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Preface

The Riemann zeta function ζ(s) in the real variable s was introduced by L. Eu-
ler (1737) in connection with questions about the distribution of prime numbers.
Later B. Riemann (1859) derived deeper results about the prime numbers by consid-
ering the zeta function in the complex variable. He revealed a dual correspondence
between the primes and the complex zeros of ζ(s), which started a theory to be
developed by the greatest minds in mathematics. Riemann was able to provide
proofs of his most fundamental observations, except for one, which asserts that all
the non-trivial zeros of ζ(s) are on the line Re s = 1

2 . This is the famous Riemann
Hypothesis – one of the most important unsolved problems in modern mathematics.

These lecture notes cover closely the material which I presented to graduate
students at Rutgers in the fall of 2012. The theory of the Riemann zeta function
has expanded in different directions over the past 150 years; however my goal was
limited to showing only a few classical results on the distribution of the zeros. These
results include the Riemann memoir (1859), the density theorem of F. Carlson
(1920) about the zeros off the critical line, and the estimates of G. H. Hardy - J.
E. Littlewood (1921) for the number of zeros on the critical line.

Then, in Part 2 of these lectures, I present in full detail the result of N. Levinson
(1974), which asserts that more than one third of the zeros are critical (lie on the
line Re s = 1

2 ). My approach had frequent detours so that students could learn
different techniques with interesting features. For instance, I followed the stronger
construction invented by J. B. Conrey (1983), because it reveals clearly the esssence
of Levinson’s ideas.

After establishing the principal inequality of the Levinson-Conrey method, it
remains to evaluate asymptotically the second power-moment of a relevant Dirichlet
polynomial, which is built out of derivatives of the zeta function and its mollifier.
This task was carried out differently than by the traditional arguments and in
greater generality than it was needed. The main term coming from the contribution
of the diagonal terms fits with results in sieve theory and can be useful elsewhere.

I am pleased to express my deep appreciation to Pedro Henrique Pontes, who
actively participated in the course and he gave valuable mathematical comments,
which improved my presentation. He also helped significantly in editing these notes
in addition to typing them. My thanks also go to the Editors of the AMS University
Lecture Series for publishing these notes in their volumes, and in particular to Sergei
Gelfand for continuous encouragements.

vii
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Classical Topics
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CHAPTER 1

Panorama of Arithmetic Functions

Throughout these notes we denote by Z, Q, R, C the sets of integers, rationals,
real and complex numbers, respectively. The positive integers are called natural
numbers . The set

N = {1, 2, 3, 4, 5, . . . }
of natural numbers contains the subset of prime numbers

P = {2, 3, 5, 7, 11, . . . }.

We will often denote a prime number by the letter p.
A function f : N → C is called an arithmetic function. Sometimes an arithmetic

function is extended to all Z. If f has the property

(1.1) f(mn) = f(m) + f(n)

for all m,n relatively prime, then f is called an additive function. Moreover, if (1.1)
holds for all m,n, then f is called completely additive; for example, f(n) = log n is
completely additive. If f has the property

(1.2) f(mn) = f(m)f(n)

for all m,n relatively prime, then f is called a multiplicative function. Moreover,
if (1.2) holds for all m,n, then f is called completely multiplicative; for example,
f(n) = n−s for a fixed s ∈ C, is completely multiplicative.

If f : N → C has at most a polynomial growth, then we can associate with f
the Dirichlet series

Df (s) =
∞∑
1

f(n)n−s

which converges absolutely for s = σ + it with σ sufficiently large. The product of
Dirichlet series is a Dirichlet series

Df (s)Dg(s) = Dh(s),

with h = f ∗ g defined by

(1.3) h(l) =
∑
mn=l

f(m)g(n) =
∑
d|l

f(d)g(l/d),

which is called the Dirichlet convolution.
The constant function f(n) = 1 for all n ∈ N has the Dirichlet series

(1.4) ζ(s) =

∞∑
1

n−s

3
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4 1. PANORAMA OF ARITHMETIC FUNCTIONS

which is called the Riemann zeta-function. Actually ζ(s) was first introduced by
L. Euler who studied the distribution of prime numbers using the infinite product
formula

(1.5)

ζ(s) =
∏
p

(
1 +

1

ps
+

1

p2s
+ · · ·

)

=
∏
p

(
1− 1

ps

)−1

.

The series (1.4) and the product (1.5) converge absolutely in the half-plane s =
σ + it, σ > 1. Since ζ(s) for s > 1 is well approximated by the integral∫ ∞

1

y−s dy =
1

s− 1

as s → 1, it follows from (1.5) that

(1.6)
∑
p

1

ps
∼ log

1

s− 1
, as s > 1, s → 1.

By the Euler product for ζ(s) it follows that 1/ζ(s) also has a Dirichlet series
expansion

(1.7)
1

ζ(s)
=
∏
p

(
1− 1

ps

)
=

∞∑
1

μ(m)

ms

where μ(m) is the multiplicative function defined at prime powers by

(1.8) μ(p) = −1, μ(pα) = 0, if α � 2.

This is a fascinating function (introduced by A. F. Möbius in 1832) which plays a
fundamental role in the theory of prime numbers.

Translating the obvious formula ζ(s) · ζ(s)−1 = 1 into the language of Dirichlet
convolution we obtain the δ-function

(1.9) δ(n) =
∑
m|n

μ(m) =

{
1 if n = 1

0 if n �= 1.

Clearly the two relations

(1.10) g = 1 ∗ f, f = μ ∗ g
are equivalent. This equivalence is called the Möbius inversion; more explicitly,

(1.11) g(n) =
∑
d|n

f(d) ⇐⇒ f(n) =
∑
d|n

μ(d)g(n/d).

If f, g are multiplicative, then so are f · g, f ∗ g. If g is multiplicative, then

(1.12)
∑
d|n

μ(d)g(d) =
∏
p|n

(
1− g(p)

)
.

In various contexts one can view the left side of (1.12) as an “exclusion-inclusion”
procedure of events occurring at divisors d of n with densities g(d). Then the right
side of (1.12) represents the probability that none of the events associated with
prime divisors of n takes place.
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1. PANORAMA OF ARITHMETIC FUNCTIONS 5

Now we are going to give some basic examples of arithmetic functions. We
begin by exploiting Dirichlet convolutions. The first one is the divisor function

τ = 1 ∗ 1, τ (n) =
∑
d|n

1, ζ2(s) =
∞∑
1

τ (n)n−s.

This is multiplicative with τ (pα) = α+ 1. We have

ζ4(s)

ζ(2s)
=

∞∑
1

τ (n)2n−s

ζ3(s)

ζ(2s)
=

∞∑
1

τ (n2)n−s

ζ3(s) =
∞∑
1

( ∑
d2m=n

τ (m2)

)
n−s.

Note that

(1.13)
∑

d2m=n

τ (m2) =
∑

klm=n

1 = τ3(n),

say. Next we get

ζ2(s)

ζ(2s)
=

∞∑
1

2ω(n)n−s

where ω(n) denotes the number of distinct prime divisors of n, so 2ω(n) is the number
of squarefree divisors of n. The characteristic function of squarefree numbers is∣∣μ(n)∣∣ = μ2(n) =

∑
d2|n

μ(d),

its Dirichlet series is

ζ(s)

ζ(2s)
=

∞∑
1

|μ(n)|n−s =
∏
p

(
1 +

1

ps

)
.

Inverting this we get the generating series for the Liouville function λ(n)

ζ(2s)

ζ(s)
=

∞∑
1

λ(n)n−s.

Note that

λ(n) = (−1)Ω(n)

where Ω(n) is the total number of prime divisors of n (counted with the multiplic-
ity).

The Euler ϕ-function is defined by ϕ(n) = |(Z/nZ)∗|; it is the number of
reduced residue classes modulo n. This function satisfies

ϕ(n) = n
∏
p

(
1− 1

p

)
= n

∑
d|n

μ(d)

d
.

Hence
ζ(s− 1)

ζ(s)
=

∞∑
1

ϕ(n)n−s.
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6 1. PANORAMA OF ARITHMETIC FUNCTIONS

A different class of arithmetic functions (very important for the study of prime
numbers) is obtained by differentiating relevant Dirichlet series

−D′
f (s) =

∞∑
1

f(n)(logn)n−s.

In particular

−ζ ′(s) =
∞∑
1

(log n)n−s.

Since L(n) = log n is additive, we have the formula

L · (f ∗ g) = (L · f) ∗ g + f ∗ (L · g)
which says that the multiplication by L is a derivation in the Dirichlet ring of
arithmetic functions.

By the Euler product we have

(1.14) log ζ(s) =
∞∑
l=1

∑
p

l−1p−ls.

Hence differentiating we get

(1.15) −ζ ′

ζ
(s) =

∞∑
1

Λ(n)n−s

with Λ(n) (popularly named von Mangoldt function) given by

(1.16) Λ(n) =

{
log p, if n = pα, α � 1

0, otherwise.

From the left side of (1.15) we get

(1.17) Λ = μ ∗ L, Λ(n) =
∑
d|n

μ(d) log
n

d
= −

∑
d|n

μ(d) log d.

Hence, by Möbius inversion we get

(1.18) L = 1 ∗ Λ, log n =
∑
d|n

Λ(d).

Similarly we define the von Mangoldt functions Λk of any degree k � 0 by

(1.19) Λk = μ ∗ Lk, Λk(n) =
∑
d|n

μ(d)
(
log

n

d

)k
.

We have

(1.20) Lk = 1 ∗ Λk, (logn)k =
∑
d|n

Λk(d).

Note that Λ0 = δ, Λ1 = Λ, and we have the recurrence formula

(1.21) Λk+1 = L · Λk + Λ ∗ Λk.

This follows by writing

Λk+1(n) =
∑
d|n

μ(d)
(
log

n

d

)k
(log n− log d)

and using (1.18).
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1. PANORAMA OF ARITHMETIC FUNCTIONS 7

From (1.21) we derive by induction in k that Λk(n) � 0 and Λk(n) is supported
on positive integers having at most k distinct prime divisors. Moreover we get by
(1.20) that

(1.22) 0 � Λk(n) � (log n)k.

Exercise. Prove the formula

(1.23) Λk(mn) =
∑

0�j�k

(
k

j

)
Λj(m)Λk−j(n).

Exercise. Prove the formula

(1.24)
∑
p

1

ps
=

∞∑
1

μ(n)

n
log ζ(ns), if s > 1.
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CHAPTER 2

The Euler–Maclaurin Formula

Some arithmetic functions f are naturally defined on segments of real numbers,
say f : [a, b] → C. If f is continuous and has relatively slow variation, then one
should expect that the sum ∑

a<n�b

f(n)

is well approximated by the corresponding integral. Indeed we have the following
exact formula

(2.1)
∑

a<n�b

f(n) =

∫ b

a

(
f(x) + ψ(x)f ′(x)

)
dx+

1

2

(
f(b)− f(a)

)

provided a < b, a, b ∈ Z, and f is of class C1 on [a, b]. Here ψ(x) is the saw function

(2.2) ψ(x) = x− [x]− 1

2
.

This classical formula of Euler-Maclaurin follows easily by partial integration. Es-
timating ψ(x) trivially we infer the following approximation

(2.3)

∣∣∣∣∣∣
∑

a<n�b

f(n)−
∫ b

a

f(x) dx

∣∣∣∣∣∣ �
1

2

∫ b

a

|f ′(x)| dx+
1

2

∣∣f(b)− f(a)
∣∣.

This approximation is particularly useful for functions f(x) with f ′(x) relatively
small, in which case the error term is of order of magnitude no larger than the
terms of the summation.

Exercise. Derive the formulas (for x � 2)∑
n�x

log n = x log x− x+O(log x)(2.4)

∑
n�x

log
x

n
= x+O(log x)(2.5)

∑
n�x

1

n
= log x+ γ +O(x−1).(2.6)

Lemma 2.1. For Re s > 1 we have

(2.7) ζ(l)(s) =
(−1)ll!

(s− 1)l+1
+O

(
(log 2|s|)l+1

)
where the implied constant depends only on l.

9
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10 2. THE EULER–MACLAURIN FORMULA

Proof. By the Euler-Maclaurin formula we derive (with any X � 2)

(−1)lζ(l)(s) =

∞∑
1

(logn)l

ns

=
∑
n�X

(logn)l

ns
+

∫ ∞

X

(log y)l

ys
dy +O

(
|s|
X

(logX)l+1

)

=

∫ ∞

1

(log y)l

ys
dy +O

((
1 +

|s|
X

)
(logX)l+1

)
.

Choosing X = 2|s| we get (2.7). �

Corollary 2.2. For Re s > 1 we have

(2.8)
(
(s− 1)ζ(s)

)(l) 	 |s|
(
log 2|s|

)l+1
.

Proof. This follows from (2.7) by the formula(
(s− 1)ζ(s)

)(l)
= (s− 1)ζ(l)(s) + lζ(l−1)(s). �

Some arithmetic functions have no natural extension to real numbers, for exam-
ple the divisor function τ (n). In this case there is no single steady function which
well approximates τ (n). However, since τ = 1 ∗ 1 is the convolution of smooth
functions (constant functions), one can still evaluate the sum

(2.9) D(x) =
∑
n�x

τ (n)

by opening the convolution. We obtain

D(x) =
∑
lm�x

1 =
∑
l�x

[x
l

]
= x

∑
l�x

1

l
+O(x)

= x log x+O(x).

Dirichlet had the great idea of improving the above approximation by switching
divisors (Dirichlet hyperbola method). We have

D(x) = 2
∑

lm�x, l�√
x

1−
∑

l,m�√
x

1 = 2
∑
l�√

x

[x
l

]
− [

√
x]2

= 2
∑
l�√

x

x

l
− x+O

(√
x
)
= 2x log

√
x+ 2γ − x+O

(√
x
)
.

Hence

(2.10) D(x) = x(log x+ 2γ − 1) + Δ(x)

with

(2.11) Δ(x) 	
√
x.

Lemma 2.3. Suppose g(x) is a real-valued function on [a, b] with continuous
derivatives g′(x), g′′(x) such that g′(x)g′′(x) �= 0. Then

(2.12)

∣∣∣∣∣
∫ b

a

e
(
g(x)

)
dx

∣∣∣∣∣ � 1

π|g′(a)| +
1

π|g′(b)| ,

where e(x) = exp(2πix).

Purchased from American Mathematical Society for the exclusive use of Doron Zeilberger (zldrxj)
Copyright 2017 American Mathematical Society. Duplication prohibited. Please report unauthorized use to cust-serv@ams.org.
Thank You! Your purchase supports the AMS' mission, programs, and services for the mathematical community.



2. THE EULER–MACLAURIN FORMULA 11

Proof. Since g′′(x) �= 0 we can assume that g′′(x) > 0. This shows that
(1/g′(x))′ = −g′′(x)(g′(x))−2 < 0. Then by partial integration

2πi

∫ b

a

e
(
g(x)

)
dx =

e
(
g(b)
)

g′(b)
−

e
(
g(a)

)
g′(a)

−
∫ b

a

e
(
g(x)

)
d

(
1

g′(x)

)
.

This yields (2.12) by trivial estimation. �
Using partial summation we derive from (2.12)

Corollary 2.4. Let h(x) be a smooth function on [a, b], and g(x) as in
Lemma 2.3. Then

(2.13)

∣∣∣∣∣
∫ b

a

h(x) e
(
g(x)

)
dx

∣∣∣∣∣ � H

π

(
1

|g′(a)| +
1

|g′(b)|

)

with

(2.14) H = |h(b)|+
∫ b

a

|h′(y)| dy.

Corollary 2.5. Suppose g(x) is a real-valued function on [a, b] with continu-
ous derivatives g′(x), g′′(x) satisfying g′′(x) �= 0 and

(2.15) |g′(x)| � θ, 0 < θ < 1.

Let h(x) be smooth on [a, b]. Then for any l � 1 we have

(2.16)

∣∣∣∣∣
∫ b

a

h(x) e
(
g(x)− lx

)
dx

∣∣∣∣∣ � 2H

π(l − θ)
.

Proof. This follows from (2.13) when g(x) is replaced by g(x)− lx. �
Corollary 2.6. Suppose g(x) satisfies the conditions of Corollary 2.5. Then

(2.17)

∣∣∣∣
∫ b

a

h(x)ψ(x) e
(
g(x)

)
dx

∣∣∣∣ � H

1− θ
.

Proof. We obtain this by applying (2.16) to every term in the Fourier expan-
sion

ψ(x) = −
∑

0<|l|�L

e(lx)

2πil
+O

(
1

1 + ‖x‖L

)

where ‖x‖ is the distance of x to the nearest integer. Hence the integral in (2.17)
is bounded by

2π−2H

∞∑
l=1

l−1(l − θ)−1 � H(1− θ)−1. �

Finally, applying the Euler-Maclaurin formula (2.1) we get

Theorem 2.7. Let g(x), h(x) be real-valued smooth functions on [a, b] with
g′′(x) �= 0 and g′(x) satisfying (2.15). Then

(2.18)
∑

a<n�b

h(n) e
(
g(n)

)
=

∫ b

a

h(x) e
(
g(x)

)
dx+O

(
H(1− θ)−1

)
where the implied constant is absloute.
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CHAPTER 3

Tchebyshev’s Prime Seeds

Euler, Legendre, and Gauss tried to get hold on the distribution of prime
numbers with very little success. The first remarkable results were obtained in the
1850’s by Pafnucy Lvovich Tchebyshev. His ideas are elementary and elegant. We
begin by writing the sum (2.4) in the following way

S(x) =
∑
n�x

log n =
∑
lm�x

Λ(l) =
∑
l�x

Λ(l)
[x
l

]
.

Replacing [x/l] by x/l +O(1) we get

(3.1) S(x) = x
∑
l�x

Λ(l)

l
+O

(
ψ(x)

)

where ψ(x) is defined by (not the saw function (2.2))

(3.2) ψ(x) =
∑
n�x

Λ(n).

Changing the order of summation we get another expression

S(x) =
∑
m�x

ψ
( x

m

)
= x log x− x+O(log x).

Hence we compute S(x)− 2S(x2 ), getting

ψ(x)− ψ
(x
2

)
+ ψ

(x
3

)
− ψ

(x
4

)
+ · · · = x log 2 +O(log x).

By the monotonicity we infer two estimates:

(3.3) x log 2 +O(log x) < ψ(x) < x log 4 +O
(
(log x)2

)
.

This shows that

(3.4) ψ(x) � x.

Inserting (3.4) to (3.1) we derive

(3.5)
∑
n�x

Λ(n)

n
= log x+O(1).

13
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14 3. TCHEBYSHEV’S PRIME SEEDS

Exercise. Derive from (3.5) the following formulas of Mertens∑
p�x

log p

p
= log x+O(1),(3.6)

∑
p�x

1

p
= log log x+ c+O

(
1

log x

)
,(3.7)

∏
p�x

(
1− 1

p

)
=

e−γ

log x

(
1 +O

(
1

log x

))
(3.8)

where c and γ are constants.

Similar (actually simpler) arguments work for the sum of the Möbius function

(3.9) M(x) =
∑
m�x

μ(m).

For x � 1 we have

(3.10) 1 =
∑
lm�x

μ(m) =
∑
l�x

M
(x
l

)
=
∑
m�x

μ(m)
[ x
m

]
.

Hence

(3.11)

∣∣∣∣∣∣
∑
m�x

μ(m)

m

∣∣∣∣∣∣ � 1.
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CHAPTER 4

Elementary Prime Number Theorem

It was conjectured by Legendre and Gauss that the number of primes p � x
satisfies the asymptotic formula

π(x) ∼ x

log x
.

This assertion is called the Prime Number Theorem, it has been proved much later
independently by Hadamard and de la Vallée Poussin (1896). We shall give an
elementary proof of a stronger statement which is inspired by the ideas of Hadamard
and de la Vallée Poussin. Our arguments are elementary in the sense that the
complex function theory (specially the concept of analytic function and contour
integration) is not used. But we do not hesitate to use continuity over the complex
numbers, and we employ infinite series to the extent of absolute convergence.

Theorem 4.1. For x � 2 and A � 0 we have

(4.1) ψ(x) = x+O
(
x(log x)−A

)
where the implied constant depends only on A.

We shall derive (4.1) from a similar estimate for the sum of the Möbius function

Theorem 4.2. For x � 2 and A � 0 we have

(4.2) M(x) 	 x(log x)−A

where the implied constant depends only on A.

One can show by elementary means that the following two statements are
equivalent:

ψ(x) ∼ x, as x → ∞,(4.3)

M(x) = o(x), as x → ∞.(4.4)

To this end we develop two approximate formulas. The first one starts by the exact
relation ∑

n�x

μ(n) log
x

n
= M(x) log x+

∑
mn�x

μ(m)Λ(n),

which follows from (1/ζ)′ = −(ζ ′/ζ) · (1/ζ). Applying (2.5) we get

M(x) log x = −
∑
m�x

μ(m)ψ
( x

m

)
+O(x).

Next, by (3.4) and (3.11)

M(x) log x =
∑
m�x

μ(m)
( x

m
− ψ

( x

m

))
+O(x log 2K)

for any 1 � K � x. Hence it is easy to see that (4.3) implies (4.4).

15
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16 4. ELEMENTARY PRIME NUMBER THEOREM

To establish the converse we start from Λ− 1 = μ ∗ (L− τ ). This yields

ψ(x)− [x] + 2γ =
∑
dk�x

μ(d)
(
log k − τ (k) + 2γ

)

=
∑
k�K

(
log k − τ (k) + 2γ

)
M
(x
k

)

+
∑

d�x/K

μ(d)
(
Δ
(x
d

)
−Δ(K)

)
+O

( x

K

)
.

Recall that Δ(y) is the error term in the divisor problem, see (2.10). Hence for any
1 � K � x we have

(4.5) ψ(x)− x =
∑
k�K

(
log k − τ (k) + 2γ

)
M
(x
k

)
+O

(
x√
K

)
.

This shows that (4.4) implies (4.3), by letting K → ∞ very slowly. Moreover,
choosing K =

√
x in (4.5) we see that Theorem 4.2 implies Theorem 4.1.

