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An Inequality for the Volume of a
Tetrahedron
Marcin Mazur

Abstract. In this note we prove a curious inequality involving the sides and volume of a
tetrahedron.

There are many inequalities involving the area and sides of a triangle, but analogous
inequalities for tetrahedra are less common. The goal of this short note is to prove the
following inequality involving the volume and sides of a tetrahedron.

Theorem 1. Let V be the volume of a tetrahedron ABCD and let a = AB ·CD, b =
AC · BD, c = AD · BC. Then

(a+ b− c)(a+ c− b)(b+ c− a) ≥ 72V 2 (1)

and equality holds if and only if the tetrahedron is equifacial.

Recall that a tetrahedron ABCD is equifacial (or isosceles) if its faces are all con-
gruent triangles. Equivalently, ABCD is equifacial if and only if AB = CD, AC = BD,
and AD = BC. There are many equivalent characterizations of equifacial tetrahedra
(see [1, IV.6.b], [3], [4, Chapter 9], [5], [6]) and Theorem 1 can be considered as yet
another such characterization.

We will derive Theorem 1 from two classical results in solid geometry. The first of
them is the following theorem due to August Leopold Crelle [2]. (A. L. Crelle (1780–
1855) was a German mathematician and the founder of the Journal für Die Reine and
Angewandte Mathematik, commonly known as Crelle’s Journal, which has been one
of the leading mathematical journals ever since its establishment in 1826.)

Crelle’s Theorem. Let V and R be the volume and the circumradius of a tetrehedron
ABCD, respectively. Then the quantities a = AB ·CD, b = AC · BD, c = AD · BC are
side-lengths of a triangle whose area S is given by the formula S = 6RV.

The second result needed to prove Theorem 1 is the following proposition.

Proposition 2. Let G be the centroid of a tetrahedron ABCD. Then, for any point P,
we have

4(PA2 + PB2 + PC2 + PD2) = AB2 + AC2 + AD2 + BC2 + BD2 +CD2 + 16PG2.

Both Crelle’s theorem and Proposition 2, as well as numerous other properties of
equifacial tetrahedra and many other interesting results from solid geometry, can be
found in the wonderful book [6] (see Problems 302, 297, 21). Unfortunately, this book
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is very hard to find. We will outline proofs (different from those in [6]) of both results
at the end of this note.

We are ready now to prove Theorem 1. Applying Heron’s formula to the area S
in Crelle’s theorem, we get (a+ b+ c)(a+ b− c)(a+ c− b)(b+ c− a) = 16S2 =
16(6RV )2. It follows easily from this equality that Theorem 1 is equivalent to the fol-
lowing result, which is of interest in its own right.

Theorem 3. Let R be the circumradius of a tetrahedron ABCD and let a = AB ·CD,
b = AC · BD, c = AD · BC. Then

8R2 ≥ a+ b+ c (2)

and equality holds if and only if the tetrahedron is equifacial.

It remains to prove Theorem 3. Taking for P in Proposition 2 the circumcenter
O of ABCD, we get the equality 16R2 = AB2 + AC2 + AD2 + BC2 + BD2 +CD2 +
16OG2. Since (AB−CD)2 ≥ 0, we have AB2 +CD2 ≥ 2a. Similarly, AC2 + BD2 ≥
2b and AD2 + BC2 ≥ 2c. Adding these inequalities, we get 16R2 ≥ 2(a+ b+ c) +
16OG2, which proves inequality (2). Furthermore, it is clear that equality in (2) holds if
and only ifO = G, AB = CD, AC = BD, and AD = BC. To complete the proof of The-
orem 3 it suffices to show that O = G for any equifacial tetrahedron. Indeed, Proposi-
tion 2 applied to any vertex P of an equifacial tetrahedron ABCD yields 4(a+ b+ c) =
2(a+ b+ c) + 16PG2. It follows that G is equidistant from all vertices of ABCD, i.e.,
G = O. This completes our proofs of Theorems 3 and 1. Perhaps we should mention
that a tetrahedron is equifacial if and only if its centroid coincides with its circumcenter
(see [1, sec. 298], [3], [6, Problem 304]).

We end this note with an outline of proofs of Crelle’s theorem and of Proposition 2.
To outline a proof of Crelle’s theorem, we need to recall the notion of an inversion.

An inversion I with center O and radius r assigns to any point P �= O a point Q =
I(P) on the ray OP such that OP · OQ = r2. Inversion preserves angles (is conformal),
maps circles (spheres) not passing through O to circles (spheres) not passing through
O and circles (spheres) passing through O to lines (planes) not passing through O.
Furthermore, for any points A,B, we have

I(A)I(B) = AB · r2
OA · OB . (3)

For more details about inversions, we refer to [1, Chapter VIII] and [7, Section 8.5].
To prove Crelle’s theorem, consider the inversion I with center at the vertex D and

radius r = √
DA · DB · DC. By (3), the triangle I(A)I(B)I(C) has sides a, b, c. In or-

der to compute the area S of this triangle, consider the volume V ∗ of the tetrahe-
dron DI(A)I(B)I(C). The image under I of the circumsphere of ABCD is the plane
I(A)I(B)I(C). Let X be the point on the circumsphere of ABCD diametrically oppo-
site point D. Then DX is perpendicular to the circumsphere and, since I is conformal,
DI(X ) is perpendicular to the plane I(A)I(B)I(C); hence the distance from D to the
plane I(A)I(B)I(C), which isDI(X ), is equal to r2/2R. ThusV ∗ = Sr2/6R. On the other
hand, sinceDI(A)I(B)I(C) is obtained fromDABC by rescaling the edgesDA,DB,DC,
we have

V ∗

V
= DI(A) · DI(B) · DI(C)

DA · DB · DC = r6

DA2 · DB2 · DC2
= r2.

It follows that Sr2/6RV = r2, i.e., S = 6RV .
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Proposition 2 is a special case of a classical result in mass point geometry due
to Lagrange (and many others, who discovered it independently). Consider points
A1, . . . ,An and letG be their center of mass, i.e.,

∑n
i=1

−→
GAi = 0. For any point P define

themoment of inertia IP of the points A1, . . . ,An with respect to P as IP = ∑n
i=1 PA

2
i .

Then

IP =
n∑

i=1

(
−→
PG+ −→

GAi)
2 =

n∑

i=1

GA2
i + nPG2 + 2

−→
PG ·

n∑

i=1

−→
GAi = IG + nPG2. (4)

Adding the equalities (4) for P = A1, . . . ,An, we get

2
∑

i< j

AiA
2
j =

n∑

i=1

IAi = nIG + n
n∑

i=1

AiG
2 = 2nIG. (5)

Multiplying (4) by n and using (5), we obtain the following equality:

nIP =
∑

i< j

AiA
2
j + n2PG2. (6)

Proposition 2 is a special case of (6), when n = 4, A1 = A, A2 = B, A3 = C, and
A4 = D.
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