=	650	and	VIBRATION	=



240,	which	is	be	below	the	decision	boundary	in	Figure	7.10(b)[355],	we	get

830	−	0.667	×	650	−	240	=	156.45

Figure	7.11(a)[356]	 illustrates	 the	consistent	relationship	between	Equation	(7.23)[354]	and
the	decision	boundary	by	plotting	the	value	of	Equation	(7.23)[354]	for	all	values	of	RPM
and	VIBRATION.12

Figure	7.11

(a)	 A	 surface	 showing	 the	 value	 of	 Equation	 (7.23)[354]	 for	 all	 values	 of	 RPM	 and
VIBRATION,	with	 the	decision	boundary	given	 in	Equation	(7.23)[354]	 highlighted;	 (b)	 the
same	surface	linearly	thresholded	at	zero	to	operate	as	a	predictor.

Because	 the	 values	 of	 this	 equation	 are	 so	well	 behaved,	we	 can	 use	 it	 to	 predict	 a
categorical	target	feature.	Reverting	to	our	previous	notation,	we	have,

where	d	 is	 a	 set	 of	 descriptive	 features	 for	 an	 instance,	w	 is	 the	 set	 of	 weights	 in	 the
model,	and	the	good	and	faulty	generator	target	feature	levels	are	represented	as	0	and	1
respectively.	Figure	7.11(b)[356]	shows	the	value	of	Equation	(7.24)[356]	for	every	possible
value	of	RPM	and	VIBRATION.	This	surface	is	known	as	a	decision	surface.

One	problem	that	we	need	to	solve	in	order	to	use	the	model	defined	in	Equation	(7.24)
[356]	 is	 how	 to	 determine	 the	 values	 for	 the	 weights,	 w,	 that	 will	 minimize	 the	 error
function	 for	 our	 hypothesis	 w(d).	 Unfortunately,	 in	 this	 case	 we	 cannot	 just	 use	 the
gradient	 descent	 algorithm.	The	 hard	 decision	 boundary	 given	 in	Equation	 (7.24)[356]	 is
discontinuous,	so	is	not	differentiable,	which	means	we	cannot	calculate	 the	gradient	of
the	error	surface	using	the	derivative.	Another	problem	with	this	model	is	that	the	model
always	 makes	 completely	 confident	 predictions	 of	 0	 or	 1.	 A	model	 able	 to	 distinguish
between	 instances	 that	 are	 very	 close	 to	 the	 boundary	 and	 those	 that	 are	 farther	 away
would	 be	 preferable.	We	 can	 solve	 both	 these	 problems	 by	 using	 a	more	 sophisticated
threshold	function	that	is	continuous,	and	therefore	differentiable,	and	that	allows	for	the



subtlety	desired:	the	logistic	function.13

The	logistic	function14	is	given	by

where	x	is	a	numeric	value	and	e	is	Euler’s	number	and	is	approximately	equal	to	2.7183.
A	plot	of	 the	 logistic	 function	 for	values	of	x	 in	 the	 range	 [−10,	10]	 is	 shown	 in	Figure
7.12(a)[358].	We	can	see	that	the	logistic	function	is	a	threshold	function	that	pushes	values
above	 zero	 to	 1	 and	 values	 below	 zero	 to	 0.	 This	 is	 very	 similar	 to	 the	 hard	 threshold
function	given	in	Equation	(7.24)[356],	except	that	it	has	a	soft	boundary.	The	next	section
explains	how	use	of	the	logistic	function	allows	us	to	build	logistic	regression	models	that
predict	categorical	target	features.

7.4.4.2	Logistic	Regression

To	build	a	logistic	regression	model,	we	threshold	the	output	of	the	basic	linear	regression
model	using	the	logistic	function.	So,	instead	of	the	regression	function	simply	being	the
dot	product	of	the	weights	and	the	descriptive	features	(as	given	in	Equation	(7.9)[333]),	the
dot	 product	 of	 weights	 and	 descriptive	 feature	 values	 is	 passed	 through	 the	 logistic
function:

To	see	the	impact	of	this,	we	can	build	a	multivariable	logistic	regression	model	for	the
dataset	in	Table	7.6[354].	After	the	training	process	(which	uses	a	slightly	modified	version
of	 the	 gradient	 descent	 algorithm,	which	we	will	 explain	 shortly),	 the	 resulting	 logistic
regression	model	is15



Figure	7.12

(a)	A	plot	of	the	logistic	function	(Equation	(7.25)[357])	for	the	range	of	values	[−10,	10];
(b)	 the	 logistic	 decision	 surface	 that	 results	 from	 training	 a	 model	 to	 represent	 the
generators	dataset	given	 in	Table	7.6[354]	 (note	 that	 the	data	has	been	normalized	 to	 the
range	[−1,	1]).

The	 decision	 surface	 resulting	 from	 Equation	 (7.27)[358]	 is	 shown	 in	 Figure	 7.12(b)
[358].	The	important	thing	to	notice	about	this	decision	surface,	in	contrast	to	the	decision
surface	 in	Figure	7.11(b)[356],	 is	 that	 there	 is	 a	 gentle	 transition	 from	predictions	 of	 the
faulty	target	level	to	predictions	of	the	good	generator	target	level.	This	is	one	of	the	key
benefits	of	using	logistic	regression.	Another	benefit	of	using	the	logistic	function	is	that
logistic	regression	model	outputs	can	be	interpreted	as	probabilities	of	the	occurrence	of	a
target	level.	So

P(t	=	faulty|d)	=	 w(d)

and

P(t	=	good|d)	=	1	−	 w(d)

To	 find	 the	 optimal	 decision	 boundary	 for	 a	 logistic	 regression	 problem,	we	 use	 the
gradient	 descent	 algorithm	 (Algorithm	 7.1[339])	 to	 minimize	 the	 sum	 of	 squared	 errors
based	on	the	training	dataset.	Figure	7.13[359]	shows	a	series	of	the	candidate	models	that
were	 explored	 on	 the	way	 to	 finding	 this	 boundary.	 The	 final	 panel	 in	 Figure	 7.13[359]
shows	how	the	sum	of	squared	errors	changed	during	the	training	process.



Figure	7.13

A	 selection	 of	 the	 logistic	 regression	 models	 developed	 during	 the	 gradient	 descent
process	 for	 the	machinery	dataset	 from	Table	7.6[354].	The	bottom-right	panel	shows	 the
sums	of	squared	errors	generated	during	the	gradient	descent	process.

To	repurpose	the	gradient	descent	algorithm	for	training	logistic	regression	models,	the
only	 change	 that	 needs	 to	 be	made	 is	 in	 the	 error	 delta	 function,	 which	 is	 used	 in	 the
weight	update	rule	given	on	Line	4[339]	of	Algorithm	7.1[339].	To	derive	 this	new	weight
update	 rule,	 imagine	 that	 there	 is	 just	 a	 single	 training	 instance,	 (d,	 t),	 in	 our	 training
dataset.	The	partial	derivative	of	the	error	function,	L2,	is	then

where	w[j]	is	a	single	weight	from	the	set	of	weights	w.	Applying	the	chain	rule	to	this,
we	get

But	 w(d)	=	logistic(w	·	d),	so

Applying	 the	 chain	 rule	 again	 to	 the	 partial	 derivative	 part	 of	 this	 equation,	 and

remembering	that	 ,	we	get



Fortunately,	the	derivative	of	the	logistic	function	is	well	known:

So

Rewriting	logistic(w	·	d)	as	 w(d)	for	readability,	we	get

This	 is	 the	partial	derivative	of	 the	error	surface	with	respect	 to	a	particular	weight	w[j]
and	indicates	the	gradient	of	the	error	surface.	Using	this	formulation	for	the	gradient,	we
can	write	the	weight	update	rule	for	logistic	regression	as

where	 .

The	 rule	 given	 in	 Equation	 (7.32)[361]	 assumes	 that	 only	 a	 single	 training	 instance
exists.	To	modify	this	to	take	into	account	a	full	training	dataset,	we	simply	need	to	a	sum
across	all	the	training	instances	as	we	did	before	in	Equation	(7.17)[340].	This	gives	us	the
weight	update	rule	for	multivariable	logistic	regression:

Other	than	changing	the	weight	update	rule,	we	don’t	need	to	make	any	other	changes
to	 the	 model	 training	 process	 presented	 for	 multivariable	 linear	 regression	 models.	 To
further	 illustrate	 this	 process,	 the	 next	 section	 presents	 a	worked	 example	 of	 training	 a
multivariable	logistic	regression	model	for	an	extended	version	of	the	generators	dataset.

7.4.4.3	A	Worked	Example	of	Multivariable	Logistic	Regression

One	 of	 the	 advantages	 of	 using	 a	 logistic	 regression	 model	 is	 that	 it	 works	 well	 for
datasets	in	which	the	instances	with	target	features	set	to	different	levels	overlap	with	each
other	 in	 the	 feature	 space.	 Table	 7.7[362]	 shows	 an	 extended	 version	 of	 the	 generators
dataset	given	in	Table	7.6[354],	including	extra	instances	that	make	the	separation	between



good	generators	and	faulty	generators	less	clear	cut.	This	kind	of	data	is	very	common	in
real-world	scenarios.	A	scatter	plot	of	this	dataset	is	shown	in	Figure	7.14[363],s	in	which
the	overlap	between	the	different	types	of	generator	in	this	dataset	is	clearly	visible.	Even
though	the	separation	between	the	instances	with	the	different	levels	of	the	target	feature
in	this	case	is	not	particularly	well	defined,	a	logistic	regression	model	can	be	trained	to
distinguish	 between	 the	 two	 types	 of	 generator.	 In	 the	 remainder	 of	 this	 section,	 we
examine	this	in	some	detail.

There	 is	 an	 on-going	 argument	 regarding	 whether	 descriptive	 features	 should	 be
normalized	 before	 being	 used	 in	 linear	 regression	 models.	 The	 main	 disadvantage	 of
normalization	 is	 that	 the	 interpretative	 analysis	 discussed	 in	 Section	 7.4.4[353]	 becomes
more	difficult	as	the	descriptive	feature	values	used	in	the	model	do	not	relate	to	the	actual
feature	values	in	the	data.	For	example,	if	the	age	of	a	customer	was	used	as	a	descriptive
feature	 in	 a	 financial	 credit	 scoring	model,	 it	 is	more	 difficult	 to	 talk	 about	 changes	 in
normalized	 age	 on	 a	 scale	 from	0	 to	 1	 than	 it	 is	 to	 discuss	 original	 age	 values	 on	 their
natural	 scale,	 about	 18	 to	 80.	 The	 main	 advantages	 of	 normalizing	 descriptive	 feature
values	are	that	all	weights	become	directly	comparable	with	each	other	(as	all	descriptive
features	are	on	the	same	scale),	and	the	behavior	of	the	gradient	descent	algorithm	used	to
train	 the	model	becomes	much	 less	sensitive	 to	 the	 learning	rate	and	 the	 initial	weights.
Although	 it	 is	 less	 important	 for	 simple	 linear	 regression	models,	 for	 logistic	 regression
models	 we	 recommend	 that	 descriptive	 feature	 values	 always	 be	 normalized.	 In	 this
example,	 before	 the	 training	process	 begins,	 both	 descriptive	 features	 are	 normalized	 to
the	range	[−1,	1].

Table	7.7

An	extended	version	of	the	generators	dataset	from	Table	7.6[354].

ID RPM VIBRATION STATUS

1 498 604 faulty

2 517 594 faulty

3 541 574 faulty

4 555 587 faulty

5 572 537 faulty

6 600 553 faulty

7 621 482 faulty

8 632 539 faulty



9 656 476 faulty

10 653 554 faulty

11 679 516 faulty

12 688 524 faulty

13 684 450 faulty

14 699 512 faulty

15 703 505 faulty

16 717 377 faulty

17 740 377 faulty

18 749 501 faulty

19 756 492 faulty

20 752 381 faulty

21 762 508 faulty

22 781 474 faulty

23 781 480 faulty

24 804 460 faulty

25 828 346 faulty

26 830 366 faulty

27 864 344 faulty

28 882 403 faulty

29 891 338 faulty

30 921 362 faulty

31 941 301 faulty



32 965 336 faulty

33 976 297 faulty

34 994 287 faulty

35 501 463 good

36 526 443 good

37 536 412 good

38 564 394 good

39 584 398 good

40 602 398 good

41 610 428 good

42 638 389 good

43 652 394 good

44 659 336 good

45 662 364 good

46 672 308 good

47 691 248 good

48 694 401 good

49 718 313 good

50 720 410 good

51 723 389 good

52 744 227 good

53 741 397 good

54 770 200 good



55 764 370 good

56 790 248 good

57 786 344 good

58 792 290 good

59 818 268 good

60 845 232 good

61 867 195 good

62 878 168 good

63 895 218 good

64 916 221 good

65 950 156 good

66 956 174 good

67 973 134 good

68 1002 121 good



Figure	7.14

A	scatter	plot	of	 the	extended	generators	dataset	given	in	Table	7.7[362],	which	results	 in
instances	 with	 the	 different	 target	 levels	 overlapping	 with	 each	 other.	 Instances
representing	 good	 generators	 are	 shown	 as	 crosses,	 and	 those	 representing	 faulty
generators	as	triangles.

To	begin	 the	gradient	descent	process,	 random	starting	values	 for	 the	weights	within
the	model,	w[0],	w[1],	w[2],	are	selected.	 In	 this	example,	 random	values	were	selected
from	the	range	[−3,	3]	to	give	w[0]	=	−2.9465,	w[1]	=	−1.0147,	and	w[2]	=	2.1610.	Using
these	 weights,	 a	 prediction	 is	 made	 for	 every	 instance	 in	 the	 training	 dataset,	 and	 the
resulting	 sum	of	 squared	 errors	 is	 calculated.	The	predictions	made	using	 these	weights
and	the	related	error	are	shown	in	Table	7.8[364]	under	Iteration	1.

Table	7.8

Details	of	the	first	two	iterations	when	the	gradient	descent	algorithm	is	used	to	train	a
logistic	regression	model	for	the	extended	generators	dataset	given	in	Table	7.7[362].



	

This	 first	 candidate	model	 is	not	particularly	accurate	with	an	 initial	 sum	of	 squared
errors	of	12.2369.	 In	 fact,	 instances	1	and	2	are	 the	only	 instances	at	 this	 stage	 that	are
given	predictions	of	the	faulty	target	level,	level	1	(note	that	their	prediction	values	are	the
only	 ones	 greater	 than	 0.5).	This	 can	 also	 be	 seen	 in	 the	 top	 left	 hand	 image	 of	Figure
7.15[366],which	 shows	 the	 candidate	 model	 corresponding	 to	 this	 initial	 set	 of	 weights.
Based	on	the	errors	in	these	predictions,	the	delta	contributions,	labeled	as	errorDelta( ,
w[0]),	errorDelta( ,	w[1])	and	errorDelta( ,	w[2])	 in	Table	7.8[364],	 from	 each	 training
instance	 are	 calculated	 according	 to	 Equation	 (7.31)[360].	 These	 individual	 delta



contributions	are	then	summed	so	that	the	weight	update	rule	(Equation	(7.33)[361])	can	be
applied,	in	this	example	using	a	learning	rate	of	0.02.	So,	for	example,	the	new	value	of
w[0]	is	calculated	as	the	old	value	plus	the	learning	rate	times	the	sum	of	the	errorDelta(
,	w[0])	contributions	to	give	−2.9465	+	0.02	×	2.7031	=	−2.8924.	This	gives	the	new	set	of
weights	shown	as	New	Weights	(after	Iteration	1).

The	process	then	starts	again	using	these	new	weights	as	the	basis	for	the	predictions
and	errors	marked	as	Iteration	2	in	Table	7.8[364].	The	new	weights	result	in	slightly	more
accurate	predictions,	evident	from	the	slightly	reduced	sum	of	squared	errors	of	12.0262.
Based	on	the	updated	errors,	a	new	set	of	weights	is	calculated,	marked	in	Table	7.8[364]	as
New	Weights	(after	Iteration	2).	Table	7.8[364]	shows	just	 the	first	 two	iterations	of	 the
gradient	descent	process	for	this	model.	The	continuing	process	that	finds	the	final	model
is	 illustrated	 in	 Figure	 7.15[366],	 which	 shows	 a	 selection	 of	 the	 candidate	 models
generated	on	the	way	to	generating	the	final	model,	and	the	bottom-right	panel	shows	how
the	sum	of	squared	errors	changed	during	the	process.	The	final	model	trained	is

which	has	a	sum	of	squared	errors	of	1.8804.	Obviously,	because	there	are	instances	with
different	levels	for	the	target	feature	overlapping	in	the	feature	space,	it	is	not	possible	in
this	 case	 to	 build	 a	 model	 that	 perfectly	 separates	 the	 good	 and	 faulty	 machines.	 The
model	 trained,	 however,	 strikes	 a	 good	 balance	 between	 mistaking	 good	 machines	 for
faulty	ones	and	vice	versa.



7.4.5	Modeling	Non-linear	Relationships

All	the	simple	linear	regression	and	logistic	regression	models	that	we	have	looked	at	so
far	model	 a	 linear	 relationship	 between	 descriptive	 features	 and	 a	 target	 feature.	Linear
models	 work	 very	 well	 when	 the	 underlying	 relationships	 in	 the	 data	 are	 linear.
Sometimes,	 however,	 the	 underlying	 data	 will	 exhibit	 non-linear	 relationships	 that	 we
would	like	to	capture	in	a	model.	For	example,	the	dataset	in	Table	7.9[367]	is	based	on	an
agricultural	scenario	and	shows	rainfall	(in	mm	per	day),	RAIN,	and	resulting	grass	growth
(in	 kilograms	 per	 acre	 per	 day),	GROWTH,	measured	 on	 a	 number	 of	 Irish	 farms	 during
July	2012.	A	scatter	plot	of	these	two	features	is	shown	in	Figure	7.16(a)[368],	from	which
the	strong	non-linear	relationship	between	rainfall	and	grass	growth	is	clearly	apparent—
grass	does	not	grow	well	when	there	is	very	little	rain	or	too	much	rain,	but	hits	a	sweet
spot	at	rainfall	of	about	2.5mm	per	day.	It	would	be	useful	for	farmers	to	be	able	to	predict
grass	 growth	 for	 different	 amounts	 of	 forecasted	 rainfall	 so	 that	 they	 could	 plan	 the
optimal	times	to	harvest	their	grass	for	making	hay.

Figure	7.15

A	 selection	 of	 the	 logistic	 regression	 models	 developed	 during	 the	 gradient	 descent
process	for	the	extended	generators	dataset	in	Table	7.7[362].	The	bottom-right	panel	shows
the	sums	of	squared	errors	generated	during	the	gradient	descent	process.

A	 simple	 linear	 regression	 model	 cannot	 handle	 this	 non-linear	 relationship.	 Figure
7.16(b)[368]	 shows	 the	 best	 simple	 linear	 regression	 model	 that	 can	 be	 trained	 for	 this
prediction	problem.	This	model	is

GROWTH	=	13.510	+	−0.667	×	RAIN

To	successfully	model	the	relationship	between	grass	growth	and	rainfall,	we	need	to
introduce	non-linear	elements.	A	generalized	way	in	which	to	do	this	is	to	introduce	basis
functions	 that	 transform	 the	 raw	 inputs	 to	 the	model	 into	 non-linear	 representations	 but



still	 keep	 the	model	 itself	 linear	 in	 terms	 of	 the	weights.	 The	 advantage	 of	 this	 is	 that,
except	 for	 introducing	 the	mechanism	 of	 basis	 functions,	 we	 do	 not	 need	 to	make	 any
other	changes	to	the	approach	we	have	presented	so	far.	Furthermore,	basis	functions	work
for	 both	 simple	 multivariable	 linear	 regression	 models	 that	 predict	 a	 continuous	 target
feature	 and	 multivariable	 logistic	 regression	 models	 that	 predict	 a	 categorical	 target
feature.

Table	7.9

A	dataset	describing	grass	growth	on	Irish	farms	during	July	2012.

ID RAIN GROWTH

1 2.153 14.016

2 3.933 10.834

3 1.699 13.026

4 1.164 11.019

5 4.793 4.162

6 2.690 14.167

7 3.982 10.190

8 3.333 13.525

9 1.942 13.899

10 2.876 13.949

11 4.277 8.643

12 3.754 11.420

13 2.809 13.847

14 1.809 13.757

15 4.114 9.101

16 2.834 13.923

17 3.872 10.795



18 2.174 14.307

19 4.353 8.059

20 3.684 12.041

21 2.140 14.641

22 2.783 14.138

23 3.960 10.307

24 3.592 12.069

25 3.451 12.335

26 1.197 10.806

27 0.723 7.822

28 1.958 14.010

29 2.366 14.088

30 1.530 12.701

31 0.847 9.012

32 3.843 10.885

33 0.976 9.876

	

To	use	basis	functions,	we	recast	the	simple	linear	regression	model	(see	Equation	(7.9)
[333])	as	follows:

where	d	is	a	set	of	m	descriptive	features,	w	is	a	set	of	b	weights,	and	ϕ0	to	ϕb	are	a	series
of	b	basis	functions	that	each	transform	the	input	vector	d	 in	a	different	way.	It	 is	worth
noting	that	there	is	no	reason	that	b	must	equal	m,	and	usually	b	is	quite	a	bit	larger	than	m
—i.e.,	there	are	usually	more	basis	functions	than	there	are	descriptive	features.

One	of	the	most	common	uses	of	basis	functions	in	linear	regression	is	to	train	models



to	 capture	 polynomial	 relationships.	 A	 linear	 relationship	 implies	 that	 the	 target	 is
calculated	from	the	descriptive	features	using	only	the	addition	of	the	descriptive	feature
values	 multiplied	 by	 weight	 values.	 Polynomial	 relationships	 allow	 multiplication	 of
descriptive	feature	values	by	each	other	and	raising	of	descriptive	features	 to	exponents.
The	most	common	form	of	polynomial	relationship	is	the	second	order	polynomial,	also
known	 as	 the	 quadratic	 function,	 which	 takes	 the	 general	 form	 a	 =	 bx	 +	 cx2.	 The
relationship	 between	 rainfall	 and	 grass	 growth	 in	 the	 grass	 growth	 dataset	 can	 be
accurately	represented	as	a	second	order	polynomial	through	the	following	model:

Figure	7.16

(a)	A	scatter	plot	of	the	RAIN	and	GROWTH	feature	from	the	grass	growth	dataset;	(b)	the
same	 plot	 with	 a	 simple	 linear	 regression	 model	 trained	 to	 capture	 the	 relationship
between	the	grass	growth	and	rainfall.

GROWTH	=	w[0]	×	ϕ0(RAIN)	+	w[1]	×	ϕ1(RAIN)	+	w[2]	×	ϕ2(RAIN)

where

What	makes	 this	approach	really	attractive	 is	 that,	although	 this	new	model	stated	 in
terms	 of	 basis	 functions	 captures	 the	 non-linear	 relationship	 between	 rainfall	 and	 grass
growth,	 the	 model	 is	 still	 linear	 in	 terms	 of	 the	 weights	 and	 so	 can	 be	 trained	 using
gradient	descent	without	making	any	changes	to	the	algorithm.	Figure	7.17[369]	shows	the
final	non-linear	model	that	results	from	this	training	process,	along	with	a	number	of	the
interim	steps	on	the	way	to	this	model.	The	final	model	is

GROWTH	=	3.707	×	ϕ0(RAIN)	+	8.475	×	ϕ1(RAIN)	+	−1.717	×	ϕ2(RAIN)

where	 ϕ0,	 ϕ1,	 and	 ϕ2	 are	 as	 described	 before.	 This	 model	 captures	 the	 non-linear
relationship	 in	 the	 data	 very	 well	 but	 was	 still	 easy	 to	 train	 using	 a	 gradient	 descent
approach.	 Basis	 functions	 can	 also	 be	 used	 for	 multivariable	 simple	 linear	 regression
models	 in	 the	 same	way,	 the	 only	 extra	 requirement	 being	 the	 definition	 of	more	 basis



functions.

Figure	7.17

A	 selection	 of	 the	 models	 developed	 during	 the	 gradient	 descent	 process	 for	 the	 grass
growth	dataset	from	Table	7.9[367].

Basis	 functions	 can	 also	 be	 used	 to	 train	 logistic	 regression	 models	 for	 categorical
prediction	problems	that	involve	non-linear	relationships.	Table	7.10[370]	shows	a	dataset,
the	 EEG	 dataset,	 based	 on	 a	 neurological	 experiment	 designed	 to	 capture	 how	 neural
responses	change	when	experiment	participants	view	positive	images	(e.g.,	a	picture	of	a
smiling	 baby)	 and	 negative	 images	 (e.g.,	 a	 picture	 of	 rotting	 food).	 In	 an	 experiment
performed	to	capture	this	data,	participants	were	shown	a	series	of	different	images,	and
their	 neural	 responses	 were	 measured	 using	 electroencephalography	 (EEG).	 In
particular,	the	values	of	the	commonly	used	P20	and	P45	potentials	were	measured	while
a	participant	viewed	each	image.	These	are	the	descriptive	features	in	this	dataset,	and	the
target	 feature,	TYPE,	 indicates	whether	 the	 subject	was	 viewing	 a	 positive	 or	 a	 negative
image.	 If	 a	 model	 could	 be	 trained	 to	 classify	 brain	 activity	 as	 being	 associated	 with
positive	images	or	negative	images,	doctors	could	use	this	model	to	help	in	assessing	the
brain	 function	 of	 people	 who	 have	 suffered	 severe	 brain	 injuries	 and	 are	 non-
communicative.16	Figure	 7.18[370]	 shows	 a	 scatter	 plot	 of	 this	 dataset,	 from	which	 it	 is
clear	that	the	decision	boundary	between	the	two	different	types	of	images	is	not	linear—
i.e.,	the	two	types	of	images	are	not	linearly	separable.

Table	7.10

A	dataset	showing	participants’	responses	to	viewing	positive	and	negative	images
measured	on	the	EEG	P20	and	P45	potentials.



Figure	7.18

A	scatter	plot	of	 the	P20	and	P45	features	 from	the	EEG	dataset.	 Instances	 representing
positive	images	are	shown	as	crosses,	and	those	representing	negative	images	as	triangles.

The	non-linear	decision	boundary	that	is	just	about	perceivable	in	Figure	7.18[370]	can
be	 represented	 using	 a	 third-order	 polynomial	 in	 the	 two	 descriptive	 features,	 P20	 and
P45.	The	 simple	 regression	model	we	 trained	 previously	 cannot	 cope	with	 a	 non-linear
decision	 boundary	 like	 the	 one	 seen	 in	 Figure	 7.18[370].	 We	 can,	 however,	 rewrite	 the
logistic	regression	equation	from	Equation	(7.26)[357]	to	use	basis	functions	as	follows:

Using	 this	representation	with	 the	following	set	of	basis	functions	will	give	 the	 learning
process	 the	 flexibility	 to	 find	 the	 non-linear	 decision	 boundary	 required	 to	 successfully
separate	the	different	types	of	images	in	the	EEG	dataset:17

ϕ0(〈P20,	P45〉)	=	1 ϕ4(〈P20,	P45〉)	=	P452

ϕ1(〈P20,	P45〉)	=	P20 ϕ5(〈P20,	P45〉)	=	P203

ϕ2(〈P20,	P45〉)	=	P45 ϕ6(〈P20,	P45〉)	=	P453

ϕ3(〈P20,	P45〉)	=	P202 ϕ7(〈P20,	P45〉)	=	P20	×	P45



This	model	 can	be	 trained	using	gradient	descent	 to	 find	 the	optimal	decision	boundary
between	the	two	different	types	of	images.	Figure	7.19[372]	shows	a	series	of	 the	models
built	 during	 the	 gradient	 descent	 process.	 The	 final	 model	 can	 accurately	 distinguish
between	 the	 two	 different	 types	 of	 image	 based	 on	 the	measured	P20	 and	P45	 activity.
Figure	7.19(f)[372]	 shows	a	3D	plot	of	 the	final	decision	surface.	Note	 that	although	 this
decision	surface	is	more	complex	than	the	ones	we	have	seen	before	(for	example,	Figure
7.12[358]),	the	logistic	shape	is	still	maintained.

Using	 basis	 functions	 is	 a	 simple	 and	 effective	 way	 in	 which	 to	 capture	 non-linear
relationships	within	a	linear	regression	model.	One	way	to	think	about	this	process	is	that
we	change	 the	dataset	 from	 two	dimensions	 to	 a	higher	dimensional	 space.	There	 is	 no
limit	to	the	kinds	of	functions	that	can	be	used	as	basis	functions,	and	as	we	have	seen	in
the	previous	example,	the	basis	functions	for	different	descriptive	features	in	a	dataset	can
be	quite	different.	One	disadvantage	of	using	basis	functions,	however,	is	that	the	analyst
has	to	design	the	basis	function	set	that	will	be	used.	Although	there	are	some	well-known
sets	 of	 functions—for	 example,	 different	 order	 polynomial	 functions—this	 can	 be	 a
considerable	 challenge.	 Second,	 as	 the	 number	 of	 basis	 functions	 grows	 beyond	 the
number	 of	 descriptive	 features,	 the	 complexity	 of	 our	models	 increases,	 so	 the	 gradient
descent	process	must	search	through	a	more	complex	weight	space.	Using	basis	functions
is	 an	 interesting	 way	 to	 change	 the	 inductive	 bias,	 in	 particular	 the	 restriction	 bias,
encoded	in	the	gradient	descent	algorithm	for	learning	regression	models.	By	using	basis
functions	such	as	those	given	in	the	examples	in	this	section,	we	relax	the	restriction	on
the	algorithm	to	consider	only	linear	models	and	instead	allow	more	complex	model	types
such	as	the	higher	order	polynomial	models	seen	in	these	examples.

Figure	7.19

A	 selection	 of	 the	 models	 developed	 during	 the	 gradient	 descent	 process	 for	 the	 EEG
dataset	from	Table	7.10[370].	The	final	panel	shows	the	decision	surface	generated.



7.4.6	Multinomial	Logistic	Regression

The	multinomial	 logistic	 regression18	 model	 is	 an	 extension	 that	 handles	 categorical
target	 features	 with	 more	 than	 two	 levels.	 A	 good	 way	 to	 build	 multinomial	 logistic
regression	models	is	use	a	set	of	one-versus-all	models.19	If	we	have	r	 target	 levels,	we
create	r	one-versus-all	 logistic	 regression	models.	A	one-versus-all	model	distinguishes
between	one	level	of	the	target	feature	and	all	the	others.	Figure	7.20[373]	shows	three	one-
versus-all	 prediction	 models	 for	 a	 prediction	 problem	 with	 three	 target	 levels	 (these
models	are	based	on	the	dataset	in	Table	7.11[374]	that	is	introduced	later	in	this	section).

Figure	7.20

An	 illustration	of	 three	 different	 one-versus-all	 prediction	models	 for	 the	 customer	 type
dataset	 in	Table	7.11[374],	 with	 three	 target	 levels:	 single	 (squares),	 business	 (triangles),
and	family	(crosses).

For	r	target	feature	levels,	we	build	r	separate	logistic	regression	models	 w1	to	 wr:

where	 w1	to	 wr	are	r	different	one-versus-all	 logistic	regression	models,	and	w1	 to	wr
are	 r	 different	 sets	 of	 weights.	 To	 combine	 the	 outputs	 of	 these	 different	 models,	 we
normalize	their	results	as	follows:

Table	7.11

A	dataset	of	customers	of	a	large	national	retail	chain.



	

where	 	is	a	revised,	normalized	prediction	for	the	one-versus-all	model	for	the	target
level	k.	The	denominator	in	this	equation	sums	the	predictions	of	each	of	the	one-versus-
all	models	 for	 the	 r	 levels	 of	 the	 target	 feature	 and	 acts	 as	 a	 normalization	 term.	 This
ensures	 that	 the	output	of	 all	models	 sums	 to	1.	The	r	 one-versus-all	 logistic	 regression
models	used	are	trained	in	parallel,	and	the	revised	model	outputs,	 ,	are	used	when
calculating	 the	 sum	 of	 squared	 errors	 for	 each	model	 during	 the	 training	 process.	 This
means	that	the	sum	of	squared	errors	function	is	changed	slightly	to

The	 revised	 predictions	 are	 also	 used	when	making	 predictions	 for	 query	 instances.
The	predicted	 level	 for	 a	query,	q,	 is	 the	 level	 associated	with	 the	one-versus-all	model
that	outputs	the	highest	result	after	normalization.	We	can	write	this	as

Table	7.11[374]	shows	a	sample	from	a	dataset	of	mobile	customers	that	includes	details
of	customers’	shopping	habits	with	a	large	national	retail	chain.	Each	customer’s	average
weekly	 spending	with	 the	 chain,	 SPEND,	 and	 average	 number	 of	 visits	 per	 week	 to	 the
chain,	FREQ,	are	included	along	with	the	TYPE	of	customer:	single,	business,	or	family.	An
extended	version	of	this	dataset	was	used	to	build	a	model	that	can	determine	the	type	of	a
customer	 based	 on	 a	 few	weeks	 of	 shopping	 behavior	 data.	 Figure	 7.21[375]	 shows	 the
training	sequence	for	a	multinomial	logistic	regression	model	trained	using	this	data	(after
the	data	had	been	range	normalized	to	[−1,	1]).	There	are	three	target	levels,	so	three	one-
versus-all	 models	 are	 built.	 The	 evolution	 of	 the	 decision	 boundary	 for	 each	 model	 is
shown.



Figure	7.21

A	selection	of	the	models	developed	during	the	gradient	descent	process	for	the	customer
group	dataset	from	Table	7.11[374].	Squares	represent	instances	with	the	single	target	level,
triangles	the	business	level,	and	crosses	the	family	level.	The	bottom-right	panel	illustrates
the	overall	decision	boundaries	between	the	three	target	levels.

The	 final	 one-versus-all	 decision	 boundaries	 shown	 in	 the	 bottom-middle	 panel	 of
Figure	7.21[375]	do	not	look	like	the	individual	one-versus-all	decision	boundaries	shown
in	Figure	7.20[373].	 The	 reason	 for	 this	 is	 that	 the	 boundaries	 shown	 in	 Figure	 7.20[373]

were	trained	in	isolation,	whereas	the	boundaries	shown	in	Figure	7.21[375]	were	trained	in
parallel	and	so	are	interconnected.	While	it	might	look	like	the	decision	boundary	for	the
single	 target	 level	 shown	 by	 the	 solid	 line	 does	 not	 discriminate	 between	 the	 instances
with	the	single	target	level	and	those	with	the	other	target	levels,	when	used	in	conjunction
with	 the	 other	 two	 decision	 boundaries,	 it	 does.	 We	 can	 see	 this	 in	 the	 decision
boundaries	shown	in	the	bottom-right	panel	of	Figure	7.21[375].	We	will	use	an	example
to	illustrate	how	a	prediction	is	made	using	a	multinomial	regression	model.

The	parameters	of	the	models	learned	for	the	three	final	decision	boundaries	in	Figure
7.21[375]	are

For	a	query	instance	with	SPEND	=	25.67	and	FREQ	=	6.12,	which	are	normalized	to	SPEND



=	−0.7279	and	FREQ	=	0.4789,	the	predictions	of	the	individual	models	would	be

These	predictions	would	be	normalized	as	follows:

This	means	the	overall	prediction	for	the	query	instance	is	single,	as	this	gets	the	highest
normalized	score.



7.4.7	Support	Vector	Machines

Support	 vector	machines	 (SVM)	 are	 another	 approach	 to	 predictive	 modeling	 that	 is
based	on	error-based	learning.	Figure	7.22(a)[377]	shows	a	scatter	plot	of	a	reduced	version
of	the	generators	dataset	(shown	in	Table	7.6[354])	with	a	decision	boundary	drawn	across
it.	 The	 instance	 nearest	 the	 decision	 boundary,	 based	 on	 perpendicular	 distance,	 is
highlighted.	This	distance	 from	 the	decision	boundary	 to	 the	nearest	 training	 instance	 is
known	as	the	margin.	The	dashed	lines	on	either	side	of	the	decision	boundary	show	the
extent	of	the	margin,	and	we	refer	to	these	as	the	margin	extents.

Figure	7.22

A	small	sample	of	the	generators	dataset	with	two	features,	RPM	and	VIBRATION,	and	two
target	 levels,	 good	 (shown	 as	 crosses)	 and	 faulty	 (shown	 as	 triangles):	 (a)	 a	 decision
boundary	with	a	very	small	margin;	(b)	a	decision	boundary	with	a	much	larger	margin.	In
both	cases,	the	instances	along	the	margins	are	highlighted.

Figure	 7.22(b)[377]	 shows	 a	 similar	 diagram	 but	 with	 a	 different	 decision	 boundary,
which	has	a	much	larger	margin.	The	intuition	behind	support	vector	machines	is	that	this
second	 decision	 boundary	 should	 distinguish	 between	 the	 two	 target	 levels	much	more
reliably	 than	 the	 first.	 Training	 a	 support	 vector	 machine	 involves	 searching	 for	 the
decision	boundary,	or	separating	hyperplane,20	that	leads	to	the	maximum	margin	as	this
will	 best	 separate	 the	 levels	 of	 the	 target	 feature.	Although	 the	 goal	 of	 finding	 the	 best
decision	boundary	is	the	same	for	algorithms	that	build	support	vector	machines	as	it	is	for
logistic	 regression	 models,	 the	 inductive	 bias	 encoded	 in	 the	 algorithms	 to	 select	 this
boundary	is	different,	which	leads	to	different	decision	boundaries	being	found.

The	instances	in	a	training	dataset	that	fall	along	the	margin	extents,	and	so	define	the
margins,	are	known	as	the	support	vectors.	These	are	the	most	important	instances	in	the
dataset	 because	 they	 define	 the	 decision	 boundary.	 There	 will	 always	 be	 at	 least	 one
support	 vector	 for	 each	 level	 of	 the	 target	 feature,	 but	 there	 is	 no	 limit	 to	 how	 many
support	vectors	there	can	be	in	total.

We	define	the	separating	hyperplane	in	the	same	way	that	we	did	at	the	beginning	of
the	discussion	of	logistic	regression:



Note	that	this	time	we	have	separated	w0	from	the	other	weights,	w,	as	this	will	make
later	 equations	 simpler.21	 Recall	 from	 Section	 7.4.4[353]	 that	 for	 instances	 above	 a
separating	hyperplane

w0	+	w	·	d	>	0

and	for	instances	below	a	separating	hyperplane

w0	+	w	·	d	<	0

For	 support	vector	machines,	we	 first	 set	 the	negative	 target	 feature	 level	 to	−1	and	 the
positive	 target	 feature	 level	 to	 +1.	We	 then	 build	 a	 support	 vector	 machine	 prediction
model	so	that	instances	with	the	negative	target	level	result	in	the	model	outputting	≤	−1
and	instances	with	the	positive	target	level	result	in	the	model	outputting	≥	+1.	The	space
between	the	outputs	of	−1	and	+1	allows	for	the	margin.

A	support	vector	machine	model	is	defined	as

where	q	 is	 the	 set	of	descriptive	 features	 for	a	query	 instance;	 (d1,	 t1),	…,	 (ds,	 ts)	 are	 s
support	vectors	(instances	composed	of	descriptive	features	and	a	target	feature);	w0	is	the
first	weight	of	the	decision	boundary;	and	α	is	a	set	of	parameters	determined	during	the
training	process	(there	is	a	parameter	for	each	support	vector	α	[1],	…,α[s]).22	When	 the
output	of	this	equation	is	greater	than	1,	we	predict	the	positive	target	level	for	the	query,
and	when	 the	 output	 is	 less	 than	−1,	we	predict	 the	 negative	 target	 level.	An	 important
feature	of	this	equation	is	that	the	support	vectors	are	a	component	of	the	equation.	This
reflects	 the	 fact	 that	 a	 support	 vector	 machine	 uses	 the	 support	 vectors	 to	 define	 the
separating	hyperplane	and	hence	to	make	the	actual	model	predictions.

To	train	a	support	vector	machine,	we	need	to	find	values	for	each	of	the	components
in	 Equation	 (7.41)[378]	 (the	 support	 vectors,	 w0,	 and	 the	 α	 parameters)	 that	 define	 the
optimal	decision	boundary	between	the	target	levels.	This	is	an	instance	of	a	constrained
quadratic	 optimization	problem,	 and	 there	 are	well-known	 approaches	 to	 solving	 this
type	 of	 problem.	 In	 this	 book	 we	 do	 not	 describe	 this	 step	 of	 the	 process	 in	 detail.23
Instead,	we	 focus	on	explaining	how	 the	process	 is	 set	up	and	how	 the	 training	process
reflects	 the	 inductive	bias	of	searching	for	 the	separating	hyperplane	with	 the	maximum
margin.	As	the	name	constrained	quadratic	optimization	problem	suggests,	this	type	of
problem	is	defined	in	terms	of	(1)	a	set	of	constraints	and	(2)	an	optimization	criterion.

When	 training	 a	 support	 vector	 machine,	 we	 wish	 to	 find	 a	 hyperplane	 that
distinguishes	 between	 the	 two	 target	 levels,	 −1	 and	 +1.	 So,	 the	 required	 constraints
required	by	the	training	process	are

and



Figure	 7.23[380]	 shows	 two	 different	 decision	 boundaries	 that	 satisfy	 these	 constraints.
Note	 that	 the	 decision	 boundaries	 in	 these	 examples	 are	 equally	 positioned	 between
positive	 and	 negative	 instances,	 which	 is	 a	 consequence	 of	 the	 fact	 that	 decision
boundaries	 satisfy	 these	 constraints.	 The	 support	 vectors	 are	 highlighted	 in	 Figure
7.23[380]	 for	each	of	 the	decision	boundaries	 shown.	For	 simplicity	 in	 later	 calculations,
we	can	combine	 the	 two	constraints	 in	Equations	(7.42)[379]	and	(7.43)[379]	 into	a	 single
constraint	(remember	that	ti	is	always	equal	to	either	−1	or	+1):

Figure	7.23

Different	 margins	 that	 satisfy	 the	 constraint	 in	 Equation	 (7.44)[379],	 the	 instances	 that
define	the	margin	are	highlighted	in	each	case;	(b)	shows	the	maximum	margin	and	also
shows	two	query	instances	represented	as	black	dots.

The	optimization	criterion	used	when	 training	a	 support	vector	machine	allows	us	 to
choose	between	multiple	different	decision	boundaries	that	satisfy	the	constraint	given	in
Equation	(7.44)[379],	 such	as	 those	 shown	 in	Figure	7.23[380].	 The	 optimization	 criterion
used	 is	defined	 in	 terms	of	 the	perpendicular	distance	 from	any	 instance	 to	 the	decision
boundary	and	is	given	by

where	||w||	is	known	as	the	Euclidean	norm	of	w	and	is	calculated	as

For	instances	along	the	margin	extents,	abs(w0	+	w	·	d)	=	1	(according	to	Equation	(7.44)
[379]).	 So,	 the	 distance	 from	 any	 instance	 along	 the	 margin	 extents	 to	 the	 decision

boundary	 is	 ,	 and	 because	 the	 margin	 is	 symmetrical	 to	 either	 side	 of	 the	 decision

boundary,	the	size	of	the	margin	is	 .	The	goal	when	training	a	support	vector	machine
is	to	maximize	 	subject	to	the	constraint	expressed	in	Equation	(7.44)[379].

Once	the	constraints	and	optimization	criterion	have	been	defined,	the	solution	to	the



constrained	quadratic	optimization	process	will	identify	and	define	all	the	components	in
Equation	 (7.41)[378]	 (the	 support	 vectors,	 w0,	 and	 the	 α	 parameters)	 for	 the	 optimal
decision	boundary.

The	optimal	decision	boundary	and	associated	support	vectors	for	the	example	we	have
been	following	are	shown	in	Figure	7.23(b)[380].	In	this	case	good	is	the	positive	level	and
set	to	+1,	and	faulty	is	the	negative	level	and	set	to	−1.	The	descriptive	feature	values	and
target	 feature	 values	 for	 the	 support	 vectors	 in	 these	 cases	 are	 (〈−0.225,	 0.217〉,	 +1),
(〈−0.066,	−0.069〉,	−1),	and	(〈−0.273,	−0.080〉,	−1).	The	value	of	w0	 is	−0.1838,	and	 the
values	 of	 the	 α	 parameters	 are	 〈23.056,	 6.998,	 16.058〉).	 Figure	 7.23(b)[380]	 shows	 the
position	of	 two	new	query	 instances	for	 this	problem.	The	descriptive	feature	values	 for
these	 query	 instances	 are	q1	 =	 〈−0.314,	 −0.251〉	 and	q2	 =	 〈−0.117,	 0.31〉.	 For	 the	 first
query	instance,	q1,	the	output	of	the	support	vector	machine	model	is:

The	model	output	is	less	than	−1,	so	this	query	is	predicted	to	be	a	faulty	generator.	For	the
second	 query	 instance,	 the	 model	 output	 is	 calculated	 similarly	 and	 is	 1.592.	 This	 is
greater	than	+1,	so	this	instance	is	predicted	to	be	a	good	generator.

In	 the	 same	way	we	 used	 basis	 functions	with	 logistic	 regression	models	 in	 Section
7.4.5[365],	basis	functions	can	be	used	with	support	vector	machines	to	handle	training	data
that	 is	 not	 linearly	 separable.	 In	 order	 to	 use	 basis	 functions,	we	must	 update	Equation
(7.44)[379]	to

where	ϕ	is	a	set	of	basis	functions	applied	to	the	descriptive	features	d,	and	w	is	a	set	of
weights	 containing	 one	 weight	 for	 each	 member	 of	 ϕ.	 Typically,	 the	 number	 of	 basis
functions	in	ϕ	 is	 larger	 than	the	number	of	descriptive	features,	so	 the	application	of	 the
basis	functions	moves	the	data	into	a	higher-dimensional	space.	The	expectation	is	that	a
linear	 separating	 hyperplane	 will	 exist	 in	 this	 higher-dimensional	 space	 even	 though	 it
does	not	in	the	original	feature	space.	The	prediction	model	in	this	case	becomes

Equation	(7.46)[382]	requires	a	dot	product	calculation	between	the	result	of	applying	the
basis	 functions	 to	 the	 query	 instance	 and	 to	 each	 of	 the	 support	 vectors.	 During	 the
training	process,	 this	 is	 repeated	multiple	 times.	A	dot	product	of	 two	high-dimensional
vectors	is	a	computationally	expensive	operation,	but	a	clever	trick—the	kernel	trick—is
used	to	avoid	it.	The	same	result	obtained	by	calculating	the	dot	product	of	the	descriptive



features	of	a	support	vector	and	a	query	instance	after	having	applied	the	basis	functions
can	be	obtained	by	applying	a	much	 less	 costly	kernel	 function,	kernel,	 to	 the	original
descriptive	feature	values	of	 the	support	vector	and	the	query.24	The	prediction	equation
becomes

A	 wide	 range	 of	 standard	 kernel	 functions	 can	 be	 used	 with	 support	 vector	 machines.
Some	popular	options	are

Linear	kernel kernel(d,	q)	=	d	·	q	+	c

where	c	is	an	optional	constant

Polynomial	kernel kernel(d,	q)	=	(d	·	q	+	1)p

where	p	is	the	degree	of	a	polynomial	function

Gaussian	radial	basis	kernel kernel(d,	q)	=	exp(−γ	||d	−	q||2)

where	γ	is	a	manually	chosen	tuning	parameter

The	appropriate	kernel	function	for	a	particular	prediction	model	should	be	selected	by
experimenting	with	different	options.	It	is	best	to	start	with	a	simple	linear	or	low-degree
polynomial	 kernel	 function	 and	 move	 to	 more	 complex	 kernel	 functions	 only	 if	 good
performance	cannot	be	achieved	with	this.

The	description	of	the	support	vector	machine	approach	given	in	this	section	assumes
that	it	is	possible	to	separate	the	instances	with	the	two	different	target	feature	levels	with
a	linear	hyperplane.	Sometimes	this	is	not	possible,	even	after	using	a	kernel	function	to
move	the	data	to	a	higher	dimensional	feature	space.	In	these	instances,	a	margin	cannot
be	defined	as	we	have	done	in	this	example.	An	extension	of	the	standard	support	vector
machine	approach	that	allows	a	soft	margin,	however,	caters	for	this	and	allows	overlap
between	 instances	 with	 target	 features	 of	 the	 two	 different	 levels.	 Another	 extension
allows	support	vector	machines	to	handle	multinomial	target	features	using	a	one-versus-
all	 approach	 similar	 to	 that	 described	 in	Section	 7.4.6[373].	 There	 are	 also	 extensions	 to
handle	 categorical	 descriptive	 features	 (similar	 to	 the	 approach	 described	 in	 Section
7.4.3[351])	and	continuous	target	features.

Support	vector	machines	have	become	a	very	popular	approach	to	building	predictive
models	 in	 recent	 times.	 They	 can	 be	 quickly	 trained,	 are	 not	 overly	 susceptible	 to
overfitting,	 and	 work	 well	 for	 high-dimensional	 data.	 In	 contrast	 to	 logistic	 regression
models,	 however,	 they	 are	 not	 very	 interpretable,	 and,	 especially	when	kernel	 functions
are	used,	it	is	very	difficult	to	understand	why	a	particular	prediction	has	been	made.



7.5	Summary
The	 simple	multivariable	 linear	 regression	 (Section	 7.3[332])	model	 (for	 convenience,
repeated	here	as	Equation	 (7.48)[383])	makes	a	prediction	 for	a	continuous	 target	 feature
based	on	a	weighted	sum	of	the	values	of	a	set	of	descriptive	features.	In	an	error-based
model,	 learning	 equates	 to	 finding	 the	 optimal	 values	 for	 these	 weights.	 Each	 of	 the
infinite	number	of	possible	combinations	of	values	for	the	weights	will	result	in	a	model
that	 fits,	 to	 some	 extent,	 the	 relationship	 present	 in	 the	 training	 data	 between	 the
descriptive	 features	 and	 the	 target	 feature.	 The	 optimal	 values	 for	 the	 weights	 are	 the
values	that	define	the	model	with	the	minimum	prediction	error.

We	use	an	error	function	to	measure	how	well	a	set	of	weights	fits	the	relationship	in	the
training	data.	The	most	common	error	function	used	for	error-based	models	is	the	sum	of
squared	errors.	 The	 value	 of	 the	 error	 function	 for	 every	 possible	weight	 combination
defines	 an	 error	 surface,	 similar	 to	 the	 one	 shown	 in	 Figure	 7.24(a)[384]—for	 each
combination	 of	weight	 values,	we	 get	 a	 point	 on	 the	 surface	whose	 coordinates	 are	 the
weight	values,	with	an	elevation	defined	by	the	error	of	the	model	using	the	weight	values.
To	 find	 the	 optimal	 set	 of	 weights,	 we	 begin	 with	 a	 set	 of	 random	weight	 values	 that
corresponds	 to	 some	 random	point	on	 the	 error	 surface.	We	 then	 iteratively	make	 small
adjustments	 to	 these	weights	based	on	 the	output	of	 the	error	 function	which	 leads	 to	 a
journey	down	the	error	surface	that	eventually	leads	to	the	optimal	set	of	weights.	The	zig-
zagging	line	in	Figure	7.24(a)[384]	shows	an	example	journey	across	an	error	surface,	and
Figure	7.24(b)[384]	shows	the	reduction	in	the	sum	of	squared	errors	as	the	search	for	the
optimal	weights	progresses	down	the	error	surface.



Figure	7.24

The	journey	across	an	error	surface	and	the	changing	sums	of	squared	errors	during	this
journey.

To	ensure	that	we	arrive	at	the	optimal	set	of	weights	at	the	end	of	this	journey	across
the	error	surface,	we	need	to	ensure	that	each	step	we	take	moves	downward	on	the	error
surface.	We	do	this	by	directing	our	steps	according	to	the	gradient	of	the	error	surface	at
each	 step.	This	 is	 the	gradient	descent	algorithm,	which	 is	 one	 of	 the	most	 important
algorithms	in	all	of	computer	science,	let	alone	machine	learning.

The	simple	multivariable	linear	regression	model	that	we	presented	at	the	beginning	of
this	chapter	can	be	extended	in	many	ways,	and	we	presented	some	of	the	most	important
of	 these.	Logistic	regression	models	 (Section	 7.4.4[353])	 allow	 us	 to	 predict	 categorical
targets	 rather	 than	 continuous	 ones	 by	 placing	 a	 threshold	 on	 the	 output	 of	 the	 simple
multivariable	linear	regression	model	using	the	logistic	function.

The	simple	linear	regression	and	logistic	regression	models	that	we	first	looked	at	were
only	capable	of	representing	linear	relationships	between	descriptive	features	and	a	target
feature.	 In	 many	 cases,	 this	 limits	 the	 creation	 of	 an	 accurate	 prediction	 model.	 By
applying	a	set	of	basis	 functions	 (Section	7.4.5[365])	 to	descriptive	features,	models	 that
represent	 non-linear	 relationships	 can	 be	 created.	 The	 advantages	 of	 using	 basis
functions	is	that	they	allow	models	that	represent	non-linear	relationships	to	be	built	even
though	these	models	themselves	remain	a	linear	combination	of	inputs	(e.g.,	we	still	use
something	 very	 similar	 to	 Equation	 (7.48)[383]	 to	 predict	 continuous	 targets).
Consequently,	 we	 can	 still	 use	 the	 gradient	 descent	 process	 to	 train	 them.	 The	 main
disadvantages	of	using	basis	functions	are,	first,	that	we	must	manually	decide	what	set	of
basis	 functions	 to	 use,	 and	 second,	 that	 the	 number	 of	 weights	 in	 a	model	 using	 basis
functions	 is	 usually	 far	 greater	 than	 the	 number	 of	 descriptive	 features,	 so	 finding	 the
optimal	set	of	weights	 involves	a	search	across	a	much	larger	set	of	possibilities—i.e.,	a
much	larger	weight	space.

It	 is	 somewhat	 surprising	 how	 often	 a	 linear	 multivariable	 regression	 model	 can
accurately	 represent	 the	 relationship	 between	 descriptive	 features	 and	 a	 target	 feature



without	the	use	of	basis	functions.	We	recommend	that	simple	linear	models	be	evaluated
first	and	basis	functions	introduced	only	when	the	performance	of	 the	simpler	models	 is
deemed	unsatisfactory.

The	logistic	regression	approach	(and	the	SVM	approach)	discussed	in	this	chapter	is
at	a	disadvantage	to	those	discussed	in	the	previous	chapters	in	that	in	its	basic	form,	it	can
only	 handle	 categorical	 target	 features	 with	 two	 levels.	 In	 order	 to	 handle	 categorical
target	 features	with	more	 than	 two	 levels,	 that	 is	multinomial	 prediction	 problems,	we
need	 to	 use	 a	 one-versus-all	 approach	 in	 which	 multiple	 models	 are	 trained.	 This
introduces	something	of	an	explosion	in	 the	number	of	weights	required	for	a	model,	as
we	have	an	individual	set	of	weights	for	every	target	feature	level.	This	is	one	reason	that
other	 approaches	 are	 often	 favored	 over	 logistic	 regression	 for	 predicting	 categorical
targets	with	many	levels.

One	of	the	most	attractive	features	of	the	regression	models	discussed	in	this	chapter	is
that	they	are	based	on	a	large	body	of	research	and	best-practice	in	statistics,	a	much	older
discipline	than	machine	learning.	The	maturity	of	regression-based	approaches	means	that
they	are	easily	accepted	in	other	disciplines	(e.g.,	biological,	physical,	and	social	sciences)
and	that	there	is	a	range	of	techniques	that	allow	a	degree	of	analysis	of	regression	models
beyond	what	is	possible	for	other	approaches.	We	saw	some	of	these	techniques	in	Section
7.4.1[347]	when	we	examined	the	importance	of	the	different	descriptive	features	in	a	linear
regression	model	through	an	analysis	of	the	model	weights.	A	range	of	other	approaches
we	 do	 not	 cover	 in	 this	 book	 can	 be	 used	 to	 do	 other	 in-depth	 analysis	 of	 regression
models.	Section	7.6[386]	recommends	further	reading	on	this	topic.

Near	 the	 end	 of	 this	 chapter	 we	 covered	 support	 vector	machines	 (SVM),	 a	more
recent	development	in	error-based	learning.	SVM	models	are	trained	in	a	slightly	different
way	 than	 regression	models,	but	 the	concepts	underpinning	both	approaches	are	similar.
The	main	advantages	of	SVM	models	are	that	they	are	robust	to	overfitting	and	perform
well	for	very	high-dimensional	problems.	SVM	models	are	just	one	of	a	whole	range	of
error-based	 approaches	 that	 are	 active	 areas	 for	 machine	 learning	 research,	 and	 new
approaches	 are	 constantly	 being	 developed.	 The	 next	 section	 discusses	 recommended
readings	for	more	information	on	the	regression	approaches	discussed	in	this	chapter	and
on	some	of	the	more	recent	developments	in	error-based	learning.



7.6	Further	Reading
The	key	component	of	the	gradient	descent	algorithm	presented	in	this	chapter	is	the	use
of	differentiation	 to	 compute	 the	 slope	of	 the	 error	 surface.	Differentiation	 is	 a	 part	 of
calculus,	which	is	a	large	and	very	important	field	of	mathematics.	In	Appendix	C[551]	we
provide	 an	 introduction	 to	 differentiation	 that	 covers	 all	 the	 techniques	 required	 to
understand	 how	 the	 gradient	 descent	 algorithm	 works.	 If,	 however,	 you	 wish	 to	 get	 a
broader	understanding	of	calculus,	we	recommend	Stewart	(2012)	as	an	excellent	textbook
on	all	aspects	of	calculus.

For	 a	 more	 in-depth	 treatment	 of	 regression	 models	 and	 their	 underpinnings	 in
statistics,	Chapter	14	of	Rice	(2006)	offers	a	nice	treatment	of	the	topic,	while	Kutner	et
al.	 (2004)	 provides	massive	 detail.	Ayres	 (2008)	 gives	 a	 lighter	 discussion	 of	 the	many
different	ways	in	which	regression	models	are	applied	in	practice.

Burges	(1998)	is	still	a	good,	freely	available	tutorial	on	support	vector	machines.	For
more	 details,	 Cristianini	 and	 Shawe-Taylor	 (2000)	 is	 a	 well-respected	 textbook	 on	 the
topic	and	covers	the	extensions	mentioned	in	Section	7.4.7[376],	while	Vapnik	(2000)	gives
a	good	overview	of	the	theoretical	underpinnings	of	support	vector	machines.

In	this	chapter	we	have	not	covered	artificial	neural	networks,	another	popular	error-
based	 approach	 to	 learning.	 One	 type	 of	 artificial	 neural	 network	 can	 be	 built	 by
connecting	 layers	 of	 logistic	 regression	 models,	 but	 there	 are	 many	 other	 network
topologies	 used	 in	 practice.	 Chapter	 5	 of	 Bishop	 (2006)	 gives	 a	 good	 introduction	 to
neural	networks,	and	Bishop	(1996),	by	the	same	author,	covers	neural	networks	in	great
detail.





7.7	Exercises
1.	A	multivariate	linear	regression	model	has	been	built	to	predict	the	heating	load

in	a	residential	building	based	on	a	set	of	descriptive	features	describing	the
characteristics	of	the	building.	Heating	load	is	the	amount	of	heat	energy	required	to
keep	a	building	at	a	specified	temperature,	usually	65°	Fahrenheit,	during	the	winter
regardless	of	outside	temperature.	The	descriptive	features	used	are	the	overall	surface
area	of	the	building,	the	height	of	the	building,	the	area	of	the	building’s	roof,	and	the
percentage	of	wall	area	in	the	building	that	is	glazed.	This	kind	of	model	would	be
useful	to	architects	or	engineers	when	designing	a	new	building.25	The	trained	model
is

Use	this	model	to	make	predictions	for	each	of	the	query	instances	shown	in	the	table
below.