Now we proceed to the proof of Theorem 4.2. First we are going to estimate
the series

(4.6) G(s) =

∞∑
1

μ(m)

ms
(logm)k = (−1)k

(
1

ζ(s)

)(k)

for k � 0 and s = σ + it, σ > 1. Put ζ∗(s) = (s − 1)ζ(s) and recall that its
derivatives were estimated in (2.8). We also need a lower bound for ζ∗(s). To this
end we use the Euler product for ζ(s) giving

1 �
∏
p

(
1 +
(
1 + pit + p−it

)2
p−σ
)

=
∏
p

(
1 +
(
3 + 2pit + 2p−it + p2it + p−2it

)
p−σ
)

� ζ(σ)3
∣∣ζ(σ + it)

∣∣4∣∣ζ(σ + 2it)
∣∣2.(4.7)

If |s− 1| is not very small, then |ζ(σ + 2it)| 	 log 2|s| by (2.7) with l = 0, so (4.7)
yields |ζ(s)| � (σ − 1)3/4(log 2|s|)−1/2. Hence

(4.8) |ζ∗(s)| � (σ − 1)3/4|s|
(
log 2|s|

)−1/2
.

Clearly (4.8) also holds if |s− 1| is small by (2.7) with l = 0. We have

(−1)kG(s) =

(
s− 1

ζ∗(s)

)(k)

= (s− 1)

(
1

ζ∗(s)

)(k)

+ k

(
1

ζ∗(s)

)(k−1)

and by the formula from the differential calculus(
1

f

)(k)

=
k!

f

∑
a1+2a2+···=k

(a1 + a2 + · · · )
a1!a2! · · ·

(
−f ′

1!f

)a1
(
−f ′′

2!f

)a2

· · ·

with f = ζ∗ we get (
1

ζ∗(s)

)(k)

	 (σ − 1)−
3
4 (k+1)

(
log 2|s|

)κ
|s| ,
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4. ELEMENTARY PRIME NUMBER THEOREM 17

with some κ depending on k, specifically κ = 1
2 (5k + 1). Hence

(4.9) G(s) 	 (σ − 1)−
3
4 (k+1)

(
log 2|s|

)κ
.

Next from the estimate (4.9) for the infinite series (4.6) we derive an estimate
for the finite sum

(4.10) F (x) =
∑
m�x

μ(m)

mσ
(logm)k, x > 1, k � 1.

But first we smooth out at the endpoint of summation by means of the function
Δ(y) whose graph is given by Figure 4.1 with 0 < δ � 1 to be chosen later.

0 1

1

1 + δ

Figure 4.1

We have

(4.11) F (x) =
∑
m

μ(m)

mσ
(logm)kΔ

(
logm

log x

)
+O

(
δ(log x)k+1

)
.

Let Δ̂(u) be the Fourier transform of Δ(|y|), that is;

Δ̂(u) =

∫ ∞

−∞
Δ(|y|) e(−uy) dy =

sinπu(2 + δ)

πu
· sin πuδ

πuδ

	 min

(
1,

1

|u| ,
1

δu2

)
	 1

1 + |u|+ δu2
,(4.12)

where e(u) = exp(2πiu). By Fourier inversion we have

(4.13) Δ(y) =

∫ ∞

−∞
Δ̂(u) e(uy) du.

Introducing (4.13) to (4.11) we get

F (x) =

∫ ∞

−∞
Δ̂(u)G

(
σ +

2πiu

log x

)
du+O

(
δ(log x)k+1

)
	 (σ − 1)−

3
4 (k+1)

∫ ∞

0

logκ(2 + u)

1 + u+ δu2
du+ δ(log x)k+1

	 (σ − 1)−
3
4 (k+1)

(
log

1

δ

)κ+1

+ δ(log x)k+1.

Choosing δ = (log x)−k−1 we get (for all x > 1)

(4.14) F (x) 	 (σ − 1)−
3
4 (k+1)(log log 3x)κ+1.
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18 4. ELEMENTARY PRIME NUMBER THEOREM

Finally, by partial summation we obtain

M(x) =
∑
m�x

μ(m) =

∫ x

1

yσ

(log y)k
dF (y)

	 xσ(log x)−k(σ − 1)−
3
4 (k+1)(log log 3x)κ+1

	 x(log x)
3−k
4 (log log 3x)κ+1

by choosing σ = 1 + 1/ log x. This completes the proof of (4.2).

Exercise. Derive the estimates∑
m�x

μ(m)

m
	 (log x)−A,

∑
m�x

μ(m)

m
logm = −1 +O

(
(log x)−A

)
for all x � 2 and any fixed A � 0, the implied constant depending only on A.

For the lower bound of ζ(s) we have used the trigonometric inequality

(4.15) (1 + 2 cosx)2 = 3 + 4 cosx+ 2 cos 2x � 0.

The important feature of (4.15) is that all the coefficients are non-negative and at
least one of them is strictly larger than the coefficient at cos 0 = 1. Specifically in
the above case we have 3 < 4. If we could reduce the ratio 3/4, then we would only
need to use derivatives of ζ(s) of smaller order.

Now we are going to show weaker results by applying the following inequality

(4.16) (1 + cos 3x)(1 + 2 cosx)2

= 3 + 5 cosx+ 4 cos 2x+ 3 cos 3x+ 2 cos 4x+ cos 5x � 0,

which has a better ratio 3/5. This will be sufficient to employ only ζ(s), ζ ′(s), and
ζ ′′(s). By the Euler product we get

1 �
∏
p

(
1 +

1

2
(p3it + p−3it)(1 + pit + p−it)2p−σ

)

� ζ(σ)3
∣∣ζ(σ + it)

∣∣5∣∣ζ(σ + 2it)
∣∣4∣∣ζ(σ + 3it)

∣∣3∣∣ζ(σ + 4it)
∣∣2∣∣ζ(σ + 5it)

∣∣.
If |s− 1| is not very small, then ζ(σ + nit) 	 log 2|s| for n = 2, 3, 4, 5, giving

(4.17) |ζ(s)| � (σ − 1)3/5
(
log 2|s|

)−2
.

Hence by (2.7) we get

(4.18) G(s) =

(
1

ζ(s)

)′′
= 2

ζ ′(s)2

ζ(s)3
− ζ ′′(s)

ζ(s)2
	 (σ − 1)−9/5

(
log 2|s|

)10
.

If |s − 1| is very small, then by (2.7) we have ζ(l)(s) � |s − 1|−l−1 and the for-
mula (4.18) yields G(s) 	 |s − 1|−1 	 (σ − 1)−1. Actually one can see that
G(s) 	 1 if |s− 1| is small. Therefore

G(s) =
∞∑
1

μ(m)

ms
(logm)2 	 (σ − 1)−9/5(log 2|s|)10

for all s = σ + it with σ > 1. Hence we derive an estimate for the finite sum

F (x) =
∑
m�x

μ(m)

mσ
(logm)2
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4. ELEMENTARY PRIME NUMBER THEOREM 19

as follows:

(4.19)

F (x) =

∫ ∞

−∞
Δ̂(u)G

(
σ +

2πiu

log x

)
du+O

(
δ(log x)3

)

	 (σ − 1)−9/5

∫ ∞

0

log10(2 + u)

1 + u+ δu2
du+ δ(log x)3

	 (σ − 1)−9/5

(
log

1

δ

)11

+ δ(log x)3.

Choosing δ = (log x)−3 we find that

(4.20) F (x) 	 (σ − 1)−9/5(log log 3x)11, x � 2.

Note that F (x) = 0 if 1 � x < 2. By partial summation we get

M(x) =
∑
m�x

μ(m) =

∫ x

2

yσ

(log y)2
dF (y)

	 xσ(log x)−2(σ − 1)−9/5(log log 3x)11.

Choosing σ = 1 + 1/ log x we obtain

(4.21) M(x) 	 x(log x)−1/5(log log 3x)11, x � 2.

Finally choosing K = log x in (4.5) we infer by (4.21) the PNT in the following
form

(4.22) ψ(x) = x+O
(
x(log x)−1/5(log log 3x)13

)
.

There are trigonometric polynomials of the above type which have still smaller
ratio of the first two coefficients. For example

(1 + cos 4x)(1 + 2 cosx)4 = 20 + 36 cosx+ . . . � 0

has the ratio 20/36 = 5/9 < 3/5. For 0 < a < 1 we have

1 + 2

∞∑
m=1

am cos(mx) =
1− a2

1− 2a cosx+ a2
> 0.

This has the ratio 1/2a, which is close to 1
2 as a → 1.

Question. Does there exist a trigonometric polynomial

T (x) = 1 + a1 cosx+ a2 cos 2x+ · · ·+ an cosnx � 0

with am � 0 for all m and am > 2 for some m? This does not happen for squares
of polynomials. Indeed, if

P (x) =
∑
l

al cos lx, al = a−l,

then

2P 2(x) =
∑
k

∑
l

akal
(
cos(k + l)x+ cos(k − l)x

)
=
∑
m

Am cosmx,

with

Am =
∑

k+l=m

akal +
∑

k−l=m

akal =
∑
k

ak(am−k + am+k).
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20 4. ELEMENTARY PRIME NUMBER THEOREM

Therefore we have

|Am| � 1

2

∑
k

(a2k + a2m−k + a2k + a2m+k) = 2
∑
k

a2k = A0

for every m. Hence |Am +A−m| � 2A0.
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CHAPTER 5

The Riemann Memoir

In 1859, B. Riemann [Rie59] wrote a short paper (8 pages) called “On the
number of primes less than a given magnitude” (in German) in which he expressed
fundamental properties of ζ(s) in the complex variable s = σ + it. We state these
in the modern forms.

A. The function ζ(s) defined in s > 1 by

ζ(s) =
∑

n−s

has analytic continuation to the whole complex plane, and it is holomorphic except
for a simple pole at s = 1 with residue 1.

B. The functional equation holds

π− s
2Γ
(s
2

)
ζ(s) = π

s−1
2 Γ

(
1− s

2

)
ζ(1− s)

where Γ(s) denotes the gamma function of Euler, see Appendix B
C. The zeta function has simple real zeros at s = −2, −4, −6, . . . , which are

called trivial zeros, and infinitely many non-trivial zeros of the form

ρ = β + iγ, 0 � β � 1, γ ∈ R.

The number N(T ) of non-trivial zeros of height 0 < γ < T satisfies

N(T ) =
T

2π
log

T

2πe
+O(log T ), T � 2.

D. The product formula holds

s(s− 1)π− s
2Γ
(s
2

)
ζ(s) = e−Bs

∏
ρ

(
1− s

ρ

)
es/ρ

with
B = 1 +

γ

2
− log 2

√
π.

E. The prime numbers formula holds for x > 1,

ψ�(x) =
∑
n�x

�
Λ(n) = x−

∑
ρ

xρ

ρ
− log 2π − 1

2
log

(
1− 1

x2

)
.

We shall explain the convergence issues in Corollary 10.3.
F. The Riemann Hypothesis. Every non-trivial zero of ζ(s) is on the line Re s =

1/2, i.e.,

ρ =
1

2
+ iγ.
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CHAPTER 6

The Analytic Continuation

By collecting the odd and the even terms separately we arrange the following
alternating series

(1− 21−s)ζ(s) = −
∞∑
1

(−1)nn−s.

This yields the analytic continuation of ζ(s) to the half-plane σ > 0. It also shows
that s = 1 is a simple pole of ζ(s) with residue 1, and that ζ(s) is negative on the
segment 0 < σ < 1, t = 0.

We have

s

∫ n+1

n

x−s−1 dx =
1

ns
− 1

(n+ 1)s
.

Hence

s

∫ n+1

n

[x]

xs+1
dx = n

(
1

ns
− 1

(n+ 1)s

)
.

Summing over n = 1, 2, . . . we obtain

ζ(s) = s

∫ ∞

1

[x]

xs+1
dx =

s

s− 1
− 1

2
− s

∫ ∞

1

ψ(x)

xs+1
dx

=
1

s− 1
+

1

2
− s(s+ 1)

∫ ∞

1

(∫ x

1

ψ(y) dy

)
dx

xs+2

where ψ(x) = x − [x] − 1
2 . Since the integral of ψ(y) is bounded, the last integral

in x converges absolutely if σ > −1 giving the analytic continuation of ζ(s) to the
half-plane σ > −1. Note that

(6.1) ζ(0) = −1

2
.

Moreover,

lim
s→1

(
ζ(s)− 1

s− 1

)
=

1

2
−
∫ ∞

1

ψ(x)

x2
dx =

1

2
− lim

N→∞

∫ N

1

x− [x]− 1
2

x2
dx

=
1

2
− lim

N→∞

[
logN −

N∑
n=1

1

n
+

N − 1

N
− 1

2
+

1

2N

]

= lim
N→∞

(
N∑

n=1

1

n
− logN

)
= γ,

where γ = 0.577 . . . is the Euler constant. Hence

(6.2) ζ(s) =
1

s− 1
+ γ +O(|s− 1|), as s → 1.
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24 6. THE ANALYTIC CONTINUATION

If we start summing from n = N, N + 1, . . . , we get the formula

(6.3) ζ(s) =
N∑
1

n−s +
N1−s

s− 1
− 1

2
N−s − s(s+ 1)

∫ ∞

N

(∫ x

N

ψ(y) dy

)
dx

xs+2
.

Hence we get the approximation

(6.4) ζ(s) =
∑
n�N

n−s +
N1−s

s− 1
− 1

2
N−s +O

(
|s(s+ 1)|
σ + 1

N−σ−1

)
,

which is valid for σ > −1 and N � 1, the implied constant being absolute.
Suppose s = σ+it with σ � 0 and |t| � 2T . If N � T � 1, then we can evaluate

the partial sum in (6.4) by applying (2.18) with h(n) = n−σ and g(n) = (t/2π) logn.
We get ∫ N

T

x−s dx+O(T−σ) =
N1−s − T 1−s

1− s
+O(T−σ).

Hence (6.4) yields

Proposition 6.1. For s = σ + it with σ � 0, |t| � 2T and T � 1 we have

(6.5) ζ(s) =
∑
n�T

n−s +
T 1−s

s− 1
+O(T−σ),

where the implied constant is absolute.
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CHAPTER 7

The Functional Equation

We follow the original ideas of Riemann which make use of the modularity of
the theta series

(7.1) θ(x) =
∑
n∈Z

e−πn2x, x > 0.

To this end we apply the Poisson formula∑
n∈Z

f(n) =
∑
n∈Z

f̂(n)

with f(u) = e−πu2x. The Fourier transform of this function is

f̂(v) =

∫ ∞

−∞
e−πu2x e(−uv) du =

∫ ∞

−∞
exp(−πu2x− 2πiuv) du

= e−πv2/x

∫ ∞

−∞
e−πx(u+iv/x)2 du

= e−πv2/x

∫ ∞

−∞
e−πxu2

du = x− 1
2 e−πv2/x.

Hence the theta series satisfies the modular equation

(7.2) θ(x) = x− 1
2 θ(x−1).

Putting

ω(x) =

∞∑
n=1

e−πn2x

we get

(7.3) ω(x−1) = x
1
2ω(x) +

1

2
(x

1
2 − 1).

Now we are ready to implement the ideas of Riemann. We start with the
equation

π− s
2Γ
(s
2

)
n−s =

∫ ∞

0

e−πn2xx
s
2
dx

x

for n = 1, 2, 3, . . . . Hence

π− s
2Γ
(s
2

)
ζ(s) =

∫ ∞

0

ω(x)x
s
2
dx

x
=

∫ ∞

1

ω(x)x
s
2
dx

x
+

∫ 1

0

ω(x)x
s
2
dx

x

=

∫ ∞

1

ω(x)x
s
2
dx

x
+

∫ ∞

1

(
x

1
2ω(x) +

1

2
(x

1
2 − 1)

)
x− s

2
dx

x
.
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26 7. THE FUNCTIONAL EQUATION

In the last integral we changed x to x−1 and applied (7.3). This yields

(7.4) π− s
2Γ
(s
2

)
ζ(s) =

∫ ∞

1

ω(x)(x
s
2 + x

1−s
2 )

dx

x
+

1

s(s− 1)
.

Since ω(x) 	 e−πx for x � 1, the above integral converges absolutely in the whole
complex s-plane. This gives the analytic continuation of ζ(s) to the whole complex
s-plane. In equation (7.4), the poles of Γ( s2 ) at the negative even numbers are
cancelled by the zeros of ζ(s) at s = −2, −4, −6, . . . , the trivial zeros of ζ(s).

The right-hand side of (7.4) is invariant under the change s to 1− s, so we get
the functional equation

(7.5) π− s
2Γ
(s
2

)
ζ(s) = π− 1−s

2 Γ

(
1− s

2

)
ζ(1− s).

Purchased from American Mathematical Society for the exclusive use of Doron Zeilberger (zldrxj)
Copyright 2017 American Mathematical Society. Duplication prohibited. Please report unauthorized use to cust-serv@ams.org.
Thank You! Your purchase supports the AMS' mission, programs, and services for the mathematical community.



CHAPTER 8

The Product Formula over the Zeros

We consider the entire function

ξ(s) = s(s− 1)π− s
2Γ
(s
2

)
ζ(s)

= 1 + s(s− 1)

∫ ∞

1

ω(x)(x
s
2 + x

1−s
2 )x−1 dx.

(8.1)

Our goal is to prove the formula

(8.2) ξ(s) = e−Bs
∏
ρ

(
1− s

ρ

)
es/ρ

where ρ = β + iγ runs over the zeros of ζ(s) that are in the strip 0 � β � 1.
We begin by showing some basic results for entire functions of finite order, that

is for holomorphic functions f : C → C which satisfy the upper bound

(8.3) |f(z)| � αeβ|z|
γ

for all z ∈ C,

with some positive constants α, β, γ. The infimum of the exponents γ in (8.3) is
called the order of f .

For example our function ξ(s) given by the integral (8.1) satisfies

|ξ(s)| 	 1 +
∣∣s(s− 1)

∣∣ ∫ ∞

1

ω(x)(x
σ
2 + x

1−σ
2 )x−1 dx

	 1 +
∣∣s(s− 1)

∣∣ ∫ ∞

1

e−πx(x
σ
2 + x

1−σ
2 )x−1 dx

	 1 +
∣∣s(s− 1)

∣∣(1 + |σ|
)π|σ|

	
(
1 + |s|

)π|s|
= exp

(
π|s| log

(
1 + |s|

))
.

Therefore ξ(s) has order at most 1. However, for s = σ → ∞ we have

ξ(σ) ∼ σ2π−σ
2 Γ
(σ
2

)
∼ 2π

1
2 σ

3
2

( σ

2πe

)σ
2

so ξ(s) has order just 1.

Lemma 8.1. An entire function f(z) of order κ which does not have zeros is of
type

(8.4) f(z) = eg(z)

where g(z) is a polynomial of degree κ.

Proof. The function log f(z) exists and is entire, so

g(z) = log f(z) =

∞∑
n=0

anz
n
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28 8. THE PRODUCT FORMULA OVER THE ZEROS

where the power series converges absolutely. By (8.3) we get

Re g(z) = log |f(z)| � β|z|γ + logα.

We use this inequality on the circle z = r e(θ), 0 � θ < 1. Letting an = bn + icn we
get

Re g(z) = b0 +

∞∑
1

(bn cos 2πnθ − cn sin 2πnθ)r
n.

Next, by the orthogonality of the trigonometric functions we obtain

bnr
n = 2

∫ 1

0

Re g
(
r e(θ)

)
cos(2πnθ) dθ.

Hence

|bn|rn � 2

∫ 1

0

∣∣∣Re g(r e(θ))∣∣∣ dθ
= 2

∫ 1

0

{∣∣∣Re g(r e(θ))∣∣∣+Re g
(
r e(θ)

)}
dθ − 2b0

= 4

∫ 1

0

max
{
0, Re g

(
r e(θ)

)}
dθ − 2b0

� 4(βrγ + logα)− 2b0.

Since r can be arbitrarily large we get bn = 0 for n > γ. Similarly, we show that
cn = 0 for n > γ. Therefore g(z) is a polynomial of degree less than or equal to γ.
This shows (8.4) and that κ = deg g is the order of f . �

Our next result (Jensen’s formula) gives a connection between the growth of a
holomorphic function and its zeros in a disc.

Lemma 8.2. Let f(z) be holomorphic in |z| � R. If f(0) �= 0 and f(z) �= 0 for
|z| = R, then∫ 1

0

log
∣∣f(R e(θ)

)∣∣ dθ = log
|f(0)|Rn

|z1 · · · zn|
=

∫ R

0

n(r)

r
dr + log |f(0)|

where z1, . . . , zn are all the zeros of f(z) (counted with multiplicities) and n(r) is
the number of zeros in |z| < r.

Proof. Let F (z) be such that

f(z) = (z − z1) · · · (z − zn)F (z),

so F (z) is holomorphic and it does not vanish in |z| � R. It suffices to prove the
formula for every factor separately. For F (z) we use logF (z) and get by Cauchy’s
theorem

logF (0) =
1

2πi

∫
|z|=R

logF (z)
dz

z
=

∫ 1

0

logF
(
R e(θ)

)
dθ.

Taking the real parts we conclude the formula∫ 1

0

log
∣∣F (R e(θ)

)∣∣ dθ = log |F (0)| = log

∣∣∣∣ f(0)

z1 · · · zn

∣∣∣∣ .
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8. THE PRODUCT FORMULA OVER THE ZEROS 29

For z − zj we have∫ 1

0

log
∣∣R e(θ)− zj

∣∣ dθ =
1

2πi

∫
|z|=R

log |z − zj |
dz

z

=
1

2πi

∫
|z|=R

{
log |z|+ log

∣∣∣1− zj
z

∣∣∣} dz

z
= logR

because the integral of the second part vanishes by Cauchy’s theorem since it is the
real part of the contour integral of z−1 log(1− zj/z). �

Corollary 8.3. If f(z) is entire and satisfies (8.3), then the number of zeros
in the circle |z| � R satisfies

(8.5) n(R) 	 Rγ , R � 1.

Proof. We apply Jensen’s formula in the circle |z| � eR for the function
z−mf(z), where m is the order of the zero of f(z) at z = 0. We get

n(R) � m+

∫ eR

0

n(r)

r
dr 	 Rγ �

Corollary 8.4. If f(z) is entire and satisfies (8.3), then

(8.6)
∑
ρ �=0

|ρ|−γ−ε < ∞,

where ρ runs over the zeros of f(z).

From now on we restrict our analysis to entire functions f(z) with order at
most one. Since the series

(8.7)
∑
ρ �=0

|ρ|−1−ε

converges, we can define the product

(8.8) P (z) =
∏
ρ �=0

(
1− z

ρ

)
ez/ρ.

Moreover, there are arbitrarily large numbers R such that

(8.9)
∣∣R− |ρ|

∣∣ > |ρ|−2 for every ρ �= 0.

Hence, by the convergence of the series (8.7), one can show the following lower
bound for the product (8.8):

|P (z)| � exp(−R1+ε), on |z| = R.

Dividing f(z) by the product in (8.8) we get an entire function F (z) = f(z)/P (z)
which has no zeros and it satisfies

|F (z)| 	 exp(R1+ε), on |z| = R.

