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PREFACE TO THE SECOND EDITION

SINCE the first edition was written, a vast amount of further work has
been done. This has been covered by the end-of-chapter notes. In most.
instances, restrictions on space have prohibited the inclusion of full
proofs, but I have tried to give an indication of the methods used
wherever possible. (Proofs of quite a few of the recent results described
in the end of chapter notes may be found in the book by Ivic [3]) I have
also corrected a number of minor errors, and made a few other small
to the text. A iderable number of recent references
have been added.
In preparing this work I have had help from Professors J. B. Conrey,
P.D.T. A. Elliott, A.Ghosh, S.M. Gonek, H.L.Montgomery, and
S. J. Patterson. It is a pleasure to record my thanks to them.

OXFORD D.R.H.-B.
1986



PREFACE TO FIRST EDITION

TS book is a successor to my Cambridge Tract The Zeta-Function of
Riemann, 1930, which is now out of print and out of date. It seems no
longer practicable to give an account of the subject in such a small space
as a Cambridge Tract, so that the present work, though on exactly the
same lines as the previous one, is on a much larger scale. As before, [ do
not discuss general prime-number theory, though it has been convenient
to include some theorems on primes.

Most of this book was compiled in the 1930’s, when I was still
researching on the subject. It has been brought partly up to date by
including some of the work of A. Selberg and of Vinogradov, though a
great deal of recent work is scantily represented.

The manuscript has been read by Dr. 8. H. Min and by Prof. D. B.
Sears, and my best thanks are due to them for correcting a large number
of mistakes. I must also thank Prof. F. V. Atkinson and Dr. T. M. Fleet
for their kind assistance in reading the proof-sheets.

OXFORD E.C.T.
1951
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1

THE FUNCTION {(s) AND THE DIRICHLET
SERIES RELATED TO IT

1.1. Definition of {(s). The Riemann zeta-function {(s) has its origin in
the identity expressed by the two formulae

@
ds) =

=1

where # runs through all integers, and

- (1.1.1)

Us) = H(l —%)‘l, (1.1.2)
5

where p runs through all primes. Either of these may be taken as the
definition of {(s); s is a complex variable, s = o-+it. The Dirichlet series
{1.1.1) is convergent for ¢ > 1, and uniformly convergent in any finite
region in which o 2> 1438, 8 > 0. It therefore defines an analytic func-
tion {{s), regular for ¢ > 1.

The infinite product is also absolutely convergent for ¢ > 1; for so is

B33

g
this being merely a selection of terms from the series 3 2o If we
expand the factor involving p in powers of p~%, we obtain

1 1
L e
U( PP

On multiplying formally, we obtain the series (1.1.1), since each

integer » can be expressed as a produet of prime-powers p™ in just one

way. The identity of (1.1.1) and (1.1.2) is thus an analytic equivalent

of the theorem that the expression of an integer in prime factors is
unique.

A rigorous proof is easily constructed by taking first a finite number

of factors. Since we can multiply a finite number of absolutely con-
vergent series, we have

(e

‘where #y, 7,..., are those integers none of whose prime factors exceed P.

)+++.,



2 THE FUNCTION {(s) AND Chap. 1

Since all integers up to P are of this form, it follows that, if {(s) is
defined by (1.1.1),

wo-TJ0-3 -

1 1
S@ErrtEry
This tends to 0 as P —> o0, if ¢ > 1; and (1.1.2) follows.

This fundamental identity is due to Euler, and (1.1.2) is known as
Euler’s product. But Euler considered it for particular values of s only,
and it was Riemann who first considered {(s) as an analytic function
of a complex variable.

Since a convergent infinite product of non-zero factors is not zero,
we deduce that {(s) kas no zeros for o > 1. This may be proved
directly as follows. We have for o > 1

e

where m,, m,..., are the integers all of whose prime factom exceed P.

Hence
(1_%)...(1—%)«5:) > 1~ i

if P is large enough. Hence |{(s}] > 0.

The importance of {(s) in the theory of prime nurbers lies in the
fact that it combines two expressions, one of which contains the primes
explicitly, while the other does not. The theory of primes is largely
concerned with the function n(x), the number of primes not exceeding .
We can transform (1.1.2) into a relation between {(s) and (z); for if
o>1,

togi) =~ 5 toglt —3) = — 3 totn)—stn—1pog(1 — )
n=2

- Z n(n){log( )_108(1_(n-}1-1)‘)}

=3

-1t L
n] nf

_ s _f
_’Z’w(n)f mdz#a‘j‘z(z' - (11.3)

The rearrangement of the series is justified since #(n) < » and
log(1—n=?) = O(n—°).

11 THE DIRICHLET SERIES 3
L 1 1
Again o 1——),
& ) U( 7
and on carrying out the multiplication we obtain
1 )
) ,.Z. 2 >, (1.1.4)

where u(1) = 1, p(n) = (—1)* if n is the product of  different primes,
and p(n) = 0 if n contains any factor to a power higher than the first.
The process is easily justified as in the case of {(s).

The function u(n) is known as the Mobius function. It has the

property ﬁ"("’ =1(=1), 0(@g>1), (1.1.5)

where d|g¢ means that d is a divisor of g. This follows from the identity

) <1
z m' H zl? g o

)
-1

It also gives the ‘M&bius inversion formula’

glg) = %f(d), (1.1.6)
= Notd), 1.
1@ %u(d)y( ) (.1.7)

connecting two functions f(n), g(n) defined for integral #. If f is given
and g defined by (1.1.6), the right-hand side of (1.1.7) is

u(;q,) % 7.

The coefficient of f(g) is p(1) = 1. If r < ¢, then 4 = kr, where k|g/r.
Hence the coefficient of f{r) is

q ’
#(—) =D u)=0
by {1.1.5). This proves (1.1.7). Conversely, if ¢ is given, and f is defined
by (1.1.7), then the right-hand side of (1.1.6) is
> 2wl
g rid

and this is g(g), by a similar argument. The formula may also be
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derived formally from the obviously equivalent relations

_ hgin) _1 <gm
F(s)(s) 2w F(s) = 2w
()]
where Fs) = ,.Z,F'

Again, on taking logarithms and differentiating (1.1.2), we obtain, for

o> 1, J?
ok A

> 1

= SAm (1.1.8)
n=2 w

where A(n) = logp if » is p or a power of p, and otherwise A(n) = 0.

On integrating we obtain

log{(s) = z/% (@>1), 1.1.9)
=t

where A,(n) = A(n)/logn, and the value of log {(s} is that which tends
to 0 a8 ¢ > oo, for any fixed t.

1.2. Various Dirichlet series connected with {(s). In the first
place & i)
3g) = arl 121
s =25 >, (a.21)
where d(n) denotes the number of divisors of » (including I and = itself).
For , © ©
1 1 1
2(3) = ol = —
BO=2 52 5= 2
e Ll ) 2=1" py=n
and the number of terms in the last sum is d(n). And generally
di(n)
ey = > B2 (o >1), (1.2.2)
e
where k = 2, 3, 4,..., and d,(n) denotes the number of ways of expressing

n as a product of % factors, expressions with the same factors ina
different order being counted as different. For

e = 25 2

and the last sum is di(n).

@

=22

v
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Since we have also

o =TT (1 -

El

) (1.2.3)

S

on comparing the coefficients in (1.2.1) and (1.2.3) we verify the
elementary formula

d(n) = (my+1)...0m,+1) (1.2.4)
for the number of divisors of

n = pPpgn..pf. (1.2.5)
Similarly from (1.2.2)

(k+my—1)! (k+m,

!

dy(n) = TGO e (DT (1.2.6)
‘We next note the expansions
U _ S lem)l ;
2= Zl_n‘_ (0> 1), (1.27)
where p(n) is the coefficient in (1.1.4);
Xs). ovi) S
T ,.Z, — @>1), (1.2.8)
where v(n) is the number of different prime factors of »;
L) d(n?)
Ho z o> 1), (1.2.9)
B _ S [dim)?
and T = ZT (0> 1). (1.2.10)

To prove (1.2.7), we have
g1} 1
= L]
»
and this differs from the formula for 1/{(s} only in the fact that the

signs are all positive. The result is therefore clear. To prove (1.2.8), we
have

P _rrl=p® _ 14p~—
f@s)  Lla—p=p— L1l1—p=

=TI Q+2 425+,
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and the result follows. To prove (1.2.9),

&) 1—-p=* 1+p~*
{(2s) H TP~ Lla—p~p

= 1;I {(1+p-')(1+2p4+3p~"+..-)}
= I {43p~ 4+ @mt Dpmd .},

and the result follows, since, if » is (1.2.5),
d(n?) = (2m;+1)...(2m,4-1).

Similarly
) _ T 1= 14p
Izs) 1_[ T=pp = ot (1—P~P

= 1'[ (1+p7-){1+3p~+..4+i(m+1)(m+2)p-"'+.4»)
B
= 1;[ (4-dp= . (mt- 1),
and (1.2.10) follows.
Other formulae are

{29 A s 1211
e 3N o>, a.2.11)
where A(n} = (—1)" if » has r prime factors, & factor of degres & being
counted & times;

Us—1) _ S ém)
T z £ o>, (1.2.12)
where $(n) is the number of numbers less than z and prime to »; and
e :2%”’ (> 2, (.2.13)

where a(n) is the greatest odd divisor of n. Of these, (1.2.11) follows
at once from

Also
= TR = L)

T3

+§,—.’+~-)},

+
’T...\
]

'ﬁl'—'
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and (1.2.12) follows, since, if n = pP...p™,
1 1
=n[le—]..[1—=].
= afi=5)-(1-3)

1—21-r 1
— 1
1—z= L 11—

Finally

—91-s
o He— ) =

_ 1 1
T I3 1Bl 15

= (1 +2l,+§;+..4)(1 += +3u+ )

and (1.2.13) follows.
Many of these formulae are, of course, simply particular cases of the

general formula
Zf(n) H{H_f(p) f(P') )’

where f(n) is a multiplicative function, i.e. is such that, if n = pfapps...,
then St = BTN Er)
Again, let fi.(n) denote the number of representations of » as a product

of k factors, each greater than unity when n > 1, the order of the factors
being essential. Then clearly

ifk(—’j) — =1 (@ >1). (1.2.14)
F="T

Let f(n) be the number of representations of » as a product of factors
greater than unity, representations with factors in a different order
being considered as distinct; and let f(1) = 1. Then

s = 3 futw)
Hence fim) {1
Z =1+ 3 -1 = 14+ = —e—T

fx=1

_ 1
2—{(s)"
Tt is easily seen that {(s) = 2 for s = a, where a is a real number greater
than 1; and [{(s)] < 2 for ¢ >> «, 80 that (1.2.15) holds for o > a.

(1.2.15)
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1.3. Sums involving o,(n). Let o,(n) denote the sum of the ath
powers of the divisors of n. Then

. C(s)l(s—a) = i "‘;f.") @>1,0>R@+1).  (L31)

n=1

Since the left-hand side is, if @ # 0,
1 1 %, pe )
I+t

U( ara )( tptpt

_ 1+p° | 14p*+p* ) ( 1—p1 )
= 14— - =+ )=
1:[( M i R DI &

(m,+1)a
we have a2 *p, 1.3.2,
o4(n) = —— - ( )
if » is (1.2.5), as is also obvious from elementary considerations.
The formulat
{(8)f(s—a)i(s—b)i(s—a—b) a{n)ay(n)
Tos—at) z = (1.3.3)

=1
is valid for ¢ > max{1,R(a)+1,R(b)+1,R(a--b}4-1}. The left-hand
side is equal to
1—p-triasd
U T () I—p )1 —p )’

Putting p~* = z, the partial-fraction formula gives
1—potbz?
(I—2)(1—p2)(1—pP2)(1—p°+2)
L 1 »° 2 ks
) {IT S 1_,,«+»,)

— N 10 L g 41K D)) pm

L e
= 2,

= (1——7;“)1(1*—1»") z (1—plm+08)(] — gm+Do)m
=

+ Ramanujan (2), B. M. Wilson (1).

13 THE DIRICHLET SERIES 9
Hence
L&) (s—a)f(s—b)l(s—a—b) _ ‘—1"""*”" 1—pm+® 1
U2s—a—b) H Z 1—p* pm’
and the result follows from (1,3.2). If a = & =0, (1.3.3) reduces to
(1.2.10).

Similar formulae involving o{®(n), the sum of the ath powers of those
divisors of » which are gth powers of integers, have been given by
Crum (1).

1.4. Tt is also easily seen that, if f(») is multiplicative, and

Z ftn)

is a product of zeta-functions such as occurs in the above formulae, and
k is a given positive integer, then

i ftkn)

= »*

can also be d. An ple will ill

ag(n) is ‘multiplicative’, i.e. if m is prime to n

this point. The function

aulmn) = agmagin).

- a,,(n) o,.(p"‘) ,
ence 2 1—_[ Z

and, if & = [T #,
< a(k") o{p™)
2=
Hence
z a(kn) = Us)ls—a) 1-“ a(P'*"‘)/ Z a(p’")}
Now if; # 0,
i au(pm) _ o 1 —pltmea _ 1—po—t—pl+Def pi+a~s
& T & 0—ppm T (=Y l—p M=)
Hence

—pa—8_ ptsa (+l)a-s
Zva;l:n) _ {(s){(s~a)ﬂ l_.l’_i’i%_i'ﬁin_ﬁ (L.4.1)

=0 Bk

Making a - 0, i @ = [¥(s) 11 (A-+1~Ip—). (1.4.2)
= »
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1.5. Ramanujan’s sums.} Let
2nk;
cln) = ; g-anbwik — Z cos = 7, (1.5.1)

where h runs through all positive integers less than and prime to k.
Many formulae involving these sums wers proved by Ramanujan.
‘We shall first prove that

w =3 ,L(g)d. (L5.2)

dlk»dl’l
The sum nin) = z g-2nmmik

is equal to k if k[» and O otherwise. Denoting by (r, d) the highest
common factor of 7 and d, so that (r, d) = 1 means that r is prime to d,

Tem =3 3 = ).