ID SURFACE	AREA HEIGHT ROOF	AREA GLAZING	AREA

1 784.0 3.5 220.5 0.25

2 710.5 3.0 210.5 0.10

3 563.5 7.0 122.5 0.40

4 637.0 6.0 147.0 0.60

2.	You	have	been	hired	by	the	European	Space	Agency	to	build	a	model	that
predicts	the	amount	of	oxygen	that	an	astronaut	consumes	when	performing	five
minutes	of	intense	physical	work.	The	descriptive	features	for	the	model	will	be	the
age	of	the	astronaut	and	their	average	heart	rate	throughout	the	work.	The	regression
model	is

OXYCON	=	w[0]	+	w[1]	×	AGE	+	w[2]	×	HEARTRATE

The	table	below	shows	a	historical	dataset	that	has	been	collected	for	this	task.

ID OXYCON AGE HEART	RATE

1 37.99 41 138

2 47.34 42 153

3 44.38 37 151



4 28.17 46 133

5 27.07 48 126

6 37.85 44 145

7 44.72 43 158

8 36.42 46 143

9 31.21 37 138

10 54.85 38 158

11 39.84 43 143

12 30.83 43 138

a.	Assuming	that	the	current	weights	in	a	multivariate	linear	regression	model	are	w[0]
=	−59.50,	w[1]	=	−0.15,	and	w[2]	=	0.60,	make	a	prediction	for	each	training
instance	using	this	model.

b.	Calculate	the	sum	of	squared	errors	for	the	set	of	predictions	generated	in	part	(a).

c.	Assuming	a	learning	rate	of	0.000002,	calculate	the	weights	at	the	next	iteration	of
the	gradient	descent	algorithm.

d.	Calculate	the	sum	of	squared	errors	for	a	set	of	predictions	generated	using	the	new
set	of	weights	calculated	in	part	(c).

3.	A	multivariate	logistic	regression	model	has	been	built	to	predict	the	propensity
of	shoppers	to	perform	a	repeat	purchase	of	a	free	gift	that	they	are	given.	The
descriptive	features	used	by	the	model	are	the	age	of	the	customer,	the	socio-economic
band	to	which	the	customer	belongs	(a,	b,	or	c),	the	average	amount	of	money	the
customer	spends	on	each	visit	to	the	shop,	and	the	average	number	of	visits	the
customer	makes	to	the	shop	per	week.	This	model	is	being	used	by	the	marketing
department	to	determine	who	should	be	given	the	free	gift.	The	weights	in	the	trained
model	are	shown	in	the	table	below.

Feature Weight
Intercept	(w[0]) -3.82398
AGE -0.02990
SOCIO	ECONOMIC	BAND	B -0.09089
SOCIO	ECONOMIC	BAND	C -0.19558
SHOP	VALUE 0.02999
SHOP	FREQUENCY 0.74572



Use	this	model	to	make	predictions	for	each	of	the	following	query	instances.

ID AGE SOCIO	ECONOMIC	BAND SHOP	FREQUENCY SHOP	VALUE

1 56 b 1.60 109.32

2 21 c 4.92 11.28

3 48 b 1.21 161.19

4 37 c 0.72 170.65

5 32 a 1.08 165.39

4.	The	use	of	the	kernel	trick	is	key	in	writing	efficient	implementations	of	the
support	vector	machine	approach	to	predictive	modelling.	The	kernel	trick	is	based
on	the	fact	that	the	result	of	a	kernel	function	applied	to	a	support	vector	and	a	query
instance	is	equivalent	to	the	result	of	calculating	the	dot	product	between	the	support
vector	and	the	query	instance	after	a	specific	set	of	basis	functions	have	been	applied
to	both—in	other	words	kernel	(d,	q)	=	ϕ	(d)	·	ϕ	(q).

a.	Using	the	support	vector	〈d[1],	d[2]〉	and	the	query	instance	〈q[1],	q[2]〉	as	examples,
show	that	applying	a	polynomial	kernel	with	p	=	2,	kernel(d,	q)	=	(d	·	q	+	1)2,	is
equivalent	to	calculating	the	dot	product	of	the	support	vector	and	query	instance
after	applying	the	following	set	of	basis	functions:

b.	A	support	vector	machine	model	has	been	trained	to	distinguish	between	dosages	of
two	drugs	that	cause	a	dangerous	interaction,	and	those	that	interact	safely.	This
model	uses	just	two	continuous	features,	DOSE1	and	DOSE2,	and	two	target	levels,
dangerous	(the	positive	level,	+1)	and	safe	(the	negative	level,	−1).	The	support
vectors	in	the	trained	model	are	shown	in	the	table	below.

DOSE1 DOSE2 CLASS

0.2351 0.4016 +1

-0.1764 -0.1916 +1

0.3057 -0.9394 -1

0.5590 0.6353 -1



-0.6600 -0.1175 -1

In	the	trained	model	the	value	of	w0	is	0.3074,	and	the	values	of	the	α	parameters	are
〈7.1655,	6.9060,	2.0033,	6.1144,	5.9538〉.

i.	Using	the	version	of	the	support	vector	machine	prediction	model	that	uses
basis	functions	(see	Equation	7.46)	with	the	basis	functions	given	in	part	(a),
calculate	the	output	of	the	model	for	a	query	instance	with	DOSE1	=	0.90	and
DOSE2	=	−0.90.

ii.	Using	the	version	of	the	support	vector	machine	prediction	model	that	uses
a	kernel	function	(see	Equation	7.47)	with	the	polynomial	kernel	function,
calculate	the	output	of	the	model	for	a	query	instance	with	DOSE1	=	0.22	and
DOSE2	=	0.16.

iii.	Verify	that	the	answers	calculated	in	parts	(i)	and	(ii)	of	this	question	would	have
been	the	same	if	the	alternative	approach	(basis	functions	or	the	polynomial
kernel	function)	had	been	used	in	each	case.

	iv.	Compare	the	amount	of	computation	required	to	calculate	the	output	of	the
support	vector	machine	using	the	polynomial	kernel	function	with	the	amount
required	to	calculate	the	output	of	the	support	vector	machine	using	the	basis
functions.

✻	5.	When	building	multivariate	logistic	regression	models,	it	is	recommended	that
all	continuous	descriptive	features	be	normalized	to	the	range	[−1,	1].	The	table	below
shows	a	data	quality	report	for	the	dataset	used	to	train	the	model	described	in
Question	3.

Based	on	the	information	in	this	report,	all	continuous	features	were	normalized	using
range	normalization,	and	any	missing	values	were	replaced	using	mean	imputation
for	continuous	features	and	mode	imputation	for	categorical	features.	After	applying
these	data	preparation	operations,	a	multivariate	logistic	regression	model	was	trained
to	give	the	weights	shown	in	the	table	below.

Feature Weight
Intercept	(w[0]) 0.6679



AGE -0.5795
SOCIO	ECONOMIC	BAND	B -0.1981
SOCIO	ECONOMIC	BAND	C -0.2318
SHOP	VALUE 3.4091
SHOP	FREQUENCY 2.0499

Use	this	model	to	make	predictions	for	each	of	the	query	instances	shown	in	the	table
below	(question	marks	refer	to	missing	values).

ID AGE SOCIO	ECONOMIC	BAND SHOP	FREQUENCY SHOP	VALUE

1 38 a 1.90 165.39

2 56 b 1.60 109.32

3 18 c 6.00 10.09

4 ? b 1.33 204.62

5 62 ? 0.85 110.50

✻	6.	The	effects	that	can	occur	when	different	drugs	are	taken	together	can	be
difficult	for	doctors	to	predict.	Machine	learning	models	can	be	built	to	help	predict
optimal	dosages	of	drugs	so	as	to	achieve	a	medical	practitioner’s	goals.26	The	image
below	on	the	left	shows	a	scatter	plot	of	a	dataset	used	to	train	a	model	to	distinguish
between	dosages	of	two	drugs	that	cause	a	dangerous	interaction	and	those	that	cause	a
safe	interaction.	There	are	just	two	continuous	features	in	this	dataset,	DOSE1	and
DOSE2	(these	have	both	been	normalized	to	the	range	(−1,	1)	using	range
normalization),	and	two	target	levels,	dangerous	and	safe.	In	the	scatter	plot	DOSE1	is
shown	on	the	horizontal	axis,	DOSE2	is	shown	on	the	vertical	axis,	and	the	shapes	of
the	points	represent	the	target	level—crosses	represent	dangerous	interactions	and
triangles	represent	safe	interactions.

The	image	above	on	the	right	shows	a	simple	linear	logistic	regression	model	trained
to	perform	this	task.	This	model	is



Plainly,	this	model	is	not	performing	well.

a.	Would	the	similarity-based,	information-based,	or	probability-based	predictive
modeling	approaches	that	have	already	been	covered	in	this	book	be	likely	to	do	a
better	job	of	learning	this	model	than	the	simple	linear	regression	model?

b.	A	simple	approach	to	adapting	a	logistic	regression	model	to	learn	this	type	of
decision	boundary	is	to	introduce	a	set	of	basis	functions	that	will	allow	a	non-linear
decision	boundary	to	be	learned.	In	this	case,	a	set	of	basis	functions	that	generate	a
cubic	decision	boundary	will	work	well.	An	appropriate	set	of	basis	functions	is	as
follows:

ϕ0(〈DOSE1,	DOSE2〉)	=	1 ϕ1(〈DOSE1,	DOSE2〉)	=	DOSE1
ϕ2(〈DOSE1,	DOSE2〉)	=	DOSE2 ϕ3(〈DOSE1,	DOSE2〉)	=	DOSE12

ϕ4(〈DOSE1,	DOSE2〉)	=	DOSE22 ϕ5(〈DOSE1,	DOSE2〉)	=	DOSE13

ϕ6(〈DOSE1,	DOSE2〉)	=	DOSE23 ϕ7(〈DOSE1,	DOSE2〉)	=	DOSE1	×	DOSE2

Training	a	logistic	regression	model	using	this	set	of	basis	functions	leads	to	the
following	model:

Use	this	model	to	make	predictions	for	the	following	query	instances:

ID DOSE1 DOSE2

1 0.50 0.75

2 0.10 0.75

3 -0.47 -0.39

4 -0.47 0.18

✻	7.	The	following	multinomial	logistic	regression	model	predicts	the	TYPE	of	a
retail	customer	(single,	family,	or	business)	based	on	the	average	amount	that	they
spend	per	visit,	SPEND,	and	the	average	frequency	of	their	visits,	FREQ:



Use	this	model	to	make	predictions	for	the	following	query	instances:

ID SPEND FREQ

1 -0.62 0.10

2 -0.43 -0.71

3 0.00 0.00

✻	8.	A	support	vector	machine	has	been	built	to	predict	whether	a	patient	is	at	risk
of	cardiovascular	disease.	In	the	dataset	used	to	train	the	model	there	are	two	target
levels—high	risk	(the	positive	level,	+1)	or	low	risk	(the	negative	level,	−1)—and
three	descriptive	features—AGE,	BMI,	and	BLOOD	PRESSURE.	The	support	vectors	in
trained	the	model	are	shown	in	the	table	below	(all	descriptive	feature	values	have
been	standardised).

AGE BMI BLOOD	PRESSURE RISK

-0.4549 0.0095 0.2203 low	risk

-0.2843 -0.5253 0.3668 low	risk

0.3729 0.0904 -1.0836 high	risk

0.558 0.2217 0.2115 high	risk

In	the	model	the	value	of	w0	is	−0.0216,	and	the	values	of	the	α	parameters	are
〈1.6811,	0.2384,	0.2055,	1.7139〉.	What	predictions	would	this	model	make	for	the
following	query	instances?

ID AGE BMI BLOOD	PRESSURE

1 -0.8945 -0.3459 0.552

2 0.4571 0.4932 -0.4768

3 -0.3825 -0.6653 0.2855



4 0.7458 0.1253 -0.7986

	

	

	

	

	

	

	

_______________

1	Weights	 are	 often	 also	 known	 as	model	 parameters,	 so	 regression	models	 are	 often
known	as	parameterized	models.

2	Error	functions	are	also	commonly	referred	to	as	loss	functions	because	they	represent
what	we	lose	by	reducing	the	training	set	to	a	simple	model.

3	One	of	 the	best	known	and	earliest	applications	of	 solving	a	problem	by	 reducing	 the
sum	of	squared	errors	occurred	in	1801,	when	Carl	Friedrich	Gauss	used	it	to	minimize
the	measurement	error	 in	astronomical	data	and	by	doing	so	was	able	 to	extrapolate	 the
position	of	the	dwarf	planet	Ceres,	which	had	recently	been	found	but	then	lost	behind	the
glare	of	the	Sun.

4	The	words	multivariable	and	multi-feature	are	equivalent.	The	use	of	multivariable	is	a
sign	of	the	origins	of	regression	in	statistics	rather	than	machine	learning.

5	 In	 fact,	 this	 is	 the	 error	 surface	 that	 results	 from	 the	 office	 rentals	 dataset	 when	 the
descriptive	 features	 in	 the	 dataset	 are	 normalized	 to	 the	 range	 [−	 1,	 1]	 using	 range
normalization	before	being	used.	We	discuss	normalization	later	in	the	chapter.

6	See	Appendix	C[551].

7	Stochastic	gradient	descent	is	a	slightly	different	approach	in	which	an	adjustment	to
each	weight	is	made	based	on	the	error	in	the	prediction	made	by	the	candidate	model	for
each	training	instance	individually.	This	means	that	many	more	adjustments	are	made	to
the	weights.	We	will	 not	 discuss	 stochastic	 gradient	 descent	 in	 any	 detail	 in	 this	 book,
although	 the	 modifications	 that	 need	 to	 be	 made	 to	 the	 gradient	 descent	 algorithm	 for
stochastic	gradient	descent	are	fairly	simple.

8	Note	that	in	this	example,	we	have	normalized	the	RENTAL	PRICE	and	SIZE	features	to	the
range	 [−	 1,	 1],	 so	 the	 error	 surfaces	 shown	 in	 this	 example	 look	 slightly	 different	 from
those	shown	in	Figure	7.3[330]	and	Figure	7.5[337].

9	All	values	in	Table	7.3[345],	and	similar	subsequent	tables,	are	reported	at	a	precision	of
two	places	of	decimal.	Because	of	 this,	some	error	values	and	squared	error	values	may
appear	inconsistent.	This,	however,	is	only	due	to	rounding	differences.



10	Because	 this	 is	 a	higher	dimensional	problem	 (three	dimensions	 in	 the	 feature	 space
and	four	dimensions	in	the	weight	space),	it	is	not	possible	to	draw	the	same	graphs	of	the
error	surfaces	that	were	shown	for	the	previous	examples.

11	 Gross	 et	 al.	 (2006)	 describes	 a	 real-world	 example	 of	 this	 kind	 of	 application	 of
predictive	analytics.

12	Note	that	in	this	figure,	both	the	RPM	and	VIBRATION	features	have	been	normalized	to
the	 range	 [−	 1,	 1]	 (using	 range	 normalization	 as	 described	 in	 Section	 3.6.1[92]).	 It	 is
standard	 practice	 to	 normalize	 descriptive	 features	 whenever	 we	 are	 using	 regression
models	to	predict	a	categorical	target	feature.

13	 A	 hard	 threshold	 can	 be	 used	 fairly	 successfully	 to	 train	 prediction	 models	 for
categorical	targets	using	the	perceptron	learning	rule,	although	we	do	not	cover	that	in
this	book.

14	The	 logistic	 function	 is	 a	 real	workhorse	of	mathematical	modeling	and	 is	used	 in	 a
huge	range	of	different	applications.	For	example,	 the	 logistic	function	has	been	used	 to
model	 how	 new	 words	 enter	 a	 language	 over	 time,	 being	 first	 used	 very	 infrequently
before	moving	through	a	tipping	point	to	become	widespread	in	a	language.

15	Note	that	in	this	example,	and	in	the	examples	that	follow,	a	normalized	version	of	the
generators	 dataset	 is	 used	 (all	 descriptive	 features	 are	 normalized	 to	 the	 range	 [−	 1,	 1]
using	range	normalization),	so	the	weights	in	Equation	(7.27)[358]	are	different	from	those
in	Equation	(7.23)[354].	If	it	were	not	for	normalization,	these	two	sets	of	weights	would	be
the	same.

16	 This	 example	 is	 very	much	 simplified	 for	 illustration	 purposes,	 but	 very	 interesting
work	is	done	on	building	prediction	models	from	the	output	of	EEG	and	fMRI	scans—for
example,	Mitchell	et	al.	(2008).

17	The	term	arising	from	ϕ7	is	commonly	referred	to	as	an	interaction	term	as	it	allows
two	descriptive	features	to	interact	in	the	model.

18	Multinomial	 logistic	 regression	models	 are	often	 also	known	as	maximum	entropy,
conditional	maximum	entropy,	or	MaxEnt	models.

19	This	is	an	example	of	an	ensemble	model	like	those	described	in	Section	4.4.5[163].

20	 Remember	 that	 for	 problems	 with	 more	 than	 two	 descriptive	 features,	 the	 decision
boundary	is	a	hyperplane	rather	than	a	line.

21	This	also	means	that	we	no	longer	use	 the	dummy	descriptive	feature,	d	 [0],	 that	we
previously	always	set	to	1,	see	Equation	(7.9)[333].

22	These	parameters	are	formally	known	as	Lagrange	multipliers.

23	We	provide	references	in	Section	7.6[386].

24	Question	 4,	 at	 the	 end	 of	 this	 chapter,	 explores	 the	 kernel	 trick	 in	more	 detail,	 and
worked	examples	are	provided	in	the	solution.



25	This	question	 is	 inspired	by	Tsanas	and	Xifara	 (2012),	and	although	 the	data	used	 is
artificially	generated,	it	is	based	on	the	Energy	Efficiency	Dataset	available	from	the	UCI
Machine	 Learning	 Repository	 (Bache	 and	 Lichman,	 2013)	 at
archive.ics.uci.edu/ml/datasets/Energy+efficiency/.

26	The	data	used	in	this	question	has	been	artificially	generated	for	this	book.	Mac	Namee
et	al.	(2002)	is,	however,	a	good	example	of	prediction	models	being	used	to	help	doctors
select	correct	drug	dosages.





8	Evaluation

Essentially,	all	models	are	wrong,	but	some	are	useful.

—George	E.	P.	Box

In	this	chapter	we	describe	how	to	evaluate	machine	learning	models	built	for	predictive
data	 analytics	 tasks.	 We	 start	 by	 outlining	 the	 fundamental	 goals	 of	 evaluation	 before
describing	the	standard	approach	of	measuring	the	misclassification	rate	for	a	model	on	a
hold-out	test	set.	We	then	present	extensions	and	variations	of	this	approach	that	describe
different	 performance	 measures	 for	 models	 predicting	 categorical,	 continuous,	 and
multinomial	 targets;	 how	 to	 design	 effective	 evaluation	 experiments;	 and	 how	 to
continually	measure	the	performance	of	models	after	deployment.



8.1	Big	Idea
The	year	is	1904,	and	you	are	a	research	assistant	working	in	the	lab	of	physicist	Professor
René	Blondlot,	at	the	University	of	Nancy,	in	France.	Until	recently,	spirits	have	been	very
high	 in	 the	 lab	 due	 to	 the	 discovery	 earlier	 the	 previous	 year	 of	 a	 new	 form	 of
electromagnetic	radiation	called	N	rays	(Blondot,	1903).	The	existence	of	N	rays	was	first
hinted	 at	 in	 an	 experiment	 performed	 at	 the	 lab	 that	was	 designed	 to	 answer	 questions
about	the	exact	nature	of	the	recently	discovered	X	ray	radiation.	This	experiment	showed
behavior	 uncharacteristic	 of	 X	 rays,	 which	 Professor	 Blondlot	 interpreted	 to	mean	 that
another,	different	type	of	electromagnetic	radiation	must	exist.	This	new	type	of	radiation
was	named	the	N	ray	(after	the	University	of	Nancy),	and	experiments	were	designed	to
demonstrate	its	existence.	These	experiments	were	performed	in	Nancy	and	confirmed,	to
the	 satisfaction	 of	 everyone	 involved,	 that	N	 rays	 did	 indeed	 exist.	 This	 new	discovery
caused	 ripples	 of	 great	 excitement	 in	 the	 international	 physics	 community	 and	 greatly
enhanced	the	reputations	of	the	lab	at	Nancy	and	Professor	Blondlot.

Doubt	 has	 begun	 to	 surround	 the	 phenomenon	 of	 N	 rays,	 however,	 as	 a	 number	 of
international	physicists	have	not	been	able	to	reproduce	the	results	of	the	experiments	that
demonstrate	 their	 existence.	 You	 are	 currently	 preparing	 for	 a	 visit	 by	 the	 American
physicist	 Professor	 Robert	 W.	 Wood	 to	 whom	 Professor	 Blondlot	 has	 agreed	 to
demonstrate	the	experiments	that	show	the	effects	of	N	rays.	In	one	of	these	experiments,
the	brightening	of	a	small	spark	that	occurs	when	an	object	that	supposedly	emits	N	rays	is
brought	close	to	it	is	measured.	In	a	second	experiment,	the	refractive	effect	of	passing	N
rays	 through	 a	 prism	 (something	 that	 does	 not	 happen	 to	X	 rays)	 is	 demonstrated.	You
carefully	prepare	the	apparatus	for	these	experiments,	and	on	the	21st	of	September,	1904,
you	 spend	 three	 hours	 assisting	 Professor	 Blondlot	 in	 demonstrating	 them	 to	 Professor
Wood.

Just	over	a	week	later,	you	are	very	disappointed	to	read	an	article	published	by	Wood
in	 the	 journal	Nature	 (Wood,	 1904)	 that	 completely	 refutes	 the	 existence	 of	N	 rays.	He
dismisses	 the	 experimental	 setup	 for	 the	 experiments	 you	 demonstrated	 as	 entirely
inappropriate.	 Even	 more	 dramatically,	 he	 reports	 that	 he	 actually	 interfered	 with	 the
second	 experiment	 by	 removing	 the	 prism	 from	 the	 apparatus	 during	 the	 demonstration
(because	 the	 experiment	was	 completed	 in	 darkness,	Wood	was	 able	 to	 do	 this	without
anybody	 noticing),	 which	 made	 no	 difference	 to	 the	 results	 that	 you	 measured	 and
reported,	so	it	completely	undermines	them.	Within	a	few	years	of	the	publication	of	this
article,	the	consensus	within	the	physics	research	community	is	that	N	rays	do	not	exist.

The	story	of	Professor	Blondlot	and	N	rays	is	true,1	and	it	is	one	of	the	most	famous
examples	 in	 all	 of	 science	 of	 how	 badly	 designed	 experiments	 can	 lead	 to	 completely
inappropriate	conclusions.	There	was	no	fraud	involved	in	the	work	at	the	Nancy	lab.	The
experiments	 designed	 to	 show	 the	 existence	 of	 N	 rays	 simply	 relied	 too	 much	 on
subjective	 measurements	 (the	 changes	 in	 the	 brightness	 of	 the	 spark	 was	 measured	 by
simple	human	observation)	and	did	not	account	for	all	the	reasons	other	than	the	presence
of	N	rays	that	could	have	created	the	phenomena	observed.



The	big	idea	to	take	from	this	example	to	predictive	data	analytics	projects	is	that	when
we	 evaluate	 predictive	 models,	 we	 must	 ensure	 that	 the	 evaluation	 experiments	 are
designed	 so	 that	 they	 give	 an	 accurate	 estimate	 of	 how	 the	models	 will	 perform	when
deployed.	 The	 most	 important	 part	 of	 the	 design	 of	 an	 evaluation	 experiment	 for	 a
predictive	model	is	ensuring	that	the	data	used	to	evaluate	the	model	is	not	the	same	as	the
data	used	to	train	the	model.



8.2	Fundamentals
Over	the	last	four	chapters,	we	have	discussed	a	range	of	approaches	to	building	machine
learning	models	that	make	various	kinds	of	predictions.	The	question	that	we	must	answer
in	 the	Evaluation	 phase	 of	 the	CRISP-DM	 process	 (recall	 Section	 1.5[12])	 is	 can	 the
model	 generated	 do	 the	 job	 that	 it	 has	 been	 built	 for?	 The	 purpose	 of	 evaluation	 is
threefold:

to	determine	which	of	the	models	that	we	have	built	for	a	particular	task	is	most	suited
to	that	task
to	estimate	how	the	model	will	perform	when	deployed
to	 convince	 the	 business	 for	whom	 a	model	 is	 being	 developed	 that	 the	model	will
meet	their	needs

The	first	two	items	in	this	list	focus	on	measuring	and	comparing	the	performance	of	a
group	 of	 models	 to	 determine	 which	 model	 best	 performs	 the	 prediction	 task	 that	 the
models	have	been	built	to	address.	The	definition	of	best	is	important	here.	No	model	will
ever	be	perfect,	so	some	fraction	of	the	predictions	made	by	every	model	will	be	incorrect.
There	 are,	 though,	 a	 range	 of	 ways	 in	 which	 models	 can	 be	 incorrect,	 and	 different
analytics	projects	will	emphasize	some	over	others.	For	example,	 in	a	medical	diagnosis
scenario,	we	would	require	that	a	prediction	model	be	very	accurate	in	its	diagnoses	and,
in	particular,	never	incorrectly	predict	that	a	sick	patient	is	healthy,	as	that	patient	will	then
leave	 the	 health-care	 system	 and	 could	 subsequently	 develop	 serious	 complications.	On
the	other	hand,	a	model	built	to	predict	which	customers	would	be	most	likely	to	respond
to	 an	 online	 ad	 only	 needs	 to	 do	 a	 slightly	 better	 than	 random	 job	 of	 selecting	 those
customers	that	will	actually	respond	in	order	to	make	a	profit	for	the	company.	To	address
these	 different	 project	 requirements,	 there	 is	 a	 spectrum	 of	 different	 approaches	 to
measuring	 the	performance	of	a	model,	and	 it	 is	 important	 to	align	 the	correct	approach
with	a	given	modeling	task.	The	bulk	of	this	chapter	discusses	these	different	approaches
and	the	kinds	of	modeling	tasks	that	they	best	suit.

As	 indicated	 by	 the	 third	 item	 in	 the	 list	 above,	 there	 is	 more	 to	 evaluation	 than
measuring	model	performance.	For	a	model	to	be	successfully	deployed,	we	must	consider
issues	like	how	quickly	the	model	makes	predictions,	how	easy	it	easy	for	human	analysts
to	 understand	 the	 predictions	made	 by	 a	 model,	 and	 how	 easy	 it	 is	 to	 retrain	 a	 model
should	it	go	stale	over	time.	We	return	to	these	issues	in	the	final	section	of	this	chapter.



8.3	Standard	Approach:	Misclassification	Rate	on	a	Hold-
out	Test	Set
The	basic	process	for	evaluating	the	effectiveness	of	predictive	models	is	simple.	We	take
a	dataset	for	which	we	know	the	predictions	that	we	expect	the	model	to	make,	referred	to
as	 a	 test	 set,	 present	 the	 instances	 in	 this	 dataset	 to	 a	 trained	 model,	 and	 record	 the
predictions	 that	 the	 model	 makes.	 These	 predictions	 can	 then	 be	 compared	 to	 the
predictions	we	 expected	 the	model	 to	make.	Based	on	 this	 comparison,	 a	performance
measure	can	be	used	to	capture,	numerically,	how	well	the	predictions	made	by	the	model
match	those	that	were	expected.

There	are	different	ways	in	which	a	test	set	can	be	constructed	from	a	dataset,	but	the
simplest	is	to	use	what	is	referred	to	as	a	hold-out	test	set.	A	hold-out	test	set	is	created	by
randomly	sampling	a	portion	of	the	data	in	the	ABT	we	created	in	the	Data	Preparation
phase.	This	random	sample	 is	never	used	 in	 the	 training	process	but	 reserved	until	after
the	 model	 has	 been	 trained,	 when	 we	 would	 like	 to	 evaluate	 its	 performance.	 Figure
8.1[400]	illustrates	this	process.

Figure	8.1

The	process	of	building	and	evaluating	a	model	using	a	hold-out	test	set.

Using	 a	 hold-out	 test	 set	 avoids	 the	 issue	 of	 peeking,	 which	 arises	 when	 the
performance	of	a	model	 is	evaluated	on	 the	 same	data	used	 to	 train	 it;	because	 the	data
was	used	in	the	training	process,	the	model	has	already	seen	this	data,	so	it	is	probable	that
it	will	perform	very	well	when	evaluated	on	 this	data.	An	extreme	case	of	 this	problem
happens	 when	 k	 nearest	 neighbor	 models	 are	 used.	 If	 the	 model	 is	 asked	 to	 make	 a
prediction	about	an	 instance	 that	was	used	 to	 train	 it,	 the	model	will	 find	as	 the	nearest
neighbor,	 for	 this	 instance,	 the	 instance	 itself.	 Therefore,	 if	 the	 entire	 training	 set	 is
presented	to	this	model,	its	performance	will	appear	to	be	perfect.	Using	a	hold-out	test	set
avoids	this	problem,	because	none	of	 the	instances	in	the	test	set	will	have	been	used	in
the	training	process.	Consequently,	the	performance	of	the	model	on	the	test	set	is	a	better
measure	of	how	 the	model	 is	 likely	 to	perform	when	actually	deployed	and	 shows	how
well	 the	model	can	generalize	beyond	the	instances	used	to	train	it.	The	most	important
rule	 in	 evaluating	 models	 is	 not	 to	 use	 the	 same	 data	 sample	 both	 to	 evaluate	 the



performance	of	a	predictive	model	and	to	train	it.

Table	8.1

A	sample	test	set	with	model	predictions.

ID Target Pred. Outcome

1 spam ham FN

2 spam ham FN

3 ham ham TN

4 spam spam TP

5 ham ham TN

6 spam spam TP

7 ham ham TN

8 spam spam TP

9 spam spam TP

10 spam spam TP

11 ham ham TN

12 spam ham FN

13 ham ham TN

14 ham ham TN

15 ham ham TN

16 ham ham TN

17 ham spam FP

18 spam spam TP

19 ham ham TN



20 ham spam FP

	

For	a	 first	example	of	how	to	evaluate	 the	performance	of	a	predictive	model,	 let	us
assume	that	we	are	dealing	with	an	email	classification	problem	with	a	binary	categorical
target	 feature	 distinguishing	 between	 spam	 and	 ham	 emails.	 When	 making	 predictions
about	categorical	targets,	we	need	performance	measures	that	capture	how	often	the	model
makes	correct	predictions	and	the	severity	of	the	mistakes	that	the	model	makes	when	it	is
incorrect.	Table	8.1[401]	shows	the	expected	targets	for	a	small	sample	test	set	and	a	set	of
predictions	made	by	a	model	trained	for	this	prediction	problem	(the	FP	and	FN	comments
in	the	Outcome	column	will	be	explained	shortly).

The	 simplest	 performance	 measure	 we	 can	 use	 to	 asses	 how	 well	 this	 model	 has
performed	for	this	problem	is	the	misclassification	rate.	The	misclassification	rate	is	the
number	 of	 incorrect	 predictions	 made	 by	 the	 model	 divided	 by	 the	 total	 number	 of
predictions	made:

In	the	example	in	Table	8.1[401],	20	predictions	are	made	in	total,	and	out	of	these,	5	are
incorrect	 (instances	 d1,	 d2,	 d12,	 d17,	 and	 d20).	 Therefore,	 the	 misclassification	 rate	 is
calculated	as	 ,	which	is	usually	expressed	as	a	percentage:	25%.	This	tells	us	that
the	model	is	incorrect	about	a	quarter	of	the	time.	Misclassification	rate	can	assume	values
in	the	range	[0,	1],	and	lower	values	indicate	better	performance.

The	confusion	matrix	is	a	very	useful	analysis	tool	to	capture	what	has	happened	in	an
evaluation	 test	 in	 a	 little	 more	 detail	 and	 is	 the	 basis	 for	 calculating	 many	 other
performance	measures.	The	confusion	matrix	calculates	 the	frequencies	of	each	possible
outcome	of	the	predictions	made	by	a	model	for	a	test	dataset	in	order	to	show,	in	detail,
how	 the	 model	 is	 performing.	 For	 a	 prediction	 problem	 with	 a	 binary	 target	 feature
(where,	by	convention,	we	refer	to	the	two	levels	as	positive	and	negative),	there	are	just
four	outcomes	when	the	model	makes	a	prediction:

True	Positive	(TP):	an	instance	in	the	test	set	that	had	a	positive	target	feature	value
and	that	was	predicted	to	have	a	positive	target	feature	value
True	Negative	(TN):	an	instance	in	the	test	set	that	had	a	negative	target	feature	value
and	that	was	predicted	to	have	a	negative	target	feature	value
False	Positive	(FP):	an	instance	in	the	test	set	that	had	a	negative	target	feature	value
but	that	was	predicted	to	have	a	positive	target	feature	value
False	Negative	(FN):	an	instance	in	the	test	set	that	had	a	positive	target	feature	value
but	that	was	predicted	to	have	a	negative	target	feature	value

The	Outcome	column	of	Table	8.1[401]	shows	the	category	to	which	each	prediction	made
by	 the	model	 belongs.	 One	 thing	worth	 keeping	 in	mind	 is	 that	 there	 are	 two	ways	 in
which	the	prediction	made	by	a	model	can	be	correct—true	positive	or	true	negative—and



two	ways	 in	which	 the	 prediction	made	 by	 a	model	 can	 be	 incorrect—false	 positive	 or
false	negative.2	The	confusion	matrix	allows	us	to	capture	these	different	types	of	correct
and	incorrect	predictions	made	by	the	model.

Each	cell	in	a	confusion	matrix	represents	one	of	these	outcomes	(TP,	TN,	FP,	FN)	and
counts	the	number	of	times	this	outcome	occurred	when	the	test	dataset	was	presented	to
the	model.	The	structure	of	a	confusion	matrix	for	a	simple	prediction	task	with	two	target
levels	is	shown	in	Table	8.2[403].	The	columns	in	the	table	are	labeled	Prediction-positive
and	Prediction-negative	and	represent	the	predictions	generated	by	a	model,	that	is	either
positive	or	negative.	The	rows	in	the	table	are	labeled	Target-positive	and	Target-negative
and	 represent	 the	 target	 feature	 values	 that	 were	 expected.	 The	 top	 left	 cell	 in	 the
confusion	 matrix,	 labeled	 TP,	 shows	 the	 number	 of	 instances	 in	 a	 test	 set	 that	 have	 a
positive	target	feature	value	that	were	also	predicted	by	the	model	to	have	a	positive	target
feature	value.	Similarly,	the	bottom	left	cell	in	the	matrix,	labeled	FP,	shows	the	number	of
instances	in	a	test	set	that	have	a	negative	target	feature	value	that	were	in	fact	predicted
by	the	model	to	have	a	positive	target	feature	value.	TN	and	FN	are	defined	similarly.

Table	8.2

The	structure	of	a	confusion	matrix.

Prediction

positive negative

Target
positive TP FN

negative FP TN

Table	8.3

A	confusion	matrix	for	the	set	of	predictions	shown	in	Table	8.1[401].

Prediction

spam ham

Target
spam 6 3

ham 2 9

At	a	glance,	the	confusion	matrix	can	show	us	that	a	model	is	performing	well	if	 the
numbers	 on	 its	 diagonal,	 representing	 the	 true	 positives	 and	 true	 negatives,	 are	 high.
Looking	at	the	other	cells	within	the	confusion	matrix	can	show	us	what	kind	of	mistakes
the	model	is	making.	Table	8.3[403]	shows	the	confusion	matrix	for	the	set	of	predictions
shown	in	Table	8.1[401]	(in	this	case,	we	refer	to	the	spam	target	level	as	the	positive	level



and	ham	as	the	negative	level).3

It	is	clear	from	the	values	along	the	diagonal,	the	true	positives	and	true	negatives,	that
the	model	is	doing	a	reasonably	good	job	of	making	accurate	predictions.	We	can	actually
calculate	the	misclassification	rate	directly	from	the	confusion	matrix	as	follows:

In	 the	 email	 classification	 example	 we	 have	 been	 following,	 the	 misclassification	 rate
would	be

For	 completeness,	 it	 is	 worth	 noting	 that	 classification	 accuracy	 is	 the	 opposite	 of
misclassification	rate.	Again,	using	the	confusion	matrix,	classification	accuracy	is	defined
as

Classification	accuracy	can	assume	values	in	the	range	[0,	1],	and	higher	values	indicate
better	performance.	For	the	email	classification	task,	classification	accuracy	would	be

We	can	also	use	the	confusion	matrix	to	begin	to	investigate	the	kinds	of	mistakes	that
the	 prediction	 model	 is	 making.	 For	 example,	 the	 model	 makes	 a	 prediction	 of	 ham
incorrectly	3	times	out	of	the	9	times	that	the	correct	prediction	should	be	spam	(33.333%
of	the	time),	while	it	makes	a	prediction	of	spam	incorrectly	just	2	times	out	the	11	times
that	the	correct	prediction	should	be	ham	(18.182%	of	the	time).	This	suggests	that	when
the	model	makes	mistakes,	it	more	commonly	incorrectly	predicts	the	spam	level	than	the
ham	 level.	 This	 kind	 of	 insight	 that	we	 can	 get	 from	 the	 confusion	matrix	 can	 help	 in
trying	to	improve	a	model	as	it	can	suggest	to	us	where	we	should	focus	our	work.

This	section	has	presented	a	basic	approach	to	evaluating	prediction	models.	The	most
important	things	to	take	away	from	this	example	are

1.	 It	is	crucial	to	use	data	to	evaluate	a	model	that	has	not	been	used	to	train	the	model.
2.	 The	 overall	 performance	 of	 a	 model	 can	 be	 captured	 in	 a	 single	 performance

measure,	for	example,	misclassification	rate.
3.	 To	fully	understand	how	a	model	is	performing,	it	can	often	be	useful	to	look	beyond

a	single	performance	measure.

There	 are,	 however,	 a	 range	 of	 variations	 to	 this	 standard	 approach	 to	 evaluating
prediction	 model	 performance,	 and	 the	 remainder	 of	 this	 chapter	 covers	 the	 most
important	of	these.



8.4	Extensions	and	Variations
When	evaluating	the	performance	of	prediction	models,	there	is	always	a	tension	between
the	need	to	fully	understand	the	performance	of	the	model	and	the	need	to	reduce	model
performance	 to	 a	 single	measure	 that	 can	 be	 used	 to	 rank	models	 by	 performance.	 For
example,	a	set	of	confusion	matrices	gives	a	detailed	description	of	how	a	set	of	models
trained	 on	 a	 categorical	 prediction	 problem	 performed	 and	 can	 be	 used	 for	 a	 detailed
comparison	 of	 performances.	 Confusion	 matrices,	 however,	 cannot	 be	 ordered	 and	 so
cannot	be	used	to	rank	the	performance	of	the	set	of	models.	To	perform	this	ranking,	we
need	to	reduce	the	information	contained	in	the	confusion	matrix	to	a	single	measure,	for
example,	 misclassification	 rate.	 Any	 information	 reduction	 process	 will	 result	 in	 some
information	 loss,	 and	 a	 single	 measure	 of	 model	 performance	 will	 be	 designed	 to
emphasize	some	aspects	of	model	performance	and	de-emphasize,	or	lose,	others.	For	this
reason,	there	are	a	variety	of	different	performance	measures	and	no	single	approach	that
is	appropriate	for	all	scenarios.

This	section	covers	a	selection	of	the	most	important	performance	measures.	We	also
describe	 different	 experimental	 designs	 for	 evaluating	 prediction	 models	 and	 ways	 to
monitor	model	performance	after	a	model	has	been	deployed.



8.4.1	Designing	Evaluation	Experiments

As	 well	 as	 being	 required	 to	 select	 appropriate	 performance	 measures	 to	 use	 when
evaluating	 trained	 models,	 we	 also	 need	 to	 ensure	 that	 we	 are	 using	 the	 appropriate
evaluation	 experiment	 design.	 The	 goal	 here	 is	 to	 ensure	 that	 we	 calculate	 the	 best
estimate	of	how	a	prediction	model	will	perform	when	actually	deployed	 in	 the	wild.	 In
this	 section	 we	 will	 describe	 the	 most	 important	 evaluation	 experiment	 designs	 and
indicate	when	each	is	most	appropriate.

8.4.1.1	Hold-out	Sampling

In	Section	8.3[399]	we	used	a	hold-out	 test	 set	 to	 evaluate	 the	performance	of	 a	model.
The	 important	 characteristic	 of	 this	 test	 set	 was	 that	 it	 was	 not	 used	 in	 the	 process	 of
training	the	model.	Therefore,	the	performance	measured	on	this	test	set	should	be	a	good
indicator	of	how	well	 the	model	will	perform	on	future	unseen	data	for	which	it	will	be
used	 to	 make	 predictions	 after	 deployment.	 This	 is	 an	 example	 of	 using	 a	 sampling
method	 to	 evaluate	 the	 performance	 of	 a	 model,	 as	 we	 take	 distinct,	 random,	 non-
overlapping	 samples	 from	 a	 larger	 dataset	 and	 use	 these	 for	 training	 and	 testing	 a
prediction	model.	When	we	use	a	hold-out	test	set,	we	take	one	sample	from	the	overall
dataset	to	use	to	train	a	model	and	another	separate	sample	to	test	the	model.

Hold-out	sampling	is	probably	the	simplest	form	of	sampling	that	we	can	use	and	is
most	appropriate	when	we	have	very	large	datasets	from	which	we	can	take	samples.	This
ensures	 that	 the	 training	set	and	 test	 set	are	sufficiently	 large	 to	 train	an	accurate	model
and	 fully	 evaluate	 the	 performance	 of	 that	 model.	 Hold-out	 sampling	 is	 sometimes
extended	 to	 include	 a	 third	 sample,	 the	validation	set.	 The	 validation	 set	 is	 used	when
data	outside	the	training	set	is	required	in	order	to	tune	particular	aspects	of	a	model.	For
example,	when	wrapper-based	feature	selection	 techniques	are	used,	a	validation	set	is
required	in	order	to	evaluate	the	performance	of	the	different	feature	subsets	on	data	not
used	 in	 training.	 It	 is	 important	 that	 after	 the	 feature	 selection	 process	 is	 complete,	 a
separate	 test	set	still	exists	 that	can	be	used	to	evaluate	 the	expected	performance	of	 the
model	on	future	unseen	data	after	deployment.	Figure	8.2[406]	illustrates	how	a	large	ABT
can	be	 divided	 into	 a	 training	set,	 a	validation	 set,	 and	 a	 test	 set.	 There	 are	 no	 fixed
recommendations	for	how	large	the	different	datasets	should	be	when	hold-out	sampling	is
used,	although	training:validation:test	splits	of	50:20:30	or	40:20:40	are	common.



Figure	8.2

Hold-out	sampling	can	divide	the	full	data	into	training,	validation,	and	test	sets.

One	of	 the	most	common	uses	of	a	validation	set	 is	 to	avoid	overfitting	when	using
machine	 learning	 algorithms	 that	 iteratively	build	more	 and	more	 complex	models.	The
ID3	algorithm	for	building	decision	trees	and	the	gradient	descent	algorithm	for	building
regression	models	are	two	examples	of	this	type	of	approach.	As	the	algorithm	proceeds,
the	 model	 that	 it	 is	 building	 will	 become	 more	 and	 more	 fitted	 to	 the	 nuances	 of	 the
training	 data.	We	 can	 see	 this	 in	 the	 solid	 line	 in	 Figure	 8.3[407].	 This	 shows	 how	 the
misclassification	 rate	 made	 by	 a	 model	 on	 a	 set	 of	 training	 instances	 changes	 as	 the
training	process	 continues.	This	will	 continue	almost	 indefinitely	 as	 the	model	becomes
more	and	more	 tuned	 to	 the	 instances	 in	 the	 training	 set.	At	 some	point	 in	 this	process,
however,	overfitting	will	begin	to	occur,	and	the	ability	of	the	model	to	generalize	well	to
new	query	instances	will	diminish.

Figure	8.3

Using	a	validation	set	to	avoid	overfitting	in	iterative	machine	learning	algorithms.

We	 can	 find	 the	 point	 at	 which	 overfitting	 begins	 to	 happen	 by	 comparing	 the
performance	of	a	model	at	making	predictions	for	instances	in	the	training	dataset	used	to
build	 it	versus	 its	ability	 to	make	predictions	 for	 instances	 in	a	validation	dataset	as	 the
training	process	 continues.	The	dashed	 line	 in	Figure	8.3[407]	 shows	 the	performance	of



the	model	being	trained	on	a	validation	dataset.	We	can	see	that,	initially,	the	performance
of	the	model	on	the	validation	set	falls	almost	in	line	with	the	performance	of	the	model
on	 the	 training	 dataset	 (we	 usually	 expect	 the	 model	 to	 perform	 slightly	 better	 on	 the
training	set).	About	halfway	through	the	training	process,	however,	the	performance	of	the
model	 on	 the	 validation	 set	 begins	 to	 disimprove.	 This	 is	 the	 point	 at	 which	 we	 say
overfitting	 has	 begun	 to	 occur	 (this	 is	 shown	 by	 the	 vertical	 dashed	 line,	 at	 Training
Iteration	 =	 100,	 in	 Figure	8.3[407]).	 To	 combat	 overfitting,	we	 allow	 algorithms	 to	 train
models	beyond	this	point	but	save	the	model	generated	at	each	iteration.	After	the	training
process	has	completed,	we	find	the	point	at	which	performance	on	the	validation	set	began
to	disimprove	and	revert	back	to	the	model	trained	at	that	point.	This	process	is	essentially
the	same	as	the	decision	tree	post-pruning	process	described	in	Section	4.4.4[158].

Two	issues	arise	when	using	hold-out	sampling.	First,	using	hold-out	sampling	requires
that	we	have	enough	data	available	 to	make	suitably	 large	 training,	 test,	and	 if	 required,
validation	sets.	This	is	not	always	the	case,	and	making	any	of	these	partitions	too	small
can	 result	 in	a	poor	evaluation.	Second,	performance	measured	using	hold-out	 sampling
can	be	misleading	if	we	happen	to	make	a	lucky	split	of	the	data	that	places	the	difficult
instances	into	the	training	set	and	the	easy	ones	into	the	test	set.	This	will	make	the	model
appear	 much	 more	 accurate	 than	 it	 will	 actually	 be	 when	 deployed.	 An	 example	 of	 a
commonly	used	sampling	method	that	attempts	to	address	these	two	issues	is	k-fold	cross
validation.

8.4.1.2	k-Fold	Cross	Validation

When	k-fold	cross	validation	is	used,	the	available	data	is	divided	into	k	equal-sized	folds
(or	partitions),	and	k	separate	evaluation	experiments	are	performed.	In	the	first	evaluation
experiment,	the	data	in	the	1st	fold	is	used	as	the	test	set,	and	the	data	in	the	remaining	k	−
1	 folds	 is	 used	 as	 the	 training	 set.	 A	 model	 is	 trained	 using	 the	 training	 set,	 and	 the
relevant	 performance	 measures	 on	 the	 test	 set	 are	 recorded.	 A	 second	 evaluation
experiment	is	then	performed	using	the	data	in	the	2nd	fold	as	the	test	set	and	the	data	in
the	remaining	k	−	1	folds	as	the	training	set.	Again	the	relevant	performance	measures	are
calculated	 on	 the	 test	 set	 and	 recorded.	 This	 process	 continues	 until	 k	 evaluation
experiments	have	been	conducted	and	k	sets	of	performance	measures	have	been	recorded.
Finally,	 the	 k	 sets	 of	 performance	 measures	 are	 aggregated	 to	 give	 one	 overall	 set	 of
performance	measures.	Although	 k	 can	 be	 set	 to	 any	 value,	 10-fold	 cross	 validation	 is
probably	 the	most	 common	 variant	 used	 in	 practice.	 Figure	 8.4[410]	 illustrates	 how	 the
available	data	is	split	during	the	k-fold	cross	validation	process.	Each	row	represents	a	fold
in	 the	process,	 in	which	 the	black	rectangles	 indicate	 the	data	used	for	 testing	while	 the
white	spaces	indicate	the	data	used	for	training.

Let’s	consider	an	example.	As	part	of	a	medical	decision	making	system,	a	prediction
system	 that	 can	automatically	determine	 the	orientation	of	chest	x-rays	 (the	orientations
can	be	lateral	or	frontal)	is	built.4	Based	on	a	full	dataset	of	1,000	instances	we	decide	to
evaluate	 the	 performance	 of	 this	 system	with	 classification	 accuracy	 using	 5-fold	 cross
validation.	So,	the	full	dataset	is	divided	into	5	folds	(each	containing	200	instances)	and



five	evaluation	experiments	are	performed	using	1	fold	as	 the	 test	set	and	the	remaining
folds	as	the	training	set.	The	confusion	matrices	and	class	accuracy	measures	arising	from
each	fold	are	shown	in	Table	8.4[409].

Table	8.4

The	performance	measures	from	the	five	individual	evaluation	experiments	and	an	overall
aggregate	from	the	5-fold	cross	validation	performed	on	the	chest	X	ray	classification
dataset.





Figure	8.4

The	division	of	data	during	the	k-fold	cross	validation	process.	Black	rectangles	indicate
test	data,	and	white	spaces	indicate	training	data.

The	performance	measures	for	each	fold	(in	this	case,	a	confusion	matrix	and	a	class
accuracy	measure)	 can	 be	 aggregated	 into	 summary	 performance	measures	 that	 capture
the	overall	performance	across	the	5	folds.	The	aggregate	confusion	matrix,	generated	by
summing	 together	 the	 corresponding	 cells	 in	 the	 individual	 confusion	matrices	 for	 each
fold,	is	shown	at	the	bottom	of	Table	8.4[409].	The	aggregate	class	accuracy	measure	can
then	be	calculated	from	this	combined	confusion	matrix	and,	in	this	case,	turns	out	to	be
84%.	When	different	performance	measures	are	used,	the	aggregates	can	be	calculated	in
the	same	way.

There	is	a	slight	shift	in	emphasis	here	from	evaluating	the	performance	of	one	model,
to	evaluating	the	performance	of	a	set	of	k	models.	Our	goal,	however,	is	still	to	estimate
the	performance	of	a	model	after	deployment.	When	we	have	a	small	dataset	(introducing
the	possibility	 of	 a	 lucky	 split)	measuring	 aggregate	performance	using	 a	 set	 of	models
gives	 a	 better	 estimate	 of	 post-deployment	 performance	 than	 measuring	 performance
using	a	single	model.	After	estimating	the	performance	of	a	deployed	model	using	k-fold
cross	 validation,	 we	 typically	 train	 the	 model	 that	 will	 be	 deployed	 using	 all	 of	 the
available	 data.	 This	 contrasts	 with	 the	 hold-out	 sampling	 design,	 in	 which	 we	 simply
deploy	the	model	that	has	been	evaluated.

8.4.1.3	Leave-one-out	Cross	Validation

Leave-one-out	cross	validation,	also	known	as	jackknifing,	is	an	extreme	form	of	k-fold
cross	 validation	 in	 which	 the	 number	 of	 folds	 is	 the	 same	 as	 the	 number	 of	 training
instances.	 This	means	 that	 each	 fold	 of	 the	 test	 set	 contains	 only	 one	 instance,	 and	 the
training	 set	 contains	 the	 remainder	 of	 the	 data.	Leave-one-out	 cross	 validation	 is	 useful
when	the	amount	of	data	available	is	too	small	to	allow	big	enough	training	sets	in	a	k-fold
cross	validation.	Figure	8.5[411]	illustrates	how	the	available	data	is	split	during	the	leave-
one-out	cross	validation	process.	Each	row	represents	a	fold	in	the	process,	in	which	the
black	 rectangles	 indicate	 the	 instance	 that	 is	 used	 for	 testing	 while	 the	 white	 spaces
indicate	the	data	used	for	training.



Figure	8.5

The	division	of	data	during	 the	 leave-one-out	 cross	validation	process.	Black	 rectangles
indicate	instances	in	the	test	set,	and	white	spaces	indicate	training	data.

At	the	conclusion	of	the	leave-one-out	cross	validation	process,	a	performance	measure
will	have	been	calculated	for	every	instance	in	the	dataset.	In	the	same	way	as	we	saw	in
Table	 8.4[409]	 for	 k-fold	 cross	 validation,	 these	 performance	 measures	 are	 aggregated
across	all	the	folds	to	arrive	at	an	overall	measure	of	model	performance.

8.4.1.4	Bootstrapping

The	 next	 sampling	 method	 we	 will	 look	 at	 is	 bootstrapping,	 and	 in	 particular	 the	 ε0
bootstrap.	 Bootstrapping	 approaches	 are	 preferred	 over	 cross	 validation	 approaches	 in
contexts	with	very	small	datasets	(approximately	fewer	than	300	instances).	Similar	to	k-
fold	cross	validation,	the	0	bootstrap	iteratively	performs	multiple	evaluation	experiments
using	 sightly	 different	 training	 and	 test	 sets	 each	 time	 to	 evaluate	 the	 expected
performance	of	a	model.	To	generate	these	partitions	for	an	iteration	of	the	0	bootstrap,	a
random	selection	of	m	instances	is	taken	from	the	full	dataset	to	generate	a	test	set,	and	the
remaining	instances	are	used	as	the	training	set.	Using	the	training	set	to	train	a	model	and
the	 test	 set	 to	 evaluate	 it,	 a	 performance	 measure	 (or	 measures)	 is	 calculated	 for	 this
iteration.	 This	 process	 is	 repeated	 for	 k	 iterations,	 and	 the	 average	 of	 the	 individual
performance	 measures,	 the	 titular	 ε0,	 gives	 the	 overall	 performance	 of	 the	 model.
Typically,	in	the	ε0	bootstrap,	k	is	set	to	values	greater	than	or	equal	to	200,	much	larger
values	than	when	k-fold	cross	validation	is	used.	Figure	8.6[412]	illustrates	how	the	data	is
divided	during	the	ε0	bootstrap	process.	Each	row	represents	an	iteration	of	the	process,	in
which	 the	 black	 rectangles	 indicate	 the	 data	 used	 for	 testing	 while	 the	 white	 spaces
indicate	the	data	used	for	training.



Figure	8.6

The	division	of	 data	 during	 the	 0	 bootstrap	process.	Black	 rectangles	 indicate	 test	 data,
and	white	spaces	indicate	training	data.

8.4.1.5	Out-of-time	Sampling

The	sampling	methods	discussed	in	the	previous	section	all	rely	on	random	sampling	from
a	large	dataset	in	order	to	create	test	sets.	In	some	applications	there	is	a	natural	structure
in	the	data	that	we	can	take	advantage	of	to	form	test	sets.	In	scenarios	that	include	a	time
dimension,	 this	 can	 be	 particularly	 effective	 and	 is	 often	 referred	 to	 as	 out-of-time
sampling,	 because	we	 use	 data	 from	one	 period	 to	 build	 a	 training	 set	 and	 data	 out	 of
another	period	to	build	a	test	set.	For	example,	in	a	customer	churn	scenario,	we	might	use
details	of	customer	behavior	from	one	year	to	build	a	training	set	and	details	of	customer
behavior	from	a	subsequent	year	to	build	a	test	set.	Figure	8.7[413]	illustrates	the	process	of
out-of-time	sampling.

Figure	8.7

The	out-of-time	sampling	process.

Out-of-time	sampling	is	essentially	a	form	of	hold-out	sampling	in	which	the	sampling
is	done	in	a	targeted	rather	than	a	random	fashion.	When	using	out-of-time	sampling,	we
should	be	careful	to	ensure	that	the	times	from	which	the	training	and	test	sets	are	taken	do
not	introduce	a	bias	into	the	evaluation	process,	because	the	two	different	time	samples	are
not	really	representative.	For	example,	imagine	we	wished	to	evaluate	the	performance	of
a	 prediction	 model	 built	 to	 estimate	 the	 daily	 energy	 demand	 in	 a	 residential	 building
based	on	features	describing	the	family	that	live	in	the	house,	the	weather	on	a	given	day,
and	 the	 time	of	 the	year.	 If	 the	 training	sample	covered	a	period	 in	 the	summer	and	 the
testing	 sample	 covered	 a	 period	 in	 the	 winter,	 the	 results	 of	 any	 evaluation	 would	 not
provide	 a	 reliable	 measure	 of	 how	 likely	 the	 model	 might	 actually	 perform	 when
deployed.	It	is	important	when	choosing	the	periods	for	out-of-time	sampling	that	the	time
spans	are	large	enough	to	take	into	account	any	cyclical	behavioral	patterns	or	that	other
approaches	are	used	to	account	for	these.



8.4.2	Performance	Measures:	Categorical	Targets

This	 section	 describes	 the	 most	 important	 performance	 measures	 for	 evaluating	 the
performance	of	models	with	categorical	target	features.

8.4.2.1	Confusion	Matrix-based	Performance	Measures

Confusion	matrices	are	a	convenient	way	to	fully	describe	the	performance	of	a	predictive
model	when	applied	 to	a	 test	 set.	They	are	also	 the	basis	 for	a	whole	 range	of	different
performance	 measures	 that	 can	 highlight	 different	 aspects	 of	 the	 performance	 of	 a
predictive	model.	The	most	basic	of	 these	measures	are	 true	positive	 rate	 (TPR),	 true
negative	rate	 (TNR),	false	negative	rate	 (FNR),	and	 false	positive	rate	 (FPR),	which
convert	the	raw	numbers	from	the	confusion	matrix	into	percentages.5	These	measures	are
defined	as	follows:

There	are	strong	relationships	between	these	measures,	for	example:	FNR	=	1	−	TPR,	and
FPR	=	1	−	TNR.

All	these	measures	can	have	values	in	the	range	[0,	1].	Higher	values	of	TPR	and	TNR
indicate	 better	 model	 performance,	 while	 the	 opposite	 is	 the	 case	 for	 FNR	 and	 FPR.
Confusion	 matrices	 are	 often	 presented	 containing	 these	 measures	 rather	 than	 the	 raw
counts,	 although	we	 recommend	using	 raw	counts	 so	 that	 the	number	of	 instances	with
each	of	the	different	levels	of	the	target	feature	remains	apparent.

For	 the	 email	 classification	 data	 given	 in	 Table	 8.1[401],	 the	 confusion	matrix-based
values	can	be	calculated	as	follows:

These	 values	 immediately	 suggest	 that	 the	 model	 is	 better	 at	 predicting	 the	 ham	 level
(TNR)	than	it	is	at	predicting	the	spam	level	(TPR).

8.4.2.2	Precision,	Recall	and	F1	Measure

Precision,	 recall,	 and	 the	F1	measure	 are	 another	 frequently	 used	 set	 of	 performance
measures	that	can	be	calculated	directly	from	the	confusion	matrix.	Precision	and	recall



are	defined	as	follows:

Recall	 is	 equivalent	 to	 true	 positive	 rate	 (TPR)	 (compare	 Equations	 (8.4)[414]	 and	 (8.9)
[415]).	Recall	tells	us	how	confident	we	can	be	that	all	the	instances	with	the	positive	target
level	have	been	found	by	the	model.	Precision	captures	how	often,	when	a	model	makes	a
positive	prediction,	this	prediction	turns	out	to	be	correct.	Precision	tells	us	how	confident
we	 can	 be	 that	 an	 instance	 predicted	 to	 have	 the	 positive	 target	 level	 actually	 has	 the
positive	target	level.	Both	precision	and	recall	can	assume	values	in	the	range	[0,	1],	and
higher	values	in	both	cases	indicate	better	model	performance.

Returning	to	the	email	classification	example,	and	assuming	again	that	spam	emails	are
the	positive	 level,	precision	measures	how	often	the	emails	marked	as	spam	actually	are
spam,	whereas	recall	measures	how	often	the	spam	messages	in	the	test	set	were	actually
marked	as	spam.	The	precision	and	recall	measures	for	the	email	classification	data	shown
in	Table	8.1[401]	are

Email	classification	 is	a	good	application	scenario	 in	which	 the	different	 information
provided	by	precision	and	recall	is	useful.	The	precision	value	tells	us	how	likely	it	is	that
a	 genuine	 ham	 email	 could	 be	 marked	 as	 spam	 and,	 presumably,	 deleted:	 25%	 (1	 −
precision).	Recall,	 on	 the	other	hand,	 tells	us	how	 likely	 it	 is	 that	 a	 spam	email	will	 be
missed	by	the	system	and	end	up	in	our	inbox:	33.333%	(1	−	recall).	Having	both	of	these
numbers	is	useful	as	it	allows	us	to	think	about	tuning	the	model	toward	one	kind	of	error
or	 the	other.	 Is	 it	better	 for	a	genuine	email	 to	be	marked	as	spam	 and	deleted,	or	 for	a
spam	email	to	end	up	in	our	inbox?	The	performance	recorded	in	Table	8.1[401]	shows	that
this	system	is	slightly	more	likely	to	make	the	second	kind	of	mistake	than	the	first.