Since R can be arbitrarily large, by the maximum principle this estimate implies
that F (z) is of order at most 1. So by Lemma 8.1 we conclude

Theorem 8.5. An entire function f(z) of order at most 1 with f(0) �= 0 has
the following product representation:

(8.10) f(z) = eA+Bz
∏
ρ

(
1− z

ρ

)
ez/ρ.
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30 8. THE PRODUCT FORMULA OVER THE ZEROS

Using the inequality |(1− η)eη| � e2|η| for η ∈ C we derive from (8.10)

Corollary 8.6. If the series
∑

|ρ|−1 converges, then

(8.11) |f(z)| 	 ec|z|

for all z ∈ C, where c is a positive constant.

This result has a more surprising formulation; if an entire function f(z) has
order 1, but fails to satisfy (8.11), then

(8.12)
∑
ρ

|ρ|−1 = ∞.

In particular f(z) must have infinitely many zeros.
As an example we have shown that ξ(s) is entire of order 1. Therefore Theo-

rem 8.5 yields the product (8.2) (we have ξ(0) = 1 by (8.1), so A = 0 in (8.10)).
By the above remarks we also learn that ζ(s) has infinitely many zeros ρ = β + iγ
in the critical strip 0 � Re s � 1.

Actually we can already see that ζ(s) does not vanish on the line Re s = 1.
Indeed, if ρ = 1 + iγ was a zero of ζ(s), then for s = σ + iγ we would have the
upper bound ζ(s) 	 σ − 1 as σ → 1+, which contradicts (4.17). By the functional
equation (7.5) it follows that ζ(s) does not vanish on the line Re s = 0.

Now, by taking the logarithmic derivative of (8.2) we get

(8.13)
ξ′

ξ
(s) = B +

∑
ρ

(
1

s− ρ
+

1

ρ

)
.

Hence

(8.14)
ζ ′

ζ
(s) = −B − 1

s− 1
+

1

2
log π − 1

2

Γ′

Γ

(s
2
+ 1
)
+
∑
ρ

(
1

s− ρ
+

1

ρ

)
.

For s = σ + it with −1 � σ � 2, t � 2, this together with Stirling’s bound, yields

(8.15)
ζ ′

ζ
(s) =

∑
ρ

(
1

s− ρ
+

1

ρ

)
+O(log t).

In particular for s = 2 + iT , T � 2, we get

(8.16)
∑
ρ

(
1

s− ρ
+

1

ρ

)
	 log T.

The real parts of the above fractions are

Re
1

s− ρ
=

2− β

(2− β)2 + (T − γ)2
� 1

4 + (T − γ)2
,

Re
1

ρ
=

β

β2 + γ2
� 0.

Hence, discarding some positive terms in (8.16) we get

(8.17)
∑
ρ

1

4 + (T − γ)2
	 log T.

Ignoring more terms in (8.17) we conclude

Purchased from American Mathematical Society for the exclusive use of Doron Zeilberger (zldrxj)
Copyright 2017 American Mathematical Society. Duplication prohibited. Please report unauthorized use to cust-serv@ams.org.
Thank You! Your purchase supports the AMS' mission, programs, and services for the mathematical community.



8. THE PRODUCT FORMULA OVER THE ZEROS 31

Corollary 8.7. The number of zeros ρ = β+ iγ of ζ(s) in the box 0 < β < 1,
T < γ � T + 1, is

(8.18) N(T + 1)−N(T ) 	 log T.

Now, evaluating (8.15) at s = 2+iT , subtracting, and applying (8.18) we derive

Theorem 8.8. For s in the strip −1 � Re s � 2 we have

(8.19)
ζ ′

ζ
(s) = − 1

s− 1
+
∑

|s−ρ|�1

1

s− ρ
+O

(
log(2 + |s|)

)
.

Similar arguments yield more general results of type (8.19). In Chapter 19 we
shall need the following

Theorem 8.9. Let f(z) be an entire function such that

|f(0)| � 1(8.20)

|f(z)| � eb(|z|+ 3)c|z|(8.21)

for all z ∈ C, where b, c are positive constants.
Then for |z| � R we have

(8.22)

∣∣∣∣∣∣
f ′

f
(z)− f ′

f
(0)−

∑
|ρ|<2R

(
1

z − ρ
+

1

ρ

)∣∣∣∣∣∣ � bR−1 + 64c log (R+ 3).

Proof. By Jensen’s formula (see Lemma 8.2) the number n(R) of zeros ρ of
f(z) in the circle |z| � R is bounded by

n(R) �
∫ 3R

0

n(r)

r
dr � b+ 3cR log (3R+ 3).

Then, by (8.10) the left-hand side of (8.22) is∣∣∣∣∣∣
∑

|ρ|�2R

(
1

z − ρ
+

1

ρ

)∣∣∣∣∣∣ �
∑

|ρ|�2R

R

(|ρ| −R)|ρ| � bR−1 + 64c log (R+ 3). �

We can apply Theorem 8.9 for Dirichlet polynomials.

Corollary 8.10. Let M(s) be given by

(8.23) M(s) =
∑

1�m�M

bmm−s

with b1 = 1 and |bm| � 1 if 2 � m � M . Then for Re s � 0 we have

(8.24)
M ′

M
(s) =

∑
|s−ρ|<1

1

s− ρ
+O(logM),

where ρ runs over the zeros of M(s) and the implied constant is absolute. Moreover,
the number of zeros ρ with |s− ρ| < 1 is O(logM).

Proof. First note that M(s) does not vanish in Re s � 2; in fact |M(s)| �
2− ζ(2). We take f(z) = 2M(z + s+ 3), so for any z ∈ C we have

|f(z)| � 2
∑

m�M

m−Re(z+s+3) � 2
∑

m�M

m−Re(z) � 2
∑

m�M

m|z| � 2M1+|z|.
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32 8. THE PRODUCT FORMULA OVER THE ZEROS

Moreover, we have |f(0)| = 2|M(s + 3)| > 2(2 − ζ(3)) > 1 and |f ′(0)| < 2|ζ ′(3)|.
By (8.22) we get

f ′

f
(z) =

∑
|ρ−s−3|<6

(
1

z − (ρ− s− 3)
+

1

ρ− s− 3

)
+O(logM)

for any |z| � 3. Taking z = −3 this gives

M ′

M
(s) =

∑
|ρ−s−3|<6

(
1

s− ρ
+

1

ρ− s− 3

)
+O(logM).

Now, the number of zeros ρ of M(s) with |ρ − s − 3| < 6 is equal to the number
of zeros of f(z) in the circle |z| < 6. Since this number is O(logM) by Jensen’s
fomula, the result follows. �

Remark. Modifying the above lines slightly, one can extend the result for
Dirichlet polynomials (8.23) with b1 = 1 and |bm| � m.
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CHAPTER 9

The Asymptotic Formula for N(T )

Recall that N(T ) denotes the number of zeros ρ = β+iγ of ζ(s) in the rectangle

(9.1) 0 < β < 1, 0 < γ � T.

Because of symmetry, the number of zeros with |γ| < T is just 2N(T ). Our goal is
to prove the following approximation

(9.2) N(T ) =
T

2π
log

T

2πe
+O(log T ), T � 2.

Since ζ(s) and ξ(s) (see (8.1)) have the same zeros (counted with multiplic-
ity), we shall work with ξ(s) rather than with ζ(s). By the principle of argument
variation we obtain

2πN(T ) = ΔL arg ξ(s)

where the curve L consists of four segments with endpoints 2, 2+ iT , −1+ iT , −1,
as in Figure 9.1. We assume that L is positively oriented, which means that as one
starts from the point 2, one goes upwards to the point 2 + iT and continues along
the curve, the rectangle (9.1) is on the left-hand side. Note that L surrounds the
boundary of (9.1), however there are no additional zeros of ξ(s) in the excess area.
We also assumed that ζ(s) has no zeros on the horizontal segments.

������

���� ����

�
�
�
�

1
2 1 2−1

−1 + iT
1
2 + iT

2 + iT

Figure 9.1
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34 9. THE ASYMPTOTIC FORMULA FOR N(T )

By the functional equation ξ(s) = ξ(1−s) it follows that ΔL arg ξ(s) is equal to
2ΔM arg ξ(s), where M is the part of L to the right of the critical line Re s = 1/2.
Now we compute the variation of the argument of

ξ(s) = s(s− 1)π− s
2Γ
(s
2

)
ζ(s)

for every factor separately along every segment. There is no variation along the
segment 1/2 � s � 2, because every factor is real. We have

ΔM arg s(s− 1) = arg

(
1

2
+ iT

)(
−1

2
+ iT

)
= arg−

(
1

4
+ T 2

)
= π,

ΔM arg π− s
2 = arg π− 1

4−
iT
2 = −T

2
log π,

and by Stirling’s formula

ΔMΓ
(s
2

)
= Im log Γ

(
1

2

(
1

2
+ iT

))

= Im

{(
−1

4
+

iT

2

)
log

(
1

4
+

iT

2

)
−
(
1

4
+

iT

2

)}
+O

(
1

T

)

= −π

8
+

T

2
log

T

2
− T

2
+O

(
1

T

)
.

Adding up the above results we arrive at the formula

(9.3) N(T ) =
T

2π
log

T

2π
− T

2π
+

7

8
+ S(T ) + O

(
1

T

)
where

S(T ) =
1

π
ΔM arg ζ(s).

Since ζ(s) does not vanish in the half-plane σ > 1 we have

(9.4) S(T ) =
1

π
arg ζ

(
1

2
+ iT

)
where the argument is defined as the continuous variation along the horizontal
segment from ∞+ iT to 1

2 + iT starting at ∞+ iT with the value 0.
It remains to estimate S(T ) which is one of the central problems in the theory

of the zeta function. The formula (9.2) will follow from (9.3) if we show that

(9.5) S(T ) 	 log T.

To this end we use the integral

(9.6) πS(T ) =

∫ 1
2+iT

∞+iT

Im
ζ ′

ζ
(s) ds.

For s = σ + iT with 2 � σ < ∞ we have∣∣∣∣ζ ′ζ (s)

∣∣∣∣ �∑
n

Λ(n)n−σ

so the integral (9.6) along the segment from ∞ + iT to 2 + iT is bounded by the
constant ∫ ∞

2

(∑
n

Λ(n)n−σ

)
dσ =

∑
n

Λ(n)

n2 log n
.
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9. THE ASYMPTOTIC FORMULA FOR N(T ) 35

On the segment N from 2 + iT to 1
2 + iT we use the expansion (8.19). Since∣∣∣∣∣

∫ 1
2+iT

2+iT

Im

(
1

s− ρ

)
ds

∣∣∣∣∣ = ∣∣ΔN arg(s− ρ)
∣∣ � π

and the number of zeros ρ with |s−ρ| � 1 is O(log T ) we conclude the bound (9.5).
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CHAPTER 10

The Asymptotic Formula for ψ(x)

For x > 0 we consider the sum

(10.1) ψ�(x) =
∑
n�x

�
Λ(n)

where the superscript � indicates that the last term for n = x is taken with half of
the value Λ(x). Note that this restriction makes a difference to ψ(x) only when x
is a power of a prime number. Our goal is to expand ψ�(x) into a series over the
zeros of ζ(s). Specifically we shall prove the following

Theorem 10.1. For x � 2 and T � 2 we have

(10.2) ψ�(x) = x−
∑
|γ|<T

xρ

ρ
− log 2π − 1

2
log

(
1− 1

x2

)
+R(x, T )

with

(10.3) R(x, T ) 	 x

T
(log xT )2 +min

(
log x,

x log x

{x}T

)
where {x} denotes the distance of x to the nearest prime power other than x, and
the implied constant is absolute.

We begin by proving a technical lemma which is known as Perron’s formula.
For y > 0 put

(10.4) δ(y) =

⎧⎪⎨
⎪⎩
0 if 0 < y < 1
1
2 if y = 1

2

1 if y > 1.

and for T � α > 0 put

(10.5) δα(y, T ) =
1

2πi

∫ α+iT

α−iT

ys
ds

s
.

Lemma 10.2. If y �= 1 then

(10.6)
∣∣δ(y)− δα(y, T )

∣∣ � yα min

(
1,

1

T | log y|

)
and for y = 1

(10.7)
∣∣δ(1)− δα(1, T )

∣∣ � α

T
.

Proof. If 0 < y < 1 we move the integration in (10.5) to the horizontal
segments s = σ ± iT with α < σ < ∞ getting∣∣δα(y, T )∣∣ � 1

πT

∫ ∞

α

yσ dσ =
yα

πT | log y| .
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38 10. THE ASYMPTOTIC FORMULA FOR ψ(x)

If we move the integration to the right arc of the circle |s| = |α+ iT | then we get∣∣δα(y, T )∣∣ � 1

2
yα.

Combining both estimates we get (10.6).
The case y > 1 is similar but we move the integration to the left side of the

segment s = α + it, −T < t < T . The pole at s = 0 contributes the residue 1,
showing (10.6).

Finally for y = 1 we compute as follows

δα(1, T ) =
1

2πi

(
log(α+ iT )− log(α− iT )

)
=

1

2π

(
arg(α+ iT )− arg(α− iT )

)
=

1

π
arg(α+ iT ) =

1

2
+

1

π
arg(T − iα).

This gives (10.7). �

Now we proceed to estimate ψ�(x). We start by

−ζ ′

ζ
(s) =

∑
n

Λ(n)n−s, if Re(s) > 1.

Let 1 < α � 2, x � 2, T � 2. Putting

(10.8) ψ(x, T ) =
1

2πi

∫ α+iT

α−iT

−ζ ′

ζ
(s)

xs

s
ds

we derive by Lemma 10.2∣∣ψ�(x)− ψ(x, T )
∣∣ �∑

n�x

Λ(n)
(x
n

)α
min

(
1,

1

T | log(x/n)|

)
+

α

T
Λ(x)

where Λ(x) = 0 unless x is a prime power. Let q �= x be the prime power which is
the nearest to x. This single term contributes

min

(
log x,

1

T

log x

log x/q

)
	 min

(
log x,

x log x

{x}T

)
.

For n �= x, n �= q, we have |n− x| � 1, so the sum is estimated by the integral∫
u�1

|u−x|�1

(log u)
(x
u

)α
min

(
1,

1

T | log(x/u)|

)
du 	 x

T
(log x)2

by choosing α = 1 + 1/ log x. Adding these estimates we get

(10.9) ψ�(x)− ψ(x, T ) 	 x

T
(log x)2 +min

(
log x,

x log x

{x}T

)
.

Next we need to evaluate ψ(x, T ). To this end we move the integration in (10.8)
to the left arbitrarily far away, getting two integrals over the horizontal segments
s = σ + it with −∞ < σ < α, t = ±T , and the contribution of the simple poles of

− ζ′

ζ (s)x
s/s at s = 1, s = ρ = β + iγ with |γ| < T , s = 0, and s = −2, −4, −6, . . .

The polar contribution is equal to

x−
∑
|γ|<T

xρ

ρ
− ζ ′(0)

ζ(0)
−

∞∑
m=1

x−2m

2m
= x−

∑
|γ|<T

xρ

ρ
− log 2π − 1

2
log

(
1− 1

x2

)
.
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10. THE ASYMPTOTIC FORMULA FOR ψ(x) 39

For the estimation of the horizontal integral we first assume that T is chosen so
that no zero ρ of ζ(s) has height near T . Specifically, changing T by adding an
absolutely bounded positive number, we may require

|T − γ| � (log T )−1

because N(T + 1)−N(T ) 	 log T . For s on such segment we get

(10.10)
ζ ′

ζ
(s) 	

(
log |s|

)2
by (8.19). Well, (8.19) yields the above only for s = σ ± iT with −1 � σ � 2,
however, an extension of (10.10) to all σ can be easily deduced by the functional
equation. Using (10.10) we find that the horizontal integrals are bounded by

T−1

∫ α

−∞
xσ log2

(
|σ|+ T

)
dσ 	 x

T

(log T )2

log x
.

Adding the above estimates we arrive at (10.2), but only for T specially chosen.
However, if T is changed by adding an absolutely bounded number, then the ap-
proximation (10.2) remains valid. This completes the proof of (10.2) for all T � 2.

Corollary 10.3. For x � 2 we have

(10.11) ψ�(x) = x−
∑
ρ

xρ

ρ
− log 2π − 1

2
log

(
1− 1

x2

)

where the series over the nontrivial zeros is evaluated as the limit

(10.12) lim
T→∞

∑
|γ|<T

xρ

ρ
.

Remark. Our estimation (10.2) shows that the limit (10.12) does exist for
every x � 2, but of course it is not a continuous function of x; a jump by 1

2 log p
occurs at x = pm. The formula (10.11) also holds true for 1 < x < 2, but the above
arguments require more attention.

By the Riemann hypothesis we get from (10.2) the estimate

(10.13) ψ(x) = x+ (x
1
2 log2 x).

Conversely, if

(10.14) ψ(x) = x+O(x
1
2+ε),

then the Riemann hypothesis is true. In fact, for any α � 1
2 the estimate

(10.15) ψ(x) = x+O(xα+ε)

is equivalent to the non-vanishing of ζ(s) in Re s > α. This can be easily seen by
using (10.2) in one direction, and in the other direction from the integral expressions

−ζ ′

ζ
(s) = s

∫ ∞

1

ψ(x)x−1−s dx

=
s

s− 1
+ s

∫ ∞

1

(
ψ(x)− x

)
x−1−s dx.

If (10.15) holds, then the last integral converges absolutely in Re s > α, so ζ(s) has
no zeros in this half-plane.

Purchased from American Mathematical Society for the exclusive use of Doron Zeilberger (zldrxj)
Copyright 2017 American Mathematical Society. Duplication prohibited. Please report unauthorized use to cust-serv@ams.org.
Thank You! Your purchase supports the AMS' mission, programs, and services for the mathematical community.



Purchased from American Mathematical Society for the exclusive use of Doron Zeilberger (zldrxj)
Copyright 2017 American Mathematical Society. Duplication prohibited. Please report unauthorized use to cust-serv@ams.org.
Thank You! Your purchase supports the AMS' mission, programs, and services for the mathematical community.



CHAPTER 11

The Zero-free Region and the PNT

It is clear from our previous considerations that the Prime Number Theorem

ψ(x) ∼ x as x → ∞

is equivalent to

ζ(1 + it) �= 0 for t ∈ R.

The latter was established in 1896 by Hadamard and de la Vallée Poussin. In fact
it was shown (by de la Vallée Poussin) that

(11.1) ζ(s) �= 0 for σ > 1− c/ log(2 + |t|),

where c is an absolute positive constant. Here we present an elegant proof (given
by Mertens) of this fact, which uses our familiar inequality

3 + 4 cos θ + 2 cos 2θ = (1 + 2 cos θ)2 � 0.

For σ > 1 we have
−ζ ′

ζ
(s) =

∑
Λ(n)n−s

so by the above inequality we get (because Λ(n) � 0)

(11.2) 3
−ζ ′

ζ
(σ) + 4

−ζ ′

ζ
(σ + it) + 2

−ζ ′

ζ
(σ + 2it) � 0.

From the pole of ζ(s) at s = 1 we get

−ζ ′

ζ
(σ) =

1

σ − 1
+O(1).

By (8.19) and the positivity of Re(1/(s− ρ)) we get

Re
−ζ ′

ζ
(σ + it) < Re

1

σ + it− ρ
+O

(
log(2 + |t|)

)
Re

−ζ ′

ζ
(σ + 2it) 	 log

(
2 + |t|

)
.

In the first inequality we kept only one term with a selected zero ρ = β+iγ, whereas
in the second inequality we dropped every term. Note that

Re
1

σ + it− ρ
=

σ − β

(σ − β)2 + (t− γ)2
=

1

σ − β

for s = σ + iγ. Inserting these results to (11.2) we get

3

σ − 1
>

4

σ − β
+O

(
log(2 + |γ|)

)
.
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42 11. THE ZERO-FREE REGION AND THE PNT

Since 4 > 3, this shows that β cannot be close to 1 if σ > 1 is close to one.
Specifically, choosing σ = 1 − c1/ log(2 + |γ|) with c1 sufficiently small to absorb
the term O(log(2 + |γ|)), we get

β < 1− c/ log(2 + |γ|)
where c is a small, positive constant. This proves (11.1).

Now we can derive in many ways the following

Theorem 11.1. For x � 2 we have

(11.3) ψ(x) = x+O
(
x exp(−c

√
log x)

)
where c is an absolute, positive constant.

Proof. One can get (11.3) quickly by the formula (10.2) with 2 � T � x
giving

ψ(x) = x−
∑
|γ|<T

xρ

ρ
+O

( x
T
(log x)2

)
.

By (11.1) we have |xρ| = |xβ | � x1−c/ log T and by (8.18)∑
|γ|<T

1

|ρ| 	 (log T )2.

Hence
|ψ(x)− x| 	 x(x−c/ log T + T−1)(log x)2.

Choosing T = exp
√
c log x we get (11.3) with a different constant c. �

Remarks. The best known zero-free region and corresponding error term for
the PNT are due to Korobov and Vinogradov (1957):

ζ(s) �= 0 if σ > 1− c(log t)−2/3, t � 2;(11.4)

ψ(x)− x 	 exp
(
− c(log x)3/5(log log x)−1/5

)
, x � 3.(11.5)

Exercise. Using (11.1) or (11.3) prove the following estimates (for x � 1)∑
m�x

μ(m) 	 x exp
(
− c
√
log x

)
(11.6)

∑
m�x

μ(m)

m
	 exp

(
− c
√
log x

)
,(11.7)

where c is an absolute, positive constant.
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CHAPTER 12

Approximate Functional Equations

Given two Dirichlet series

f(s) =
∞∑

n=1

ann
−s and g(s) =

∞∑
n=1

bnn
−s,

assume that they are connected by a functional equation of the type

f(s) = ε(s)g(1− s),

with ε(s) being the product of a constant, a power, and some gamma functions.
Then one can derive useful approximations to f(s) and g(s) by their partial sums
of considerably short length. For example, in case of the Riemann zeta function
Hardy and Littlewood proved in 1921 the following

Theorem 12.1. Let s = σ + it with 0 � σ � 1 and let 2πxy = t with x � 1,
y � 1. Then

(12.1) ζ(s) =
∑
n�x

n−s + ε(s)
∑
n�y

ns−1 +O(x−σ + yσ−1t
1
2−σ)

where

(12.2) ε(s) =
γ(1− s)

γ(s)
, γ(s) = π− s

2Γ
(s
2

)
,

and the implied constant is absolute.