() STr<d
Hence by the inversion formula of Mébius (1.1.7)
3
xln) = z #(;)n.z(n),
a®
and (1.5.2) follows. In particular
c(l) = (k). (1.5.3)
The result can also be written
ex(n) = dr-;d\n plrd.

o) plr)
H AL ST
ence T Z -
dr=k.dln
Summing with respect to %, we remove the restriction on r, which now
assumes all positive integral values. Hence}

Z eln) _ z #r) gy 0.-.("), (1.5.4)
=i rdin s
the series being absolutely convergent for ¢ > 1 since [¢,(n)] < oy(n),

by (1.5.2).
We have also

S 332

1" dkdmn

- Z,‘( ) z o = g(s)z ( )du (1.5.5)

1 Ramanujan (3), Hardy (5).
3 Two more proofs are given by Hardy, Ramanujan, 137-41.

15 THE DIRICHLET SERIES 11

We can:also sum series of the formt

i ),
n=1
where f(n) is a multiplicative functi For )!
'-wa"@ - ,-Zxd::) alkz.aln ‘u(%c)
- ;x(g)%smﬂ’g 1:[ (+1-1p
if 5 =[] p" Ifk=T] » thesum is

. L F\1-s B o
B T 012 )'Z(i) ) (U

+,;k(17 ) B0 a1 T] GH1-dp" )

P

= B I [0 1=dp)— 5 B2
gt
Hence

Zf’%?m = ke 1;[ [1_%“(1_;)(1_?%)}. (1.5.6)
S culgnfn)

We can also sum
P

a1
For example, in the simplest case f(n) = 1, the series is

& %
z nl'sllg;ms't(_g) ’

A=l
For given 8, n runs through those multiples of 8/¢ which are integers.
If /g in its lowest terms is 8,/g,, these are the numbers 3,, 23,,....
Hence the sum is

) aufs) i‘ =t p) aug)or

+ Crum (1),
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Since 8, = §/(¢,8), the result is

S exlan) _ -1 (%) (4. 8y
2 ~ 3 {5)ta.or- (157)

1.6. There is another class of identities involving infinite series of
zeta-functions. The simplest of these ist

Z% - 'Zl@logg(m). (16.1)

log I(s) = 2 z m:’m i (Ww)
w5 =\

where P(s) = 3 p~*. Hence

El’i?mgl(n«s) - 2 %"’MSL rne) i Llrs) 3w

and the result follows from (1.1.5).
A closely related formula is

vin) _ pn)
4(s) log {(ns), (1.6.2)
LI
where v() is defined under (1.2.8). This follows at once from (1.6.1) and
the identity o

Se.Sist

m=1

We have

Denoting by b(n) the number of d1v150rs of 7 which are primes or
powers of primes, another identity of the same class is

z L) z ‘#(n)log {(ns), (1.6.3)

A=l

where ¢(n) is defined under (1.2.12). For the left-hand side is equal to
& 1S 1 1 1
2w (ot gt
and the series on the right is
& p(n) 1 1
pald) = — n).
PR PRI PR

Since ; $(n) =»,

the result follows.

t See Landau and Walfisz (1), Estermann (1), (2).

11

THE ANALYTIC CHARACTER OF {(s), AND
THE FUNCTIONAL EQUATION

2.1. Analytic continuation and the functivnal equation, first
method. Each of the formulae of Chapter I is proved on the supposi-
tion that the series or product concerned is absolutely convergent. In
each case this restricts the region where the formula is proved to be valid
t0 & half-plane. For {(s) itself, and in all the fundamental formulae of
§ 1.1, this is the half-plane o > 1.

‘We have next to inquire whether the analytic function {(s) can be
continued beyond this region. The result is

TuarorEM 2.1. The function {(s) is regular for all values of s except
3§ = 1, where there is a simple pole with residue 1. It satisfies the functional

equation {(s) = 2*n*-1sin denT(1—8){(1—s). (2.1.1)

This can be proved in a ble variety of di ways, some
of which will be given in later sections. We shall first give a proof

d di

foll.

on the ing ion formula.

Let ¢{(x) be any function with a continuous derivative in the interval
[a,b). Then, if [x] denotes the greatest integer not exceeding x,

b 3
Zat = [ #0185+ [e-lol-bp dut
+(a—[a]— @)~ (b—[]—Pé®). (2.1.2)

Since the formula is plainly additive with respect to the interval (a, &]
it suffices to suppose that n < a < b < n+1. One then has

& b
j(x ~n=P¢ @) dx = (b—n-HP(d) - (¢ —n—Pla) - I¢(IWI,
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on integrating by parts. Thus the right hand side of (2.1.2) reduces
to ([b]-n)¢(b). This vanishes unless b = n+1, in which case it is
¢(n+1), as required.

In particular, let ¢(n) = n~?, where s # 1, and let ¢ and b be positive
integers. Then

b b
1_ble—gl-e (z—f2]—}
> a=m f b4 ey, (213)
n=a+1l a

First take ¢ > 1, @ = 1, and make b - 00. Adding 1 to each side, we
obtain

o) = af[z];—fj§dz+s‘+l+%. (2.1.4)
{

Since [2]—2x-+4 is bounded, this integral is convergent for ¢ > 0, and

uniformly convergent in any finite region to the right of ¢ = 0. It

therefore defines an analytic function of s, regular for o > 0. The

right-hand side therefore provides the analytic continuation of {(s) up

t0 ¢ = 0, and there is clearly a simple pole at s = 1 with residue 1.
For 0 < ¢ < 1 we have

1 1 @
[#)—=z, A | s(dx 1
f ) ""*"f" dv= = Ef;i—i’
J §
and (2.1.4) may be written
U= [’”z]‘—:”dz (0<o<1). (2.1.5)

[
Actually (2.1.4) gives the analytic continuation of {(s) for ¢ > —1;
for if

fzy=

z

A A BN P
1

then fi(x) is also bounded, since, as is easily seen,

k+1
[ fmray=o ‘
&

for any integer k. Hence

J’f(z)dx [ﬁ.‘i’] et J‘f.(t) d,

et Py
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which tends to 0 as x, — 0, x, > 0, if ¢ >> —1. Hence the integral in
(2.1.4) is convergent for ¢ > —1. Also it is easily verified that

1
x)—z+ 1 1
sf%dz=ﬁ+§ (o <0).
o

Hence ) = sj[i];—f;'—*dw (—l<o<0). (@2.1.6)
é
Now we have the Fourier series
[e]—z+} = Z Bln::ﬂ.’t, (2.1.7)
i

where z is not an integer. Substituting in (2.1.8), and integrating
term by term, we obtain

t) = Z f s

< (2nm) siny
T J. yH K4

— 2 @ap{—T(—s)jsin joml(1—3),

ie. (2.1.1). This is valid primarily for —1 < ¢ << 0. Here, however,
the right-hand side is analytic for all values of s such that ¢ < 0. It
ides the analytic i ion of {(s) over the remainder
of the plane and there are no singularities other than the pole already
encountered at s = 1.
We have still to justify the term-by-term integration. Since the
series (2.1.7) is boundedly convergent, term-by- term integration over
any finite range is p ible. It is theref ient to prove that

hmz J‘s‘”"""don (—l<a<0)

@
2mrz c08 2nmz]®  s+1
N sin sin2nmz . [ _s+1
ow f 20 |y Bnm
X i

and the desired result clearly follows.
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The functional equation (2.1.1) may be written in a number of
different ways. Changing s into 1—s, it is
{(1—s) = 21-*n—2cos JsrT'(s){(s). (2.1.8)
It may also be written

{(s) = x(@)i(1—s), (2.1.9)

where (s) = 2'a-sin jonT(L—s) = f‘%%, (2.1.10)

and x()x{l—s) = L. (2.1.11)

Writing £(s) = Js(s—)mHT(3e)L(s), (2.1.12)
it is at once verified from (2.1.8) and (2.1.9) that

£(s) = £(1—3). (2.1.13)

Writing E(2) = &(3+12) (2.1.14)

we obtain E(z) = BE(—2). (2.1.15)

The fi ional ion is therefc quivalent to the that

E(2) is an even function of z.
The approximation near s = 1 can be carried a stage farther; we have

1
U) = ;= +r+0ls—1)) (2.1.16)
where y is Euler’s constant. For by (2.1.4)

l.i_!f:[l(s)—s__l_l} = f[x]_;_'—*lh-f-%

1

i [ g
x°
!

prmit
S m+1d
. x
='1:2{"Zlm f F——logn-{—l}
-

=
=g=glm+l—logn} =y.
2.2. A considerable number of variants of the above proof of the

functional equation have been given. A similar argument was applied
by Hardy,f not to {(s) itself, but to the function

i EW gy, @2.1)
A=l w
t Hardy (8).
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This Dirichlet series is convergent for all real positive values of s, and
80, by a general theorem on the convergence of Dirichlet series, for all
values of s such that ¢ > 0. Here, of course, the pole of {(s) at s = 1
is cancelled by the zero of the other factor. These facts enable us to
simplify the discussion in some respects.

Hardy's proof runs as follows. Let

®,

fla) = ;mn(zin:ll)z.
This series is boundedly convergent and
f@) =(=1}n for mr <z <(m+lw (m=01..).
Multiplying by 251 (0 <C & < 1), and integrating over (0, ), we obtain

© (m+1m ©
. 1
> - i ot de = Tahingor > frotiem

= I'{s)sin sm(1—2-5-1){(s+1).

The term-by-term integration may be justified as in the previous proof.
The series on the left is

p” ©

[+ 3 (—rm1p—-m].

8 m=1
‘This series is convergent for s < 1, and, as a little consideration of the
above argument shows, uniformly convergent for R(s) < 1-8 < 1.
Its sum is therefore an analytic function of s, regular for R(s) < 1.
But for s < 0t is

21020430} = 2(1—2H){(—s).
Its sum is therefore the same analytic function of s for R(s) < 1.
Hence, for 0 < s < I,
el .
S5 A=2(—9) = T(s)sinfem(1—2-){(s-+1),
and the functional equation again follows.
2.3. Still another proof is based on Poisson's summation formula
@ @ 4
3 s =3 | feuoos2man du. (2.3.1)
e S

If we put f(x) = |z|~* and ignore all questions of convergence, we obtain

the result formally at once. The proof may be established in various
ways. If we integrate by parts to obtain integrals involving sin 2anu,
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we obtain a proof not fundamentally distinet from the first proof given
here.t The formula can also be used to give a proof depending} on
(1—21-#){(s).

Actuslly cases of Poisson’s formula enter into several of the following
proofs; (2.6.3) and (2.8.2) are both cases of Poisson’s formula.

2.4. Second method. The whole theory can be developed in another
way, which is one of Ri s hods. Here the fund: 1

formula is «
1
)= 15 .,f

To prove this, we have for o > 0

dz (o> 1). (2.4.1)

f zt-lgne dy = "llj‘y"le‘ﬂ dy = %9)
o o

Hence

T = > f JREpnTY fr—lz ene i — f%dx
n=1 ° & n=1 &

if the inversion of the order of summation and integration can be
justified; and this is so by absolute convergence if o > 1, since

$ [armtemeds — Yo
%)

is convergent for ¢ > 1.
Now consider the integral

1) = f ef'_"l &,
[+

where the contour C starts at infinity on the positive real axis, encircles

the origin once in the positive direction, excluding the points - 2im,

+447,..., and returns to positive infinity. Here 2~ is defined as
elo—tos

when the logarithm is real at the b of the contour; thus I(logz)
varies from 0 to 27 round the contour.
We can take C' to consist of the real axis from o to p (0 << p << 2m),
the circle |z| = p, and the real axis from p to c0. On the circle,
|29-1] = glo-TloRkI-targs < |g|o-ltnH,
les—1] > A|z|.
+ Mordell (2). 1 Ingham, Prime Numbers, 46.
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Hence the integral round this circle tends to zero with p if o > 1. On
making p - 0 we therefore obtain

[

= (27 —1)T(s)i(s)

24me’™

=5 %
Henco g — T0=) f (242)

e—1
&

This formula has been proved for ¢ > 1. The integral I(s), however,
is uniformly convergent in any finite region of the s-plane, and so defines
an integral function of s. Hence the formula provides the analytic
continuation of {(s) over the whole s-plane. The only possible singu-
Iarities are the poles of I'(1—s), viz. s = 1, 2, 3,.... We know already
that {(s) is regular at s = 2, 3,..., and in fact it follows at once from
Cauchy’s theorem that I(s) vanishes at these points. Hence the only
possible singularity is a simple pole at s = 1. Here

)= i = i,
c

and

Hence the residue at the pole is 1.
If 5 is any integer, the integrand in 7(s) is one-valued, and I(s) can
be evaluated by the theorem of residues. Since
2%
E? = I—§z+312|~B2I!+...,
where B,, B,,... are Bernoulli’s numbers, we find the following values
of {(s):

{(0)=~3 U—2m)=0, L(1—2m)= ‘;“ B,

(m=12..)
(2.4.3)

To deduce the functional equation from (2.4.2), take the integral
along the contour C, consisting of the positive real axis from infinity
to (2n+-1}r, then round the square with corners {27+ 1)m(L£ 1), and
then back to infinity along the positive real axis. Between the contours
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C and C, the integrand has poles at the points 42im,..., 4-2ina. The
residues at 2mir and —2miw are together
(2mnedivys-14 (2mmedim-1 — (2mar)i-letme-2 cos frr(s—1)
= —2(2ma)r-letmrgin fms.
Hence by the theorem of residues
1 e
&) = j &1
Ca
Now let o << 0 and make n - c0. The function 1/(¢*—1} is bounded
on the contours C,, and 2°-! = 0(|z|°-1). Hence the integral round C,
tends to zero, and we obtain
I(s) = 4miet™sinins 3 (2mm)r-t
m=1

n
dz-+4mietmssindms Y (2mm)-l
m=1

= 4mie’™sin Jars(2n) 2 (1—s).
The functional equation now follows again.
Two minor q of the functional equation may be noted
here. The formula

B
= 2tm-1pem_Cm
Lom) = onigtn o

m=1,2 (2.4.4)

follows from the functional equation (2.1.1}, with & = 1—2m, and the
value obtained above for Z(1—2m). Also

r(0) = —}log 2. (2.4.5)
For the functional equation gives
] C's)  L®)
“Hi—s) — = —log 27— }rtan fer + = NOREOR
In the neighbourhood of s = 1
1 I ra
brtan Jom = — 2 O(ls— 1), P(‘j)’ A
U —{Ys—LBkA- L
d — -
R R 1V e e e S A
where k is a constant. Hence, making s — 1, we obtain
Lo _
_W = —log 2,

and (2.4.5) follows.

2.5. Validity of (2.2.1) for all s. The original series (1.1.1) is naturally
valid for ¢ > 1 only, on account of the pole at s = 1. The series (2.2.1)
is convergent, and represents (k—21-*){(s), for ¢ >> 0. This series ceases
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to oonvergé on ¢ = 0, but there is nothing in the nature of the function
represented to account for this. In fact if we use summability instead
of ordinary convergence the equation still holds to the left of o = 0.
TrREOREM 2.5. The series f (—1)#~1n=9 ts summable (4) to the sum
(1—21-#)L(3) for all values of s.
Let 0 <<z < 1. Then
< (—1)n-t o S (— 1)n-ign
n® T(s)

A=l A=l

F( )J.ua 12 (—1)r-tgne-ne dy — o )J‘ llieuuu .

This is justified by absolute convergence for ¢ > I, and the result by
analytic continuation for ¢ > 0.
‘We can now replace this by a loop-integral in the same way as

B3
f eyt~ dy
1

(2.4.2) was obtained from (2.4.1). We obtain

w© (“_]_)h'j _e mtr_(“lﬁs) J' w- 1 xe~ dw
& o 2mmi

when C encircles the origin as before, but excludes all zeros of 14-ze—v,

i.e. the points w = logx+(2m 1)im.