Precision	and	 recall	 can	be	collapsed	 to	a	 single	performance	measure	known	as	 the
F1	measure,6	which	offers	a	useful	alternative	to	the	simpler	misclassification	rate.	The	F1
measure	is	the	harmonic	mean	of	precision	and	recall	and	is	defined	as

In	Section	A.1[525]	we	talk	about	how	measures	of	central	tendency	attempt	to	capture	the
average	value	of	a	list	of	numbers.	Although	the	arithmetic	mean	and	median	are	two	of
the	most	commonly	known	such	measures,	there	are	more,	including	the	harmonic	mean.
The	harmonic	mean	tends	toward	the	smaller	values	in	a	list	of	numbers	and	so	can	be	less
sensitive	 to	 large	 outliers	 than	 the	 arithmetic	 mean,	 which	 tends	 toward	 higher	 values.
This	 characteristic	 is	 useful	 in	 the	 generation	 of	 performance	 measures	 like	 the	 F1



measure,	as	we	typically	prefer	measures	to	highlight	shortcomings	in	our	models	rather
than	hide	them.	The	F1	measure	can	assume	values	in	the	range	(0,	1],	and	higher	values
indicate	better	performance.

For	 the	 email	 classification	 dataset	 shown	 in	 Table	 8.1[401],	 the	 F1	 measure	 (again
assuming	that	the	spam	level	is	the	positive	level)	is	calculated	as

Precision,	 recall,	 and	 the	 F1	 measure	 work	 best	 in	 prediction	 problems	 with	 binary
target	features	and	place	an	emphasis	on	capturing	the	performance	of	a	prediction	model
on	 the	 positive,	 or	 most	 important,	 level.	 These	 measures	 place	 less	 emphasis	 on	 the
performance	 of	 the	 model	 on	 the	 negative	 target	 level.	 This	 is	 appropriate	 in	 many
applications.	For	example,	in	medical	applications,	a	prediction	that	a	patient	has	a	disease
is	much	more	important	than	a	prediction	that	a	patient	does	not.	In	many	cases,	however,
it	does	not	make	sense	to	consider	one	target	level	as	being	more	important.	The	average
class	accuracy	performance	measure	can	be	effective	in	these	cases.

Table	8.5

A	confusion	matrix	for	a	k-NN	model	trained	on	a	churn	prediction	problem.

Prediction

non-churn churn

Target
non-churn 90 0

churn 9 1

Table	8.6

A	confusion	matrix	for	a	naive	Bayes	model	trained	on	a	churn	prediction	problem.

Prediction

non-churn churn

Target
non-churn 70 20

churn 2 8

8.4.2.3	Average	Class	Accuracy

Classification	accuracy	can	mask	poor	performance.	For	example,	the	confusion	matrices



shown	in	Tables	8.5[417]	and	8.6[417]	show	the	performance	of	 two	different	models	on	a
test	dataset	that	relates	to	a	prediction	problem	in	which	we	would	like	to	predict	whether
a	customer	will	churn	or	not.	The	accuracy	 for	 the	model	associated	with	 the	confusion
matrix	shown	in	Table	8.5[417]	is	91%,	while	for	the	model	associated	with	the	confusion
matrix	shown	in	Table	8.6[417],	the	accuracy	is	just	78%.	In	this	example	the	test	dataset	is
quite	imbalanced,	containing	90	instances	with	the	non-churn	level	and	just	10	instances
with	the	churn	level.	This	means	that	the	performance	of	the	model	on	the	non-churn	level
overwhelms	the	performance	on	the	churn	level	in	the	accuracy	calculation	and	illustrates
how	classification	accuracy	can	be	a	misleading	measure	of	model	performance.

To	 address	 this	 issue,	 we	 can	 use	 average	 class	 accuracy7	 instead	 of	 classification
accuracy.8	The	average	class	accuracy	is	calculated	as

where	levels(t)	is	the	set	of	levels	that	the	target	feature,	t,	can	assume;	|levels(t)|	is	the	size
of	 this	set;	and	recalll	 refers	 to	 the	 recall	achieved	by	a	model	 for	 level	 l.9	The	average
class	 accuracies	 for	 the	 model	 performances	 shown	 in	 Tables	 8.5[417]	 and	 8.6[417]	 are	

	 and	 	 respectively,	 which	 would	 indicate	 that	 the
second	model	 is	 actually	 a	 better	 performer	 than	 the	 first.	This	 result	 is	 contrary	 to	 the
conclusion	drawn	from	classification	accuracy	but	is	more	appropriate	in	this	case	due	to
the	target	level	imbalance	present	in	the	data.

The	average	class	accuracy	measure	shown	in	Equation	(8.11)[417]	uses	an	arithmetic
mean	 and	 so	 can	 be	 more	 fully	 labeled	 averageclassaccuracyAM.	 While	 this	 is	 an
improvement	 over	 raw	 classification	 accuracy,	 many	 people	 prefer	 to	 use	 a	 harmonic
mean10	instead	of	an	arithmetic	mean	when	calculating	average	class	accuracy.	Arithmetic
means	 are	 susceptible	 to	 influence	 of	 large	 outliers,	 which	 can	 inflate	 the	 apparent
performance	 of	 a	 model.	 The	 harmonic	 mean,	 on	 the	 other	 hand,	 emphasizes	 the
importance	of	smaller	values	and	so	can	give	a	slightly	more	realistic	measure	of	how	well
a	model	is	performing.	The	harmonic	mean	is	defined	as	follows:

where	the	notation	meanings	are	the	same	as	for	Equation	(8.11)[417].	The	average	class
accuracyHM	for	the	model	performances	shown	in	Tables	8.5[417]	and	8.6[417]	are

and



The	 harmonic	 mean	 results	 in	 a	 more	 pessimistic	 view	 of	 model	 performance	 than	 an
arithmetic	 mean.	 To	 further	 illustrate	 the	 difference	 between	 arithmetic	 mean	 and
harmonic	mean,	Figure	8.8[419]	shows	the	arithmetic	mean	and	the	harmonic	mean	of	all
combinations	of	two	features	A	and	B	that	range	from	0	to	100.	The	curved	shape	of	the
harmonic	 mean	 surface	 shows	 that	 the	 harmonic	 mean	 emphasizes	 the	 contribution	 of
smaller	 values	 more	 than	 the	 arithmetic	 mean—note	 how	 the	 sides	 of	 the	 surface	 are
pulled	 down	 to	 the	 base	 of	 the	 graph	 by	 the	 harmonic	 mean.	We	 recommend	 that,	 in
general,	 when	 calculating	 average	 class	 accuracy,	 the	 harmonic	 mean	 should	 be	 used
rather	than	the	arithmetic	mean.

Figure	8.8

Surfaces	generated	by	calculating	(a)	 the	arithmetic	mean	and	(b)	 the	harmonic	mean	of
all	combinations	of	features	A	and	B	that	range	from	0	to	100.

8.4.2.4	Measuring	Profit	and	Loss

One	of	the	problems	faced	by	all	the	performance	measures	discussed	so	far	is	that	they
place	the	same	value	on	all	the	cells	within	a	confusion	matrix.	For	example,	in	the	churn
prediction	example,	correctly	classifying	a	customer	as	likely	to	churn	is	worth	the	same
as	correctly	classifying	a	customer	as	not	likely	to	churn.	It	is	not	always	correct	to	treat
all	 outcomes	 equally.	 For	 example,	 if	 a	 customer	 who	 really	 was	 not	 a	 churn	 risk	 is
classified	as	likely	to	churn,	the	cost	incurred	by	the	company	because	of	this	mistake	is
the	cost	of	a	small	bonus	offer	that	would	be	given	to	the	customer	to	entice	the	customer
to	stay	with	the	company.	On	the	other	hand,	misclassifying	a	customer	who	really	was	a
churn	risk	probably	has	a	much	larger	cost	associated	with	it	because	that	customer	will	be
lost	 when	 a	 small	 bonus	 may	 have	 enticed	 the	 customer	 to	 stay.	 When	 evaluating	 the
performance	 of	models,	 it	would	 be	 useful	 to	 be	 able	 to	 take	 into	 account	 the	 costs	 of
different	outcomes.



Table	8.7

The	structure	of	a	profit	matrix.

Prediction

positive negative

Target
positive TPProfit FNProfit

negative FPProfit TNProfit

Table	8.8

The	profit	matrix	for	the	pay-day	loan	credit	scoring	problem.

Prediction

good bad

Target
good 140 −	140

bad −	700 0

	

One	way	 in	which	 to	 do	 this	 is	 to	 calculate	 the	 profit	 or	 loss	 that	 arises	 from	 each
prediction	we	make	and	to	use	these	to	determine	the	overall	performance	of	a	model.	To
do	this	we	first	need	to	create	a	profit	matrix	that	records	these.	Table	8.7[420]shows	 the
structure	 of	 a	 profit	 matrix,	 which	 is	 the	 same	 as	 the	 structure	 of	 a	 confusion	 matrix.
TPProfit	represents	the	profit	arising	from	a	correct	positive	prediction,	FNProfit	is	the	profit
arising	 from	 an	 incorrect	 negative	 prediction,	 and	 so	 on	 (note	 that	 profit	 can	 refer	 to	 a
positive	or	a	negative	value).	The	actual	values	in	a	profit	matrix	are	determined	through
domain	expertise.

To	see	 the	use	of	a	profit	matrix	 in	action,	consider	a	prediction	problem	in	which	a
pay-day	 loan	 company	 has	 built	 a	 credit	 scoring	model	 to	 predict	 the	 likelihood	 that	 a
borrower	will	default	on	a	loan.	Based	on	a	set	of	descriptive	features	extracted	from	the
loan	 application	 (e.g.,	AGE,	OCCUPATION,	 and	ASSETS),	 the	model	will	 classify	 potential
borrowers	as	belonging	to	one	of	two	groups:	good	borrowers,	who	will	repay	their	loans
in	full,	and	bad	borrowers,	who	will	default	on	some	portion	of	their	loans.	The	company
can	 run	 this	model	whenever	 a	 new	 loan	 application	 is	made	 and	 only	 extend	 credit	 to
those	borrowers	predicted	to	belong	to	the	good	target	level.	Table	8.8[420]	shows	the	profit
matrix	for	this	problem.

Table	8.9



(a)	The	confusion	matrix	for	a	k-NN	model	trained	on	the	pay-day	loan	credit	scoring
problem	(average	class	accuracyHM	=	83.824%);	(b)	the	confusion	matrix	for	a	decision
tree	model	trained	on	the	pay-day	loan	credit	scoring	problem	(average	class	accuracyHM
=	80.761%).

(a)	k-NN	model

Prediction

good bad

Target
good 57 3

bad 10 30

(b)	decision	tree

Prediction

good bad

Target
good 43 17

bad 3 37

The	values	 in	 this	matrix	are	based	on	historical	data	 that	 the	company	has	on	 loans
given	out	in	the	past.	The	typical	value	of	a	loan	is	$1,000,	and	the	interest	rate	charged	is
14%.	So,	when	a	loan	is	repaid	in	full,	 the	profit	made	by	the	company	is	usually	$140.
Therefore,	 the	 profit	 arising	 from	 correctly	 predicting	 the	 good	 level	 for	 a	 potential
borrower	is	$140.	Incorrectly	predicting	the	bad	level	for	a	potential	borrower	who	would
have	 repaid	 the	 loan	 in	 full	 will	 result	 in	 a	 negative	 profit	 (or	 loss)	 of	 −$140,	 as	 the
company	has	forgone	potential	interest	payments.	Correctly	predicting	the	bad	level	for	a
potential	borrower	results	in	no	profit	as	no	money	is	loaned.11	Incorrectly	predicting	the
good	level	for	a	potential	borrower	who	goes	on	to	default	on	the	loan,	however,	results	in
a	 loan	 not	 being	 repaid.	 Based	 on	 historical	 examples,	 the	 expected	 loss	 in	 this	 case,
referred	to	as	the	loss	given	default,	is	$700	(most	borrowers	will	repay	some	of	their	loan
before	defaulting).	The	values	in	Table	8.8[420]	are	based	on	these	figures.	It	 is	clear	that
the	different	outcomes	have	different	profit	 and	 loss	associated	with	 them.	 In	particular,
extending	a	loan	to	a	borrower	who	turns	out	to	be	bad	is	a	very	costly	mistake.

Tables	8.9(a)[421]	and	8.9(b)[421]	show	confusion	matrices	for	 two	different	prediction
models,	 a	 k-NN	model	 and	 a	 decision	 tree	model,	 trained	 for	 the	 pay-day	 loans	 credit
scoring	problem.	The	average	class	accuracy	(using	a	harmonic	mean)	for	the	k-NN	model
is	 83.824%	 and	 for	 the	 decision	 tree	model	 is	 80.761%,	which	 suggests	 that	 the	 k-NN
model	is	quite	a	bit	better	than	the	decision	tree.



We	 can,	 however,	 use	 the	 values	 in	 the	 profit	 matrix	 to	 calculate	 the	 overall	 profit
associated	with	the	predictions	made	by	these	two	models.	This	is	achieved	by	multiplying
the	values	 in	 the	 confusion	matrix	 by	 the	 corresponding	values	 in	 the	profit	matrix	 and
summing	 the	results.	Tables	8.10(a)[422]	and	8.10(b)[422]	 show	 this	 calculation	 for	 the	k-
NN	and	the	decision	tree	models.	The	overall	profit	for	the	k-NN	model	is	$560,	while	it	is
$1,540	for	the	decision	tree	model.	As	well	as	showing	that	it	is	hard	to	make	money	in
the	 pay-day	 loans	 business,	 this	 reverses	 the	 ordering	 implied	 using	 the	 average	 class
accuracy.	The	predictions	made	by	 the	decision	 tree	model	 result	 in	a	higher	profit	 than
those	 made	 by	 the	 k-NN	 model.	 This	 is	 because	 the	 k-NN	 makes	 the	 mistake	 of
misclassifying	a	bad	borrower	as	good	more	often	than	the	decision	tree	model,	and	this	is
the	 more	 costly	 mistake.	 Ranking	 the	 models	 by	 profit,	 we	 are	 able	 to	 take	 this	 into
account,	which	is	impossible	using	classification	accuracy	or	average	class	accuracy.

Table	8.10

(a)	Overall	profit	for	the	k-NN	model	using	the	profit	matrix	in	Table	8.8[420]	and	the
confusion	matrix	in	Table	8.9(a)[421];	(b)	overall	profit	for	the	decision	tree	model	using
the	profit	matrix	in	Table	8.8[420]	and	the	confusion	matrix	in	Table	8.9(b)[421].

(a)	k-NN	model

Prediction

good bad

Target
good 7,980 −	420

bad −	7,000 0

Profit 560

(b)	decision	tree

Prediction

good bad

Target
good 6,020 −	2,380

bad −2,100 0

Profit 1,540

It	 is	worth	mentioning	that	 to	use	profit	as	a	performance	measure,	we	don’t	need	to
quantify	 the	profit	 associated	with	each	outcome	as	completely	as	we	have	done	 in	 this



example.	 The	minimal	 amount	 of	 information	 we	 need	 is	 the	 relative	 profit	 associated
with	 each	 of	 the	 different	 outcomes	 (TP,	 TN,	 FP,	 or	 FN)	 that	 can	 arise	 when	 a	model
makes	a	prediction.	For	example,	 in	 the	spam	filtering	problem	described	previously,	all
we	need	 to	use	are	 the	relative	profits	of	classifying	a	ham	email	as	spam,	classifying	a
spam	email	as	ham,	and	so	on.

While	using	profit	might	appear	to	be	the	ideal	way	to	evaluate	model	performance	for
categorical	targets,	unfortunately,	this	is	not	the	case.	It	is	only	in	very	rare	scenarios	that
we	can	accurately	fill	in	a	profit	matrix	for	a	prediction	problem.	In	many	cases,	although
it	may	be	possible	to	say	that	some	outcomes	are	more	desirable	than	others,	it	is	simply
not	 possible	 to	 quantify	 this.	 For	 example,	 in	 a	 medical	 diagnosis	 problem,	 we	 might
confidently	say	that	a	false	negative	(telling	a	sick	patient	that	they	do	not	have	a	disease)
is	worse	than	a	false	positive	(telling	a	healthy	patient	that	they	do	have	a	disease),	but	it	is
unlikely	that	we	will	be	able	to	quantify	this	as	twice	as	bad,	or	four	times	as	bad,	or	10.75
times	 as	 bad.	 When	 a	 profit	 matrix	 is	 available,	 however,	 profit	 is	 a	 very	 effective
performance	measure	to	use.



8.4.3	Performance	Measures:	Prediction	Scores

Careful	 examination	of	 the	workings	of	 the	different	 classification	models	 that	we	have
discussed	 in	Chapters	4[117]	 to	 7[323]	 shows	 that	 none	 of	 them	 simply	 produces	 a	 target
feature	level	as	its	output.	In	all	cases,	a	prediction	score	 (or	scores)	 is	produced,	and	a
threshold	process	is	used	to	convert	this	score	into	one	of	the	levels	of	the	target	feature.
For	 example,	 the	 naive	 Bayes	 model	 produces	 probabilities	 that	 are	 converted	 into
categorical	predictions	using	the	maximum	a	posteriori	probability	approach,	and	logistic
regression	models	produce	a	probability	for	the	positive	target	level	that	is	converted	into
a	categorical	prediction	using	a	threshold.	Even	in	decision	trees,	 the	prediction	is	based
on	 the	 majority	 target	 level	 at	 a	 leaf	 node,	 and	 the	 proportion	 of	 this	 level	 gives	 us	 a
prediction	 score.	 In	 a	 typical	 scenario	 with	 two	 target	 levels,	 a	 prediction	 score	 in	 the
range	[0,	1]	is	generated	by	a	model,	and	a	threshold	of	0.5	is	used	to	convert	this	score
into	a	categorical	prediction	as	follows:

To	 illustrate	 this,	 Table	 8.11[424]	 shows	 the	 underlying	 scores	 that	 the	 predictions
shown	in	Table	8.1[401]	were	based	on,	assuming	a	threshold	of	0.5—that	is,	instances	with
a	 prediction	 score	 greater	 than	 or	 equal	 to	 0.5	 were	 given	 predictions	 of	 the	 spam
(positive)	 level,	and	 those	with	prediction	scores	 less	 than	0.5	were	given	predictions	of
the	ham	 (negative)	 level.	The	 instances	 in	 this	 table	have	been	sorted	by	 these	scores	 in
ascending	order;	as	a	result,	the	thresholding	on	the	scores	to	generate	predictions	is	very
much	apparent.	An	 indication	of	 the	performance	of	 the	model	 is	also	evident	 from	this
ordering—the	Target	column	shows	that	the	instances	that	actually	should	get	predictions
of	the	ham	level	generally	have	lower	scores,	and	those	that	should	get	predictions	of	the
spam	level	generally	have	higher	scores.

A	 range	 of	 performance	measures	 use	 this	 ability	 of	 a	model,	 to	 rank	 instances	 that
should	get	predictions	of	one	target	level	higher	than	the	other,	to	better	assess	how	well	a
prediction	model	is	performing.	The	basis	of	most	of	these	approaches	is	measuring	how
well	 the	 distributions	 of	 scores	 produced	 by	 the	 model	 for	 different	 target	 levels	 are
separated.	 Figure	 8.9[424]	 illustrates	 this:	 assuming	 that	 prediction	 scores	 are	 normally
distributed,	 the	 distributions	 of	 the	 scores	 for	 the	 two	 target	 levels	 are	 shown	 for	 two
different	classification	models.	The	prediction	score	distributions	shown	in	Figure	8.9(a)
[424]	are	much	better	separated	than	those	in	Figure	8.9(b)[424].	We	can	use	the	separation
of	 the	 prediction	 score	 distributions	 to	 construct	 performance	 measures	 for	 categorical
prediction	models.

Table	8.11

A	sample	test	set	with	model	predictions	and	scores.



Figure	8.9

Prediction	score	distributions	for	two	different	prediction	models.	The	distributions	in	(a)
are	much	better	separated	than	those	in	(b).

If	 the	 distributions	 of	 prediction	 scores	 from	 predictive	models	 perfectly	 followed	 a
normal	distribution,	similar	to	those	in	Figure	8.9[424],	calculating	the	degree	of	separation
between	 distributions	 would	 be	 very	 simple	 and	 only	 involve	 a	 simple	 comparison	 of
means	and	standard	deviations.	Unfortunately,	 this	 is	not	 the	case,	 as	 the	distribution	of
prediction	 scores	 for	 a	 model	 can	 follow	 any	 distribution.	 For	 example,	 the	 density
histograms	in	Figure	8.10[425]	show	the	distributions	of	prediction	scores	for	the	spam	and
ham	target	levels	based	on	the	data	in	Table	8.11[424].	There	are	a	number	of	performance
measures	 based	 on	 the	 idea	 of	 comparing	 prediction	 score	 distributions	 that	 attempt	 to
cater	for	the	peculiarities	of	real	data.	This	section	describes	some	of	the	most	important
of	these	measures.



Figure	8.10

Prediction	score	distributions	for	the	(a)	spam	and	(b)	ham	target	levels	based	on	the	data
in	Table	8.11[424].

8.4.3.1	Receiver	Operating	Characteristic	Curves

The	 receiver	 operating	 characteristic	 index	 (ROC	 index),	 which	 is	 based	 on	 the
receiver	operating	characteristic	curve	 (ROC	curve),12	 is	 a	widely	used	performance
measure	 that	 is	calculated	using	prediction	scores.	We	saw	 in	Section	8.4.2[413]	how	the
true	positive	rate	(TPR)	and	true	negative	rate	(TNR)	can	be	calculated	from	a	confusion
matrix.	 These	measures,	 however,	 are	 intrinsically	 tied	 to	 the	 threshold	 used	 to	 convert
prediction	 scores	 into	 target	 levels.	The	 predictions	 shown	 in	Table	8.11[424]	 and	 in	 the
confusion	matrix	in	Table	8.3[403],	are	based	on	a	prediction	score	 threshold	of	0.5.	This
threshold	 can	 be	 changed,	 however,	which	 leads	 to	 different	 predictions	 and	 a	 different
confusion	 matrix.	 For	 example,	 if	 we	 changed	 the	 threshold	 used	 to	 generate	 the
predictions	shown	in	Table	8.11[424]	from	0.5	to	0.75,	the	predictions	for	instances	d17,	d8,
and	d6	would	change	from	spam	to	ham,	resulting	in	their	outcomes	changing	to	TN,	FN,
and	 FN	 respectively.	 This	would	mean	 that	 the	 confusion	matrix	would	 change	 to	 that
shown	in	Table	8.12(a)[426]	and,	in	turn,	that	the	TPR	and	TNR	measures	would	change	to
0.5	and	0.833	respectively.

Table	8.12

Confusion	matrices	for	the	set	of	predictions	shown	in	Table	8.11[424]	using	(a)	a
prediction	score	threshold	of	0.75	and	(b)	a	prediction	score	threshold	of	0.25.

(a)	Threshold:	0.75

Prediction

spam ham

spam 4 4



Target
ham 2 10

(b)	Threshold:	0.25

Prediction

spam ham

Target
spam 7 2

ham 4 7

	

Similarly,	 if	we	changed	 the	 threshold	from	0.5	 to	0.25,	 the	predictions	for	 instances
d14,	d5,	and	d1	would	change	from	ham	to	spam,	resulting	in	their	outcomes	changing	to
FP,	FP,	and	TP	respectively.	This	would	mean	that	the	confusion	matrix	would	change	to
that	 shown	 in	 Table	 8.12(b)[426]	 and,	 in	 turn,	 that	 the	 TPR	 and	 TNR	 measures	 would
change	to	0.777	and	0.636	respectively.

For	every	possible	value	of	the	threshold,	in	the	range	[0,	1],	there	are	corresponding
TPR	and	TNR	values.	The	pattern	 that	 is	 evident	 in	 the	 two	 examples	 presented	 above
continues	 as	 the	 threshold	 value	 is	modified:	 as	 the	 threshold	 increases,	 TPR	decreases
and	TNR	 increases,	 and	 as	 the	 threshold	 decreases,	 the	 opposite	 occurs.	 Table	 8.13[427]
shows	how	the	predictions	made	for	test	instances	change	as	the	threshold	changes.	Also
shown	are	the	resulting	TPR,	TNR,	FPR,	and	FNR	values,	as	well	as	the	misclassification
rate	for	each	threshold.	We	can	see	that	the	misclassification	rate	doesn’t	change	that	much
as	 the	 threshold	 changes.	This	 is	 due	 to	 the	 trade-offs	 between	 false	 positives	 and	 false
negatives.

Figure	 8.11(a)[428]	 shows	 the	 changing	 values	 for	 TPR	 and	 TNR	 for	 the	 prediction
scores	shown	in	Table	8.13[427]	as	the	threshold	is	varied	from	0	to	1.13	This	graph	shows
that	 changing	 the	 value	 of	 the	 threshold	 results	 in	 a	 trade-off	 between	 accuracy	 for
predictions	of	positive	target	levels	and	accuracy	for	predictions	of	negative	target	levels.
Capturing	this	trade-off	is	the	basis	of	the	ROC	curve.

To	plot	an	ROC	curve,	we	create	a	chart	with	true	positive	rate	on	the	vertical	access
and	false	positive	rate	(or	1	−	true	negative	rate)	on	the	horizontal	axis.14	The	values	for
these	measures,	 when	 any	 threshold	 value	 is	 used	 on	 a	 collection	 of	 score	 predictions,
gives	a	point	on	 this	plot,	or	 a	point	 in	receiver	operating	characteristic	 space	 (ROC
space).	Figure	8.11(b)[428]	shows	three	such	points	in	ROC	space	and	associated	confusion
matrices	for	the	email	classification	dataset	for	thresholds	of	0.25,	0.5,	and	0.75.

Table	8.13

A	sample	test	set	with	prediction	scores	and	resulting	predictions	based	on	different



threshold	values.



Figure	8.11

(a)	The	changing	values	of	TPR	and	TNR	for	the	test	data	shown	in	Table	8.13[427]	as	the
threshold	is	altered;	(b)	points	in	ROC	space	for	thresholds	of	0.25,	0.5,	and	0.75.

The	ROC	 curve	 is	 drawn	 by	 plotting	 a	 point	 for	 every	 feasible	 threshold	 value	 and
joining	them.	Figure	8.12(a)[429]	shows	a	complete	ROC	curve	for	the	email	predictions	in
Table	8.13[427].	A	line	along	the	diagonal	of	ROC	space	from	(0,	0)	to	(1,	0),	shown	as	a
dotted	line	in	Figure	8.12(a)[429],	is	a	reference	line	representing	the	expected	performance
of	a	model	that	makes	random	predictions.	We	always	expect	the	ROC	curve	for	a	trained
model	 to	 be	 above	 this	 random	 reference	 line.15	 In	 fact	 as	 the	 strength	 of	 a	 predictive
model	increases,	the	ROC	curve	moves	farther	away	from	the	random	line	toward	the	top
left	hand	corner	of	ROC	space—toward	a	TPR	of	1.0	and	an	FPR	of	0.0.	So,	 the	ROC
curve	gives	us	an	immediate	visual	indication	of	the	strength	of	a	model—the	closer	the
curve	is	to	the	top	left,	the	more	predictive	the	model.

Often	the	ROC	curves	for	multiple	predictive	models	will	be	plotted	on	a	single	ROC
plot,	 allowing	 easy	 comparison	 of	 their	 performance.	 Figure	 8.12(b)[429]	 shows	 ROC
curves	 for	 four	 models	 tested	 on	 a	 version	 of	 the	 email	 classification	 test	 set	 in	 Table
8.13[427],	 containing	many	more	 instances	 than	 the	one	we	have	been	discussing	 so	 far,
which	 is	why	 the	 curves	 are	 so	much	 smoother	 than	 the	 curve	 shown	 in	Figure	 8.12(a)
[429].	 These	 smoother	 curves	 are	 more	 representative	 of	 the	 kind	 of	 ROC	 curves	 we
typically	encounter	in	practice.	In	this	example,	Model	1	approaches	perfect	performance,
Model	 4	 is	 barely	 better	 than	 random	 guessing,	 and	Models	 2	 and	 3	 sit	 somewhere	 in
between	these	two	extremes.



Figure	8.12

(a)	A	complete	ROC	curve	 for	 the	email	classification	example;	 (b)	a	 selection	of	ROC
curves	for	different	models	trained	on	the	same	prediction	task.

Although	it	is	useful	to	visually	compare	the	performance	of	different	models	using	an
ROC	 curve,	 it	 is	 often	 preferable	 to	 have	 a	 single	 numeric	 performance	 measure	 with
which	models	can	be	assessed.	Fortunately,	there	is	an	easy	calculation	that	can	be	made
from	the	ROC	curve	that	achieves	this.	The	ROC	index	or	area	under	the	curve	(AUC)
measures	 the	 area	 underneath	 an	ROC	 curve.	Remembering	 that	 the	 perfect	model	will
appear	in	the	very	top	left	hand	corner	of	ROC	space,	it	is	fairly	intuitive	that	curves	with
higher	areas	will	be	closer	to	this	maximum	possible	value.	The	area	under	an	ROC	curve
is	calculated	as	the	integral	of	the	curve.	Because	ROC	curves	are	discrete	and	stepped	in
nature,	finding	their	integrals	is	actually	very	easily	done	using	the	trapezoidal	method.
The	ROC	index	can	be	calculated	as

where	T	 is	a	set	of	thresholds,	 |T|	 is	 the	number	of	thresholds	tested,	and	TPR(T[i])	and
FPR(T[i])	are	the	true	positive	and	false	positive	rates	at	threshold	i	respectively.

The	ROC	index	can	take	values	in	the	range	[0,	1]	(although	values	less	than	0.5	are
unlikely	and	indicative	of	a	target	labeling	error),	and	larger	values	indicate	better	model
performance.	So,	for	example,	the	ROC	index	for	the	ROC	curve	shown	in	Figure	8.12(a)
[429]	 is	 0.798,	 and	 the	ROC	 indices	 for	Models	 1	 to	 4	 in	 Figure	 8.12(b)[429]	 are	 0.996,
0.887,	0.764,	and	0.595	(as	shown	in	the	legend).	While	there	are	no	hard	and	fast	rules
about	 what	 constitutes	 an	 acceptable	 value	 for	 the	 ROC	 index,	 and	 this	 is	 really	 an
application-specific	decision,	a	good	 rule	of	 thumb	 is	 that	a	value	above	0.7	 indicates	a
strong	model,	while	a	value	below	0.6	 indicates	a	weak	model.	The	ROC	index	 is	quite
robust	 in	 the	 presence	 of	 imbalanced	 data,	 which	 makes	 it	 a	 common	 choice	 for
practitioners,	 especially	when	multiple	modeling	 techniques	 are	 being	 compared	 to	 one



another.

The	ROC	index	can	be	interpreted	probabilistically	as	the	probability	that	a	model	will
assign	a	higher	rank	to	a	randomly	selected	positive	instance	than	to	a	randomly	selected
negative	 instance.16	 The	 Gini	 coefficient17	 is	 another	 commonly	 used	 performance
measure	that	is	just	a	linear	rescaling	of	the	ROC	index:

The	Gini	coefficient	can	take	values	in	the	range	[0,	1],	and	higher	values	indicate	better
model	 performance.	 The	Gini	 coefficient	 for	 the	model	 shown	 in	 Figure	 8.12(a)[429]	 is
0.596,	and	the	Gini	coefficients	for	the	four	models	shown	in	Figure	8.12(a)[429]	are	0.992,
0.774,	 0.527,	 and	 0.190.	 The	 Gini	 coefficient	 is	 very	 commonly	 used	 in	 financial
modeling	scenarios	such	as	credit	scoring.

8.4.3.2	Kolmogorov-Smirnov	Statistic

The	Kolmogorov-Smirnov	statistic	 (K-S	statistic)	 is	another	performance	measure	 that
captures	the	separation	between	the	distribution	of	prediction	scores	for	the	different	target
levels	 in	 a	 classification	 problem.	 To	 calculate	 the	K-S	 statistic,	we	 first	 determine	 the
cumulative	probability	distributions	of	the	prediction	scores	for	the	positive	and	negative
target	levels.	This	is	done	as	follows:

where	 ps	 is	 a	 prediction	 score	 value,	 CP(positive,	 ps)	 is	 the	 cumulative	 probability
distribution	of	 positive	value	 scores,	 and	CP(negative,	ps)	 is	 the	 cumulative	 probability
distribution	 of	 negative	 value	 scores.	 These	 cumulative	 probability	 distributions	 can	 be
plotted	 on	 a	Kolmogorov-Smirnov	 chart	 (K-S	 chart).	 Figure	 8.13[431]	 shows	 the	K-S
chart	for	the	test	set	predictions	shown	in	Table	8.11[424].	We	can	see	how	the	cumulative
likelihood	of	finding	a	ham	(or	negative)	instance	increases	much	more	quickly	than	that
of	 finding	 a	 spam	 (or	 positive)	 instance.	 This	 makes	 sense	 because	 if	 a	 model	 is
performing	accurately,	we	would	expect	negative	 instances	 to	have	 low	scores	 (close	 to
0.0)	and	positive	instances	to	have	high	scores	(close	to	1.0).



Figure	8.13

The	K-S	chart	for	the	email	classification	predictions	shown	in	Table	8.11[424].

The	K-S	 statistic	 is	 calculated	 by	 determining	 the	maximum	 difference	 between	 the
cumulative	probability	distributions	for	the	positive	and	negative	target	levels.	This	can	be
given	formally	as

where	CP(positive,	 ps)	 and	 CP(negative,	 ps)	 are	 as	 described	 above.	 This	 distance	 is
indicated	by	the	vertical	dotted	line	in	Figure	8.13[431],	from	which	it	is	clear	that	the	K-S
statistic	is	the	largest	distance	between	the	positive	and	negative	cumulative	distributions.
The	K-S	statistic	ranges	from	0	to	1,	and	higher	values	indicate	better	model	performance,
reflecting	 the	fact	 that	 there	 is	a	clear	distinction	between	 the	distributions	of	 the	scores
predicted	by	the	model	for	the	negative	and	the	positive	instances.

In	practice,	the	simplest	way	to	calculate	a	K-S	statistic	for	the	predictions	made	by	a
model	 for	 a	 test	 dataset	 is	 to	 first	 tabulate	 the	 positive	 and	 negative	 cumulative
probabilities	 for	 the	 scores	 predicted	 for	 each	 instance	 in	 the	 test	 dataset,	 in	 ascending
order	by	prediction	score.	For	the	score	predicted	by	the	model	for	each	instance	in	the	test
set,	 the	distance	between	the	positive	and	negative	cumulative	probabilities	at	 that	score
can	 then	 be	 calculated.	 The	 K-S	 statistic	 is	 the	 maximum	 of	 these	 distances.	 Table
8.14[433]	shows	an	example	for	the	email	classification	problem	predictions	given	in	Table
8.11[424].	We	have	highlighted	in	bold	and	marked	with	a	*	the	instance	that	results	in	the
maximum	distance	between	CP(spam,	ps)	and	CP(ham,	ps).	This	distance	is	0.576,	which
is	the	K-S	statistic	for	this	example.

To	 illustrate	 how	 a	 K-S	 statistic	 and	 K-S	 chart	 can	 give	 insight	 into	 model
performance,	 Figure	 8.14[434]	 shows	 a	 series	 of	 charts	 for	 the	 four	 different	 prediction
models	trained	on	the	email	classification	task	and	evaluated	on	a	large	test	set.	The	charts
are	a	histogram	of	the	spam	scores	predicted	by	the	model,	a	histogram	of	the	ham	scores
predicted	by	the	model,	and	the	resulting	K-S	chart	with	the	K-S	statistic	highlighted.

The	resulting	K-S	statistics	are	0.940,	0.631,	0.432,	and	0.164.	These	results	show	that
Model	 1	 is	 doing	 a	 much	 better	 job	 of	 separating	 the	 two	 target	 levels	 than	 the	 other



models.	We	can	see	this	 in	 the	score	histograms	and	the	K-S	charts,	but	 it	 is	also	nicely
captured	in	the	K-S	statistics.

8.4.3.3	Measuring	Gain	and	Lift

In	scenarios	 in	which	we	have	a	positive	 target	 level	 that	we	are	especially	 interested	in
(for	example,	 spam	emails,	 fraudulent	 transactions,	or	customers	 that	will	 respond	 to	an
offer),	it	can	often	be	useful	to	focus	in	on	how	well	a	model	is	making	predictions	for	just
those	 instances,	 rather	 than	 how	 well	 the	 model	 is	 distinguishing	 between	 two	 target
levels.	 This	 is	 a	 subtle	 difference	 but	 can	 lead	 to	 a	 change	 in	 the	 ordering	 of	 models
compared	to	other	performance	measures.	Two	useful	performance	measures	in	this	regard
are	gain	and	lift	 (we	will	see	that	 the	related	performance	measures	of	cumulative	gain
and	cumulative	lift	are	also	useful).

Table	8.14

Tabulating	the	workings	required	to	generate	a	K-S	statistic.

*	marks	the	maximum	distance,	which	is	the	K-S	statistic.

The	basic	assumption	behind	both	gain	and	lift	is	that	if	we	were	to	rank	the	instances
in	 a	 test	 set	 in	 descending	 order	 of	 the	 prediction	 scores	 assigned	 to	 them	 by	 a	 well-



performing	model,	we	would	expect	the	majority	of	the	positive	instances	to	be	toward	the
top	of	this	ranking.	The	gain	and	lift	measures	attempt	to	measure	to	what	extent	a	set	of
predictions	made	by	a	model	meet	this	assumption.

Figure	8.14

A	series	of	charts	for	different	model	performance	on	the	same	large	email	classification
test	set	used	to	generate	the	ROC	curves	in	Figure	8.12(b)[429].	Each	column	from	top	to
bottom:	a	histogram	of	the	ham	 scores	predicted	by	 the	model,	a	histogram	of	 the	spam
scores	predicted	by	the	model,	and	the	K-S	chart.

To	calculate	gain	and	lift,	we	first	rank	the	predictions	made	for	a	test	set	in	descending
order	 by	 prediction	 score	 and	 then	 divide	 them	 into	 deciles.18	 A	 decile	 is	 a	 group
containing	10%	of	a	dataset.	Table	8.15[435]	 shows	 the	data	 from	Table	8.11[424]	divided
into	 deciles.	 There	 are	 20	 instances,	 so	 each	 decile	 contains	 just	 2	 instances.	 The	 first
decile	contains	instances	9	and	4,	the	second	decile	contains	instances	18	and	20,	and	so
on.

Gain	 is	 a	measure	 of	 how	many	 of	 the	 positive	 instances	 in	 the	 overall	 test	 set	 are
found	in	a	particular	decile.	To	find	this,	we	count	the	number	of	positive	instances	(based
on	the	known	target	values)	found	in	each	decile	and	divide	these	by	the	total	number	of
positive	instances	in	the	test	set.	So,	the	gain	in	a	given	decile	is	calculated	as

Table	8.15

The	test	set	with	model	predictions	and	scores	from	Table	8.11[424]	extended	to	include
deciles.



Decile ID Target Prediction Score Outcome

1st
9 spam spam 0.960 TP

4 spam spam 0.963 TP

2nd
18 spam spam 0.833 TP

20 ham spam 0.877 FP

3rd
6 spam spam 0.719 TP

10 spam spam 0.781 TP

4th
17 ham spam 0.657 FP

8 spam spam 0.676 TP

5th
5 ham ham 0.302 TN

14 ham ham 0.348 TN

6th
16 ham ham 0.246 TN

1 spam ham 0.293 FN

7th
2 spam ham 0.184 FN

3 ham ham 0.226 TN

8th
19 ham ham 0.094 TN

12 spam ham 0.160 FN

9th
15 ham ham 0.059 TN

13 ham ham 0.064 TN

10th
7 ham ham 0.001 TN

11 ham ham 0.003 TN



where	dec	 refers	 to	 a	particular	decile.	Table	8.16[436]	 shows	how	gain	 is	 calculated	 for
each	 decile	 in	 the	 email	 classification	 test	 set.	 The	 number	 of	 positive	 and	 negative
instances	 in	 each	 decile	 is	 shown.	Based	 on	 these	 numbers,	 the	 gain	 for	 each	 decile	 is
calculated	 using	 Equation	 (8.19)[435]	 (the	 calculation	 of	 some	 other	 measures	 are	 also
included	in	this	table,	and	these	will	be	explained	shortly).

Figure	8.15(a)[437]	graphs	the	gain	for	each	decile	to	produce	a	gain	chart.	We	can	see
from	this	chart	 that	 the	gain	 is	higher	 for	 the	 lower	deciles,	which	contain	 the	 instances
with	 the	 highest	 scores.	 This	 is	 indicative	 of	 the	 fact	 that	 the	 model	 is	 performing
reasonably	 well.	Cumulative	 gain	 is	 calculated	 as	 the	 fraction	 of	 the	 total	 number	 of
positive	instances	in	a	test	set	identified	up	to	a	particular	decile	(i.e.,	in	that	decile	and	all
deciles	below	it):

Table	8.16

Tabulating	the	workings	required	to	calculate	gain,	cumulative	gain,	lift,	and	cumulative
lift	for	the	data	given	in	Table	8.11[424].

	

The	 cumulative	 gain	 for	 each	 decile	 of	 the	 email	 classification	 dataset	 is	 shown	 in
Table	 8.16[436].	 Figure	 8.15(b)[437]	 shows	 a	 cumulative	 gain	 chart	 of	 this	 data.	 That
cumulative	 gain	 chart	 allows	 us	 to	 understand	 how	many	 of	 the	 positive	 instances	 in	 a
complete	 test	 set	we	 can	 expect	 to	 have	 identified	 at	 each	decile	 of	 the	dataset.	 So,	 for
example,	Figure	8.15(b)[437]	shows	that	by	the	4th	decile	(40%	of	the	test	data),	66.667%
of	the	spam	emails	in	the	entire	test	set	will	have	been	identified.	This	is	evidence	of	just
how	well	the	model	is	performing.	The	dotted	diagonal	line	on	the	cumulative	gain	chart
shows	 the	 performance	 we	 would	 expect	 from	 random	 guessing,	 and	 the	 closer	 the
cumulative	 gain	 line	 is	 to	 the	 top	 left	 hand	 corner	 of	 the	 chart,	 the	 better	 the	model	 is
performing.

The	gain	in	a	particular	decile	can	be	interpreted	as	a	measure	of	how	much	better	than
random	guessing	the	predictions	made	by	a	model	are.	Lift	captures	this	more	formally.	If



a	model	were	performing	no	better	 than	 random	guessing,	we	would	expect	 that	within
each	decile,	the	percentage	of	positive	instances	should	be	the	same	as	the	percentage	of
positive	instances	overall	in	the	complete	dataset.	Lift	tells	us	how	much	higher	the	actual
percentage	of	positive	 instances	 in	 a	decile	dec	 is	 than	 the	 rate	 expected.	So,	 the	 lift	 at
decile	dec	 is	the	ratio	between	the	percentage	of	positive	instances	in	that	decile	and	the
percentage	of	positive	instances	overall	in	the	population:

Figure	8.15

The	(a)	gain	and	(b)	cumulative	gain	at	each	decile	for	the	email	predictions	given	in	Table
8.11[424].

In	the	email	classification	example,	the	percentage	of	positive	(spam)	instances	in	the
full	test	dataset	is	 .	Therefore,	the	lift	at	each	decile	dec	is	the	percentage	of	spam
instances	in	that	decile	divided	by	0.45.	Table	8.16[436]	shows	the	 lift	 for	each	decile	for
the	 predictions	 shown	 in	 Table	 8.11[424]	 for	 the	 email	 classification	 problem.	 If	 we
compare	the	visualization	of	 lift	for	 these	predictions	shown	in	Figure	8.16(a)[438]	 to	 the
gain	chart	for	the	same	set	of	predictions	in	Figure	8.15(a)[437],	we	can	see	that	the	shapes
are	the	same.	For	a	well-performing	model,	the	lift	curve	should	start	well	above	1.0	and
cross	1.0	at	one	of	the	lower	deciles.	Lift	can	take	values	in	the	range	[0,	∞],	and	higher
values	indicate	that	a	model	is	performing	well	at	a	particular	decile.

In	the	same	way	we	calculated	cumulative	gain,	we	can	calculate	lift	cumulatively.	The
cumulative	lift	at	decile	dec	is	defined	as



Figure	8.16

The	(a)	lift	and	(b)	cumulative	lift	at	each	decile	for	the	email	predictions	given	in	Table
8.11[424].

Table	8.16[436]	shows	the	cumulative	 lift	 for	each	decile	for	 the	predictions	shown	in
Table	 8.11[424]	 for	 the	 email	 classification	 problem,	 and	 these	 values	 are	 plotted	 in	 a
cumulative	lift	curve	in	Figure	8.16(b)[438].

Figure	8.17[439]	shows	cumulative	gain,	lift,	and	cumulative	lift	charts	(the	gain	chart	is
not	 shown	as	 it	 is	 essentially	 the	 same	as	 the	 lift	 chart)	 for	 four	different	 sets	of	model
predictions	 for	 the	 larger	 version	of	 the	 email	 classification	 test	 set	 (these	 are	 the	 same
predictions	for	which	ROC	charts	and	K-S	charts	were	plotted	in	Figures	8.12(b)[429]	and
8.14[434]).	Focusing	on	the	cumulative	gain	charts,	we	can	see	 that	for	Model	1,	80%	of
the	spam	messages	are	identified	in	the	top	40%	of	the	model	predictions.	For	Model	2,
we	need	to	look	almost	as	far	as	the	top	50%	of	predictions	to	find	the	same	percentage	of
spam	messages.	For	Models	3	and	4,	we	need	to	go	as	far	as	60%	and	75%	respectively.
This	indicates	that	Model	1	distinguishes	between	the	target	levels	most	effectively.

Cumulative	gain	 is	especially	useful	 in	customer	relationship	management	 (CRM)
applications	such	as	cross-sell	and	upsell	models.	The	cumulative	gain	tells	us	how	many
customers	we	need	 to	contact	 in	order	 to	 reach	a	particular	percentage	of	 those	who	are
likely	to	respond	to	an	offer,	which	is	an	incredibly	useful	piece	of	information	to	know
when	planning	customer	contact	budgets.



Figure	8.17

Cumulative	gain,	lift,	and	cumulative	lift	charts	for	four	different	models	for	the	extended
email	classification	test	set.

Table	8.17

The	structure	of	a	confusion	matrix	for	a	multinomial	prediction	problem	with	l	target
levels.



8.4.4	Performance	Measures:	Multinomial	Targets

All	 the	 performance	 measures	 described	 in	 the	 previous	 section	 assumed	 that	 the
prediction	 problem	 being	 evaluated	 had	 only	 two	 target	 levels.	Many	 of	 the	 prediction
problems	 for	which	we	build	models	 are	multinomial,	 that	 is,	 there	 are	multiple	 target
levels.	When	we	 deal	with	multinomial	 prediction	 problems,	we	 need	 a	 different	 set	 of
performance	measures.	 This	 section	 describes	 the	most	 common	 of	 these.	We	 begin	 by
discussing	how	the	confusion	matrix	can	be	extended	to	handle	multiple	target	levels.

If	we	have	multiple	target	levels,	the	structure	of	the	confusion	matrix	shown	in	Figure
8.2[403]	no	longer	fits	the	data.	Similarly,	the	notion	of	thinking	about	a	positive	level	and	a
negative	 level	 doesn’t	 apply	 any	 more.	 The	 confusion	 matrix	 can,	 however,	 be	 easily
extended	 to	 handle	multiple	 target	 levels	 by	 including	 a	 row	 and	 column	 for	 each	 one.
Table	 8.17[440]	 shows	 the	 structure	 of	 a	 confusion	 matrix	 for	 a	 multinomial	 prediction
problem	in	which	the	target	feature	has	l	levels.

In	Table	8.17[440]	we	have	included	precision	and	recall	measures	for	each	target	level.
Precision	 and	 recall	 are	 calculated	 in	 almost	 exactly	 the	 same	 way	 for	 multinomial
problems	as	 for	binary	problems.	Abandoning	 the	notion	of	positive	and	negative	 target
levels,	we	get

Table	8.18

A	sample	test	set	with	model	predictions	for	a	bacterial	species	identification	problem.

ID Target Prediction

1 durionis fructosus

2 ficulneus fructosus

3 fructosus fructosus

4 ficulneus ficulneus

5 durionis durionis

6 pseudo. pseudo.

7 durionis fructosus

8 ficulneus ficulneus



9 pseudo. pseudo.

10 pseudo. fructosus

11 fructosus fructosus

12 ficulneus ficulneus

13 durionis durionis

14 fructosus fructosus

15 fructosus ficulneus

16 ficulneus ficulneus

17 ficulneus ficulneus

18 fructosus fructosus

19 durionis durionis

20 fructosus fructosus

21 fructosus fructosus

22 durionis durionis

23 fructosus fructosus

24 pseudo. fructosus

25 durionis durionis

26 pseudo. pseudo.

27 fructosus fructosus

28 ficulneus ficulneus

29 fructosus fructosus

30 fructosus fructosus

where	TP(l)	 refers	 to	 the	 number	 of	 instances	 correctly	 given	 a	 prediction	 of	 the	 target



level	 l,	FP(l)	 refers	 to	 the	number	of	 instances	 that	are	 incorrectly	given	a	prediction	of
target	level	l,	and	FN(l)	 refers	 to	 the	number	of	 instances	 that	should	have	been	given	a
prediction	of	target	level	l	but	were	given	some	other	prediction.

Table	 8.18[441]	 shows	 the	 expected	 targets	 and	 a	 set	 of	 model	 predictions	 for	 a
multinomial	prediction	problem	in	which	the	species	of	a	bacteria	present	in	a	sample	is
determined	using	the	results	of	spectrography	performed	on	the	sample.19	In	this	example,
we	 are	 trying	 to	 distinguish	 between	 four	 species	 of	 the	 bacterial	 genus	Fructobacillus,
namely,	durionis,	ficulneus,	fructosus,	and	pseudoficulneus	(abbreviated	as	pseudo.	 in	all
tables).	 Table	 8.19[442]	 shows	 the	 associated	 confusion	 matrix	 for	 these	 predictions,
including	measures	of	precision	and	recall.

While	 the	 overall	 classification	 accuracy	 for	 this	 set	 of	 predictions	 is	 80%,20	 the
individual	recall	scores	for	each	target	level	show	that	the	performance	of	the	model	is	not
the	same	for	all	four	levels:	the	accuracy	on	the	ficulneus	and	fructosus	levels	is	quite	high
(85.714%	and	90.909%	respectively),	while	 for	 the	durionis	and	pseudoficulneus	 levels,
the	accuracy	is	considerably	lower	(71.429%	and	60.000%).	The	averageclassaccuracyHM
performance	 measure	 can	 be	 applied	 to	 multinomial	 prediction	 problems	 and	 is	 an
effective	option	for	measuring	performance.	Using	Equation	(8.12)[418],	we	can	calculate
the	average	class	accuracy	for	this	problem:

Table	8.19

A	confusion	matrix	for	a	model	trained	on	the	bacterial	species	identification	problem.

	

It	 is	 not	 easy	 to	 apply	 the	 measures	 based	 on	 prediction	 scores	 to	 multinomial
problems.	Although	there	are	some	examples	of	doing	it,	 there	 is	no	broad	consensus	in
the	community	on	how	it	should	best	be	done	in	all	cases,	so	we	do	not	discuss	it	further
in	this	book.



8.4.5	Performance	Measures:	Continuous	Targets

All	the	performance	measures	that	we	have	discussed	so	far	focus	on	prediction	problems
with	categorical	 targets.	When	evaluating	the	performance	of	prediction	models	built	for
continuous	targets,	there	are	fewer	options	to	choose	from.	In	this	section	we	describe	the
most	popular	performance	measures	used	for	continuous	targets.	The	basic	process	is	the
same	as	for	categorical	targets.	We	have	a	test	set	containing	instances	for	which	we	know
the	correct	target	values,	and	we	have	a	set	of	predictions	made	by	a	model.	We	would	like
to	measure	how	accurately	the	predicted	values	match	the	correct	target	values.

8.4.5.1	Basic	Measures	of	Error

In	Section	7.2.2[327],	when	 covering	 error-based	 learning,	we	 discussed	 the	 basis	 of	 the
most	common	performance	measure	for	continuous	targets:	sum	of	squared	errors.	The
sum	of	squared	errors	function,	L2,	for	a	set	of	predictions	made	by	a	model,	 ,	is	defined
as

where	 t1	…	 tn	 is	 a	 set	 of	 n	 expected	 target	 values,	 and	 (d1)	…	 (dn)	 is	 a	 set	 of	 n
predictions	for	a	set	of	test	instances,	d1	…	dn.	We	modify	this	very	slightly	to	give	us	the
mean	 squared	 error	 performance	 measure,	 which	 captures	 the	 average	 difference
between	the	expected	target	values	in	the	test	set	and	the	values	predicted	by	the	model.
The	mean	squared	error	(MSE)	performance	measure	is	defined	as

The	 mean	 squared	 error	 allows	 us	 to	 rank	 the	 performance	 of	 multiple	 models	 on	 a
prediction	problem	with	a	continuous	target.	Mean	squared	error	values	fall	 in	the	range
[0,	∞],	and	smaller	values	indicate	better	model	performance.

Table	8.20[445]	shows	the	expected	target	values	for	a	test	set,	the	predictions	made	by
two	different	models	(a	multivariable	linear	regression	model	and	a	k-NN	model),	and	the
resulting	errors	based	on	these	predictions	(the	additional	error	measures	will	be	explained
shortly).	The	prediction	problem	in	this	case	is	to	determine	the	dosage	of	a	blood	thinning
drug	(in	milligrams)	that	should	be	given	to	a	patient	in	order	to	achieve	a	particular	level
of	 blood	 thinning.	 The	 descriptive	 features	 in	 this	 case	 would	 be	 the	 level	 of	 blood
thinning	desired,	 demographic	details	 for	 the	patient,	 and	 the	 results	 of	various	medical
tests	 performed	 on	 the	 patient.	Doctors	 could	 use	 the	 outputs	 of	 such	 a	 system	 to	 help
them	make	better	dosing	decisions.21	The	mean	squared	error	for	the	multivariable	linear
regression	 model	 is	 1.905	 and	 for	 the	 k-NN	 model	 is	 4.394.	 This	 indicates	 that	 the
regression	model	is	more	accurately	predicting	the	correct	drug	dosages	than	the	nearest
neighbor	model.

One	complaint	that	is	often	leveled	against	mean	squared	error	is	that,	although	it	can



be	used	 to	effectively	rank	models,	 the	actual	mean	squared	error	values	 themselves	are
not	especially	meaningful	 in	 relation	 to	 the	 scenario	 that	 a	model	 is	being	used	 for.	For
example,	in	the	drug	dosage	prediction	problem,	we	cannot	say	by	how	many	milligrams
we	expect	the	model	to	be	incorrect	based	on	the	mean	squared	error	values.	This	is	due	to
the	 use	 of	 the	 squared	 term	 in	 the	 mean	 squared	 error	 calculation	 but	 can	 easily	 be
addressed	 by	 using	 root	mean	 squared	 error	 instead.	 The	 root	 mean	 squared	 error
(RMSE)	for	a	set	of	predictions	made	by	a	model	on	a	test	set	is	calculated	as

where	the	terms	have	the	same	meaning	as	before.	Root	mean	squared	error	values	are	in
the	same	units	as	the	target	value	and	so	allow	us	to	say	something	more	meaningful	about
what	 the	 error	 for	 predictions	 made	 by	 the	 model	 will	 be.	 For	 example,	 for	 the	 drug
dosage	prediction	problem,	the	root	mean	squared	error	value	is	1.380	for	the	regression
model	 and	 2.096	 for	 the	 nearest	 neighbor	 model.	 This	 means	 that	 we	 can	 expect	 the
predictions	made	 by	 the	 regression	model	 to	 be	 1.38mg	 out	 on	 average,	whereas	 those
made	by	the	nearest	neighbor	model	will	be,	on	average,	2.096mg	out.

Due	 to	 the	 inclusion	 of	 the	 squared	 term,	 the	 root	 mean	 squared	 error	 tends	 to
overestimate	 error	 slightly	 as	 it	 overemphasizes	 individual	 large	 errors.	 An	 alternative
measure	that	addresses	this	problem	is	the	mean	absolute	error	(MAE),	which	does	not
include	a	squared	term.22	Mean	absolute	error	is	calculated	as

where	 the	 terms	 in	 the	equation	have	 the	same	meaning	as	before,	and	abs	 refers	 to	 the
absolute	 value.	Mean	 absolute	 error	 values	 fall	 in	 the	 range	 [0,	∞],	 and	 smaller	 values
indicate	better	model	performance.

Table	8.20

The	expected	target	values	for	a	test	set,	the	predictions	made	by	a	model,	and	the
resulting	errors	based	on	these	predictions	for	a	blood	thinning	drug	dosage	prediction
problem.

Linear	Regression k-NN

ID Target Prediction Error Prediction Error

1 10.502 10.730 0.228 12.240 1.738

2 18.990 17.578 -1.412 21.000 2.010

3 20.000 21.760 1.760 16.973 -3.027



4 6.883 7.001 0.118 7.543 0.660

5 5.351 5.244 -0.107 8.383 3.032

6 11.120 10.842 -0.278 10.228 -0.892

7 11.420 10.913 -0.507 12.921 1.500

8 4.836 7.401 2.565 7.588 2.752

9 8.177 8.227 0.050 9.277 1.100

10 19.009 16.667 -2.341 21.000 1.991

11 13.282 14.424 1.142 15.496 2.214

12 8.689 9.874 1.185 5.724 -2.965

13 18.050 19.503 1.453 16.449 -1.601

14 5.388 7.020 1.632 6.640 1.252

15 10.646 10.358 -0.288 5.840 -4.805

16 19.612 16.219 -3.393 18.965 -0.646

17 10.576 10.680 0.104 8.941 -1.634

18 12.934 14.337 1.403 12.484 -0.451

19 10.492 10.366 -0.126 13.021 2.529

20 13.439 14.035 0.596 10.920 -2.519

21 9.849 9.821 -0.029 9.920 0.071

22 18.045 16.639 -1.406 18.526 0.482

23 6.413 7.225 0.813 7.719 1.307

24 9.522 9.565 0.043 8.934 -0.588

25 12.083 13.048 0.965 11.241 -0.842

26 10.104 10.085 -0.020 10.010 -0.095



27 8.924 9.048 0.124 8.157 -0.767

28 10.636 10.876 0.239 13.409 2.773

29 5.457 4.080 -1.376 9.684 4.228

30 3.538 7.090 3.551 5.553 2.014

MSE 1.905 4.394

RMSE 1.380 2.096

MAE 0.975 1.750

R2 0.889 0.776

For	 the	 drug	 dosage	 predictions	 given	 in	 Table	 8.20[445],	 the	mean	 absolute	 error	 is
0.975	for	the	regression	model	and	1.750	for	the	nearest	neighbor	model.	Mean	absolute
errors	are	 in	 the	 same	units	 as	 the	predictions	 themselves,	 so	we	can	 say	 that,	based	on
mean	absolute	error,	we	can	expect	the	regression	model	to	make	errors	of	approximately
0.9575mg	 in	 each	 of	 its	 predictions	 and	 the	 nearest	 neighbor	 model	 to	 be	 out	 by
approximately	 4.020mg.	 These	 are	 not	 massively	 different	 from	 the	 values	 calculated
using	 root	 mean	 squared	 error.	 As	 we	 recommended	 the	 use	 of	 harmonic	 mean	 over
arithmetic	mean	when	calculating	average	class	accuracy,	we	recommend	the	use	of	root
mean	squared	error	over	mean	absolute	error	because	 it	 is	better	 to	be	pessimistic	when
estimating	the	performance	of	models.