By (6.5) we have the approximate expansion

(12.3) ζ(s) =
∑
n�T

n−s + O
(
T− 1

2

)
,

for s = 1
2 + it with T < |t| < 2T . Hence estimating trivially we derive

(12.4) ζ

(
1

2
+ it

)
	
(
|t|+ 1

) 1
2 .

On the other hand, the formula of Hardy-Littlewood offers approximations by
two Dirichlet polynomials which are much shorter. For example, choosing x = y =√
t/2π for t � 2π we obtain

(12.5) ζ

(
1

2
+ it

)
=

∑
n�

√
t/2π

n− 1
2−it + ε

(
1

2
+ it

) ∑
n�

√
t/2π

nit− 1
2 +O

(
t−

1
4

)

with |ε( 12 + it)| = 1. Estimating trivially we derive

(12.6) ζ

(
1

2
+ it

)
	
(
|t|+ 1

) 1
4 .

43

http://dx.doi.org/10.1090/ulect/062/12

Purchased from American Mathematical Society for the exclusive use of Doron Zeilberger (zldrxj)
Copyright 2017 American Mathematical Society. Duplication prohibited. Please report unauthorized use to cust-serv@ams.org.
Thank You! Your purchase supports the AMS' mission, programs, and services for the mathematical community.



44 12. APPROXIMATE FUNCTIONAL EQUATIONS

This is called the “convexity bound,” because it can be obtained directly by the
convexity principle of Phragmén-Lindelöf (with an extra factor log(2 + |t|)).

On the critical line σ = 1/2, the approximation of Hardy-Littlewood contains
an error term of order of magnitude x−1/2+y−1/2, which is as small as the last terms
of the partial sums, therefore this error term cannot be improved. However, stronger
approximations are possible by smoothly weighted partial sums. For example, we
have

Theorem 12.2. Let s = 1
2 + it and λ = s(1− s) = 1

4 + t2. Choose x > 0, y > 0

with 2πxy =
√
λ. Then we have

(12.7) ζ(s) =
∞∑

n=1

n−se−n/x + ε(s)
∞∑
n=1

ns−1e−n/y − Γ(1− s)x1−s +O
(
|s|−3/4

)
,

where the implied constant is absolute.

Proof. In fact we shall prove (12.7) with the error term O(|s|α−1), where α
is the exponent in the bound

(12.8) ζ(s) 	 |s|α, for Re s =
1

2
.

We begin by the first sum∑
n

n−se−n/x =
∑
n

n−s 1

2πi

∫
(1)

Γ(w)
(x
n

)w
dw

=
1

2πi

∫
(1)

Γ(w)xwζ(s+ w) dw.

Now we move the integration to the line Rew = −1/4. The simple poles at w = 1−s
and w = 0 contribute

(12.9) Γ(1− s)x1−s + ζ(s).

Next, on the line Rew = −1/4 we use the functional equation

ζ(s+ w) = ε(s+ w)ζ(1− s− w).

We write

ε(s+ w) = ε(s)

(
2π√

s(1− s)

)w (
1 + wρ(s, w)

)
,

say, where ρ(s, w) is holomorphic in the strip |Rew| � 1
4 . Accordingly we split the

resulting integral

1

2πi

∫
(−1/4)

Γ(w)xwε(s+ w)ζ(1− s− w) dw = ε(s)I1(s) + ε(s)Iρ(s),

with

I1(s) =
1

2πi

∫
(−1/4)

Γ(w)y−wζ(1− s− w) dw

Iρ(s) =
1

2πi

∫
(−1/4)

Γ(1 + w)y−wρ(s, w)ζ(1− s− w) dw.
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12. APPROXIMATE FUNCTIONAL EQUATIONS 45

To compute I1(s) we move the integration further to the line Rew = −3/4, then
expand ζ(1 − s − w) into Dirichlet series, and interchange the summation and
integration to get

(12.10) I1(s) = −
∑
n

ns−1e−n/y.

To estimate Iρ(s) we move to the line Rew = 0 and obtain

|Iρ(s)| �
1

2π

∫ +∞

−∞

∣∣Γ(1 + iu)ρ(s, iu)ζ(1− s− iu)
∣∣ du.

Here we have

ζ(1− s− iu) 	 |1− s− iu|α 	 |s|α(1 + |u|)α

Γ(1 + iu) 	 (1 + |u|) 1
2 exp

(
−π

2
|u|
)
.

To estimate ρ(s, iu) we use Stirling’s formula with a good error term. First we get

ε(s+ w)

ε(s)
= πwΓ

(
1
2 (1− s− w)

)
Γ
(
1
2 (1− s)

) ·
Γ( s2 )

Γ( s+w
2 )

= (2π)w
(
s(1− s)

)−w/2
{
1 +O

(
(1 + |w|) |w||s|

)}
.

For w = iu this yields ρ(s, iu) 	 |1 + iu|/|s|. Collecting the above results we
conclude that

(12.11) Iρ(s) 	 |s|α−1.

Adding the results we obtain the formula (12.7) with the error term (12.11).
The resulting formula (12.7) is self-improving. Indeed, applying (12.7) for x = y

and estimating trivially we get ζ(s) 	 |s|1/4 + |s|α−1. This yields (12.8) with
α = 1/4, and completes the proof of (12.7). �

Our proof of (12.7) can be generalized to obtain similar formulas in which the
smooth weight functions e−n/x, e−n/y are replaced by other pairs of functions sat-
isfying some functional properties. Actually one can keep all the resulting integrals
quite explicit and obtain an exact formula for ζ(s). Here is one of many formulas
of such form:

Proposition 12.3. Let G(u) be a holomorphic function in the strip |Reu| < 4,
G(u) even, and G(0) = 1 for normalization. Let X > 0. Then for 0 � Re s � 1 we
have

(12.12) ζ(s) =
∑
n

n−sVs

( n

X

)
+ ε(s)

∑
n

ns−1V1−s(nX) +R(s,X).

Here Vs(y) is the smooth weight function given by

(12.13) Vs(y) =
1

2πi

∫
(3)

γ(s+ u)

γ(s)
y−uG(u)

u
du

and R(s,X) is the polar term given by

(12.14) γ(s)R(s,X) =
G(1− s)

1− s
X1−s +

G(−s)

−s
X−s.
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46 12. APPROXIMATE FUNCTIONAL EQUATIONS

Remarks. The exact formula (12.12) discloses the functional equation ζ(s) =
ε(s)ζ(1− s), nevertheless it should not be called “an approximate functional equa-
tion.” One can differentiate or integrate (12.12) in the parameter X to produce
new desirable features.

There are many interesting choices of the test function G(u), for example

(12.15) G(u) =
(
cos

πu

A

)−A

, A � 4.
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CHAPTER 13

The Dirichlet Polynomials

1. General Properties

Let A = (an) be a sequence of complex numbers. The finite sum

A(s) =
∑

1�n�N

ann
−s

is called a Dirichlet polynomial of length N and coefficients an. The Dirichlet
polynomials have distinct properties which yield pretty good estimates on vertical
lines.

First observe that the product of Dirichlet polynomials of length N1, . . . , Nk

is a Dirichlet polynomial of length N = N1 · · ·Nk;⎛
⎝ ∑

n1�N1

a(1)n1
n−s
1

⎞
⎠ · · ·

⎛
⎝ ∑

nk�Nk

a(k)nk
n−s
k

⎞
⎠ =

∑
n�N

ann
−s

with

(13.1) an =
∑

n1···nk=n
n1�N1, ..., nk�Nk

a(1)n1
· · · a(k)nk

.

Hence the absolute mean value of the coefficients is bounded by the product of the
absolute mean values;

(13.2)
∑
n�N

|an| �

⎛
⎝ ∑

n1�N1

|a(1)n1
|

⎞
⎠ · · ·

⎛
⎝ ∑

nk�Nk

|a(k)nk
|

⎞
⎠ .

For the square mean value of the coefficients

(13.3) G(A) =
∑
n�N

|an|2

we get

G(A) �
∑

· · ·
∑

n1···nk=nk+1···n2k

|a(1)n1
· · · a(k)nk

| · |a(1)nk+1
· · · a(k)n2k

|

�
∑
n1

· · ·
∑
nk

|a(1)n1
· · · a(k)nk

|2τk(n1 · · ·nk).

Since τk(m) 	 mε, this gives

(13.4) G(A) 	 NεG(A1) · · ·G(Ak)

where the implied constant depends only on k and ε.
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48 13. THE DIRICHLET POLYNOMIALS

The derivatives of a Dirichlet polynomial are also Dirichlet polynomials given
by

A(k)(s) = (−1)k
∑
n�N

an(log n)
kn−s.

Note that the coefficients do not change much; the log n is a slowly increasing
function.

If A(s) is a Dirichlet polynomial not identically zero, then

1

A(s)
=
∑
m

bmm−s

is a Dirichlet series which converges absolutely in Re s � α for sufficiently large α
depending on the coefficients A = (an). To be explicit let us consider the series

(13.5) A(s) = 1 +
∞∑
n=2

ann
−s

which converges absolutely for sufficiently large σ = Re s. Let α be such that

(13.6)
∞∑

n=2

|an|n−α � 1

2
.

Then for Re s � α we have

1

A(s)
= 1 +

∞∑
k=1

(
−

∞∑
n=2

ann
−s

)k

= 1 +
∞∑

m=2

bmm−s

with
bm =

∑
n1···nr=m
n1,...,nr�2

(−1)ran1
· · · anr

.

We estimate bm as follows:

|bm| � mα
∞∑
r=1

( ∞∑
n=2

|an|n−α

)r

� mα.

Therefore the series

(13.7)
1

A(s)
= 1 +

∞∑
m=2

bmms

converges absolutely for Re s > α+ 1.
Similarly one can prove that the series

(13.8)
−A′(s)

A(s)
=

∞∑
q=2

cqq
−s

converges absolutely for Re s > α+ 1. Indeed we have

−A′(s)

A(s)
= −

(
logA(s)

)′
=

∞∑
k=1

1

k

(
−

∞∑
n=2

ann
−s

)k

.

Hence (13.8) holds with

|cq| � qα
∞∑
r=1

1

r

( ∞∑
n=2

|an|n−α

)r

� qα log 2.
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2. THE MEAN VALUE OF DIRICHLET POLYNOMIALS 49

2. The Mean Value of Dirichlet Polynomials

Using Cauchy’s inequality we can estimate the Dirichlet polynomial

(13.9) A(s) =
∑
n�N

ann
−s

on the line Re s = 0 trivially getting

(13.10) |A(it)|2 � GN

for any t ∈ R, where

(13.11) G = G(A) =
∑
n�N

|an|2.

This trivial bound can be improved on average:

Theorem 13.1. For T > 0 we have

(13.12)

∫ T

0

|A(it)|2 dt = TG+O(G
1
2H

1
2 )

where

(13.13) H = H(A) =
∑
n�N

n2|an|2,

and the implied constant is absolute.

Proof. Let f(t) be the piecewise linear function whose graph is given by
Figure 13.1. Then

0

1

−X T T +X

Figure 13.1

∫ T

0

|A(it)|2 dt �
∫

f(t)|A(it)|2 dt =
∑
m

∑
n

aman

∫
f(t)

(m
n

)it
dt.

For m = n (the diagonal terms) we get∫
f(t) dt = T +X.
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50 13. THE DIRICHLET POLYNOMIALS

For m �= n (the off-diagonal terms) we get by partial integration∫
f(t)

(m
n

)it
dt =

(
log

m

n

)−2
∫ T+X

−X

f ′(t) d
(m
n

)it
	 X−1

(
log

m

n

)−2

.

Hence∑
m �=n

aman

∫
f(t)

(m
n

)it
dt 	 X−1

∑
m �=n

|aman|
(
log

m

n

)−2

� X−1
∑
n

|an|2
∑

1�m<n

(
m

n−m

)2

	 X−1H.

Adding the diagonal contribution we see that the integral (13.12) is estimated from
above by

(13.14) TG+O(XG+X−1H).

Similarly we get (13.14) as a lower bound for the integral (13.12). Hence, choosing
X = (H/G)1/2 we get the formula (13.12). �

Estimating H by GN2 we get

Corollary 13.2. For T > 0 we have

(13.15)

∫ T

0

|A(it)|2 dt =
(
T +O(N)

)
G

where the implied constant is absolute.

This result shows that G is the mean value of |A(it)|2 on the segment 0 < t < T ,
provided T is somewhat larger than the length of the polynomial.

Sometimes we need estimates for sums A(s) whose coefficients an depend on s
in a steady fashion. By (13.15) we derive

Corollary 13.3. Suppose for T � t � 2T and n � N that we have

(13.16) |an(t)| � an, t|a′n(t)| � an.

Then

(13.17)

∫ 2T

T

∣∣∣∣∣∣
∑
n�N

an(t)n
it

∣∣∣∣∣∣
2

dt �
(
2T +O(N)

) ∑
n�N

|an|2.

Proof. Apply the Cauchy-Schwarz inequality to∣∣∣∣∣
∑
n

an(t)n
it

∣∣∣∣∣ �
∣∣∣∣∣
∑
n

an(T )n
it

∣∣∣∣∣+
∫ 2T

T

∣∣∣∣∣
∑
n

a′n(τ )n
it

∣∣∣∣∣ dτ. �

Corollary 13.4. For T � 2 we have

(13.18)

∫ T

0

∣∣∣∣ζ
(
1

2
+ it

)∣∣∣∣
2

dt = T log T +O
(
T (log T )

1
2

)
.

Proof. By the approximation (6.5) for s = 1
2 + it with 1

2T < t < T we have

ζ(s) =
∑
n�T

n−s +O(T− 1
2 ).
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3. LARGE VALUES OF DIRICHLET POLYNOMIALS 51

Hence

|ζ(s)|2 =

∣∣∣∣∣∣
∑
n�T

n−s

∣∣∣∣∣∣
2

+O(1)

and (13.12) shows that

∫ T

T/2

∣∣∣∣ζ
(
1

2
+ it

)∣∣∣∣
2

dt =
T

2

∑
n�T

1

n
+O

⎛
⎜⎝T +

⎛
⎝∑

n�T

1

n

⎞
⎠

1/2⎛
⎝∑

n�T

n

⎞
⎠

1/2
⎞
⎟⎠

=
T

2
log T +O

(
T (log T )

1
2

)
.

This implies the formula (13.18). �

Corollary 13.4 shows that the average value of |ζ( 12 + it)|2 is of size log t for
t � 2. There are more precise results of the form

(13.19)

∫ T

0

∣∣∣∣ζ
(
1

2
+ it

)∣∣∣∣
2

dt = T (log T + 2γ − 1 + log 2π) +O(T θ+ε)

where γ = 0.57 . . . is the Euler constant and 1
4 � θ � 1

2 . For example (13.19)
is known to hold with θ = 7/22. There is a conjecture that (13.19) holds with
θ = 1/4. In 1926, A. E. Ingham evaluated the fourth power moment

(13.20)

∫ T

0

∣∣∣∣ζ
(
1

2
+ it

)∣∣∣∣
4

dt =
T

2π2
(log T )4 +O

(
T (log T )3

)
.

Therefore the average value of |ζ( 12 + it)|4 is of size (log t)4, which is not compatible

with the average value of |ζ( 12 + it)|2.

3. Large Values of Dirichlet Polynomials

The question is: how often does A(s) take large values on a set of points s = sr
which are well-spaced? To address this question, first we are going to establish an
estimate for |A(sr)| in terms of an integral of |A(s)| over a short vertical segment
centered at s = sr. In fact we consider sums of type

(13.21) Ar =
∑

1�n�N

anfr(n)n
itr , N � 2,

where fr(n) are smooth functions which have relatively small derivatives.

Lemma 13.5. Suppose fr(x) is of C2-class on 1 � x � N with

(13.22) xa|f (a)
r (x)| � 2, a = 0, 1, 2.

Then

(13.23) |Ar| 	 (logN)

∫ ∞

−∞

∣∣A(itr − it)
∣∣(|t|+ 1

)−2
dt

where the implied constant is absolute.
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52 13. THE DIRICHLET POLYNOMIALS

Proof. One can extend 1
4fr(x) to be supported in [ 12 , 2N ] and satisfy (13.22).

Then the Mellin transform of fr(x) satisfies

f̂r(it) =

∫ ∞

0

fr(x)x
it−1 dx 	

(
|t|+ 1

)−2
logN.

By Mellin’s inversion, for every 1 � n � N we have

fr(n) =
1

2π

∫ ∞

−∞
f̂r(it)n

−it dt.

Hence

Ar =
1

2π

∫ ∞

−∞
f̂r(it)A(itr − it) dt.

This yields (13.23). �

Next, by Cauchy-Schwarz inequality (13.23) yields

(13.24) |Ar|2 	 (logN)2
∫ ∞

−∞

∣∣A(itr − it)
∣∣2(|t|+ 1

)−2
dt.

Let T = {t1, . . . , tR} be a set of points in the segment 0 < t < T with

(13.25) |tr − tr′ | � 1, if r �= r′.

Summing (13.24) over r = 1, . . . , R we get

R∑
r=1

|Ar|2 	 (logN)2
∫ ∞

−∞
|A(it)|2

R∑
r=1

(
|t− tr|+ 1

)−2
dt

	 (logN)2
∫ ∞

−∞
|A(it)|2

(
1 +

|t|
T

)−2

dt.

Now applying Corollary 13.2 we conclude the following

Theorem 13.6. Let T = {t1, . . . , tR} be a set of points in the segment 0 < t <
T such that (13.25) is true, and for every r let fr(x) be a function satisfying (13.22).
Then for any complex numbers an we have

(13.26)
R∑

r=1

∣∣∣∣∣∣
∑
n�N

anfr(n)n
itr

∣∣∣∣∣∣
2

	 (T +N)G(logN)2

where the implied constant is absolute.

Corollary 13.7. Let S = {s1, . . . , sR} be a set of points with

sr = σr + itr, σr � 0, 0 < tr < T,

which are well-spaced, i.e., |tr − tr′ | � 1 for r �= r′. Then

(13.27)

R∑
r=1

|A(sr)|2 	 (T +N)G(logN)2

where the implied constant is absolute.
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3. LARGE VALUES OF DIRICHLET POLYNOMIALS 53

Suppose that for every sr we have

(13.28) |A(sr)| � V.

Then (13.27) shows that (13.28) cannot happen too often;

(13.29) R 	 (T +N)GV −2(logN)2.
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CHAPTER 14

Zeros off the Critical Line

All the zeros ρ = β+ iγ of ζ(s) in the strip 0 � Re s � 1 are on the critical line
Re s = 1

2 . Although this statement (the Riemann Hypothesis) seems to be out of
reach for some time, we can prove that almost all zeros are arbitrarily close to the
critical line.

Theorem 14.1. Let 1
2 � α � 1, T � 3 and N(α, T ) denote the number of zeros

ρ = β + iγ with

(14.1) α � β < 1, 0 < γ � T.

We have

(14.2) N(α, T ) 	 T 4α(1−α)(log T )15.

In 1920, F. Carlson [Car21] proved (14.2) (up to the logarithmic factor). Our
arguments are a bit different, but they are based on the same principles.

Let s = σ + it be in the rectangle α � σ � 1, T < t � 2T . We begin by the
approximation (see (6.5))

(14.3) ζ(s) =
∑
n<T

n−s +O(T−α)

where the implied constant is absolute. It is expected that the partial sums

(14.4) M(s) =
∑

1�m�M

μ(m)m−s

yield good approximations to

1

ζ(s)
=

∞∑
m=1

μ(m)m−s

for s to the right of the critical line. Having this fact in mind we are going to
investigate the “mollified” zeta function ζ(s)M(s), which should be close to 1. For
s in the rectangle σ � α, T < t � 2T , we have

(14.5) M(s) 	 M1−α log T, if 1 � M � T.

Hence

ζ(s)M(s) =

⎛
⎝ ∑

1�n�T

n−s

⎞
⎠
⎛
⎝ ∑

1�m�M

μ(m)m−s

⎞
⎠+O(M1−αT−α log T )

= 1 +
∑

M<l�MT

all
−s +O(M1−αT−α log T )(14.6)
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56 14. ZEROS OFF THE CRITICAL LINE

with
al =

∑
mn=l

m�M,n�T

μ(m), |al| � τ (l).

According to a “folklore philosophy,” a sum of oscillating terms (in unbiased
fashion) should get cancellation which yields a bound with saving factor being about
the square root of the number of terms. Applying this to the polynomial

(14.7) A(s) =
∑

M<l�MT

all
−s

in (14.6) we would get ζ(s)M(s) = 1 + O(M
1
2−α+ε). This implies ζ(s) �= 0 for

σ � α and any α > 1
2 (the Riemann hypothesis), which is too good to hope for in

the near future. A good news is that one can establish almost the same things on
average over s = σ + it in the rectangle α � σ � 1, T � t � 2T .

For technical reasons we split the polynomial A(s) into partial sums AL(s) with
the extra restriction L < l � 2L. We need at most 2 log T such partial sums with
M � L � MT to cover the range M < l � MT . We get

(14.8) ζ(s)M(s) = 1 +
∑
L

AL(s) +O
(
(log T )−2

)
where M � L � MT with 1 � M � T (log T )−6. Hence, if s = ρ is a zero of ζ(s) in
the relevant rectangle, then

(14.9) |AL(ρ)| > (3 log T )−1

for some L. In other words, at least one of the polynomials AL(s) assumes a
relatively large value at s = ρ. For this reason we call AL(s) the zero detector
polynomial. On the other hand (13.29) shows that (14.9) cannot happen too often,
specifically the number RL of zeros ρ detected by (14.9) satisfies

RL 	 (T + L)

⎛
⎝ ∑

L<l�2L

|al|2l−2α

⎞
⎠ (log T )5.

Here the extra factor log T is introduced to account for the clusters of zeros which
are not well-spaced; see (8.18). Hence

RL 	 (T + L)L1−2α(log T )8 	
(
TM1−2α + (MT )2−2α

)
(log T )8.

Choosing M = T 2α−1(log T )−6, this gives RL 	 T 4α(1−α)(log T )14, and (14.2)
holds.

Actually the above choice of M requires M � 1, which means α � 1
2 +

3(log log T )/ log T . However, for α smaller, the estimate (14.2) is obvious;
N(α, T ) � N(T ) 	 T log T .

Corollary 14.2. Let Φ(T ) → ∞ as T → ∞. Then almost all zeros ρ = β+iγ
of ζ(s) are in the region

(14.10)

∣∣∣∣β − 1

2

∣∣∣∣ < Φ(T )(log log T )/ log T.