Ttis clear that, as z - 1, the right-hand side tends to a limit, uniformly
in any finite region of the s-plane excluding positive integers; and, by
the theory of analytic continuation, the limit must be {1-—21-#){(s).
This proves the theorem except if s is a positive integer, when the
proof is elementary.

Similar results hold for other methods of summation.

2.6. Third method. This is also one of Riemann’s original proofs.
We observe that if ¢ > 0

fx;.,.e,m o= T,

H nirr

Hence if ¢ > 1
Y 27 F oo $ o
(i:)l(a) — ..21 ;," ghs-lg-ntmz g — nf ,,._unzle-,. e e,

the inversion being justified by absolute convergence, as in §2.4.



22 ANALYTIC CHARACTER OF {(s) AND Chap. I
Writing

By = Z en'ne (2.6.1)
we therefore have

Us) = %"’uﬁ(z’) dx (o> 1). (2.6.2)

40
I‘(% ) J
Now it is known that, for z > 0,

® o
S et = 1 Z P
o

PRECa ~T

2a+1 = g} ). 263)

Hence (2.6.2) gives
bToR(e) = [ bty et f he-y(a) da
3

e e

i __%4. I z%*%.[;(é) drt+ ! ate-ty(z) dx

1 3 e 21
-t f (bt obo1)p(a) .
F

The last integral is convergent for all values of s, and so the formula
holds, by analytic continuation, for all values of s. Now the right-hand
side is unchanged if s is replaced by 1—s. Hence
T (Fe)(s) = m HPIE—1s)i(1—s), (2.6.4)

which is a form of the functional equation.

2.7. Fourth method; proof by self-reciprocal functions. Still
another proof of the functional equation is as follows. For o > 1,
(2.4.1) may be written

1
_ i — - 1 8- l:ix
L) = of ( )x' iy Loy f :

and this holds by analytic continuation for o > 0. Also for 0 <o <1
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Hence (&) = f(e‘il
[]

::):::‘"dr 0<o<1) (2.7.1)

Now it is known that the function

1 1
flay = P (2.7.2)
is self- 1 for sine transfc , i.e. that
P
fy= i) | flylsinay dy. (2.7.3)
J8]

Hence, putting = = £J(27) in (2.7.1),

LT (s) = (2t [ feg)e g
:

e Fo
= o J(3) [ e [ ropmingy .
° H
If we can invert the order of integration, this is
bkl [ fy) dy [ gr-singy dg
o o
= 2istipde-} J‘f(y)y-‘ dy J. w*~iginu du
o o

= ol -3(1— )l —8) ———e———
= githrb-d2mb-ID(1—){(1—3) Toos Fral(1—5)’

and the functional equation again follows.
To justify the inversion, we observe that the integral

[ fwsingy dy
;

converges uniformly over 0 < 3 < ¢ < A. Hence the inversion of this
part is valid, and it is sufficient to prove that

w© 8 ©
Ilgi_rf\gif(y)dy(af +Af)§'-‘sin5yd§ =o.
3 8
Now [ esingyde = [ 0o gy) d = 0@o+y)
: ;

and also =y ?’u“‘ sinu du = O(y—9).
a
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Since f(y) = 0(1) a8 y - 0, and = O(y~%) as y - w0, we obtain

f F) dy j g-tsindy df

ys @
= f 0("+y) dy+ f 0"} dy+ [ Ol dy = O() > 0.
[ i 123
A similar method shows that the integral involving A also tends to 0.

2.8. Fifth method. The process by which (2.7.1) was obtained from
(2.4.1) can be extended indefinitely. For the next stage, (2.7.1) gives

1
- 1 -1 Do
T(s){(s) = f (21—1 ot )x‘ dz—--—+ J' (T_x) dz,
H
and this holds by analytic continuation for ¢ > —1. But

1
f,}rldx——-z—a (—1<o<0).

Hence
T(s)l(s) = f(ﬁ____,_ )x’" dz (—1<o<0). (281)
Now el (2.8.2)
Hence
&1 &F e
T = [20> et =2 f .
& =1 A=y

_ & aa_ ™ _ B
2,21 (2nm) 2cosfsm  cosdsm 1—a),

the functional equation. The inversion is justified by absolute con-
vergence if —1 <o < 0.

2.9. Sixth method. The formulat
ei"' r'(142)
=g ) = [

is easily proved by the caleulus of residues if ¢ > 1; and the integrand
is O(|z|~°-1), so that the integral is convergent. and the formula holds
by anslytic continuation, if ¢ > 0.

+ Kioosterman (1).

—Iogz}z"niz (m1<e<0) (201
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‘We may next transform this into an integral along the positive real
axis after the manner of § 2.4. We obtain

) = _sinwsJ‘ {["(ler)_logx,x_.dhz O<a<1).
1]

7 T(1+z)
{2.9.2)
To deduce the functional equation, we observe thatt

@) _ 1 tdt
T ~ TR f FEAETY
Hence
(1 4-2) @), 1
I‘(1+x)_10gx l"(cc)+ alogz

1 tdt [ 1 1
[N 3 S .. A [ e —— 2
T 2z 2 (P a2)(e*™—1) J. t*+x*(ew-1 27rt)

5 H

Hence (2.9.2) gives

2sm1rs 7 7 1
U= J.z—smft’”z(em i ﬁ) o
o o
2sinms [ 1
= —_— dx
7 f (e*ﬂ' 1 2nl)tdt,[.tz+x7
0

sinms 1 .
== trde
cos §ms J‘ (e’"‘ 1 2111)
o

- .
= 2si -1 ——Ju—

= 2sin {ns(2m)® f(e“ i u)u du
I3

= 2sin jms(2ny-T(1—s)l(1—s)
by (2.7.1). The inversion is justified by absolute convergence.
2.10. Seventh method. Still another method of dealing with {(s),

due to Riemann, has been carried out in detail by Siegel.{ It depends
on the evaluation of the following infinite integral.

Tuti(dm).

Let Oa) = fe'”_’”“"’dw, (2.10.1)
ev—1

L

where L is a straight line inclined at an angle }r to the real axis, and
+ Whittaker and Watson, § 12.32, example. 1 Siegel (2).
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intersecting the imaginary axis between O and 2wi. The integral is
plainly convergent for all values of a.
We have

elawir
Dlat1)—B(a) = f e (goto— gy o
P

= J‘ ehiwtinraw gy

_ f chiw-tinafimring gy
z

= girat f AW AW,

where W = w—2ina. Here we may move the contour to the parallel
line through the origin, so that the last integral is

@
I J‘ e 10 dp = 2meltr,

Hence D(a+1)—O(a) = 2metria+d, (2.10.2)
Next let L’ be the line parallel to L and intersecting the imaginary

axis at a dist 2 below its i with L. Then by the theorem
of residues
Fiwtlrsaw *lw‘l’b(»aw )
J‘———— — f = 2mi.
P
But
chivtimiaw hiw-amiin tatw-2mi)
J‘ T o = J' o dw
L
_ J- atwtn ro—inralw-2r) G — —e-trind(at1).
e—1
i
Hence —e-triada+1)—Dla) = 2mi. (2.10.3)
Eliminating ®(a+1), we have
g7 Spreina ~2a+d)
o) = —————’"ﬁ +2_,,,.-,. =, (2.10.4)
_ . co8m(3a2—a—1) ngarp 2.1
or O(@) = 2r BT 2B . (2.10.5)
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If o =.}iz/n4, the result (2.10.4) takes the form
f et s +ho 4 2mi W Laiar
. 1

er—1 Sl 2 €&F—
i
Multiplying by 2°-1 (o > 1), and integrating from 0 to coe-ti", we obtain
e we—tiw
f s J' bzt d
L o we— dim

etz

—28"1dz.

— 2miT(s){s)—2ni J'

a

& —

The inversion on the left-hand side is justified by absolute convergence;
in fact

w = —c+pekim, 2 = re~ti7,
where ¢ > 0, so that R(szw) = —crjv2.
Now
wem i

tf7r58 ! = imm_}wn_ _ ohimf{ )"
J‘ei‘“ 281z — ek ‘;’.e ”’y"d:l/—eﬂl(zn) T(s),

o

o Lisrads 1 PRy
d L pldr= — -1
an J‘ T z-ldz e f 1 2-ldz,
z
where L is the reflection of L in the real axis. Hence
in(2ay tw-/”;w _}w-/”g.
s, 4 ( f -+ d 251
0= ’”*P(s)(uww) &

or
Liwtr o
- BT(s)l(s) = edime-bpi-1pds-1T(4s) f ity 1 wr dwt
P

eJ.. tr+la

Jedimg-sn-b-dT(1— 3s) f Fetde (2.106)

This formula holds by the theory of analytic continuation for all
values of s.
If ¢ = }tit, the two terms on the right are conjugates. Hence
f(8) = =~1T(3s)l(s) is real on ¢ = }. Hence
Sl8) = flo+it) = fl—o+it) = fl—o—it) = f1—s),

the functional equation.
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2.11. A general formula involving [(s). It was observed by
Miintz{ that several of the formulae for {(s) which we have obtained
are particular cases of a formula containing an arbitrary function.

‘We have formally

sz f]F(m:) =3 fr’-‘F(nx)dx
8 = =1

o

= l.fr Ry dy

=) j yF) dy,
8

where F(z) is arbitrary; and the process is justifiable if F(x) is bounded
in any finite interval, and O(z-*), where « > 1, as x - c0. For then

>l [ P ay
:

exists if 1 <C 0 < o, and the inversion is justified.
Suppose next that F’(z) is continuons, bounded in any finite interval,
and O(z—P), where 8 > 1, as z -» 0. Then as z >0

EIF(M)—- fF(ux) du =z fﬁ"(m)(u_[u]) du
= o ?
1z @
= zj 0(1)du+xf Of(ux)~F} du = O(1),
o 1z

ie. $ Fluz) = lf F(v) dv+001) = St 0(1),
n=1 x x
say. Hence ’

J’ 21 E‘F(m) dx

° 1
=J'x- {2F(m)——}dx+ +jz‘ ‘ZF(m)dx

and the right-hand side is regular for o > 0 {except at s = 1). Also
for o << 1

TF“f'*‘
i

+ Minbz (1),
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Hence we have Miintz’s formula
P w - L2
Us) | - F(y) dy = xH(Z Fina)— | F(v) dv] dr, (2.11.1)
E’. uj n=1 “ i!‘

valid for 0 <C ¢ <C 1 if F(x) satisfies the above conditions.

If F(x) = ¢-= we obtain (2.7.1); if F(2) = e-7*" we obtain a formula
equivalent to those of § 2.6; if F(x) = 1/(1+2?%) we obtain a formula
which is also obtained by combining (2.4.1) with the functional equation.
If F(z) = xisinmz we obtain a formula equivalent to (2.1.6), though
this F(x) does not satisfy our general conditions.

If F(z) = 1/{14-z)* we have

zi‘(nz)~7J~F(v)dvfz(l+m)2 %

1
l T 1 —
og D¢+ )] i

(lﬁs)n 1sf 8% 1
Hence ) = j ¢ { oI+~ 3z,
and on integrating by parts we obtain (2.9.2).

2.12. Zeros; factorization formulae.

THEOREM 2.12. £(s) and E(z) are integral functions of order 1.

It follows from (2.1.12) and what we have proved about {(s)
that £(s) is regular for o > 0, (s—1){(s) being regular at s = 1. Since
£(s) = £(1—=), £(5) is also regular for o < 1. Hence £(s) is an integral
funetion.

Also

IT(s) =

[ et du' < [ oot du = T(jo) = Ofedo0) (9> 0),
o o

(@12.1)
and (2.1.4) gives for o > 4, ls—1| > 4,
() = 0(|s| f%‘)+0(1) — 0(s)). (212.2)
i
Hence (2.1.12) gives  £(s) = Ofedisiosin (2.12.3)

for 0 22 §, |s| > A. By (2.1.13) this holds for ¢ < % also. Hence &(s)
is of order 1 at most. The order is exactly 1 since as s > c0 by real
values log {(s) ~ 2-, log £(s) ~ }slogs.
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Hence also E(z) = O(ed®1) (|2] > A),

and E(z) is of order 1. But E(z) is an even function. Hence E(v2) is
also an integral function, and is of order 4. It therefore has an infinity
of zeros, whose exponent of convergence is . Hence E(z) has an infinity
of zeros, whose exponent of convergence is 1. The same is therefore
true of £(s). Let py, p,... be the zeros of £(s).

We have already seen that {(s) has no zeros for ¢ > 1. It then follows
from the functional equation (2.1.1) that {(s) has no zeros for ¢ < 0
except for simple zeros at s = 2, —4, —8,...; for, in (2.1.1), {(1—s)
has no zeros for ¢ <C 0, sin }sw has simple zeros at s = —2, —4,... only,
and I'(1—s) has no zeros.

The zeros of {(s} at —2, —4,..., are known as the ‘trivial zeros’. They
do not correspond to zeros of £(s), since in (2.1.12) they are cancelled
by poles of T'(}s). It therefore follows from (2.1.12) that £(s) has no
zeros for o > 1 or for ¢ < 0. Its zeros py, p,,... therefore all lie in the
strip 0 < o < 1; and they are also zeros of {(s), since s{(s—1)I'(}s) has
1o zeros in the strip except that at s = 1, which is cancelled by the
pole of {(s).

We have thus proved that {(s) has an infinity of zeros p,, py.... in
the strip 0 < o < 1. Since

Q-2 = 1-kpi 50 w<s<n @2

and {0} # 0, (s) has no zeros on the real axis between 0 and 1. The
Z€ros py, p,,... are therefore all complex.

The remainder of the theory is largely concerned with questions about
the position of these zeros. At this point we shall merely observe that
they are in conjugate pairs, since {(s) is real on the real axis; and that,
if p is a zero, so is 1—p, by the functional equation, and hence so is
1-—5. If p = B4y, then 1-—p == 1—B+iy. Hence the zeros either lie
on ¢ = 4, or occur in pairs symmetrical about this line.

Since £(s) is an integral function of order 1, and £(0) = —{(0) = 4,
Hadamard’s factorization theorem gives, for all values of s,

=] 1_£)ed», 2.12.5
£(s) = §¢ X ( p ¢ )
where b, is a constant. Hence
Ll #
U0) = 3T 1 (1 —;)e"ﬁ, (2.12.8)
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where b == b,-+-}log. Hence also

(45 1 Irgs+D ( _) ‘
T I T Z L(2129)
Making s — 0, this gives
2Oy 1M
o ~ Pt eI
Since {'(0)/£(0) == log 2x and T*(1) = —y, it follows that
b=log2m—1—}y. (2.12.8)

2.13. In this section} we shall show that the only function which
satisfies the functional equation (2.1.1), and has the same general charac-
teristios as {(s), is {(s) itself.

Let G(s) be an integral function of finite order, P(s) a polynomial, and
fls) = G(s)/P(s), and let

fls) = : (2.13.1)
=
be absolutely convergent for o > 1. Let
FiITsyte = g(1— D — sy, (213.2)
= 5,
where g(1~3)=nzln_1;,

the series being absolutely convergent for ¢ < —a < 0. Then f(s) = C{(s),
where C is @ constant.
We have, for z > 0,
2+iw

$) = o f ST stoateds

2—iw
241w

Ly 2,)-3s
o f T(ds) (o)t ds

2w

t
Ma

"
=23 a,e ™=,
=1

2+im

¢(x)_— J' g(1—8)T(—ho)m-Hi-95-1 ds.