8.4.5.2	Domain	Independent	Measures	of	Error

The	fact	that	root	mean	squared	error	and	mean	absolute	error	are	in	the	same	units	as	the
target	 feature	 itself	 can	 be	 attractive	 as	 it	 gives	 a	 very	 intuitive	measure	 of	 how	well	 a
model	 is	 performing—for	 example,	 a	 model	 is	 typically	 1.38mg	 out	 in	 its	 dosage
predictions.	 The	 disadvantage	 of	 this,	 however,	 is	 that	 these	 types	 of	 measure	 by
themselves	 are	 not	 sufficient	 to	 judge	 whether	 a	 model	 is	 making	 accurate	 predictions
without	 deep	 knowledge	 of	 a	 domain.	 For	 example,	 how	 can	we	 judge	whether	 a	 drug
dosage	prediction	model	that	has	a	root	mean	squared	error	of	1.38mg	is	actually	making
accurate	predictions	without	also	understanding	the	domain	of	drug	dosage	prediction.	To
make	these	judgements	it	is	necessary	to	have	a	normalised,	domain	independent	measure
of	model	performance.

The	R2	 coefficient	 is	 a	 domain	 independent	 measure	 of	 model	 performance	 that	 is
frequently	 used	 for	 prediction	 problems	 with	 a	 continuous	 target.	 The	 R2	 coefficient
compares	the	performance	of	a	model	on	a	test	set	with	the	performance	of	an	imaginary
model	 that	 always	 predicts	 the	 average	 values	 from	 the	 test	 set.	 The	 R2	 coefficient	 is



calculated	as

where	 the	sum	of	squared	errors	 is	 computed	using	Equation	 (8.25)[443],	 and	 the	 total
sum	of	squares	is	given	by

R2	 coefficient	 values	 fall	 in	 the	 range	 [0,	 1)	 and	 larger	 values	 indicate	 better	model
performance.	A	useful	interpretation	of	the	R2	coefficient	is	as	the	amount	of	variation	in
the	target	feature	that	is	explained	by	the	descriptive	features	in	the	model.

The	average	target	value	for	the	drug	dosage	prediction	test	set	given	in	Table	8.20[445]

is	 11.132.	 Using	 this,	 the	R2	 coefficient	 for	 the	 regression	 model	 can	 be	 calculated	 as
0.889	and	for	the	nearest	neighbor	model	as	0.776.	This	leads	to	the	same	conclusion	with
regard	 to	 model	 ranking	 as	 the	 root	 mean	 squared	 error	 measures:	 namely,	 that	 the
regression	model	has	better	performance	on	this	task	than	the	nearest	neighbor	model.	The
R2	coefficient	has	the	advantage	in	general,	however,	 that	 it	allows	assessment	of	model
performance	in	a	domain	independent	way.



8.4.6	Evaluating	Models	after	Deployment

Predictive	models	are	based	on	the	assumption	that	the	patterns	learned	in	the	training	data
will	 be	 relevant	 to	unseen	 instances	 that	 are	presented	 to	 the	model	 in	 the	 future.	Data,
however,	 like	 everything	else	 in	 the	world,	 is	not	 constant.	People	grow	older,	 inflation
drives	 up	 salaries,	 the	 content	 of	 the	 spam	 emails	 changes,	 and	 the	 way	 people	 use
technologies	 changes.	 This	 phenomenon	 is	 often	 referred	 to	 as	 concept	 drift.	 Concept
drift	means	that	almost	all	the	predictive	models	that	we	build	will	at	some	point	go	stale,
and	 the	 relationships	 that	 they	 have	 learned	 between	 descriptive	 features	 and	 target
features	will	no	longer	apply.	It	is	important	that	once	a	model	is	deployed,	we	put	in	place
an	on-going	model	validation	scheme	to	monitor	the	model	to	catch	the	point	at	which	it
begins	to	go	stale.	If	we	can	catch	this	point,	we	can	take	appropriate	action.

To	monitor	the	on-going	performance	of	a	model,	we	need	a	signal	that	indicates	that
something	has	changed.	There	are	three	sources	from	which	we	can	extract	such	a	signal:

The	performance	of	the	model	measured	using	appropriate	performance	measures
The	distributions	of	the	outputs	of	a	model
The	distributions	of	the	descriptive	features	in	query	instances	presented	to	the	model

Once	a	signal	has	identified	that	concept	drift	has	occurred	and	that	a	model	has	indeed
gone	stale,	corrective	action	 is	 required.	The	nature	of	 this	corrective	action	depends	on
the	 application	 and	 the	 type	 of	 model	 being	 used.	 In	 most	 cases,	 however,	 corrective
action	involves	gathering	a	new	labeled	dataset	and	restarting	the	model	building	process
using	this	new	dataset.

8.4.6.1	Monitoring	Changes	in	Performance	Measures

The	simplest	way	to	get	a	signal	that	concept	drift	has	occurred	is	to	repeatedly	evaluate
models	with	 the	 same	performance	measures	 used	 to	 evaluate	 them	before	 deployment.
We	can	calculate	performance	measures	 for	a	deployed	model	and	compare	 these	 to	 the
performance	achieved	in	evaluations	before	the	model	was	deployed.	If	 the	performance
changes	significantly,	this	is	a	strong	indication	that	concept	drift	has	occurred	and	that	the
model	has	gone	stale.	For	example,	if	we	had	used	root	mean	squared	error	on	a	hold-out
test	set	to	evaluate	the	performance	of	a	model	before	deployment,	we	could	collect	all	the
query	instances	presented	to	the	model	for	a	period	after	deployment	and,	once	their	true
target	feature	values	became	available,	calculate	the	root	mean	squared	error	on	this	new
set	of	query	instances.	A	large	change	in	the	root	mean	squared	error	value	would	flag	that
the	model	 had	 gone	 stale.	 One	 of	 the	 drawbacks	 of	 using	 this	method	 to	 detect	 that	 a
model	has	gone	stale	is	that	estimating	how	large	this	change	needs	to	be	in	order	to	signal
that	the	model	has	gone	stale	is	entirely	domain	dependent.23

Although	monitoring	changes	in	the	performance	of	a	model	is	the	easiest	way	to	tell
whether	it	has	gone	stale,	this	method	makes	the	rather	large	assumption	that	the	correct
target	feature	value	for	a	query	instance	will	be	made	available	shortly	after	the	query	has
been	presented	to	a	deployed	model.	There	are	many	scenarios	in	which	this	is	the	case.
For	example,	for	churn	models,	customers	will	either	churn	or	not	churn;	for	credit	scoring



models,	customers	will	either	 repay	 their	 loans	or	not;	and	for	models	predicting	athlete
performance,	 athletes	 will	 either	 match	 expectations	 or	 not.	 There	 are	 many	 more
scenarios,	 however,	 in	 which	 the	 correct	 target	 feature	 values	 either	 never	 become
available	 or	 do	 not	 become	 available	 early	 enough	 to	 be	 useful	 for	 ongoing	 model
validation.	In	these	scenarios,	this	approach	to	on-going	model	validation	simply	doesn’t
work.

8.4.6.2	Monitoring	Model	Output	Distribution	Changes

An	alternative	to	using	changing	model	performance	is	to	use	changes	in	the	distribution
of	model	outputs	as	a	signal	for	concept	drift.	If	the	distribution	of	model	outputs	changes
dramatically,	for	example,	if	a	model	that	previously	made	positive	predictions	80%	of	the
time	is	suddenly	making	positive	predictions	only	20%	of	the	time,	 then	we	can	assume
that	 there	 is	 a	 strong	 possibility	 that	 concept	 drift	 has	 occurred	 and	 that	 the	model	 has
gone	stale.	In	order	to	compare	distributions,	we	measure	the	distribution	of	model	outputs
on	 the	 test	 set	 that	 was	 used	 to	 originally	 evaluate	 a	 model	 and	 then	 repeat	 this
measurement	on	new	sets	of	query	instances	collected	during	periods	after	the	model	has
been	deployed.	We	 then	use	an	appropriate	measure	 to	 calculate	 the	difference	between
the	distributions	collected	after	deployment	and	the	original	distribution.	One	of	the	most
commonly	used	measures	for	this	is	the	stability	index.	The	stability	index	is	calculated
as

where	| |	refers	to	the	size	of	the	test	set	on	which	performance	measures	were	originally
calculated,	 | t=l|	 refers	 to	 the	 number	 of	 instances	 in	 the	 original	 test	 set	 for	which	 the
model	made	a	prediction	of	level	l	for	target	t,	| |	and	| t=l|	refer	to	the	same	measurements
on	the	newly	collected	dataset,	and	loge	is	the	natural	logarithm.24	In	general,

If	 the	value	of	 the	 stability	 index	 is	 less	 than	0.1,	 then	 the	distribution	of	 the	newly
collected	test	set	is	broadly	similar	to	the	distribution	in	the	original	test	set.
If	 the	 value	 of	 the	 stability	 index	 is	 between	 0.1	 and	 0.25,	 then	 some	 change	 has
occurred	and	further	investigation	may	be	useful.
A	 stability	 index	 value	 greater	 than	 0.25	 suggests	 that	 a	 significant	 change	 has
occurred	and	corrective	action	is	required.

Table	8.21[450]	shows	an	example	of	how	the	stability	index	could	be	calculated	for	two
different	sets	of	query	 instances	collected	at	 two	different	 times	after	model	deployment
based	 on	 the	 bacterial	 species	 identification	 problem	 given	 in	 Table	 8.18[441].	 For	 the
original	test	set	and	the	two	new	test	sets,	referred	to	as	New	Sample	1	and	New	Sample	2,
the	count	and	percentage	for	each	target	value	is	given	(note	that	the	tests	sets	do	not	have
to	be	 the	 same	 size	because	 relative	distributions	 are	used).	The	original	baseline	 target
frequencies	 are	 based	 on	 the	 predictions	 in	 Table	8.18[441]	 and	 are	 visualized	 in	 Figure
8.18(a)[451].



Table	8.21

Calculating	the	stability	index	for	the	bacterial	species	identification	problem	given	new
test	data	for	two	periods	after	model	deployment.

The	frequency	and	percentage	of	each	target	level	are	shown	for	the	original	test	set	and
for	two	samples	collected	after	deployment.	The	column	marked	SIt	shows	the	different
parts	of	the	stability	index	sum	based	on	Equation	(8.31)[449].

Figures	8.18(b)[451]	and	8.18(c)[451]	show	the	target	distributions	for	the	two	points	in
time	 after	 deployment	 for	which	 the	 stability	 index	 is	 to	 be	 calculated.	 These	 bar	 plots
show	that	the	distribution	of	target	levels	for	New	Sample	1	is	similar	to	the	original	test
set,	but	 that	 the	distribution	of	 target	 levels	 for	New	Sample	2	 is	quite	different.	This	 is
reflected	in	the	stability	index	calculations	in	Table	8.21[450],	which	are	determined	using
Equation	(8.31)[449].	For	example,	for	New	Sample	1,	the	stability	index	is

where	 the	 counts	 come	 from	 Table	 8.21[450].	 The	 stability	 index	 for	 New	 Sample	 2,
calculated	in	the	same	way,	is	0.331.	This	suggests	that	at	the	point	in	time	at	which	New
Sample	 1	 was	 collected,	 the	 outputs	 produced	 by	 the	 model	 followed	 much	 the	 same
distribution	as	when	the	model	was	originally	evaluated,	but	that	when	New	Sample	2	was
collected,	the	distribution	of	the	outputs	produced	by	the	model	had	changed	significantly.

To	monitor	models	for	the	occurrence	of	concept	drift,	it	is	important	that	the	stability
index	be	continuously	tracked	over	time.	Figure	8.18(d)[451]	shows	how	the	stability	index
could	be	tracked	for	the	bacterial	species	identification	problem	every	month	for	a	period
of	twelve	months	after	model	deployment.	The	dotted	line	indicates	a	stability	index	value
of	0.1,	above	which	a	model	should	be	closely	monitored,	and	the	dashed	line	indicates	a
stability	index	of	0.25,	above	which	corrective	action	is	recommended.



Figure	8.18

The	 distributions	 of	 predictions	 made	 by	 a	 model	 trained	 for	 the	 bacterial	 species
identification	 problem	 for	 (a)	 the	 original	 evaluation	 test	 set	 and	 for	 (b)	 and	 (c)	 two
periods	 of	 time	 after	 model	 deployment;	 (d)	 shows	 how	 the	 stability	 index	 should	 be
tracked	over	time	to	monitor	for	concept	drift.

The	 stability	 index	 can	 be	 used	 for	 both	 categorical	 and	 continuous	 targets.	When	 a
model	 predicts	 a	 continuous	 target,	 the	 target	 range	 is	 divided	 into	 bins,	 and	 the
distribution	of	values	into	these	bins	is	used	in	the	calculation.	It	is	particularly	common	to
use	 deciles	 for	 this	 task.	 The	 same	 can	 actually	 be	 done	 for	models	 that	 predict	 binary
categorical	targets	by	dividing	the	prediction	scores	into	deciles.	The	stability	index	is	just
one	 measure	 of	 the	 difference	 between	 two	 different	 distributions,	 and	 there	 are	 many
other	options	that	can	be	used.	For	example,	for	categorical	targets,	the	χ2	statistic	is	often
used,	and	for	continuous	targets,	the	K-S	statistic	can	also	be	used.

The	advantage	of	using	evaluation	approaches	based	on	comparing	the	distribution	of	a
model’s	output,	such	as	the	stability	index,	is	that	they	do	not	require	that	the	true	targets
for	 query	 instances	 become	 available	 shortly	 after	 predictions	 have	 been	 made.	 The
downside,	however,	is	that	such	measures	do	not	directly	measure	the	performance	of	the
model,	 and	 consequently,	 a	 high	 stability	 index	may	 reflect	 a	 change	 in	 the	 underlying
population	 rather	 than	 a	 change	 in	model	 performance.	 So,	 relying	 solely	 on	 a	 stability
index	can	lead	to	models	being	rebuilt	when	it	is	not	required.



8.4.6.3	Monitoring	Descriptive	Feature	Distribution	Changes

In	the	same	way	we	can	compare	the	distributions	of	model	outputs	between	the	time	that
the	model	was	built	and	after	deployment,	we	can	also	make	the	same	type	of	comparison
for	 the	 distributions	 of	 the	 descriptive	 features	 used	 by	 the	 model.	 We	 can	 use	 any
appropriate	measure	 that	 captures	 the	 difference	 between	 two	 different	 distributions	 for
this,	including	the	stability	index,	the	χ2	statistic,	and	the	K-S	statistic.

There	is,	however,	a	challenge	here,	as	usually,	there	are	a	large	number	of	descriptive
features	for	which	measures	need	to	be	calculated	and	tracked.	Furthermore,	it	is	unlikely
that	 a	 change	 in	 the	distribution	of	 just	one	descriptive	 feature	 in	 a	multi-feature	model
will	 have	 a	 large	 impact	 on	model	 performance.	For	 this	 reason,	 unless	 a	model	 uses	 a
very	 small	 number	 of	 descriptive	 features	 (generally	 fewer	 than	 10),	 we	 do	 not
recommend	 this	 approach.	Measuring	 the	 difference	 in	 descriptive	 feature	 distributions
can	be	useful,	however,	in	understanding	what	has	changed	to	make	a	model	go	stale.	So,
we	 recommend	 that	 if	 a	 model	 has	 been	 flagged	 as	 having	 gone	 stale	 using	 either
performance	measure	monitoring	or	output	distribution	monitoring,	then	the	distributions
of	the	descriptive	features	at	the	time	that	the	model	was	built	and	the	distributions	of	the
features	 at	 the	 time	 that	 the	 model	 went	 stale	 should	 be	 compared	 in	 an	 effort	 to
understand	what	has	changed.	This	information	should	help	if	the	model	is	to	be	rebuilt	to
address	the	fact	that	it	has	gone	stale.

8.4.6.4	Comparative	Experiments	Using	a	Control	Group

At	the	beginning	of	this	chapter,	we	emphasized	that	it	is	important	that	the	evaluation	of
prediction	 models	 not	 just	 focus	 on	 predictive	 power	 but	 also	 take	 into	 account	 the
suitability	of	 the	model	for	the	task	to	which	it	will	be	deployed.	As	part	of	 this	 type	of
broader	evaluation,	the	use	of	comparative	experiments	that	include	a	control	group	can
be	quite	effective.	The	idea	of	a	control	group	might	be	familiar	to	readers	from	reading
about	 medical	 trials.	 To	 test	 a	 new	 medicine,	 doctors	 typically	 assemble	 a	 group	 of
patients	who	suffer	from	the	problem	that	 the	medicine	is	designed	to	address.	During	a
trial	 period,	 half	 of	 the	 patients,	 the	 treatment	group,	 are	 given	 the	 new	drug,	 and	 the
other	 half,	 the	 control	 group,	 are	 given	 a	 placebo	 (essentially	 a	 fake	 drug	 that	 has	 no
actual	 medical	 effect).	 Patients	 are	 not	 aware	 which	 group	 they	 have	 been	 assigned	 to
during	the	trial	(hence	the	need	for	the	placebo).	As	long	as	both	the	treatment	group	and
the	control	group	are	representative	of	the	overall	population,	at	the	end	of	the	trial	period,
the	doctors	running	the	trial	can	be	confident	that	any	improvement	they	see	in	the	patients
in	the	treatment	group	that	they	do	not	see	in	the	control	group	is	due	to	the	new	medicine.

We	 can	 use	 exactly	 the	 same	 idea	 to	 evaluate	 the	 impact	 of	 predictive	models.	 It	 is
important	to	note	here	that	we	use	control	groups	not	to	evaluate	the	predictive	power	of
the	 models	 themselves,	 but	 rather	 to	 evaluate	 how	 good	 they	 are	 at	 helping	 with	 the
business	problem	when	they	are	deployed.	If	we	have	developed	a	predictive	model	that	is
used	 in	 a	 particular	 business	 process,	we	 can	 run	 that	 business	 process	 in	 parallel	 both
with	 the	 predictive	 model,	 the	 treatment	 group,	 and	 without	 the	 predictive	 model,	 the
control	 group,	 in	 order	 to	 evaluate	 how	 much	 the	 use	 of	 the	 predictive	 model	 has



improved	the	business	process.

For	 example,	 consider	 a	 mobile	 phone	 network	 operator	 that	 has	 built	 a	 churn
prediction	model	to	help	address	a	problem	with	customers	leaving	to	join	other	networks.
The	company	would	like	to	evaluate	how	well	the	model	is	helping	to	address	the	churn
problem.	 Before	 the	 churn	 model	 was	 put	 in	 place,	 every	 week	 the	 company	 would
randomly	select	1,000	customers	from	their	customer	base	and	have	their	customer	contact
center	 call	 these	 customers	 to	 discuss	 how	 satisfied	 they	 were	 with	 the	 network’s
performance	and	offer	assistance	with	any	issues.	This	was	based	on	the	assumption	that
such	 a	 call	 made	 to	 customers	 considering	 switching	 to	 a	 different	 network	 would
encourage	them	to	stay	with	their	current	network.	The	churn	model	replaced	the	random
selection	 of	 customers	 by	 assigning	 every	 customer	 in	 the	 company’s	 customer	 base	 a
churn	 risk	score	and	selecting	 the	1,000	customers	with	 the	highest	churn	 risk	scores	 to
receive	a	call	from	the	customer	contact	center.	Everything	else	about	the	process	was	the
same	as	before.

Table	8.22

The	number	of	customers	who	left	the	mobile	phone	network	operator	each	week	during
the	comparative	experiment	from	both	the	control	group	(random	selection)	and	the
treatment	group	(model	selection).

Week Control	Group
(Random	Selection)

Treatment	Group
(Model	Selection)

1 21 23

2 18 15

3 28 18

4 19 20

5 18 15

6 17 17

7 23 18

8 24 20

9 19 18

10 20 19

11 18 13



12 21 16

Mean 20.500 17.667

Std.	Dev. 3.177 2.708

	

In	order	to	evaluate	the	effect	this	model	was	having	on	the	company’s	churn	problem,
they	 performed	 a	 comparative	 experiment.	 The	 company’s	 entire	 customer	 base	 was
divided	randomly	into	two	groups,	the	treatment	group	and	the	control	group—each	group
contained	approximately	400,000	customers.	For	the	customers	in	the	treatment	group,	the
company	applied	the	process	using	the	predictive	model	to	determine	which	customers	to
contact	 regarding	 customer	 satisfaction.	 For	 the	 customers	 in	 the	 control	 group,	 the
random	 selection	 process	 was	 used.	 These	 two	 approaches	 ran	 in	 parallel	 for	 twelve
weeks,	 and	 at	 the	 end	 of	 this	 period,	 the	 company	measured	 the	 number	 of	 customers
within	 each	 group	 who	 had	 left	 the	 company	 to	 join	 another	 network.	 Table	 8.22[454]
shows	 the	number	of	customers	who	churned	 from	each	of	 these	 two	groups	during	 the
twelve	weeks	of	the	trial,	and	the	associated	means	and	standard	deviations.	These	figures
show	that,	on	average,	fewer	customers	churn	when	the	churn	prediction	model	is	used	to
select	which	customers	 to	call.	This	 tells	us	not	only	 something	about	how	accurate	 the
churn	 prediction	model	 is	 but,	more	 importantly,	 that	 using	 the	model	 actually	made	 a
difference	in	the	business	problem	that	the	company	were	trying	to	address.25

In	order	to	use	control	groups	in	evaluation,	we	need	to	be	able	to	divide	a	population
into	two	groups,	run	two	versions	of	a	business	process	in	parallel,	and	accurately	measure
the	performance	of	the	business	process.	Therefore,	using	control	groups	is	not	suitable	in
all	scenarios,	but	when	it	is	applicable,	it	adds	an	extra	dimension	to	our	evaluations	that
takes	into	account	not	just	how	well	a	model	can	make	predictions,	but	also	how	much	the
predictive	model	helps	to	address	the	original	business	problem.



8.5	Summary
This	 chapter	 covers	 a	 range	of	 approaches	 for	 evaluating	 the	performance	of	 prediction
models.	The	choice	of	the	correct	performance	measure	for	a	particular	problem	depends
on	 a	 combination	 of	 the	 nature	 of	 the	 prediction	 problem	 (e.g.,	 continuous	 versus
categorical),	the	characteristics	of	the	dataset	(e.g.,	balanced	versus	imbalanced),	and	the
needs	 of	 the	 application	 (e.g.,	medical	 diagnosis	 versus	marketing	 response	 prediction).
This	last	issue	is	interesting	because	sometimes	particular	performance	measures	become
especially	 popular	 in	 certain	 industries,	 and	 in	 many	 cases,	 this	 dictates	 the	 choice	 of
performance	 measure.	 For	 example,	 in	 financial	 credit	 scoring,	 the	Gini	 coefficient	 is
almost	always	used	to	evaluate	model	performance.

For	those	struggling	to	choose	an	appropriate	performance	measure,	in	the	absence	of
other	information,	we	recommend:

For	categorical	prediction	problems	use	average	class	accuracy	based	on	a	harmonic
mean.
For	continuous	prediction	problems	use	the	R2	coefficient.

There	 are	 also	 a	 number	 of	 different	 ways	 in	 which	 evaluation	 experiments	 can	 be
performed,	 as	 described	 in	 Section	 8.4.1[405].	 The	 choice	 of	 which	 one	 to	 use	 mostly
depends	 on	 how	 much	 data	 is	 available.	 The	 following	 rules	 of	 thumb	 may	 be	 useful
(although	 the	usual	 caveats	 that	 all	 scenarios	 are	 slightly	different	 apply).	 In	 cases	with
very	 small	 datasets	 (approximately	 fewer	 than	300	 instances),	 bootstrapping	 approaches
are	preferred	over	cross	validation	approaches.	Cross	validation	approaches	are	generally
preferred	 unless	 datasets	 are	 very	 large,	 in	which	 case	 the	 likelihood	 of	 the	 lucky	 split
becomes	very	low,	and	hold-out	approaches	can	be	used.	As	with	everything	else,	there	is
an	 application-specific	 component	 to	 the	 selection	 of	 an	 experimental	 design—for
example,	out-of-time	sampling	 is	a	good	choice	in	scenarios	where	a	time	dimension	is
important.



8.6	Further	Reading
The	evaluation	of	machine	 learning	models	 is	a	 live	 research	 issue,	and	a	 large	body	of
material	addresses	all	the	questions	that	have	been	discussed	in	this	chapter.	For	a	detailed
discussion	 of	 the	 issues	 associated	 with	 evaluating	 models	 for	 categorical	 prediction
problems	 (and	 model	 evaluation	 in	 general)	 Japkowicz	 and	 Shah	 (2011)	 is	 excellent.
David	Hand	 has	 also	 written	 extensively	 on	 the	 appropriateness	 of	 different	 evaluation
measures	and	 is	always	worth	reading.	For	example,	Hand	and	Anagnostopoulos	 (2013)
discusses	issues	with	the	use	of	the	ROC	index.

Japkowicz	 and	 Shah	 (2011)	 also	 discusses	 the	 issue	 of	 performing	 statistical
significance	 tests	 to	 compare	 the	performance	of	multiple	models.	Demsar	 (2006)	gives
another	excellent	overview	of	comparing	multiple	modeling	types	and	has	been	the	basis
for	 much	 discussion	 in	 the	 machine	 learning	 community.	 This	 is	 slightly	 more	 of	 a
concern	 to	 machine	 learning	 researchers	 who	 are	 interested	 in	 comparing	 the	 overall
power	of	different	machine	learning	algorithms.	By	contrast,	in	most	predictive	analytics
projects,	our	focus	is	on	determining	the	best	model	for	a	specific	problem.

The	 design	 of	 model	 evaluation	 experiments	 is	 an	 example	 of	 the	 application	 of
techniques	from	the	larger	discipline	of	experimental	design,	which	is	used	extensively	in
the	manufacturing	industry	amongst	others.	Montgomery	(2012)	is	an	excellent	reference
for	this	topic	and	well	worth	reading.

Finally,	 for	 those	 interested	 in	 experimenting	with	different	 evaluation	measures,	 the
ROCR	package	(Sing	et	al.,	2005)	for	the	R	programming	language	includes	a	wide	range
of	measures.





8.7	Exercises
1.	The	table	below	shows	the	predictions	made	for	a	categorical	target	feature	by	a

model	for	a	test	dataset.	Based	on	this	test	set,	calculate	the	evaluation	measures	listed
below.

ID Target Prediction

1 false false

2 false false

3 false false

4 false false

5 true true

6 false false

7 true true

8 true true

9 false false

10 false false

11 false false

12 true true

13 false false

14 true true

15 false false

16 false false

17 true false

18 true true

19 true true



20 true true

a.	A	confusion	matrix	and	the	misclassification	rate

b.	The	average	class	accuracy	(harmonic	mean)

c.	The	precision,	recall,	and	F1	measure

2.	The	table	below	shows	the	predictions	made	for	a	continuous	target	feature	by
two	different	prediction	models	for	a	test	dataset.

ID Target Model	1	Prediction Model	2	Prediction

1 2,623 2,664 2,691

2 2,423 2,436 2,367

3 2,423 2,399 2,412

4 2,448 2,447 2,440

5 2,762 2,847 2,693

6 2,435 2,411 2,493

7 2,519 2,516 2,598

8 2,772 2,870 2,814

9 2,601 2,586 2,583

10 2,422 2,414 2,485

11 2,349 2,407 2,472

12 2,515 2,505 2,584

13 2,548 2,581 2,604

14 2,281 2,277 2,309

15 2,295 2,280 2,296

16 2,570 2,577 2,612



17 2,528 2,510 2,557

18 2,342 2,381 2,421

19 2,456 2,452 2,393

20 2,451 2,437 2,479

21 2,296 2,307 2,290

22 2,405 2,355 2,490

23 2,389 2,418 2,346

24 2,629 2,582 2,647

25 2,584 2,564 2,546

26 2,658 2,662 2,759

27 2,482 2,492 2,463

28 2,471 2,478 2,403

29 2,605 2,620 2,645

30 2,442 2,445 2,478

a.	Based	on	these	predictions,	calculate	the	evaluation	measures	listed	below	for	each
model.

i.	The	sum	of	squared	errors

ii.	The	R2	measure

b.	Based	on	the	evaluation	measures	calculated,	which	model	do	you	think	is
performing	better	for	this	dataset?

3.	A	credit	card	issuer	has	built	two	different	credit	scoring	models	that	predict	the
propensity	of	customers	to	default	on	their	loans.	The	outputs	of	the	first	model	for	a
test	dataset	are	shown	in	the	table	below.

ID Target Score Prediction

1 bad 0.634 bad

2 bad 0.782 bad



3 good 0.464 good

4 bad 0.593 bad

5 bad 0.827 bad

6 bad 0.815 bad

7 bad 0.855 bad

8 good 0.500 good

9 bad 0.600 bad

10 bad 0.803 bad

11 bad 0.976 bad

12 good 0.504 bad

13 good 0.303 good

14 good 0.391 good

15 good 0.238 good

16 good 0.072 good

17 bad 0.567 bad

18 bad 0.738 bad

19 bad 0.325 good

20 bad 0.863 bad

21 bad 0.625 bad

22 good 0.119 good

23 bad 0.995 bad

24 bad 0.958 bad



25 bad 0.726 bad

26 good 0.117 good

27 good 0.295 good

28 good 0.064 good

29 good 0.141 good

30 good 0.670 bad

The	outputs	of	the	second	model	for	the	same	test	dataset	are	shown	in	the	table	below.

ID Target Score Prediction

1 bad 0.230 bad

2 bad 0.859 good

3 good 0.154 bad

4 bad 0.325 bad

5 bad 0.952 good

6 bad 0.900 good

7 bad 0.501 good

8 good 0.650 good

9 bad 0.940 good

10 bad 0.806 good

11 bad 0.507 good

12 good 0.251 bad

13 good 0.597 good

14 good 0.376 bad

15 good 0.285 bad



16 good 0.421 bad

17 bad 0.842 good

18 bad 0.891 good

19 bad 0.480 bad

20 bad 0.340 bad

21 bad 0.962 good

22 good 0.238 bad

23 bad 0.362 bad

24 bad 0.848 good

25 bad 0.915 good

26 good 0.096 bad

27 good 0.319 bad

28 good 0.740 good

29 good 0.211 bad

30 good 0.152 bad

Based	on	the	predictions	of	these	models,	perform	the	following	tasks	to	compare	their
performance.

a.	The	image	below	shows	an	ROC	curve	for	each	model.	Each	curve	has	a	point
missing.



Calculate	the	missing	point	in	the	ROC	curves	for	Model	1	and	Model	2.	To	generate
the	point	for	Model	1,	use	a	threshold	value	of	0.51.	To	generate	the	point	for	Model	2,
use	a	threshold	value	of	0.43.

b.	The	area	under	the	ROC	curve	(AUC)	for	Model	1	is	0.955	and	for	Model	2	is
0.851.	Which	model	is	performing	best?

c.	Based	on	the	AUC	values	for	Model	1	and	Model	2,	calculate	the	Gini	coefficient
for	each	model.

4.	A	retail	supermarket	chain	has	built	a	prediction	model	that	recognizes	the
household	that	a	customer	comes	from	as	being	one	of	single,	business,	or	family.
After	deployment,	the	analytics	team	at	the	supermarket	chain	uses	the	stability	index
to	monitor	the	performance	of	this	model.	The	table	below	shows	the	frequencies	of
predictions	of	the	three	different	levels	made	by	the	model	for	the	original	validation
dataset	at	the	time	the	model	was	built,	for	the	month	after	deployment,	and	for	a
month-long	period	six	months	after	deployment.

Target Original	Sample 1st	New	Sample 2nd	New	Sample

single 123 252 561

business 157 324 221

family 163 372 827

Bar	plots	of	these	three	sets	of	prediction	frequencies	are	shown	in	the	following
images.



Calculate	the	stability	index	for	the	two	new	periods	and	determine	whether	the
model	should	be	retrained	at	either	of	these	points.

✻	5.	Explain	the	problem	associated	with	measuring	the	performance	of	a
predictive	model	using	a	single	accuracy	figure.

✻	6.	A	marketing	company	working	for	a	charity	has	developed	two	different
models	that	predict	the	likelihood	that	donors	will	respond	to	a	mail-shot	asking	them
to	make	a	special	extra	donation.	The	prediction	scores	generated	for	a	test	set	for
these	two	models	are	shown	in	the	table	below.

ID Target Model	1	Score Model	2	Score

1 false 0.1026 0.2089

2 false 0.2937 0.0080

3 true 0.5120 0.8378

4 true 0.8645 0.7160

5 false 0.1987 0.1891

6 true 0.7600 0.9398

7 true 0.7519 0.9800

8 true 0.2994 0.8578

9 false 0.0552 0.1560

10 false 0.9231 0.5600

11 true 0.7563 0.9062

12 true 0.5664 0.7301



13 true 0.2872 0.8764

14 true 0.9326 0.9274

15 false 0.0651 0.2992

16 true 0.7165 0.4569

17 true 0.7677 0.8086

18 false 0.4468 0.1458

19 false 0.2176 0.5809

20 false 0.9800 0.5783

21 true 0.6562 0.7843

22 true 0.9693 0.9521

23 false 0.0275 0.0377

24 true 0.7047 0.4708

25 false 0.3711 0.2846

26 false 0.4440 0.1100

27 true 0.5440 0.3562

28 true 0.5713 0.9200

29 false 0.3757 0.0895

30 true 0.8224 0.8614

a.	Using	a	classification	threshold	of	0.5,	and	assuming	that	true	is	the	positive	target
level,	construct	a	confusion	matrix	for	each	of	the	models.

b.	Calculate	the	simple	accuracy	and	average	class	accuracy	(using	an	arithmetic
mean)	for	each	model.

c.	Based	on	the	average	class	accuracy	measures,	which	model	appears	to	perform
best	at	this	task?

d.	Generate	a	cumulative	gain	chart	for	each	model.



e.	The	charity	for	which	the	model	is	being	built	typically	has	only	enough	money	to
send	a	mailshot	to	the	top	20%	of	its	contact	list.	Based	on	the	cumulative	gain	chart
generated	in	the	previous	part,	would	you	recommend	that	Model	1	or	Model	2
would	perform	best	for	the	charity?

✻	7.	A	prediction	model	is	going	to	be	built	for	in-line	quality	assurance	in	a	factory
that	manufactures	electronic	components	for	the	automotive	industry.	The	system	will
be	integrated	into	the	factory’s	production	line	and	determine	whether	components	are
of	an	acceptable	quality	standard	based	on	a	set	of	test	results.	The	prediction	subject
is	a	component,	and	the	descriptive	features	are	a	set	of	characteristics	of	the
component	that	can	be	gathered	on	the	production	line.	The	target	feature	is	binary	and
labels	components	as	good	or	bad.

It	is	extremely	important	that	the	system	not	in	any	way	slow	the	production	line	and
that	the	possibility	of	defective	components	being	passed	by	the	system	be	minimized
as	much	as	possible.	Furthermore,	when	the	system	makes	a	mistake,	it	is	desirable
that	the	system	can	be	retrained	immediately	using	the	instance	that	generated	the
mistake.	When	mistakes	are	made,	it	would	be	useful	for	the	production	line	operators
to	be	able	to	query	the	model	to	understand	why	it	made	the	prediction	that	led	to	a
mistake.	A	large	set	of	historical	labeled	data	is	available	for	training	the	system.

a.	Discuss	the	different	issues	that	should	be	taken	into	account	when	evaluating	the
suitability	of	different	machine	learning	approaches	for	use	in	this	system.

b.	For	this	task,	discuss	the	suitability	of	the	decision	tree,	k	nearest	neighbor,	naive
Bayes,	and	logistic	regression	models.	Which	one	do	you	think	would	be	most
appropriate?

	

	

	

	

	

	

	

_______________

1	Detailed	descriptions	of	the	story	of	Professor	Blondlot	and	N	rays	are	available	in	Klotz
(1980)	and	Ashmore	(1993).

2	Statisticians	will	 often	 refer	 to	 false	 positives	 as	 type	 I	 errors	 and	 false	 negatives	 as
type	II	errors.	Similarly,	 false	positives	 are	often	 also	 referred	 to	 as	 false	alarms,	 true
positives	as	hits,	and	false	negatives	as	misses.

3	Typically,	 the	level	 that	 is	of	most	 interest	 is	referred	to	as	the	positive	level.	In	email
classification,	 identifying	 spam	emails	 is	 the	most	 important	 issue,	 so	 the	 spam	 level	 is



referred	to	as	the	positive	level.	Similarly,	in	fraud	detection,	the	fraud	events	would	most
likely	be	the	positive	level;	in	credit	scoring,	the	default	events	would	most	likely	be	the
positive	level;	and	in	disease	diagnosis,	a	confirmation	that	a	patient	has	the	disease	would
most	likely	be	the	positive	level.	The	choice,	however,	is	arbitrary.

4	Lehmann	et	al.	(2003)	discusses	building	prediction	models	to	perform	this	task.

5	 The	 terms	 sensitivity	 and	 specificity	 are	 often	 used	 for	 true	 positive	 rate	 and	 true
negative	rate.

6	The	F1	measure	is	often	also	referred	to	as	the	F	measure,	F	score,	or	F1	score.

7	 Sometimes	 target	 levels	 in	 categorical	 prediction	 problems	 are	 referred	 to	 as	 classes,
which	is	where	this	name	comes	from.

8	 Target	 level	 imbalance	 affects	 misclassification	 rate	 in	 the	 same	 way,	 and	 average
misclassification	rate	can	also	be	calculated	to	combat	this	problem.

9	Whereas	before	we	referred	to	recall	as	something	calculated	only	for	the	positive	level,
we	can	calculate	recall	for	any	level	as	the	accuracy	of	the	predictions	made	for	that	level.

10	Remember	 that	a	harmonic	mean	 is	used	 in	 the	F1	measure	given	 in	Equation	 (8.10)
[416].

11	This	 is	 always	 an	 interesting	 category	 to	 determine	 a	 value	 for.	 Some	 people	might
argue	that	some	profit	arises	as	no	loss	was	made.

12	The	slightly	 strange	name	receiver	operating	characteristic	 comes	 from	 the	 fact	 that
this	approach	was	first	used	for	tuning	radar	signals	in	World	War	II.

13	 The	 staircase	 nature	 of	 this	 graph	 arises	 from	 the	 fact	 that	 there	 are	 ranges	 for	 the
threshold	 in	which	no	 instances	occur	(for	example,	 from	0.348	to	0.657),	during	which
the	TPR	and	TNR	values	do	not	change.	Larger	test	sets	cause	these	curves	to	smoothen
significantly.

14	ROC	curves	are	often	plotted	with	sensitivity	on	the	vertical	axis	and	1	−	specificity	on
the	horizontal	axis.	Recall	that	sensitivity	is	equal	to	TPR,	and	specificity	is	equal	to	TNR,
so	these	are	equivalent.

15	If	an	ROC	curve	appears	below	the	diagonal	random	reference	line,	this	means	that	the
model	 is	 consistently	making	 predictions	 of	 the	 positive	 level	 for	 instances	 that	 should
receive	predictions	of	the	negative	level	and	vice	versa,	and	that	it	could	actually	be	quite
a	powerful	model.	This	usually	arises	when	a	 transcription	error	of	 some	kind	has	been
made	and	should	be	investigated.

16	The	ROC	index	is	in	fact	equivalent	to	the	Wilcoxon-Mann-Whitney	statistic	used	in
significance	testing.

17	The	Gini	coefficient	should	not	be	confused	with	the	Gini	index	described	in	Section
4.4.1[144].	Their	only	connection	 is	 that	 they	are	both	named	after	 the	 Italian	 statistician
Corrado	Gini.



18	 Any	 percentiles	 (see	 Section	 A.1[525])	 can	 be	 used,	 but	 deciles	 are	 particularly
common.

19	See	De	Bruyne	et	al.	(2011)	for	an	example	of	machine	learning	models	being	used	for
this	task.

20	 It	 is	 important	 to	 remember	 that	 for	 a	 prediction	 problem	 with	 four	 target	 levels,
uniform	random	guessing	will	give	an	accuracy	of	just	25%.

21	A	nice	example	of	building	machine	learning	models	for	drug	dosage	prediction	can	be
found	in	Mac	Namee	et	al.	(2002).

22	 This	 is	 very	 similar	 to	 the	 difference	 between	Euclidean	 distance	 and	Manhattan
distance	discussed	in	Section	5.2.2[183].

23	Systems	like	the	Western	Electric	rules	(Montgomery,	2004),	used	widely	in	process
engineering	to	detect	out-of-control	processes,	can	be	useful	in	this	regard.

24	The	natural	logarithm	of	a	value	a,	loge(a),	is	the	logarithm	of	a	to	the	base	e,	where	e
is	Euler’s	number,	equal	to	approximately	2.718.

25	 A	 formal	 test	 for	 statistical	 significance	 could	 easily	 be	 used	 to	 reinforce	 this
conclusion.





9	Case	Study:	Customer	Churn

There	is	only	one	boss.	The	customer.	And	he	can	fire	everybody	in	the	company	from	the
chairman	on	down,	simply	by	spending	his	money	somewhere	else.

—Sam	Walton

Acme	Telephonica	(AT)	is	a	mobile	phone	operator	that	has	customers	across	every	state
of	the	U.S.A.	Like	every	telecommunications	company,	AT	struggles	with	customer	churn
—customers	leaving	AT	for	other	mobile	phone	operators.	AT	is	always	looking	for	new
ways	 to	 address	 the	 churn	 issue	 and	 in	 2008	 founded	 a	 customer	retention	 team.	 The
customer	 retention	 team	monitors	 the	number	of	calls	made	 to	 the	AT	customer	support
center	 by	 each	 customer	 and	 identifies	 the	 customers	 who	 make	 a	 large	 number	 of
customer	 support	 calls	 as	 churn	 risks.	 The	 customer	 retention	 team	 contacts	 these
customers	 with	 special	 offers	 designed	 to	 entice	 them	 to	 stay	 with	 AT.	 This	 approach,
however,	 has	 not	 proved	particularly	 successful,	 and	 churn	has	 been	 steadily	 increasing
over	the	last	five	years.

In	2010	AT	hired	Ross,	a	predictive	data	analytics	specialist,	to	take	a	new	approach	to
reducing	customer	churn.	This	case	study	describes	the	work	carried	out	by	Ross	when	he
took	AT	through	the	CRISP-DM	process1	 in	order	 to	develop	a	predictive	data	analytics
solution	 to	 this	 business	 problem.	 The	 remainder	 of	 this	 chapter	will	 discuss	 how	 each
phase	of	the	CRISP-DM	process	was	addressed	in	this	project.



9.1	Business	Understanding
As	is	the	case	in	most	predictive	data	analytics	projects,	AT	did	not	approach	Ross	with	a
well-specified	predictive	analytics	solution.	Instead,	the	company	approached	him	with	a
business	problem—reducing	customer	churn.	Therefore,	Ross’s	first	goal	was	 to	convert
this	 business	 problem	 into	 a	 concrete	 analytics	 solution.	 Before	 attempting	 this
conversion,	 Ross	 had	 to	 fully	 understand	 the	 business	 objectives	 of	 AT.	 This	 was
reasonably	 straightforward	 as	AT	management	 had	 stated	 that	 their	 goal	was	 to	 reduce
their	customer	churn	rates.	The	only	factor	left	unspecified	was	what	the	magnitude	of	that
reduction	was	expected	to	be.	Based	on	previous	projects	he	had	worked	on,	 the	current
approach	to	customer	retention	that	AT	was	taking,	and	AT’s	historical	data,	Ross	agreed
with	AT	management	that	a	target	reduction	from	the	current	high	of	approximately	10%
to	 approximately	 7.5%	 was	 realistic	 and	 probably	 achievable.	 Ross	 did	 stress	 to	 AT
management	 that	 until	 he	 actually	 examined	 the	 data,	 he	 could	 not	 know	 how	 useful	 a
model	he	would	be	able	to	build.

Ross’s	next	task	was	to	fully	assess	the	current	situation	within	AT.	In	particular,	Ross
needed	to	understand	the	current	analytics	capability	of	the	company	and	its	readiness	to
take	action	in	response	to	the	insights	that	an	analytics	solution	would	provide.	AT	already
had	 a	 customer	 retention	 team	 proactively	 making	 interventions	 in	 an	 effort	 to	 reduce
customer	 churn.	 Furthermore,	 this	 team	 was	 already	 using	 data	 from	 within	 the
organization	 to	 choose	which	 customers	 to	 target	 for	 intervention,	which	 suggested	 that
the	team	members	were	in	a	position	to	use	predictive	data	analytics	models.

Ross	spent	a	significant	amount	of	time	meeting	with	Kate,	the	leader	of	the	customer
retention	team,	in	order	to	understand	how	they	worked.	Kate	explained	that	at	the	end	of
every	month,	a	call	list	was	generated,	capturing	the	customers	who	had	made	more	than
three	 calls	 to	 the	 AT	 customer	 support	 service	 in	 the	 previous	 two	 months.	 These
customers	were	deemed	 to	be	at	 risk	of	churning	 in	 the	coming	month,	so	 the	customer
retention	 team	set	 about	 contacting	 them	with	 a	 special	offer.	Typically,	 the	offer	was	a
reduced	 call	 rate	 for	 the	 next	 three	 months,	 although	 retention	 team	 members	 had	 the
freedom	to	make	other	offers.

Ross	 also	 spoke	 to	 the	 chief	 technology	 officer	 (CTO)	 at	 AT,	 Grace,	 in	 order	 to
understand	the	available	data	resources.	Ross	learned	that	AT	had	reasonably	sophisticated
transactional	 systems	 for	 recording	 recent	 call	 activity	 and	 billing	 information.	Historic
call	and	bill	 records	as	well	as	customer	demographic	 information	were	stored	 in	a	data
warehouse.	Grace	had	played	a	significant	 role	 in	developing	 the	process	 that	had	made
information	 about	 customer	 support	 contacts	 available	 to	 the	 customer	 retention	 team.
Ross	hoped	that	this	would	make	his	task	a	little	easier	because	Grace	was	the	main	gate-
keeper	 to	 all	 the	 data	 resources	 at	AT,	 and	having	her	 support	 for	 the	 project	would	 be
important.	 Other	 parts	 of	 the	 business	 that	 Ross	 spent	 significant	 time	 interviewing
included	 the	 billing	 department,	 the	 sales	 and	 marketing	 team,	 and	 the	 network
management.

Throughout	 the	 early	 stages	 of	 the	 project,	 Ross	 had	 been	 consciously	 working	 on



developing	 his	 situational	 fluency.	 Through	 his	 discussions	 with	 the	 AT	 management
team,	Kate,	and	Grace,	he	had	 learned	a	 lot	about	 the	mobile	phone	 industry.	The	basic
structure	of	 the	AT	business	was	 that	customers	had	a	contract	 for	call	 services	 that	AT
provided.	These	contracts	did	not	have	a	 fixed	 time	and	were	essentially	 renewed	every
month	 when	 a	 customer	 paid	 a	 fixed	 recurring	 charge	 for	 that	 month.	 Paying	 the
recurring	charge	entitled	a	customer	to	a	bundle	of	minutes	of	call	time	that	were	offered
at	 a	 reduction	 to	 the	 standard	 call	 rate.	 For	 different	 recurring	 fees,	 customers	 received
different	sized	bundles	of	call	time.	When	a	customer	used	up	all	the	call	time	in	his	or	her
bundle,	subsequent	call	time	was	referred	to	as	over	bundle	minutes.	These	tended	to	be
more	expensive	than	the	minutes	included	as	part	of	a	customer’s	bundle.	At	AT,	all	calls
were	classified	as	either	peak	time	calls	or	off-peak	time	calls.	Peak	time	was	08:00	to
18:00	from	Monday	to	Friday,	and	calls	made	during	peak	time	were	more	expensive	than
calls	made	during	off-peak	times.

Based	on	his	 assessment	of	 the	current	 situation	within	AT,	Ross	developed	a	 list	of
ways	that	predictive	analytics	could	help	address	the	customer	churn	problem	at	AT.	These
included	finding	answers	to	the	following	questions:

What	is	the	overall	lifetime	value	of	a	customer?	A	model	could	be	built	to	predict
the	 overall	 value	 that	AT	was	 likely	 to	 receive	 from	 a	 particular	 customer	 over	 the
person’s	 entire	 customer	 lifecycle.	 This	 could	 be	 used	 to	 identify	 customers	 that
currently	did	not	 look	valuable	but	 that	were	likely	 to	be	valuable	customers	 later	 in
their	 customer	 lifecycles	 (college	 students	 often	 fall	 into	 this	 category).	By	 offering
these	customers	incentives	now	to	prevent	them	from	churning,	AT	would	ensure	that
it	received	the	full	value	from	these	customers	in	the	future.
Which	customers	were	most	likely	to	churn	in	the	near	future?	A	prediction	model
could	be	trained	to	identify	the	customers	from	the	AT	customer	base	that	were	most
likely	to	churn	in	the	near	future.	The	retention	team	could	focus	their	retention	efforts
on	 these	 customers.	 The	 process	 that	 the	 AT	 retention	 team	 had	 in	 place	 at	 the
beginning	 of	 the	 project	 to	 identify	 customers	 likely	 to	 churn	 took	 a	 single	 feature
approach	 to	 this	 identification—they	 looked	only	at	how	many	calls	 a	customer	had
made	to	the	AT	customer	support	service.	It	was	likely	that	a	machine	learning	model
that	looked	at	multiple	features	would	do	a	better	job	of	identifying	customers	likely	to
churn.
What	retention	offer	would	a	particular	customer	best	respond	to?	A	system	could
be	 built	 to	 predict	 which	 offer,	 from	 a	 set	 of	 possible	 retention	 offers,	 a	 particular
customer	would	be	most	 likely	respond	to	when	contacted	by	the	AT	retention	team.
This	could	help	the	retention	team	convince	more	customers	to	stay	with	AT.
Which	pieces	of	the	network	infrastructure	were	likely	to	fail	in	the	near	future?
Using	information	about	network	loads,	network	usage,	and	equipment	diagnostics,	a
predictive	 model	 could	 be	 built	 to	 flag	 upcoming	 equipment	 failures	 so	 that	 pre-
emptive	 action	 could	 be	 taken.	 Network	 outages	 are	 a	 driver	 of	 customer
dissatisfaction	and	ultimately	customer	churn,	so	reducing	these	could	have	a	positive
impact	on	churn	rates.

After	discussion	with	the	AT	executive	team,	it	was	decided	that	the	analytics	solution



most	appropriate	to	focus	on	was	predicting	which	customers	are	most	likely	to	churn	in
the	near	future.	There	were	a	number	of	reasons	this	project	was	selected:

Ross’s	 previous	 discussions	with	Grace,	 the	AT	CTO,	 had	 established	 that	 the	 data
required	to	build	a	churn	prediction	model	were	likely	to	be	available	and	reasonably
easily	accessible.
The	prediction	model	could	be	easily	integrated	with	AT’s	current	business	processes.
AT	already	had	a	 retention	 team	 in	place	 that	was	making	proactive	 interventions	 to
help	prevent	churn,	albeit	using	a	very	simple	system	to	identify	which	customers	to
contact.	 By	 creating	 a	 more	 sophisticated	 model	 to	 identify	 those	 customers,	 this
existing	process	would	be	improved.
Building	 a	 churn	 prediction	model	was	 also	 attractive	 to	 the	AT	 executive	 team,	 as
they	 hoped	 that	 as	 well	 as	 being	 useful	 in	 reducing	 churn	 rates,	 it	 would	 help	 to
explain	 the	 main	 drivers	 behind	 customer	 churn.	 Better	 understanding	 of	 the	 main
drivers	of	customer	churn	would	be	useful	to	many	other	parts	of	the	AT	business.

By	contrast,	the	other	analytics	solutions	developed	suffered	from	a	lack	of	available	data
(e.g.,	 AT	 had	 no	 data	 available	 on	 the	 success	 or	 otherwise	 of	 various	 retention	 offers
made);	 from	being	 too	 significant	 a	 change	 in	 the	 business	 processes	 used	by	AT	 to	 be
considered	 achievable	 at	 the	 time	 (e.g.,	 generating	 a	 prediction	 of	 the	 overall	 lifetime
value	of	a	customer);	or	from	not	being	based	on	sufficiently	well-grounded	assumptions
(e.g.,	the	fact	that	customer	churn	is	heavily	influenced	by	network	failures).

Once	 the	 analytics	 solution	 had	 been	 defined,	 the	 next	 step	 was	 to	 agree	 on	 the
expected	 performance	 of	 the	 new	 analytics	 model.	 Based	 on	 a	 recent	 evaluation	 of
historical	 performance,	 AT	 management	 believed	 at	 the	 time	 of	 this	 project	 that	 their
current	system	for	identifying	likely	churners	had	an	accuracy	of	approximately	60%,	so
any	newly	developed	 system	would	have	 to	 perform	considerably	 better	 than	 this	 to	 be
deemed	worthwhile.	In	consultation	with	the	members	of	 the	AT	executive	team	and	the
retention	team,	Ross	agreed	that	his	goal	would	be	to	create	a	churn	prediction	system	that
would	achieve	a	prediction	accuracy	in	excess	of	75%.



9.2	Data	Understanding
During	 the	 process	 of	 determining	 which	 analytics	 solution	 was	 most	 suitable	 for	 the
current	situation	at	AT,	Ross	had	already	begun	to	understand	the	data	resources	available.
His	next	 task	was	 to	add	much	more	depth	 to	 this	understanding,	 following	 the	process
described	in	Section	2.3[27].	This	involved	working	very	closely	with	Grace	to	understand
what	data	was	available,	the	formats	that	the	data	was	kept	in,	and	where	the	data	resided.
This	 understanding	 would	 form	 the	 basis	 of	 Ross’s	 work	 on	 designing	 the	 domain
concepts	and	descriptive	features	 that	would	make	up	the	analytics	base	table	 (ABT),
which	would	drive	the	creation	of	 the	predictive	model.	This	was	an	iterative	process	in
which	Ross	moved	back	and	forth	between	Kate	at	the	AT	retention	team,	Grace,	the	CTO,
and	other	parts	of	 the	business	 identified	as	having	 insight	 into	 the	data	associated	with
customer	 churn.	 It	 quickly	 became	 apparent	 that	 the	 key	 data	 resources	within	AT	 that
would	be	important	for	this	project	were

The	customer	demographic	records	from	the	AT	data	warehouse
The	 customer	 billing	 records	 stored	 in	 the	AT	billing	 database,	 records	 stretch	 back
over	a	time	horizon	of	5	years
The	 transactional	 record	 of	 calls	 made	 by	 individuals,	 stretching	 back	 over	 a	 time
horizon	of	18	months
The	sales	team’s	transactional	database,	containing	details	of	phone	handsets	issued	to
customers
The	retention	team’s	simple	transactional	database,	containing	all	the	contacts	they	had
made	with	 customers,	 and	 the	outcomes	of	 these	 contacts,	 stretching	back	 to	 a	 time
horizon	of	12	months

Before	going	any	further,	Ross	had	to	define	the	prediction	subject	for	the	ABT	and
the	target	feature.	The	goal	was	to	develop	a	model	that	would	predict	whether	a	customer
would	churn	in	the	coming	months.	This	meant	that	the	prediction	subject	in	this	case	was
a	customer,	so	the	ABT	would	need	to	be	built	to	contain	one	row	per	customer.

Predicting	churn	is	a	form	of	propensity	modeling,2	where	the	event	of	interest	in	this
case	is	a	customer	making	the	decision	to	churn.	Consequently,	Ross	needed	to	agree	with
the	 business	 (in	 particular	 the	 customer	 retention	 team)	 on	 a	 definition	 of	 churn.	 The
definition	would	be	used	to	identify	churn	events	in	AT’s	historical	data	and,	consequently,
was	fundamental	to	building	the	ABT	for	the	project.	The	business	agreed	that	a	customer
who	had	been	inactive	for	1	month	(i.e.,	had	not	made	any	calls	or	paid	a	bill)	or	who	had
explicitly	canceled	or	not	renewed	a	contract	would	be	considered	to	have	churned.	Ross
also	needed	to	define	the	lengths	of	the	observation	period	and	the	outcome	period	 for
the	model.	He	decided	that	the	observation	period,	during	which	he	would	collect	data	on
customer	behavior,	would	stretch	back	for	12	months.	This	was	a	decision	made	based	on
the	data	available	and	Ross’s	expectation	that	anything	further	back	than	this	was	likely	to
have	 little	 impact	on	predicting	churn.	With	 regard	 to	defining	 the	outcome	period,	 the
company	agreed	 that	 it	would	be	most	useful	 to	make	a	prediction	 that	 a	 customer	was
likely	to	churn	three	months	before	the	churn	event	took	place,	as	this	gave	them	time	to



take	retention	actions.	Consequently,	the	outcome	period	was	defined	as	three	months.3

With	the	target	feature	suitably	defined,	Ross’s	next	task	was	to	determine	the	domain
concepts	that	would	underpin	the	design	of	the	ABT.	The	domain	concepts	are	those	areas
that	the	business	believes	have	an	impact	on	a	customer’s	decision	to	churn.	The	domain
concepts	were	 developed	 through	 a	 series	 of	workshops	with	 representatives	 of	 various
parts	 of	 the	AT	business—in	particular	 the	 retention	 team,	but	 also	 sales	 and	marketing
and	 billing.	 AT	 believed	 that	 the	 main	 concepts	 that	 affected	 churn	 were	 underlying
customer	 demographics	 (e.g.,	 perhaps	 younger	 customers	 were	 more	 likely	 to	 churn);
customer	 billing	 information,	 and	 in	 particular	 changes	 in	 billing	 patterns	 (e.g.,	 perhaps
customers	 whose	 bill	 suddenly	 increased	 were	 more	 likely	 to	 churn);	 the	 details	 of	 a
customer’s	handset	(e.g.,	perhaps	customers	who	have	had	a	handset	for	a	 long	time	are
more	 likely	 to	 churn);	 the	 interactions	 a	 customer	has	 had	with	AT	customer	 care	 (e.g.,
perhaps	customers	who	are	making	a	 large	number	of	calls	 to	customer	care	are	having
difficulties	 with	 the	 AT	 network	 and	 so	 are	 likely	 to	 churn);	 and	 the	 actual	 calls	 the
customer	 is	 making,	 in	 particular,	 changing	 call	 patterns	 (e.g.,	 perhaps	 customers	 who
have	started	making	calls	 to	new	groups	of	people	are	more	likely	to	churn).	This	set	of
domain	concepts	was	felt	to	be	extensive	enough	to	cover	all	the	characteristics	that	were
likely	 to	 contribute	 toward	 a	 customer’s	 likelihood	 to	 churn	 and	 is	 shown	 in	 Figure
9.1[469].

Figure	9.1

The	set	of	domain	concepts	for	the	Acme	Telephonica	customer	churn	prediction	problem.

From	 these	 domain	 concepts,	Ross	worked	 on	 deriving	 a	 set	 of	 descriptive	 features.
Some	of	the	descriptive	features	were	simply	copies	of	available	raw	data.	For	example,
the	 AGE,	 GENDER,	 CREDITRATING,	 and	 OCCUPATION	 columns	 from	 the	 customer
demographics	 data	 warehouse	 could	 be	 directly	 included	 as	 descriptive	 features	 in	 the
ABT	 to	 capture	 the	 CUSTOMER	 DEMOGRAPHICS	 domain	 concept.	 The	 more	 interesting
descriptive	 features	 were	 ones	 that	 had	 to	 be	 derived	 from	 the	 raw	 data	 sources.	 For
example,	 Ross	 learned	 that	 the	 retention	 team	 believed	 that	 one	 of	 the	 main	 reasons
customers	churned	was	the	availability	of	new,	high-end	handsets	at	other	networks.	To	try
to	 capture	 the	 HANDSET	 INFORMATION	 domain	 concept	 Ross,	 designed	 three	 descriptive
features:



SMARTPHONE:	 This	 feature	 indicated	 whether	 the	 customer’s	 current	 handset	 was	 a
smart	phone,	this	was	derived	from	the	customer’s	most	recent	handset	entry.
NUMHANDSETS:	This	was	a	count	of	how	many	different	handsets	the	customer	had	had
in	the	past	three	years.	This	was	derived	from	a	count	of	all	the	handset	entries	for	a
particular	customer.
HANDSETAGE:	 Based	 on	 a	 customer’s	 latest	 handset	 entry,	 this	 feature	 captured	 the
number	of	days	that	the	customer	had	had	his	or	her	current	handset.