In 1942 A. Selberg proved that N(α, T ) 	 (α − 1
2 )

−1T if α > 1
2 , the implied

constant being absolute. Hence, almost all zeros satisfy |β − 1
2 | < Φ(T )/ logT .
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CHAPTER 15

Zeros on the Critical Line

Recall that N(T ) = N(0, T ) denotes the number of zeros ρ = β + iγ of ζ(s) in
the rectangle 0 < β < 1, 0 < γ � T , and that

N(T ) =
T

2π
log

T

2πe
+O(log T )

for T � 2. Denote by N0(T ) the number of zeros with β = 1
2 and 0 < γ � T . We

call these zeros the critical zeros. By numerical computations with bare hands, B.
Riemann showed that the first critical zero is

ρ1 =
1

2
+ iγ1, with γ1 = 14.13 . . .

The Riemann Hypothesis asserts that all non-real zeros are critical;

N0(T ) = N(T ).

Fifty five years later, G. H. Hardy proved that there are infinitely many critical
zeros, and in 1921 he and J. E. Littlewood [HL21] got a very good lower bound
for N0(T ):

Theorem 15.1. For T � 15 we have

(15.1) N0(T ) � T.

In this section we shall prove this bound, which will be then improved in Part 2
of these lectures.

The idea is to count the sign change of the normalized zeta function on the
critical line;

(15.2) Z(u) =
H( 12 + iu)

|H( 12 + iu)|
ζ

(
1

2
+ iu

)
.

Here H(s) denotes the local zeta function at the infinite place, precisely

(15.3) H(s) =
1

2
s(1− s)π−s/2Γ

(s
2

)
.

Recall the functional equation

(15.4) H(s)ζ(s) = H(1− s)ζ(1− s).

This implies that Z(u) is real and even for u ∈ R. Therefore, when Z(u) changes
sign, it yields a critical zero ρ = 1

2 + iγ in between, because H( 12 + iu) does not
vanish. Therefore we want to show that the sign change of Z(u) occurs quite often.
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58 15. ZEROS ON THE CRITICAL LINE

To this end we compare the two integrals

I(t) =

∫ t+Δ

t

Z(u) du(15.5)

J(t) =

∫ t+Δ

t

|Z(u)| du(15.6)

in the range T � t � 2T , where Δ is a sufficiently large absolute constant to be
chosen later. We need an upper bound for |I(t)| and a lower bound for J(t) on
average over a subset T ⊂ [T, 2T ].

We begin by estimating J(t), because it is quite easy. We have

J(t) =

∫ t+Δ

t

∣∣∣∣ζ
(
1

2
+ iu

)∣∣∣∣ du �
∣∣∣∣∣
∫ t+Δ

t

ζ

(
1

2
+ iu

)
du

∣∣∣∣∣
� Δ−

∣∣∣∣∣
∫ t+Δ

t

(
ζ

(
1

2
+ iu

)
− 1

)
du

∣∣∣∣∣
= Δ−

∣∣∣∣∣∣
∫ t+Δ

t

⎛
⎝ ∑

1<n�T

n− 1
2−iu

⎞
⎠ du

∣∣∣∣∣∣+O(ΔT− 1
2 )

= Δ−

∣∣∣∣∣∣
∑

1<n�T

1− n−iΔ

log n
n− 1

2−it

∣∣∣∣∣∣+O(ΔT− 1
2 )

by the approximation (12.3). Next, by (13.15) we get

∫ 2T

T

∣∣∣∣∣∣
∑

1<n�T

1− n−iΔ

log n
n− 1

2−it

∣∣∣∣∣∣
2

dt 	 T.

Combining the above estimates we derive using the Cauchy-Schwarz inequality that

(15.7)

∫
T
J(t) dt > Δ|T |+O

(
|T | 12T 1

2 +Δ|T |T− 1
2

)
where |T | is the measure of T and the implied constant is absolute.

An upper bound for |I(t)| is harder to get. We shall prove

Lemma 15.2. For Δ � 1 and T � Δ6 we have

(15.8)

∫ 2T

T

|I(t)|2 dt 	 ΔT

where the implied constant is absolute.

Assuming Lemma 15.2 we can complete the proof of Theorem 15.1 as follows.
First by Cauchy-Schwarz inequality we get

(15.9)

∫
T
|I(t)| dt 	

(
Δ|T |T

) 1
2

where the implied constant is absolute. Let T be the subset of [T, 2T ] for which

(15.10) |I(t)| = J(t).
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15. ZEROS ON THE CRITICAL LINE 59

This is the set of t’s such that Z(u) does not change sign in the interval (t, t+Δ).
Since

(15.11)

∫
T
|I(t)| dt =

∫
T
J(t) dt,

we deduce by comparing the bounds (15.7) and (15.9) that the measure of the set
T satisfies

(15.12) |T | 	 Δ−1T

where the implied constant is absolute. If Δ is sufficiently large we get |T | � 1
2T .

Hence the set S = [T, 2T ] \ T of points t with

(15.13) |I(t)| < J(t)

has measure |S| � 1
2T . Such set contains a sequence {t1, . . . , tR} of Δ-spaced

points of length R � T/2Δ. For every tr, the function Z(u) must change sign
in the segment tr < u < tr + Δ, hence there is a critical zero ρr = 1

2 + iγr with

tr < γr < tr+Δ. Therefore the number of critical zeros ρ = 1
2+iγ with T < γ < 2T

is at least T/2Δ− 1. This proves (15.1) by changing 2T to T .

It remains to prove Lemma 15.2. By the convexity bound ζ(s) 	 |s| 14 on the
critical line Re s = 1

2 , we arrange the integral (15.8) as follows

∫ 2T

T

|I(t)|2 dt =
∫ 2T

T

∣∣∣∣∣
∫ Δ

0

Z(t+ u) du

∣∣∣∣∣
2

dt

=

∫ Δ

0

∫ Δ

0

∫ 2T

T

Z(t+ u1)Z(t+ u2) dt du1 du2

=

∫ Δ

0

∫ Δ

0

∫ 2T

T

Z(t)Z(t+ u2 − u1) dt du1 du2 +O(Δ3T
1
2 )

=

∫ Δ

−Δ

(
Δ− |u|

) ∫ 2T

T

Z(t)Z(t+ u) dt du+O(Δ3T
1
2 ).

Recall that Z(t) is the normalized zeta function given by (15.2). Here the H-factors
can be evaluated quite precisely using Stirling’s formula, giving

H( 12 + it)H( 12 + it+ iu)

|H( 12 + it)H( 12 + it+ iu)|
=

(
2π

t

)iu/2(
1 +O

(
u2 + 1

T

))

for T < t < 2T and |u| � Δ, the implied constant being absolute. Hence using the

approximation (12.3) and the convexity bound ζ(s) 	 |s| 14 we obtain

Z(t)Z(t+ u) =
∑∑
1�m,n�T

(mn)−
1
2

(m
n

)it(2πm2

t

)iu/2

+O(Δ2T− 1
2 )

and ∫ 2T

T

|I(t)|2 dt =
∑∑
1�m,n�T

c(m,n)√
mn

+O(Δ4T
1
2 )

where

(15.14) c(m,n) =

∫ Δ

−Δ

(
Δ− |u|

) ∫ 2T

T

(m
n

)it(2πm2

t

)iu/2

dt du.
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60 15. ZEROS ON THE CRITICAL LINE

In the following lines we assume without mention that m,n run over positive
integers � T .

The integration in u gives∫ Δ

−Δ

(
Δ− |u|

)
yiu/2 du = Δ2

∫ 1

−1

(
1− |u|

)
yiuΔ/2 du

= 2Δ2

∫ 1

0

(1− u) cos

(
Δu

2
log y

)
du

= Δ2χ

(
Δ

4
log y

)

where χ(x) = (sinx/x)2. Hence (15.14) becomes

c(m,n) = Δ2

∫ 2T

T

(m
n

)it
χ

(
Δ

4
log

2πm2

t

)
dt.

For the diagonal terms m = n we get

c(m,m) = Δ2

∫ 2T

T

χ

(
Δ

4
log

2πm2

t

)
dt.

Hence the contribution of the diagonal terms is equal to

∑
1�m�T

c(m,m)

m
= Δ2

∑
1�m�T

m

∫ 2T/m2

T/m2

χ

(
Δ

4
log

2π

t

)
dt

� 2Δ2

∫ T

1

x

∫ 2T/x2

T/2x2

χ

(
Δ

4
log

2π

t

)
dt dx

= Δ2

∫ 2T

T/2

(∫ T/t

1/t

χ

(
Δ

4
log(2πy)

)
dy

y

)
dt

� Δ2

∫ 2T

T/2

(∫ ∞

0

χ

(
Δ

4
log(2πy)

)
dy

y

)
dt

=
3

2
Δ2T

∫ ∞

−∞
χ

(
Δ

4
z

)
dz = 6πΔT

which is admissible for (15.8). In the off-diagonal terms m �= n we integrate by
parts, getting

i c(m,n) log
m

n
= Δ2

∫ 2T

T

χ

(
Δ

4
log

2πm2

t

)
d
(m
n

)it
	 Δ2χ

(
Δ

4
log

πm2

T

)
+Δ2χ

(
Δ

4
log

2πm2

T

)

+Δ3

∫ 2T

T

∣∣∣∣χ′
(
Δ

4
log

2πm2

t

)∣∣∣∣ dtt .

Since χ(x) 	 min(1, x−1), the first two terms are bounded by Δc(m) with

c(m) = min

(
Δ,

∣∣∣∣log πm2

T

∣∣∣∣
−1

+

∣∣∣∣log 2πm2

T

∣∣∣∣
−1
)
.
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15. ZEROS ON THE CRITICAL LINE 61

Similarly the third term is bounded by

Δ2

∫ Δ log(πm2/T )

Δ log(2πm2/T )

∣∣∣χ′
(z
4

)∣∣∣ dz 	 Δc(m),

because χ′(x) 	 min(1, x−2). Hence we have

c(m,n) 	 Δc(m)
∣∣∣log m

n

∣∣∣−1

.

Since ∑
n�=m

n− 1
2

∣∣∣log m

n

∣∣∣−1

	 T
1
2 log T

and ∑
m

m− 1
2 c(m) 	 T

1
2 (log T )−1 +ΔT

1
4 ,

we conclude that the contribution of the off-diagonal terms is∑∑
m �=n

c(m,n)√
mn

	 ΔT
1
2 (log T )

(
T

1
2 (log T )−1 +ΔT

1
4

)
	 ΔT.

This completes the proof of Lemma 15.2 and Theorem 15.1.
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Part 2

The Critical Zeros after Levinson
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CHAPTER 16

Introduction

The bound (15.1) of Hardy and Littlewood was improved by A. Selberg [Sel42],
giving

(16.1) N0(T ) � T log T, T � 15.

This means that a positive proportion of zeros of ζ(s) rest on the line Re s =
1
2 . The implied constant in (16.1) can be determined, however it will be very
small. Selberg’s arguments follow these of Hardy-Littlewood in principle, but he
also introduced a number of innovations in the construction of the mollifier. Briefly
speaking, Selberg’s mollifier is the square of the Dirichlet polynomial which is a
smooth truncation of ζ(s)−1/2. On the critical line, the smoothing (rather than
the sharp cut as in Chapter 14) is powerful: it produces the gain of factor log T
in (16.1). This idea is indispensable in many current works on L-functions.

A different approach for showing the bound (16.1) was proposed by N. Levinson
[Lev74]. Although Levinson also applies a smoothed mollifier, he does not follow
the Hardy-Littlewood-Selberg set up. He makes use of the functional equation with
great finesse. Levinson’s approach seems to be a gamble, because it is not clear up
front that at the end the numerical constants are good enough to yield a positive
lower bound for N0(T ). In the Hardy-Littlewood-Selberg set-up there is no risk of
getting a negative result. However, the risk taken by Levinson turned out to be
rewarding. It yields a large proportion of the critical zeros. Specifically, Levinson
succeeded to show that at least 1/3 of the zeros are critical; precisely

(16.2) N0(T ) > κN(T ), κ = 0.3420.

Subsequently, B. Conrey [Con89] introduced several innovations and new inputs
from estimates for exponential sums (spectral theory of Kloosterman sums) to show
that at least 2/5 of the zeros are critical; precisely (16.2) holds with κ = 0.4088.
The best bound obtained so far is κ = 0.4128 due to S. Feng [Fen12].

Our presentation of Levinson’s method (including Conrey’s innovations) is di-
vided into two groups. In the first group (Chapters 17-22) we establish a general
lower bound (16.2) where κ is expressed by an integral of a certain Dirichlet polyno-
mial, see (22.8). Here the principles of the method are exposed. The second group
(Chapters 24-28) is devoted to the evaluation of the relevant integral, which we han-
dle differently than Levinson. In Chapters 23 and 29 we derive computer-friendly
formulas for special choices of crop functions and provide numerical values.
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CHAPTER 17

Detecting Critical Zeros

Put

(17.1) H(s) =
1

2
s(1− s)π− s

2Γ
(s
2

)
,

(17.2) ξ(s) = H(s)ζ(s) =
1

2
s(1− s)π− s

2Γ
(s
2

)
ζ(s).

The method of Levinson begins by writing the functional equation

(17.3) ξ(s) = ξ(1− s)

in the following form

(17.4) Y (s)ξ(s) = H(s)G(s) +H(1− s)G(1− s),

where Y (s) is a simple function satisfying Y (s) = Y (1− s) (a factor which slightly
modifies H(s)), and G(s) is a natural relative of ζ(s). For example, (17.4) holds
with Y (s) = 2 and G(s) = ζ(s). However this obvious choice yields poor results.
Of course, G(s) is not uniquely defined by the expression (17.4). Many interesting
results come out of (17.4) when G(s) is judiciously chosen. The original choice by
Levinson is (see the motivation in [Co])

(17.5) G(s) = ζ(s) + λζ ′(s)

where λ is a real number at our disposal. Then (17.4) holds with

(17.6) Y (s) = 2− λ

(
H ′

H
(s) +

H ′

H
(1− s)

)
.

This is quite simple asymptotically (see Lemma 18.1). Indeed Y (s) ∼ −λ log |s| as
|s| → ∞ in vertical strips. Hence Y (s) does not vanish for large |s|.

The key feature of the equation (17.4) is that

(17.7) Y (s)ξ(s) = 2ReH(s)G(s), if Re s =
1

2
.

Hence the critical zeros of ζ(s) are just the points s = ρ at which

(17.8) ReH(s)G(s) = 0, Re s =
1

2
,

except for a few zeros of Y (s). Equivalently, these are the points on the critical line
Re s = 1

2 with G(s) = 0, or G(s) �= 0 and

(17.9) argH(s)G(s) ≡ π

2
(mod π).

Therefore the problem reduces to the question of how often (17.9) occurs on the
line Re s = 1

2 .
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CHAPTER 18

Conrey’s Construction

J. B. Conrey [Con85] introduced more derivatives to G(s). He takes

(18.1) 2H(s)G(s) = ξ(s) +
∑
k odd

gkξ
(k)(s),

where gk are real numbers at our disposal, almost all vanishing. Note that G(s)
given by (18.1) is holomorphic in C except for a simple pole at s = 1. By the
functional equation (17.3) it follows that ξ(k)(s) = (−1)kξ(k)(1−s), so (18.1) yields

(18.2) ξ(s) = H(s)G(s) +H(1− s)G(1− s).

Moreover, for k odd ξ(k)(s) is purely imaginary on the line Re s = 1
2 , so (18.1)

yields

(18.3) ReH(s)G(s) = ξ(s), if Re s =
1

2
.

Hence the critical zeros of ζ(s) are exactly the points on the line Re s = 1
2 for which

either G(s) = 0, or G(s) �= 0 and

(18.4) argH(s)G(s) ≡ π

2
(mod π).

The derivatives of ξ(s) can be expressed by derivatives of ζ(s);

ξ(k)(s) =
∑

0�j�k

(
k

j

)
H(k−j)(s)ζ(j)(s).

Hence (18.1) becomes

(18.5) 2G(s) = ζ(s) +
∑∑
0�j�k
k odd

gk

(
k

j

)
H(k−j)

H
(s)ζ(j)(s).

We shall simplify G(s) by obtaining very strong approximations in the rectangle

(18.6) s = σ + it,
1

3
� σ � A, T � t � 2T,

with A � 3 and T � 2A.

Lemma 18.1. For s in the rectangle (18.6) and m � 0 we have

(18.7) H(m)(s) = H(s)

(
1

2
log

s

2π

)m(
1 +O

(
1

T

))
where the implied constant depends only on m and A.

Proof. It follows from Stirling’s formula. �
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70 18. CONREY’S CONSTRUCTION

Lemma 18.2. For s in the rectangle (18.6) we have

(18.8) ζ(j)(s) =
∑
l�T

(− log l)jl−s +O(T− 1
4 ),

where the implied constant depends only on j and A.

Proof. It follows from (6.3) and (2.18). �
Lemmas 18.1 and 18.2 yield

(18.9) H(s)−1ξ(k)(s) =
∑
l�T

(
1

2
log

s

2π
− log l

)k

l−s +O(T− 1
4 ).

Inserting (18.9) into (18.1) we obtain a clear expression for Conrey’s function

(18.10) G(s) =
∑
l�T

Q

(
log l

log T
+ δ(s)

)
l−s +O(T− 1

4 ),

where

(18.11) δ(s) =
log(2πT/s)

2 log T
	 1

log T

for s in the rectangle (18.6), and Q(x) is the polynomial

(18.12) Q(x) =
1

2
+

1

2

∑
k odd

gk(log T )
k

(
1

2
− x

)k

.

Since gk are real numbers, the absence of terms for k even translates to the sym-
metry equation

(18.13) Q(x) +Q(1− x) = 1.

Conversely, any real polynomial Q(x) which satisfies (18.13) can be written in the
form (18.12) with real coefficients gk.

The small perturbation by δ(s) in (18.10) is not essential, it can be isolated by
Taylor’s expansion. We write (18.10) in the form

(18.14) G(s) = L(s) + δ(s)L1(s) + L2(s) +O(T− 1
4 ),

where

L(s) =
∑
l�T

Q

(
log l

log T

)
l−s,(18.15)

L1(s) =
∑
l�T

Q′
(

log l

log T

)
l−s,(18.16)

L2(s) =
∑
l�T

δl(s)l
−s(18.17)

with

(18.18) δl(s) = Q

(
log l

log T
+ δ(s)

)
−Q

(
log l

log T

)
− δ(s)Q′

(
log l

log T

)
.

Note that the coefficients of L2(s) are very small; indeed we have

(18.19) δl(s), sδ
′
l(s) 	 (log T )−2.
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CHAPTER 19

The Argument Variations

Let T � 3 and fix U with

(19.1) T (log T )−
1
4 � U � T.

Let N01(T, U) denote the number of zeros of ζ(s) counted without multiplicity in
the segment

(19.2) ρ =
1

2
+ iγ, T � γ � T + U.

Some of these zeros can be also the zeros of G(s), which we are going to pass
around. Let C be the segment s = 1

2 + it, T � t � T + U with small circular dents
to the right centered at the common critical zeros of ζ(s) and G(s) as illustrated in
Figure 19.1. We assume that the circular dents are so small that ζ(s)G(s) does not

��

�
�
�
�

��

�
�
�
�

C

1
2 + i(T + U)

1
2 + iT

ζ(s) = G(s) = 0

ζ(s) = 0, G(s) �= 0

Figure 19.1

vanish in the dent, except at the center. The function f(s) = H(s)G(s) does not
vanish on C, so as s runs through C starting from 1

2 +iT and ending at 1
2 +i(T +U),

the argument of f(s) changes continuously. If the change is of π along a section of
C, then this section contains a point s with

arg f(s) ≡ π

2
(mod π).

This point is either a zero of ζ(s), or it is on the boundary of a circular dent centered
at a common zero of ζ(s) and G(s), in which case it also accounts for a zero of ζ(s).
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72 19. THE ARGUMENT VARIATIONS

Therefore we have the following lower bound for N01(T, U):

(19.3) N01(T, U) � 1

π
ΔC argH(s)G(s)− 1,

where ΔC arg stands for the continuous variation of the argument along C, starting
at s = 1

2 + iT and ending at s = 1
2 + i(T + U).

The factor H(s) alone changes its argument quickly, so in reality it supplies
almost all the critical zeros. Indeed, by Stirling’s formula one shows that

(19.4)
1

π
ΔC argH(s) =

U

2π
log

T

2π
+ O(U) = N(T, U) +O(U),

where N(T, U) is the number of all zeros ρ = β + iγ of ζ(s) with 0 < β < 1 and
T � γ � T + U counted with multiplicity. Hence (19.3) becomes

(19.5) N01(T, U) � N(T, U) +
1

π
ΔC argG(s) +O(U).

Next, let R be the closed rectangle that has C (with the small circular dents) as
its left side, and that has a right side that is sufficiently far (the segment Re s = A
with A a large constant). The orientation of the boundary ∂R is inherited from
C, so we move along ∂R clockwise (the orientation is “negative,” according to the
standard terminology). The argument variation of G(s) along ∂R is then equal to

(19.6) Δ∂R argG(s) = −2πNG(R)

where NG(R) denotes the number of zeros of G(s) inside R counted with multi-
plicity (we assume that G(s) does not vanish on ∂R).

We shall show that the variation of the argument of G(s) along the horizontal
sides of R and over the vertical side of R on the far right is small. The method is
similar to that applied to ζ(s) in Section 9, but there are some technical differences
because G(s) has no Euler product.

First we estimate the argument variation along the horizontal side C1 = {s =
σ + iT ; 1

2 � σ � A}. We have

(19.7) ΔC1
argG(s) =

∫ A+iT

1
2+iT

Im
G′

G
(s) ds.

It is clear by (18.1) that (s− 1)G(s) is entire of order one. Actually, it satisfies

(s− 1)G(s) 	 (|s|+ 3)μ|s| for all s ∈ C,

where μ is a positive constant.
Put s0 = A+ iT and f(z) = (z + s0 − 1)G(z + s0). By the above estimate, it

follows that f(z) satisfies (8.21) for all z ∈ C with some constants b, c 	 log T .
Now we assume that the polynomial Q(x) satisfies

(19.8) Q(0) = 1.

Then (18.14) yields

G(s0) = 1 +O

⎛
⎝ ∑

2�l�T

l−A

⎞
⎠+ O(1/ logT ) >

1

2
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19. THE ARGUMENT VARIATIONS 73

if A is sufficiently large. Hence f(0) = (s0−1)G(s0) satisfies (8.20). By Theorem 8.9
we derive

(19.9)
G′

G
(s) =

∑
ρ

(s− ρ)−1 +O(log T ) if |s− s0| � A,

where ρ runs over the zeros of G(s) in the circle |s− s0| � 2A. Introducing (19.9)
into (19.7) we conclude that

(19.10) ΔC1
argG(s) 	 log T,

because the argument variation of s−ρ is at most π and the number of ρ’s in (19.9)
is O(log T ). Similarly we estimate the argument variation along the horizontal side
C2 = {s = σ + i(T + U) ; 1

2 � σ � A}, getting
(19.11) ΔC2

argG(s) 	 log T.