Also, by (2.13.2),

We move the line of mt,egrs.tlon from ¢ = 2to ¢ = —1—a. We observe

+ Hamburger (1)~(4), Siege! (1).
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that f(s) is bounded on ¢ = 2, and g(1—s) is bounded on o = —1—a;
sinece T4s)
Td—1s)
it follows that g(1—s) = O(|¢[}) on ¢ = 2. We can therefore, by the
Phragmén-Lindelof principle, apply Cauchy’s theorem, and obtain

= 0(l¢1°4),

—a—1+iw
$@) = 50 f =orG—oplo-srtedst 3 R,
—a-"1-dw

where R,, R,,..., are the residues at the poles, say s,,..., 8,,. Thus
3 B =3 = ivQ,00g7) = Qa),

where the @,(logx) are polynomials in logz. Hence
—a-1+io

$lo) = Z o T ho)mnefa) kit ds+ Q)

—x—1—im
2
-2 —matfz
- «/x;_;b"e +Q(z).
@ 1 .
e —mnilz.
Henoo Saneme= Jz;bﬂe +30@).
Multiply by e~"* (¢ > 0), and integrate over (0,c0). We obtain
N a4y _ < 5 —2ernd H —nitz
D = Z) Fom | e,
and the last term is a sum of terms of the form
J‘ zologbz e~ dz,
o

where the b°s are integers and R(g) > —1; i.e. it is a sum of terms of
the form #logft.

< 1 1 o—
Hence ;un(m+ ﬂn) mH(t) = 21rzb pure

where H(t) is a sum of terms of the form *logft. >

Now the series on the left is a meromorphic function, with poles at
Zin. But the function on the right is periodic, with period ¢. Hence
(by analytic continuation) so is the function on the left. Hence the
residues at ki and (k4-1)i are equal, i.e. @) = @, (£ = 1, 2,...). Hence
@, = a, for all k, and the result follows.
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2.14. Bome series involving {(s). We have}
1 1
e 1*;s{g(g+1)~1)_5(;7?{;(8+2)—1)«... (2.14.1)
for all values of s. For the right-hand side is

123 L{(s_l)sl+(s—1)s(s+1)l

1——
sl &w | 12w .23 af

The inversion of the order of summation is justified for o > 0 by the
convergence of

S lslu(sl+E) 1 _ S 1 1
) zn"‘ (Hl)‘n‘m—;ﬁ = Y
The series obtamed is, however, convergent for all values of s.
Another formula} which can be proved in a similar way is

(g — SN SEVID

also valid for all values of s.
Either of these formulae may be used to obtain the analytic con-
tinuation of {(s) over the whole plane.

2:15. Some applications of Mellin's inversion formulae.§
Mellin’s inversion formulae connecting the two functions f(x) and F(s)
are w otin

F(s) = f flapt da, f(x)———- f Fla)e-sds.  (2.15.1)
b

oim

The simplest example is
f@y=e7,  Fe) =T (0> 0). (2.15.2)
From (2.4.1) we derive the pair
&)= %1’ Fs) =T()(s) (0> 1), (2.15.3)
+ Landau, Handbuch, 272, + Ramaswami (1).

§ See E. 0. Titchmarsh, Iniroduction to the Theory of Fourier Integrals, §§ 1.5, 1.29,
2.0, 2.7, 317
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and from (2.6.2) the pair
f@) =),  §le) = T(E)(2s) (0>14). (215.4)

The inverse formulae are thus

a+in

1 1
= .[ - (2.15.5)
g+in
and L j T2 ds = f(z) (o> 1) (215.6)
2’",_@

Each of these can easily be proved directly by inserting the series for
{(s) and integrating term-by-term, using (2.15.2).
As another example, (2.9.2), with s replaced by 1—s, gives the Mellin

_TI4s _ w19 -
f(z) = Trta) loga, B =-—TZ2 (O<o<l). (2157
The inverse formula is thus

o+in
T'(1-+2) _ 1 -9
T+ —logx = -5 e © s ds. (2.15.8)

i
Integrating with respect to x, and replacing s by 1—s, we obtain
1 otim

_ __1 (s)a* 2
logI(1+a)—zlogete = —5 | Sords (0<o<D. ( 115.9)
0t

This formula is used by Whittaker and Watson to obtain the asymp-
totie expansion of log I'(1+x).
Next, let f(x) and F(s) be related by (2.15.1), and let g(x) and G(s)
be similarly related. Then we have, subject to appropriate conditions,
etim
L f (o) G(w—s) ds = f Flegletde.  (2.15.10)
7 H
Take for example §{s) = G(s) = [(s){(s), so that
fla) = glx) = 1/e"—

Then, if R(w) > 2, the right-hand side is .
wax
==y e = J' (%205 { Be-to | Jaw1 da.

( et b P0) = TGl

216 THE FUNCTIONAL EQUATION 35

Thus if 1 « ¢ < R(w)—1
etio

= j T(e)T(w—a)l(e)l(w—s) ds = T(fiw—1)—L0w)}. (215.11)
=tw
Similarly, taking §(s) = G(s) = I'(s){(2s), so that
fi@) = g(x) = yla/m) = Z e,
the right-hand side of (2.16.10) is, if R(w) > 1,
(m 403 = - S S 1
fmzl nz et di = F(W)mznx vlzl(mz_'—”z)w.
This may a.lso be written
refy > - gew)
where #(n) is the number of v:ayls of expressing n as the sum of two
BQUATES; or &8 Do} (w)n(w)—L(2w)},
where pw) = 1-¥—-3-w 50—
Henoef if«} <c<Rw)—}
J' T{e)T(w—s)(26)((2w—25) ds = Tao){L(w)ntw)—L(2w)}.
e i (2.15.12)

2.16. Some integrals involving E(f). There are some casesf in
which integrals of the form

D) = j:f(t)E(t) cosxf di

can be evaluated. Let f(f) = |<;(it)|’ = ¢(it)p(—it), where $ is analytic.
Wiiting y = ¢*,

@) =14 [ End(—inZewHd
=1 [ gd(—ingd+iny* di

$io

-7 f Ha—1g(d—s)élaly" ds

Fim

=55 L o= Dti—s)o— LT+ R Loy do.

+ Hardy (4). A generalization is given by Taylor (1). 1 Ramaoujan (1).
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Taking ¢(s) = 1, this is equal to

= f reH-1a+in(L) &

—io

a
L
v

S4im

‘72[ :[ r(w)( )’"’ dw—3 f I‘(w)( ) ”dw}
SRS S

Hence
[ Etjoosat dt = 202 3 (2mntevas_nte-setiexp(—ntne-se),
H n=l
(2.16.1)
Again, putting ¢(s) = 1/(s+1), we have
}-Hm
@) = —m _[ L0t doprtelialye do
;+m
~% f TQalrHe(slyt ds
oo
w1
=—Z#l) v
in the notation of § 2.6. Hence
f ti(:}}'”m dt = frfed - 2e-Fop(e—m)). (2.16.2)
0

The case $(s) = I'(}s—}) was also investigated by Ramanujan, the
result being expressed in terms of another integral.

2.17. The function {(s, a). A function which is in a sense a generali-
zation of {(s) is the Hurwitz zeta-function, defined by

tom= S iy O<esle>n

This reduces to {(s) whena =1, and to (26—1){(s) when a = 4. We
shall obtain here its analytic and functional et
which are required later. This function, however, has no Euler pro-
duet unless @ = } or @ = 1, and so does not share the most characteristic
properties of J(s).
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Asin§24
&1 f wtees
=5 —ntalz o L
(s, a) Z;r(.g)f”' 1g-tntaiz iz r(.g)f e
* o (2.17.1)
We can transform this into a loop integral as before. We obtain

_ e mT(1—s) [ 25
o) = 00 [ 2

This provides the analytic continuation of {(s,a) over the whole plane;
it is regular everywhere except for a simple pole at s = 1 with residue 1.
Expanding the loop to infinity as before, the residues at 2mni and
—2mai are together
(2mmelin)s-le-tmrio | (2myelinjp-lotmmia
= (2mm-let76-D2 cos{in(s 1)+ 2mma}
= —2(2mz)-let*sin(}ns+ 2mna).

(2.17.2)

Hence, if ¢ < 0,
2T(1—s)f 008 2mma < sin 2mra
(s, @) = @ lsmg szl i }cos ;ﬂgl s }
(2.17.3)

If @ = 1, this reduces to the functional equation for {(s).

NOTES FOR CHAPTER 2
2.18. Selberg [3] has given a very general method for obtaining the

analytic and functi ion of certain types of zeta-
function which arise as the ‘constant terms’ of Eisenstein series. We
ketch.a form of the in the classical case. Let # = {z = x +iy:

¥ > 0} be the upper half plane and define

Beo)= §,m|cziT|z- @e#, 0> 1)
{

and

@
B(z, 5) = {(28)E(z, 8) = dz |cz+d|2' (zeH,0>1),
I

these series being absolutely and uniformly convergent in any compact
subset of the region R(s) > 1. Here E(z, s) is an Eisenstein series, while
B(z, 8) is, apart from the factor y*, the Epstein zeta-function for the
lattice generated by 1 and 2. We shall find it convenient to work with
B(z, 8) in preference to E(z, 5).
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We begin with two basic observations. Firstly one trivially has
B(z+1,s) = B(—1/z,5) = B(z, 5). (2.18.1)

(Thus, in fact, B(z,s) is invariant under the full modular group.)
Secondly, if A is the Laplace—Beltrami operator

2 »
= —y2 —-
8l i)

yo
A(W) s(1— s)ch e (218.2)

AB(z,5) = s(1-8)B(z,8) (o >1). (2.18.3)

We proceed to obtain the Fourier expansion of B(z, s) with respect to x.
We have

then

whence

Bz, 8) = ): a, (3, 5) e2xins,

where

e~ 2xinx dy.

x +d + icy|2

a(y,8) =y Z.[lc

1
= @ e—2ninx dy
=23, y%{(28) + 2y° [
Y428 + 2 E, d,z_m _[ch+d+icy|2"
o

with 8, = 1 or 0 according as n = 0 or not. The d summation above is

_ |c(x+1)+k+my|2~ =

1 @
@ e~ rinz gy < J‘ e-2rinxdy

<.
,,g Z ko1 J lexHR+icy|?
o

e-2inyudy €
=c-2yl-2 J‘i e2rinkle,
@r+1y k;,

)

and the sum over k is ¢ or 0 according as c{n or not. Moreover

_mir-y
<u2+ )" e
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and .
e 2rinyy " -t ‘Q(annly)
ity a4V = 2n%(Inly) B T (n#0),
in the usual notation of Bessel functionst.
We now have
B(z,5) = p(8)y* +¥(s)y-*+ By(z,8) (o >1), (2.18.4)
where
-
po=2ea, v =t o Pasy
s)
and

K,_i(2nny)
S @ass)

By(z,8) =825yt 3 n*~to,_,, (n) cos (2anx)
w1
We observe at this point that
K<t tet (t> o)

for fixed u, whence the series (2.18.5) is convergent for all s, and so
defines an entire function. Moreover we have

By(z,5) e~ (y— ) (2.18.6)
for fixed s. Similarly one finds
B9 ooy (y ). (218.7)
dy

We proceed to derive the ‘Maass-Selberg’ formula. Let D = {zc
1z} =1, IR(2)| € 4} be the standard fundamental region for the modular
group, and let Dy = {ze D: I(z)< Y}, where Y > 1. Let R(s), R(w) > 1
and write, for convenience, F = B(z, 8), G = B(z, w). Then, according to
(2.18.3), we have
dxdy

{s(1 —8) — w(1 — w)} fmd"dy '[(GAF FAG)

Il

ﬂ(pvza —GV2F)dxdy

t

- J (FVG ~ GVF)-dn,

Dy

t see Watson, Theory of Bessel functions §6.16.
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by Green’s Theorem. The integrals along x = +} cancel, since
F(z+1) = F(2), G(z+1) = G(2) (see (2.18.1)). Similarly the integral for
|z] = 1 vanishes, since F(— 1/2) = F(z), G(—1/2) = G(2). Thus

e
dxdy 3G JF
{s(1—8)— w(l — w)} IFG 7 = J;(FE(Z’ Y)—Ga(x, Y))dx.
B, P

(2.18.8)
The functions y* and y! -# also satisfy the eigenfunction equation (2.18.3)
(by (2.18.2) with ¢ = 0, d = 1) and thus, by (2.18.4) so too does By(z, s).
Consequently, if Z > ¥, an argument analogous to that above yields

z %
{s(l—s)—w(l—w)}JJ ""dy
.2

e

i( % =2z, 2)— Go p (x,Z)>dx

b4
26, oF,
— J;( "Ey‘(x’ Y)- oa—yﬂ(x, Y))dx,

where Fy, = B(2, 5), G, = By(2, w). Here we have used Fy(z + 1) = Fy(2)
and Gy(z +1) = G(2). (Note that we no longer have the corresponding
relations involving —1/z.) We may now take Z — o, using (2.18.6) and
(2.18.7), so that the first integral on the right above vanishes. On adding
the result to (2.18.8) we obtain the Maass—Selberg formula

[s(1 —8) —w(t — w)] f&z, ) Bz, w)"’y‘#
5

b

_ oG oF
= J;(F@(x, ¥)-Gy b Y))dx

i
~j( “(;,Y) ¢’ (x,Y))dx '
<4

= {5 — W) {¥(8) Y(w) Y1-2-v — () plw) Y s+ -1}
+ A —s—w) {§(s) Y(w) Y- — f(8) pw) Y -2}, (2.18.9)
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where %

s [Bzs) O<Y),

B9 = {Bo(z, 5 > Y).

2.19. Inthe general case there are now various ways in which one can
proceed in order to get the analytic continuation of ¢ and . However
one point is immediate: once the analytic continuation has been
established one may take w = 1—s in (2.18.9) to obtain the relation

sy p(1 - 35) = Y(s) (1 —3), (2.19.1)
which can be thought of as a weak form of the functional equation.
The analysis we shall give takes advantage of certain special
properties not available in the general case. We shall take Y =1 in
(2.18.9) and expand the integral on the left to obtain

(5~ w)als + wip(s)(w) + Bls, WH(s) + ¥(s, wh(w) + 3(s, w) = 0,
(219.2)

where

3
a(u) = (1-u) -H‘y*"dxdy -1=-2 ju —x2)-@) gy
D, 0
and B, v, é involve the functions ¢ and By, but not y. If we know that {(s)
has a continuation to the half plane R(s) > g, then ¢(s) has a
continuation to R(s) > }¢,, so that a, §, y, & are meromorphic there. If

(s — wals + wh(w) + (s, w) = 0 (2.19.3)
identically for R(s), R(w) > 1, then
‘ L) (2.19.4)

6 —wls +w)’

which gives the analytic continuation of /() to R(w) > }o,,. Note that
(s— w)a(s + w) does not vanish identically. If (2.19.3) does not hold for all
s and w then (2.19.2) yields

_ (e Wi (w) +8(s, w)

(s —wals + wh(w) + fls, w)’
which gives the analytic continuation of y/(s) to R(s) > 30, on choosing
asuitable w in the region R(w) > 1. In either case {(s) may be continued
to R(s) >64,—1. This process shows that {(s) has a meromorphic

ion to the whole lex plane.

