For $m \neq n$ (the off-diagonal terms) we get by partial integration

$$\int f(t) \left(\frac{m}{n}\right)^{it} dt = \left(\log \frac{m}{n}\right)^{-2} \int_{-X}^{T+X} f'(t) d\left(\frac{m}{n}\right)^{it} \ll X^{-1} \left(\log \frac{m}{n}\right)^{-2}.$$

Hence
$$\sum_{m \neq n} a_m \overline{a_n} \int f(t) \left(\frac{m}{n}\right)^{it} dt \ll X^{-1} \sum_{m \neq n} |a_m a_n| \left(\log \frac{m}{n}\right)^{-2} \leq X \sum_{m \neq n} |a_m| \frac{n}{m} \left(\log \frac{m}{m}\right) \ll X H,$$
because -2

because -2 State of the state o

Adding the diagonal contribution we see that the integral (13.12) is estimated from above by

(13.14)
$$TG + O(XG + X^{-1}H).$$

Similarly we get (13.14) as a lower bound for the integral (13.12). Hence, choosing $X = (H/G)^{1/2}$ we get the formula (13.12).

Estimating H by GN^2 we get

Corollary 13.2. For T > 0 we have

(13.15)
$$\int_0^T |A(it)|^2 dt = (T + O(N))G$$

where the implied constant is absolute.

This result shows that G is the mean value of $|A(it)|^2$ on the segment 0 < t < T, provided T is somewhat larger than the length of the polynomial.

Sometimes we need estimates for sums A(s) whose coefficients a_n depend on sin a steady fashion. By (13.15) we derive

COROLLARY 13.3. Suppose for $T \leq t \leq 2T$ and $n \leq N$ that we have

$$|a_n(t)| \leqslant a_n, \qquad t|a'_n(t)| \leqslant a_n.$$

Then

(13.17)
$$\int_{T}^{2T} \left| \sum_{n \leq N} a_n(t) n^{it} \right|^2 dt \leq \left(2T + O(N) \right) \sum_{n \leq N} |a_n|^2.$$

PROOF. Apply the Cauchy-Schwarz inequality to

$$\left|\sum_{n} a_n(t) n^{it}\right| \leqslant \left|\sum_{n} a_n(T) n^{it}\right| + \int_{T}^{2T} \left|\sum_{n} a'_n(\tau) n^{it}\right| d\tau.$$

COROLLARY 13.4. For $T \ge 2$ we have

(13.18)
$$\int_0^T \left| \zeta \left(\frac{1}{2} + it \right) \right|^2 dt = T \log T + O\left(T (\log T)^{\frac{1}{2}} \right).$$

PROOF. By the approximation (6.5) for $s = \frac{1}{2} + it$ with $\frac{1}{2}T < t < T$ we have

$$\zeta(s) = \sum_{n \le T} n^{-s} + O(T^{-\frac{1}{2}}).$$