Now we are going to estimate the argument variation along the vertical side
C3 = {s = A+ it ; T � t � T + U}. For s ∈ C3 we have

G(s) = L(s) +O(1/ logT ),

where L(s) is the Dirichlet polynomial (18.15). Moreover, we have

G′(s) = L′(s) +O(1/ logT ).

Since L(s) � 1 we get (see the arguments following (13.8))

G′

G
(s) =

L′

L
(s) +O(1/ logT ) =

∞∑
q=2

cqq
−s +O(1/ logT )

with cq 	 q. This gives

ΔC3
argG(s) =

∫ A+i(T+U)

A+iT

Im
G′

G
(s) ds

	
∞∑
q=2

|cq|(log q)−1q−A + U/ log T.

Hence

(19.12) ΔC3
argG(s) 	 U/ log T.

Subtracting the contributions (19.10), (19.11), and (19.12) from (19.6) we get

(19.13) ΔC argG(s) = −2πNG(R) +O(U/ logT ).

Finally, inserting this into (19.5) we get

(19.14) N01(T, U) � N(T, U)− 2NG(R) +O(U).
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CHAPTER 20

Attaching a Mollifier

Having performed the argument variations, we arrived in (19.14) to a problem
of counting zeros, not the critical zeros of ζ(s) but instead the zeros of G(s) in the
rectangle R. Moreover, we need an upper bound for NG(R) to get a lower bound
for N01(T, U). The new task is easier, because it can be reduced to estimates for the
relevant analytic functions. However, one cannot guarantee success; if the bound
for NG(R) exceeds one half of N(T, U), we end up with a negative lower bound for
N01(T, U). Therefore our treatment of NG(R) must not be wasteful.

Clearly NG(R) can only increase if we replace G(s) by

(20.1) F (s) = G(s)M(s)

where M(s) is any regular function in R. This extra factor M(s) may add zeros,
but hopefully not too many. On the other hand, M(s) is designed to dampen
the extra large values of G(s) so the product F (s) = G(s)M(s) is expected to be
smaller than G(s) and our intent to use classical methods of counting zeros by
estimating a contour integral becomes more promising. Naturally M(s) is called
“mollifier.” We shall consider a specific choice of M(s) which will be given by a
Dirichlet polynomial

(20.2) M(s) =
∑
m�X

c(m)m−s

with coefficients

(20.3) c(m) 	 m.

An important condition is that

(20.4) c(1) = 1.

This implies that logM(s) is given by an absolutely convergent Dirichlet series

(20.5) logM(s) =

∞∑
q=2

λ(q)q−s, if Re s � A,

where A is a large constant (see the arguments in Section 1 of Chapter 13). We
have

(20.6) NG(R) � NF (R).

Next we expand R to a slightly larger rectangle D so the zeros of F (s) in R
have an ample distance from the left side of D. Specifically we move the left side C
of R to the segment Ca = {s = a+ it ; T � t � T + U} with 1

3 � a < 1
2 . Then we

have

(20.7) n(T, U) +NF (R) � 1
1
2 − a

∑
ρ∈D

dist(ρ),
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76 20. ATTACHING A MOLLIFIER

where ρ runs over the zeros of F (s) in D with multiplicity and dist(ρ) denotes the
distance of ρ to the left side of D. Here, n(T, U) is the number of common zeros of
ζ(s) and G(s) on the segment s = 1

2 + it, T � t � T + U (the centers of the small
circular dents in C) counted with the multiplicity as it appears in G(s). By (20.7),
(20.6), and (19.14), we get

(20.8) N01(T, U)− 2n(T, U) � N(T, U)− 2
1
2 − a

∑
ρ∈D

dist(ρ) +O(U).

Let N00(T, U) denote the number of zeros of ζ(s) on the segment s = 1
2 + it,

T � t � T+U , which are not zeros of G(s), counted without multiplicity. Therefore
N00(T, U) � N01(T, U)− n(T, U), and (20.8) yields

(20.9) N00(T, U) � N(T, U)− 2
1
2 − a

∑
ρ∈D

dist(ρ) +O(U).

Recall that N(T, U) is the number of all zeros of ζ(s) in the box 0 < σ < 1,
T � t � T + U , counted with multiplicity;

(20.10) N(T, U) =
U

2π
log T +O(U).

It remains to estimate the sum of dist(ρ) over ρ in D.
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CHAPTER 21

The Littlewood Lemma

We evaluate the sum of dist(ρ) in (20.9) by the following formula

Lemma 21.1 (J. E. Littlewood, 1924). Let F (s) be a holomorphic function in
a rectangle D with sides parallel to the axis, not vanishing on the sides. Then

(21.1)
∑
ρ∈D

dist(ρ) =
1

2πi

∫
∂D

logF (s) ds.

Here the zeros ρ of F (s) are counted with multiplicity and logF (s) is a contin-
uous branch of the logarithm on ∂D, that is

(21.2) logF (s) = log |F (s)|+ i argF (s),

where the argument is defined by continuous variation starting with any fixed value
at a chosen point on ∂D and going through ∂D in the negative direction (clockwise).

Proof. We can assume that all the zeros ρ = β+iγ of F (s) in D have different
heights γ. This can be accomplished by small perturbations of the zeros and by
the continuity of both sides of (21.1) with respect to such perturbations. Removing
from D the horizontal segments which connect the zeros with the left side of D we
get a simply connected domain D′ free of zeros of F (s). Therefore there exists a
holomorphic branch of logF (s) in D′. Remove from D rounded strips Dρ of width
ε centered along the removed segments, as in Figure 21.1. Let C be the boundary

a+ iγ A+ iγεDρ ρ = β + iγ

Figure 21.1

of D \
⋃

ρDρ, negatively oriented. By Cauchy’s Theorem

1

2πi

∫
C
logF (s) ds = 0.
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78 21. THE LITTLEWOOD LEMMA

We have C = ∂D ∪
⋃

ρ ∂Dρ up to short segments at the left ends of Dρ. Hence

1

2πi

∫
∂D

logF (s) ds+
∑
ρ

1

2πi

∫
∂Dρ

logF (s) ds = O(ε).

For every ρ = β + iγ we have

1

2πi

∫
∂Dρ

logF (s) ds =
1

2πi

∫ β−ε

a

(
logF (σ + iγ − iε)− logF (σ + iγ + iε)

)
dσ

+O

(
ε log

1

ε

)
,

where the error term is obtained by estimating trivially the contribution of the
integral along the circular ending of Dρ.

Writing F (s) = (s− ρ)F1(s) in the strip Dρ, where F1(s) does not vanish, we
get

logF (σ + iγ − iε)− logF (σ + iγ + iε)

= log(σ − β − iε)− log(σ − β + iε) +O(ε)

= i arg(σ − β − iε)− i arg(σ − β + iε) + O(ε)

= −2πi+O
(
ε/(β − σ)

)
.

Integrating this over σ with a � σ � β − ε we get

1

2πi

∫
∂Dρ

logF (s) ds = a− β +O

(
ε log

1

ε

)
,

and
1

2πi

∫
∂D

logF (s) ds =
∑
ρ

(β − a) +O

(
ε log

1

ε

)
.

Finally, letting ε → 0 we complete the proof of (21.1). �
Note that the left side of (21.1) can be written as

(21.3)
∑
ρ∈D

dist(ρ) =

∫ A

a

n(σ) dσ

where n(σ) denotes the number of zeros ρ = β + iγ ∈ D with β � σ.
Assuming D = {s = σ+ it ; a � σ � A, T � t � T +U} we can write (21.1) as

follows:∑
ρ∈D

dist(ρ) =
1

2π

∫ T+U

T

(
logF (a+ it)− logF (A+ it)

)
dt

+
1

2πi

∫ A

a

(
logF

(
σ + i(T + U)

)
− logF (σ + iT )

)
dσ.

This is a real number, so we have

(21.4)
∑
ρ∈D

dist(ρ) =
1

2π

∫ T+U

T

(
log
∣∣F (a+ it)

∣∣− log
∣∣F (A+ it)

∣∣) dt
+

1

2π

∫ A

a

(
argF

(
σ + i(T + U)

)
− argF (σ + iT )

)
dσ.
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CHAPTER 22

The Principal Inequality

It remains to evaluate the sum of dist(ρ) in the inequality (20.9). To this end
we apply the Littlewood formula (21.4) for the product F (s) = G(s)M(s). We are
going to show that the integrals of log |F (A+it)|, argF (σ+iT ), arg(F (σ+i(T+U)))
yield small contributions, so that (21.4) simplifies to

(22.1)
∑
ρ∈D

dist(ρ) =
1

2π

∫ T+U

T

log
∣∣F (a+ it)

∣∣ dt+O(U/ logT ).

Actually, one can establish (22.1) with the much better error term O(log T ), but
we do not need a result stronger than (22.1).

First we deal with the horizontal integrations of argF (σ + iT ) and argF (σ +
i(T + U)). We have

argF (A+ iT )− argF (σ + iT ) =

∫ A+iT

σ+iT

Im
F ′

F
(s) ds.

Integrating in σ over the segment a � σ � A, we get

(A− a) argF (A+ iT )−
∫ A

a

argF (σ + iT ) dσ =

∫ A

a

(σ − a) Im
F ′

F
(s) ds.

We have already handled a similar integral in (19.7) for the function G(s) by using
the expansion (19.9). However, the mollifier M(s) also satisfies this expansion; see
Corollary 8.10. Therefore, by the same arguments, we get

(A− a) argF (A+ iT )−
∫ A

a

argF (σ + iT ) dσ = O(log T ).

Replacing T by T + U and subtracting we get∫ A

a

(
argF

(
σ + i(T + U)

)
− argF (σ + iT )

)
dσ = (a−A)ΔC3

argF (s) +O(log T ).

We have already handled ΔC3
argG(s) getting the bound (19.12). However, the

mollifier M(s) also satisfies the expansion (13.8), so the same bound (19.12) holds
for ΔC3

argF (s), and we get

(22.2)

∫ A

a

(
argF

(
σ + i(T + U)

)
− argF (σ + iT )

)
dσ 	 U/ log T.

Next we deal with the vertical integration of

log
∣∣F (A+ it)

∣∣ = log
∣∣G(A+ it)

∣∣+ log
∣∣M(A+ it)

∣∣.
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80 22. THE PRINCIPAL INEQUALITY

By the Dirichlet series expansion (20.5) we get∫ T+U

T

log
∣∣M(A+ it)

∣∣ dt = Re
∞∑
q=2

λ(q)q−A−iT q−iU − 1

i log q
x 	 1.

Moreover, G(s) = L(s)(1 + O(1/ logT )) where L(s) is the Dirichlet polynomial
(18.15), so by similar arguments we get∫ T+U

T

log
∣∣G(A+ it)

∣∣ dt 	 1 + U/ log T.

This completes the proof of (22.1).
Inserting (22.1) into (20.9) we obtain

N00(T, U) � N(T, U)− 1

π( 12 − a)

∫ T+U

T

log
∣∣F (a+ it)

∣∣ dt+O

(
U

( 12 − a) logT

)
,

where F (s) = G(s)M(s) and 1
3 < a < 1

2 . We shall apply this for a close to 1
2 ,

specifically

(22.3) a =
1

2
− R

log T

with R a positive constant to be chosen for best results. We get

(22.4) N00(T, U) � N(T, U)

{
1− 2

R
l(R) +O

(
1

log T

)}
where

(22.5) l(R) =
1

U

∫ T+U

T

log
∣∣F (a+ it)

∣∣dt.
Next, by concavity of the logarithm, we infer that

(22.6) l(R) � log I(R)

where

(22.7) I(R) =
1

U

∫ T+U

T

∣∣F (a+ it)
∣∣ dt.

Note that I(R) depends on T, U , but if T is sufficiently large we shall give a strong
estimate for I(R) which does not depend on T, U . For reference we conclude the
results of Chapters 16-22 by the following principal inequality of the Levinson-
Conrey method.

Theorem 22.1 (Levinson-Conrey). Let N(T, U) be the number of zeros ρ = β+
iγ of ζ(s) with 0 < β < 1, T < γ � T +U , counted with multiplicity. Let N00(T, U)
be the number of these zeros with β = 1

2 , counted without multiplicity, which are

not zeros of G(s) (see (18.1) and (18.14)). If T is large and T (log T )−
1
4 � U � T ,

then

(22.8) N00(T, U) � N(T, U)

{
1− 2

R
log I(R) +O

(
1

log T

)}
where I(R) is the absolute mean value (22.7) of F (s) = G(s)M(s) on Re s = a, and
M(s) is any Dirichlet polynomial with coefficients c(1) = 1, |c(m)| � 1 for m � T .
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CHAPTER 23

Positive Proportion of the Critical Zeros

To complete a lower bound for N00(T, U) we need an upper bound for the
integral I(R). Estimating I(R) is a hard part of the Levinson-Conrey method.
Since this problem is interesting on its own, we postpone the work to the last three
chapters, where we establish results more general than needed. For now we assume
that we have a bound

(23.1)
1

U

∫ T+U

T

∣∣F (a+ it)
∣∣ dt � c(R) + o(1),

where c(R) > 1. Hence (22.8) yields

(23.2) N00(T, U) �
(
κ+ o(1)

)
N(T, U)

with

(23.3) κ = 1− 2

R
log c(R).

The original choice of G(s) by Levinson is given by (in the setting (18.1))

(23.4) 2H(s)G(s) = ξ(s) +
2

log T
ξ′(s)

This can be approximated by a nice Dirichlet polynomial;

G(s) =

(
1

2
+

H ′

H
(s)(log T )−1

)
ζ(s) + ζ ′(s)(log T )−1

=
(
1− δ(s)

)
ζ(s) + ζ ′(s)(logT )−1 +O(T− 1

2 )

=
∑
l�T

Q

(
log l

log T

)
l−s +O

(
|ζ(s)|
log T

+
1√
T

)(23.5)

where Q(x) is the linear polynomial

(23.6) Q(x) = 1− x.

For the mollifier, Levinson takes (recall (22.3))

(23.7) M(s) =
∑

m�T
1
2

μ(m)P

(
logm

log T

)
ma− 1

2−s,

where P (y) is the linear polynomial

(23.8) P (y) = 1− 2y.

For this particular choice of F (s) = G(s)M(s), the results in Chapter 25 yield the
asymptotic formula

(23.9)
1

U

∫ T+U

T

∣∣F (a+ it)
∣∣2 dt ∼ C(R)
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82 23. POSITIVE PROPORTION OF THE CRITICAL ZEROS

as T → ∞, where

(23.10) C(R) =
e2R − 1− 2R

2R3
+

e2R − 1

24R
+

1

R
− R

12
+

7

12
.

Of course (23.9) agrees with the result of Levinson.
By Cauchy-Schwarz inequality we get (23.1) with

(23.11) c(R) = C(R)
1
2 .

Hence (23.2) holds with

(23.12) κ = 1− 1

R
logC(R).

Levinson computes this for R = 1.3, getting C(R) = 2.32 . . . , and

(23.13) κ = 0.34 . . .

Note that in the case of G(s) given as a linear combination of ζ(s) and ζ ′(s)
we have N00(T, U) which counts only the simple zeros of ζ(s). This feature of
Levinson’s method was observed by A. Selberg and D. R. Heath-Brown [HB79]
Indeed, if s = ρ is a zero of order � 2, then it is a zero of G(s) which is not counted
by N00(T, U). Thus, we conclude the following

Theorem 23.1. At least 34% of all the zeros of ζ(s) are simple and are on the
critical line.
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CHAPTER 24

The First Moment of Dirichlet Polynomials

We consider the Dirichlet polynomials

(24.1) A(s) =
∑
n�N

ann
−s

which are relevant to the integral (22.7) in the Levinson-Conrey principal inequal-
ity (22.8). The coefficients an will be specialized gradually in later sections. Here
we give quick results which will be used for estimating lower order contributions.

We want to estimate the mean-value of |A(s)| over a segment of the critical
line:

(24.2) I(T, U) =
1

U

∫ T+U

T

∣∣∣∣A
(
1

2
+ it

)∣∣∣∣ dt,
for polynomials A(s) which factor into two polynomials, each of length strictly
smaller than T ;

(24.3) A(s) =

(∑
l<T

bll
−s

)(∑
m<T

cmm−s

)
.

By the Cauchy-Schwarz inequality and Theorem 13.1 we get

U2I(T, U)2 	
{
U
∑

|bl|2l−1 +
(∑

|bl|2l−1
) 1

2
(∑

|bl|2l
) 1

2

}
{
U
∑

|cm|2m−1 +
(∑

|cm|2m−1
) 1

2
(∑

|cm|2m
) 1

2

}
.

Suppose the coefficients bl satisfy the bound

(24.4) |bl| �
(

log l

log T

)r

,

with some r � 0. Then∑
l<T

|bl|2l−1 	 log T

r + 1
,

∑
l<T

|bl|2l 	 T 2

where the implied constants are absolute. Moreover, suppose that the coefficients
cm satisfy the bound

(24.5) |cm| � 1.

By the above estimates we get

U2I(T, U)2 	
{
U
log T

r + 1
+ T

(
log T

r + 1

) 1
2

}{
U log T + T (log T )

1
2

}
.

Hence
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84 24. THE FIRST MOMENT OF DIRICHLET POLYNOMIALS

Lemma 24.1. If T (log T )−
1
2 � U � T and bl, cm satisfy (24.4) and (24.5),

then

(24.6) I(T, U) 	 (r + 1)−
1
4 log T,

where the implied constant is absolute.
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CHAPTER 25

The Second Moment of Dirichlet Polynomials

We need an upper bound for the integral (24.2) much better than (24.6). By
the Cauchy-Schwarz inequality,

(25.1) I(T, U)2 � I2(T, U),

where

(25.2) I2(T, U) =
1

U

∫ T+U

T

∣∣∣∣A
(
1

2
+ it

)∣∣∣∣
2

dt.

Our goal is to establish an asymptotic formula for I2(T, U). To this end it suffices
to establish separately an upper bound and a lower bound which are asymptotically
equal. We shall show only the upper bound, because the arguments for the lower
bound are almost identical. To be fair, we only need the upper bound.

We begin by smoothing the integration as described in Appendix A. Let Φ(t) be
the function given by (A.12). Recall that Φ(t) majorizes the characteristic function

of the interval [T, T + U ], and its Fourier transform Φ̂(y) satisfies

Φ̂(0) = U + V(25.3)

Φ̂(y) 	 U exp(−2
√
π|y|V )(25.4)

Φ̂′(y) 	 TU exp(−2
√
π|y|V ),(25.5)

where V is at our disposal, subject to 0 < V < U < T . We get

(25.6) UI2(T, U) �
∫

Φ(t)

∣∣∣∣A
(
1

2
+ it

)∣∣∣∣
2

dt = I(Φ),

say. Opening the square and integrating we get

(25.7) I(Φ) =
∑
n1

∑
n2

an1
an2√

n1n2
Φ̂

(
1

2π
log

n1

n2

)
.

Here we pull out the contribution of the diagonal terms n1 = n2;

(25.8) I0(Φ) = Φ̂(0)
∑
n

|an|2n−1,

because they are distinctly different from the other terms n1 �= n2. We shall
evaluate I0(Φ) asymptotically in Chapter 26. Then in Chapters 27-28 we shall
show that the remaining contribution

(25.9) I∗(Φ) =
∑∑
n1 �=n2

an1
an2√

n1n2
Φ̂

(
1

2π
log

n1

n2

)

is negligible.

85

http://dx.doi.org/10.1090/ulect/062/25

Purchased from American Mathematical Society for the exclusive use of Doron Zeilberger (zldrxj)
Copyright 2017 American Mathematical Society. Duplication prohibited. Please report unauthorized use to cust-serv@ams.org.
Thank You! Your purchase supports the AMS' mission, programs, and services for the mathematical community.



86 25. THE SECOND MOMENT

The bounds (25.4) and (25.5) for the Fourier transform are pretty good, nev-
ertheless they are not sufficient for estimating I∗(Φ). Some arithmetical properties
of the coefficients an will be necessary.
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CHAPTER 26

The Diagonal Terms

We assume that an are given in the following form

(26.1) an =
∑
lm=n
l,m<T

μ(m)Z(γm, γl),

where we put

(26.2) γc =
log c

log T

for any c � 1, and T � 3 is fixed. Moreover Z(x, y) is a function on the unit square
0 � x, y < 1 such that

Z(x, y) is continuous(26.3)

|Z(x, y)| � (1− x)(1− y).(26.4)

We also assume that Z(x, y) is of C3-class with bounded partial derivatives, except
for x or y in a finite set, say W . Specifically,

(26.5)

∣∣∣∣ ∂α+βZ

∂xα∂yβ

∣∣∣∣ � 1, if x /∈ W , y /∈ W ,

for 0 < α + β � 3. In addition, ∂Z/∂x is continuous in y for every x /∈ W and
∂Z/∂y is continuous in x for every y /∈ W .

Sequences of the convolution type (26.1) also appear in other areas of number
theory, particularly in sieve theory, so we are going to evaluate the sum

(26.6) E =
∑
n

a2nn
−1

in more generality than what is required for evaluating the second moment I2(T, U).

Proposition 26.1. Suppose that Z(x, y) satisfies (26.3), (26.4), and (26.5).
Then

(26.7) E = E +O
(
(log log T )15/ log T

)
,

where

(26.8) E =

∫ 1

0

∫ 1

0

DZ(x, y) dx dy,

and D is the differential operator given by

(26.9) DZ =

(
∂Z

∂x

)2

+ 2Z
∂2Z

∂x∂y
+

(
∂Z

∂y

)2

.

The implied constant in (26.7) depends only on the number of points in W.
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88 26. THE DIAGONAL TERMS

One can express the integral (26.8) in terms of partial derivatives of the first
order.

Proposition 26.2. For Z(x, y) satisfying (26.3), (26.4), and (26.5), we have

(26.10) E = Z(0, 0)2 +

∫ 1

0

∫ 1

0

(
∂Z(x, y)

)2
dx dy,

where

(26.11) ∂Z =
∂Z

∂x
− ∂Z

∂y
.

Proof. If x /∈ W and y /∈ W , then we have

(∂Z)2 = DZ + 2
∂Z

∂x

∂Z

∂y
− 2Z

∂2Z

∂x∂y
.