Yis) = (2.19.5)
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Some information on possible poles comes from taking w =3 in
(2.18.9), so that B(z, w) = B(2, 5). Then

@o-1 fﬁéu, s)lzd;fy = {I$E) 2 Y 21— [y(s) 2 Y1-27)
5

Ws) Y2ir— ds) Y-2i
@o—1) S s Y () ¢le) Yo
2it
If £ # 0 we may choose Y >1 so that the second term on the right
vanishes. It follows that

()Y -2 < |p(8)|2 Y21

for ¢ > 4. Thus ¢ is regular for ¢ >} and ¢ # 0, providing that ¢ is.
Hence {(s) has no poles for R(s) > 0, except possibly on the real axis.

If we take } < R(s),R(w)<1 in (2.19.5), so that ¢(s) and ¢(w) are
regular, we see that up(s) can only have a pole at a point s, for which the

h ically in w. For such an s,, (2.19.4) must

hold. However a(u) is clearly non-zero for real u, whence §(w) can have
at most a single, simple pole forreal w > £, and thisis at w = 8,. Sinceit
is clear that {(s) does in fact have a singularity at s = 1 we see that s,
=1

Much of the inelegance of the above analysis arises from the fact that,
in the general case where one uses the Eisenstein series rather than the
Epstein zeta-function, one has a single function p(s) = ¥(s)/¢{s) rather
than two separate ones. Here p(s) will indeed have poles to the left of
R(s) = 1. In our special case we can extract the functional equation for
{(s) itself, rather than the weaker relation p(s) p(1—s)=1 (see (2.19.1)),
by using (2.18.4) and (2.18.5). We observe that

ne-Uzg,_,(n)=nl2-s55, . (n)
and that K, (2) = K_ (2), whence n-°I'(8)By(z, $) is invariant under the
transformation s — 1 —s. It follows that
7-9[(8)B(z, §) — n*~'T(1 —8)B(z, 1 —a)
={A@E) -AG -9}y + {AG—P-AQ—9))yl-* '
where we have written vemporanly A(s) 2n-*T(5){(25). The left-hand
sideisi i under the z— —1/z,by (2.18.1), and so,

taking z = iy for example, we see that A(s) = A} —9) and A(e—}) =
A(1 —3). These produce the functional equation in the form (2.6.4) and
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indeed yield .-
z-*T'(8)B(z, 8) = n* - [(1 —s)B(z,1-3).
2.20. An insight into the nature of the zeta-function and its func-

tional equation may be obtained from the work of Tate [1]. He considers
an algebraic number field % and a general zeta-function

o= j/(uk(a) d*e,

where the integral on the right is over the ideles J of . Here fis one of a
certain class of functions and c is any guasi-character of J, (that is to
say, a continuous homomorphism from J to € *) which is trivial on £ *.
‘We may write c(a) in the form c(a)lal®, where cy(a) is a character on J
(e lega)l =1 for aed). Then cya) corresponds to x, a ‘Hecke
character’ for &, and {( f, ¢) differs from

{&v=uﬂ—ﬂBWH‘

(where P runs over prime ideals of k), in only a finite number of factors.
In particular, if £ = Q, then {(/, ¢) is essentially a Dirichlet L-series
L(s, y). Thus these are essentially the only functions which can be
associated to the rational field in this manner.

Tate goes on to prove a Poisson summation formula in this idélic
setting, and ded the elegant functional

Who=utbo

where [ is the ‘Fourier transform’ of f, and &a) = c(a)|al'-%. The
functional equation for {(s, x) may be extracted from this. In the case
k = Q we may take c, identically equal to 1, and make a particular
choice f = f,, such that f, = f, and

{Ufy 1) = = E T Q) 0).
The functional equation (2.6.4) is then immediate. Moreover it is now
apparent that the factor = 4T (3s) should be viewed as the natural term

to be included in the Euler product, to correspond to the real valuation
of @.

2.21. Itis remarkable that the values of {(s) fors =0, —1, —2,..., are
all rational, and this suggests the possibility of a p-adic analogue of {(s),
interpolating these numbers. In fact it can be shown that for any prime p
and any integer n there is a unique meromorphic function {,, (s) defined
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forseZ,, (the p-adic integers) such that
LBy = =p~"){(k) for k<0, k=n(modp—1).

Indeed if n # 1 (mod p — 1) then lpm(s) will be analytic on z, andifn =1
(mod p — 1)y then [ .(s) will be analytic apart from a simple poleats = 1,
of residue 1—(1/p). These results are due to Leopoldt and Kubota [1].
While these p-adic zeta-functions seem to have little interest in the
simple case above, their lizations to Dirichlet L-fi ions yield
important algebraic information about the corresponding cyclotomic
fields.

HI

THE THEOREM OF HADAMARD AND
DE LA VALLEE POUSSIN, AND ITS
CONSEQUENCES

3.1. As we have already observed, it follows from the formula
1)1
8) = 1—— >1 3.11
) ]:[( 5 >0 @11

that {(s) has no zeros for ¢ > 1. For the purpose of prime-number
theory, and indeed to determine the general nature of {(s), it is necessary
to extend as far as possible this zero-free region.

It was conjectured by Riemann that all the complex zeros of I(s) lie
on the ‘critical line’ o = }. This conjecture, now known as the Riemann
hypothesis, has never been either proved or disproved.

The problem of the zero-free region appears to be a question of
extending the sphere of influence of the Euler product (3.1.1) beyond
its actual region of convergence; for examples are known of functions
which are extremely like the zeta-function in their rep ion by
Dirichlet series, functional equation, and so on, but which have no
Euler product, and for which the analogue of the Riemann hypothesis
is false. In fact the deepest theorems on the distribution of the zeros
of {(s) are obtained in the way suggested. But the problem of extending
the sphere of influence of (3.1.1) to the left of o = 1 in any effective
way appears to be of extreme difficulty.

By (1.1.4) % = "L’? @>1),
A=l

where |u(n)| < 1. Hence for o near to 1
1 <1 4

< 2w =N <
ie. 1&s)] > Afo—1).
Hence if {(s) has a zero on ¢ = 1 it must be a simple zero. But to prove
that there cannot be even simple zeros, a much more subtle argument
is required.

It was proved independently by Hadamard and de la Vallée Poussin
in 1896 that {(s) has no zeros on the line ¢ = 1. Their methods are similar
in principle, and they form the main topic of this chapter.
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The main object of both these mathematicians was to prove the

prime-number theorem, that as # >

{x) ~ thE
This had previously been conjectured on empirical grounds. It was
shown by arguments depending on the theory of functions of a complex
variable that the prime-number theorem is a consequence of the
Hadamard—de la Vallee Poussm theorem. The proof of the prime-
number theorem so ob d was therefore not el v.

An elementary proof of the prime-number theorem, i.e. a proof not
depending on the theory of {(s) and complex function theory, has
recently been obtained by A. Selberg and Erdés. Since the prime-
number theorem implies the Hadamard-de la Vallée Poussin theorem,
this leads to & new proof of the latter. However, the Selberg-Erd6s
method does not lead to such good estimati as the Had d
de la Vallée Poussin method, o that the latter is still of great interest.

3.2. Hadamard’s argument is, roughly, as follows. We have fora > 1

log (s} = ZZ:$ = Z $+f(s), (3.2.1)

where f(s) is regular for ¢ > 4. Since {(s) has a simple pole at s = 1,
it follows in particular that, as ¢ > 1 {o > 1),

1 1
Z;;~logm. (3.2.2)
Suppose now that s = 14-it, is & zero of {(s}. Then if s = o-F-ity, as
o> 1(o>1)
> %‘;}"L"’ = gl —Rf(s) ~loglo—1).  (3.2.3)
»
Comparing (3.2.2) and (3.2.3), we see that cos(,log p) must, in some

sense, be approximately —1 for most values of p. But then cos(2¢,log »)
is approximately 1 for most values of p, and

: 21,1
logl(o-+2itg)] ~ _"i;u_"&l’l ~3 1%, ~log ?-_1‘1
B

»
so that 14-2it, is a pole of {(s). Since this is false, it follows that
L(1+dt) 5 0.
To put the argument in a rlgorous form, let
§=SL1  p_ 5 wsllogp) — S eos(2ylogp)
S D D e

B
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Tet 8, P’, ' be the parts of these sums for which

(2k+1)m—a < tlogp < (2h+1rta
for any integer k, and « fixed, 0 < « < }. Let 8%, etc., be the re-

mainders. Let A = §'/8.
Tf ¢ is any positive number, it follows from (3.2.2) and (3.2.3) that

P < —(1—¢8
if o—1 is small enough. But

—8 = —AS
and P" > —8"cosa = —(1—-A)Scosa.
Hence —A+(1—N)cos}8 < —(1—¢)S,
ie. (1-2A){1—cosa) < e
HenceA>1lasa—> 1.
Also Q' = 8 cos 2, Q =—-9,
so that Q = S(Acos 2a—1+42).

Since A - 1, § — oo, it follows that Q - 0o as ¢ - 1. Hence 14-2it, is
a pole, and the result follows as before.

The following form of the argument was suggested by Dr. F. V.
Atkinson. We have

(3o - (3=t
< Z ‘EM’S_P) Z
_ z 1+cos(2tolcgp) z

ie. < HE+HQ)S.

Suppose now that, for some #, P~log(u—l). Sinee 8 ~log{lj(a—1)},
it follows that, for a given € and o—1 small enough,

(—atiog ;17 < H1-+atog L +0f1+alog =5,

—e)?
ie. Q= {2(—;-%_1‘5}103.7%1'

Hence @ — o0, and this involves a contradiction as before.
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3.3. In de la Vallée Poussin’s argument & relation between {{o-it)
and {(o+2it) is also fundamental; but the result is now deduced from
the fact that

3+4co84-+cos 24 = 2(14-cosd)? 3> 0 (8.3.1)
for all values of ¢.
‘Wo have {(s) = exp S ;,
gmle mpm‘
and hence 18(s)t = exp S %hgp).
ZMZ_] e

Hence
Bl Lo+t 4L o+ 2it)|
_ exP‘Z Z 3+4cos(nulogp)-}—cos(thIogp)}' (3.3.2)

mpme

m=1
Since every term in the last sum is positive or zero, it follows that
B e+nEllo+2in] 21 (o> 1), (3.33)
Now, keeping ¢ fixed, let o — 1. Then
Bfa) = Of(e—1)3},
a.nd, if1+ft is a zero of {(3), {(o+it) = O(c—1). Also {(a+2it) = o),
since {(s) is regular at 1+2it. Hence the left-hand side of (3.3.3) is
O(a—1), giving a contradiction. This proves the theorem.
There are other inequalities of the same type as (3.3.1), which can
be used for the same purpose; e.g. from
5+8cosd+4 cos 26+cos 3¢ = (1-cosd)(14-2 cosg): =0 (3.3.4)
we deduce that
L(@)Ea-+it) F1L(o+2it)|*)L(o-+ Bit)] = 1. (3.3.5)
This, however, has no particular advantage over (3.3.3).

3.4. Another alternative proof has been given by Ingham.f This
depends on the identity

Po)lis+ailis—ai) _ i \oaixw © >,

Tige) = (3.4.1)

where a is any real number other than zero, and
Tay(n) = g dat,

t Ingham (3).
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This is the particular case of (1.3.3) obtained by putting ai for a and
—ai for b.

Let o, be the abscissa of convergence of the series (3.4.1). Then
oy < 1, and (3.4.1) is valid by analytic continuation for o > o;, the
function f(s) on the left-hand side being of necessity regular in this
half-plane. Also, since all the coefficients in the Dirichlet series are
positive, the real point of the line of convergence, viz. s = oy, is 8
singularity of the function.

Suppose now that 14-ai is a zero of {(s). Then 1—ai is also a zero,
and these two zeros cancel the double pole of {%(s) at s = 1. Hence f(s)
is regular on the real axis as far as s = —1, where {(2s) = 0; and so
gy = —1. This is easily seen in various ways to be impossible; for
example (3.4.1) would then give f(}) > 1, whereas in fact f(}) = 0.

3.5. In the following sections we extend as far as we can the ideas
suggested by § 3.1.

Since {(s) has a finite number of zeros in the rectangle 0 < o < 1,
0 <{ ¢ < 7" and none of them lie on ¢ = 1, it follows that there is a
rectangle 1—8 < o < 1, 0 < ¢ < 7, which is free from zeros. Here
8 = 3(T) may, for all we can prove, tend to zero as 7' — co; but we can
obtain a positive lower bound for §(7) for each value of 7.

Again, since 1/f(s) is regular for ¢ = 1, 1 { ¢ < 7, it has an upper
bound in the interval, which is a function of 7'. We also investigate
the behaviour of this upper bound as ¢ — . There i3, of course, a similar
problem for {(s), in which the distribution of the zeros is not imme-
diately involved. It is convenient to consider all these problems
together, and we begin with {(s).

THEOREM 3.5. We have

1(s) = O(log?) (3.6.1)
uniformly in the region

1 <e<<2 (t>1)

T logt
where A is any positive constant. In particular

{(14-it) = O(log?). (3.5.2)
In (2.1.3), take ¢ > 1, @ = N, and make b - co. We obtain

LAY Sl Ni-s
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the result holding by analytic continuation for ¢ > 0. Hence for o > 0,
t>1, ©
Y- z 1 (z ] x“,)+o( “)row-o
N
= o) +o(

In the region considered, if z < ¢
8| = n0 = e~oloEn exp‘a (l—%—l)logn} < n-led,
Hence, taking ¥ = [1], &

N
1 t 1 1
=Sof il ! 2
tor= 2, o) +ofs)+ ol +of)
= O(log N}4-0(1) = O(logt).
This result will be improved later (Theorems 5.16, 8.14), but at the

cost of far more difficult proofs.
It is also easy to see that

)+0(N-0)A (3.5.4)

L'(s) = O(log?t) (3.5.5)
in the above region. For, differentiating (3.5.3),

. X —
o) = Z L f (=] ‘ﬁ(l—alogz)dz—
]
_NttlogN  N'-
s—1 _(s—l 2
a..ncl a similar argument holds, with an extra factor log ¢ on the right-hand
side. Similarly for higher derivatives of {(s).
'Vfle may note in passing that (3.5.3) shows the behaviour of the
Dirichlet series (1.1.1) for o < 1. If we take o = 1, ¢ # 0, we obtain

+3N-"log N,

H+ig— 2 = iy [Em b 2y
N

which oscillates finitely as ¥ -> . For o < 1 the series, of course,
diverges (oscillates infinitely).