In	 churn	 analysis,	 and	 in	 any	 sort	 of	 propensity	 modeling,	 change	 is	 usually	 a	 key
driver	of	customer	behavior.	For	this	reason,	and	based	on	discussions	with	the	AT	team,
Ross	 included	 the	BILL	CHANGE	and	SOCIAL	NETWORK	CHANGE	domain	concepts.	 It	was
understood	by	the	AT	retention	team	that	customers	often	made	a	decision	to	churn	if	their
bill	 increased	 significantly	 due	 to	 changing	 call	 patterns,	 or	 when	 they	 began	 to	 make
large	numbers	of	calls	to	new	friends	or	colleagues	on	other	networks.	For	these	reasons,
Ross	designed	the	following	descriptive	features:

CALLMINUTESCHANGEPCT:	 Derived	 from	 the	 raw	 call	 data,	 this	 feature	 captured	 the
amount	 by	 which	 the	 number	 of	minutes	 a	 customer	 used	 had	 changed	 that	month
compared	to	the	previous	month.
BILLAMOUNTCHANGEPCT:	 Derived	 from	 the	 raw	 call	 data,	 this	 feature	 captured	 the
amount	 by	 which	 a	 customer’s	 bill	 had	 changed	 that	 month	 compared	 to	 previous
month.
NEWFREQUENTNUMBERS:	Derived	from	analysis	of	the	actual	numbers	dialed	in	the	raw
call	 data,	 this	 feature	 attempted	 to	 capture	 how	many	 new	 numbers	 a	 customer	 has
begun	calling	frequently	that	month.	A	frequent	number	was	defined	as	a	number	that
constituted	more	than	15%	of	a	customer’s	total	calls.

Often	descriptive	features	that	are	likely	to	be	very	useful	cannot	be	implemented	due
to	the	unavailability	of	data.	For	example,	the	AT	team	felt	that	a	customer	beginning	to
frequently	 call	 other	 networks	 would	 be	 a	 good	 indicator	 of	 churn,	 but	 a	 suitable	 data
feature	 could	 not	 be	 extracted	 to	 capture	 this.	 In	 its	 call	 records,	 AT	 did	 not	 include
information	 about	 which	 network	 calls	 are	 made	 to,	 and	 with	 the	 free	 movement	 of
numbers	 among	 operators,	 numbers	 themselves	 were	 no	 longer	 a	 reliable	 indicator	 of
network.

The	full	set	of	descriptive	features	Ross	developed,	along	with	a	short	description	of
each,	is	shown	in	Table	9.1[471].

Table	9.1

The	descriptive	features	in	the	ABT	developed	for	the	Acme	Telephonica	churn	prediction
task.

Feature Description

BILLAMOUNTCHANGEPCT The	percentage	by	which	the	customer’s	bill	has	changed	from
last	month	to	this	month

CALLMINUTESCHANGEPCT The	percentage	by	which	the	call	minutes	used	by	the	customer



has	changed	from	last	month	to	this	month
AVGBILL The	average	monthly	bill	amount
AVGRECURRINGCHARGE The	average	monthly	recurring	charge	paid	by	the	customer
AVGDROPPEDCALLS The	average	number	of	customer	calls	dropped	each	month

PEAKRATIOCHANGEPCT The	percentage	by	which	the	customer’s	peak	calls	to	off-peak
calls	ratio	has	changed	from	last	month	to	this	month

AVGRECEIVEDMINS
The	average	number	of	calls	received	each	month	by	the
customer

AVGMINS
The	average	number	of	call	minutes	used	by	the	customer	each
month

AVGOVERBUNDLEMINS
The	average	number	of	out-of-bundle	minutes	used	by	the
customer	each	month

AVGROAMCALLS The	average	number	of	roaming	calls	made	by	the	customer
each	month

PEAKOFFPEAKRATIO The	ratio	between	peak	and	off-peak	calls	made	by	the
customer	this	month

NEWFREQUENTNUMBERS
How	many	new	numbers	the	customer	is	frequently	calling	this
month

CUSTOMERCARECALLS The	number	of	customer	care	calls	made	by	the	customer	last
month

NUMRETENTIONCALLS The	number	of	times	the	customer	has	been	called	by	the
retention	team

NUMRETENTIONOFFERS The	number	of	retention	offers	the	customer	has	accepted
AGE The	customer’s	age
CREDITRATING The	customer’s	credit	rating
INCOME The	customer’s	income	level
LIFETIME The	number	of	months	the	customer	has	been	with	AT
OCCUPATION The	customer’s	occupation
REGIONTYPE The	type	of	region	the	customer	lives	in
HANDSETPRICE The	price	of	the	customer’s	current	handset
HANDSETAGE The	age	of	the	customer’s	current	handset

NUMHANDSETS
The	number	of	handsets	the	customer	has	had	in	the	past	3
years

SMARTPHONE Whether	the	customer’s	current	handset	is	a	smart	phone
CHURN The	target	feature



9.3	Data	Preparation
With	 help	 from	 Grace	 to	 implement	 the	 actual	 data	 manipulation	 and	 data	 integration
scripts	using	the	tools	available	at	AT,	Ross	populated	an	ABT	containing	all	the	features
listed	 in	 Table	 9.1[471].	 Ross	 sampled	 data	 from	 the	 period	 2008	 to	 2013.	 Using	 the
definition	of	churn	as	a	customer	who	had	not	made	any	calls	or	paid	a	bill	for	1	month,
Ross	was	able	to	identify	churn	events	throughout	this	time	period.	To	collect	instances	of
customers	who	had	not	churned,	Ross	randomly	sampled	customers	who	did	not	match	the
churn	definition	but	who	also	could	be	deemed	active	customers.	Working	with	Kate,	Ross
defined	an	active	customer	as	current	customer	who	made	at	 least	5	calls	per	week	and
who	had	been	a	customer	for	at	least	6	months.4	This	definition	ensured	that	the	non-churn
instances	 in	 the	dataset	would	 include	only	customers	with	a	 relatively	normal	behavior
profile	 and	 for	 which	 there	 was	 a	 long	 enough	 data	 history	 that	 realistic	 descriptive
features	could	be	calculated	for	them.

The	 final	 ABT	 contained	 10,000	 instances	 equally	 split	 between	 customers	 who
churned	and	customers	who	did	not	churn.	In	the	raw	data,	customers	who	did	not	churn
outnumber	 those	 that	 churned	 at	 a	 ratio	 of	 over	 10	 to	 1.	 This	 is	 an	 example	 of	 an
imbalanced	 dataset,	 in	 which	 the	 different	 levels	 of	 the	 target	 feature—in	 this	 case,
churners	and	non-churners—are	not	equally	represented	in	the	data.	Some	of	the	machine
learning	approaches	we	have	discussed	 in	 the	preceding	chapters	perform	better	when	a
balanced	sample	is	used	to	train	them,	and	this	is	why	Ross	created	an	ABT	with	equal
numbers	of	instances	with	each	target	level.5

Ross	 then	developed	a	 full	data	quality	 report	 for	 the	ABT	including	a	 range	of	data
visualizations.	 The	 data	 quality	 report	 tables	 are	 shown	 in	 Table	 9.2[476].	 Ross	 first
assessed	the	level	of	missing	values	within	the	data.	Within	the	continuous	features,	only
AGE	 stood	 out	with	 11.47%	of	 values	missing.	This	 could	 be	 handled	 reasonably	 easily
using	 an	 imputation	 approach,6	 but	 Ross	 held	 off	 on	 performing	 this	 at	 this	 stage.	 The
REGIONTYPE	and	OCCUPATION	categorical	features	both	suffered	from	a	significant	number
of	missing	values—74%	and	47.8%	respectively.	Ross	strongly	considered	removing	these
features	entirely.

When	 he	 considered	 cardinality,	 Ross	 noticed	 that	 a	 number	 of	 the	 continuous
features	 had	 very	 low	 cardinality—for	 example,	 INCOME,	 AGE,	 NUMHANDSETS,
HANDSETPRICE,	and	NUMRETENTIONCALLS.	 In	most	 cases,	Ross	 confirmed	with	Kate	 and
Grace	that	 these	were	valid	because	the	range	of	values	 that	 the	features	could	 take	was
naturally	low.	For	example,	HANDSETPRICE	can	take	only	a	small	number	of	values—e.g.,
59.99,	129.99,	499.99,	and	so	on.	The	 INCOME	feature	stood	out	as	unusual	with	only	10
distinct	values	(the	histogram	for	this	feature	confirmed	this;	see	Figure	9.2(a)[474]).	Grace
explained	 to	 Ross	 that	 incomes	 were	 actually	 recorded	 in	 bands	 rather	 than	 as	 exact
values,	 so	 this	was	 really	 a	 categorical	 feature.	 The	 cardinality	 of	 the	CREDITCARD	 and
REGIONTYPE	 categorical	 features	 were	 higher	 than	 expected	 (the	 histograms	 for	 these
features	are	shown	in	Figures	9.2(b)[474]	and	9.2(c)[474]).	The	 issue	was	 that	some	 levels
had	 multiple	 representations—for	 example,	 for	 the	 REGIONTYPE	 feature,	 towns	 were



represented	as	town	and	as	t.	Ross	easily	corrected	this	issue	by	mapping	the	levels	of	the
feature	to	one	consistent	labeling	scheme.

Four	continuous	features	stood	out	as	possibly	suffering	from	the	presence	of	outliers:
HANDSETPRICE,	 with	 a	 minimum	 value	 of	 0,	 which	 seemed	 unusual;	 AVGMINS,	 with	 a
maximum	of	6,336.25,	which	was	very	different	from	the	mean	and	the	3rd	quartile	values
for	 that	 feature;	AVGRECEIVEDMINS,	with	 a	maximum	of	 2,006.29,	which	was	 also	 very
different	 from	 the	 mean	 and	 the	 3rd	 quartile	 values	 for	 that	 feature;	 and	 AVGOVER-
BUNDLEMINS,	with	minimum,	1st	quartile,	and	median	values	of	0	compared	to	a	mean	of
40.	Figure	9.2[474]	presents	the	histograms	for	these	features.	Ross	confirmed	with	Grace
and	Kate	 that	 these	were	valid	outliers—for	example,	some	handsets	are	given	away	for
free,	 and	 some	customers	 just	make	a	 lot	of	 calls.	They	did	 spend	some	 time,	however,
discussing	 the	 AVGOVER-BUNDLEMINS.	 The	 histogram	 for	 this	 feature	 has	 an	 unusual
shape	 that	 results	 in	 the	 unusual	minimum,	 1st	 quartile,	 and	median	 values	 (see	 Figure
9.2(g)[474]).	By	examining	the	data	for	this	feature	more	closely,	they	eventually	explained
this	shape	by	the	fact	that	most	customers	did	not	go	over	the	number	of	minutes	in	their
bundle,	which	accounts	 for	 the	 large	bar	 for	0	 in	 this	histogram.	The	values	above	zero
seem	 to	 follow	something	close	 to	a	wide	normal	distribution,	and	 the	 large	number	of,
albeit	valid,	zero	values	account	for	the	unusual	minimum,	1st	quartile,	and	median	values.
At	this	point	Ross	just	made	note	of	these	outliers	as	something	he	might	have	to	deal	with
during	the	modeling	phase.

Ross	then	turned	his	attention	to	examining	the	data	visualizations	of	the	relationship
between	each	descriptive	feature	and	the	target	feature.	No	individual	feature	stood	out	as
having	a	very	strong	relationship,	but	the	evidence	of	connections	between	the	descriptive
features	 and	 the	 target	 feature	 could	 be	 seen.	 For	 example,	 Figure	 9.3(a)[475]	 shows	 a
slightly	higher	propensity	of	 people	 in	 rural	 areas	 to	 churn.	Similarly,	Figure	 9.3(b)[475]
shows	 that	customers	who	churned	 tended	 to	make	more	calls	outside	 their	bundle	 than
those	who	did	not.



Figure	9.2

(a)–(c)	Histograms	 for	 the	 features	 from	 the	AT	ABT	with	 irregular	 cardinality;	 (d)–(g)
histograms	for	the	features	from	the	AT	ABT	that	are	potentially	suffering	from	outliers.



Figure	9.3

(a)	 A	 stacked	 bar	 plot	 for	 the	 REGIONTYPE	 feature;	 (b)	 histograms	 for	 the	 AVGOVER-
BUNDLEMINS	feature	by	target	feature	value.

Once	Ross	had	reviewed	 the	full	data	quality	 report	 in	detail,	he	made	 the	following
decisions	regarding	the	problematic	features	he	had	identified.	First,	he	decided	to	delete
the	AGE	and	OCCUPATION	 features	because	of	 the	 level	of	missing	values	 in	each	of	 these
features.	He	 decided	 to	 keep	 the	REGION-TYPE	 feature,	 however,	 because	 it	 appeared	 to
have	 some	 relationship	 with	 the	 target.	 He	 also	 applied	 the	 planned	 mapping	 of	 the
REGIONTYPE	 values	 to	 a	 consistent	 labeling	 scheme:	 {s|suburb}	→	 suburb;	 {t|town}	→
town;	{missing|absent}	→	missing.

Ross	 further	 divided	 this	 dataset	 into	 three	 randomly	 sampled	 partitions—a	 training
partition	 (50%),	 a	 validation	 partition	 (20%)	 and	 a	 test	 partition	 (30%).	 The	 training
partition	was	used	as	the	core	training	data	for	the	prediction	models	built.	The	validation
partition	was	used	for	tuning	tasks,	and	the	test	partition	was	used	for	nothing	other	than	a
final	test	of	the	model	to	evaluate	its	performance.

Table	9.2

A	data	quality	report	for	the	Acme	Telephonic	ABT.

(a)	Data	quality	report	for	continuous	features



(b)	Data	quality	report	for	categorical	features



9.4	Modeling
The	 requirements	 for	 this	 model	 were	 that	 it	 be	 accurate,	 that	 it	 be	 capable	 of	 being
integrated	into	the	wider	AT	processes,	and,	possibly,	that	it	act	as	a	source	of	insight	into
the	reasons	people	might	churn.	In	selecting	the	appropriate	model	 type	to	use,	all	 these
aspects,	along	with	the	structure	of	the	data,	should	be	taken	into	account.	In	this	case,	the
ABT	was	composed	of	a	mixture	of	continuous	and	categorical	descriptive	 features	and
had	 a	 categorical	 target	 feature.	 The	 categorical	 target	 feature,	 in	 particular,	 makes
decision	 trees	 a	 suitable	 choice	 for	 this	 modeling	 task.	 Furthermore,	 decision	 tree
algorithms	are	capable	of	handling	both	categorical	and	continuous	descriptive	features	as
well	 as	 handling	 missing	 values	 and	 outliers	 without	 any	 need	 to	 transform	 the	 data.
Finally,	decision	trees	are	relatively	easy	to	interpret,	which	means	that	the	structure	of	the
model	 can	 give	 some	 insight	 into	 customer	 behavior.	 All	 these	 factors	 taken	 together
indicated	that	decision	trees	were	an	appropriate	modeling	choice	for	this	problem.

Ross	used	 the	ABT	 to	 train,	 tune,	and	 test	a	 series	of	decision	 trees	 to	predict	churn
given	the	set	of	descriptive	features.	The	first	 tree	that	Ross	built	used	an	entropy-based
information	gain	as	the	splitting	criterion,	limited	continuous	splits	to	binary	choices,	and
no	 pruning.	 Ross	 had	 decided,	 again	 in	 consultation	 with	 the	 business,	 that	 a	 simple
classification	accuracy	rate	was	the	most	appropriate	evaluation	measure	for	this	task.	The
first	 tree	 constructed	 achieved	 an	average	 class	 accuracy7	 of	 74.873%	on	 the	 hold-out
test	set,	which	was	reasonably	encouraging.

Figure	9.4

An	 unpruned	 decision	 tree	 built	 for	 the	 AT	 churn	 prediction	 problem	 (shown	 only	 to
indicate	 its	 size	 and	 complexity).	 The	 excessive	 complexity	 and	 depth	 of	 the	 tree	 are
evidence	that	overfitting	has	probably	occurred.

This	 tree	 is	 shown	 in	 Figure	 9.4[477]	 and	 the	 lack	 of	 pruning	 is	 obvious	 in	 its
complexity.	This	complexity	and	the	excessive	depth	of	the	tree	suggest	overfitting.	In	the
second	 tree	 that	 he	 built,	Ross	 employed	post-pruning	 using	reduced	 error	 pruning,8
which	 used	 the	 validation	 partition	 that	 was	 created	 from	 the	 initial	 dataset.	 The
reasonably	 large	 dataset	 that	Ross	 had	 to	 begin	with,	which	 in	 turn	 led	 to	 a	 reasonably
large	 validation	 partition,	 meant	 that	 reduced	 error	 pruning	 was	 appropriate	 in	 this
case.9	Figure	9.5[478]	shows	the	tree	resulting	from	this	training	iteration.	It	should	be	clear
that	this	is	a	much	simpler	tree	than	the	previous	one.	The	features	used	at	the	top	levels	of
both	 trees,	 and	 deemed	 most	 informative	 by	 the	 algorithm,	 were	 the	 same:
AVGOVERBUNDLEMINS,	BILLAMOUNTCHANGEPCT,	and	HANDSETAGE.



Figure	9.5

A	pruned	decision	tree	built	for	the	AT	churn	prediction	problem.	Gray	leaf	nodes	indicate
a	 churn	 prediction,	 while	 clear	 leaf	 nodes	 indicate	 a	 non-churn	 prediction.	 For	 space
reasons,	we	show	only	the	features	tested	at	the	top	level	nodes.

Using	pruning,	Ross	was	able	 to	 increase	 the	average	class	accuracy	on	 the	hold-out
test	 set	 to	 79.03%,	 a	 significant	 improvement	 over	 the	 previous	 model.	 Table	 9.3[479]
shows	 the	 confusion	matrix	 from	 this	 test.	 The	 confusion	matrix	 shows	 that	 this	model
was	slightly	more	accurate	when	classifying	instances	with	the	non-churn	target	level	than
with	the	churn	target	level.	Based	on	these,	results	Ross	was	confident	that	this	tree	was	a
good	solution	for	the	AT	churn	prediction	problem.

Table	9.3

The	confusion	matrix	from	the	test	of	the	AT	churn	prediction	stratified	hold-out	test	set
using	the	pruned	decision	tree	in	Figure	9.5[478].

Prediction

churn non-churn Recall

Target
churn 1,058 442 70.53

non-churn 152 1,348 89.86

Table	9.4

The	confusion	matrix	from	the	test	of	the	AT	churn	prediction	non-stratified	hold-out	test
set.

Prediction

churn non-churn Recall



Target
churn 1,115 458 70.88

non-churn 1,439 12,878 89.95



9.5	Evaluation
The	model	 evaluations	 based	on	misclassification	 rate	 described	 in	 the	 previous	 section
are	 the	 first	 step	 in	 evaluating	 the	 performance	 of	 the	 prediction	 model	 created.	 The
classification	 accuracy	 of	 79.03%	 is	well	 above	 the	 target	 agreed	 on	with	 the	 business.
This	 is	misleading,	however.	This	performance	 is	based	on	a	 stratified	hold-out	 test	 set,
which	 contains	 the	 same	 number	 of	 churners	 and	 non-churners.	 The	 underlying
distribution	of	churners	and	non-churners	within	the	larger	AT	customer	base,	however,	is
much	 different.	 Rather	 than	 a	 50:50	 split	 of	 churners	 to	 non-churners,	 the	 actual
underlying	ratio	is,	in	fact,	closer	to	10:90.	For	this	reason,	it	is	very	important	to	perform
a	second	evaluation	in	which	the	 test	data	reflect	 the	actual	distribution	of	 target	feature
values	in	the	business	scenario.

Ross	had	AT	generate	 a	 second	data	 sample	 (which	did	not	overlap	with	 the	 sample
taken	 previously)	 that	 was	 not	 stratified	 according	 to	 the	 target	 feature	 values.	 The
confusion	matrix	 illustrating	 the	 performance	 of	 the	 prediction	model	 on	 this	 test	 set	 is
shown	in	Table	9.4[479].

The	average	class	accuracy	on	the	non-stratified	hold-out	test	set	was	79.284%.	Ross
also	generated	cumulative	gain,	 lift,	and	cumulative	 lift	charts	 for	 the	dataset.10	 These
are	shown	in	Figure	9.6[480].	The	cumulative	gain	chart	in	particular	shows	that	if	AT	were
to	 call	 just	 40%	 of	 their	 customer	 base,	 they	would	 identify	 approximately	 80%	 of	 the
customers	who	are	likely	to	churn,	which	is	strong	evidence	that	the	model	is	doing	a	good
job	of	distinguishing	between	different	customer	types.

Figure	9.6

(a)	Cumulative	gain,	(b)	lift,	and	(c)	cumulative	lift	charts	for	the	predictions	made	on	the
large	test	data	sample.

Given	these	good	results	Ross	decided	that	it	was	appropriate	to	present	the	model	to
other	parts	of	the	business.	This	was	an	important	step	in	gaining	credibility	for	the	model.
The	 tree	 shown	 in	 Figure	 9.5[478]	 is	 reasonably	 straight	 forward	 to	 interpret,	 but	 when
taken	out	to	other	parts	of	the	business,	it	may	be	hard	for	people	to	deal	with	this	much
information,	so	Ross	decided	to	create	a	purposefully	stunted	version	of	the	decision	tree,
with	only	a	small	number	of	levels	shown	for	the	presentation	of	the	model	to	the	business
(although	 he	 intended	 to	 use	 the	 larger	 pruned	 tree	 for	 actual	 deployment).	 The	 idea



behind	 this	was	 that	 stunting	 the	 tree	made	 it	more	 interpretable.	The	 fact	 that	 the	most
informative	 features	 occupy	 berths	 toward	 the	 top	 of	 a	 tree	 means	 that	 stunted	 trees
usually	capture	the	most	 important	 information.	Many	machine	learning	tools	will	allow
the	maximum	depth	of	a	tree	to	be	specified	as	a	parameter,	which	allows	for	the	creation
of	such	stunted	trees.

Figure	9.7[481]	shows	the	stunted	tree	Ross	generated	for	the	churn	problem,	where	the
depth	 of	 the	 tree	 is	 limited	 to	 5	 generations.	 This	 tree	 results	 in	 a	 slightly	 lower
classification	accuracy	on	the	test	partition,	78.5%,	but	is	very	easy	to	interpret—the	key
features	in	determining	churn	are	clearly	AVGOVERBUNDLEMINS,	BILLAMOUNTCHANGEPCT,
and	HANDSETAGE.	It	seems,	from	this	data,	that	customers	are	most	likely	to	churn	when
their	 bill	 changes	 dramatically,	when	 they	begin	 to	 exceed	 the	 bundled	minutes	 in	 their
call	 package,	 or	 when	 they	 have	 had	 a	 handset	 for	 a	 long	 time	 and	 are	 considering
changing	 to	 something	 newer.	 This	 is	 useful	 information	 that	 the	 business	 can	 use	 to
attempt	to	devise	other	churn	handling	strategies	in	parallel	to	using	this	model	to	create
call	 lists	 for	 the	 retention	 team.	 The	 business	 was	 interested	 in	 the	 features	 that	 were
selected	as	important	to	the	tree,	and	there	was	a	good	deal	of	discussion	on	the	omission
of	the	features	describing	customers’	interactions	with	AT	customer	care	(these	had	been
the	basis	of	the	organization’s	previous	model).

Figure	9.7

A	 pruned	 and	 stunted	 decision	 tree	 built	 for	 the	 Acme	 Telephonica	 churn	 prediction
problem.

To	 further	 support	 his	 model,	 Ross	 organized	 a	 control	 group	 test	 (see	 Section
8.4.6[447])	in	which	for	two	months,	the	AT	customer	base	was	randomly	divided	into	two
groups,	and	call	lists	for	the	retention	team	were	selected	from	the	first	group	using	the	old
approach	based	on	calls	to	customer	care,	and	for	the	second	group	using	the	new	decision
tree	model.	It	was	shown	after	two	months	that	the	churn	rate	within	the	sample	for	which
the	 retention	 team	used	 the	 new	model	 to	 build	 their	 call	 list	was	 approximately	 7.4%,
while	for	the	group	using	the	old	model,	it	was	over	10%.	This	experiment	showed	the	AT
executive	 team	 that	 the	 new	 decision	 tree	model	 could	 significantly	 reduce	 churn	 rates
within	the	AT	customer	base.



9.6	Deployment
Because	AT	was	already	using	a	process	 in	which	 its	 retention	 team	generated	call	 lists
based	 on	 collected	 data,	 deployment	 of	 the	 new	 decision	 tree	 model	 was	 reasonably
straightforward.	The	main	challenge	was	a	return	to	 the	Data	Preparation	phase	to	make
the	routines	used	to	extract	the	data	for	the	ABT	robust	and	reliable	enough	to	be	used	to
generate	 new	 query	 instances	 every	 month.	 This	 involved	 working	 with	 the	 AT	 IT
department	 to	 develop	 deployment-ready	 extract-transform-load	 (ETL)	 routines.	Code
was	then	written	to	replace	the	previous	simple	rule	about	customer	care	contacts	with	the
decision	tree	when	retention	call	lists	were	generated.

The	last	step	in	deployment	was	to	put	in	place	an	on-going	model	validation	plan	to
raise	an	alarm	if	evidence	arose	indicating	that	the	deployed	model	had	gone	stale.	In	this
scenario,	feedback	on	the	performance	of	the	model	implicitly	arises	within	a	reasonably
short	 amount	 of	 time	 after	 predictions	 are	 made—churn	 predictions	 can	 be	 easily
compared	 to	 actual	 customer	 behavior	 (taking	 into	 account	 interventions	 made	 by	 the
business).	The	monitoring	system	that	Ross	put	in	place	generated	a	report	at	 the	end	of
every	 quarter	 that	 evaluated	 the	 performance	 of	 the	 model	 in	 the	 previous	 quarter	 by
comparing	how	many	of	the	people	not	contacted	by	the	retention	team	actually	churned.
If	 this	 number	 changed	 significantly	 from	what	was	 seen	 in	 the	 data	 used	 to	 build	 the
model,	the	model	would	be	deemed	stale,	and	retraining	would	be	required.

	

	

	

	

	

	

	

_______________

1	See	Section	1.5[12].

2	See	Section	2.4.3[37].

3	Obviously,	churn	events	will	happen	on	different	dates	for	different	customers;	therefore
to	build	the	ABT,	the	observation	and	outcome	periods	for	different	customers	would	have
to	be	aligned.	This	situation	is	an	example	of	the	propensity	model	scenario	illustrated	in
Figure	2.6[39]	in	Section	2.4.3[37].

4	The	fact	that	active	customers	were	defined	as	current	customers	means	that	they	were
all	active	on	the	same	date—namely,	whatever	day	the	ABT	was	generated.	This	could	be
problematic:	a	model	trained	on	this	data	might	ignore	seasonal	effects	such	as	Christmas.
The	 alternative	 is	 to	 define	 active	 customers	 as	 any	 customer	 in	 the	 AT	 data	 that	 was



active	 at	 some	 point.	 Such	 a	 definition,	 however,	 has	 the	 complication	 that	 the	 same
customer	 could	 appear	 in	 the	 ABT	 as	 both	 an	 active	 and	 a	 churn	 customer,	 although
admittedly	 the	 descriptive	 features	 for	 these	 two	 instances	 would	 be	 calculated	 over
different	periods	of	dates.

5	We	return	to	this	discussion	in	Section	9.5[479]	and	Section	10.4.1[500].

6	See	Section	3.4[73].

7	All	average	class	accuracies	used	in	this	section	use	a	harmonic	mean.

8	See	Section	4.4.4[158].

9	If	data	had	been	more	scarce,	pruning	using	a	statistical	test,	such	as	χ2,	would	have	been
a	more	sensible	route	to	take.

10	Cumulative	gain,	lift,	and	cumulative	lift	are	introduced	in	Section	8.4.3.3[432].





10	Case	Study:	Galaxy	Classification

The	history	of	astronomy	is	a	history	of	receding	horizons.
—Edwin	Powell	Hubble

Astronomy	has	gone	through	a	revolution	in	recent	years	as	the	reducing	costs	of	digital
imaging	has	made	it	possible	to	collect	orders	of	magnitude	more	data	than	ever	before.
Large-scale	 sky	 scanning	 projects	 are	 being	 used	 to	map	 the	whole	 of	 the	 night	 sky	 in
intricate	 detail.	 This	 offers	 huge	 potential	 for	 new	 science	 based	 on	 this	 massive	 data
collection	effort.	This	progress	comes	at	a	cost,	however,	as	all	this	data	must	be	labeled,
tagged,	and	cataloged.	The	old	approach	of	doing	all	 this	manually	has	become	obsolete
because	the	volume	of	data	involved	is	just	too	large.

The	Sloan	Digital	 Sky	 Survey	 (SDSS)	 is	 a	 landmark	 project	 that	 is	 cataloging	 the
night	sky	in	intricate	detail	and	is	facing	exactly	the	problem	described	above.1	The	SDSS
telescopes	collect	over	175GB	of	data	every	night,	and	for	 the	data	collected	to	be	fully
exploited	 for	 science,	 each	 night	 sky	 object	 captured	 must	 be	 identified	 and	 cataloged
within	 this	 data	 in	 almost	 real	 time.	 Although	 the	 SDSS	 has	 been	 able	 to	 put	 in	 place
algorithmic	solutions	to	identifying	certain	objects	within	the	images	collected,	there	have
been	 a	 number	 of	 difficulties.	 In	 particular,	 it	 has	 not	 been	 possible	 for	 the	 SDSS	 to
develop	a	solution	 to	automatically	categorize	galaxies	 into	 the	different	morphological
groups—for	example,	spiral	galaxies	or	elliptical	galaxies.

This	 case	 study2	 describes	 the	 work	 undertaken	 when,	 in	 2011,	 the	 SDSS	 hired
Jocelyn,	 an	analytics	professional,	 to	build	a	galaxy	morphology	classification	model	 to
include	in	their	data	processing	pipeline.	The	remainder	of	this	chapter	describes	the	work
undertaken	by	Jocelyn	on	this	project	within	each	phase	of	the	CRISP-DM	process.



10.1	Business	Understanding
When	Jocelyn	first	arrived	at	SDSS,	she	was	pleased	to	find	that	the	business	problem	she
was	being	asked	to	help	with	was	already	pretty	well	defined	in	predictive	analytics	terms.
The	 SDSS	 pipeline	 takes	 the	 data	 captured	 by	 the	 SDSS	 instruments	 and	 processes	 it,
before	storing	the	results	of	this	processing	in	a	centrally	accessible	database.	At	the	time
Jocelyn	arrived,	 the	SDSS	pipeline	included	rule-based	systems	that	could	classify	night
sky	 objects	 into	 broad	 categories—for	 example,	 stars	 and	 galaxies.	 SDSS	 scientists,
however,	were	struggling	to	build	rule-based	systems	that	could	accurately	perform	more
fine-grained	classifications.	In	particular,	the	SDSS	scientists	wanted	a	system	that	could
reliably	 classify	 galaxies	 into	 the	 important	morphological	 (i.e.,	 shape)	 types:	 elliptical
galaxies	 and	 spiral	 galaxies.	 Classifying	 galaxies	 according	 to	 galaxy	morphology	 is
standard	 practice	 in	 astronomy,3	 and	 morphological	 categories	 have	 been	 shown	 to	 be
strongly	 correlated	 with	 other	 important	 galaxy	 features.	 So,	 grouping	 galaxies	 by
morphological	 type	 is	a	 fundamentally	 important	 step	 in	analyzing	 the	characteristics	of
galaxies.

This	was	 the	challenge	 that	 the	SDSS	had	hired	Jocelyn	 to	address.	The	scientists	at
SDSS	wanted	Jocelyn	to	build	a	machine	learning	model	that	could	examine	sky	objects
that	their	current	rule-based	system	had	flagged	as	being	galaxies	and	categorize	them	as
belonging	to	the	appropriate	morphological	group.	Although	there	remained	some	details
left	 to	 agree	on,	 the	 fact	 that	 the	SDSS	had	defined	 their	 problem	 in	 terms	of	 analytics
meant	 that	 Jocelyn	 very	 easily	 completed	 the	 important	 step	 of	 converting	 a	 business
problem	 into	 an	analytics	 solution.	Edwin	was	 assigned	 to	 Jocelyn	as	her	key	 scientific
contact	 from	SDSS	 and	was	 eager	 to	 answer	 any	 questions	 Jocelyn	 had	 as	 he	 saw	 real
value	in	the	model	she	was	developing.

The	first	detail	 that	Jocelyn	needed	to	agree	on	with	Edwin	was	the	set	of	categories
into	which	sky	objects	should	be	categorized.	The	scientists	at	SDSS	listed	two	key	galaxy
morphologies	 of	 interest:	 elliptical	 and	 spiral.	 The	 spiral	 category	 further	 divided	 into
clockwise	 spiral	 and	 anti-clockwise	 spiral	 subcategories.	 Figure	 10.1[485]	 shows
illustrations	of	these	different	galaxy	types.	Jocelyn	suggested	that	she	would	first	work	on
the	 coarse	 classification	 of	 galaxies	 into	 elliptical	 and	 spiral	 categories,	 and	 then,
depending	 on	 how	 this	model	 performed,	 look	 at	 classifying	 spirals	 into	 the	more	 fine-
grained	categories.	Jocelyn	also	suggested	that	a	third	other	category	be	included	to	take
into	account	the	fact	that	all	the	sky	objects	labeled	as	galaxies	in	the	previous	step	in	the
SDSS	may	not	actually	be	galaxies.	Edwin	agreed	with	both	of	these	suggestions.

The	second	detail	that	Jocelyn	needed	to	agree	on	with	Edwin	was	the	target	accuracy
that	 would	 be	 required	 by	 the	 system	 she	 would	 build	 in	 order	 for	 it	 to	 be	 of	 use	 to
scientists	 at	 SDSS.	 It	 is	 extremely	 important	 that	 analytics	 professionals	 manage	 the
expectations	of	 their	 clients	during	 the	business	understanding	process,	 and	agreeing	on
expected	levels	of	model	performance	is	one	of	the	easiest	ways	in	which	to	do	this.	This
avoids	disappointment	and	difficulties	at	later	stages	in	a	project.	After	lengthy	discussion,
both	Jocelyn	and	Edwin	agreed	that	 in	order	for	 the	system	to	be	useful,	a	classification



accuracy	 of	 approximately	 80%	would	 be	 required.	 Jocelyn	 stressed	 that	 until	 she	 had
looked	at	 the	data	and	performed	experiments,	she	could	not	make	any	predictions	as	to
what	classification	accuracy	would	be	possible.	She	did,	however,	explain	to	Edwin	that
because	 the	 categorization	 of	 galaxy	morphologies	 is	 a	 somewhat	 subjective	 task	 (even
human	 experts	 don’t	 always	 fully	 agree	 on	 the	 category	 that	 a	 night	 sky	 object	 should
belong	to),	it	was	unlikely	that	classification	accuracies	beyond	90%	would	be	achievable.

Figure	10.1

Examples	 of	 the	 different	 galaxy	 morphology	 categories	 into	 which	 SDSS	 scientists
categorize	 galaxy	 objects.	 Credits	 for	 these	 images	 belong	 to	 the	 Sloan	 Digital	 Sky
Survey,	www.sdss3.org.

Finally,	 Edwin	 and	 Jocelyn	 discussed	 how	 fast	 the	model	 built	would	 need	 to	 be	 to
allow	 its	 inclusion	 in	 the	 existing	 SDSS	 pipeline.	 Fully	 processed	 data	 from	 the	 SDSS
pipeline	is	available	to	scientists	approximately	one	week	after	images	of	night	sky	objects
are	captured	by	the	SDSS	telescopes.4	The	system	that	Jocelyn	built	would	be	added	to	the
end	of	this	pipeline	because	it	would	require	outputs	from	existing	data	processing	steps.	It
was	 important	 that	 the	model	 Jocelyn	deployed	not	 add	 a	 large	delay	 to	 data	 becoming
available	to	scientists.	Based	on	the	expected	volumes	of	images	that	would	be	produced
by	 the	 SDSS	 pipeline,	 Jocelyn	 and	 Edwin	 agreed	 that	 the	 model	 developed	 should	 be
capable	 of	 performing	 approximately	 1,000	 classifications	 per	 second	 on	 a	 dedicated
server	of	modest	specification.

http://www.sdss3.org


10.1.1	Situational	Fluency

The	 notion	 of	 situational	 fluency5	 is	 especially	 important	when	 dealing	with	 scientific
scenarios.	It	is	important	that	analytics	professionals	have	a	basic	grasp	of	the	work	their
scientific	partners	are	undertaking	so	that	they	can	converse	fluently	with	them.	The	real
skill	 in	 developing	 situational	 fluency	 is	 determining	 how	 much	 knowledge	 about	 the
application	 domain	 the	 analytics	 professional	 requires	 in	 order	 to	 complete	 the	 project
successfully.	 It	was	not	 reasonable,	nor	necessary,	 to	expect	 that	 Jocelyn	would	become
fully	familiar	with	the	intricacies	of	the	SDSS	and	the	astronomy	that	it	performs.	Instead,
she	needed	enough	information	 to	understand	the	key	pieces	of	equipment	 involved,	 the
important	 aspects	 of	 the	 night	 sky	 objects	 that	 she	 would	 be	 classifying,	 and	 the	 key
terminology	involved.

While	 complex	 scientific	 scenarios	 can	make	 this	 process	more	 difficult	 than	 is	 the
case	 for	 more	 typical	 business	 applications,	 there	 is	 also	 the	 advantage	 that	 scientific
projects	 typically	 produce	 publications	 clearly	 explaining	 their	 work.	 These	 kinds	 of
publications	 are	 an	 invaluable	 resource	 for	 an	 analytics	 professional	 trying	 to	 come	 to
grips	with	a	new	topic.	Jocelyn	read	a	number	of	publications	by	the	SDSS	team6	before
spending	several	sessions	with	Edwin	discussing	the	work	that	he	and	his	colleagues	did.
The	 following	short	 summary	of	 the	 important	 things	she	 learned	 illustrates	 the	 level	of
situational	fluency	required	for	this	kind	of	scenario.

The	SDSS	project	captures	two	distinct	kinds	of	data—images	of	night-sky	objects	and
spectrographs	of	night	sky	objects—using	 two	distinct	 types	of	 instrument,	an	 imaging
camera	and	a	spectrograph.

The	SSDS	imaging	camera	captures	images	in	five	distinct	photometric	bands:7	ultra-
violet	 (u),	 green	 (g),	 red	 (r),	 far-red	 (i),	 and	 near	 infra-red	 (z).	 The	 raw	 imaging	 data
captured	from	the	SDSS	telescopes	is	passed	through	a	processing	pipeline	that	identifies
individual	 night	 sky	 objects	 and	 extracts	 a	 number	 of	 properties	 for	 each	 object.	 For
galaxy	 classification,	 the	 most	 important	 properties	 extracted	 from	 the	 images	 are
brightness,	 color,	 and	 shape.	 The	 measure	 of	 brightness	 used	 in	 the	 SDSS	 pipeline	 is
referred	to	as	magnitude.	Flux	 is	another	measure	that	attempts	to	standardize	measures
of	brightness,	 taking	into	account	how	far	away	different	objects	are	from	the	telescope.
Measures	of	flux	and	magnitude	are	made	in	each	of	the	five	photometric	bands	used	by
the	SDSS	imaging	system.	To	measure	the	color	of	night	sky	objects,	the	flux	measured	in
different	 photometric	 bands	 is	 compared.	 The	 image-based	 measures	 of	 overall	 galaxy
shape	are	extracted	from	the	images	using	morphological	and	moment	image	processing
operations.	 These	measures	 capture	 how	well	 objects	match	 template	 shapes—although
none	is	accurate	enough	to	actually	perform	the	galaxy	morphology	prediction	itself.

A	spectrograph	is	a	device	that	disperses	the	light	emitted	by	an	object	into	different
wavelengths	and	measures	 the	 intensity	of	 the	emission	of	each	wavelength—this	set	of
measures	is	referred	to	as	a	spectrogram.	The	SDSS	spectrographs	perform	this	task	for
manually	identified	night	sky	objects	and	produce	spectrograms	across	wavelengths	from
visible	 blue	 light	 to	 near-infrared	 light.	 Spectrography	 data	 may	 be	 useful	 in	 galaxy



classification	 because	 different	 galaxy	 types	 are	 likely	 to	 emit	 different	 amounts	 of
different	 light	wavelengths,	 so	 spectrograms	might	 be	 a	 good	 indicator	 for	 galaxy	 type.
Spectrography	 also	 allows	 measurement	 of	 redshift,	 which	 is	 used	 to	 determine	 the
distance	of	night	sky	objects	from	the	viewer.

Once	Jocelyn	felt	that	she	was	suitably	fluent	with	the	SDSS	situation,	she	proceeded
to	the	Data	Understanding	phase	of	the	CRISP-DM	process	so	as	to	better	understand	the
data	available.

Figure	10.2

The	 first	 draft	 of	 the	 domain	 concepts	 diagram	 developed	 by	 Jocelyn	 for	 the	 galaxy
classification	task.



10.2	Data	Understanding
Jocelyn’s	 first	 step	 in	 fully	 understanding	 the	 data	 available	 to	 her	 was	 to	 define	 the
prediction	 subject.	 In	 this	 case	 the	 task	 was	 to	 categorize	 galaxies	 according	 to
morphology,	and	 therefore	galaxy	made	sense	as	 the	prediction	subject.	The	structure	of
the	dataset	required	for	this	task	would	contain	one	row	per	galaxy,	and	each	row	would
include	a	set	of	descriptive	features	describing	the	characteristics	of	that	galaxy	object	and
a	target	feature	indicating	the	morphological	category	of	the	galaxy	object.

Based	on	her	understanding	of	the	SDSS	process,	Jocelyn	sketched	out	the	first	draft	of
the	 domain	 concepts	 diagram	 for	 the	 galaxy	 classification	 problem	 shown	 in	 Figure
10.2[488].	 Jocelyn	 felt	 that	 the	 important	 domain	 concepts	 were	 likely	 to	 be	 the	 target
(galaxy	type),	galaxy	appearance	measures	(e.g.,	color),	spectrography	information	(e.g.,
red	shift),	and	position	information	(the	position	of	each	object	in	the	night	sky	was	also
available	from	the	SDSS	pipeline).	Data	with	which	to	implement	features	based	on	these
domain	 concepts	 would	 likely	 come	 from	 the	 raw	 camera	 imaging	 and	 spectrograph
images	themselves,	or	from	the	results	of	the	SDSS	processing	pipeline.

Jocelyn	 took	 this	 first	 domain	 concept	 draft	 along	 to	 a	meeting	with	Ted,	 the	SDSS
chief	 data	 architect,	 to	 discuss	 the	 data	 resources	 that	 would	 be	 available	 for	 model
building.	Ted	quickly	made	two	observations.	First,	the	spectrograph	data	collected	by	the
SDSS	telescopes	was	not	nearly	as	extensive	as	the	camera	imaging	data	collected—while
there	 was	 imaging	 data	 for	 millions	 of	 galaxies,	 there	 were	 spectrograms	 for	 only
hundreds	 of	 thousands.	 Collecting	 spectrographic	 information	 involves	 a	 much	 more
complicated	process	than	capturing	imaging	data,	so	it	is	done	for	a	much	smaller	portion
of	 the	 sky.	 This	 was	 likely	 to	 continue	 to	 be	 the	 case,	 so	 any	 solution	 that	 relied	 on
spectrographic	data	as	well	as	imaging	data	to	classify	galaxy	types	would	work	for	only	a
fraction	of	the	observations	made	by	the	SDSS	telescopes.

Ted’s	second	observation	was	that,	although	there	was	a	huge	amount	of	data	available
on	past	observations	of	night	sky	objects,	only	a	tiny	fraction	of	these	contained	manual
labels	indicating	the	morphological	category	to	which	they	belonged.	This	meant	that	the
data	available	at	the	SDSS	did	not	contain	a	suitable	target	feature	that	Jocelyn	could	use
to	train	prediction	models.	This	is	a	very	common	scenario	and	a	real	thorn	in	the	side	of
the	predictive	model	 builder—although	 there	 is	 often	 an	 almost	 endless	 amount	 of	 data
available	for	training,	little	or	none	of	it	is	labeled	with	the	relevant	target	feature,	making
it	effectively	useless.

Jocelyn’s	options	at	this	stage	were	(1)	to	embark	on	a	large-scale	manual	data	labeling
project	for	which	she	would	hire	experts	to	manually	label	a	suitably	large	set	of	historical
night	sky	object	observations,	or	(2)	to	find	some	other	data	source	that	she	could	add	to
the	SDSS	data	to	use	as	a	target	feature.	While	the	first	option	is	often	used,	Jocelyn	was
lucky	 that	 another	 data	 source	 became	 available.	 Through	 conversations	 with	 Edwin,
Jocelyn	became	aware	of	a	parallel	project	to	the	SDSS	that	offered	an	intriguing	solution
to	her	problem.	Galaxy	Zoo8	 is	a	crowdsourced,	citizen	science	effort	 in	which	people
can	 log	 onto	 a	website	 and	 categorize	 images	 of	 galaxies—taken	 from	 the	 SDSS—into



different	 groups.	 The	 Galaxy	 Zoo	 project	 started	 in	 2007	 and	 since	 then	 has	 collected
millions	of	classifications	of	hundreds	of	thousands	of	galaxies.

The	galaxy	types	that	Galaxy	Zoo	citizen	scientists	could	choose	from	were	elliptical,
clockwise	spiral,	 anti-clockwise	 spiral,	 edge-on	 disk,	merger,	 and	 don’t	 know.	 The	 first
three	 types	are	 self-explanatory	and	match	directly	with	 the	categories	of	 interest	 to	 the
SDSS	project.	An	edge-on	disk	is	a	spiral	galaxy	viewed	from	the	edge,	which	makes	the
direction	of	 the	spiral	arms	unclear.	A	merger	 is	a	sky	object	 in	which	multiple	galaxies
appear	 grouped	 together.	 Examples	 were	 labeled	 as	 don’t	 know	 when	 a	 Galaxy	 Zoo
participant	could	not	place	the	object	in	question	into	one	of	the	other	categories.

Table	10.1

The	structure	of	the	SDSS	and	Galaxy	Zoo	combined	dataset.

Name Type Description
OBJID Continuous Unique	SDSS	object	identifier
P_EL Continuous Fraction	of	votes	for	elliptical	galaxy	category
P_CW Continuous Fraction	of	votes	for	clockwise	spiral	galaxy	category
P_ACW Continuous Fraction	of	votes	for	anti-clockwise	spiral	galaxy	category
P_EDGE Continuous Fraction	of	votes	for	edge-on	disk	galaxy	category
P_MG Continuous Fraction	of	votes	for	merger	category
P_DK Continuous Fraction	of	votes	for	don’t	know	category

The	 data	 from	 the	 Galaxy	 Zoo	 project	 was	 publicly	 available	 and	 therefore	 easily
accessible	to	Jocelyn.	Galaxy	Zoo	labels	were	available	for	approximately	600,000	SDSS
galaxies,	which	Jocelyn	felt	would	be	more	than	enough	to	use	to	train	and	test	a	galaxy
morphology	 classification	 model.	 Conveniently,	 this	 also	 determined	 the	 subset	 of	 the
SDSS	dataset	(those	galaxies	used	in	the	Galaxy	Zoo	project)	that	Jocelyn	would	use	for
this	 project.	With	 the	 knowledge	 that	 the	Galaxy	 Zoo	 labels	 would	 provide	 her	 with	 a
target	feature,	Jocelyn	returned	to	speak	with	Ted	again	about	getting	access	to	the	SDSS
data.

Accessing	 the	 results	 of	 the	 SDSS	 processing	 pipeline	 turned	 out	 to	 be	 reasonably
straightforward	 as	 it	 was	 already	 collected	 into	 a	 single	 large	 table	 in	 the	 SDSS	 data
repository.	Ted	organized	a	full	download	of	the	SDSS	photo	imaging	data	repository	for
all	the	objects	for	which	Galaxy	Zoo	labels	existed.	This	dataset	contained	600,000	rows
and	 547	 columns,9	 with	 one	 row	 for	 each	 galaxy	 observation,	 containing	 identifiers,
position	information,	and	measures	describing	the	characteristics	of	the	galaxy.

Jocelyn	decided	to	begin	her	data	exploration	work	by	focusing	on	the	target	feature.
The	 structure	 of	 the	 data	 available	 from	 the	 Galaxy	 Zoo	 project	 is	 shown	 in	 Table
10.1[490].	The	category	of	 each	galaxy	 is	voted	on	by	multiple	Galaxy	Zoo	participants,
and	the	data	includes	the	fraction	of	these	votes	for	each	of	the	categories.



Figure	10.3

Bar	plots	of	the	different	galaxy	types	present	in	the	full	SDSS	dataset	for	the	3-level	and
5-level	target	features.

The	raw	data	did	not	contain	a	single	column	that	could	be	used	as	a	target	feature,	so
Jocelyn	 had	 to	 design	 one	 from	 the	 data	 sources	 that	 were	 present.	 She	 generated	 two
possible	target	features	from	the	data	provided.	In	both	cases,	the	target	feature	level	was
set	to	the	galaxy	category	that	received	the	majority	of	the	votes.	In	the	first	target	feature,
just	 three	 levels	 were	 used:	 elliptical	 (P_EL	 majority),	 spiral	 (P_CW,	 P_ACW,	 or	 P_EDGE
majority),	 and	 other	 (P_MG	 or	 P_DK	 majority).	 The	 second	 target	 feature	 allowed	 three
levels	 for	 spiral	 galaxies:	 spiral	 cw	 (P_CW	 majority),	 spiral_acw	 (P_ACW	 majority),	 and
spiral_edge	(P_EDGE	majority).	Figure	10.3[491]	shows	bar	plots	of	the	frequencies	of	the	3-
level	and	the	5-level	target	features.	The	main	observation	that	Jocelyn	made	from	these	is
that	 galaxies	 in	 the	 dataset	were	 not	 evenly	 distributed	 across	 the	 different	morphology
types.	 Instead,	 the	elliptical	 level	was	much	more	heavily	 represented	 than	 the	others	 in
both	cases.	Using	the	3-level	target	feature	as	her	initial	focus,	Jocelyn	began	to	look	at	the
different	descriptive	features	in	the	data	downloaded	from	the	SDSS	repository	that	might
be	useful	in	building	a	model	to	predict	galaxy	morphology.

The	SDSS	download	that	Jocelyn	had	access	to	was	a	big	dataset—over	600,000	rows.
Although	modern	predictive	analytics	and	machine	learning	tools	can	handle	data	of	this
size,	a	 large	dataset	can	be	cumbersome	when	performing	data	exploration	operations—
calculating	summary	statistics,	generating	visualizations,	and	performing	correlation	tests
can	just	 take	too	long.	For	 this	reason,	Jocelyn	extracted	a	small	sample	of	10,000	rows
from	the	full	dataset	for	exploratory	analysis	using	stratified	sampling.

Table	10.2

Analysis	of	a	subset	of	the	features	in	the	SDSS	dataset.



	

Given	 that	 (1)	 the	SDSS	data	 that	Jocelyn	downloaded	was	already	in	a	single	 table;
(2)	the	data	was	already	at	the	right	prediction	subject	level	(one	row	per	galaxy);	and	(3)
many	of	the	columns	in	this	dataset	would	most	likely	be	used	directly	as	features	in	the
ABT	 that	 she	 was	 building,	 Jocelyn	 decided	 to	 produce	 a	data	 quality	 report	 on	 this
dataset.	Table	10.2[492]	shows	an	extract	from	this	data	quality	report.	At	this	point	Jocelyn
was	 primarily	 interested	 in	 understanding	 the	 amount	 of	 data	 available,	 any	 issues	 that
might	arise	from	missing	values,	and	the	types	of	each	column	in	the	dataset.

Jocelyn	was	surprised	that	none	of	the	columns	had	any	missing	values.	Although	this
is	not	unheard	of	(particularly	in	cases	like	the	SDSS	project	in	which	data	is	generated	in
a	 fully	 automated	 process)	 it	 is	 very	 unusual.	 The	 minimum	 values	 of	 −9,999	 for	 the
SKYIVAR_U/G/R/I/Z	columns	(and	some	others	not	shown	in	Table	10.2[492]),	which	were	so
different	 from	 the	 means	 for	 those	 columns,	 suggested	 that	 maybe	 there	 were	 missing
values	after	all.10	There	were	also	a	number	of	columns,	such	as	ROWC_U/G/R/I/Z,	that	had
cardinality	of	1	(and	standard	deviations	of	zero)	indicating	that	every	row	had	the	same.
These	features	contained	no	actual	information,	so	should	be	removed	from	the	dataset.



Figure	10.4

The	revised	domain	concepts	diagram	for	the	galaxy	classification	task.

Having	 performed	 this	 initial	 analysis,	 Jocelyn	 met	 again	 with	 Edwin	 and	 Ted	 to
discuss	the	data	quality	issues	and,	more	generally,	to	review	the	domain	concepts	outlined
in	 Figure	 10.2[488]	 so	 as	 to	 begin	 designing	 the	 actual	 descriptive	 features	 that	 would
populate	the	ABT.	Edwin	was	broadly	in	agreement	with	the	set	of	domain	concepts	that
Jocelyn	had	developed	and	was	very	positive	about	the	use	of	Galaxy	Zoo	classifications
as	 a	 source	 for	 generating	 the	 target	 feature.	 He	 did	 explain,	 however,	 that	 Jocelyn’s
suggestion	 of	 using	 position	 information	 was	 very	 unlikely	 to	 be	 useful,	 so	 that	 was
removed	from	the	set	of	domain	concepts.	Edwin	also	agreed	that	Ted	was	correct	about
the	 unavailability	 of	 spectrograph	 data	 for	most	 objects,	 so	 this	was	 also	 removed.	The
final	domain	concept	diagram	is	shown	in	Figure	10.4[493].	Edwin	helped	Jocelyn	align	the
columns	in	the	raw	SDSS	dataset	with	the	different	domain	concepts,	which	generated	a
good	set	of	descriptive	features	within	each	domain	concept.

Both	 Edwin	 and	 Ted	 were	 surprised	 to	 see	 missing	 values	 in	 the	 data	 as	 it	 was
produced	through	a	fully	automated	process.	Simply	through	eye-balling	the	data,	Jocelyn
uncovered	the	fact	that,	in	almost	all	cases,	when	one	suspect	−9,999	value	was	present	in
a	row	in	the	dataset,	that	row	contained	a	number	of	suspect	−9,999	values	(this	was	the
case	for	2%	of	the	rows	in	the	dataset).	Although	neither	Edwin	nor	Ted	could	understand
exactly	how	this	had	happened,	they	agreed	that	something	had	obviously	gone	wrong	in
the	 processing	 pipeline	 in	 those	 cases	 and	 that	 the	−9,999	 values	must	 refer	 to	missing
values.11	Complete	case	analysis	was	used	to	entirely	remove	any	rows	containing	two	or
more	−9,999,	or	missing,	values.	Before	performing	this	operation,	however,	Jocelyn	first
checked	 that	 the	 percentage	 of	missing	 values	was	 approximately	 2%	 in	 each	 of	 the	 3
levels	 (and	 in	 each	 of	 the	 levels	 in	 the	 5-level	 model)	 to	 ensure	 that	 there	 was	 no
relationship	between	missing	values	and	galaxy	type.	There	was	no	obvious	relationship,
so	Jocelyn	was	confident	that	removing	rows	containing	missing	values	would	not	affect
one	target	level	more	than	the	others.

One	 of	 the	 advantages	 of	 working	 in	 scientific	 scenarios	 is	 that	 there	 is	 a	 body	 of
literature	 that	 discusses	 how	 other	 scientists	 have	 addressed	 similar	 problems.	Working
with	 Edwin,	 Jocelyn	 reviewed	 the	 relevant	 literature	 and	 discovered	 a	 number	 of	 very
informative	 articles	 discussing	 descriptive	 features	 that	 were	 likely	 to	 be	 useful	 in
classifying	 galaxy	 morphologies.12	 In	 particular,	 a	 number	 of	 interesting	 features	 that
could	be	derived	from	the	flux	and	magnitude	measurements	already	in	the	SDSS	dataset



were	described	in	the	literature.	Jocelyn	implemented	these	derived	features	for	inclusion
in	the	final	ABT.

In	many	instances	the	SDSS	dataset	contained	the	same	measurement	for	a	night	sky
object	measured	separately	for	each	of	 the	five	photometric	bands	covered	by	the	SDSS
telescope.	 Because	 of	 this,	 Jocelyn	 suspected	 that	 there	 would	 be	 a	 large	 amount	 of
redundancy	in	the	data	as	the	measurements	in	the	different	bands	were	likely	to	be	highly
correlated.	To	investigate	this	idea,	she	generated	SPLOM	charts	for	different	photometric
band	versions	of	a	selection	of	columns	from	the	dataset	(see	Figure	10.5[495]),	and	these
showed	 significant	 relationships,	 which	 confirmed	 her	 suspicion.	 Jocelyn	 showed	 these
charts	 to	 Edwin.	 Edwin	 agreed	 that	 it	 was	 likely	 that	 correlations	 existed	 between
measurements	 in	 the	different	 photometric	 bands	but	 stressed,	 however,	 that	 differences
across	 these	 bands	 would	 exist	 and	 might	 be	 quite	 important	 in	 predicting	 galaxy
morphology.	The	existence	of	a	high	level	of	correlation	between	measurements	indicated
to	Jocelyn	that	feature	selection	would	be	important	later	during	the	modeling	phase	as	it
had	the	potential	to	massively	reduce	the	dimensionality	of	the	dataset.

Figure	10.5

SPLOM	diagrams	of	(a)	the	EXPRAD	and	(b)	DEVRAD	measurements	from	the	raw	SDSS
dataset.	 Each	 SPLOM	 shows	 the	 measure	 across	 the	 five	 different	 photometric	 bands
captured	by	the	SDSS	telescope	(u,	g,	r,	i,	and	z).

At	 this	point	 the	design	of	 the	ABT	had	fallen	 into	place.	For	 the	most	part,	Jocelyn
would	 use	 descriptive	 features	 directly	 from	 the	 raw	 SDSS	 data.	 These	 would	 be
augmented	with	a	small	number	of	derived	features	that	the	literature	review	undertaken
with	Edwin	had	 identified.	 Jocelyn	was	now	 ready	 to	move	 into	 the	Data	 Preparation
phase,	 during	 which	 she	 would	 populate	 the	 ABT,	 analyze	 its	 contents	 in	 detail,	 and
perform	any	transformations	that	were	required	to	handle	data	quality	issues.



10.3	Data	Preparation
After	removing	a	large	number	of	the	columns	from	the	raw	SDSS	dataset,	introducing	a
number	of	derived	features,	and	generating	two	target	features,	Jocelyn	generated	an	ABT
containing	 327	 descriptive	 features	 and	 two	 target	 features.	 Table	 10.3[496]	 lists	 these
features	(features	that	occur	over	all	five	photometric	bands	are	listed	as	NAME_U/G/R/I/Z	to
save	space).13

Table	10.3

Features	from	the	ABT	for	the	SDSS	galaxy	classification	problem.