Let y /∈ W . Integrating by parts in the x-variable we get (because ∂Z/∂x is
continuous in x)∫ 1

0

Z(x, y)
∂2

∂x∂y
Z(x, y) dx = −Z(0, y)

∂Z

∂y
(0, y)−

∫ 1

0

∂Z

∂x

∂Z

∂y
(x, y) dx.

Then integrating this in the y-variable we find that (because the set of singular
points (x, y) has measure zero)∫ 1

0

∫ 1

0

(
(∂Z)2 −DZ

)
dx dy = 2

∫ 1

0

Z(0, y)
∂Z

∂y
(0, y) dy

=

∫ 1

0

∂

∂y

(
Z(0, y)2

)
dy = −Z(0, 0)2,

which completes the proof. �

Note that if Z(x, y) is real, then E � Z(0, 0)2. This is not surprising, because
a2n � 0 and a1 = Z(0, 0).

One can easily derive from Propositions 26.1 and 26.2 a more general result for
sums of type ∑

n

anbnn
−1,

where B = (bn) is another sequence of type (26.1), say

(26.12) bn =
∑
lm=n
l,m<T

μ(m)V (x, y).

Theorem 26.3. Suppose Z(x, y) and V (x, y) satisfy (26.3), (26.4), and (26.5).
Then

(26.13)
∑
n

anbnn
−1 = Z(0, 0)V (0, 0) +

∫ 1

0

∫ 1

0

∂Z(x, y)∂V (x, y) dx dy

+O
(
(log log T )15/ log T

)
,

where the implied constant depends only on |W|.

Proof. It follows from the identity 4ab = (a + b)2 − (a − b)2 and applying
the results for the sequences an + bn, an − bn with test functions Z + V , Z − V ,
respectively. �
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26. THE DIAGONAL TERMS 89

The operator ∂ has many cute properties. First of all it is linear and it acts as
differentiation;

∂V Z = V ∂Z + Z∂V.

If V (x, y) = V (x+ y), then ∂V = 0. Therefore ∂ commutes with multiplication by
functions which depend only on x+ y. Hence, Theorem 26.3 implies

Corollary 26.4. Let F (z) be a function of C3-class on 0 � z � 1. Suppose
Z(x, y) and V (x, y) satisfy (26.3), (26.4), and (26.5). Then

(26.14)
∑
n

anbnF (γn)n
−1 = F (0)Z(0, 0)V (0, 0)

+

∫ 1

0

∫ 1

0

F (x+ y)∂Z(x, y)∂V (x, y) dx dy

+O
(
(log log T )15/ log T

)
,

where the implied constant depends only on |W| and F .

Now we proceed to the proof of Proposition 26.1. Opening a2n we arrange the
sum (26.6) as follows:

E =
∑

lm=l′m′

l,m,l′,m′<T

μ(m)μ(m′)(lm)−1Z(γm, γl)Z(γm′ , γl′).

The equation lm = l′m′ implies m = ad, m′ = bd with (a, b) = 1 and l = bc, l′ = ac.
Hence E becomes

E =
∑∑∑∑

a,b,c,d
max(a,b)max(c,d)<T

μ(d)
μ(abd)

abcd
Z(γad, γbc)Z(γbd, γac).

Next we are going to reduce the range of a, b. Choose

(26.15) Δ = Δ(T ) = exp(log log T )3.

By the Prime Number Theorem in the form (see (11.7))

(26.16)
∑

Δ<a�x

μ(a)

a
	 exp(−λ

√
logΔ) 	 (log T )−2012

and by partial summation we can remove a > Δ, b > Δ in E up to a small error
term;

E =
∑∑∑∑

a,b,c,d
max(a,b) max(c,d)<T

max(a,b)<Δ

μ(d)
μ(abd)

abcd
Z(γad, γbc)Z(γbd, γac) +O

(
(log T )−2000

)
.

Now the variables

u = γa =
log a

log T
<

logΔ

log T

v = γb =
log b

log T
<

logΔ

log T
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90 26. THE DIAGONAL TERMS

are quite small, so it is useful to apply Taylor’s expansion at (x, y) = (γd, γc);

Z(x+ u, y + v)Z(x+ v, y + u) = ZZ + (u+ v)Z

(
∂Z

∂x
+

∂Z

∂y

)
+ uvDZ

+
u2 + v2

2

(
Z
∂2Z

∂x2
+ 2

∂Z

∂x
· ∂Z
∂y

+ Z
∂2Z

∂y2

)
+O(u3 + v3).

This approximation by Taylor’s expansion is valid if x and y stay away from the
singularity points in the set W . Specifically, we can use this formula if x and y are
distanced from W by at least logΔ/ log T . For x = γd and y = γc this means that c
and d are not in the forbidden segments [Δ−1Tw, ΔTw] for every w ∈ W . However,
for technical reasons, we want to avoid the extended segments [Δ−2Tw, ΔTw]. We
call (c, d) an exceptional pair if either c or d is in some [Δ−2Tw, ΔTw]. The
remaining pairs (c, d) are called regular. Accordingly, we split the sum E into

(26.17) E = E0 + E11 +O
(
(log T )−2000

)
,

where E0 runs over the exceptional pairs and E11 runs over the regular pairs.
First we are going to evaluate

(26.18) E11 =
∑∑∑∑

max(a,b)max(c,d)<T
max(a,b)<Δ, (c,d) regular

μ(d)
μ(abd)

abcd
Z(γad, γbc)Z(γbd, γac).

We begin by applying the above Taylor expansion at (x, y) = (γd, γc) with (u, v) =
(γa, γb). The contribution of the error term O(u3 + v3) to E11 is estimated by
O((logΔ)5/ logT ). Next we can extend the range of c, d from max(c, d) <
T/max(a, b) to max(c, d) < T , up to the same error term O((logΔ)5/ log T ). In-
deed, in the added range we have either TΔ−1 < c < T or TΔ−1 < d < T . In both
cases

(26.19) Z(γd, γc) 	
logΔ

log T

by the condition (26.6) (this condition cannot be dispensed!). Hence the contribu-
tion from the added range is trivially bounded by

(26.20)
∑∑
a,b<Δ

1

ab
(logΔ)(log T )

(
logΔ

log T

)2

	 (logΔ)5

log T
.

Now we are left with

E11 =
∑∑∑∑
a,b<Δ, c,d<T
(c,d) regular

μ(d)
μ(abd)

abcd

{
Z2(γd, γc) + γab

(
∂Z

∂x
+

∂Z

∂y

)
(γd, γc)

+γaγbDZ(γd, γc) + γ2
a(· · · ) + γ2

b (· · · )
}
+O

(
(logΔ)5/ log T

)
.

Here the key observation is that the variables γa, γb are separated from γd, γc. Using
the estimate

(26.21)
∑
a<Δ

(a,k)=1

μ(a)

a
	 exp(−λ

√
logΔ),
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26. THE DIAGONAL TERMS 91

which holds uniformly in k < T with an absolute constant λ > 0 (it can be derived
from (11.7)), we are left with

E11 =
∑∑∑∑
a,b<Δ, c,d<T
(c,d) regular

μ(d)
μ(abd)

abcd
γaγbDZ(γd, γc) +O

(
(logΔ)5

log T

)
.

Next we reduce the range c, d < T to

ad < T, bc < T

by applying the same arguments which allowed us to relax the condition
max(a, b)max(c, d) < T . Having done this we now apply the approximation

DZ(γd, γc) = DZ(γad, γbc) +O

(
logΔ

log T

)
which follows by the mean-value theorem for DZ(x, y). We get

E11 =
∑∑∑∑
a,b<Δ, ad,bc<T

(c,d) regular

μ(d)
μ(abd)

abcd
γaγbDZ(γad, γbc) +O

(
(logΔ)5

log T

)
.

Note that for (c, d) regular, we get l = bc, m = ad off the segments
[Δ−1Tw, ΔTw] for every w ∈ W . Therefore we call such pairs (l,m) regular.
Now, we can replace the condition that (c, d) is regular by the condition that (l,m)
is regular up to the error term (26.20). Next we remove the conditions a, b < Δ by
the same arguments which allowed us to install them using the PNT. Considering
l = bc, m = ad as single variables, we write the result in the following form

E11 = (logT )−2
∑∑
l,m<T

(l,m) regular

Λ(l,m)

lm
DZ(γm, γl) +O

(
(logΔ)5

log T

)
,

where

Λ(l,m) =
∑
a|m

∑
b|l

μ(bm)μ
(m
a

)
(log a)(log b)

= Λ(m)
∑
b|l

μ(bm) log b = −μ(m)Λ(m)Λ
(
l/(l,m∞)

)
.

Hence

E11 = (log T )−2
∑∑
l,m<T

(l,m) regular

Λ(l)Λ(m)

lm
DZ(γm, γl) +O

(
(logΔ)5

log T

)
.

Here the restriction to (l,m) regular can be easily removed because l,m are prime
powers. After that, applying the PNT we obtain (26.7) for E11 by partial summa-
tion.

Now we go to estimating E0. Since the long Taylor expansion cannot hold, we
shall use shorter expansions which produce weaker approximations, but sufficient
because the number of exceptional pairs (c, d) is relatively small. We make further
splitting

E0 = E10 + E01 + E00.

Here E10 runs over the pairs (c, d) with c being off the segments [Δ−2Tw, ΔTw]
and d being in the union of these segments. The sum E01 is defined analogously.
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92 26. THE DIAGONAL TERMS

Finally E00 runs over the pairs (c, d) with c and d in the union of [Δ−2Tw, ΔTw],
w ∈ W .

First we estimate E10. Since in the relevant range Z(x, y) is of C2-class in y,
we have

Z(x+ u, y + v) = Z(x+ u, y) + v
∂Z

∂y
(x+ u, y) +O(v2).

We also have
∂Z

∂y
(x+ u, y) =

∂Z

∂y
(x, y) +O(u)

because ∂Z
∂y (x, y) is continuous in x. Hence

Z(x+ u, y + v) = Z(x+ u, y) + v
∂Z

∂y
(x, y) +O

(
v(u+ v)

)
.

The same approximation holds with u, v interchanged. Hence we get

Z(x+ u, y + v)Z(x+ v, y + u) = Z(x+ u, y)Z(x+ v, y)

+ (u+ v)Z(x, y)
∂Z

∂y
(x, y) +O(u2 + v2)

by applying Z(x + u, y) = Z(x, y) + O(u) and Z(x + v, y) = Z(x, y) + O(v). We
also get

Z(x+ u, y)Z(x+ v, y) = Z(x, y)
(
Z(x+ u, y) + Z(x+ v, y)− Z(x, y)

)
+O(uv).

Together we obtain the desired expansion

Z(x+ u, y + v)Z(x+ v, y + u)

= Z(x, y)

(
Z(x+ u, y) + Z(x+ v, y)− Z(x, y) + (u+ v)

∂Z

∂y
(x, y)

)
+O(u2 + v2)

= Z2(x, y) +O
(
(u+ v)|Z(x, y)|+ u2 + v2

)
.

The contribution of the error term O(u2 + v2) to E10 is then estimated by
O((logΔ)5/ logT ). Moreover, we can extend the range of c, d from max(c, d)
< T/max(a, b) to max(c, d) < T by arguments which were applied to E11 us-
ing (26.4). Having done this, the variables u = γa, v = γb run freely over a, b < Δ.
Since the individual terms on the right side of the above expansion depend on u
or v, but not on both, we get negligible contributions by applying (26.21). We
conclude that

E10 	 (logΔ)5/ log T.

This estimate holds for E01 by the same arguments.
Finally, we estimate E00 quickly starting from

Z(x+ u, y + v)Z(x+ v, y + u) = Z2(x, y) +O(u+ v).

The contribution of the error term O(u + v) to E00 is then estimated by
O((logΔ)5/ logT ). Then, dealing with the main term Z2(x, y) we can extend the
range of c, d from max(c, d) < T/max(a, b) to max(c, d) < T as we did so three
times before in the context of E11, E10, and E01. Now the variables u = γa, v = γb
run freely over a, b < Δ, producing a negligible contribution of Z2(x, y) to E00 by
applying (26.21). We conclude that

E00 	 (logΔ)5/ log T.
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26. THE DIAGONAL TERMS 93

Gathering the above estimates we complete the proof of Proposition 26.1.

Remarks. If the crop function Z(x, y) had continuous derivatives to suffi-
ciently large order, then the above arguments would be technically simpler and
shorter. However, we considered Z(x, y) subject to less demanding conditions so
the results can be applied in the future to a larger variety of functions.
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CHAPTER 27

The Off-diagonal Terms

These are the terms in (25.9). Our goal is to show that their contribution

(27.1) I∗(Φ) =
∑∑
n1 �=n2

an1
an2√

n1n2
Φ̂

(
1

2π
log

n1

n2

)

is negligible. In general, such a claim would be false, but for our special coeffi-
cients (26.1), and with some restrictions on Z(x, y), we shall prove

(27.2) I∗(Φ) 	 U(log T )−
1
2

if T (log T )−
1
4 � 2V � U � T . We shall introduce the relevant restrictions on

Z(x, y) gradually when required by the arguments.
We begin with the basic requirements (26.3) and (26.4). Therefore our coeffi-

cients an are supported on 1 � n � T 2 and are bounded by a smoothly cropped
divisor function;

(27.3) an 	
∑
lm=n
l,m<T

(
1− log l

log T

)(
1− logm

log T

)
� τ (n).

Let Ih(Φ) denote the partial sum of (27.1) with n1 − n2 = h, so

(27.4) I∗(Φ) =
∑
h �=0

Ih(Φ).

Because Φ̂(y) decays rapidly (see (25.4)), it is easy to estimate Ih(Φ) for large
|h|. Indeed, all terms of I∗(Φ) with | log(n1/n2)| > V (2 log T )2 contribute at most

O(UT− 1
2 ) by the trivial estimation∑∑
1�n1,n2<T

V | log(n1/n2)|>(2 log T )2

τ (n1)τ (n2)(n1n2)
− 1

2 exp
(
−
√

2V |log(n1/n2)|
)
	 T− 1

2 ,

which is much smaller than the desired bound (27.2). The remaining terms have
| log(n1/n2)| < V −1(2 logT )2 < log 2, so 1

2 < n1

n2
< 2 and

|h| � 2n

∣∣∣∣log n1

n2

∣∣∣∣ < 8n

V
(log T )2 <

8

V
(T log T )2,

where n = min(n1, n2). Hence the remaining terms are for

n � |h|V (log T )−2 � V (log T )−2,

and they are relatively close to the diagonal. Due to these properties, we shall be
able to make several cosmetical modifications in Ih(Φ).
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96 27. THE OFF-DIAGONAL TERMS

First we write

log
n1

n2
= log

(
1 +

h

n2

)
=

h

n2
+O

(
h2

n1n2

)
,

and by the mean-value theorem,

Φ̂

(
1

2π
log

n1

n2

)
= Φ̂

(
h

2πn2

)
+O

(
h2

n1n2
TU exp

(
−
√
V |h|/n

))
.

Summing over n1 �= n2 we see that the error term in the above approximation
contributes at most

TU
∑
n1

∑
n2

|an1
an2

|(n1n2)
− 3

2h2 exp
(
−
√
V |h|/n

)

	 TU
∑
n

|an|2
n3

∑
h

h2 exp
(
−
√
V |h|/n

)
	 TU

V 3

∑
n

|an|2.

By |an| 	 τ (n) one would get
∑

|an|2 	 T 2(log T )3, which is not good enough.
However, using (27.3) we get

(27.5)
∑
n

|an|2 	 T 2(log T )−2.

This yields the bound U(T/V )3(log T )−2, which is smaller than the desired (27.2).
We prove (27.5) by elementary means as follows:

∑
n

|an|2

	
∑∑

l1m1=l2m2

(
1− log l1

log T

)(
1− logm1

log T

)(
1− log l2

log T

)(
1− logm2

log T

)

�
∑
l

∑
m

τ (lm)

(
1− log l

log T

)2(
1− logm

log T

)2

�
(∑

l<T

τ (l)

(
1− log l

log T

)2
)2

,

and

∑
l<T

τ (l)

(
1− log l

log T

)2

� 2(logT )−2
∑

a<
√
T

∑
b<T/a

(
log

T

ab

)2

	 T (log T )−2
∑

a<
√
T

a−1 	 T (log T )−1.

This yields (27.5).

We have proved that Φ̂( 1
2π log n1

n2
) in (27.1) can be replaced by Φ̂(h/2πn2).

Similarly we can replace
√
n1n2 in (27.1) by n2 because of the approximation

1√
n1n2

=
1

n2
+O

(
|h|
n1n2

)
.
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27. THE OFF-DIAGONAL TERMS 97

Indeed the error term O(|h|/n1n2) contributes at most

U
∑
n

|an|2n−2
∑
n

|h| exp
(
−
√
V |h|/n

)
	 UV −2

∑
n

|an|2 	 U(T/V )2(log T )−2,

which is smaller than the desired (27.2). Applying the above approximations we
can write (27.4) in the slightly modified form

(27.6) I∗(Φ) =
∑
h �=0

Jh(Φ) +O(U/ logT ),

where

(27.7) Jh(Φ) =
∑∑
n1−n2=h

an1
an2

n−1
2 Φ̂(h/2πn2).

Next we exploit the convolution shape (26.1) of the coefficients an to make
further modifications in Jh(Φ). For notational simplicity we consider Z(x, y) as a
continuous function in x � 0, y � 0 which vanishes if x � 1 or y � 1. The extended
function Z(x, y) has bounded partial derivatives that are piecewise continuous.
Moreover, we extend the function γt for all t > 0 by

γt = max

(
0,

log t

log T

)
.

Obviously, the modified function γt is continuous and has derivative dγt/ dt
� (t logT )−1. The above modifications do not affect (27.7), which becomes

Jh(Φ) =
∑∑

l1m1−l2m2=h

μ(m1)μ(m2)(l2m2)
−1Z(γm1

, γl1)Z(γm2
, γl2)Φ̂(h/2πl2m2).

Since we think of |h| being relatively small, it appears that l1 is close to l2m2/m1

so we can replace γl1 by γl2m2/m1
in Z(γm1

, γl1) with a small error term. Precisely
we have l1 = l2m2/m1 + h/m1 and γl1 = γl2m2/m1

+ O(|h|/l1m1 log T ). Hence, by
the mean-value theorem,

Z(γm1
, γl1)− Z(γm1

, γl2m2/m1
) 	 (1− γm1

)|h|/l1m1 log T.

The error term in the above approximation contributes to Jh(Φ) at most

|h|U
log T

∑∑
l1m1−l2m2=h
l1,l2,m1,m2<T

(1− γm1
)(1− γm2

)(1− γl2)(l1l2m1m2)
−1 exp

(
−
√
|h|V/n

)
,

where n = min(l1m1, l2m2). This expression is similar to the one which we have
encountered when replacing

√
n1n2 by n2. Previously we have used the bound (27.3)

for an1
and an2

. In the current situation the bound (27.3) for an2
is the same, but

for an1
it is slightly different since the factor 1− log l1/ log T is replaced by 1/ log T .

This replacement makes no difference in the following estimates, consequently we
get again a bound which is smaller than the desired (27.2). Therefore we can
write (27.6) in the form

(27.8) I∗(Φ) =
∑
h �=0

Kh(Φ) +O(U/ logT ),
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98 27. THE OFF-DIAGONAL TERMS

where

(27.9) Kh(Φ)

=
∑∑

l1m1−l2m2=h

μ(m1)μ(m2)(l2m2)
−1Z(γm1

, γ l2m2
m1

)Z(γm2
, γl2)Φ̂(h/2πl2m2).

Recall that l1, l2, m1, m2 in (27.9) are positive integers, and since Z(x, y) vanishes
if x � 1 or y � 1, it follows that m1,m2, l2, l2m2/m1 < T .

Remarks. The above arguments seem to be delicate and the resulting approx-
imations turn out to be barely sufficient. However we could apply crude estimates
if we were willing to accept the slightly stronger condition that an are supported
on n � T 2(log T )−2012. But we have not imposed such condition exclusively for
learning extra features. The reader can find that the first degree vanishing of the
function Z(x, y) at x = 1 and y = 1 in the construction of an cannot be dispensed.

So far we only performed cosmetical modifications in the off-diagonal terms;
the more essential transformations (harmonic analysis of an) are yet to be made.
What we have accomplished in Kh(Φ) is that the variable l1 disappeared in the
summation terms. Therefore, the equation l1m1 − l2m2 = h can be interpreted
as the congruence l2m2 ≡ −h (mod m1). Putting m1 = da1, m2 = da2 with
(a1, a2) = 1, this congruence reduces to l2 ≡ −ka2 (mod a1), where k = h/d and
a2 denotes the multiplicative inverse of a2 modulo a1. The sum (27.9) becomes

(27.10) Kh(Φ) =
∑
dk=h

μ(d)
∑
a1

∑
a2

μ(da1a2)

da1a2
Sdk(a1, a2),

where

(27.11) Sdk(a1, a2) =
∑

l≡−ka2 (mod a1)

W (l/a1)

and

(27.12) W (x) = x−1Z(γda1
, γxa2

)Z(γda2
, γxa1

)Φ̂(k/2πxa1a2).

Remember that W (x) depends also on d, k, a1, a2, but we omit these variables for
notational simplicity.

Next we replace the summation over l in (27.11) by integration (l is a positive
integer). Precisely, we apply the Euler-Maclaurin formula∑

l≡α (mod a)

F (l/a) =

∫
F (x) dx+

∫
ψ
(
x− α

a

)
F ′(x) dx

where ψ(x) = x − [x] − 1
2 is the saw function. This formula holds for any com-

pactly supported function F which is continuous and has a piecewise continuous
and bounded derivative. In our case, it yields

(27.13) Sdk(a1, a2) =

∫ T

0

W (x) dx+

∫ T

0

ψ

(
x+

ka2
a1

)
W ′(x) dx.

Actually the integration segment is shorter, 0 < x < T/max(a1, a2). The two parts
of (27.13) behave distinctly, so it makes sense to split Kh(Φ) accordingly;

(27.14) Kh(Φ) = Lh(Φ) +Mh(Φ),
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27. THE OFF-DIAGONAL TERMS 99

where

(27.15) Lh(Φ) =
∑
dk=h

μ(d)
∑
a1

∑
a2

μ(da1a2)

da1a2

∫ T

0

W (x) dx,

and

(27.16) Mh(Φ) =
∑
dk=h

μ(d)
∑
a1

∑
a2

μ(da1a2)

da1a2

∫ T

0

ψ

(
x+

ka2
a1

)
W ′(x) dx.

Then (27.8) becomes

(27.17) I∗(Φ) = L(Φ) +M(Φ) +O(U/ logT ),

where

(27.18) L(Φ) =
∑
h �=0

Lh(Φ), M(Φ) =
∑
h �=0

Mh(Φ).