:1.6. In.eqllalities for 1/{(s), {'(s)/{(s), and log {(s). Inequalities of
this type in the neighbourhood of & = 1 can now be obtained by a slight
elaboration of the argument of § 3.3. We have for o > 1

< epgta 20l = of (j"_gi;}. @61

1
Ho+it)
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Also  L(1Lit)—Llo+it) = — f Llutit) du = Offo—1)log¥} (3.6.2)
for ¢ > 1—Aflog¢. Hence '
L1 +it)] > A,"’ gl) — Ayo—1)logH.

The two terms on the right are of the same order if o—1 = log=®.
Hence, taking o—1 = Aglog-%, where 4, is sufficiently small,

L1 +it)| > Alog-. (3.6.3)
Next (3.6.2) and (3.6.3) together give, for 1—Alogt <o <1,
|U(o-it)| > A log~"t—A(1—a)log¥, (3.6.4)

and the right-hand side is positive if 1—o < Alog—t. Hence {(s) has
70 zeros in the region o > 1—Alog—%, and in fact, by (3.6.4),

m = O(log™) (3.6.5)
in this region.
Hence also, by (3.5.5),
l;((-” O(log?t), (3.6.6)
and Io J' Lutit) (u+it) - 0
s l) = | i o8 {(2+it) = Oflog’),  (3.8.7)

both for ¢ > 1—Alog—%.
We shall see later that all these results can be improved, but they
are sufficient for some purposes.

3.7. The Prime-number Theorem. Let n(x) denote the number of
primes not exceeding x. Then as x — o
%
~—, 3.7.1
o) ~ o (.7.0)
The investigation of m{x) was, of course, the original purpose for
which () was studied. It is not our purpose to pursue this side of the
theory farther than is necessary, but it is convenient to insert here a
proof of the main theorem on =(z).
‘We have proved in (1.1.3) that, if o>1,
7(x)

logi(s)=s¢ @D

We want an explicit formula for w(z), i.e. we want to invert the above
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integral formula. We can reduce this to a case of Mellin’s inversion
formula as follows. Let

wls) = f z-"":g:)— D

1
Then ogf(«g)_w(,g) - f %dz, (3.7.2)
H
This is of the Mellin form, and w(s) is a comparatively trivial function;
in fact since w(%) <<  the integral for w(s) converges uniformly for
@ > 3+3, by comparison with

J‘ dx
J 2F 31y’
Hence w(s) is regular and bounded for o >> §+8. Similarly so is w'(s),
sinee @ -
w'(s) = fw(x)logxmdz
We could now use Mellin’s inversion formula, but the resulting

formula is not easily manageable. We therefore modify (3.7.2) as
follows. Differentiating with respect to s,

L6 Toglle) | oo [rloge
~ e 5 w(s)gf Fo da.

Denote the left-hand side by ¢(s), and let

o) = J‘w(u)loguﬁm )

L1

f@du,
]

7(x), g(x), and h(x) being zero for x < 2. Then, integrating by parts,

$(s) = fg'(z)r' dr=3s f glzye-s-ldr
I o

=3 fb’(z)z“ dr = s? J?h(z)z““ dr (o>1),
H

$(1—s) h@) .
or a—=ay J. ——a*-lda.
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Now k(z) is-continuous and of bounded variation in any finite interval;
and, since =(x) < =, it follows that, for z > 1, g(z) < zlogz, and
h(z) < zlogz. Hence h(x)r*-? is absolutely integrable over (0,00) if
k < 0. Hence

k@) _ ¢(1’ﬂ)

= 2m = TpaTds k<o),

or h(z)=2l f‘”‘*)z-da ©>1).

e=to

The integral on the right is absolutely convergent, since by (3.6.6) and
(3.8.7) ¢(s) is bounded for & 2> 1, except in the neighbourhood of s = 1.
In the neighbourhood of s = 1

$(s) = — +log

s—1 s—1

and we may write Bls) = e,

where yi(s) is bounded for o > 1, |s—1] > 1, and #(s) has a logarithmic
infinity as s > 1. Now

1 c+io - 1 0+{D¢( )

_ 1 1 8

=) =5 J. o~ T am f s
oo

c—iw
The first term is equal to the sum of the residues on the left of the
line R(s) = ¢, and so is
z—logaz—1.
In the other term we may put ¢ = 1, i.e. apply Cauchy’s theorem to

the rectangle (14-¢7, c4i7), with an indentation of radius ¢ round
s =1, and make 7' > 0, ¢ > 0. Hence

hiz) = z—lcug:::-—l-{-zz ((l‘l(:t:)l‘) “ de.

The last integral tends to zero as 2 > 0, by the extension to Fourier
integrals of the Riemann-Lebesgue theorem.t Hence

ha) ~ . (3.7.3)

+ S0 my Introduction o the Theory of Fourier Integrals, Theorem 1.
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To get back to ={x) we now use the following lemmas: We have for o > 1

Let f(z) be be positive non-decreasing, and as & - <o let {z (s)} > 1082 sostmelog ). (3.8.1)
3 s P o
f 10 gy . b
i Hence, for ¢ > 1 and any real y,
Then f@)~=. _3b@)_ glltiy)  pllo+2iy)

If § is a given positive number, {a) Lo+iy) Lo+2iy)

F logp
(18 < f@‘” < (148 @ > ) = Z o {34 cos(my log p)+cos(2mylog p)} > 0. (3.8.2)
i

fxd
Hence for any positive € Now i((:)) < E +0(1). (3.8.3)
2144 #1re) z
f 104, [RE=y Aoy enen.
% - % % 3] _
K Iy { Ty = Oflogt) Z (s P+P) (3.8.4)

< (14:8)(1+e)z—(1—8)z
= (25-+e+3e)a.
But, since f(z) is non-decreasing,

x(1+e€) s 0] 2(1+e)
() du du ¢ .
f deu > i) f L 1@ J' A= Trd®

where p = 8-y runs through complex zeros of {(s). Hence

R = " 8]

Since every term in the last sum is positive, it follows that

2 —R lg (( ))} < O(log?), (3.8.5)
Hence Jz)y < x(l+€)(1+5+~)~
€ and also, if +iy is a particular zero of {(s), that
Taking, for example, ¢ = #8, it follows that )
) kn{g “’*‘”} < Oflogy)— . (3.8.6)
m® <. Lot o—f
z’” From (3.8.2), (3.8.3), (3.8.5), (3A8 6) we obtain
- i flu) 3
Similarly, by considerin D2 du, O
n ¢ 1=€) * o—1 ﬁ+ flog7) =
. 3 4
‘we obtain h__m@ =1, or say m—‘:g > —A;logy.
and the lemma follows. 5 i
I for B, bt
Applying the lemma twice, we deduce from (3.7.3) that Solving for §, we ol mln . 1 1)d,logy
glx) ~z, 3f(e—1)+4,logy
and hence that w(z)logz ~ . The right-hand side is positive if e—1 = }4,/logy, and then
3.8. TarorEM 3.8. There i3 a constant A such that {(8) s not zero for .
ez1-4 logy

Togt (> t)- the required result.
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3.9. There is an alternative method, due to Landau,t of obtaining
results of this kind, in which the analytic character of {(s) for ¢ << ¢
need not be known. It depends on the following lemmas.

LeMma a. If f(s) is regular, and

f(s)
£so)

in the circle |s—sy] < 7, then
o) 5L
opPte
where p runs through the zeros of fis) such that |p—s| < 3.

The function g(s) = f(s) T (s—p)* is regular for [s—so| < 7, and not
zero for |s—so| < 3. On [s—8| =7, ls—p| 2= ¥ 2> [S%— pl, so that
9@ _|f) f8)
glsoll | fteo) I ( ) = e

This inequality therefore holds inside the circle also. Hence the function

96)
h(s) = log‘g(s 1k
where the logarithm is zero at s = s, is regular for |8—8| < 47, and
h(se) =0, R{p(s)} < M.
Hence by the Borel-Carathéodory theorem{
|hs)| < AM  (Js—so| < #7) (3.9.1)

and so, for Js—s,] < §r,

<eM (M>1)

|<2X (o—si <)

<M,

1A(s) =

1 e AM
Z_m'l _IL (z— s)“d\ o

This gives the result stated.
Lemma B. If f(s) satisfies the conditions of the previous lemma, and
has no zeros in the right-hand half of the mmle |8—3p| << 7, then

_grff50)
R <%
while if f(s) has a zero p, between a',—éf and sq, then
fe) AM 1
wI <

+ Landau (14). 1 Titehmarsh, Theory of Functions, § 8.5.
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Lemma a-gives

Fi '(-?n)} AM 1
<22 SR
{f(ao) r So—p

and since R{1/(s,—p)} > 0 for every p, both resuits follow at once.

Lemma y. Let f(s) satisfy the conditions of Lemma «, and let

£(s0)
Flso)
Suppose also that f(s) + 0 in the part o > oy~ 2r' of the cirele |s—so| < 7
where 0 <7’ < }r. Then
)
IC)

Lemma o now gives

7

(ls—8] < 7).

R{f (3)} < AM_ rR-L < A—
fls) s—p
for all s in [s—s] < 47, 0 > 0,—2¢, each term of the sum being
positive in this region. The result then follows on applying the Borel-
Carathéodory theorem to the function —f'(s)/f(s) and the circles
|s—8p] = 2r', |[§—5| = 1",

3.10. We can now prove the following general theorem, which we
shall apply later with special forms of the functions 6(t) and ¢(z).

THEOREM 3.10. Let

1(s) = O(e#9)
as t - oo in the region
10 <e<<2 (L20),
where $(t) and 1/8(¢) are positive non-decreasing functions of ¢ for t > 0,
such that 8(t) < 1, ${t) — o0, and
B) _ (b0
0 o0 (e90), {3.10.1)
Then there is a constant A, such that [(s) kas no zeros in the region
0(2t41)
1—A4. .
e+ T)
Let 8-+iy be a zero of {(s) in the upper half-plane. Let
e ¥y Loy < 2,

(3.10.2)

S0 =Ootiy, S = oyt2y, 7= 8(2p+1).
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® .
Then the circles |s—so| < 7, [s—spl <7 both lie in the region
a > 1-8(t).
1 4 $2y+1)
| < == < de 5
Now Too| S a1
and similarly for 5. Hence there is a constant 4, such that

)
E(so)
in the circles Js—sy| << 7, [s—Sol < T respectively. We can therefore
apply Lemma g with M = A, $(2y+1). We obtain

Ls) 52y +D)
< eAadEy D, l@ < eAs P2y,

U(og+2iy)) _ As$(2y4+1) (3.10.3)
~rferta) < S s
and, i B> a—¥ ) . (3.10.4)
{ogtin)) o Asb@ytD) 1 (3.10.5)
—R{—;@ﬁ,ry)} <oyt o P
Clog) L
Also as g > 1 T g1

[{CA (3.10.6)

Hence T ooy ooV

where @ can be made ns near 1 as we please by' choice of ag.
Now (3.8.2), (3.10.3), (3.10.5), and (3.10.6) give
3o, B4yl 4 o
P R PSR
3a 54, ¢(2}'+1)}"’
w—fz {4(0,,4) 1 6@+
ST 200 L
1#/3?'4(%-1)"'7 B@r+1) o -
s gt )
SUTTTTE eyt 1(op—1) y
To make the numerator positive, take @ = %, and
1 6@y+1)
! = 304, §er+1) .
this being consistent with the previous conditions, by (3.10.1), if y is
large enough. It follows that

82y +1)
1=B > 15504, $@r+1)
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as required. If (3.10.4) is not satisfied,
1 82y+Y)
Kog—4r=1 po.
B < ogir +40Aa¢(27+1) 102y +1),

which also leads to (3.10.2). This proves the theorem.

In particular, we can take 6(t) = }, (1) = log(t+2). This gives a
new proof of Theorem 3.8.

3.11. THEOREM 3.11. Under the hypotheses of Theorem 3.10 we have

L) _ 0{¢(2t+3)}’ 1 0[¢(2t+3)}

L) — " 8&+3) Usy = “\82er3)
(3.11.1), (3.11.2)
uniformly for o> 1_%1 :z::ig; (3.11.3)
In particular
L+ o{¢(2t+3)} 1 _ o[¢(2t+3)}
L(14-ity — 7|82+ 3) {4t — T\ 82t+3)

(3.11.4), (3.11.5)
We apply Lemma y, with

4y 8(21y+3)
2 $(2t+3)
In the circle [s—s,| < 7

L) _ 0{ £$0 } _ o{¢(2t‘,+3} ew,u)} = Ofetpansa

s=1+

bty 1= 621 3).

)~ “lop—1 8(2t,+3)
$ls) 1) _ of3Ct3) _ o f$(20,+3)
w o) = offera) - oft2e)

We can therefore take M = Ad(2t, +3). Also, by the previous theorem,
£(s) has no zeros for
8{2(t,+1)+1 8(2t,+3)
t < 1, >1~A—°*l:1-A 0 .
e A~ T ey

. _ 34, 0(2,13)
Hence we can take 20 = = ot )

T6) _ ofd(2et3)
Hence T ~ 0{0<2za+3J,

34, 6(2t,1-3)
for 98] = 0T
o bl S s
and in particular for
t=ty, o 1A 0(26+3)

1 $(24,+3)

This is (3.11.1), with ¢, instead of ¢.
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i 4, 621+3) 8(2t+-3) 3.1L.6
Also, if =3 e << ey e
1
1 = —RI
T o8t e
14+
(2t
02e+3) ritil,
=—Rlog§‘l+¢(2’+3-5+tt}+ j Tt .
”g;ﬁ:i
8(2t43) $(244-3)
glogl{l+¢m+3)}+ f o{o(2t+?7)}du

Ap(264+3) 1
< log T +0(1).
Hence (3.11.2) follows if o is in the range (3.11.6); and for larger ¢ it
is trivial.
Since we may take 0(t) == , $(t) = log t+2), it follows that
YO ogogt), L = O(logt) (311.7), (3.11.8)
T = Olrt. g5 = 08
in a region o > 1—A/logt; and in particular
FA+) _ o0y
R R

1
FrEe i O(logt).

(3.11.9), (3.11.10)
3.12. For the next theorem we require the following lemma.

flo) = Z}% (o> 1),
where a,, = Ofp(n)}, $(n) being non-decreasing, and

m S = ot

Then if ¢ > 0, o-4c > 1, x is not an integer, .and N is the
integer nearest to x,

Lemma 3.12. Let

as o~ 1.