Feature Feature Feature
SKYIVAR_U/G/R/I/Z UERR_U/G/R/I/Z EXPFLUX_U/G/R/I/Z
PSFMAG_U/G/R/I/Z ME1_U/G/R/I/Z EXPFLUXIVAR_U/G/R/I/Z
PSFMAGERR_U/G/R/I/Z ME2_U/G/R/I/Z MODELFLUXIVAR_U/G/R/I/Z
FIBERMAG_U/G/R/I/Z ME1E1ERR_U/G/R/I/Z CMODELFLUX_U/G/R/I/Z
FIBERMAGERR_U/G/R/I/Z ME1E2ERR_U/G/R/I/Z CMODELFLUXIVAR_U/G/R/I/Z
FIBER2MAG_U/G/R/I/Z ME2E2ERR_U/G/R/I/Z APERFLUX7_U/G/R/I/Z
FIBER2MAGERR_U/G/R/I/Z MRRCC_U/G/R/I/Z APERFLUX7IVAR_U/G/R/I/Z
PETROMAG_U/G/R/I/Z MRRCCERR_U/G/R/I/Z LNLSTAR_U/G/R/I/Z
PETROMAGERR_U/G/R/I/Z MCR4_U/G/R/I/Z LNLEXP_U/G/R/I/Z
PSFFLUX_U/G/R/I/Z DEVRAD_U/G/R/I/Z LNLDEV_U/G/R/I/Z
PSFFLUXIVAR_U/G/R/I/Z DEVRADERR_U/G/R/I/Z FRACDEV_U/G/R/I/Z
FIBERFLUX_U/G/R/I/Z DEVAB_U/G/R/I/Z DERED_U/G/R/I/Z
FIBERFLUXIVAR_U/G/R/I/Z DEVABERR_U/G/R/I/Z DEREDDIFF_U_G

FIBER2FLUX_U/G/R/I/Z DEVMAG_U/G/R/I/Z DEREDDIFF_G_R

FIBER2FLUXIVAR_U/G/R/I/Z DEVMAGERR_U/G/R/I/Z DEREDDIFF_R_I

PETROFLUX_U/G/R/I/Z DEVFLUX_U/G/R/I/Z DEREDDIFF_I_Z

PETROFLUXIVAR_U/G/R/I/Z DEVFLUXIVAR_U/G/R/I/Z PETRORATIO_I
PETRORAD_U/G/R/I/Z EXPRAD_U/G/R/I/Z PETRORATIO_R
PETRORADERR_U/G/R/I/Z EXPRADERR_U/G/R/I/Z AE_I
PETROR50_U/G/R/I/Z EXPAB_U/G/R/I/Z PETROMAGDIFF_U_G

PETROR50ERR_U/G/R/I/Z EXPABERR_U/G/R/I/Z PETROMAGDIFF_G_R

PETROR90_U/G/R/I/Z EXPMAG_U/G/R/I/Z PETROMAGDIFF_R_I

PETROR90ERR_U/G/R/I/Z EXPMAGERR_U/G/R/I/Z PETROMAGDIFF_I_Z

Q_U/G/R/I/Z CMODELMAG_U/G/R/I/Z GALAXY_CLASS_3
QERR_U/G/R/I/Z CMODELMAGERR_U/G/R/I/Z GALAXY_CLASS_5

U_U/G/R/I/Z

Once	Jocelyn	had	populated	 the	ABT,	she	generated	a	data	quality	 report	 (the	 initial
data	quality	 report	covered	 the	data	 in	 the	 raw	SDSS	dataset	only,	 so	a	second	one	was
required	 that	 covered	 the	 actual	 ABT)	 and	 performed	 an	 in-depth	 analysis	 of	 the
characteristics	 of	 each	 descriptive	 feature.	 An	 extract	 from	 this	 data	 quality	 report	 is
shown	in	Table	10.4[498].

The	 magnitude	 of	 the	 maximum	 values	 for	 the	 FIBER2FLUXIVAR_U	 feature	 in
comparison	to	the	median	and	3rd	quartile	value	was	unusual	and	suggested	the	presence



of	outliers.	The	difference	between	the	mean	and	median	values	for	the	SKYIVAR_R	feature
also	 suggested	 the	 presence	 of	 outliers.	 Similarly,	 the	 difference	 between	 the	mean	 and
median	values	for	the	LNLSTAR_R	feature	suggested	that	the	distribution	of	this	feature	was
heavily	 skewed	 and	 also	 suggested	 the	 presence	 of	 outliers.	 Figure	 10.6[497]	 shows
histograms	for	these	features.	The	problems	of	outliers	and	skewed	distributions	is	clearly
visible	in	these	distributions.	A	number	of	other	features	exhibited	a	similar	pattern.

Figure	10.6

Histograms	of	a	selection	of	features	from	the	SDSS	dataset.

Figure	10.7

Histograms	of	the	EXPRAD_R	feature	by	target	feature	level.

Table	10.4

A	data	quality	report	for	a	subset	of	the	features	in	the	SDSS	ABT.



With	 Edwin’s	 help,	 Jocelyn	 investigated	 the	 actual	 data	 in	 the	 ABT	 to	 determine
whether	the	extreme	values	in	the	features	displaying	significant	skew	or	the	presence	of
outliers	were	 due	 to	 valid	 outliers	 or	 invalid	 outliers.	 In	 all	 cases	 the	 extreme	 values
were	determined	to	be	valid	outliers.	Jocelyn	decided	to	use	the	clamp	transformation	to
change	 the	 values	 of	 these	 outliers	 to	 something	 closer	 to	 the	 central	 tendency	 of	 the
features.	Any	values	beyond	 the	1st	quartile	value	plus	2.5	 times	 the	 inter-quartile	 range
were	 reduced	 to	 this	value.	The	standard	value	of	1.5	 times	 the	 inter-quartile	 range	was
changed	to	2.5	to	slightly	reduce	the	impact	of	this	operation.

Jocelyn	also	made	the	decision	to	normalize	all	the	descriptive	features	into	standard
scores.The	differences	in	the	ranges	of	values	of	the	set	of	descriptive	features	in	the	ABT
was	 huge.	 For	 example,	 DEVAB_R	 had	 a	 range	 as	 small	 as	 [0.05,	 1.00]	 while
APERFLUX7IVAR_U	 had	 a	 range	 as	 large	 as	 [−265,862,	 15,274].	 Standardizing	 the
descriptive	feature	in	this	way	was	likely	to	improve	the	accuracy	of	the	final	predictive
models.	 The	 only	 drawback	 to	 standardization	 is	 that	 the	 models	 become	 less
interpretable.	 Interpretability,	 however,	 was	 not	 particularly	 important	 for	 the	 SDSS
scenario	 (the	 model	 built	 would	 be	 added	 to	 the	 existing	 SDSS	 pipeline	 and	 process
thousands	of	galaxy	objects	per	day),	so	standardization	was	appropriate.



Figure	10.8

Small	 multiple	 box	 plots	 (split	 by	 the	 target	 feature)	 of	 some	 of	 the	 features	 from	 the
SDSS	ABT.

Jocelyn	also	performed	a	simple	first-pass	feature	selection	using	the	3-level	model	to
see	which	features	might	stand	out	as	predictive	of	galaxy	morphology.	Jocelyn	used	the
information	 gain	 measure	 to	 rank	 the	 predictiveness	 of	 the	 different	 features	 in	 the
dataset	(for	this	analysis,	missing	values	were	simply	omitted).	The	columns	identified	as
being	most	predictive	of	galaxy	morphology	were	expRad_g	(0.3908),	expRad_r	(0.3649),
deVRad_g	 (0.3607),	 expRad_i	 (0.3509),	 deVRad_r	 (0.3467),	 expRad_z	 (0.3457),	 and
mRrCc_g	 (0.3365).	 Jocelyn	generated	 histograms	 for	 all	 these	 features	 compared	 to	 the
target	 feature—for	 example,	 Figure	 10.7[497]	 shows	 the	 histograms	 for	 the	 EXPRAD_R
feature.	It	was	encouraging	that	in	many	cases	distinct	distributions	for	each	galaxy	type
were	apparent	in	the	histograms.	Figure	10.8[499]	shows	small	multiple	box	plots	divided
by	galaxy	type	for	a	selection	of	features	from	the	ABT.	The	differences	between	the	three
box	plots	in	each	plot	gives	an	indication	of	the	likely	predictiveness	of	each	feature.	The
presence	of	large	numbers	of	outliers	can	also	be	seen.



10.4	Modeling
The	 descriptive	 features	 in	 the	 SDSS	 dataset	 are	 primarily	 continuous.	 For	 this	 reason,
Jocelyn	 considered	 trying	 a	 similarity-based	 model,	 the	 k	 nearest	 neighbor,	 and	 two
error-based	 models,	 the	 logistic	 regression	 model	 and	 the	 support	 vector	 machine.
Jocelyn	began	by	constructing	a	simple	baseline	model	using	the	3-level	target	feature.



10.4.1	Baseline	Models

Because	of	the	size	of	the	ABT,	Jocelyn	decided	to	split	the	dataset	into	a	training	set	and
a	 large	hold-out	 test	 set.	 Subsets	 of	 the	 training	 set	would	 be	 also	 used	 for	validation
during	 the	model	building	process.	The	 training	 set	 consisted	of	30%	of	 the	data	 in	 the
ABT	(approximately	200,000	instances),	and	the	test	set	consisted	of	the	remaining	70%
(approximately	450,000	instances).14	Using	the	training	set,	Jocelyn	performed	a	10-fold
cross	validation	experiment	on	models	trained	to	use	the	full	set	of	descriptive	features	to
predict	the	3-level	target.	These	would	act	as	baseline	performance	scores	that	she	would
try	 to	 improve	 upon.	 The	 classification	 accuracies	 achieved	 during	 the	 cross	 validation
experiment	 were	 82.912%,	 86.041%,	 and	 85.942%	 by	 the	 k	 nearest	 neighbor,	 logistic
regression,	and	support	vector	machine	models	respectively.	The	confusion	matrices	from
the	evaluation	of	these	models	are	shown	in	Table	10.5[501].

Table	10.5

The	confusion	matrices	for	the	baseline	models.

(a)	k	 nearest	 neighbor	model	 (classification	 accuracy:	 82.912%,	 average	 class	 accuracy:
54.663%)

Prediction

elliptical spiral other Recall

Target

elliptical 115,438 10,238 54 91.814%

spiral 19,831 50,368 18 71.731%

other 2,905 1,130 18 0.442%

(b)	 logistic	 regression	model	 (classification	 accuracy:	 86.041%,	 average	 class	 accuracy:
62.137%)

Prediction

elliptical spiral other Recall

Target

elliptical 115,169 10,310 251 91.600%

spiral 13,645 56,321 251 80.209%

other 2,098 1,363 592 14.602%

(c)	 support	 vector	 machine	 model	 (classification	 accuracy:	 85.942%,	 average	 class
accuracy:	58.107%)



Prediction

elliptical spiral other Recall

Target

elliptical 114,721 10,992 18 91.244%

spiral 13,089 57,092 36 81.307%

other 2,654 1,327 72 1.770%

These	 initial	 baseline	 results	were	promising;	 however,	 one	key	 issue	did	 emerge.	 It
was	clear	 that	 the	performance	of	 the	models	 trained	using	 the	SDSS	data	was	severely
affected	by	 the	 target	 level	 imbalance	 in	 the	data—there	were	many	more	examples	of
the	elliptical	target	level	than	either	the	spiral	or,	especially,	the	other	target	level.	Having
a	dominant	target	level,	like	the	elliptical	target	level	in	this	example,	means	that	models
trained	 on	 this	 data	 can	 over-compensate	 for	 the	 majority	 target	 level	 and	 ignore	 the
minority	 ones.	 For	 example,	 based	 on	 the	 confusion	 matrix	 in	 Table	 10.5(c)[501],	 the
misclassification	 rate	 for	 the	 elliptical	 target	 level	 is	 only	 8.756%,	while	 for	 the	 spiral
target	 level,	 it	 is	 higher,	 at	 18.693%,	 and	 for	 the	 other	 target	 level,	 it	 is	 a	 fairly	 dire
98.230%.	 The	 single	 classification	 accuracy	 performance	 measure	 hides	 this	 poor
performance	 on	 the	 minority	 target	 levels.	 An	 average	 class	 accuracy	 performance
measure,	 however,	 brings	 this	 issue	 to	 the	 fore.	 The	 average	 class	 accuracy	 scores
achieved	by	the	models	were	54.663%,	62.137%,	and	58.107%	by	the	k	nearest	neighbor,
logistic	 regression,	 and	 support	 vector	machine	models	 respectively.	 Jocelyn	 decided	 to
build	a	second	set	of	models	in	which	she	would	address	the	target	level	imbalance	issue.

The	target	level	imbalance	in	the	SDSS	dataset	arises	through	relative	rarity.15	In	the
large	SDSS	dataset,	 there	are	plenty	of	galaxies	 in	 the	other	and	spiral	categories;	 there
are	 just	many	more	 in	 the	 elliptical	 category.	 In	 this	 case,	 Jocelyn	 addressed	 the	 target
level	 imbalance	problem	by	using	under-sampling	 to	generate	a	new	training	dataset	 in
which	all	three	target	levels	had	an	equal	distribution.	This	was	referred	to	as	the	under-
sampled	training	set.	Jocelyn	performed	the	same	baseline	test	on	the	three	model	types
using	this	new	dataset.	The	resulting	confusion	matrices	are	shown	in	Table	10.6[503].

The	 resulting	 classification	 accuracies	 (average	 class	 accuracies	 and	 classification
accuracies	are	the	same	in	this	case	because	the	dataset	is	balanced)	from	the	10-fold	cross
validation	experiment	were	73.965%,	78.805%,	and	78.226%	for	 the	k	nearest	neighbor,
logistic	 regression,	 and	 support	 vector	 machine	 models	 respectively.	 The	 overall
performance	on	this	balanced	dataset	was	not	as	good	as	the	performance	on	the	original
dataset;	however,	balancing	 the	 training	set	did	 result	 in	 the	performance	on	each	 target
level	being	more	equal.	Predictions	for	the	other	target	level	are	actually	being	performed
this	time,	whereas	in	the	previous	example,	this	target	level	was	essentially	being	ignored.
Choosing	between	models	 in	 this	sort	of	scenario	 is	difficult	as	 it	 really	comes	down	 to
balancing	 the	 needs	 of	 the	 application—when	 the	 system	makes	 errors	 (as	 it	 inevitably
will	from	time	to	time),	what	error	is	least	bad?	In	this	example,	is	it	better	to	classify	a



galaxy	 that	 should	be	other	as	an	elliptical	 galaxy	or	vice	versa?	 Jocelyn	discussed	 this
issue	and	the	results	of	these	two	baseline	experiments	with	Edwin,	and	both	decided	that
it	 would	 be	 best	 to	 pursue	 the	 optimal	 performance	 measured	 by	 overall	 classification
accuracy	 because,	 in	 practice,	 the	 important	 thing	 for	 the	 SDSS	 system	was	 to	 classify
elliptical	and	spiral	galaxies	as	accurately	as	possible.

Table	10.6

The	confusion	matrices	showing	the	performance	of	models	on	the	under-sampled	training
set.

(a)	k	nearest	neighbor	model	(classification	accuracy:	73.965%)

Prediction

elliptical spiral other Recall

Target

elliptical 23,598 4,629 5,253 70.483%

spiral 4,955 24,734 3,422 74.700%

other 3,209 4,572 25,628 76.711%

(b)	logistic	regression	model	(classification	accuracy:	78.805%)

Prediction

elliptical spiral other Recall

Target

elliptical 25,571 4,203 3,706 76.378%

spiral 3,677 26,267 3,166 79.331%

other 2,684 3,763 26,963 80.705%

(c)	support	vector	machine	model	(classification	accuracy:	78.226%)

Prediction

elliptical spiral other Recall

Target

elliptical 24,634 4,756 4,089 73.579%

spiral 3,763 26,310 3,038 79.460%

other 2,584 3,550 27,275 81.640%



With	these	baseline	performance	measures	established,	Jocelyn	turned	her	attention	to
feature	selection	in	an	effort	to	improve	on	these	performance	scores.



10.4.2	Feature	Selection

In	the	SDSS	dataset,	many	of	the	features	are	represented	multiple	times	for	each	of	the
five	 different	 photometric	 bands,	 and	 this	 made	 Jocelyn	 suspect	 that	 many	 of	 these
features	might	be	redundant	and	so	ripe	for	removal	from	the	dataset.	Feature	selection
approaches	 that	 search	 through	 subsets	 of	 features	 (known	 as	wrapper	 approaches)	 are
better	 at	 removing	 redundant	 features	 than	 rank	 and	 prune	 approaches	 because	 they
consider	 groups	 of	 features	 together.	 For	 this	 reason,	 Jocelyn	 chose	 to	 use	 a	 step-wise
sequential	 search	 for	 feature	 selection	 for	 each	 of	 the	 three	 model	 types.	 In	 all	 cases
overall	classification	accuracy	was	used	as	the	fitness	function	that	drove	the	search.	After
feature	selection,	the	classification	accuracy	of	the	models	on	the	test	set	were	85.557%,
88.829%,	and	87.188%	for	the	k	nearest	neighbor,	logistic	regression,	and	support	vector
machine	 models	 respectively.	 The	 resulting	 confusion	 matrices	 are	 shown	 in	 Table
10.7[504].	In	all	cases	performance	of	the	models	improved	with	feature	selection.	The	best
performing	model	is	the	logistic	regression	model.	For	this	model,	just	31	out	of	the	total
327	 features	 were	 selected.16	 This	 was	 not	 surprising	 given	 the	 large	 amount	 of
redundancy	within	the	feature	set.

Table	10.7

The	confusion	matrices	for	the	models	after	feature	selection.

(a)	k	 nearest	 neighbor	model	 (classification	 accuracy:	 85.557%,	 average	 class	 accuracy:
57.617%)

Prediction

elliptical spiral other Recall

Target

elliptical 116,640 9,037 54 92.770%

spiral 15,833 54,366 18 77.426%

other 2,815 1,130 108 2.655%

(b)	 logistic	 regression	model	 (classification	 accuracy:	 88.829%,	 average	 class	 accuracy:
67.665%)

Prediction

elliptical spiral other Recall

Target

elliptical 117,339 8,302 90 93.326%

spiral 10,812 59,297 108 84.448%



other 1,757 1,273 1,022 25.221%

(c)	 support	 vector	 machine	 model	 (classification	 accuracy:	 87.188%,	 average	 class
accuracy:	60.868%)

Prediction

elliptical spiral other Recall

Target

elliptical 115,152 10,561 18 91.586%

spiral 11,243 58,938 36 83.938%

other 2,528 1,237 287 7.080%

Based	on	 these	 results,	 Jocelyn	determined	 that	 the	 logistic	 regression	model	 trained
using	the	reduced	set	of	features	was	the	best	model	to	use	for	galaxy	classification.	This
model	 gave	 the	 best	 prediction	 accuracy	 and	 offered	 the	 potential	 for	 very	 fast
classification	times,	which	was	attractive	for	integration	into	the	SDSS	pipeline.	Logistic
regression	 models	 also	 produce	 confidences	 along	 with	 the	 predictions,	 which	 was
attractive	 to	 Edwin	 as	 it	 meant	 that	 he	 could	 build	 tests	 into	 the	 pipeline	 that	 would
redirect	 galaxies	 with	 low	 confidence	 classifications	 for	 manual	 confirmation	 of	 the
predictions	made	by	the	automated	system.



10.4.3	The	5-level	Model

To	 address	 the	 finer	 grained	 5-level	 (elliptical,	 spiral_cw,	 spiral_acw,	 spiral_eo,	 and
other)	 classification	 task,	 Jocelyn	 attempted	 two	 approaches.	 First,	 she	 used	 a	 5-target-
level	model	 to	make	predictions.	 Second,	 she	 used	 a	 two-stage	model.	 In	 this	 case	 the
logistic	regression	model	used	for	the	3-level	target	feature	would	first	be	used,	and	then	a
model	 trained	 to	distinguish	only	between	different	 spiral	galaxy	 types	 (clockwise,	anti-
clockwise,	and	edge-on)	would	be	used	to	further	classify	those	galaxy	objects	classified
as	spiral	by	the	first	stage.

Based	on	the	performance	of	the	logistic	regression	model	on	the	3-level	classification
problem,	 Jocelyn	 trained	 a	 logistic	 regression	 classifier	 on	 the	 5-level	 dataset	 and
evaluated	 it	 using	 a	 10-fold	 cross	 validation.	Following	 the	 same	 approach	 as	 in	 earlier
models,	Jocelyn	performed	feature	selection	using	a	step-wise	sequential	search	to	find
the	best	subset	of	features	for	this	model.	Just	11	features	from	the	full	set	were	selected.17
The	 resulting	 classification	 accuracy	 on	 the	 best	 performing	 model	 that	 Jocelyn	 could
build	was	77.528%	(with	an	average	class	accuracy	of	43.018%).	The	confusion	matrix
from	this	test	is	shown	in	Table	10.8[506].	The	overall	accuracy	of	this	model	is	somewhat
comparable	 with	 the	 overall	 accuracy	 of	 the	 3-level	 model.	 The	 classifier	 accurately
predicts	the	type	of	galaxies	with	the	elliptical	target	level	and,	to	a	lesser	extent,	with	the
spiral_eo	 target	 level.	 The	 ability	 of	 the	 model	 to	 distinguish	 between	 clockwise
(spiral_cw)	and	anti-clockwise	(spiral_acw)	spiral	galaxies,	however,	is	extremely	poor.

Table	10.8

The	confusion	matrix	for	the	5-level	logistic	regression	model	(classification	accuracy:
77.528%,	average	class	accuracy:	43.018%).

Table	10.9

The	confusion	matrix	for	the	logistic	regression	model	that	distinguished	between	only	the
spiral	galaxy	types	(classification	accuracy:	68.225%,	average	class	accuracy:	56.621%).

Prediction

spiral_cw spiral_acw spiral_eo Recall

Target

spiral_cw 5,753 6,214 3,319 37.636%

spiral_acw 6,011 6,509 3,540 40.528%



spiral_eo 1,143 2,084 35,643 91.698%

To	test	 the	 two-stage	classifier,	Jocelyn	extracted	a	small	ABT	containing	only	spiral
galaxies	from	the	original	ABT.	Using	this	new	ABT,	Jocelyn	trained	a	logistic	regression
model	 to	 distinguish	 between	 the	 three	 spiral	 galaxy	 types	 (spiral_cw,	 spiral_acw,	 and
spiral_eo).	She	used	step-wise	sequential	feature	selection	again,	and	this	time	32	features
were	chosen.18	This	model	was	able	to	achieve	a	classification	accuracy	of	68.225%	(with
an	average	class	accuracy	of	56.621%).	The	resulting	confusion	matrix	is	shown	in	Table
10.9[506].	 Although	 it	 is	 evident	 from	 the	 confusion	 matrix	 that	 the	 model	 could
distinguish	 between	 the	 edge-on	 spiral	 galaxies	 and	 the	 other	 two	 types,	 it	 could	 not
accurately	distinguish	between	the	clockwise	and	anti-clockwise	spiral	galaxies.

Table	10.10

The	confusion	matrix	for	the	5-level	two-stage	model	(classification	accuracy:	79.410%,
average	class	accuracy:	53.118%).

In	 spite	 of	 the	 model’s	 difficulty	 distinguishing	 between	 the	 clockwise	 and	 anti-
clockwise	spiral	galaxies,	Jocelyn	did	perform	an	evaluation	of	the	two-stage	model.	This
model	first	used	a	3-level	 logistic	regression	model	 to	distinguish	between	the	elliptical,
spiral,	and	other	target	levels.	Any	objects	classified	as	belonging	to	the	spiral	target	level
were	 then	 presented	 to	 a	model	 trained	 to	 distinguish	 between	 the	 three	 different	 spiral
types.	The	two-stage	model	achieved	a	classification	accuracy	of	79.410%.	The	resulting
confusion	matrix	is	shown	in	Table	10.10[507].

Although	the	performance	of	the	two-stage	model	was	better	than	the	performance	of
the	 simpler	 5-level	 model,	 it	 still	 did	 a	 very	 poor	 job	 of	 distinguishing	 between	 the
different	 spiral	 galaxy	 types.	 Jocelyn	 discussed	 this	 model	 with	 Edwin,	 and	 they	 both
agreed	 that	 the	 performance	 was	 not	 at	 the	 level	 required	 by	 the	 SDSS	 scientists	 for
inclusion	 in	 the	SDSS	processing	 pipeline.	 It	would	most	 likely	 be	 possible	 to	 create	 a
model	that	could	distinguish	between	the	clockwise	and	anti-clockwise	spiral	galaxies,	but
this	would	 probably	 require	 the	 calculation	 of	 new	 features	 based	 on	 the	 application	 of
image	processing	techniques	to	the	raw	galaxy	images.	Based	on	the	time	available	to	the
project,	 Jocelyn	did	not	 pursue	 this	 avenue	 and,	 in	 consultation	with	Edwin,	 decided	 to
continue	with	just	the	3-level	model.	The	best	performing	model	was	the	3-level	logistic
regression	model	after	feature	selection	(the	performance	of	this	model	is	shown	in	Table
10.7(b)[504]).	With	this	model	selected	as	the	best	performing	approach,	Jocelyn	was	ready
to	perform	the	final	evaluation	experiment.

Table	10.11



The	confusion	matrix	for	the	final	logistic	regression	model	on	the	large	hold-out	test	set
(classification	accuracy:	87.979%,	average	class	accuracy:	67.305%).

Prediction

elliptical spiral other Recall

Target

elliptical 251,845 19,159 213 92.857%

spiral 25,748 128,621 262 83.179%

other 4,286 2,648 2,421 25.879%



10.5	Evaluation
The	 final	 evaluation	 that	 Jocelyn	 performed	 was	 in	 two	 parts.	 In	 the	 first	 part,	 she
performed	a	performance	test	of	the	final	model	selected—the	3-level	logistic	regression
model	 using	 the	 selected	 feature	 subset—on	 the	 large	 test	 dataset	 mentioned	 at	 the
beginning	of	Section	10.4[500].	This	dataset	had	not	been	used	in	the	training	process,	so
the	performance	of	the	model	on	this	dataset	should	give	a	fair	indication	of	how	well	the
model	would	perform	when	deployed	on	real,	unseen	data.	The	confusion	matrix	resulting
from	this	test	is	shown	in	Table	10.11[508].	The	classification	accuracy	was	87.979%	(with
an	average	class	accuracy	of	67.305%),	which	was	similar	to	performance	on	the	training
data	and	well	above	the	target	that	Jocelyn	and	Edwin	had	agreed	on	at	the	beginning	of
the	project.

The	purpose	of	 the	second	part	of	 the	evaluation	was	 to	encourage	confidence	 in	 the
models	that	Jocelyn	had	built	amongst	the	SDSS	scientists.	In	this	evaluation,	Edwin	and
four	of	his	colleagues	independently	examined	200	galaxy	images	randomly	selected	from
the	final	test	set	and	classified	them	as	belonging	to	one	of	the	three	galaxy	types.	A	single
majority	classification	was	calculated	from	the	five	manual	classifications	for	each	galaxy.
Jocelyn	extracted	two	key	measurements	by	comparing	these	manual	classifications	to	the
classifications	made	by	the	model	she	had	built.	First,	Jocelyn	calculated	an	average	class
accuracy	by	comparing	the	predictions	made	by	her	model	for	the	same	200	galaxies	with
the	manual	classifications	made	by	the	SDSS	scientists.	The	average	class	accuracy	was
78.278%,	which	was	similar	to	the	accuracies	measured	on	the	overall	test	set.

Second,	 Jocelyn	 calculated	 an	 inter-annotator	 agreement	 statistic	 for	 the	 manual
classifications	given	by	the	five	SDSS	scientists.	Using	the	Cohen’s	kappa19	measure	of
inter-annotator	agreement	 to	measure	 how	 closely	 the	manual	 classifications	matched
each	 other,	 Jocelyn	 calculated	 a	 measure	 of	 0.6.	 Jocelyn	 showed	 that	 even	 the	 SDSS
scientists	themselves	disagreed	on	the	types	of	certain	galaxies.	This	is	not	uncommon	in
this	 kind	 of	 scenario,	 in	 which	 the	 classifications	 have	 a	 certain	 amount	 of	 fuzziness
around	their	boundaries—e.g.,	the	exact	line	between	an	elliptical	and	a	spiral	galaxy	can
be	hard	to	define—and	led	to	very	interesting	discussions	for	the	scientists!

Together	 the	 strong	 performance	 by	 the	 model	 on	 the	 large	 test	 dataset	 and	 the
confidence	 built	 through	 the	 manual	 annotation	 exercise	 meant	 that	 Edwin	 and	 his
colleagues	were	happy	to	integrate	the	3-level	model	into	the	SDSS	processing	pipeline.



10.6	Deployment
Once	Edwin	had	approved	the	models	that	Jocelyn	had	built,	Jocelyn	met	again	with	Ted
to	begin	the	process	of	integrating	the	models	into	the	SDSS	processing	pipeline.	This	was
a	reasonably	straightforward	process	with	just	a	few	issues	that	needed	discussion.	First,
Jocelyn	had	put	the	SDSS	data	through	a	preprocessing	step,	standardizing	all	descriptive
features.	The	standardization	parameters	(the	mean	and	standard	deviation	of	each	feature)
needed	to	be	included	in	the	pipeline	so	that	the	same	preprocessing	step	could	be	applied
to	newly	arriving	instances	before	presenting	them	to	the	models.

Second,	a	process	was	put	in	place	that	allowed	manual	review	by	SDSS	experts	to	be
included	 in	 the	 galaxy	 classification	 process.	One	 of	 the	 advantages	 of	 using	 a	 logistic
regression	model	 is	 that	 along	with	 classifications,	 it	 also	 produces	 probabilities.	Given
that	there	are	three	target	levels,	a	prediction	probability	of	approximately	0.333	indicates
that	the	prediction	made	by	the	model	is	really	quite	unsure.	A	system	was	put	in	place	in
the	SDSS	processing	pipeline	to	flag	for	manual	review	any	galaxies	given	low	probability
predictions.

Last,	 a	 strategy	needed	 to	be	put	 in	place	 to	monitor	 the	performance	of	 the	models
over	time	so	that	any	concept	drift	that	might	take	place	could	be	flagged.	Jocelyn	agreed
with	Ted	to	put	in	place	an	alert	system	using	the	stability	index.	This	would	raise	an	alert
whenever	 the	stability	 index	went	above	0.25	so	 that	 someone	could	consider	 retraining
the	model.

	

	

	

	

	

	

	

_______________

1	Full	details	of	the	SDSS	project,	which	is	fascinating,	are	available	at	www.sdss.org.

2	Although	 this	 case	 study	 is	 based	 on	 real	 data	 downloaded	 from	 the	 SDSS,	 the	 case
study	 itself	 is	 entirely	 fictitious	 and	developed	only	 for	 the	purposes	of	 this	 book.	Very
similar	work	to	that	described	in	this	section	has,	however,	actually	been	undertaken,	and
details	of	representative	examples	are	given	in	Section	10.6[509].

3	This	practice	was	first	systematically	applied	by	Edwin	Hubble	in	1936	(Hubble,	1936).

4	 In	an	 interesting	example	of	 the	persistence	of	good	solutions	using	older	 technology,
the	 data	 captured	 by	 the	 telescopes	 at	 the	 SDSS	 site	 in	 New	Mexico	 is	 recorded	 onto
magnetic	tapes	that	are	then	couriered	to	the	Feynman	Computing	Center	at	Fermilab	in

http://www.sdss.org


Illinois,	 over	 1,000	miles	 away.	This	 is	 the	most	 effective	way	 to	 transport	 the	massive
volumes	of	data	involved!

5	See	Chapter	2[21].

6	 Stoughton	 et	 al.	 (2002)	 provides	 an	 in-depth	 discussion	 of	 the	 data	 collected	 by	 the
SDSS.	 A	 shorter	 overview	 is	 provided	 at
skyserver.sdss3.org/dr9/en/sdss/data/data.asp.

7	Most	consumer	digital	cameras	capture	full	color	images	by	capturing	separate	images
on	red,	green,	and	blue	imaging	sensors	and	combining	these.	The	colors	red,	green,	and
blue	 are	 known	 as	photometric	 bands.	 The	 photometric	 bands	 captured	 by	 the	 SDSS
imaging	camera	are	the	same	as	these	bands;	they	are	just	defined	on	different	parts	of	the
spectrum.

8	Full	details	of	the	Galaxy	Zoo	project	and	the	data	released	by	it	are	described	in	Lintott
et	al.	(2011,	2008).	The	Galaxy	Zoo	(www.galaxyzoo.org)	project	referred	to	in	this
example	is	Galaxy	Zoo	I.

9	The	fact	that	the	SDSS	and	Galaxy	Zoo	make	all	their	data	available	for	free	online	is	a
massive	contribution	to	global	science.	The	data	used	in	this	case	study	can	be	accessed	by
performing	 a	 simple	 SQL	 query	 at
skyserver.sdss3.org/dr9/en/tools/search/sql.asp.	The	query	to	select
all	the	camera	imaging	data	from	the	SDSS	data	release	for	each	of	the	objects	covered	by
the	Galaxy	Zoo	project	along	with	 the	Galaxy	Zoo	classifications	 is	SELECT	*	FROM
PhotoObj	AS	p	JOIN	ZooSpec	AS	zs	ON	zs.objid	=	p.objid	ORDER
BY	p.objid.	Full	details	of	all	the	data	tables	available	from	the	SDSS	are	available	at
skyserver.sdss3.org/dr9/en/help/docs/tabledesc.asp.

10	Many	systems	use	values	like	−	9,999	to	indicate	that	values	are	actually	missing.

11	The	co-occurrence	of	multiple	missing	values	in	a	row	is	something	that	 it	 is	hard	to
find	through	summary	analysis	of	 the	data	and	one	of	 the	reasons	analytics	practitioners
should	always	eye-ball	extracts	from	a	dataset	during	the	data	exploration	process.

12	Interested	readers	might	find	Tempel	et	al.	(2011),	Ball	et	al.	(2004)	and	Banerji	et	al.
(2010)	good	references	on	this	topic.

13	 We	 direct	 the	 interested	 reader	 to
http://skyserver.sdss3.org/dr9/en/sdss/data/data.asp	 for	 a
overview	of	what	these	features	represent.

14	It	is	more	common	to	split	an	ABT	in	the	opposite	proportions	(70%	for	the	training	set
and	30%	for	the	test	set).	In	this	case,	however,	because	the	ABT	was	so	large	it	was	more
useful	to	have	a	very	large	test	sample	as	200,000	instances	should	be	more	than	enough
for	the	training	set.

15	Target	level	imbalance	typically	arises	through	either	absolute	rarity	or	relative	rarity
of	the	minority	target	levels.	Absolute	rarity	refers	to	scenarios	in	which	there	simply	do
not	 exist	 many	 examples	 of	 the	 minority	 target	 levels—for	 example,	 in	 automated

http://www.galaxyzoo.org
http://skyserver.sdss3.org/dr9/en/sdss/data/data.asp


inspection	 tasks	 on	 production	 lines,	 it	 is	 often	 the	 case	 that	 there	 are	 simply	 very	 few
examples	of	defective	products	that	can	be	used	for	training.	Relative	rarity,	on	the	other
hand,	refers	to	scenarios	in	which	the	proportion	of	examples	of	the	majority	target	levels
in	a	dataset	 is	much	higher	 than	the	proportion	of	examples	of	 the	minority	 target	 level,
but	there	is	actually	no	shortage	of	examples	of	the	minority	target	level.

16	The	features	selected	were	AE_I,	APERFLUX7IVAR_G,	APERFLUX7IVAR_I,	APERFLUX7_U,
DERED_U,	 DEVAB_R,	 DEVRADERR_Z,	 DEVRAD_U,	 DEREDDIFF_G_R,	 EXPRAD_G,	 EXPRAD_R,
FIBER2FLUXIVAR_Z,	 FIBER2MAGERR_G,	 FIBERFLUXIVAR_R,	 FRACDEV_Z,	 LNLDEV_G,
LNLDEV_R,	 LNLDEV_U,	 LNLDEV_Z,	 MCR4_Z,	 PETROFLUXIVAR_G,	 PETROFLUXIVAR_I,
PETROR50ERR_R,	 PETROR50_G,	 PETROR90_G,	 PETRORATIO_R,	 PSFFLUXIVAR_I,	 PSF-
MAGERR_R,	PSFMAG_R,	SKYIVAR_U,	and	SKYIVAR_Z.

17	The	features	selected	were	SKYIVAR_U,	PETROFLUXIVAR_I,	PETROR50ERR_G,	DEVRAD_G,
DEVRADERR_R,	DEVRADERR_I,	DEVAB_G,	 EXPFLUX_Z,	 APERFLUX7_Z,	 APERFLUX7IVAR_R,
and	MODELMAGDIFF_I_Z.

18	 The	 features	 selected	 were	 AE_I,	 APERFLUX7IVAR_R,	 CMODELFLUXIVAR_U,
DEVABERR_G,	 DEVABERR_Z,	 DEVAB_G,	 DEVAB_I,	 DEVFLUXIVAR_U,	 DEVMAGERR_U,
DEVRAD_G,	 DEVRAD_U,	 DEREDDIFF_U_G,	 EXPABERR_U,	 EXPAB_G,	 EXPMAG_Z,
EXPRADERR_U,	 FIBER2FLUXIVAR_R,	 FIBER2MAG_I,	 FIBERFLUXIVAR_G,	 FIBERFLUX_G,
FIBERFLUX_R,	 FIBERFLUX_Z,	 LNLDEV_R,	 MCR4_Z,	 ME1E1ERR_Z,	 ME1_U,
MODELMAGDIFF_R_I,	PETROMAGDIFF_R_I,	PETROR90_R,	PSFMAG_U,	SKYIVAR_U,	and	U_R.

19	The	Cohen’s	kappa	 statistic	was	 first	 described	 in	Cohen	 (1960).	Using	 the	Cohen’s
kappa	 statistic,	 a	 value	 of	 1.0	 indicates	 total	 agreement,	 while	 a	 value	 of	 0.0	 indicates
agreement	no	better	than	chance.	Values	around	0.6	are	typically	understood	to	indicate	an
acceptable	level	of	agreement,	although	the	exact	nature	of	what	is	and	is	not	acceptable	is
very	task	dependent.





11	The	Art	of	Machine	Learning	for	Predictive	Data
Analytics

It	is	a	capital	mistake	to	theorize	before	one	has	data.	Insensibly	one	begins	to	twist	facts
to	suit	theories,	instead	of	theories	to	suit	facts.
—Sherlock	Holmes

Predictive	data	 analytics	 projects	 use	machine	 learning	 to	 build	models	 that	 capture	 the
relationships	in	large	datasets	between	descriptive	features	and	a	target	feature.	A	specific
type	 of	 learning,	 called	 inductive	 learning,	 is	 used,	 where	 learning	 entails	 inducing	 a
general	 rule	 from	 a	 set	 of	 specific	 instances.	 This	 observation	 is	 important	 because	 it
highlights	 that	 machine	 learning	 has	 the	 same	 properties	 as	 inductive	 learning.	 One	 of
these	properties	 is	 that	 a	model	 learned	by	 induction	 is	not	guaranteed	 to	be	 correct.	 In
other	 words,	 the	 general	 rule	 that	 is	 induced	 from	 a	 sample	 may	 not	 be	 true	 for	 all
instances	in	a	population.

Another	 important	property	of	 inductive	 learning	 is	 that	 learning	cannot	occur	unless
the	learning	process	is	biased	in	some	way.	This	means	that	we	need	to	tell	 the	learning
process	what	types	of	patterns	to	look	for	in	the	data.	This	bias	is	referred	to	as	inductive
bias.	 The	 inductive	 bias	 of	 a	 learning	 algorithm	 comprises	 the	 set	 of	 assumptions	 that
define	the	search	space	the	algorithm	explores	and	the	search	process	it	uses.

On	top	of	the	inductive	bias	encoded	in	a	machine	learning	algorithm,	we	also	bias	the
outcome	of	a	predictive	data	analytics	project	in	lots	of	other	ways.	Consider	the	following
questions:

What	is	the	predictive	analytics	target?	What	descriptive	features	will	we	include/exclude?
How	will	we	handle	missing	values?	How	will	we	normalize	our	 features?	How	will	we
represent	continuous	features?	What	types	of	models	will	we	create?	How	will	we	set	the
parameters	 of	 the	 learning	 algorithms?	What	 evaluation	 process	 will	 we	 follow?	What
performance	measures	will	we	use?

These	questions	are	 relevant	when	building	any	prediction	model,	 and	 the	answer	 to
each	one	 introduces	 a	 specific	bias.	Often	we	are	 forced	 to	 answer	 these	questions,	 and
others	like	them,	based	on	intuition,	experience,	and	experimentation.	This	is	what	makes
machine	 learning	 something	 of	 an	 art,	 rather	 than	 strictly	 a	 science.	But	 it	 is	 also	what
makes	machine	learning	such	a	fascinating	and	rewarding	area	to	work	in.

En	masse	all	the	questions	that	must	be	answered	to	successfully	complete	a	predictive
data	 analytics	 project	 can	 seem	 overwhelming.	 This	 is	 why	 we	 recommend	 using	 the
CRISP-DM	process	 to	manage	a	project	 through	 its	 lifecycle.	Table	11.1[512]	 shows	 the
alignment	 between	 the	 phases	 of	 CRISP-DM,	 some	 of	 the	 key	 questions	 that	 must	 be
answered	during	a	predictive	data	analytics	project,	and	the	chapters	in	this	book	dealing
with	these	questions.

Table	11.1



The	alignment	between	the	phases	of	CRISP-DM,	key	questions	for	analytics	projects,
and	the	chapters	and	sections	of	this	book.

CRISP-DM Open	Questions Chapter

Business
Understanding

What	is	the	organizational	problem	being	addressed?	In	what
ways	could	a	prediction	model	address	the	organizational
problem?	Do	we	have	situational	fluency?	What	is	the	capacity
of	the	organization	to	utilize	the	output	of	a	prediction	model?
What	data	is	available?

Chapter
2[21]

Data
Understanding

What	is	the	prediction	subject?	What	are	the	domain	concepts?
What	is	the	target	feature?	What	descriptive	features	will	be
used?

Chapter
2[21]

Data
Preparation

Are	there	data	quality	issues?	How	will	we	handle	missing
values?	How	will	we	normalize	our	features?	What	features	will
we	include?

Chapter
3[55]

Modeling
What	types	of	models	will	we	use?	How	will	we	set	the
parameters	of	the	machine	learning	algorithms?	Have
underfitting	or	overfitting	occurred?

Chapters
4[117],
5[179],
6[247]
and
7[323]

Evaluation What	evaluation	process	will	we	follow?	What	performance
measures	will	we	use?	Is	the	model	fit	for	purpose?

Chapter
8[397]

Deployment How	will	we	continue	to	evaluate	the	model	after	deployment?
How	will	the	model	be	integrated	into	the	organization?

8.4.6[447]
and
Chapters
9[463]
and
10[483]

Remember,	 an	analytics	project	 is	often	 iterative,	with	different	 stages	of	 the	project
feeding	 back	 into	 later	 cycles.	 It	 is	 also	 important	 to	 remember	 that	 the	 purpose	 of	 an
analytics	 project	 is	 to	 solve	 a	 real-world	 problem	 and	 to	 keep	 focus	 on	 this	 rather	 than
being	distracted	by	the,	admittedly	sometimes	fascinating,	 technical	challenges	of	model
building.	We	strongly	believe	that	the	best	way	to	keep	an	analytics	project	focused,	and	to
improve	 the	 likelihood	 of	 a	 successful	 conclusion,	 is	 to	 adopt	 a	 structured	 project
lifecycle,	such	as	CRISP-DM,	and	we	recommend	its	use.



11.1	Different	Perspectives	on	Prediction	Models
A	 key	 step	 in	 any	 predictive	 analytics	 project	 is	 deciding	 which	 type	 of	 predictive
analytics	model	to	use.	In	this	book	we	have	presented	some	of	the	most	commonly	used
prediction	 models	 and	 the	 machine	 learning	 algorithms	 used	 to	 build	 them.	 We	 have
structured	 this	 presentation	 around	 four	 approaches	 to	 learning:	 information-based,
similarity-based,	probability-based,	and	error-based.	The	mathematical	foundation	of	these
approaches	 can	 be	 described	 using	 four	 simple	 (but	 important)	 equations:	 Claude
Shannon’s	model	of	entropy	(Equation	(11.1)[513]),	Euclidean	distance	 (Equation	(11.2)
[513]),	Bayes’	Theorem	(Equation	(11.3)[513]),	and	 the	sum	of	squared	errors	 (Equation
(11.4)[513]).

An	 understanding	 of	 these	 four	 equations	 is	 a	 strong	 basis	 for	 understanding	 the
mathematical	 fundamentals	 of	 many	 areas	 of	 scientific	 modeling.	 Adding	 an
understanding	of	how	these	four	equations	are	used	in	the	machine	learning	algorithms	we
have	 described	 (ID3,	 k	 nearest	 neighbor,	 multivariable	 linear	 regression	 with	 gradient
descent,	and	naive	Bayes)	is	a	strong	foundation	on	which	to	build	a	career	in	predictive
data	analytics.

The	 taxonomy	 we	 have	 used	 to	 distinguish	 between	 different	 machine	 learning
algorithms	 is	based	on	human	approaches	 to	 learning	 that	 the	algorithms	can	be	 said	 to
emulate.	This	is	not	the	only	set	of	distinctions	that	can	be	made	between	the	algorithms
and	 the	 resulting	models.	 It	 is	 useful	 to	 understand	 some	 of	 the	 other	 commonly	 used
distinctions,	because	this	understanding	can	provide	insight	into	which	learning	algorithm
and	related	model	is	most	appropriate	for	a	given	scenario.

The	 first	 distinction	 between	models	 that	 we	will	 discuss	 is	 the	 distinction	 between
parametric	and	non-parametric	models.	This	distinction	is	not	absolute,	but	it	generally
describes	whether	the	size	of	the	domain	representation	used	to	define	a	model	is	solely
determined	 by	 the	 number	 of	 features	 in	 the	 domain	 or	 is	 affected	 by	 the	 number	 of
instances	in	the	dataset.	In	a	parametric	model	the	size	of	the	domain	representation	(i.e.,
the	 number	 of	 parameters)	 is	 independent	 of	 the	 number	 of	 instances	 in	 the	 dataset.
Examples	of	parametric	models	include	the	naive	Bayes	and	Bayesian	network	models	in
Chapter	6[247]	and	the	simple	linear	and	logistic	regression	models	in	Chapter	7[323].	For
example,	the	number	of	factors	required	by	a	naive	Bayes	model	is	only	dependent	on	the



number	of	features	in	the	domain	and	is	independent	of	the	number	of	instances.	Likewise,
the	 number	 of	 weights	 used	 in	 a	 linear	 regression	 model	 is	 defined	 by	 the	 number	 of
descriptive	features	and	is	independent	of	the	number	of	instances	in	the	training	data.

In	a	non-parametric	model	 the	number	of	parameters	used	by	 the	model	 increases	as
the	number	of	instances	increases.	Nearest	neighbor	models	are	an	obvious	example	of	a
non-parametric	model.	As	 new	 instances	 are	 added	 to	 the	 feature	 space,	 the	 size	 of	 the
model’s	 representation	of	 the	domain	 increases.	Decision	 trees	 are	 also	 considered	non-
parametric	models.	The	reason	for	this	is	that	when	we	train	a	decision	tree	from	data,	we
do	not	assume	a	fixed	set	of	parameters	prior	to	training	that	define	the	tree.	Instead,	the
tree	branching	and	 the	depth	of	 the	 tree	are	related	 to	 the	complexity	of	 the	dataset	 it	 is
trained	on.	If	new	instances	were	added	to	the	dataset	and	we	rebuilt	the	tree,	it	is	likely
that	we	would	end	up	with	a	(potentially	very)	different	tree.	Support	vector	machines	are
also	non-parametric	models.	They	retain	some	instances	from	the	dataset—potentially	all
of	them,	although	in	practice,	relatively	few—as	part	of	the	domain	representation.	Hence,
the	 size	 of	 the	 domain	 representation	 used	 by	 a	 support	 vector	machine	may	 change	 as
instances	are	added	to	the	dataset.

In	 general,	 parametric	 models	 make	 stronger	 assumptions	 about	 the	 underlying
distributions	of	the	data	in	a	domain.	A	linear	regression	model,	for	example,	assumes	that
the	 relationship	between	 the	descriptive	 features	and	 the	 target	 is	 linear	 (this	 is	 a	 strong
assumption	 about	 the	 distribution	 in	 the	 domain).	 Non-parametric	 models	 are	 more
flexible	but	can	struggle	with	large	datasets.	For	example,	a	1-NN	model	has	the	flexibility
to	 model	 a	 discontinuous	 decision	 surface;	 however,	 it	 runs	 into	 time	 and	 space
complexity	issues	as	the	number	of	instances	grows.

When	 datasets	 are	 small,	 a	 parametric	 model	 may	 perform	 well	 because	 the	 strong
assumptions	 made	 by	 the	 model—if	 correct—can	 help	 the	 model	 to	 avoid	 overfitting.
However,	as	 the	size	of	 the	dataset	grows,	particularly	 if	 the	decision	boundary	between
the	 classes	 is	 very	 complex,	 it	 may	 make	 more	 sense	 to	 allow	 the	 data	 to	 inform	 the
predictions	 more	 directly.	 Obviously	 the	 computational	 costs	 associated	 with	 non-
parametric	 models	 and	 large	 datasets	 cannot	 be	 ignored.	 However,	 support	 vector
machines	 are	 an	 example	 of	 a	 nonparametric	model	 that,	 to	 a	 large	 extent,	 avoids	 this
problem.	As	such,	support	vector	machines	are	often	a	good	choice	in	complex	domains
with	lots	of	data.

The	 other	 important	 distinction	 that	 is	 often	 made	 between	 classification	 models	 is
whether	they	are	generative	or	discriminative.	A	model	is	generative	if	it	can	be	used	to
generate	data	that	will	have	the	same	characteristics	as	the	dataset	from	which	the	model
was	 produced.	 In	 order	 to	 do	 this,	 a	 generative	 model	 must	 learn,	 or	 encode,	 the
distribution	of	the	data	belonging	to	each	class.	The	Bayesian	network	models	described
in	Chapter	6[247]	are	examples	of	generative	models.1	Indeed,	Markov	chain	Monte	Carlo
methods	for	estimating	probabilities	are	based	on	the	fact	that	we	can	run	these	models	to
generate	data	that	approximate	the	distributions	of	the	dataset	from	which	the	model	was
induced.	Because	they	explicitly	model	the	distribution	of	the	data	for	each	class	k	nearest
neighbor	models	are	also	generative	models.



In	contrast,	discriminative	models	 learn	the	boundary	between	classes	rather	 than	the
characteristics	 of	 the	 distributions	 of	 the	 different	 classes.	 Support	 vector	machines	 and
the	other	classification	models	described	in	Chapter	7[323]	are	examples	of	discriminative
prediction	models.	In	some	cases	they	learn	a	hard	boundary	between	the	classes;	in	other
cases—such	as	logistic	regression—they	learn	a	soft	boundary,	which	takes	into	account
the	 distance	 from	 the	 boundary.	 However,	 all	 these	models	 learn	 a	 boundary.	 Decision
trees	are	also	discriminative	models.	Decision	trees	are	induced	by	recursively	partitioning
the	 feature	 space	 into	 regions	 belonging	 to	 the	 different	 classes,	 and	 consequently	 they
define	a	decision	boundary	by	aggregating	the	neighboring	regions	belonging	to	the	same
class.	 Decision	 tree	 model	 ensembles	 based	 on	 bagging	 and	 boosting	 are	 also
discriminative	models.

This	generative	versus	discriminative	distinction	is	more	than	just	a	labeling	exercise.
Generative	 and	 discriminative	 models	 learn	 different	 concepts.	 In	 probabilistic	 terms,
using	d	 to	 represent	 the	 vector	 of	 descriptive	 feature	 values	 and	 tl	 to	 represent	 a	 target
level,	a	generative	model	works	by

1.	 learning	the	class	conditional	densities	(i.e.,	the	distribution	of	the	data	for	each	target
level)	P(d|tl)	and	the	class	priors	P(tl);

2.	 then	using	Bayes’	Theorem	to	compute	the	class	posterior	probabilities	P(tl|d);2

3.	 and	then	applying	a	decision	rule	over	the	class	posteriors	to	return	a	target	level.

By	contrast,	a	discriminative	model	works	by

1.	 learning	the	class	posterior	probability	P(tl|d)	directly	from	the	data,
2.	 and	then	applying	a	decision	rule	over	the	class	posteriors	to	return	a	target	level.

This	 distinction	 between	 what	 generative	 and	 discriminative	 models	 try	 to	 learn	 is
important	because	the	class	conditional	densities,	P(d|tl),	can	be	very	complex	compared
to	the	class	posteriors,	P(tl|d)	(see	Figure	11.1[517]).	Consequently,	generative	models	 try
to	learn	more	complex	solutions	to	the	prediction	problem	than	discriminative	models.

The	 potential	 difficulty	 in	 learning	 the	 class	 conditional	 densities,	 relative	 to	 the
posterior	class	probabilities,	is	exacerbated	in	situations	where	we	have	a	lot	of	descriptive
features	because,	as	the	dimensionality	of	d	increases,	we	will	need	more	and	more	data	to
create	good	estimates	for	P(tl|d).	So,	in	complex	domains,	discriminative	models	are	likely
to	be	more	accurate.	However,	as	is	so	often	the	case	in	machine	learning,	this	is	not	the
end	 of	 the	 generative	 versus	 discriminative	 debate.	 Generative	 models	 tend	 to	 have	 a
higher	 bias—they	 make	 more	 assumptions	 about	 the	 form	 of	 the	 distribution	 they	 are
learning.	For	example,	as	we	discussed	in	Chapter	6[247]	on	probability,	generative	models
encode	independence	assumptions	about	the	descriptive	features	in	d.	This	may	sound	like
another	problem	for	generative	models.	However,	 in	domains	where	we	have	good	prior
knowledge	of	 the	independence	relationships	between	features,	we	can	encode	this	prior
structural	 information	 into	 a	 generative	model.	 This	 structural	 information	 can	 bias	 the
model	 in	 such	 as	way	 as	 to	 help	 it	 avoid	 overfitting	 the	 data.	As	 a	 result,	 a	 generative
model	may	outperform	a	discriminative	model	when	trained	on	a	small	dataset	with	good



prior	knowledge.	Conversely,	however,	as	the	amount	of	training	data	increases.	the	bias
imposed	 on	 a	 generative	model	 can	 become	 larger	 than	 the	 error	 of	 the	 trained	model.
Once	this	tipping	point	in	dataset	size	has	been	surpassed,	a	discriminative	model	will	out
perform	a	generative	model.

Figure	11.1

(a)	The	class	conditional	densities	for	two	classes	(l1,l2)	with	a	single	descriptive	feature
d.	The	height	of	each	curve	 reflects	 the	density	of	 the	 instances	 from	 that	class	 for	 that
value	of	d.	(b)	The	class	posterior	probabilities	plotted	for	each	class	for	different	values
of	 d.	 Notice	 that	 the	 class	 posterior	 probability	 P(t	 =	 l1|d)	 is	 not	 affected	 by	 the
multimodal	 structure	 of	 the	 corresponding	 class	 conditional	 density	 P(d|t	 =	 l1).	 This
illustrates	how	 the	class	posterior	probabilities	can	be	simpler	 than	 the	class	conditional
densities.	 The	 solid	 vertical	 line	 in	 (b)	 plots	 the	 decision	 boundary	 for	d	 that	 gives	 the
minimum	misclassification	rate	assuming	uniform	prior	for	the	two	target	levels	(i.e.,	P(t
=	l1)	=	P(t	=	l2)).	This	figure	is	based	on	Figure	1.27	from	Bishop	(2006).

The	 debate	 regarding	 the	 advantages	 and	 disadvantages	 of	 generative	 and
discriminative	models	can	be	extended	beyond	model	accuracy	to	include	their	ability	to
handle	missing	data,	 unlabeled	data,	 and	 feature	preprocessing,	 among	other	 topics.	We
will	not	discuss	these	topics	here.	Instead	we	will	simply	note	that	the	appropriate	choice
of	generative	versus	discriminative	model	is	context-dependent,	and	evaluating	a	range	of
different	 types	 of	 models	 is	 the	 safest	 option.	 Table	 11.2[518]	 summarizes	 the	 different
perspectives	on	the	model	types	that	we	have	presented	in	this	book.

Table	11.2

A	taxonomy	of	models	based	on	the	parametric	versus	non-parametric	and	generative
versus	discriminative	distinctions.

Model Parametric/Non-Parametric Generative/Discriminative
k	Nearest	Neighbor Non-Parametric Generative
Decision	Trees Non-Parametric Discriminative
Bagging/Boosting Parametric* Discriminative
Naive	Bayes Parametric Generative
Bayesian	Network Parametric Generative



Linear	Regression Parametric Discriminative
Logistic	Regression Parametric Discriminative
SVM Non-Parametric Discriminative

*Although	the	individual	models	in	an	ensemble	could	be	non-parametric	(for	example,
when	decision	trees	are	used),	the	ensemble	model	itself	is	considered	parametric.



11.2	Choosing	a	Machine	Learning	Approach
Each	of	the	approaches	to	machine	learning	that	we	have	presented	in	this	book	induces
distinct	types	of	prediction	models	with	different	strengths	and	weaknesses.	This	raises	the
question	of	when	to	use	which	machine	learning	approach.	The	first	thing	to	understand	is
that	 there	is	not	one	best	approach	that	always	outperforms	the	others.	This	 is	known	as
the	No	 Free	 Lunch	 Theorem	 (Wolpert,	 1996).	 Intuitively,	 this	 theorem	 makes	 sense
because	each	algorithm	encodes	a	distinct	set	of	assumptions	(i.e.,	 the	 inductive	bias	of
the	learning	algorithm),	and	a	set	of	assumptions	that	are	appropriate	in	one	domain	may
not	be	appropriate	in	another	domain.

We	 can	 see	 the	 assumptions	 encoded	 in	 each	 algorithm	 reflected	 in	 the	 distinctive
characteristics	of	the	decision	boundaries	that	they	learn	for	categorical	prediction	tasks.
To	illustrate	these	characteristics,	we	have	created	three	artificial	datasets	and	trained	four
different	 models	 on	 each	 of	 these	 datasets.	 The	 top	 row	 of	 images	 in	 Figure	 11.2[520]
illustrates	how	the	three	artificial	datasets	were	created.	Each	of	the	images	in	the	top	row
shows	 a	 feature	 space	 defined	 by	 two	 continuous	 descriptive	 features,	 F1	 and	 F2,
partitioned	 into	 good	 and	 bad	 regions	 by	 three	 different,	 artificially	 created	 decision
boundaries.3	In	the	subsequent	images,	we	show	the	decision	boundaries	that	are	learned
by	 four	 different	 machine	 learning	 algorithms	 based	 on	 training	 datasets	 generated
according	to	the	decision	boundaries	shown	in	the	top	row.	In	order	from	top	to	bottom,
we	show	decision	trees	(without	pruning),	nearest	neighbor	models	(with	k	=	3	and	using
majority	 voting),	 naive	 Bayes	 models	 (using	 normal	 distributions	 to	 represent	 the	 two
continuous	feature	values),	and	logistic	regression	models	(using	a	simple	linear	model).
In	 these	 images	 the	 training	 data	 instances	 are	 shown	 as	 symbols	 on	 the	 feature	 space
(triangles	 for	 good	 and	 crosses	 for	 bad),	 the	 decision	 boundaries	 learned	 by	 each
algorithm	 are	 represented	 by	 thick	 black	 lines,	 and	 the	 underlying	 actual	 decision
boundaries	are	shown	by	the	background	shading.