Estimation of L(Φ). This part makes use of the sign changes of the Möbius fac-
tor μ(da1a2) in an essential fashion. Introducing (27.12) into the integral in (27.15)
and changing the variable of integration x → x/a1a2 we get

L(Φ) =
∫ ∞

0

ρ(x)

x

∑
d

μ(d)
∑
a1

∑
a2

μ(da1a2)

da1a2
Z(γda1

, γx/a1
)Z(γda2

, γx/a2
) dx

where

ρ(x) =
∑
k �=0

Φ̂(k/2πx) = −Φ̂(0) + 2πx
∑
r

Φ(2πxr)

by Poisson’s summation formula. The sum over k �= 0 yields

ρ(x) 	 U
∞∑
k=1

exp
(
−
√
2kV/x

)
	 xUV −1

and the sum over r is bounded by x−1U , because xr � U , so it yields ρ(x) 	 U .
Together, we get

ρ(x) 	 min(x, V )UV −1.

Let Δ = Δ(T ) = exp(log log T )3 as in Section 26. By the Prime Number Theorem
we find that the contribution of terms a1 � Δ or a2 � Δ in L(Φ) is bounded by

∑
d<T

log T

d
exp
(
− λ

√
Δ
) ∫ T 2

0

|ρ(x)| dx
x

	 T (log T )−2012.

The remaining terms with a1, a2 < Δ contribute at most

(log T )(logΔ)2
∫ ΔT

0

|ρ(x)|(1− γx/Δ)
2 dx

x
	 T

(logΔ)5

log T

because Z(x, y) 	 1− y if 0 � y � 1. Adding these two estimates, we obtain

(27.19) L(Φ) 	 T (log T )−1(log log T )15.
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100 27. THE OFF-DIAGONAL TERMS

Estimation ofM(Φ). This part requires an additional restriction on the support
of Z(x, y) in the x variable which controls the length of the mollifier. We assume
that the crop function Z(x, y) is continuous in x � 0, y � 0, has support on
0 � x � 1

2 , 0 � y � 1, and it has bounded partial derivatives, piecewise continuous.
This assumption implies

(27.20) Z(x, y) 	 1− 2x if 0 � x � 1

2
.

Having this property, we can estimate M(Φ) quite easily. We start from

|M(Φ)| �
∑
k

∑
d

∑∑
da1<

√
T

da2<
√
T

(da1a2)
−1

∫ T

0

|W ′(x)| dx,

where k, d, a1, a2 are positive integers and W (x) is given by (27.12). Next we write
a series of estimates;

Z(γda1
, γxa2

) 	 1− 2γda1
,

d

dx
Z(γda1

, γxa2
) 	 1− 2γda1

x log T
,

Φ̂(k/2πxa1a2) 	 U exp
(
−
√
2kV/xa1a2

)
,

d

dx
Φ̂(k/2πxa1a2) 	

kTU

x2a1a2
exp
(
−
√
2kV/xa1a2

)
.

Hence

W ′(x) 	 (1− 2γda1
)(1− 2γda2

)

(
1 +

kT

xa1a2

)
U

x2
exp
(
−
√
2kV/xa1a2

)
and ∫ T

0

|W ′(x)| dx 	 TUV −2(1− 2γda1
)(1− 2γda2

)a1a2k
−1 exp

(
−
√
k/T

)
.

This yields

M(Φ) 	 TUV −2(log T )
∑

d<
√
T

d−1

⎛
⎝ ∑

ad<
√
T

(1− 2γda)

⎞
⎠

2

.

Here we have ∑
ad<

√
T

(1− 2γda) 	
√
T/d log T,

so

(27.21) M(Φ) 	 UV −2T 2(log T )−1.

Finally, adding (27.19) and (27.21) we conclude the proof of (27.2).
Notes about further improvements. Recall that the acceptable (negligible)

bound (27.2) for the contribution of the off-diagonal terms is established for the
crop function Z(x, y) which is continuous in x � 0, y � 0, supported on 0 � x � 1

2 ,
0 � y � 1, and it has piecewise continuous, bounded partial derivatives ∂Z/∂x,
∂2Z/∂x∂y, and ∂Z/∂y. Although the first part L(Φ) of I∗(Φ) is fine for Z(x, y)
supported on 0 � x, y � 1, the additional restriction of the support of Z(x, y) in the
x-variable is needed only for our method of estimating the second part M(Φ). The
supporting segment 0 � x � 1

2 could be extended slightly by exploiting the sign
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27. THE OFF-DIAGONAL TERMS 101

changes of μ(da1a2)ψ(x+ka2/a1), which produce cancellations in the sums over a1,
a2, and k. This depends on estimates for sums of Kloosterman sums which can be
borrowed from the spectral theory of automorphic forms. Brian Conrey [Con89]
succeeded (in his own settings) to get results for Z(x, y) supported on 0 � x � 4

7 ,
0 � y � 1. His arguments go far beyond the scope of these lecture notes.
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CHAPTER 28

Conclusion

Gathering the results of Chapters 25-27 (take V = T (log T )−
1
4 ) we conclude

Theorem 28.1. Let Z(x, y) be a continuous function in x, y � 0 with bounded
and piecewise continuous partial derivatives of order up to 3. Moreover, ∂Z/∂x is
continuous in y, and ∂Z/∂y is continuous in x. Suppose Z(x, y) is supported on
0 � x � 1

2 , 0 � y � 1. Let A(s) be the Dirichlet polynomial with coefficients an
given by (26.1). Then

(28.1)
1

U

∫ T+U

T

∣∣∣∣A
(
1

2
+ it

)∣∣∣∣
2

dt = E +O
(
(log T )−

1
8

)
if T (log T )−

1
8 � U � T , where E is given by (26.10).

The restriction of the support of Z(x, y) in the x-variable to the segment
0 � x � 1

2 is crucial in our proof of Theorem 28.1. However, it is reasonable
to expect that it can be relaxed substantially (see relevant investigations by D.
Farmer [Far93]).

Conjecture (Long Mollifier). The formula (28.1) holds true if Z(x, y) is sup-
ported on 0 � x, y � 1.

We have now all the ingredients for completing the lower bound (16.2) for the
number of critical zeros. As described in Chapter 23, it remains to prove (23.1) for
the product F (s) = G(s)M(s), where G(s) is a linear combination of ζ(s) and ζ ′(s)
given by (23.4) and M(s) is the mollifier given by the Dirichlet polynomial (23.7).
The linear polynomials P (x) = 1 − 2x, Q(y) = 1 − y which determine M(s) and
G(s) are the original choice of Levinson, but they could be different.

We are going to derive (23.1) in greater generality. We takeG(s) given by (18.1)
and M(s) given by (23.7) with P (x) quite arbitrary. For G(s) we have a nice
approximation (18.14) by Dirichlet polynomials L(s), L1(s), L2(s) of length T .
Actually L2(s) is not a Dirichlet polynomial in a strict sense, because its coefficients
δl(s) depend on s; see (18.18). However, they are relatively small; see (18.19). So
by Corollary 13.3 ∫ 2T

T

|L2(a+ it)|2 dt 	 T (log T )−3.

Moreover, one gets directly from (13.15) that∫ 2T

T

|M(a+ it)|2 dt 	 T log T.

Hence, by the Cauchy-Schwarz inequality we get the bound∫ 2T

T

|L2M(a+ it)| dt 	 T (log T )−1,
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104 28. CONCLUSION

which is good enough to be an insignificant contribution. Now, by the approxima-
tions (18.14) and (18.11), we get

(28.2)

∫ T+U

T

|F (a+ it)| dt =
∫ T+U

T

|LM(a+ it)| dt

+O

(
(log T )−1

∫ T+U

T

|L1M(a+ it)| dt+ T (log T )−1

)
.

We are going to show that the integral of |L1M | also gives an insignificant con-
tribution. If one splitted the product L1M by the Cauchy-Schwarz inequality and
applied the mean values for |L1|2 and |M |2, then one would get the estimate∫ 2T

T

|L1M(a+ it)| dt 	 T log T,

which is too weak (just by a constant). We can do better by applying Theorem 28.1.
Unfortunately, (28.1) is not applicable directly for A1(s) = L1M(s− 1

2 +a) because
the corresponding crop function

Z(x, y) = P (x)Q′(y)eRy

may fail to be continuous at y = 1. For example, our primary choice Q(y) =
max(0, 1− y), y � 0, does not qualify. Fortunately, we can go around this problem
in general by using the following decomposition

Q′(y) = (1− yr)Q′(y) + yrQ′(y),

where r is a positive integer at our disposal. Accordingly, A1(s) = A2(s) + A3(s).
In the first term, A2(s), the resulting crop function

Z(x, y) = P (x)(1− yr)Q′(y)eRy

does satisfy the conditions of Theorem 28.1 (after rescaling by a factor of r to make
the partial derivatives bounded uniformly in r), giving

(28.3)

∫ T+U

T

∣∣∣∣A2

(
1

2
+ it

)∣∣∣∣ dt 	 rU.

The second term, A3(s), is the product of the mollifier M(s) against the Dirichlet
polynomial ∑

l<T

bll
−s =

∑
l<T

(
log l

log T

)r

Q′
(

log l

log T

)
l−s

whose coefficients bl = γr
l Q

′(γl) satisfy (24.4). Hence by Lemma 24.1 we get

(28.4)

∫ T+U

T

∣∣∣∣A3

(
1

2
+ it

)∣∣∣∣ dt 	 r−
1
4U log T.

Adding up (28.3) and (28.4) we get (take r � (log T )
4
5 )

(28.5)

∫ T+U

T

|L1M(a+ it)| dt 	 U(log T )
4
5 .

Hence (28.2) reduces to

(28.6)

∫ T+U

T

|F (a+ it)| dt =
∫ T+U

T

|LM(a+ it)| dt+O
(
U(log T )−

1
5

)
.
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28. CONCLUSION 105

Here the Dirichlet polynomial A(s) = LM(s − 1
2 + a) has coefficients an given

by (26.1) with the crop function

(28.7) Z(x, y) = P (x)Q(y)eRy,

which satisfies all the conditions of Theorem 28.1. Therefore (28.1) holds with
E = C(R), where

(28.8) C(R) = 1 +

∫ 1

0

∫ 1

0

(
∂Z(x, y)

)2
dx dy.

This completes the proof of (23.1) with c(R) = C(R)
1
2 in full generality of G(s).
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CHAPTER 29

Computations and the Optimal Mollifier

We end Part 2 of these lectures by computing C(R) for various crop functions
Z(x, y) of type (28.7). First we assume that P (x), Q(y) are continuous functions
in x, y � 0 with

P (0) = Q(0) = 1

P (x) = Q(y) = 0 if x, y � 1

and that the derivatives P ′(x), Q′(y) are bounded and piecewise continuous. The
additional property

Q(y) +Q(1− y) = 1 if 0 � y � 1

emerges from the Conrey construction of G(s), but it is not required for the forth-
coming analysis.

By (28.8), we obtain

C(R) = 1 +

∫ 1

0

∫ 1

0

(
P ′(x)Q(y)eRy − P (x)

(
Q(y)eRy

)′)2
dx dy.

Opening the square we find that the cross terms yield

−2

(∫ 1

0

P ′(x)P (x) dx

)(∫ 1

0

(
Q(y)eRy

)′
Q(y)eRy dy

)
= −1

2
P (0)2Q(0)2

and

(29.1) C(R) =
1

2
+A

∫ 1

0

P ′(x)2 dx+A1

∫ 1

0

P (x)2 dx,

with

(29.2) A =

∫ 1

0

(
Q(y)eRy

)2
dy, A1 =

∫ 1

0

((
Q(y)eRy

)′)2
dy.

Example (the original choice of Levinson). Take

(29.3) Q(y) = max(0, 1− y).

Then

A =
1

2R2

(
e2R − 1

2R
− 1−R

)
,(29.4)

A1 =
1

2

(
e2R − 1

2R
+ 1−R

)
= 1 +AR2.(29.5)

Moreover, if 0 < θ � 1 and

(29.6) P (x) = max(0, 1− x/θ),
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108 29. COMPUTATIONS AND THE OPTIMAL MOLLIFIER

then

(29.7)

∫ 1

0

(
P ′(x)

)2
dx =

1

θ
,

∫ 1

0

P (x)2 dx =
θ

3
.

For this choice, (29.1) yields

(29.8) C(R) =
1

2θR2

(
e2R − 1

2R
+R− 1

)
+

θ

6

(
e2R − 1

2R
+ 1−R

)
+

1

2
.

In particular, if θ = 1
2 , we get (23.10) and complete the proof of Theorem 23.1.

Question. Given R > 0 and Q(y), what is the best mollifying function P (x),
i.e., the continuous function which minimizes C(R), subject to

(29.9) P (0) = 1 and P (x) = 0, if x � θ?

We are going to find the optimal P (x) by variational calculus. To this end,
consider any smooth test function g(x) on 0 � x � θ with g(0) = g(θ) = 0.
Changing P (x) to P (x) + εg(x) in (29.1) we get

1

2
+A

∫ θ

0

(
P ′(x) + εg′(x)

)2
dx+A1

∫ θ

0

(
P (x) + εg(x)

)2
dx

= C(R) + 2εA

∫ θ

0

P ′(x)g′(x) dx+ 2εA1

∫ θ

0

P (x)g(x) dx

+ ε2A

∫ θ

0

(
g′(x)

)2
dx+ ε2A1

∫ θ

0

g(x)2 dx

= C(R) + 2ε

∫ θ

0

(
A1P (x)−AP ′′(x)

)
g(x) dx+O(ε2)

because, by partial integration and the boundary conditions, we have∫ θ

0

P ′(x)g′(x) dx = −
∫ θ

0

P ′′(x)g(x) dx.

Since ε and g(x) are arbitrary (ε is positive or negative), it follows that the mini-
mizing function P (x) must satisfy the Euler-Lagrange differential equation

(29.10) AP ′′(x) = A1P (x).

There are two linearly independent solutions eλx, e−λx with

(29.11) λ = (A1/A)
1
2 .

By the boundary conditions (29.9), we find the unique solution

(29.12) P (x) = sinhλ(θ − x)/ sinhλθ.

Integrating by parts we find by (29.10) that

A

∫ θ

0

P ′(x)2 dx = A

∫ θ

0

P ′(x) dP (x) = −AP ′(0)−A1

∫ θ

0

P (x)2 dx.

Hence (29.1) for the optimal function P (x) becomes C(R) = 1
2 − AP ′(0). Since

P ′(0) = −λ coshλθ/ sinhλθ, we conclude that for the optimal function (29.12) we
have

(29.13) C(R) =
1

2
+ λA

coshλθ

sinhλθ
=

1

2
+ (AA1)

1
2
cosh λθ

sinhλθ
,
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29. COMPUTATIONS AND THE OPTIMAL MOLLIFIER 109

where A, A1 are given by (29.2) and λ = (A1/A)
1
2 .

In particular, if P (x) is optimal for Q(y) = max(0, 1− y), then

(29.14) C(R) =
1

2
+
(
A(1 +AR2)

) 1
2
coshλθ

sinhλθ
,

with λ = A− 1
2 (1 + AR2)

1
2 and A = A(R) given by (29.4).

Epilogue. Assuming the Long Mollifier Conjecture, the above formulas hold for
θ = 1, so the optimal mollifier is attained for

(29.15) P (x) = sinhλ(1− x)/ sinhλ.

For Q(y) = max(0, 1 − y), the numerical computations reveal that the best result
is obtained for R near 3/4 (the Levinson-Littlewood shift parameter). For R = 3/4
we get

A = 0.507667597, λ = 1.591317958, C(R) = 1.377774263

and the proportion of simple critical zeros of ζ(s) is at least

(29.16) κ = 1− 1

R
logC(R) = 0.572707541.

Therefore one may say;

The Riemann Hypothesis is more likely to be true than not!
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APPENDIX A

Smooth Bump Functions

We begin by examining the function

(A.1) f(x) =

{
exp
(
− 1/x(1− x)

)
if 0 < x < 1

0 otherwise
.

Therefore f(x) is smooth, supported on 0 � x � 1, and it satisfies

(A.2) f(x) = f(1− x).

Lemma A.1. For 0 < x � 1
2 we have

(A.3) |f (n)(x)| � n!x−n exp(−1/2x), n � 1.

Proof. By Cauchy’s formula

f (n)(x) =
n!

2πi

∫
|z|=x

f(z + x)z−n−1 dz

we get

|f (n)(x)| � n!x−n max
|z|=x

|f(z + x)|.

We have

|f(z + x)| = exp

(
−Re

(
1

z + x
+

1

1− z − x

))

� exp

(
−Re

1

z + x

)
= exp(−1/2x)

for every z with |z| = x. Indeed, writing z = xeiθ we need to see that

Re
1

eiθ + 1
=

1 + cos θ

(1 + cos θ)2 + sin2 θ
=

1

2
. �

Corollary A.2. For n � 1 we have

(A.4) |f (n)(x)| � n!

(
2n

e

)n

.

Proof. The maximum of the upper bound (A.3) is attained at x = 1/2n. �

Put

(A.5) C =

∫ 1

0

f(x) dx;

an absolute constant, and

(A.6) F (y) =
1

C

∫ y

−∞
f(x) dx.
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112 A. SMOOTH BUMP FUNCTIONS

Clearly F (y) is a smooth funtion with graph as in Figure A.1. That is, F (y) = 0 if
y � 0, 0 � F (y) � 1 if 0 � y � 1, and F (y) = 1 if y � 1.

0 1

1

Figure A.1

Using F (y) we construct the function

(A.7) G(y) = F

(
y + V

V

)
− F

(
y − U

V

)
,

where 0 < V < U . Therefore G(y) is a smooth function on R whose graph is seen
in Figure A.2.

0

1

−V U U + V

Figure A.2

The Fourier transform of G(y) is equal to

Ĝ(x) =

∫
G(y) e(xy) dy =

−1

2πix

∫
G′(y) e(xy) dy

=
−1

2πixV C

∫ (
f

(
y + V

V

)
− f

(
y − U

V

))
dy

=
−1

2πixC

(
e(−xV )− e(xU)

)
f̂(xV ).

We arrange this in the form

(A.8) Ĝ(x) = eπix(U−V ) sin πx(U + V )

πxC
f̂(xV ).

For x = 0 this gives

(A.9) Ĝ(0) = U + V.

Next we estimate Ĝ(x) for any x. First, by (A.4) we get

f̂(x) =

(
−1

2πix

)n ∫
f (n)(y) e(xy) dy

	 n!

(
2n

e

)n (
2π|x|

)−n 	
√
n

(
n2

πe2|x|

)n

for any n � 1. Choosing n = 1 + [
√

π|x|] we get
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A. SMOOTH BUMP FUNCTIONS 113

Lemma A.3. For any x ∈ R we have

(A.10) f̂(x) 	
(
1 + |x|

)
e−2

√
π|x|.

Applying (A.10) to (A.8) we get

Corollary A.4. For any y ∈ R we have

(A.11) Ĝ(y) 	 Ue−2
√

π|y|V ,

where the implied constant is absolute.

Finally, we take

(A.12) Φ(t) = G(t− T )

This is a smooth function whose graph is seen in Figure A.3.

TT − V T + U T + U + V

Figure A.3

Corollary A.5. Let Φ(t) be as above with 0 < V < U < T . Then the Fourier
transform of Φ(t) satisfies

(A.13) Φ̂(y) = e(yT )Ĝ(y) 	 Ue−2
√

π|y|V .

In particular,

(A.14) Φ̂(0) = U + V.

Moreover,

(A.15) Φ̂′(y) 	 TUe−2
√

π|y|V ,

where the implied constant is absolute.
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APPENDIX B

The Gamma Function

Here are a few basic properties of the gamma function:

Γ(s) =

∫ ∞

0

e−yys−1 dy, if σ > 0,

=

∫ ∞

1

e−yys−1 dy +
∞∑

m=0

(−1)m

m!(s+m)
, for all s.

This shows that Γ(s) is meromorphic in the whole s-plane with only simple poles
at s = 0, −1, −2, −3, . . . , and

res
s=−m

Γ(s) =
(−1)m

m!
, m = 0, 1, 2, . . .

The recurrence formula:

Γ(s+ 1) = sΓ(s).

The functional equation:

Γ(s)Γ(1− s) =
π

sinπs
.

The duplication formula:

Γ(s)Γ

(
s+

1

2

)
= π

1
2 21−2sΓ(2s).

The Weierstrass product:

sΓ(s) = e−γs
∞∏

m=1

(
1 +

s

m

)−1

e
s
m .

This shows that Γ(s) has no zeros, so 1/Γ(s) is entire.
Stirling’s approximate formulas:

log Γ(s) =

(
s− 1

2

)
log s− s+

1

2
log 2π +O

(
1

|s|

)

Γ(s) =

(
2π

s

) 1
2 (s

e

)s{
1 +O

(
1

|s|

)}

ψ(s) =
(
log Γ(s)

)′
=

Γ′

Γ
(s) = log s+O

(
1

|s|

)
.

These formulas hold in the sector | arg s| � π − ε, where the implied constants
depend only on ε.
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116 B. THE GAMMA FUNCTION

In vertical strips we have:

Γ(σ + it) = (2π)
1
2 (it)σ−

1
2

(
t

e

)it

e−
π
2 t

{
1 +O

(
1

t

)}
∣∣Γ(σ + it)

∣∣ = (2π)
1
2 tσ−

1
2 e−

π
2 t

{
1 +O

(
1

t

)}
it t > 0, σ′ < σ < σ′′, where the implied constants depend only on σ′, σ′′.
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The Riemann zeta function was introduced by L. Euler (1737) in connection with ques-
tions about the distribution of prime numbers. Later, B. Riemann (1859) derived deeper 
results about the prime numbers by considering the zeta function in the complex variable. 
The famous Riemann Hypothesis, asserting that all of the non-trivial zeros of zeta are on 
a critical line in the complex plane, is one of the most important unsolved problems in 
modern mathematics.

The present book consists of two parts. The first part covers classical material about the 
zeros of the Riemann zeta function with applications to the distribution of prime numbers, 
including those made by Riemann himself, F. Carlson, and Hardy–Littlewood. The second 
part gives a complete presentation of Levinson’s method for zeros on the critical line, 
which allows one to prove, in particular, that more than one-third of non-trivial zeros 
of zeta are on the critical line. This approach and some results concerning integrals of 
Dirichlet polynomials are new. There are also technical lemmas which can be useful in a 
broader context.

For additional information 
and updates on this book, visit

www.ams.org/bookpages/ulect-62
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