G

—-2;10:!; fls+w)= dw*”{T—(.,iiv—l)u}*'

$(2x)r*-<log 2! YN )z~
+o{._T_.}+0 e AL
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If x is an enteger, the corresponding result is

=1, 1
foy e ] [ sern S anolp =y
i

+o{¢_‘ﬂ’;"_"’£‘} +o{%"'“}. (3.12.2)

Suppose first that x is not an integer. If = < z, the caloulus of residues
gives

e4iT

=
I

e a
2\* dw
T( [+]+] )(;) W
—elir otir efiT
Now
etiT o dw [ e . L ciT A
n) w wlogz/n| _, ;" logajn n) w?
—oiT ) —w+il

_of mF | of Gy [ _du

- O{Tlogz/n} +0{logx/n J‘ Wt T’]
_ (z/n)

- O{Tlogx/n}’

and similarly for the integral over (—wo—iT,c—:7"). Hence

i
1 2\ dw (z/ny
Tm (n) T~ ‘+"{ }
=g

Tlogz/n)
If n > x we argue similarly with —co replaced by 00, and there is

no residue term. We therefore obtain a similar result without the term 1
Multiplying by @, 7~* and summing

c+iT

1 J’ a” a, 7 < la.|
I I 7+o:_ *_}
2‘”:,,1 w = T; no+¢|logir/n|
n < 2 or n > 2z, |logz/n} > 4, and these parts of the sum are

S ol _ 1
o2 =l

2z, let n = N+r. Then

IfN<n<

N+r Ar
lo ¥ .
E N1 > 7>

x

= log -
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Hence this part of the sum is
0{51,(21)1144 » l} — Of(2e)zr-o-loga}.
=2

A similar argument applies to the terms with }z < # < N. Finally

'&(N)erﬂ4
o )

oyl _ 0{ ) )=
Norjlogz/N| Nowlog{l+@—N)N),
Hence (3.12.1) follows.
If z is an integer, all goes as before except for the term
eHiP

dw e c+iT a . (1)
J. = 58 e = gm0 }

mz‘
Hence (3.12.2) follows.
3.13, THEOREM 3.13. We have
1 <pm)
W

A=l

at all points of the line o = 1.
Take a, = u(n), « = 1,0 = 1, in the lemma, and let z be half an odd
integer. We obtain

QFZ) 7 z(s+w)ﬁdw+( )+0(logx)

The theorem of resldues gives

a

~8+4iT e il
o ) Gorww ~gt 2m( f Tyt )

—iT  —8HT
if & is so small that J(s-+w) has no zeros for
Rw) 2 —8, [Is+w) < [f+T
By § 3.6 we can take § = Alog="T. .Then
it

x
T S ,TJ~ do
| Terme ™ 0(" R

8
d
=o[ﬁlogvm f E«/(TL/T)} — O@-3log*T),
-}
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ovir L o log?
b2 e — oflo 2z _ of*1og’T )
@ w) - ( f du) O( 7 )
B+iT 8

and similarly for the other integral. Hence

wn)_ 1 fa og 2 2 log? T log® 7"
25 ol ol ) o) v ()

Take ¢ = 1/log, so that a° = ¢; and take 7' = exp{{logx)*1%}, 5o that
log ' = (logz)'%, § = A(logz)~¥1°, a® = T4, Then the right-hand side
tends to zero, and the result follows

In particular “'(") = 0.

3.14. The series for {'(s)/{(s) and log {(s) on o = 1.

Takingt @, = A(n) = O(logn),« = 1, ¢ = 1, in the lemma, we obtain

e+iT
Am) 1 L'(s+w) af oga

> = " fT Tiotw) Ed"""o(ﬁ)ﬂ) T )

<z

In this case there is a pole at w = 1—s, giving a residue term
PO _Z Ly, aml -1
S — \ ogz (s = 1),

where @ is a constant. Hence if s # 1 we obtain

> A(")+§(—(f))—§; - (Tc)+0 og'x)+o(10g‘“T)+o(aﬁlox"")

Taking ¢ = 1/logz, T = exp{(log 2)¥1%}, we obtain as before
An), {9 2 _
gx 2 +K)"T:s_°m' (3.14.1)

The term #'~¢/(1—s) oscillates finitely, so that if R(s) = 1, s # 1, the
series 3 A(n)jn-? is not convergent, but its partial sums are bounded.
If s = 1, we obtain

ZA(") logz+0(1), (3.14.2)
. =
or, since
Aln) _ 5 logp logp _ logp
v + 282 4 oq1),
PRSI RO IR Sl

z]"” logz+O(1). (3.14.3)
p<z »

 See (1.1.8).
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Since Ay(n) = A(n)/logn, and 1/log » tends steadily to zero, it follows
that Z Aulm)
el

is convergent on o = I, except for ¢t = 0. Hence, by the continuity
theorem for Dirichlet series, the equation
©
log ) = 3 Mt
n=2
holds fore =1, ¢ £ 0.
To determine the behaviour of this series for s = 1 we have, as in the
case of 1/{(s),
z/—\l:bﬂ J‘ log{(w+l)—dw+0(l°81)
<z o=iT
where ¢ = 1/log, and 7T is chosen as before. Now
c+iT —iT —8+iT c+iT
2 | loéz<w+1>"—“’dw——( f + [+ )+Lf,
2mi w 2mi
eir R S &
where C is a loop starting and finishing at s = —3§, and encircling the
origin in the positive direction. Defining 3 as before, the integral along
o= —8is O(z~3log!T), and the integrals along the horizontal sides
are O(@T1log T), by (3.6.7). Since

1 1
P {105 {(w+1)—log E}
is regular at the origin, the last term is equal to
1 1a%
o J. log5 Edw
&

Since
1 dw 1 2
ZmJ.I g— — = ——=Aglogiw

p— __l_ 2(8eimy — 2(Se—1m)l —
=—i; {flog?(8eim)—log?(Be—*")} = —log$,
this term is also equal to
—1
] J. og——; dw—log3.

Take C to be a circle with centre w = 0 and radius p (p < 38}, together
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with the degment (—3, —p) of the real axis described twice. The
integrals along the real segments together give

1 £ 1 *—1 1 H
P
— log(m) du— —
8

2m —u 2mi
»
8 Slogx
v
N € 1dv
v
p¥ogz
1 1 » Slogx
—e -v
= dev~ f %dv-{-log(ﬁlogx)
ploge i

= y+log(3logx)+o(1)
if plogz —» 0 and 3logz - 0. Also

f log%# dw = O(plog;)logz).

fel=p
Taking p = 1/log%, say, it follows that
Z Aym) = logloge+y+0(1). (3.14.4)
<

The left-hand side can also be written in the form

S22

D<1 m>2 pelx
As z -+ 0, the second term clearly tends to the limit

< 1
2;'”‘])"‘

1
Hence — = loglogz+y—

ﬁ[\/]s

Z Loioq) (3.14.5)
5

g
3.15. Euler’s product on ¢ = 1. The above analysis shows that
fore=1,¢£0,
1 Al
logi(s) = > — UL
g L(s) Zp,JrZ b

where p runs through primes and ¢ through powers of primes. In fact
the second series is absolutely convergent on o = 1, since it is merely

a rearrangement of 2
Z. 2
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which is absolutely gent by ison with
Z Z o Z zn(p iy
Hence also 1
log {(s) = Z ;"‘Z Z
-2 MZ,W'

= Z logl_p_, (@=1, £ #0).
B
Taking exponentials,

L) = I_IITIF‘ @.151)

i.e. Euler’s product holds on o = 1, except at ¢ = 0.
At 5 = 1 the product is, of course, not convergent, but we can obtain

an agymptotic formula for its partial products, viz.

H(1~1)~i1. (3.15.2)
P; logx

p<z

To prove this, we have to prove that

1
&) = —log (1 _.) = loglogz+y+o(1).
v
Now we have proved that
gy = > M yoglogatyto(1).

<

1 1
fer=0@) =3 3 = 3,2
I b

<p<z at<pse

which tends to zero as z->co, since the double series is absolutely
convergent. This proves (3.15.2).
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It will also be useful later to note that

H(1+l) ~ M_}";ﬂ“. (3.15.3)
Pz ?)
For the left-hand side is
1—1/12 ( ) elogz _ 6e¥logz
~e710ga: 1l — | = = =5,
pex 1— H S ) -

Note also that (3.14.3), (3.14.5) with error term O(1), and (3.15.2)
can be proved in an elementary way, i.e. without the theory of the
Riemann zeta-function; see Hardy and Wright, The Theory of Numbers
(5th edn), Theorems 425 and 427-429. Indeed the proof of Theorem 427

yields (3.14.5) with the error term 0(
logx

NOTES FOR CHAPTER 3

3.16. The original elementary proofs of the prime number theorem
may be found in Selberg {2] and Erdés [1), and a thorough survey of the
ldeas involved is given by Diamond {1]. The sharpest error term

by 'y hods to date is

n(x) = Li(x) + O [x exp{ — (log x)~%} ], (3.16.1)

for any ¢ > 0, due to Lavrik and Sobirov [1]. Pintz [1] has obtained a
very precise relationship between zero-free regions of { () and the error
term in the pri ber theorem. ifically, if we define

R(x) = max{{zn(®~Li@)): 2 <t < x},

then

logﬁ ~ m‘fn {(1-Plogz+loglyl}, (x— o),
the minimum being over non-trivial zeros p of {(s). Thus (3.16.1) yields

(1—Plog x +log iyl > (log )¢
for any p and any x. Now, on taking log x = (1 — §)-logly| we deduce
that .
1% (Qogly) 5%,

for any & > 0. This should be compared with Theorem 3.8,

3.17. It may be observed in the proof of Theorem 3.10 that the bound
{(8) = Oe®®) is only required in the immediate vicinity of s, and s}, It
would be nice to eliminate consideration of s}, and 50 to have a result of
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the strength of Theorem 3.10, giving a zero-free region around 1+t
solely in terms of an estimate for {(s) in a neighbourhood of 1 +it.
Ingham’s method in §3.4 is of special interest because it avoids any
reference to the behaviour of {(s) near 1+2iy. It is possible to get
quanutatlve zero-free regions in this way, by incorporating simple sieve
(Balasub ian and R handra (1]). Thus, for exam-
ple, the analysis of §3.8 yields

logp 1
¥ pne {1 +cos(mylogp)} it vp;+0(1087)

However one can show that

pom

X
Y. {l+cos(ylogp)} > g X

X<ps2X
for X > y2, by using a lower bound of Chebychev type for the number of
primes X <p < 2X, coupled with an upper bound O(h/log k) for the
number of primes in certain short intervals X' <p < X’ +h. One then
derives the estimate
2(1-0)

1+cos(ylogp)} »! T

logp
el o

pzy
and an appropriate choice of ¢ = 1+ (A/log y) leads to the lower bound
1-p» (log -t

3.18. Another approach to zero-free regions via sieve methods has
been given by Motohashi [1]. This is distinct), li d, but has the
advantage of applying to the wider regions discussed in §§5.17, 6.15 and
6.19.

One may also obtain zero-free regions from a result of Montgomery
(1; Theorem 11.2] on the proliferation of zeros. Let n(t, w, h) denote
the number of zeros p = f+iy of {(s) in the rectangle 1-w < <1,
t—4h <y < t+4h. Suppose p is any zero with § > }, y > 0, and that &
satisfies 1 —f < & < (log 7) 1. Then there is some r with 6 < r < 1 for
which

ay, r,r)+n@y,r,r> (3.18.1)

3
FEa-p
Roughly speaking, this says that if 1 — § is small, there must be many
other zeros near either 1+iy or 1+2iy. Montgomery gives a more
precise version of this pri as do hand (1] and

jan and R ‘handra {3]. To obtain a zero-free region
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one couples hypotheses of the type used in Theorem 3.10 with Jensen’s
Theorem, to obtain an upper bound for n(t, r, 7). For example, the bound

(&)< (1+T1-")og T, T=|t|+2,
which follows from Theorem 4.11, leads to

n(t, r,r)<rlog T+loglog T+log ; (3.18.2)

On choosing § = (loglog 7)/(log 7), a comparison of (3.18.1) and (3.18.2)
produces Theorem 3.8 again,

One can also use the Epstein zeta-function of §2.18 and the
Maass-Selberg formula (2.18.9) to prove the non-vanishing of {(s) for
a = 1. For, if s = } +it and ¢(s) = 2{(2s) = 0, then

WG+ = g —s) = ¢()p(1~3) = [$(} +inl2 =0,

by the functional equation (2.19.1). Thus (2.18.9) yields

”E(z, 9Bz, w) d‘;fy =0
D

for any w #s,1—s. This, of course, may be extended to w=2s or
w = 1—5 by continuity. Taking w = } — it = § we obtain

”u?(z, s)lzd;# -0
D

so that B(z, s) must be identically zero. This h isi ible since
the fourier coefficient for n =1 is

8neyiK,  (2my)/T(s),

according to (2.18.5), and this does not vanish identically. The above
contradiction shows that [(2s) # 0. One can get quantitative estimates
by such methods, but only rather weak ones. It seems that the proof
given here has its origins in unpublished work of Selberg.

8.19. Lemma 3.12 is a version of Perron’s formula. It is sometimes
useful to have a form of this in which the error is bounded as x - N.
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LemMa 3.19. Under the hypotheses of Lemma 3.12 one has
c+it
4 _ 1

nt 2mi
esir

+0[ @2 11982 oy min( 1

This follows at once from Lemma 3.12 ufnles? x—N=0x/T).In _t.l}:
latter case one merely estimates the contribution from the term n =

i c4ir
c+n1a~ 2 \edw ay 1+0(£>}d4w
j N N ;' Ne T w
etir e-iT
ay c+iT 1}
=ﬁ{1ogc_iT+0()

= O{¥(N)N-°},

x x
f<s+w);dw+°{m

n'<x

as

and the result follows.

v
APPROXIMATE FORMULAE

4.1. Ix this chapter we shall prove s number of approximate formulae
for {(s) and for various sums related to it. We shall begin by proving
some general results on integrals and series of a certain type.

4.2. Lemma 4.2. Let F(x) be a real differentiable function such that
F'{z) is monotonic, and F'(z) =m > 0, or F'(x) < —m < 0, throughout
the interval [a, b]. Then
b
f €FR) gy

2

1
<= 4.2.1)

Suppose, for example, that F'(z) is positive increasing. Then by the
second mean-value theorem
b L]
_ [ Fiz)cos{F(z)}
f cos{F(z)} dr = f Fa dr
a a

L __ sin{P(§)}—sin{F(a)}
=@ J‘F (@)eos{F(x)} du = & ,
and the modulus of this does not exceed 2/m. A similar argument

applies to the imaginary part, and the result follows.

4.3. More generally, we have
LEnma 4.3, Let F(z) and G{z) be real Sunctions, G(z)/F"(x) monotonic,
and F'@)[Gx) 2 m >0, or < —m < 0. Then

H 4
’J'G(x)e“"‘”dx <E'

The proof is similar to that of the previous lemma.
The values of the constants in these lemmas are usually not of any
importance.

4.4. LEMMA 4.4, Let F(z) be a real Sfunction, twice differentiable, and
et F'@)2r>0, or F'l2) < —7 < 0, throughout the interval [a, b).
Then

H 8
Jemz>dxl<7r, (4.4.1)
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Consider, for example, the first alternative. Then F'(z) is steadily
increasing, and so vanishes at most once in the interval (g, 6), say at c.
Let 3 8 o3 b
I=[emis= [+ [+ [ = htlt],

a @ =3 c+d

where 3 is a positive number to be chosen later, and it is assumed that
a8 <e<b—8 Inky

Friz) = fF'(t) dt > riz—c) =
‘ 4
=

Hence, by Lemma 4.2, 5] <

1, satisfies the same inequality, and || < 28. Hence

8
< — .
1l < Bt 2
Taking 8 = 2r-#, we obtain the result. If ¢ << @43, or'c > b—3, the
argument is similar.