These	 examples	 show	 two	 things.	 First,	 the	 decision	 boundaries	 learned	 by	 each
algorithm	 are	 characteristic	 of	 that	 algorithm.	 For	 example,	 the	 decision	 boundaries
associated	with	decision	trees	have	a	characteristic	stepped	appearance	because	of	the	way
feature	values	are	split	in	a	decision	tree,	while	the	decision	boundaries	associated	with	k-
NN	 models	 are	 noticeably	 jagged	 because	 of	 their	 local	 focus.	 The	 characteristic
appearance	 of	 the	 decision	 boundaries	 is	 related	 to	 the	 representations	 used	 within	 the
models	and	the	inductive	biases	that	the	algorithms	used	to	build	them	encode.	The	second
thing	that	is	apparent	from	the	images	in	Figure	11.2[520]	is	that	some	of	the	models	do	a
better	 job	 of	 representing	 the	 underlying	 decision	 boundaries	 than	 others.	 The	 decision
boundary	 learned	by	 the	 logistic	 regression	model	best	matches	 the	underlying	decision
boundary	 for	 the	 dataset	 in	 the	 first	 column,	 the	 decision	 tree	 model	 seems	 most
appropriate	for	the	dataset	in	the	second	column,	and	the	k-NN	model	appears	best	for	the
dataset	in	the	third	column.

Real	predictive	data	analytics	projects	use	datasets	 that	are	much	more	complex	than
those	 shown	 in	 Figure	 11.2[520].	 For	 this	 reason	 selecting	 which	 type	 of	 model	 to	 use



should	be	informed	by	the	specific	priorities	of	a	project	and	the	types	of	the	descriptive
and	 target	 features	 in	 the	 data.	Also,	 in	 general,	 it	 is	 not	 a	 good	 idea	 to	 select	 just	 one
machine	 learning	 approach	 at	 the	 beginning	 of	 a	 project	 and	 to	 exclusively	 use	 that.
Instead,	it	is	better	to	choose	a	number	of	different	approaches	and	to	run	experiments	to
evaluate	which	is	best	for	the	particular	project.	However,	this	still	requires	the	selection
of	a	set	of	initial	approaches.	There	are	two	questions	to	consider:

1.	 Does	a	machine	learning	approach	match	the	requirements	of	the	project?
2.	 Is	the	approach	suitable	for	the	type	of	prediction	we	want	to	make	and	the	types	of

descriptive	features	we	are	using?



Figure	11.2

An	 illustration	 of	 the	 decision	 boundaries	 learned	 by	 different	 machine	 learning
algorithms	for	three	artificial	datasets.



11.2.1	Matching	Machine	Learning	Approaches	to	Projects

In	many	 cases	 the	 primary	 requirement	 of	 a	 project	 is	 to	 create	 an	 accurate	 prediction
model.	Accuracy	 can	 often	 be	 related	 to	 the	 power	 of	 a	machine	 learning	 algorithm	 to
capture	 the	 interaction	 between	 descriptive	 features	 and	 the	 target	 feature.	Caruana	 and
Niculescu-Mizil	 (2006)	 and	 Caruana	 et	 al.	 (2008)	 report	 empirical	 evaluations	 of	 the
accuracy	 of	 a	 range	 of	 model	 types	 across	 a	 range	 of	 domains.	 They	 found	 that	 on
average,	 ensemble	models	 and	 support	 vector	machines	were	 among	 the	most	 accurate
models.	A	consistent	finding	in	both	of	these	experiments,	however,	was	the	fact	that	for
some	 domains,	 these	more	 powerful	models	 performed	 quite	 poorly,	 and	 other	models,
that	 in	other	domains	were	quite	weak,	 achieved	 the	best	 results.	The	main	 conclusions
from	 this,	 and	other	 similar	 studies,	 is	 that	no	machine	 learning	approach	 is	universally
best,	 and	 experimentation	 with	 different	 approaches	 is	 the	 best	 way	 to	 ensure	 that	 an
accurate	model	is	built.

When	evaluating	models	against	a	particular	deployment	scenario,	model	accuracy	is
not	 the	 only	 issue	 we	 need	 to	 consider.	 In	 order	 to	 successfully	 address	 a	 business
problem,	a	model	must	be	accurate,	but	 it	must	 also	meet	 the	other	 requirements	of	 the
business	scenario.	Three	issues	are	important	to	consider:

Prediction	 speed:	 How	 quickly	 can	 a	model	make	 predictions?	 Logistic	 regression
models,	 for	 example,	 are	 very	 fast	 at	 making	 predictions	 as	 all	 that	 is	 involved	 is
calculating	 the	 regression	 equation	 and	 performing	 a	 thresholding	 operation.	On	 the
other	hand,	k	nearest	neighbor	models	are	very	slow	to	make	predictions	as	they	must
perform	 a	 comparison	 of	 a	 query	 instance	 to	 every	 instance	 in	 a,	 typically	 large,
training	set.	The	time	differences	arising	from	these	different	computational	loads	can
have	 an	 influence	 on	model	 selection.	 For	 example,	 in	 a	 real-time	 credit	 card	 fraud
prediction	system,	 it	may	be	 required	 that	a	model	perform	thousands	of	predictions
per	second.	Even	if	significant	computational	resources	were	to	be	deployed	for	such	a
problem,	it	may	not	be	possible	for	a	k	nearest	neighbor	model	to	perform	fast	enough
to	meet	this	requirement.
Capacity	 for	 retraining:	 In	 Section	 8.4.6[447]	 we	 discussed	 approaches	 that	 can	 be
used	 to	monitor	 the	performance	of	a	model	 so	as	 to	 flag	 the	occurrence	of	concept
drift	and	indicate	if	a	model	has	gone	stale.	When	this	occurs,	the	model	needs	to	be
changed	in	some	way	to	adapt	to	the	new	scenario.	For	some	modeling	approaches	this
is	quite	easy,	while	 for	others	 it	 is	almost	 impossible	 to	adapt	a	model,	and	 the	only
option	 is	 to	discard	 the	current	model	and	 train	a	new	one	using	an	updated	dataset.
Naive	Bayes	 and	 k	 nearest	 neighbor	models	 are	 good	 examples	 of	 the	 former	 type,
while	decision	trees	and	regression	models	are	good	examples	of	the	latter.
Interpretability:	In	many	instances	a	business	will	not	be	happy	to	simply	accept	the
predictions	made	by	a	model	and	incorporate	these	into	their	decision	making.	Rather,
they	 will	 require	 the	 predictions	 made	 by	 a	 model	 to	 be	 explained	 and	 justified.
Different	models	offer	different	levels	of	explanation	capacity	and	therefore	different
levels	of	interpretability.	For	example,	decision	trees	and	linear	regression	models	are
very	 easily	 interpreted,	 while	 support	 vector	 machines	 and	 ensembles	 are	 almost



entirely	uninterpretable	(because	of	this,	they	are	often	referred	to	as	a	black	box).

In	 summary,	 ensembles,	 support	 vector	 machines,	 and	 Bayesian	 networks	 are,	 in
general,	more	powerful	machine	 learning	approaches	 than	 the	others	we	have	presented.
However,	these	approaches	are	more	complex,	take	a	longer	time	to	train,	leverage	more
inductive	 bias,	 and	 are	 harder	 to	 interpret	 than	 the	 simpler	 approaches	 that	 we	 have
presented.	Furthermore,	the	selection	of	a	machine	learning	approach	also	depends	on	the
aspects	 of	 an	 application	 scenario	 described	 above	 (speed,	 capacity	 for	 retraining,
interpretability),	and	often,	these	factors	are	a	bigger	driver	for	the	selection	of	a	machine
learning	approach	than	prediction	accuracy.



11.2.2	Matching	Machine	Learning	Approaches	to	Data

When	 matching	 machine	 learning	 approaches	 to	 the	 characteristics	 of	 a	 dataset,	 it	 is
important	 to	 remember	 that	 almost	 every	 approach	 can	 be	 made	 to	 work	 for	 both
continuous	and	categorical	descriptive	and	 target	 features.	Certain	approaches,	however,
are	 a	 more	 natural	 fit	 for	 some	 kinds	 of	 data	 than	 others,	 so	 we	 can	 make	 some
recommendations.	The	first	thing	to	consider	in	regard	to	data	is	whether	the	target	feature
is	 continuous	 or	 categorical.	Models	 trained	 by	 reducing	 the	 sum	of	 squared	 errors,	 for
example,	linear	regression,	are	the	most	natural	fit	for	making	predictions	for	continuous
target	features.	Out	of	the	different	approaches	we	have	considered,	the	information-based
and	probability-based	approaches	are	least	well	suited	in	this	case.	If,	on	the	other	hand,
the	target	feature	is	categorical,	then	information-based	and	probability-based	approaches
are	 likely	 to	work	 very	well.	Models	 trained	 using	 error-based	 approaches	 can	 become
overly	complicated	when	the	number	of	levels	of	the	target	feature	goes	above	two.

If	 all	 the	 descriptive	 features	 in	 a	 dataset	 are	 continuous,	 then	 a	 similarity-based
approach	is	a	natural	fit,	especially	when	there	is	also	a	categorical	target	feature.	Error-
based	models	would	be	preferred	if	the	target	feature	is	also	continuous.	When	there	are
many	 continuous	 features,	 probability-based	 and	 information-based	models	 can	 become
complicated,	but	if	all	the	features	in	a	dataset	are	categorical,	then	information-based	and
probability-based	models	are	appropriate.	Error-based	models	are	less	suitable	in	this	case
as	 they	 require	 categorical	 features	 to	 be	 converted	 into	 sets	 of	 binary	 features,	 which
causes	an	increase	in	dimensionality.	In	many	cases	datasets	will	contain	both	categorical
and	 continuous	 descriptive	 features.	 The	 most	 naturally	 suited	 learning	 approaches	 in
these	scenarios	are	probably	those	that	are	best	suited	for	the	majority	feature	type.

The	 last	 issue	 to	 consider	 in	 relation	 to	 data	 when	 selecting	 machine	 learning
approaches	 is	 the	 curse	 of	 dimensionality.	 If	 there	 are	 a	 large	 number	 of	 descriptive
features,	 then	 we	 will	 need	 a	 large	 training	 dataset.	Feature	 selection	 is	 an	 important
process	 in	any	machine	learning	project	and	should	generally	be	applied	no	matter	what
type	of	models	are	being	developed.	That	said,	some	models	are	more	susceptible	to	the
curse	of	dimensionality	than	others.	Similarity-based	approaches	are	particularly	sensitive
to	 the	 curse	of	dimensionality	 and	can	 struggle	 to	perform	well	 for	 a	dataset	with	 large
numbers	of	descriptive	features.	Decision	tree	models	have	a	feature	selection	mechanism
built	into	their	induction	algorithm	and	so	are	more	robust	to	this	issue.



11.3	Your	Next	Steps
In	many	ways,	the	easy	part	of	a	predictive	data	analytics	project	is	building	the	models.
The	 machine	 learning	 algorithms	 tell	 us	 how	 to	 do	 this.	 What	 makes	 predictive	 data
analytics	difficult,	but	also	fascinating,	is	figuring	out	how	to	answer	all	the	questions	that
surround	 the	 modeling	 phase	 of	 a	 project.	 Throughout	 the	 course	 of	 a	 predictive	 data
analytics	project,	we	are	forced	to	use	our	intuition	and	experience,	and	experimentation,
to	steer	 the	project	 toward	the	best	solution.	To	ensure	a	successful	project	outcome,	we
should	inform	the	decisions	that	we	make	by

becoming	situationally	fluent	so	that	we	can	converse	with	experts	in	the	application
domain;
exploring	the	data	to	understand	it	correctly;
spending	time	cleaning	the	data;
thinking	hard	about	the	best	ways	to	represent	features;
and	spending	time	designing	the	evaluation	process	correctly.

A	distinctive	aspect	of	this	book	is	that	we	have	chosen	to	present	machine	learning	in
context.	In	order	to	do	this,	we	have	included	topics	that	are	not	covered	in	many	machine
learning	 books,	 including	 discussions	 on	 business	 understanding,	 data	 exploration	 and
preparation,	and	case	studies.	We	have	also	provided	an	in-depth	introduction	to	some	of
the	 most	 popular	 machine	 learning	 approaches	 with	 examples	 that	 illustrate	 how	 these
algorithms	work.	We	believe	that	this	book	will	provide	you	with	an	understanding	of	the
broader	 context	 and	core	 techniques	of	machine	 learning	 that	will	 enable	you	 to	have	a
successful	career	in	predictive	data	analytics.

Machine	 learning	 is	 a	huge	 topic,	however,	 and	one	book	can	only	be	 so	 long.	As	a
result,	we	have	had	to	sacrifice	coverage	of	some	aspects	of	machine	learning	in	order	to
include	 other	 topics	 and	worked	 examples.	We	believe	 that	 this	 book	will	 give	 you	 the
knowledge	and	skills	that	you	will	need	to	explore	these	topics	yourself.	To	help	with	this,
we	would	recommend	Hastie	et	al.	(2001),	Bishop	(2006),	and	Murphy	(2012)	for	broad
coverage	 of	 machine	 learning	 algorithms,	 including	 unsupervised	 and	 reinforcement
learning	approaches	not	covered	in	this	book.	These	books	are	suitable	as	reference	texts
for	experienced	practitioners	and	postgraduate	 researchers	 in	machine	 learning.	Some	of
the	other	machine	 learning	 topics	 that	 you	might	 like	 to	 explore	 include	deep	 learning
(Bengio,	2009;	Hinton	and	Salakhutdinov,	2006),	multi-label	classification	 (Tsoumakas
et	 al.,	2012),	 and	graphical	models	 (Kollar	 and	Friedman,	2009).	Finally,	we	hope	 that
you	find	machine	learning	as	fascinating	and	rewarding	a	topic	as	we	do,	and	we	wish	you
the	best	in	your	future	learning.

	

	

	

	



	

	

	

_______________

1	In	this	discussion,	when	we	categorize	models	as	being	generative	or	discriminative,	we
are	speaking	in	the	general	case.	In	fact,	all	models	can	be	trained	in	either	a	generative	or
a	 discriminative	manner.	However,	 some	models	 lend	 themselves	 to	 generative	 training
and	 others	 to	 discriminative	 training,	 and	 it	 is	 this	 perspective	 that	 we	 use	 in	 this
discussion.

2	We	could	also	formulate	the	generative	model	as	learning	the	joint	distribution	P(d,	 tl)
directly	and	then	computing	the	required	posteriors	from	this	distribution.

3	 This	 example	 is	 partly	 inspired	 by	 the	 “machine	 learning	 classifier	 gallery”	 by	 Tom
Fawcett	 at	 home.comcast.net/~tom.fawcett/public_html/ML-
gallery/pages/





A	Descriptive	Statistics	and	Data	Visualization	for	Machine
Learning

In	 this	 appendix	we	 introduce	 the	 fundamental	 statistical	measures	of	central	 tendency
and	variation.	We	also	introduce	three	of	the	most	important	and	useful	data	visualization
techniques	that	can	be	used	to	visualize	a	single	feature:	the	bar	plot,	the	histogram,	and
the	box	plot.



A.1	Descriptive	Statistics	for	Continuous	Features
To	 understand	 the	 characteristics	 of	 a	 continuous	 feature,	 there	 are	 two	 things	 that	 are
important	 to	measure:	 the	central	 tendency	 of	 the	 feature	 and	 the	variation	within	 the
feature.	 These	 are	 the	 basic	 building	 blocks	 of	 everything	 else	 that	will	 follow,	 so	 it	 is
important	to	fully	understand	them.



A.1.1	Central	Tendency

The	 central	 tendency	 of	 a	 sample	 refers	 to	 the	 value	 that	 is	 typical	 of	 the	 sample	 and
therefore	can	be	used	to	summarize	it.	Measures	of	central	tendency	are	an	approximation
of	this	notional	value.	The	arithmetic	mean	(or	sample	mean	or	 just	mean)	 is	 the	best
known	measure	of	central	tendency.	The	arithmetic	mean	of	a	set	of	n	values	for	a	feature
a	is	denoted	by	the	symbol	a	and	is	calculated	as

Figure	A.1[526]	shows	a	group	of	players	on	a	school	basketball	team	and	their	heights.
Using	Equation	(1)[525]	we	can	calculate	the	arithmetic	mean	of	these	players’	heights	as

This	mean	height	is	shown	by	the	dashed	gray	line	in	Figure	A.1[526].	The	arithmetic	mean
is	one	measure	of	the	central	tendency	of	a	sample	(for	our	purposes,	a	sample	is	just	a	set
of	values	for	a	feature	in	an	ABT).	Because	it	is	easy	to	calculate	and	easy	to	interpret,	the
mean	is	commonly	used	as	part	of	the	data	exploration	process	as	a	good	estimate	of	the
central	tendencies	of	features	in	an	ABT.

Figure	A.1

The	members	of	a	school	basketball	 team.	The	height	of	each	player	 is	 listed	below	the
player.	The	dashed	gray	line	shows	the	arithmetic	mean	of	the	players’	heights.

Any	measure	of	 central	 tendency	 is,	 however,	 just	 an	 approximation,	 so	we	must	be
aware	of	the	limitations	of	any	measure	that	we	use.	The	arithmetic	mean,	for	example,	is
very	sensitive	 to	very	 large	or	very	small	values	 in	a	sample.	For	example,	 suppose	our
basketball	team	manage	to	sign	a	ringer	measuring	in	at	229cm,	as	shown	in	Figure	A.2(a)
[526].	 The	 arithmetic	 mean	 for	 the	 full	 group	 is	 now	 158.235cm	 and,	 as	 shown	 by	 the
dashed	gray	line	in	Figure	A.2(a)[526],	no	longer	really	represents	the	central	tendency	of
the	group.	An	unusually	large	or	small	value	like	this	is	referred	to	as	an	outlier,	and	the
arithmetic	mean	is	very	sensitive	to	the	presence	of	outliers.



Figure	A.2

The	members	of	the	school	basketball	team	from	Figure	A.1[526]	with	one	very	tall	ringer
added:	(a)	the	dashed	gray	line	shows	the	mean	of	the	players’	heights;	(b)	the	dashed	gray
line	shows	the	median	of	the	players’	heights,	with	the	players	ordered	by	height.

There	are	other	statistics	 that	we	can	use	 to	measure	central	 tendency	 that	are	not	as
sensitive	to	outliers.	The	median	is	another	very	useful	measure	of	the	central	tendency	of
a	 sample.	The	median	of	 a	 set	 of	 values	 can	 be	 calculated	 by	ordering	 the	 values	 from
lowest	to	highest	and	selecting	the	middle	value.	If	there	is	an	even	number	of	values	in
the	sample,	then	the	median	is	obtained	by	calculating	the	arithmetic	mean	of	the	middle
two	values.	The	median	is	not	as	sensitive	to	outliers	as	the	arithmetic	mean	and	therefore
can	be	a	more	accurate	estimate	of	the	central	tendency	of	a	set	of	values	if	outliers	exist.
In	fact,	a	large	difference	between	the	mean	and	median	of	a	feature	is	an	indication	that
there	may	be	outliers	among	the	feature	values.

Figure	A.2(b)[526]	shows	the	extended	basketball	team	ordered	from	smallest	to	tallest,
with	the	height	of	the	each	player	listed	below	the	player.	The	median	value	of	this	set	is
150	and	 is	 shown	as	 the	dashed	gray	 line	 in	Figure	A.2(b)[526].	 In	 this	 case	 the	median
better	captures	the	central	tendency	of	the	set	of	values.

Another	commonly	used	measure	of	central	tendency	is	the	mode.	The	mode	is	simply
the	most	commonly	occurring	value	 in	a	 sample	 (determined	by	counting	 the	 frequency
with	which	each	value	occurs	 in	 the	sample).	 If	all	values	 in	a	sample	occur	with	equal
frequency,	then	there	is	no	mode.	For	the	heights	of	the	players	in	the	extended	basketball
team	in	Figure	A.2[526],	 the	mode	 is	 140	 as	 it	 is	 the	only	value	 that	 appears	 twice.	The
mode	 is	 not	 particularly	 effective	 in	 this	 case	 at	measuring	 the	 central	 tendency	 of	 the
values.	Mode	is	more	frequently	useful	for	categorical	features	than	for	continuous	ones,
but	it	can	be	useful	for	continuous	features	when	the	sample	is	large	enough.



A.1.2	Variation

Having	used	the	measures	of	central	tendency	to	describe	where	our	data	is	centered,	we
will	 now	 turn	 our	 attention	 to	 the	 variation	 in	 our	 data.	 Figure	A.3[527]	 shows	 a	 rival
school	basketball	team	to	that	shown	in	Figure	A.1[526].	The	height	of	each	player	is	listed
below	 the	 player,	 and	 the	 dashed	 gray	 line	 shows	 the	 arithmetic	 mean	 of	 the	 players’
heights,	which	is	149.390,	the	same	as	for	the	original	team.	The	heights	of	the	players	in
this	 second	 team	vary	much	more	 than	 those	of	 the	 first	 team	 (see	Figures	A.1[526]	 and
A.3[527]).	 Descriptive	 statistics	 provides	 us	 with	 a	 range	 of	 tools	 that	 we	 can	 use	 to
formally	 measure	 variation	 and	 so	 distinguish	 between	 the	 sets	 of	 heights	 in	 the	 two
basketball	 teams.	In	essence,	most	of	statistics,	and	in	turn	analytics,	 is	about	describing
and	understanding	variation.

Figure	A.3

The	 members	 of	 a	 rival	 school	 basketball	 team.	 Player	 heights	 are	 listed	 below	 each
player.	The	dashed	gray	line	shows	the	arithmetic	mean	of	the	players’	heights.

The	most	easily	calculated	measure	of	variation	is	range.	The	range	of	a	sample	of	n
values	for	a	feature	a	is	calculated	as

The	range	of	the	basketball	player	heights	in	Figure	A.1[526]	is	163	−	140	=	23	and	for
those	in	Figure	A.3[527]	is	192	−	102	=	90.	These	measures	match	what	we	intuitively	see
in	 these	 figures—the	heights	of	 the	second	 team	vary	much	more	 than	 those	of	 the	 first
team.	The	main	advantage	of	using	the	range	is	the	ease	with	which	it	is	calculated.	The
major	disadvantage	of	the	range,	however,	is	that	it	is	highly	sensitive	to	outliers.

The	variance	of	a	sample	is	a	more	useful	measure	of	variation.	Variance	measures	the
average	 difference	 between	 each	 value	 in	 a	 sample	 and	 the	 mean	 of	 that	 sample.	 The
variance	of	the	n	values	of	a	feature	a	is	denoted	var(a)	and	is	calculated	as

In	order	 to	allow	for	 the	 fact	 that	 some	of	 the	differences	between	values	and	 the	mean
will	be	positive	and	some	will	be	negative,	we	square	each	difference.1

For	the	players’	heights	given	in	Figure	A.1[526],	the	mean	is	149.390,	so	the



For	the	players’	heights	given	in	Figure	A.3[527],	the	mean	is	also	149.390,	so	the	variance
can	be	calculated	as

This	example	illustrates	that	the	variance	also	captures	the	intuition	that	the	heights	of
the	 players	 in	 the	 second	 team	 vary	 much	 more	 than	 those	 in	 the	 first	 team.	 It	 also,
however,	 illustrates	an	issue	with	using	variance.	Due	to	the	fact	 that	 the	differences	are
squared,	 variances	 are	 not	 in	 the	 same	 units	 as	 the	 original	 values,	 so	 they	 are	 not
especially	 informative—telling	 someone	 that	 the	variance	of	 the	heights	on	one	 team	 is
65.282	and	on	another	is	1,020.348	doesn’t	give	them	any	particularly	useful	information
other	than	the	fact	that	the	variance	of	one	team	is	bigger	than	that	of	the	other.

The	standard	deviation,	sd,	of	a	sample	is	calculated	by	taking	the	square	root	of	the
variance	of	the	sample:

This	means	 that	 the	 standard	 deviation	 is	measured	 in	 the	 original	 units	 of	 the	 sample,
which	makes	it	much	more	interpretable	than	the	variance.	It	 is	very	common	to	see	the
mean	and	standard	deviation	provided	as	a	full	description	of	a	sample.

The	 standard	 deviation	 of	 the	 heights	 of	 the	 players	 on	 the	 first	 basketball	 team	 is
8.080	and	for	the	second	team	is	31.943.	As	these	measures	are	in	the	same	units	as	the
heights,	 they	afford	us	a	more	 intuitive	understanding	of	 the	data	and	make	comparison
easier.	We	can	say	that,	on	average,	players	on	the	first	team	vary	by	8cm	from	the	average
of	149.39cm,	while	on	the	second	team,	they	vary	by	approximately	32cm.

Percentiles	are	another	useful	measure	of	 the	variation	of	 the	values	for	a	feature.	A
proportion	 of	 	 of	 the	 values	 in	 a	 sample	 take	 values	 equal	 to	 or	 lower	 than	 the	 ith
percentile	of	 that	 sample.	Conversely,	 a	proportion	of	 (100	−	 i){100	values	 in	 a	 sample
take	values	larger	than	the	ith	percentile.	To	calculate	the	ith	percentile	of	the	n	values	of	a
feature	 a,	 we	 first	 order	 the	 values	 in	 ascending	 order	 and	 then	 multiply	 n	 by	 	 to
determine	the	index.	If	the	index	is	a	whole	number,	we	take	the	value	at	that	position	in
the	 ordered	 list	 of	 values	 as	 the	 ith	 percentile.	 If	 index	 is	 not	 a	whole	 number,	 then	we
interpolate	the	value	for	the	ith	percentile	as



where	 index_w	 is	 the	 whole	 part	 of	 index,	 index_f	 is	 the	 fractional	 part	 of	 index,	 and
aindex	w	is	the	value	in	the	ordered	list	at	position	index_w.

Figure	A.4

The	members	of	the	rival	school	basketball	team	from	Figure	A.3[527]	ordered	by	height.

For	example,	Figure	A.4[530]	 shows	 the	basketball	 team	from	Figure	A.3[527]	ordered
by	height.	To	calculate	 the	25th	percentile,	we	 first	 calculate	 index	as	 .	 So,	 the
25th	percentile	is	the	second	value	in	the	ordered	list,	which	is	122.	To	calculate	the	80th

percentile,	we	first	calculate	 index	as	 .	Because	 index	 is	not	a	whole	number,
we	set	index_w	to	the	whole	part	of	index,	6,	and	index_f	to	the	fractional	part,	0.4.	Then
we	can	calculate	the	80th	percentile	as

(1	−	0.4)	×	165	+	0.4	×	188	=	174.2

using	the	6th	and	7th	values	in	the	list,	165	and	188.	We	have	actually	already	come	across
a	percentile	in	the	measures	of	central	tendency.	The	median	is	the	50th	percentile.

We	can	use	percentiles	 to	describe	another	measure	of	variation	known	as	 the	 inter-
quartile	range	(IQR).	The	inter-quartile	range	is	calculated	as	the	difference	between	the
25th	 percentile	 and	 the	 75th	 percentile.	 These	 percentiles	 are	 also	 known	 as	 the	 lower
quartile	 (or	1st	quartile)	and	 the	upper	quartile	 (or	3rd	 quartile),	 hence	 the	name	 inter-
quartile	range.	For	the	heights	of	the	first	basketball	team,	the	inter-quartile	range	is	151	−
140	=	11,	while	for	the	second	team,	it	is	165	−	122	=	43.



A.2	Descriptive	Statistics	for	Categorical	Features
The	statistics	outlined	in	 the	previous	section	work	well	 to	describe	continuous	features,
but	 they	do	not	work	 for	 categorical	 features.	For	 categorical	 features	we	 are	 interested
primarily	in	frequency	counts	and	proportions.	The	frequency	count	of	each	level2	of	a
categorical	feature	is	calculated	by	counting	the	number	of	times	that	level	appears	in	the
sample.	The	proportion	 for	 each	 level	 is	 calculated	by	dividing	 the	 frequency	 count	 for
that	level	by	the	total	sample	size.	Frequencies	and	proportions	are	typically	presented	in	a
frequency	table,	which	shows	the	frequency	and	proportion	of	each	level	for	a	particular
feature—usually	sorted	by	descending	frequency.

Table	A.1

A	dataset	showing	the	positions	and	monthly	training	expenses	of	a	school	basketball
team.

Table	A.2

A	frequency	table	for	the	POSITION	feature	from	the	school	basketball	team	dataset	in	Table
A.1[531].

Level Count Proportion

guard 8 40%

forward 7 35%

center 5 25%

For	example,	Table	A.1[531]	 lists	 the	position	 that	each	player	on	a	 school	basketball
team	plays	at,	and	the	average	training	expenses	accrued	each	month	by	each	player	on	the
team.	Table	A.2[531]	shows	the	frequencies	and	proportions	of	the	positions	that	players	in



the	team	play	at,	based	on	counts	of	the	occurrences	of	the	different	levels	of	the	POSITION
feature	 in	Table	A.1[531].	We	can	see	from	this	example	 that	 the	guard	 level	 is	 the	most
frequent,	followed	by	forward	and	center.

Based	 on	 these	 frequency	 counts	 and	 proportions,	 the	mode	 of	 a	 categorical	 feature
can	be	calculated.	The	mode	is	a	measure	of	the	central	tendency	of	a	categorical	feature
and	is	simply	the	most	frequent	level.	Based	on	the	counts	in	Table	A.2[531],	the	mode	of
the	POSITION	 feature	 is	guard.	We	often	also	calculate	a	second	mode,	which	 is	 just	 the
second	most	common	level	of	a	feature.	In	this	example,	the	second	mode	is	forward.



A.3	Populations	and	Samples
Throughout	 the	discussion	in	the	previous	sections	about	central	 tendency	and	variation,
we	 consistently	 used	 the	 word	 sample	 to	 refer	 to	 the	 set	 of	 values	 in	 an	 ABT	 for	 a
particular	feature.	In	statistics	it	is	very	important	to	understand	the	difference	between	a
population	and	a	sample.	The	term	population	is	used	in	statistics	to	represent	all	possible
measurements	 or	 outcomes	 that	 are	 of	 interest	 to	 us	 in	 a	 particular	 study	 or	 piece	 of
analysis.	 The	 term	 sample	 refers	 to	 the	 subset	 of	 the	 population	 that	 is	 selected	 for
analysis.

For	example,	consider	Table	A.3[533],	which	shows	a	set	of	results	for	polls	run	shortly
before	 the	 2012	United	 States	 presidential	 election,	 in	which	Mitt	 Romney	 and	Barack
Obama	were	the	front	runners.3	In	the	first	poll	in	the	table,	from	Pew	Research,	we	can
see	 that	 a	 sample	 of	 just	 2,709	 likely	 voters4	 was	 used.	 This	 poll	 put	Obama	 ahead	 of
Romney	in	the	race	to	the	White	House.	In	this	example	the	actual	population	of	interest
was	 the	 voting	 population	 of	 the	 United	 States,	 which	 was	 approximately	 240,926,957
people.	 It	 would	 be	 almost	 impossible	 to	 ask	 the	 full	 voting	 population	 their	 voting
intentions	before	an	actual	election—after	all,	 that	 is	what	 the	actual	election	 is	 for—so
polling	companies	take	a	sample.

While	 the	 sample	 of	 2,709	 voters	 out	 of	 a	 population	 of	 240,926,957	might	 appear
quite	small,	we	can	also	see	from	the	table	that	the	margin	of	error	for	the	poll	is	given	as
±2.2%.	The	margin	of	error	 takes	 into	account	 the	 fact	 that	 this	 is	 just	 a	 sample	 from	a
much	larger	population.5	All	the	other	polls	in	the	table	were	conducted	with	similar	sized
samples.	You	should	notice,	however,	 that,	 in	general,	 the	 larger	 the	sample,	 the	smaller
the	margin	of	error.	This	reflects	the	fact	that	if	we	use	a	bigger	sample,	we	can	be	more
confident	in	our	approximations	of	the	characteristics	of	the	full	population.

Table	A.3

A	number	of	poll	results	from	the	run-up	to	the	2012	US	presidential	election.

In	choosing	a	sample,	it	is	important	that	it	be	representative	of	the	population.	In	this
example	the	sample	should	represent	the	voting	population—for	example,	there	should	be
a	representative	proportion	of	males	compared	to	females	and	of	different	age	categories
within	 the	 sample.	 If	 a	 sample	 is	 not	 representative,	 we	 say	 that	 the	 sample	 is	biased.
Using	 a	 simple	 random	 sample	 is	 the	 most	 straightforward	 way	 of	 avoiding	 biased



samples.	In	a	simple	random	sample,	each	item	in	the	population	is	equally	likely	to	make
it	into	the	sample.	Other,	more	sophisticated	sampling	methods	can	be	used	to	ensure	that
a	sample	maintains	relationships	that	exist	in	a	population.	We	discuss	sampling	methods
in	more	detail	in	Section	3.6.3[98].

In	 the	 context	 of	 a	 predictive	 analytics	 scenario,	 the	 sample	 is	 the	 set	 of	 values	 that
occur	in	an	ABT.	The	population	is	the	set	of	all	the	values	that	could	possibly	occur.	For
example,	 in	 an	 ABT	 for	 a	 motor	 insurance	 claims	 fraud	 prediction	 problem,	 we	 may
include	details	of	500	claims	that	have	happened	in	the	past.	This	would	be	our	sample.
The	population	would	be	all	the	claims	that	have	ever	happened.

Up	to	this	point	we	have	outlined	descriptive	statistics	that	we	can	use	to	describe	the
values	 in	a	 sample.	How	do	we	 relate	 these	values	 to	 the	actual	underlying	population?
Statistics	 that	 describe	 the	 population	 are	 referred	 to	 as	 population	 parameters.	 In
general	we	use	 the	 sample	 statistics,	which	we	have	already	calculated,	 as	estimates	 for
the	population	parameters.	The	population	mean	of	a	feature	is	usually	denoted	by	μ,	and
in	general,	given	a	sufficiently	large	sample,	we	use	the	sample	mean	a	as	a	point	estimate
of	μ.	The	population	variance	of	 a	 feature	 is	 usually	denoted	by	σ2.	 In	 general,	 given	 a
sufficiently	 large	 sample,	we	use	 the	 sample	variance,	var(a),	 as	 a	 point	 estimate	 of	σ2.
This	process	is	known	as	statistical	inference.

Careful	 readers	will	have	noticed	 that	 in	 the	equation	 for	variance	given	 in	Equation
(3)[528],	we	divided	the	sum	of	the	differences	between	the	values	of	the	feature	a	and	a
not	by	n,	the	number	of	values	for	a	in	the	ABT,	but	by	n	−	1.	We	divide	by	n	−	1	so	that
the	 sample	variance	 is	an	unbiased	estimate	of	 the	population	variance.	We	say	 that	 the
estimate	is	unbiased	if	its	variance,	on	average,	equals	that	of	the	population	variance.	If
we	divided	by	n,	we	would	 have	 a	 biased	 estimator	 that	 on	 average	 underestimates	 the
variance.	It	is	in	small	differences	like	this	that	we	see	the	impact	of	working	on	samples
rather	than	populations.



A.4	Data	Visualization
When	 performing	 data	 exploration,	 data	 visualization	 can	 help	 enormously.	 In	 this
section	 we	 describe	 three	 important	 data	 visualization	 techniques	 that	 can	 be	 used	 to
visualize	the	values	in	a	single	feature:	the	bar	plot,	the	histogram,	and	the	box	plot.	For
the	examples	throughout	this	section,	we	will	use	the	dataset	in	Table	A.1[531],	which	lists
the	position	that	each	player	on	a	school	basketball	team	plays	at	and	the	average	training
expenses	they	accrue	each	month.



A.4.1	Bar	Plots

The	simplest	form	of	data	visualization	we	can	use	for	data	exploration	is	the	bar	plot.	A
bar	plot	includes	a	vertical	bar	for	each	level	of	a	categorical	feature.	The	height	of	each
bar	 indicates	 the	 frequency	 of	 the	 associated	 level	 (readers	 will	most	 likely	 already	 be
familiar	with	 the	 bar	 plot).	 In	 a	 slight	 variation	 of	 the	 bar	 plot,	we	 can	 show	densities
rather	 than	 frequencies	by	dividing	each	 frequency	by	 the	 total	number	of	values	 in	 the
dataset.	This	makes	bar	plots	comparable	across	datasets	or	samples	of	different	sizes	and
is	 referred	 to	 as	 a	 probability	 distribution,	 because	 the	 densities	 actually	 tell	 us	 the
probability	that	we	would	pick	each	level	if	we	were	to	select	one	instance	at	random	from
the	dataset.

Another	 simple	 variant	 of	 the	 basic	 bar	 plot	 orders	 the	 bars	 in	 descending	 order.6
Typically	 we	 use	 bar	 plots	 to	 discover	 the	 most	 frequent	 levels	 for	 a	 feature,	 and	 this
ordering	makes	 this	more	apparent.	Figure	A.5[535]	 shows	example	bar	plots	of	all	 three
types	for	the	POSITION	feature	from	the	dataset	in	Table	A.1[531].	We	can	see	that	guard	is
the	most	frequent	level.

Figure	A.5

Example	bar	plots	 for	 the	POSITION	 feature	 in	Table	A.1[531]:	 (a)	 frequency	 bar	 plot,	 (b)
density	bar	plot,	and	(c)	order	density	bar	plot.



A.4.2	Histograms

Figure	A.6[535]	 is	 a	 bar	plot	 of	 the	TRAINING	EXPENSES	 feature	 from	Table	A.1[531].	 The
figure	 illustrates	 why	 a	 bar	 plot	 is	 not	 an	 appropriate	 graphic	 to	 use	 to	 visualize	 a
continuous	feature:	as	 is	generally	 the	case	with	a	continuous	feature,	 there	are	as	many
distinct	values	as	there	are	instances	in	the	dataset,	and	therefore	there	are	as	many	bars	in
the	histogram	as	there	are	instances,	each	bar	having	a	height	of	1.0.

Figure	A.6

Bar	plot	of	the	continuous	TRAINING	EXPENSES	feature	from	Table	A.1[531].

The	way	to	solve	this	problem	is	to	visualize	intervals	rather	than	specific	values,	and
this	is	what	a	histogram	does.	Figure	A.7(a)[536]	 shows	 the	frequency	histogram	for	 the
TRAINING	EXPENSES	feature	when	we	define	ten	200-unit	intervals	spanning	the	range	that
this	feature	can	take	(the	frequencies	come	from	Table	A.4(a)[537]).	In	this	histogram	the
width	of	each	bar	indicates	the	extent	of	the	interval	the	bar	represents,	and	the	height	of
each	bar	 is	based	on	 the	number	of	 instances	 in	 the	dataset	 that	have	a	value	 inside	 the
interval.	This	type	of	histogram	is	often	referred	to	as	a	frequency	histogram.	Generally,
there	 is	not	 an	optimal	 set	of	 intervals	 for	 a	given	 feature.	For	 example,	we	could	have
used	 four	 500-unit	 intervals	 to	 generate	 the	 histogram	 instead—see	 Figure	 A.7(b)[536],
based	on	frequencies	from	Table	A.4(b)[537]—or,	indeed,	any	other	set	of	intervals.



Figure	A.7

(a)	 and	 (b)	 frequency	 histograms	 and	 (c)	 and	 (d)	 density	 histograms	 for	 the	 continuous
TRAINING	 EXPENSES	 feature	 from	 Table	 A.1[531],	 illustrating	 how	 using	 intervals
overcomes	the	problem	seen	in	Figure	A.6[535]	and	the	effect	of	varying	interval	sizes.

Table	A.4

The	density	calculation	for	the	TRAINING	EXPENSES	feature	from	Table	A.1[531]	using	(a)
ten	200-unit	intervals	and	(b)	four	500-unit	intervals.

(a)	200-unit	intervals

Interval Count Density Prob

[0,	200) 2 0.00050 0.1

[200,	400) 2 0.00050 0.1

[400,	600) 3 0.00075 0.15

[600,	800) 4 0.00100 0.2

[800,	1000) 3 0.00075 0.15

[1000,	1200) 1 0.00025 0.05



[1200,	1400) 2 0.00050 0.1

[1400,	1600) 1 0.00025 0.05

[1600,	1800) 1 0.00025 0.05

[1800,	2000) 1 0.00025 0.02

(b)	500-unit	intervals

Interval Count Density Prob

[0,	500) 6 0.0006 0.3

[500,	1000) 8 0.0008 0.4

[1000,	1500) 4 0.0004 0.2

[1500,	2000) 2 0.0002 0.1

We	can	convert	a	histogram	to	a	probability	distribution	by	dividing	the	count	for	each
interval	by	the	total	number	of	observations	in	the	dataset	multiplied	by	the	width	of	the
interval.	As	a	 result,	 the	 area	of	 each	bar	 (the	bar	height	 times	 the	bar	width)	gives	 the
probability	 for	 the	 feature	 taking	 a	 value	 in	 the	 interval	 represented	 by	 that	 bar.	 The
resulting	 histogram	 is	 called	 a	 density	 histogram	 because	 the	 height	 of	 each	 bar
represents	how	densely	the	instances	in	the	dataset	that	fall	within	the	interval	are	packed
into	the	area	of	the	bar.

Figure	A.7(c)[536]	 illustrates	 the	density	histogram	of	 the	TRAINING	EXPENSES	 feature
using	ten	200-unit	intervals,	and	Figure	A.7(d)[536]	illustrates	the	density	histogram	using
four	 500-unit	 intervals.	 Notice	 that	 the	 vertical	 axes	 in	 these	 histograms	 are	 labeled
density,	 rather	 than	 frequency.	 Table	 A.4(a)[537]	 shows	 the	 density	 and	 probability
calculations	for	 the	TRAINING	EXPENSES	 feature	when	we	use	 ten	200-unit	 intervals,	 and
Table	A.4(b)[537]	shows	the	same	calculations	when	we	use	four	500-unit	intervals.7	Recall
that	we	compute	 the	density	for	each	interval	by	dividing	the	number	of	observations	 in
the	 interval	by	 the	width	of	 the	 interval	multiplied	by	 the	 total	number	of	observations.
Notice	that	the	sum	of	the	probabilities	(the	bar	areas	in	the	histograms)	in	both	of	these
tables	 is	 1.0,	 which	 is	 what	 we	 would	 expect	 with	 a	 probability	 distribution—all
probability	distributions	sum	to	1.0.



A.4.3	Box	Plots

The	last	data	visualization	technique	we	will	discuss	for	visualizing	the	values	of	a	single
feature	is	the	box	plot.8	A	box	plot	 is	a	visual	 representation	of	 the	five	key	descriptive
statistics	 for	 a	 continuous	 feature:	 minimum,	 1st	 quartile,	 median,	 3rd	 quartile,	 and
maximum.	Figure	A.8(a)[538]	shows	the	structure	of	a	box	plot.	In	a	box	plot	the	vertical
axis	shows	the	range	of	values	that	a	feature	can	take.	The	extent	of	the	rectangular	box	in
the	middle	of	the	plot	is	determined	by	the	3rd	quartile	at	the	top	and	the	1st	quartile	at	the
bottom.	The	height	of	this	rectangle,	then,	also	shows	the	inter-quartile	range.	The	strong
black	line	across	the	middle	of	the	rectangle	shows	the	median.

Figure	A.8

(a)	The	structure	of	a	box	plot;	(b)	a	box	plot	for	the	TRAINING	EXPENSES	feature	from	the
basketball	team	dataset	in	Table	A.1[531].

The	whiskers	that	emerge	from	the	top	and	bottom	of	the	main	rectangle	in	a	box	plot
are	designed	to	show	the	range	of	the	data.	The	top	whisker	extends	to	whichever	is	lower
of	 the	 maximum	 value	 of	 the	 feature	 or	 the	 upper	 quartile	 plus	 1.5	 times	 the	 IQR.
Similarly,	the	bottom	whisker	extends	to	whichever	is	higher	of	the	minimum	value	of	the
feature	or	the	lower	quartile	minus	1.5	times	the	IQR.	Values	that	fall	outside	the	whiskers
are	referred	to	as	outliers	and	are	shown	as	small	circles.

Figure	A.8(b)[538]	shows	a	box	plot	for	the	TRAINING	EXPENSES	feature	from	the	dataset
in	 Table	A.1[531].	 From	 this	 plot	 we	 can	 get	 a	 concise,	 but	 detailed,	 description	 of	 the
feature	 and	 notice	 the	 inclusion	 of	 an	 outlier	 value.	 In	 comparison	with	 a	 box	 plot,	 an
individual	 histogram	 provides	 more	 information;	 for	 example,	 histograms	 show	 the
distribution	of	the	values	of	a	feature.	Box	plots,	however,	can	be	placed	side	by	side,	and
in	Section	3.5.1.2[80]	we	see	that	the	ability	to	place	multiple	box	plots	side	by	side	is	the
main	advantage	box	plots	have	over	histograms.

	

	



	

	

	

	

	

_______________

1	We	divide	by	n	−	1	(as	opposed	to	n)	because	we	are	calculating	the	variance	using	only
a	 sample,	 and	 on	 average,	 dividing	 by	 n	 −	 1	 gives	 a	 better	 estimate	 of	 the	 population
variance	than	using	n.

2	Remember,	we	 refer	 to	each	value	 that	a	particular	categorical	 feature	can	 take	as	 the
levels	of	the	categorical	feature.

3	 This	 data	 is	 taken	 from	 the	 collection	 at	 Real	 Clear	 Politics:
www.realclearpolitics.com/epolls/2012/president/us/general_election_romney_vs_obama-
1171.html.

4	Likely	voters	are	the	subset	of	registered	voters	who	have	been	identified	as	most	likely
to	actually	vote	in	an	election.

5	This	size	of	margin	of	error	is	common	for	these	types	of	election	polls.

6	These	charts	are	often	referred	to	as	Pareto	charts,	especially	when	they	also	include	a
line	indicating	the	cumulative	total	frequency	or	density.

7	When	defining	 intervals,	 a	 square	bracket,	 [	 or	 ],	 indicates	 that	 the	boundary	value	 is
included	in	the	interval,	and	a	curved	bracket,	(or),	indicates	that	it	 is	excluded	from	the
interval.

8	Box	plots	are	one	of	the	collection	of	visual	data	exploration	techniques	first	presented
in	Tukey’s	influential	1977	book	Exploratory	Data	Analysis	(Tukey,	1977).

http://www.realclearpolitics.com/epolls/2012/president/us/general_election_romney_vs_obama-1171.html




B	Introduction	to	Probability	for	Machine	Learning

In	 this	 appendix	we	 introduce	 the	 fundamental	 concepts	 of	probability	 theory	 that	 are
used	in	probability-based	machine	learning	algorithms.	Specifically,	we	present	the	basics
of	 calculating	 probabilities	 based	 on	 relative	 frequencies,	 calculating	 conditional
probabilities,	the	probability	product	rule,	the	probability	chain	rule,	and	the	Theorem
of	Total	Probability.



B.1	Probability	Basics
Probability	 is	 the	 branch	 of	 mathematics	 that	 deals	 with	 measuring	 the	 likelihood	 (or
uncertainty)	 around	 events.	 The	 roots	 of	 probability	 are	 in	 gambling,	 where,
understandably,	 gamblers	 wanted	 to	 be	 able	 to	 predict	 future	 events	 based	 on	 their
likelihood.	There	are	two	ways	of	computing	the	likelihood	of	a	future	event:	(1)	use	the
relative	frequency	of	the	event	in	the	past,	or	(2)	use	a	subjective	estimate	(ideally	from
an	 expert!).	 In	 the	 predictive	 analytics	 context,	 the	 standard	 approach	 is	 to	 use	 relative
frequency,	and	we	focus	on	this	approach	in	this	chapter.

Probability	 has	 a	 longer	 history,	 and	 broader	 applicability,	 than	 predictive	 analytics.
Consequently,	 the	 standard	 language	 of	 probability	 has	 developed	 some	 esoteric
terminology,	 including	 terms	 such	 as	 sample	 space,	 experiment,	outcome,	 event,	 and
random	variable.	So	we	will	begin	by	 first	 explaining	 this	 terminology	and	aligning	 it
with	the	more	familiar	terminology	of	predictive	analytics.

In	probability	a	domain	of	 interest	 is	represented	by	a	set	of	random	variables.	For
example,	if	we	want	to	model	the	behavior	of	a	die	using	probability,	we	would	begin	by
creating	a	random	variable,	let	us	call	it	X,	that	has	a	domain	equal	to	the	set	of	possible
outcomes	when	we	roll	the	die,	namely	the	set	 .	Extending	this	example,	if
we	wanted	to	study	the	behavior	of	two	dice,	we	would	create	two	random	variables,	we
might	 call	 them	 Dice1	 and	 Dice2,	 each	 having	 the	 domain	 .	 In	 this
extended	 context,	 an	 experiment	 involves	 rolling	 the	 two	 dice,	 and	 the	 sample	 space
defines	the	set	of	all	possible	outcomes	for	this	experiment	(see	Figure	B.1[542]).	An	event
is	 then	 an	 experiment	 whose	 outcome	 fixes	 the	 values	 of	 the	 random	 variables.	 For
example,	an	event	in	this	domain	would	be	represented	as	Dice1	=	 ,	Dice2	=	 .

Table	B.1[542]	lists	a	small	dataset	of	instances	from	the	sample	space	shown	in	Figure
B.1[542].	We	will	 use	 this	 example	 dataset	 to	 illustrate	 how	 to	map	 the	 terminology	 of
probability	into	the	language	of	predictive	analytics:

Figure	B.1

The	sample	space	for	the	domain	of	two	dice.

Table	B.1

A	dataset	of	instances	from	the	sample	space	in	Figure	B.1[542].



ID DICE1 DICE2

1

2

3

4

5

The	set	of	random	variables	in	a	domain	maps	to	the	set	of	features	in	a	dataset	(both
descriptive	and	target).	DICE1	and	DICE2	are	the	equivalent	of	random	variables.
The	sample	space	for	a	domain	is	the	set	of	all	possible	combinations	of	assignments
of	values	to	features.
An	experiment	whose	outcome	has	been	already	been	recorded	is	a	row	in	the	dataset.
Each	row	in	Table	B.1[542]	records	the	outcome	of	a	previous	experiment.
An	experiment	whose	outcome	we	do	not	yet	know	but	would	 like	 to	predict	 is	 the
prediction	task	for	which	we	are	building	a	model.
An	event	 is	 any	 subset	 of	 an	 experiment.	An	 event	may	 describe	 an	 assignment	 of
values	to	all	the	features	in	the	domain	(e.g.,	a	full	row	in	the	dataset)	or	an	assignment
to	one	or	more	features	in	the	domain.	DICE1	=	 	is	an	example	of	an	event.	DICE1	=	
,	DICE2	=	 	is	also	an	event.

So	that	we	are	consistent	with	the	terminology	throughout	this	book,	in	the	rest	of	this
chapter,	 we	 use	 the	 predictive	 analytics	 terms	 (feature,	 dataset,	 prediction,	 and	 event)
rather	than	the	traditional	terms	from	probability.

A	 feature	 can	 take	 one	 or	 more	 values	 from	 a	 domain,	 and	 we	 can	 find	 out	 the
likelihood	of	 a	 feature	 taking	 any	particular	 value	using	 a	probability	 function,	P().	 A
probability	function	is	a	function	that	takes	an	event	(an	assignment	of	values	to	features)
as	a	parameter	and	returns	 the	 likelihood	of	 that	event.	For	example,	P(DICE1	=	 )	will
return	the	likelihood	of	the	event	DICE1	=	 ,	and	P(DICE1	=	 ,	DICE2	=	 )	will	return	the
likelihood	of	the	event	where	DICE1	=	 	and	DICE2	=	 .	If	we	are	defining	the	probability
function	 for	 a	 categorical	 feature,	 then	 the	 function	 is	 known	 as	 a	 probability	 mass
function	because	it	can	be	understood	as	returning	a	discrete	probability	mass	 for	each
level	 in	 the	domain	of	 the	 feature.	The	probability	mass	 is	 simply	 the	probability	 of	 an
event.	 Conversely,	 if	 the	 feature	 we	 are	 dealing	 with	 is	 a	 continuous	 feature,	 the
probability	function	is	known	as	a	probability	density	function.	For	this	introduction,	we
focus	on	categorical	features	and	probability	mass	functions.

Probability	mass	functions	have	two	properties:	(1)	they	always	return	a	value	between
0.0	 and	1.0;	 and	 (2)	 the	 sum	of	 the	probabilities	 over	 the	 set	 of	 events	 covering	 all	 the
possible	assignments	of	values	 to	 features	must	equal	1.0.	Formally	 these	properties	are
defined	as	follows:



where	levels(f)	returns	the	set	of	levels	in	the	domain	of	the	feature	f.

Probability	functions	are	the	basic	building	blocks	of	probability	theory,	and	they	are
very	 easy	 to	 create	 from	 a	 dataset.	 The	 value	 returned	 by	 a	 probability	 function	 for	 an
event	is	simply	the	relative	frequency	of	that	event	in	the	dataset.	The	relative	frequency
of	an	event	is	calculated	as	how	often	the	event	happened	divided	by	how	often	could	it
have	happened.	For	example,	the	relative	frequency	of	the	event	DICE1	=	 	is	simply	the
count	of	all	the	rows	in	the	dataset	where	DICE1	has	a	value	of	 	divided	by	the	number	of
rows	in	the	dataset.	Based	on	Table	B.1[542],	the	probability	of	the	event	DICE1	=	 	is1

So	 far	 we	 have	 focused	 on	 calculating	 the	 probability	 of	 an	 individual	 event.	 In	 a
predictive	analytics	task,	we	will	often	be	interested	in	calculating	the	probability	of	more
than	one	event.	For	example,	we	might	want	to	know	the	probability	of	the	target	feature
taking	a	particular	value	and	one	of	the	descriptive	features	taking	a	particular	value	at	the
same	time.	Technically,	if	an	event	involves	more	than	one	feature,	it	can	be	considered	to
be	composed	of	several	simple	events.	In	these	cases	the	probability	calculated	is	known
as	a	joint	probability.	The	probability	of	a	joint	event	is	simply	the	relative	frequency	of
the	joint	event	within	the	dataset.	In	terms	of	rows	in	a	dataset,	this	computation	is	simply
the	number	of	rows	where	the	set	of	assignments	listed	in	the	joint	event	holds	divided	by
the	 total	number	of	 rows	 in	 the	dataset.	For	example,	 the	probability	of	 the	 joint	event2
DICE1	=	 ,	DICE2	=	 	would	be	calculated	as

The	type	of	probabilities	we	have	calculated	so	far	are	known	as	prior	probabilities	or
unconditional	probabilities.	Often,	however,	we	want	to	know	the	probability	of	an	event
in	the	context	where	one	or	more	other	events	are	known	to	have	happened.	This	type	of
probability,	where	we	 take	one	or	more	events	 to	already	hold,	 is	known	as	a	posterior
probability,	because	it	is	calculated	after	other	events	have	happened.	It	is	also	commonly
known	 as	 a	 conditional	 probability,	 because	 the	 probability	 calculated	 is	 valid
conditional	 on	 the	 given	 events	 (or	 evidence).When	 we	 want	 to	 express	 this	 type	 of
probability,	formally	we	use	a	vertical	bar,	|,	to	separate	the	events	we	want	the	probability
for	 (listed	 on	 the	 left	 hand	 side	 of	 the	 bar)	 from	 the	 events	 that	we	know	have	 already
happened.	The	vertical	bar	symbol	can	be	read	as	given	that.	So	the	probability	of	DICE1	=
given	that	DICE2	=	 	would	be	written	as

The	conditional	probability	for	an	event	given	that	we	know	another	event	is	true	is
calculated	by	dividing	the	number	of	rows	in	the	dataset	where	both	events	are	true	by	the
number	 of	 rows	 in	 the	 dataset	 where	 just	 the	 given	 event	 is	 true.	 For	 example,	 the



conditional	probability	for	the	event	DICE1	=	 given	that	DICE2	=	 	would	be	calculated
as

Table	B.2

A	simple	dataset	for	MENINGITIS	with	three	common	symptoms	of	the	disease	listed	as
descriptive	features:	HEADACHE,	FEVER,	and	VOMITING.

ID HEADACHE FEVER VOMITING MENINGITIS

11 true true false false

37 false true false false

42 true false true false

49 true false true false

54 false true false true

57 true false true false

73 true false true false

75 true false true true

89 false true false false

92 true false true true

We	now	understand	the	theory	of	how	to	calculate	a	simple	unconditional	probability,	a
joint	 probability,	 and	 a	 conditional	 probability	 using	 a	 dataset.	 Now	 is	 a	 good	 point	 to
ground	this	knowledge	in	a	more	interesting	example	focused	on	predictive	data	analytics.
We	will	use	the	dataset	in	Table	B.2[545]	for	this.3	The	target	being	predicted	in	this	dataset
is	whether	or	not	a	patient	 is	 suffering	 from	meningitis,	 and	 the	descriptive	 features	are
common	symptoms	associated	with	meningitis.

A	 quick	 comment	 on	 our	 notation.	 Throughout	 this	 chapter,	 named	 features	will	 be
denoted	 by	 the	 uppercase	 initial	 letters	 of	 their	 names—for	 example,	 a	 feature	 named
MENINGITIS	will	be	denoted	by	M.	Also,	where	a	named	feature	is	binary,	we	will	use	the
lowercase	initial	letter	of	the	feature	name	to	denote	the	event	where	the	feature	is	true	and
the	lowercase	initial	letter	preceded	by	the	¬	symbol	to	denote	the	event	where	it	is	false.
So,	m	will	 denote	 the	 event	MENINGITIS	 =	 true	 and	¬m	will	 denote	MENINGITIS	 =	 false.
Given	the	dataset	in	Table	B.2[545],	the	probability	of	a	patient	having	a	headache	is



the	probability	of	a	patient	having	a	headache	and	meningitis	is

and	the	probability	of	a	patient	having	meningitis	given	that	we	know	that	the	patient	has	a
headache	is



B.2	Probability	Distributions	and	Summing	Out
Sometimes	it	is	useful	to	talk	about	the	probabilities	for	all	the	possible	assignments	to	a
feature.	 To	 do	 this	 we	 use	 the	 concept	 of	 a	 probability	 distribution.	 A	 probability
distribution	is	a	data	structure	that	describes	the	probability	of	a	feature	taking	a	value	for
all	 the	possible	values	 the	feature	can	take.	The	probability	distribution	for	a	categorical
feature	 is	 a	 vector	 that	 lists	 the	 probabilities	 associated	 with	 each	 of	 the	 values	 in	 the
domain	 of	 the	 feature.	 A	 vector	 is	 an	 ordered	 list,	 so	 the	 mechanism	 for	 matching	 a
probability	 in	 the	 vector	 with	 a	 particular	 value	 in	 the	 domain	 is	 just	 to	 look	 up	 the
position	 of	 the	 probability	 within	 the	 vector.	 We	 use	 bold	 notation	 P()	 to	 distinguish
between	 a	 probability	 distribution	 and	 a	 probability	 function	 P().	 For	 example,	 the
probability	 distribution	 for	 the	 binary	 feature	 MENINGITIS	 from	 Table	 B.2[545],	 with	 a
probability	of	0.3	of	being	true	and	using	the	convention	of	the	first	element	in	the	vector
being	the	probability	for	a	true	value,	would	be	written	as	P(M)	=	〈0.3,	0.7〉.

The	concept	of	a	probability	distribution	also	applies	to	joint	probabilities,	which	gives
us	 the	 concept	 of	 a	 joint	 probability	 distribution.	 A	 joint	 probability	 distribution	 is	 a
multi-dimensional	matrix	where	each	cell	in	the	matrix	lists	the	probability	for	one	of	the
events	in	the	sample	space	defined	by	the	combination	of	feature	values.	The	dimensions
of	 the	matrix	 are	dependent	on	 the	number	of	 features	 and	 the	number	of	 values	 in	 the
domains	of	the	features.	The	joint	probability	distribution	for	the	four	binary	features	from
Table	B.2[545]	(HEADACHE,	FEVER,	VOMITING,	and	MENINGITIS)	would	be	written	as

Remember	 that	 the	sum	of	all	 the	elements	 in	a	probability	distribution	must	be	1.0.
Consequently,	the	sum	of	all	the	cells	in	a	joint	probability	distribution	must	be	1.0.	A	full
joint	 probability	 distribution	 is	 simply	 a	 joint	 probability	 distribution	 over	 all	 the
features	 in	 a	 domain.	 Given	 a	 full	 joint	 probability	 distribution	 we	 can	 compute	 the
probability	of	any	event	in	a	domain	by	summing	over	the	cells	in	the	distribution	where
that	event	is	true.	For	example,	imagine	we	want	to	compute	the	probability	of	P(h)	in	the
domain	specified	by	the	joint	probability	distribution	P(H,	F,	V,	M).	To	do	this	we	simply
sum	the	values	in	the	cells	containing	h,	in	other	words,	the	cells	in	the	first	column	of	the
distribution.	 Calculating	 probabilities	 in	 this	 way	 is	 known	 as	 summing	 out	 or
marginalization.4

We	 can	 also	 use	 summing	 out	 to	 compute	 conditional	 probabilities	 from	 a	 joint
probability	 distribution.	For	 example,	 imagine	we	wish	 to	 calculate	 the	probability	 of	h
given	 f	 when	 we	 don’t	 care	 what	 values	 V	 or	M	 take.	 In	 this	 context,	 V	 and	M	 are



examples	of	hidden	features.	A	hidden	feature	is	a	feature	whose	value	is	not	specified	as
part	 of	 the	 evidence.	We	 can	 calculate	P(h,	V	 =	 ?,	M	 =	 ?	 |	 f	 )	 from	P(H,	F,	V,	M)	 by
summing	the	values	in	all	the	cells	where	h	and	f	are	the	case	(the	top	four	cells	in	the	first
column).

The	process	of	summing	out	is	a	key	concept	in	probability-based	prediction.	In	order
to	 make	 a	 prediction,	 a	 model	 must	 compute	 the	 probability	 for	 a	 target	 event	 in	 the
context	where	some	other	events	are	known	(the	evidence)	and	where	there	are	potentially
one	 or	more	 hidden	 features.	As	we	 have	 seen,	 using	 a	 joint	 probability	 distribution,	 a
model	can	carry	out	this	calculation	by	simply	conditioning	on	the	evidence	features	and
summing	out	the	hidden	features.	Unfortunately,	the	size	of	a	joint	probability	distribution
grows	exponentially	as	the	number	of	features	and	the	number	of	values	in	the	domains	of
the	 features	 grow.	 Consequently,	 they	 are	 difficult	 to	 generate	 because	 of	 the	 curse	 of
dimensionality:	computing	the	probability	for	each	cell	in	a	joint	probability	table	requires
a	 set	of	 instances	 and,	because	 the	number	of	 cells	grows	exponentially	 as	 features	 and
feature	 values	 are	 added,	 so	 does	 the	 size	 of	 the	 dataset	 required	 to	 generate	 the	 joint
probability	 distribution.	As	 a	 result,	 for	 any	 domain	 of	 reasonable	 complexity,	 it	 is	 not
tractable	 to	 define	 the	 full	 joint	 probability	 distribution,	 and	 therefore	 probability-based
prediction	 models	 build	 more	 compact	 representations	 of	 full	 joint	 probability
distributions	instead.



B.3	Some	Useful	Probability	Rules
Several	 important	 rules	 in	 probability	 theory	 allow	 us	 to	 compute	 new	 probabilities	 in
terms	of	previously	computed	probabilities.	Note	 that	 throughout	 the	rest	of	 the	chapter,
we	use	uppercase	letters	to	denote	generic	events	where	an	unspecified	feature	(or	set	of
features)	is	assigned	a	value	(or	set	of	values).	Typically	we	will	use	letters	from	the	end
of	the	alphabet	(e.g.,	X,	Y,	Z)	for	this	purpose.	Also,	we	will	use	subscripts	on	uppercase
letters	 to	 iterate	over	events.	So,	Σi	P(Xi)	 should	be	 interpreted	as	summing	over	all	 the
possible	combinations	of	value	assignments	to	the	features	in	X.

The	 first	 rule	 we	 will	 introduce	 defines	 conditional	 probability	 in	 terms	 of	 joint
probability:

We	 have	 already	 calculated	 the	 conditional	 probability	 of	 the	 event	m	 given	 h	 directly
from	the	dataset	in	Table	B.2[545]	as	P(m	|	h)	=	0.2857	(see	Equation	(3)[546]).	We	will	now
recalculate	this	probability	using	our	rule-based	definition	of	conditional	probability.	From
our	 previous	 calculations,	 we	 already	 know	 that	P(h)	 =	 0.7	 (see	 Equation	 (1)[545])	 and
P(m,	h)	=	0.2	(see	Equation	(2)[546]).	So	our	calculation	for	P(m	|	h)	is

Using	 Equation	 (4)[548],	 we	 can	 provide	 a	 second	 definition	 for	 the	 probability	 of	 a
joint	event,	which	is	known	as	the	product	rule:

We	 can	 demonstrate	 the	 product	 rule	 by	 recalculating	 the	 probability	 P(m,	 h)	 using
previously	computed	probabilities:

P(m,	h)	=	P(m	|	h)	×	P(h)	=	0.2857	×	0.7	=	0.2

Again,	 the	 result	 of	 the	 calculation	matches	 the	 probability	 computed	 directly	 from	 the
dataset	(see	Equation	(2)[546]).

There	 are	 a	 few	 points	 worth	 noting	 about	 the	 product	 rule.	 First,	 it	 defines	 the
probability	of	a	joint	event	P(X,	Y)	in	terms	of	a	conditional	(or	posterior)	probability	P(X	|
Y)	 multiplied	 by	 an	 unconditional	 (or	 prior)	 probability	P(Y).	 Second,	 the	 order	 of	 the
events	in	the	product	rule	is	not	important,	and	we	can	condition	the	calculation	on	any	of
the	events	listed	in	the	and	(in	logic,	the	and	operation	is	symmetric):

P(X,	Y)	=	P(X	|	Y)P(Y)	=	P(Y	|	X)P(X)

We	can	also	extend	 the	product	 rule	 to	define	 the	 joint	probability	of	more	 than	 two
events.	When	we	generalize	the	rule	in	this	way,	it	is	known	as	the	probability	chain	rule:



As	 with	 the	 simple	 two	 event	 version,	 the	 order	 of	 events	 in	 the	 chain	 rule	 is	 not
important.

Finally,	 the	Theorem	of	Total	Probability	 defines	 the	 unconditional	 probability	 for
any	event	X	as

where	each	Yi	is	one	of	a	set	of	events	Y1	to	Yk	 that	cover	all	the	possible	outcomes	in	a
domain	 and	 have	 no	 overlap	 between	 them.	 Because	 an	 event	 defines	 a	 partition	 of	 a
dataset	(the	rows	from	the	dataset	that	match	the	event),	then	each	Yi	defines	a	set	of	rows
from	a	dataset,	and	the	set	of	data	partitions	defined	by	Y1	to	Yk	must	cover	the	full	dataset
and	 not	 overlap	 with	 each	 other.	 The	 Theorem	 of	 Total	 Probability	 is	 a	 formal
specification	of	the	summing	out	process	we	introduced	earlier	in	Section	B.2[546].

To	 illustrate	 how	 the	 Theorem	 of	 Total	 Probability	 can	 be	 used	 to	 calculate
probabilities,	we	will	compute	P(h)	by	summing	out	M	(note:	earlier,	in	Equation	(1)[545],
we	computed	P(h)	=	0.7):

We	can,	if	we	wish,	sum	out	more	than	one	feature.	For	example,	we	could	compute	P(h)
by	summing	out	all	the	other	features	in	the	dataset:

We	will,	however,	leave	this	calculation	to	the	interested	reader	(the	result	should	still	be
0.7).



B.4	Summary
Probability	theory	underpins	a	great	deal	of	machine	learning.	This	section	has	provided
an	overview	of	the	aspects	of	probability	that	readers	need	to	understand	in	order	to	follow
the	other	sections	in	this	book.	One	thing	to	note	is	that	many	of	the	rules	and	techniques
we	 presented	 were	 different	 ways	 of	 achieving	 the	 same	 thing—for	 example,	 we	 can
calculate	 P(h)	 by	 simple	 counting,	 by	 summing	 out	 from	 a	 full	 joint	 probability
distribution,	or	by	using	the	Theorem	of	Total	Probability.	This	is	an	aspect	of	probability
theory	 with	 which	 beginners	 sometimes	 struggle.	 The	 important	 thing	 to	 remember,
though,	is	that	the	different	approaches	exist	because	in	different	scenarios	it	will	be	often
be	easier	to	apply	one	approach	over	the	others.	Just	like	the	proverbial	cat,	there	is	more
than	one	way	to	skin	a	probability	problem!

	

	

	

	

	

	

	

_______________

1	In	the	notation	used	in	this	book,	d1	refers	to	the	instance	in	a	dataset	with	an	ID	of	1
and	so	on.

2	When	listing	a	joint	event,	we	use	a	comma,	to	denote	logical	and.

3	This	data	has	been	artificially	generated	for	this	example.

4	Summing	out	 is	 sometimes	 referred	 to	as	marginalization	because	statisticians	used	 to
carry	 out	 these	 calculations	 in	 the	margins	 of	 the	 probability	 tables	 they	were	working
with!





C	Differentiation	Techniques	for	Machine	Learning

In	 this	 appendix	 we	 present	 the	 basic	 differentiation	 techniques	 that	 are	 required	 to
understand	 how	 linear	 regression	 can	 be	 used	 to	 build	 predictive	 analytics	 models.	 In
particular	 we	 explain	 what	 a	 derivative	 is,	 how	 to	 calculate	 derivatives	 for	 continuous
functions,	the	chain	rule	for	differentiation,	and	what	a	partial	derivative	is.

Figure	C.1

(a)	The	speed	of	a	car	during	a	journey	along	a	minor	road	before	joining	a	highway	and
finally	coming	to	a	sudden	halt;	(b)	the	acceleration,	the	derivative	of	speed	with	respect
to	time,	for	this	journey.

To	begin,	 imagine	a	car	 journey	where	we	start	out	driving	on	a	minor	road	at	about
30mph	and	then	move	onto	a	highway,	where	we	drive	at	about	80mph	before	noticing	an
accident	and	braking	suddenly.	Figure	C.1(a)[551]	shows	a	profile	of	the	speed	during	this
journey	 measured	 at	 different	 points	 in	 time.	 Figure	C.1(b)[551]	 shows	 a	 profile	 of	 the
acceleration	 during	 this	 journey.	We	 can	 see	 that	when	 the	 car	 is	 driving	 at	 a	 constant
speed,	on	the	minor	road	or	the	highway,	acceleration	is	zero	as	the	speed	is	not	changing.
In	contrast,	acceleration	has	modest	positive	values	when	we	are	 taking	off	 initially	and
slightly	 larger	 positive	 values	 when	 we	 increase	 speed	 on	 reaching	 the	 highway.	 The
sudden	braking	at	the	end	of	the	journey	results	in	large	negative	values	that	slowly	taper
off	to	match	the	speed	profile	in	Figure	C.1(a)[551].

Acceleration	is	a	measure	of	the	rate	of	change	of	speed	over	time.	We	can	say	more
formally	 that	 acceleration	 is,	 in	 fact,	 the	 derivative	 of	 speed	 with	 respect	 to	 time.
Differentiation	 is	 the	 set	 of	 techniques	 from	 calculus	 (the	 branch	 of	mathematics	 that
deals	with	how	things	change)	that	allows	us	to	calculate	derivatives.	In	an	example	like
the	car	journey	just	described,	where	we	have	a	set	of	discrete	measurements,	calculating
the	derivative	is	simply	a	matter	of	determining	the	difference	between	subsequent	pairs	of
measurements.	For	example,	the	derivative	of	speed	with	respect	to	time	at	time	index	21
is	the	speed	at	time	index	21	minus	the	speed	at	time	index	20,	which	is	44.28	−	51.42	=
7.14.	These	values	are	marked	in	Figure	C.1[551].	All	the	values	of	acceleration	have	been
calculated	in	this	way.



C.1	Derivatives	of	Continuous	Functions
While	it	is	interesting	to	see	how	derivatives	can	be	calculated	for	discrete	examples,	it	is
much	more	common	that	we	need	to	calculate	the	derivative	of	a	continuous	function.	A
continuous	 function,	 f(x),	 generates	 an	 output	 for	 every	 value	 of	 a	 variable	 x	 based	 on
some	expression	involving	x.	For	example:

f(x)	=	2x	+	3

f(x)	=	x2

f(x)	=	3x3	+	2x2	−	x	−	2

are	continuous	functions	with	a	single	variable	x.	Graphs	of	these	functions	are	shown	in
Figure	C.2[553].	Each	graph	also	 shows	 the	derivative	of	 the	 function.	We	will	 return	 to
these	shortly.

The	 function	 f(x)	 =	 2x	 +	 3	 is	 known	 as	 a	 linear	 function	 because	 the	 output	 is	 a
combination	of	only	additions	and	multiplications1	 involving	x.	The	other	 two	 functions
are	known	as	polynomial	functions	as	they	include	addition,	multiplication,	and	raising	to
exponents.	Of	those,	f(x)	=	x2	is	an	example	of	a	second	order	polynomial	function,	also
known	as	a	quadratic	function,	as	its	highest	exponent	is	2,	and	f(x)	=	3x3	+	2x2	−	x	−	2	is
a	 third	 order	 polynomial	 function,	 also	 known	 as	 a	 cubic	 function,	 as	 its	 highest
exponent	is	3.

Looking	first	at	Figure	C.2(a)[553],	the	function	here	is	very	simple,	f(x)	=	2x	+	3,	which
results	 in	 a	 straight	 diagonal	 line.	 A	 straight	 diagonal	 line	 gives	 us	 a	 constant	 rate	 of
change	(in	this	case	an	increase	of	2	in	the	value	of	the	function	for	every	change	of	1	in
x),	so	the	derivative	of	this	function	with	respect	to	x	is	just	a	constant.	This	is	represented
by	the	horizontal	dashed	line.

We	can	intuitively	see	from	Figure	C.2(b)[553]	for	f(x)	=	x2	that	the	rate	of	change	of	the
value	of	 this	 function	 is	 likely	 to	be	high	at	 the	steep	edges	of	 the	curve	and	 low	at	 the
bottom	(imagine	a	ball	rolling	around	inside	this	shape!).	This	intuition	is	mirrored	in	the
derivative	of	 the	 function	with	 respect	 to	x.	We	can	 see	 that	 at	 the	 left	hand	 side	of	 the
graph	(for	large	negative	values	of	x),	the	rate	of	change	has	a	high	negative	value,	while
at	the	right	hand	side	of	the	graph	(for	large	positive	values	of	x),	the	rate	of	change	has	a
large	 positive	 value.	 In	 the	middle	 of	 the	 graph,	 at	 the	 bottom	of	 the	 curve,	 the	 rate	 of
change	 is	 zero.	 It	 should	be	no	 surprise	 to	 learn	 that	 the	derivative	of	 the	 function	with
respect	 to	x	 also	 gives	 us	 the	 slope	of	 the	 function	 at	 that	 value	 of	x.	The	 shape	of	 the
derivative	in	Figure	C.2(c)[553]	can	be	understood	similarly.



Figure	C.2

Examples	of	continuous	functions	(shown	as	solid	lines)	and	their	derivatives	(shown	as
dashed	lines).

To	 actually	 calculate	 the	 derivative,	 referred	 to	 as	 ,	 of	 a	 simple	 continuous
function,	f(x),	we	use	a	small	number	of	differentiation	rules:

1. (where	α	is	any	constant)

2.

3. (where	a	and	b	are	expressions	that	may	or	may	not	contain
x)

4. (where	α	is	any	constant	and	c	is	an	expression	containing
x)

Applying	these	rules	to	the	first	of	our	previous	examples,	f(x)	=	2x	+	3	(Figure	C.2(a)
[553]),	we	first	apply	Rule	3	to	split	this	function	into	two	parts,	2x

and	3,	and	then	apply	differentiation	rules	to	each.	By	Rule	2	we	can	differentiate	2x	to
2	(remember	that	x	 is	really	x1).	The	3	 is	a	constant,	so	by	Rule	1	differentiates	 to	zero.
The	derivative	of	the	function,	then,	is	 .

For	the	last	function,	f(x)	=	3x3	+	2x2	−	x	−	2	(Figure	C.2(c)[553]),	we	first	apply	Rule	3
to	divide	this	into	four	parts:	3x3,	2x2,	x,	and	2.	Applying	Rule	2	to	each	of	the	first	three



parts	gives	9x2,	4x,	and	−1.	The	final	part,	2,	is	a	constant	and	so	differentiates	to	zero.	The
derivative	of	this	function	then	is	 .

We	can	see	 from	 these	examples	 that	calculating	derivatives	of	 simple	 functions	 is	a
matter	 of,	 fairly	 mechanically,	 applying	 these	 four	 simple	 rules.	 Calculating	 the
derivatives	 of	 the	 other	 two	 functions	 are	 left	 as	 exercises	 for	 the	 reader.	 Some	 of	 the
functions	that	we	will	encounter	later	on	in	this	chapter	will	be	a	little	more	complex,	and
we	need	two	more	differentiation	rules	to	handle	these.



C.2	The	Chain	Rule
The	function	f(x)	=	(x2	+	1)2	(shown	in	Figure	C.2(d)[553])	cannot	be	differentiated	using
the	rules	just	described	because	it	is	a	composite	function—it	is	a	function	of	a	function.
We	can	rewrite	f(x)	as	f(x)	=	(g	(x))2	where	g(x)	=	x2	+	1.	The	differentiation	chain	rule
allows	us	to	differentiate	functions	of	this	kind.2	The	chain	rule	is

The	 differentiation	 is	 performed	 in	 two	 steps.	 First,	 treating	 g(x)	 as	 a	 unit,	 we
differentiate	f	(g(x))	with	respect	to	g(x),	and	then	we	differentiate	g(x)	with	respect	to	x,	in
both	 cases	 using	 the	 differentiation	 rules	 from	 the	 previous	 section.	 The	 derivative	 of	 f
(g(x))	with	respect	to	x	is	the	product	of	these	two	pieces.

Applying	this	to	the	example	f(x)	=	(x2	+	1)2	we	get

Figure	 C.2(d)[553]	 shows	 this	 example	 function	 and	 its	 derivative	 calculated	 using	 the
chain	rule.



C.3	Partial	Derivatives
Some	functions	are	not	defined	in	terms	of	just	one	variable.	For	example,	f(x,	y)	=	x2	−	y2
+	2x	+	4y	−	xy	+	2	 is	a	 function	defined	 in	 terms	of	 two	variables,	x	and	y.	Rather	 than
defining	a	curve	 (as	was	 the	case	 for	all	 the	previous	examples),	 this	 function	defines	a
surface,	as	shown	in	Figure	C.3(a)[556].	Using	partial	derivatives	offers	us	an	easy	way	to
calculate	the	derivative	of	a	function	like	this.	A	partial	derivative	(denoted	by	the	symbol
∂)	of	 a	 function	of	more	 than	one	variable	 is	 its	derivative	with	 respect	 to	one	of	 those
variables	with	the	other	variables	held	constant.

For	 the	 example	 function	 f	 (x,	y)	=	x2	 −	 y2	 +	 2x	 +	 4y	 −	 xy	 +	 2,	we	 get	 two	 partial
derivatives:

where	the	terms	y2	and	4y	are	treated	as	constants	as	they	do	not	include	x,	and

where	the	terms	x2	and	2x	are	treated	as	constants	as	they	do	not	include	y.	Figures	C.3(b)
[556]	and	C.3(c)[556]	show	these	partial	derivatives.



Figure	C.3

(a)	 A	 continuous	 function	 in	 two	 variables,	 x	 and	 y;	 (b)	 the	 partial	 derivative	 of	 this
function	with	respect	to	x;	and	(c)	the	partial	derivative	of	this	function	with	respect	to	y.

	

	

	

	

	

	

	

_______________

1	Note	that	subtraction	is	viewed	as	addition	of	negative	numbers,	and	division	is	seen	as
multiplication	by	reciprocals,	so	both	are	also	allowed.

2	This	is	not	to	be	confused	with	the	probability	chain	rule	discussed	in	Section	B.3[548].



These	are	two	completely	different	operations.
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the	normalized	SALARY	and	AGE	feature	space	based	on	the	normalized	data	in	Table
5.7[208].	The	instances	are	labeled	with	their	IDs;	triangles	represent	instances	with	the
no	target	level;	and	crosses	represent	instances	with	the	yes	target	level.	The	location	of
the	query	SALARY	=	56,000,	AGE	=	35	is	indicated	by	the	?.



5.13	The	AGE	and	RATING	feature	space	for	the	whiskey	dataset.	The	location	of	the	query
instance	is	indicated	by	the	?	symbol.	The	circle	plotted	with	a	dashed	line	demarcates
the	border	of	the	neighborhood	around	the	query	when	k	=	3.	The	three	nearest
neighbors	to	the	query	are	labeled	with	their	ID	values.

5.14	(a)	The	θ	represents	the	inner	angle	between	the	vector	emanating	from	the	origin	to
instance	d1	and	the	vector	emanating	from	the	origin	to	instance	d2;	(b)	shows	d1	and
d2	normalized	to	the	unit	circle.

5.15	Scatter	plots	of	three	bivariate	datasets	with	the	same	center	point	A	and	two	queries
B	and	C	both	equidistant	from	A;	(a)	a	dataset	uniformly	spread	around	the	center
point;	(b)	a	dataset	with	negative	covariance;	and	(c)	a	dataset	with	positive	covariance.

5.16	The	coordinate	systems	defined	by	the	Mahalanobis	distance	using	the	co-variance
matrix	for	the	dataset	in	Figure	5.15(c)[221]	using	three	different	origins:	(a)	(50,	50),
(b)	(63,	71),	(c)	(42,	35).	The	ellipses	in	each	figure	plot	the	1,	3,	and	5	unit	distance
contours.

5.17	The	effect	of	using	a	Mahalanobis	versus	Euclidean	distance.	A	marks	the	central
tendency	of	the	dataset	in	Figure	5.15(c)[221].	The	ellipses	plot	the	Mahalanobis
distance	contours	from	A	that	B	and	C	lie	on.	In	Euclidean	terms,	B	and	C	are
equidistant	from	A;	however,	using	the	Mahalanobis	distance,	C	is	much	closer	to	A
than	B.

5.18	A	set	of	scatter	plots	illustrating	the	curse	of	dimensionality.	Across	(a),	(b),	and	(c),
the	number	of	instances	remains	the	same,	so	the	density	of	the	marked	unit	hypercubes
decreases	as	the	number	of	dimensions	increases;	(d)	and	(e)	illustrate	the	cost	we	must
incur,	in	terms	of	the	number	of	extra	instances	required,	if	we	wish	to	maintain	the
density	of	the	instances	in	the	feature	space	as	its	dimensionality	increases.

5.19	Feature	subset	space	for	a	dataset	with	three	features	X,	Y,	and	Z.

5.20	The	process	of	model	induction	with	feature	selection.

5.21	A	duck-billed	platypus.	This	platypus	image	was	created	by	Jan	Gillbank,	English	for
the	Australian	Curriculum	website	(www.e4ac.edu.au).	Used	under	Creative
Commons	Attribution	3.0	license.

6.1			A	game	of	find	the	lady:	(a)	the	cards	used;	(b)	the	cards	dealt	face	down	on	a	table;
(c)	the	initial	likelihoods	of	the	queen	ending	up	in	each	position;	(d)	a	revised	set	of
likelihoods	for	the	position	of	the	queen	based	on	evidence	collected.

6.2			(a)	The	set	of	cards	after	the	wind	blows	over	the	one	on	the	right;	(b)	the	revised
likelihoods	for	the	position	of	the	queen	based	on	this	new	evidence;	(c)	the	final
positions	of	the	cards	in	the	game.

6.3			Plots	of	some	well-known	probability	distributions.

6.4			Histograms	of	two	unimodal	datasets:	(a)	the	distribution	has	light	tails;	(b)	the
distribution	has	fat	tails.



6.5			Illustration	of	the	robustness	of	the	student-t	distribution	to	outliers:	(a)	a	density
histogram	of	a	unimodal	dataset	overlaid	with	the	density	curves	of	a	normal	and	a
student-t	distribution	that	have	been	fitted	to	the	data;	(b)	a	density	histogram	of	the
same	dataset	with	outliers	added,	overlaid	with	the	density	curves	of	a	normal	and	a
student-t	distribution	that	have	been	fitted	to	the	data.	(This	figure	is	inspired	by	Figure
2.16	in	Bishop	(2006).)

6.6			Illustration	of	how	a	mixture	of	Gaussians	model	is	composed	of	a	number	of	normal
distributions.	The	curve	plotted	using	a	solid	line	is	the	mixture	of	Gaussians	density
curve,	created	using	an	appropriately	weighted	summation	of	the	three	normal	curves,
plotted	using	dashed	and	dotted	lines.

6.7			(a)	The	area	under	a	density	curve	between	the	limits	 	and	 ;	(b)	the
approximation	of	this	area	computed	by	PDF(x)	×	ε;	and	(c)	the	error	in	the
approximation	is	equal	to	the	difference	between	area	A,	the	area	under	the	curve
omitted	from	the	approximation,	and	area	B,	the	area	above	the	curve	erroneously
included	in	the	approximation.	Both	of	these	areas	will	get	smaller	as	the	width	of	the
interval	gets	smaller,	resulting	in	a	smaller	error	in	the	approximation.

6.8			Histograms,	using	a	bin	size	of	250	units,	and	density	curves	for	the	ACCOUNT
BALANCE	feature:	(a)	the	fraudulent	instances	overlaid	with	a	fitted	exponential
distribution;	(b)	the	non-fraudulent	instances	overlaid	with	a	fitted	normal	distribution.

6.9			(a)	A	Bayesian	network	for	a	domain	consisting	of	two	binary	features.	The	structure
of	the	network	states	that	the	value	of	feature	A	directly	influences	the	value	of	feature
B.	(b)	A	Bayesian	network	consisting	of	4	binary	features	with	a	path	containing	3
generations	of	nodes:	D,	C,	and	B.

6.10	A	depiction	of	the	Markov	blanket	of	a	node.	The	gray	nodes	define	the	Markov
blanket	of	the	black	node.	The	black	node	is	conditionally	independent	of	the	white
nodes	given	the	state	of	the	gray	nodes.

6.11	(a)	A	Bayesian	network	representation	of	the	conditional	independence	asserted	by	a
naive	Bayes	model	between	the	descriptive	features	given	knowledge	of	the	target
feature;	(b)	a	Bayesian	network	representation	of	the	conditional	independence
assumption	for	the	naive	Bayes	model	in	the	fraud	example.

6.12	Two	different	Bayesian	networks,	each	defining	the	same	full	joint	probability
distribution.

6.13	A	Bayesian	network	that	encodes	the	causal	relationships	between	the	features	in	the
corruption	domain.	The	CPT	entries	have	been	calculated	using	the	binned	data	from
Table	6.18[305].

7.1			(a)	A	scatter	plot	of	the	SIZE	and	RENTAL	PRICE	features	from	the	office	rentals
dataset;	(b)	the	scatter	plot	from	(a)	with	a	linear	model	relating	RENTAL	PRICE	to	SIZE
overlaid.

7.2			(a)	A	scatter	plot	of	the	SIZE	and	RENTAL	PRICE	features	from	the	office	rentals
dataset.	A	collection	of	possible	simple	linear	regression	models	capturing	the



relationship	between	these	two	features	are	also	shown.	For	all	models	w	[0]	is	set	to
6.47.	From	top	to	bottom,	the	models	use	0.4,	0.5,	0.62,	0.7,	and	0.8	respectively	for	w
[1].	(b)	A	scatter	plot	of	the	SIZE	and	RENTAL	PRICE	features	from	the	office	rentals
dataset	showing	a	candidate	prediction	model	(with	w	[0]	=	6.47	and	w	[1]	=	0.62)	and
the	resulting	errors.

7.3			(a)	A	3D	surface	plot	and	(b)	a	bird’s-eye	view	contour	plot	of	the	error	surface
generated	by	plotting	the	sum	of	squared	errors	for	the	office	rentals	training	set	for
each	possible	combination	of	values	for	w	[0]	(from	the	range	[−10,	20])	and	w	[1]
(from	the	range	[−2,	3]).

7.4			(a)	A	3D	plot	of	an	error	surface	and	(b)	a	bird’s-eye	view	contour	plot	of	the	same
error	surface.	The	lines	indicate	the	path	that	the	gradient	descent	algorithm	would	take
across	this	error	surface	from	4	different	starting	positions	to	the	global	minimum—
marked	as	the	white	dot	in	the	center.

7.5			(a)	A	3D	surface	plot	and	(b)	a	bird’s-eye	view	contour	plot	of	the	error	surface	for
the	office	rentals	dataset	showing	the	path	that	the	gradient	descent	algorithm	takes
toward	the	best-fit	model.

7.6			A	selection	of	the	simple	linear	regression	models	developed	during	the	gradient
descent	process	for	the	office	rentals	dataset.	The	bottom-right	panel	shows	the	sums	of
squared	errors	generated	during	the	gradient	descent	process.

7.7			Plots	of	the	journeys	made	across	the	error	surface	for	the	simple	office	rentals
prediction	problem	for	different	learning	rates:	(a)	a	very	small	learning	rate	(0.002);
(b)	a	medium	learning	rate	(0.08);	and	(c)	a	very	large	learning	rate	(0.18).	The
changing	sum	of	squared	errors	for	these	journeys	are	also	shown.

7.8			(a)	The	journey	across	the	error	surface	for	the	office	rentals	prediction	problem
when	learning	rate	decay	is	used	(α0	=	0.18,	c	=	10	);	(b)	a	plot	of	the	changing	sum	of
squared	errors	during	this	journey.

7.9			(a)	The	journey	across	the	error	surface	for	the	office	rentals	prediction	problem
when	learning	rate	decay	is	used	(α0	=	0.25,	c	=	100);	(b)	a	plot	of	the	changing	sum	of
squared	errors	during	this	journey.

7.10	(a)	A	scatter	plot	of	the	RPM	and	VIBRATION	descriptive	features	from	the	generators
dataset	shown	in	Table	7.6[354],	where	good	generators	are	shown	as	crosses,	and	faulty
generators	are	shown	as	triangles;	(b)	as	decision	boundary	separating	good	generators
(crosses)	from	faulty	generators	(triangles).

7.11	(a)	A	surface	showing	the	value	of	Equation	(7.23)[354]	for	all	values	of	RPM	and
VIBRATION,	with	the	decision	boundary	given	in	Equation	(7.23)[354]	highlighted;	(b)
the	same	surface	linearly	thresholded	at	zero	to	operate	as	a	predictor.

7.12	(a)	A	plot	of	the	logistic	function	(Equation	(7.25)[357])	for	the	range	of	values	[−10,
10];	(b)	the	logistic	decision	surface	that	results	from	training	a	model	to	represent	the
generators	dataset	given	in	Table	7.6[354]	(note	that	the	data	has	been	normalized	to	the



range	[−1,	1]).

7.13	A	selection	of	the	logistic	regression	models	developed	during	the	gradient	descent
process	for	the	machinery	dataset	from	Table	7.6[354].	The	bottom-right	panel	shows	the
sums	of	squared	errors	generated	during	the	gradient	descent	process.

7.14	A	scatter	plot	of	the	extended	generators	dataset	given	in	Table	7.7[362],	which	results
in	instances	with	the	different	target	levels	overlapping	with	each	other.	Instances
representing	good	generators	are	shown	as	crosses,	and	those	representing	faulty
generators	as	triangles.

7.15	A	selection	of	the	logistic	regression	models	developed	during	the	gradient	descent
process	for	the	extended	generators	dataset	in	Table	7.7[362].	The	bottom-right	panel
shows	the	sums	of	squared	errors	generated	during	the	gradient	descent	process.

7.16	(a)	A	scatter	plot	of	the	RAIN	and	GROWTH	feature	from	the	grass	growth	dataset;	(b)
the	same	plot	with	a	simple	linear	regression	model	trained	to	capture	the	relationship
between	the	grass	growth	and	rainfall.

7.17	A	selection	of	the	models	developed	during	the	gradient	descent	process	for	the	grass
growth	dataset	from	Table	7.9[367].

7.18	A	scatter	plot	of	the	P20	and	P45	features	from	the	EEG	dataset.	Instances
representing	positive	images	are	shown	as	crosses,	and	those	representing	negative
images	as	triangles.

7.19	A	selection	of	the	models	developed	during	the	gradient	descent	process	for	the	EEG
dataset	from	Table	7.10[370].	The	final	panel	shows	the	decision	surface	generated.

7.20	An	illustration	of	three	different	one-versus-all	prediction	models	for	the	customer
type	dataset	in	Table	7.11[374],	with	three	target	levels:	single	(squares),	business
(triangles),	and	family	(crosses).

7.21	A	selection	of	the	models	developed	during	the	gradient	descent	process	for	the
customer	group	dataset	from	Table	7.11[374].	Squares	represent	instances	with	the	single
target	level,	triangles	the	business	level,	and	crosses	the	family	level.	The	bottom-right
panel	illustrates	the	overall	decision	boundaries	between	the	three	target	levels.

7.22	A	small	sample	of	the	generators	dataset	with	two	features,	RPM	and	VIBRATION,	and
two	target	levels,	good	(shown	as	crosses)	and	faulty	(shown	as	triangles):	(a)	a
decision	boundary	with	a	very	small	margin;	(b)	a	decision	boundary	with	a	much
larger	margin.	In	both	cases,	the	instances	along	the	margins	are	highlighted.

7.23	Different	margins	that	satisfy	the	constraint	in	Equation	(7.44)[379],	the	instances	that
define	the	margin	are	highlighted	in	each	case;	(b)	shows	the	maximum	margin	and
also	shows	two	query	instances	represented	as	black	dots.

7.24	The	journey	across	an	error	surface	and	the	changing	sums	of	squared	errors	during
this	journey.

8.1			The	process	of	building	and	evaluating	a	model	using	a	hold-out	test	set.



8.2			Hold-out	sampling	can	divide	the	full	data	into	training,	validation,	and	test	sets.

8.3			Using	a	validation	set	to	avoid	overfitting	in	iterative	machine	learning	algorithms.

8.4			The	division	of	data	during	the	k-fold	cross	validation	process.	Black	rectangles
indicate	test	data,	and	white	spaces	indicate	training	data.

8.5			The	division	of	data	during	the	leave-one-out	cross	validation	process.	Black
rectangles	indicate	instances	in	the	test	set,	and	white	spaces	indicate	training	data.

8.6			The	division	of	data	during	the	0	bootstrap	process.	Black	rectangles	indicate	test
data,	and	white	spaces	indicate	training	data.

8.7			The	out-of-time	sampling	process.

8.8			Surfaces	generated	by	calculating	(a)	the	arithmetic	mean	and	(b)	the	harmonic	mean
of	all	combinations	of	features	A	and	B	that	range	from	0	to	100.

8.9			Prediction	score	distributions	for	two	different	prediction	models.	The	distributions	in
(a)	are	much	better	separated	than	those	in	(b).

8.10	Prediction	score	distributions	for	the	(a)	spam	and	(b)	ham	target	levels	based	on	the
data	in	Table	8.11[424].

8.11	(a)	The	changing	values	of	TPR	and	TNR	for	the	test	data	shown	in	Table	8.13[427]	as
the	threshold	is	altered;	(b)	points	in	ROC	space	for	thresholds	of	0.25,	0.5,	and	0.75.

8.12	(a)	A	complete	ROC	curve	for	the	email	classification	example;	(b)	a	selection	of
ROC	curves	for	different	models	trained	on	the	same	prediction	task.

8.13	The	K-S	chart	for	the	email	classification	predictions	shown	in	Table	8.11[424].

8.14	A	series	of	charts	for	different	model	performance	on	the	same	large	email
classification	test	set	used	to	generate	the	ROC	curves	in	Figure	8.12(b)[429].	Each
column	from	top	to	bottom:	a	histogram	of	the	ham	scores	predicted	by	the	model,	a
histogram	of	the	spam	scores	predicted	by	the	model,	and	the	K-S	chart.

8.15	The	(a)	gain	and	(b)	cumulative	gain	at	each	decile	for	the	email	predictions	given	in
Table	8.11[424].

8.16	The	(a)	lift	and	(b)	cumulative	lift	at	each	decile	for	the	email	predictions	given	in
Table	8.11[424].

8.17	Cumulative	gain,	lift,	and	cumulative	lift	charts	for	four	different	models	for	the
extended	email	classification	test	set.

8.18	The	distributions	of	predictions	made	by	a	model	trained	for	the	bacterial	species
identification	problem	for	(a)	the	original	evaluation	test	set	and	for	(b)	and	(c)	two
periods	of	time	after	model	deployment;	(d)	shows	how	the	stability	index	should	be
tracked	over	time	to	monitor	for	concept	drift.

9.1			The	set	of	domain	concepts	for	the	Acme	Telephonica	customer	churn	prediction
problem.



9.2			(a)–(c)	Histograms	for	the	features	from	the	AT	ABT	with	irregular	cardinality;	(d)–
(g)	histograms	for	the	features	from	the	AT	ABT	that	are	potentially	suffering	from
outliers.

9.3			(a)	A	stacked	bar	plot	for	the	REGIONTYPE	feature;	(b)	histograms	for	the
AVGOVERBUNDLEMINS	feature	by	target	feature	value.

9.4			An	unpruned	decision	tree	built	for	the	AT	churn	prediction	problem	(shown	only	to
indicate	its	size	and	complexity).	The	excessive	complexity	and	depth	of	the	tree	are
evidence	that	overfitting	has	probably	occurred.

9.5			A	pruned	decision	tree	built	for	the	AT	churn	prediction	problem.	Gray	leaf	nodes
indicate	a	churn	prediction,	while	clear	leaf	nodes	indicate	a	non-churn	prediction.	For
space	reasons,	we	show	only	the	features	tested	at	the	top	level	nodes.

9.6			(a)	Cumulative	gain,	(b)	lift,	and	(c)	cumulative	lift	charts	for	the	predictions	made
on	the	large	test	data	sample.

9.7			A	pruned	and	stunted	decision	tree	built	for	the	Acme	Telephonica	churn	prediction
problem.

10.1	Examples	of	the	different	galaxy	morphology	categories	into	which	SDSS	scientists
categorize	galaxy	objects.	Credits	for	these	images	belong	to	the	Sloan	Digital	Sky
Survey,	www.sdss3.org.

10.2	The	first	draft	of	the	domain	concepts	diagram	developed	by	Jocelyn	for	the	galaxy
classification	task.

10.3	Bar	plots	of	the	different	galaxy	types	present	in	the	full	SDSS	dataset	for	the	3-level
and	5-level	target	features.

10.4	The	revised	domain	concepts	diagram	for	the	galaxy	classification	task.

10.5	SPLOM	diagrams	of	(a)	the	EXPRAD	and	(b)	DEVRAD	measurements	from	the	raw
SDSS	dataset.	Each	SPLOM	shows	the	measure	across	the	five	different	photometric
bands	captured	by	the	SDSS	telescope	(u,	g,	r,	i,	and	z).

10.6	Histograms	of	a	selection	of	features	from	the	SDSS	dataset.

10.7	Histograms	of	the	EXPRAD_R	feature	by	target	feature	level.

10.8	Small	multiple	box	plots	(split	by	the	target	feature)	of	some	of	the	features	from	the
SDSS	ABT.

11.1	(a)	The	class	conditional	densities	for	two	classes	(l1,l2)	with	a	single	descriptive
feature	d.	The	height	of	each	curve	reflects	the	density	of	the	instances	from	that	class
for	that	value	of	d.	(b)	The	class	posterior	probabilities	plotted	for	each	class	for
different	values	of	d.	Notice	that	the	class	posterior	probability	P(t	=	l1|d)	is	not
affected	by	the	multimodal	structure	of	the	corresponding	class	conditional	density
P(d|t	=	l1).	This	illustrates	how	the	class	posterior	probabilities	can	be	simpler	than	the
class	conditional	densities.	The	solid	vertical	line	in	(b)	plots	the	decision	boundary	for
d	that	gives	the	minimum	misclassification	rate	assuming	uniform	prior	for	the	two



target	levels	(i.e.,	P(t	=	l1)	=	P(t	=	l2)).	This	figure	is	based	on	Figure	1.27	from	Bishop
(2006).

11.2	An	illustration	of	the	decision	boundaries	learned	by	different	machine	learning
algorithms	for	three	artificial	datasets.

A.1		The	members	of	a	school	basketball	team.	The	height	of	each	player	is	listed	below
the	player.	The	dashed	gray	line	shows	the	arithmetic	mean	of	the	players’	heights.

A.2		The	members	of	the	school	basketball	team	from	Figure	A.1[526]	with	one	very	tall
ringer	added:	(a)	the	dashed	gray	line	shows	the	mean	of	the	players’	heights;	(b)	the
dashed	gray	line	shows	the	median	of	the	players’	heights,	with	the	players	ordered	by
height.

A.3		The	members	of	a	rival	school	basketball	team.	Player	heights	are	listed	below	each
player.	The	dashed	gray	line	shows	the	arithmetic	mean	of	the	players’	heights.

A.4		The	members	of	the	rival	school	basketball	team	from	Figure	A.3[527]	ordered	by
height.

A.5		Example	bar	plots	for	the	POSITION	feature	in	Table	A.1[531]:	(a)	frequency	bar	plot,
(b)	density	bar	plot,	and	(c)	order	density	bar	plot.

A.6		Bar	plot	of	the	continuous	TRAINING	EXPENSES	feature	from	Table	A.1[531].

A.7		(a)	and	(b)	frequency	histograms	and	(c)	and	(d)	density	histograms	for	the
continuous	TRAINING	EXPENSES	feature	from	Table	A.1[531],	illustrating	how	using
intervals	overcomes	the	problem	seen	in	Figure	A.6[535]	and	the	effect	of	varying
interval	sizes.

A.8		(a)	The	structure	of	a	box	plot;	(b)	a	box	plot	for	the	TRAINING	EXPENSES	feature	from
the	basketball	team	dataset	in	Table	A.1[531].

B.1		The	sample	space	for	the	domain	of	two	dice.
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data	protection	legislation,	41

data	quality	issues,	55,	66,	100

data	quality	plan,	66,	100

data	quality	report,	55,	56,	100,	105,	112,	472,	492

data	subject,	41

Data	Understanding,	14,	17,	27,	48,	49,	55,	100,	467,	488,	512

data	visualization,	106,	534



data-driven	decisions,	17

database	management	systems,	43

dataset,	3	de	Fermat,	Pierre,	247

deciles,	434,	452

decision	boundary,	188,	353,	376,	518

decision	surface,	356

decision	tree,	117,	121,	121,	167,	406,	421,	423,	514,	515,	518,	519

decisions,	1

deep	learning,	524

degrees	of	freedom,	279

delta	value,	336

density,	534,	537

density	curve,	64

density	histogram,	537

Deployment,	15,	18,	482,	509,	512

derivative,	551

derived	features,	34,	43,	48

descriptive	features,	3,	17,	21,	27,	467

diagnosis,	2

differentiation,	386,	551

discontinuous	function,	356

discriminative	model,	515

disease	diagnosis,	403

distance	metric,	183,	235

distance	weighted	k	nearest	neighbor,	193

distributions,	109

document	classification,	2,	226

domain,	34,	541

domain	concept,	21,	29,	48,	467,	488

domain	concepts,	468

domain	representation,	514



domain	subconcept,	32

dosage	prediction,	1

dot	product,	218,	333,	357

	

eager	learner,	236

early	stopping	criteria,	155,	159

ecological	modeling,	137

edges,	294

EEG,	see	electroencephalography	pattern	recognition

electroencephalography	pattern	recognition,	369

email	classification,	401

ensembles,	see	model	ensemble	entropy,	45,	117,	120,	125,	154,	170,	172,	513

equal-frequency	binning,	94,	97,	109,	289,	304,	320

equal-width	binning,	94,	96,	109,	289

equation	of	a	line,	325

ergodic,	310

error	function,	323,	327,	327,	383

error	rate,	160

error	surface,	323,	330

error-based	learning,	17,	323	ethics,	49

ETL,	see	extract-transform-load

Euclidean	coordinate	space,	183

Euclidean	distance,	183,	200,	235,	241,	444,	513

Euclidean	norm,	380

Euler’s	number,	357,	449

Evaluation,	15,	18,	398,	479,	508,	512

event,	250,	541,	542	experiment,	250,	541,	542

experimental	design,	456

exponential	distribution,	63,	76,	277,	281

extract-transform-load,	43,	482

	



F	measure,	see	F1	measure

F	score,	see	F1	measure

F1	measure,	414,	416,	416,	418

F1	score,	see	F1	measure

factorization,	261,	313

factors,	264

false	alarms,	402

false	negative,	402,	422

false	negative	rate,	413

false	positive,	259,	402,	422

false	positive	rate,	413

fat	tails,	279

feature	selection,	101,	179,	230,	230,	236,	503,	523

feature	space,	179,	181,	235

feature	subset	space,	231

features,	48

filters,	230

fit,	327,	383

flag	features,	36

FN,	see	false	negative

FNR,	see	false	negative	rate

folds,	408

forward	reasoning,	252

forward	sequential	selection,	233

FP,	see	false	positive

FPR,	see	false	positive	rate

fraud	detection,	269,	403

frequency	counts,	530

frequency	histogram,	536

frequency	table,	531

full	joint	probability	distribution,	292,	313,	547



	

gain,	433,	434,	436

gain	chart,	435,	438

galaxy	morphology,	484

Galaxy	Zoo,	489

gamma	function,	278

Gapminder,	242

Gauss,	Carl	Friedrich,	330

Gauss-Jordan	elimination,	222

Gaussian	distribution,	64

Gaussian	radial	basis	kernel,	382

generalization,	9,	12,	400

Generalized	Bayes’	Theorem,	256

generative	model,	515

Gibbs	sampling,	309

Gini	coefficient,	304,	430,	455,	460

Gini	index,	148,	167,	172,	430

global	minimum,	331

Goldilocks	model,	12

gradient,	334,	384

gradient	descent,	279,	282,	283,	331,	332,	334,	384,	406

graphical	models,	315,	524

greedy	local	search	problem,	231

group	think,	163

guided	search,	282,	331,	334

	

hamming	distance,	245

Hand,	David,	456

harmonic	mean,	416,	418,	418,	421,	446,	455,	477

heating	load	prediction,	388

heterogeneity,	126



hidden	features,	547

histogram,	56,	525,	534,	535	hits,	402

hold-out	sampling,	406,	412

hold-out	test	set,	397,	400,	405,	448,	500

hyperplane,	196,	196,	377

hypersphere,	220

	

ID3,	see	Iterative	Dichotomizer	3

identity	criterion,	183,	213

identity	matrix,	222

ill-posed	problem,	6,	9,	17,	19,	20,	148

imbalanced	data,	192,	417,	472

imputation,	74,	307

independence,	262,	313

independent	features,	88

index,	213,	214

inductive	bias,	10,	10,	17,	20,	123,	144,	341,	372,	377,	511,	518

inductive	learning,	10,	511

information,	121

information	gain,	117,	121,	129,	131,	134,	136,	170,	172,	231,	499

information	gain	ratio,	144,	172

information	theory,	117,	126

information-based	learning,	17,	117

insights,	1

instance,	3,	28

integration,	284

inter-annotator	agreement,	508,	509

inter-quartile	range,	75,	530,	538

interacting	features,	230

interaction	effect,	168

interaction	term,	371



interior	nodes,	121

interpolate,	529

interpretability	of	models,	522

interval	data,	34

interval	size,	284

invalid	data,	66,	100

invalid	outliers,	69,	71,	499

invariant	distribution,	310

inverse	covariance	matrix,	222

inverse	reasoning,	252

IQR,	see	inter-quartile	range

irregular	cardinality,	66,	68,	100

irrelevant	features,	230

Iterative	Dichotomizer	3,	10,	117,	134,	134,	167,	171,	175,	406,	513

	

J48,	167

Jaccard	index,	217,	235

jackknifing,	411

joint	probability,	251,	256,	544

joint	probability	distribution,	251,	546

	

k	nearest	neighbor,	179,	191,	235,	400,	421,	443,	500,	513,	515,	518

k-d	tree,	179,	196,	214,	236,	246

k-fold	cross	validation,	408

k-NN,	see	k	nearest	neighbor

K-S	chart,	see	Kolmogorov-Smirnov	chart

K-S	statistic,	see	Kolmogorov-Smirnov	statistic

K2	score,	303

kernel	function,	382,	390

kernel	trick,	382,	390

knowledge	elicitation,	30



Kolmogorov-Smirnov	chart,	431

Kolmogorov-Smirnov	statistic,	431,	452

Kolmogorov-Smirnov	test,	280

Kronecker	delta,	191,	194

	

labeled	dataset,	7

Lagrange	multipliers,	378

Laplace	smoothing,	274,	321

lazy	learner,	236

leaf	nodes,	121

learning	rate,	337,	346

learning	rate	decay,	349

least	squares	optimization,	331

leave-one-out	cross	validation,	411

left	skew,	63

levels,	34

lift,	433,	436,	479,	480

lift	chart,	438

light	tails,	279

linear	function,	552

linear	kernel,	382

linear	relationship,	325,	365,	385

linear	separator,	353

linearly	separable,	353,	370,	381

local	models,	188

locality	sensitive	hashing,	238

location	parameter,	278

location-scale	family	of	distributions,	278

logarithm,	124

logistic	function,	357

logistic	regression,	323,	353,	357,	384,	423,	500,	514,	515,	518,	519



LogitBoost,	169

long	tails,	63

longevity,	33

loss	functions,	327

loss	given	default,	421

lower	quartile,	530,	538

LU	decomposition,	222

lucky	split,	408,	456

	

machine	learning,	2,	3

machine	learning	algorithm,	5,	17

MAE,	see	mean	absolute	error

Mahalanobis	distance,	221,	226,	235

Manhattan	distance,	183,	183,	235,	241,	444

MAP,	see	maximum	a	posteriori

mapping	features,	36,	68

margin,	377

margin	extents,	377,	380

margin	of	error,	532

marginalization,	547

Markov	blanket,	297

Markov	chain,	309,	309

Markov	chain	Monte	Carlo,	309,	515

MaxEnt	model,	373

maximum	a	posteriori,	259,	267,	423

maximum	entropy	model,	373

maximum	likelihood,	313

MCMC,	see	Markov	chain	Monte	Carlo

mean,	56,	74,	525,	526

mean	absolute	error,	444,	446

mean	imputation,	392



mean	squared	error,	443

measures	of	similarity,	179

median,	56,	74,	416,	526,	526,	527,	530,	538

metric,	183,	213

minimum	description	length	principle,	302

Minkowski	distance,	184,	184

misclassification	rate,	397,	401,	403,	404,	416,	417

misses,	402

missing	indicator	feature,	73

missing	values,	66,	67,	100,	235,	472

mixing	time,	311

mixture	of	Gaussians	distribution,	277,	281

mode,	56,	74,	527,	531

mode	imputation,	392

model	ensemble,	163,	168,	177,	515

model	parameters,	327

Modeling,	14,	17,	92,	477,	500,	512

Monte	Carlo	methods,	309

MSE,	see	mean	squared	error	multi-label	classification,	524

multimodal	distribution,	63,	282

multinomial	logistic	regression,	373,	394

multinomial	model,	323,	385,	440

multivariable	linear	regression,	332,	443

multivariable	linear	regression	with	gradient	descent,	10,	323,	513

	

N	rays,	397

naive	Bayes	model,	247,	267,	292,	320,	321,	423,	513,	514,	518,	519

natural	language	processing,	238

natural	logarithm,	449

nearest	neighbor,	315,	514,	519

nearest	neighbor	algorithm,	179,	186,	235



negative	level,	402

negatively	covariant,	79

neural	networks,	387

next-best-offer	model,	39

No	Free	Lunch	Theorem,	11,	518

nodes,	294

noise,	6,	69,	73,	190

noise	dampening	mechanism,	163

non-linear	model,	323

non-linear	relationship,	385

non-negativity	criterion,	183,	213

non-parametric	model,	514

normal	distribution,	62,	64,	75,	83,	277,	424

normalization,	93,	179,	206,	235,	343,	346,	361

normalization	constant,	256

null	hypothesis,	347

numeric	data,	34

	

observation	period,	37,	468

Occam’s	razor,	123,	302

on-going	model	validation,	447,	482

one-class	classification,	239

one-row-per-subject,	29

one-versus-all	model,	373,	373,	383,	385

ordinal	data,	34

other	features,	36

out-of-time	sampling,	412,	456

outcome,	541

outcome	period,	37,	468

outlier	detection,	239

outliers,	66,	69,	93,	98,	100,	473,	526,	538



over-sampling,	99

overfitting,	11,	158,	163,	192,	261,	272,	406

overlap	metric,	245

	

p-value,	348

paradox	of	the	false	positive,	259

parameterized	model,	323,	324,	327

parametric	model,	514

parent	node,	295

Pareto	charts,	534

partial	derivative,	324,	331,	551,	555

Pascal,	Blaise,	247

PDF,	see	probability	density	function

Pearson	correlation,	226

Pearson	product-moment	correlation	coefficient,	88

Pearson,	Karl,	88

peeking,	400

percentiles,	56,	97,	434,	529

perceptron	learning	rule,	357

performance	measure,	400,	404

personal	data,	41

placebo,	453

polynomial	functions,	552

polynomial	kernel,	382

polynomial	relationship,	367

population,	532

population	mean,	64

population	parameters,	533

population	standard	deviation,	64

positive	level,	402

positively	covariant,	79



post-pruning,	159,	478

posterior	probability,	544

posterior	probability	distribution,	255

pre-pruning,	159,	168

precision,	414,	415,	440

prediction,	2

prediction	model,	1,	17

prediction	score,	423,	442

prediction	speed,	521

prediction	subject,	21,	28,	467,	488

predictive	data	analytics,	1,	1,	19

predictive	features,	230

preference	bias,	10

presence-absence,	215

price	prediction,	1

prior	probability,	256,	544

probability	density	function,	64,	250,	277,	543

probability	distribution,	61,	100,	251,	534,	546

probability	function,	250,	543

probability	mass,	273,	543

probability	mass	function,	250,	543

probability	theory,	247,	541

probability-based	learning,	17,	247

product	rule,	249,	254,	541,	549

profit	matrix,	420

propensity	modeling,	2,	37,	468

proportions,	530

proxy	features,	32,	36

pruning,	117,	168

pruning	dataset,	160

purpose	specification	principle,	42



	

quadratic	function,	368,	552

	

R,	225,	283

R2,	446,	455

r-trees,	238

random	forest,	165,	169,	174

random	sampling,	98

random	sampling	with	replacement,	99

random	sampling	without	replacement,	100

random	variable,	250,	541,	542

range,	528,	528

range	normalization,	93,	93,	108,	207,	335,	355,	358,	392,	393

rank	and	prune,	230

rate	parameter,	281

ratio	features,	36

raw	features,	34,	43,	48

recall,	414,	415,	417,	440

receiver	operating	characteristic	curve,	425,	459

receiver	operating	characteristic	index,	425,	429,	456

receiver	operating	characteristic	space,	427

reduced	error	pruning,	160,	173,	478

redundant	features,	230

regression	task,	153

regression	tree,	153

reinforcement	learning,	3

relative	frequency,	249,	541,	543

relative	rarity,	502

replicated	training	set,	164

residual,	328

restriction	bias,	10,	372



right	skew,	62

risk	assessment,	1

RMSE,	see	root	mean	squared	error

ROC	curve,	see	receiver	operating	characteristic	curve

ROC	index,	see	receiver	operating	characteristic	index

ROC	space,	see	receiver	operating	characteristic	space

root	mean	squared	error,	444,	446

root	node,	121

Russel-Rao	index,	215,	235

	

sabremetrics,	181

sample,	406,	525,	532

sample	covariance,	86

sample	mean,	525

sample	space,	250,	541,	542,	542

sampling,	92,	98	sampling	density,	227

sampling	method,	405,	411

sampling	variance,	158

sampling	with	replacement,	165

sampling	without	replacement,	165

scale	parameter,	278

scatter	plot,	78,	181

scatter	plot	matrix,	79,	89,	110

SDSS,	see	Sloan	Digital	Sky	Survey

second	mode,	532

second	order	polynomial	function,	367,	552

semi-supervised	learning,	3

sensitivity,	414,	427

separating	hyperplane,	377

Shannon,	Claude,	513

similarity	index,	214,	235



similarity	measure,	179

similarity-based	learning,	17,	179

simple	linear	regression,	514,	518

simple	linear	regression	model,	326

simple	multivariable	linear	regression,	383

simple	random	sample,	533

situational	fluency,	22,	50,	464,	486

skew,	62

Sloan	Digital	Sky	Survey,	483

slope	of	a	line,	325,	553

small	multiples,	80,	83

smoothing,	247,	272,	273,	291

social	science,	303

soft	margin,	383

Sokal-Michener	index,	216,	235

spam	filtering,	268

sparse	data,	217,	226,	228,	241,	268

specificity,	414,	427

SPLOM,	see	scatter	plot	matrix

stability	index,	449,	460,	510

stacked	bar	plot,	82

stale	model,	447,	449,	452,	482

standard	deviation,	56,	529

standard	error,	348

standard	normal	distribution,	64

standard	scores,	94,	499

standardization,	93,	108

stationarity	assumption,	238

stationary	distribution,	310

statistical	inference,	533

statistical	significance,	455



statistical	significance	test,	347

statistics,	385

step-wise	sequential	search,	503,	505

stochastic	gradient	descent,	341

stratification	feature,	99

stratified	sampling,	99,	492

student-t	distribution,	278,	280

stunted	trees,	480

subagging,	165

subjective	estimate,	541

subset	generation,	231

subset	selection,	231

subspace	sampling,	165

sum	of	squared	errors,	327,	383,	443,	446,	513

summary	statistics,	103

summing	out,	252,	547,	549

supervised	learning,	3,	19

support	vector	machine,	323,	346,	376,	386,	390,	500,	514,	515,	518

support	vectors,	378

SVM,	see	support	vector	machine	symmetry	criterion,	183,	213

	

t-test,	348

Tanimoto	similarity,	226

target	feature,	3,	17,	27

target	hypersphere,	201

target	level	imbalance,	501

taxi-cab	distance,	183

termination	condition,	232

test	set,	400,	406

test-statistic,	347

text	analytics,	268



textual	data,	34

Theorem	of	Total	Probability,	249,	253,	255,	256,	541,	549,	550

thinning,	311

third	order	polynomial	function,	552

timing,	33

TN,	see	true	negative

TNR,	see	true	negative	rate

tolerance,	336

top	sampling,	98

total	sum	of	squares,	446

TP,	see	true	positive

TPR,	see	true	positive	rate

training	instance,	4

training	set,	4,	406,	500

Transparency	International,	242

trapezoidal	method,	430

treatment	group,	453

tree	pruning,	159,	167

triangular	inequality	criterion,	183,	213

true	negative,	402

true	negative	rate,	413,	425

true	positive,	402

true	positive	rate,	413,	415,	425

two-stage	model,	505,	507

type	I	errors,	402

type	II	errors,	402

	

unbiased	estimate,	534

unconditional	probability,	544

under-sampled	training	set,	502

under-sampling,	99,	502



underfitting,	11,	192

uniform	distribution,	61

unimodal	distribution,	62,	280

unit	hypercube,	227

unsupervised	learning,	3

upper	quartile,	530,	538

upsell	model,	214,	438

use	limitation	principle,	42

	

valid	data,	66,	100

valid	outliers,	69,	72,	499

validation,	500

validation	set,	160,	406

variable	elimination,	309

variable	selection,	230

variance,	154,	206,	222,	528,	528,	529,	534

variation,	56,	525,	527	vectors,	218

Voronoi	region,	187

Voronoi	tessellation,	187,	235

	

weight	space,	330,	334,	352,	385

weight	update	rule,	340

weighted	dataset,	164

weighted	k	nearest	neighbor,	193,	211,	241–243

weighted	variance,	154

weights,	327

Western	Electric	rules,	448

whiskers,	538

Wilcoxon-Mann-Whitney	statistic,	430

wrapper-based	feature	selection,	232,	406,	503

	



z-score,	94

z-transform,	94
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