4.5. Lenma 4.5. Let F(z) satisfy the conditions of the previous lemma,
and let G(x)/F'(x) be monotonic, and |G{z)| < M. Then

H . 8M
Ua(z)emw <=

The proof is similar to the previous one, but uses Lemma 4.3 instead
of Lemma 4.2.

4.6. LEMMA4.6. Let F(x) be real, with derivatives up to the third order.

Let 0< 2 < F'(x) < AN, (4.6.)
or 0.< Ay < —F(z) < Ay, (4.6.2)
and | F"(z)| < A, (4.6.3)
throughout the interval (a,b). Let F'(c) = 0, where

<e<b (4.6.4)
Then in the case (4.6.1)

3
1270 L ops b+

@) dot =
J.e £ (Zﬂ)I!F’( iE

+{min( gy 4]} 0 min{ gy 25} woo)

In the case (4.6.2) the factor et is replaced by et~ If F'(x) does not
vanish on [a, b] then (4.6.5) holds without the leading term.
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If F'(x) does not vanish on [a, b] the result follows from Lemmas 4.2
and 4.4, Otherwise either (4.6.1) cr (4.6.2) shows that F'(x) is monotonic,
and so vanishes at only one point ¢. We put

o+8

3
Joma= T 701
assuming that a+8 < ¢ < 8—8. By (4.2.1)

f:O{mﬂ}ZO[l fF"(:c)dz. sx,)

c+8

Similarly

Also
c+8

c+d
| = J’ expli{F(e)+ (x—e)F'(0)+ Hw — ) F"(¢) +
s
L §a—cPF o+ 8(z—0)}] dz
— ¢iFe) J' eHie—PEO 1 4 Oftw— )] die

= ¢iFe) f e%“"*ﬂ"""”’ dz+0(5%).
=3

Supposing F*(c) > 0, and putting
Ya—ofF"(0) = u,
the integral becomes

B'F"(cy

T f W’ {F"(o»[ = +°(M)]
e

Taking 8 = (A5)%, the result follows.
If 5—38 < ¢ < b, there is also an error

c+d
etFe bf ele-orF0dy — o{ﬁ'} - { > (b”} and also 00T H);

and similarly if ¢ < ¢ < a+5.
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4.7. We now turn to the consideration of exponential sums, i.e. sums
of the form 3, etmiten),
where f(n) is a real function. If the numbers f(n) are the values taken
by a function f(z) of a simple kind, we can approximate to such a sum
by an integral, or by a sum of integrals.

LEMMa 4.7.1 Let f(x) be a real function with a continuous and steadily
decreasing derivative f'(z) in (a,)), and let f'(b) = o, f'(a) = B. Then

»
etrifm) — 2rilfe)val dp+ Oflog(B—a+-2)}, (4.7.1

a<zn<b a—q<§<ﬁ+q;’. ¢ +O0floglf—at2)), )
where 4 is any positive consiant less than 1.

‘We may suppose without loss of generality that 9—1 < « < 9, so
that v 2> 0; for if k is the integer such that —1 < a—k < 7, and

bz) = fla)—kz,
then (4.7.1) is .
eihin) — i) v —kiz) ol 2)),
a<§<be u'—-n<v§k<ﬁ+qa ¢ dz+0{log(ﬂ oF )}

where o’ = a—k, B’ = B—Fk, i.e. the same formula for k(z).
Tn (2.1.2), let (x) — 27, Then

> b
.,<§<fww = J’ i) j (z—[x]— 1)2rif ()™ @ dg+ O(1).
1 < s8in 2vme
z v

Also z—[z]—3 =

=1
if = is not an integer; and the series is boundedly convergent, so that
we may multiply by an integrable function and integrate term-by-term.
Hence the second term on the right is equal to

_9 z J‘ sin 2»11:2%“)!. (@) dx

vl

® b
= Z % J.(e_m»z_emn)emnz}f'(,;) dz.

v=1
The integral may be written
13 b
ER) - £1) g it
o) Fm—" - 2m Fas™ g

t van der Corput (1).
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Sizy
fay

Since

is steadily decreasing, the second term is

{6

by applying the second mean-value theorem to the real and imaginary
parts. Hence this term contributes

(2l =52

vef v
= Oflog(8+2)}+0(1).
Similarly the first term is O{B/(v—B)} for v 2> B+, and this contributes
8 3
0 _£ )= o +0
(350, 2 A2

= Oflog(8+2)}+0(1).

Fin&lly

BT amitsiavar]
Z ezni(ﬂm valf (@) die = Z z ezm(/m v} e,
" 2miv "

=1

and the mtegmted terms are Oflog(8+2)}. The result therefore follows,

4.8. As a particular case, we have
Lrmma 4.8. Let f(x) be a real differentiable function in the interval [a, b],
let f'(x) be monotonic, and let |f'(x)] < 0 < 1. Then
b
3 emitm = J it de+ O(1). (4.8.1)
a<n<h a
Taking 7 < 1—8, the sum on the right of (4.7.1) either reduces to the
single term v = 0, or, if /() > n or < —x throughout [a, b}, it is null,
and b
j e gz = 0(1)
¢

by Lemma 4.2.
4.9. THEOREM4.9.T Let f(x) be a real function with derivatives up to the

third order. Let f'(x) be steadily decreasingina < x < b, and f'(b) = a,
f'(a) = B. Let x, be defined by

fle)=v @<v<p)
+ van der Corput (2).
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Let A < (@) < AA,, If"(@)] < Ay
Then
2ai{fan—vay)
3 erritn — g-irt Z e";”:’ +00sh+
adin Lg FT@IE

+Oflog{2-+ (b—a)hu} ]+ O{(b—a)N§ A}
We use Lemma 4.7, where now
B—a = Of(b—a)r,}.

Also we can replace the limits of summation on the right-hand side by
{a-+1,8—1), with error O(A;}). Lemma 4.6. then gives

[

J‘ erilf@ v} gy . g-im
ar1Soep-1 Y

taowtie 5 ol vofsh)

at1<y<B-1

emilfiz-van)

wr1&tp 1M

The second term on the right is
O{(B—aiitaly — Ofe—aid ),
and the last term is
O{log(2-+f—o)} = Oflog{2+(b—a)]-
Finally we can replace the limits («+1, 8—1) by («, 8] with error O(z1).
4.10. LEMMA 4.10. Let f(x) satisfy the same conditions as in Lemma 4.7,

and let g(x) be a real positive decreasing function, with a continuous
derivative ¢'(x), and let |g'(z)| be steadily decreasing. Then

3 glmermin — J' glz)ermit@ sl dy 4
a<lngd

<y<ﬂ+
+0fgla)log(B—a+2)}+Oflg'(a)1}-
We proceed as in § 4.7, but with
$(@) = glajerrve,
We encounter terms of the form

j!l(r) ff(. @ d{gerisea),

3
9'®) _ germitsrern
and also aff'(x)ivd(e SCOR
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The former fead to Ofg(a)log(—a«+2)} as before. The latter give, for
example,

@I _ o @),

Ve

NMs

i

=1

and the result follows.

4.11. We now come to the simplest theoremt on the approximation
to {(s) in the critical strip by & partial sum of its Dirichlet series.

THEOREM 4.11. We have
1 1-s
Us) = Z E_Tz:g*' O(x—) (4.11.1)

uniformly for o 2 09 > 0, |t] < 2nx/C, when C is a given constant
greater than 1.

We have, by (3.5.3),

Us) = Z l—N‘_;+a f [;];fj»%du—iN-‘
=1 N

N, —

:ZL_N" (‘”’)4.0(1\7‘0) (4.11.2)
n-]"' 1—s

1 L

The sum

w ne
2<ndN z<ndN

is of the form considered in the above lemma, with g(z) = »~°, and

oy = 2B =t
Thus el <5 <g
Hence 1_ j’." du 0
z<n<N"’ 2 w
Mo g,
Hence sy = l__+ Ol v)+0(1"'+1)
ngr

Making N -> co, the result follows.
 Hardy and Littlewood (3).
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4.12. For many purposes the sum involved in Theorem 4.11 contains
too many terms (at least 4 |f]) to be of use. We therefore consider the
result of taking smaller values of z in the above formulae. The form
of the result is given by Theorem 4.9, with an extra factor g(n) in the
sum. If we ignore error terms for the moment, this gives

2 o))
)RR o g-kmi € ().
e a;ﬂ et
Talking tlogu

gy =u,  flu)=

om
frw) = =25
and replacing @, b by z, N, and i by —i, we obtain
z 1 am z o —2milif2nlogzmy)—iar))

n* (tj2my(2mAft)t

T<REN tenN <y<ifeme
A LR 1
I ehmi—itlogufane) .
2

T, =

=gt =g
{3
&

- P
Now the functional equation is
Ls) = x(8)¥(1—s),
‘where x(s) = 29 r*sec 3sm/T(s).
In any fixed strip « < 0 < B, a8t > ©

log Ta-+if) = (o-+it—Blog(if)—it-+}log 27r+0(?1). (a.12.1)
Hence  T{otit) = tv+ﬂ~§e—%wf-a+%-'v«v—%>(2ﬂ)%{1 +o(tl)}, (1.12.2)

o (2_,,)”::4 Mm{x_,_g(%)}, (4.12.3)

Hence the above relation is equivalent to

1 1
- CHID=
2<nEN YeaN Ty stitnz
The formulae therefore suggest that, with some suitable error terms,

1~ Lixo Z

ngx

Where 2nzy = [t
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Actually the result is that
Us) = z S xls) Z it O+ Ol Foyet) (4129
n<e
for 0 < ¢ <C 1. This is known as the approzimate functional equation.t
4.13. TuroreM 4.13. If k is a positive constant,
0<o<l, mxy = t, z>h>0, y>h>0,

then
Us) = z +x(s)z L 0o loglth+ Oy, (£.13.0)

frad

This is an imperfect form of the approximate functional equation in
which a factor log|f| appears in one of the O-terms; but for most
purposes it is quite sufficient. The proof depends on the same principle
as Theorem 4.9, but Theorem 4.9 would not give a sufficiently good
O-result, and we have to reconsider the integrals which occur in this
problem. Let ¢ > 0. By Lemma 4.10

SN - S |

2<nEN HeaN vyt 2
and the last term is O(x—log¢). If 22N 7 >> ¢, the first term is v = 0, i.e.

N
du N1 —gl-e
w1

Hence by (4.11.2)

=325+ > f S du+0(a-log )+ 0N ),
nEr

<<y g
since 21-8f(1—s) = O(z—°) = O{z"logt).
£ gtmivn 2 m\2-1
Now J' - F(l—s)( ) s
and by Lemma 4.3 ’
. woid gy — of N Y _ °
J. e v =0\ —mm) = A5 )
£ N z
furnan — (2 ] 208 e
1—s ¢ 1—s8

ool )

+ Hardy and Littlewood (3), (4), (8), Siegel (2).
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y
e‘lﬂ‘l/ll b 8-1 1
[ a= )T S

1<vEy—7

Hence

1vEy-n 5

ol 2ol 3 )

v—,
1<y " Y

_ f2m\e? 1 - 212y log t)

- (T) ra—s 3 SLto logtH-O(—t—).
10y -7y

There is still a possible term corresponding to y—n < v < y+7; for this,

by Lemma 4.5, >

j PRETRL T o{xl_a(ii)’i}’
5
L]

o) =l - v s

Finally we can replace v <{ y—n by v < g with error

ot o

X(8) = 273~1sin fsw [(1—s)

giving a term

1} = O(tt-oy=-1).
Also for ¢t > 0

_ 2,,,,,_:{ _6‘2‘¥+ O(e—%ﬂl)}r‘(l —s)

= (27?’)"'1“(1-3){1+0(w1);4

Hence the result follows on taking N large enough.

It is possible to prove the full result by a refinement of the above
methods. We shall not give the details here, since the result will be
obtained by another method, d ding on contour i N

4.14, Complex- va.riable methods. An extremely powerful method

of obtaint lae for {(s) is to express {(s) as a contour

integral, s.nd then move the contour into a position where it can be
suitably dealt with. The following is a simple example.

Alternative proof of Theorem 4.11. We may suppose without loss of
generality that z is half an odd integer, since the last term in the sum,
which might be affected by the restriction, is O(z~°), and so is the
possible variation in z1-7/(1—s).
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Suppose first that ¢ > 1. Then a simple application of the theorem
of residues shows that

1 Tin
— = = - 2~Scotmz dz
- gz =y |
zi0
z ztin
1 i
=% .[ (cot mz—i)z~ 'dz—f f (cot-nz-l—z)z‘-'dz— fpmrd
* oo

The final formula holds, by the theory of snalytic continuation, for all
values of s, since the last two integrals are uniformly convergent in any
finite region. In the second integral we put z = 27, so that

i 2 —2a7
|eot mz+-i| = Tie < 27,
and |25 = |2|~cel BT s < gogHretantls) < gogliie,

Hence the modulus of this term does not exceed
rwf e-trralinle gy —
3
A similar result holds for the other integral, and the theorem follows.
It is possible to prove the approximate functional equation by an
extension of this argument; we may write

-0

2z
2o [tlfz

R el
—cotmz—i = 2i Z e”"”—{-W.
y=1

Proceeding as before, this leads to an O-term

F —idlrix — g
Olz_u f 20+ D d,—] - 0(2(n+1)ﬂ—[”/x),
§

and this is O(x—9) if 2(n+1)7—|t|/x > 4, i.e. for comparatively small
values of z, if a is large. However, the rest of the argument suggested
is not particularly simple, and we prefer another proof, which will be
more useful for further developments.

4.15. TuroreM 4.15. The approvimate functional equation (4.12.4)
holds for 0 <o < Lz >h >0, y>h>0

1t is possible to extend the result to any strip —k « o < k by slight
changes in the argument.

Yore > 1 sy = z ﬂl
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Transforming the integral into & loop-integral as in § 2.4, we obtain
m,
1 | e'(1—s) [ wi-lg-mw
H= 2t | e
&

where O excludes the zeros of ¢”~-1 other than w = 0. This holds for
all values of s except positive integers.
Let ¢t > 0 and z < 3, 80 that o < /(#/27). Let 0 < 1,
m=[z], y=t2m), q=[) n=2my.

We deform the contour C' into the straight lines G, G,, Gy, C, joining oo,
cy4-in(l+4-¢), —en-tin(l—e), —cn—(2g+1)mi, co, where ¢ is an absolute
constant, 0 < ¢ < §. If y is an integer, a small indentation is made
above the pole at w = i5. We have then

m ¢
te) = Z$+x<s)znli+”—_”€‘7.l‘s’<f+ f +f +H
»=1 »=1 & 6 G A
Let w = u-+iv = pei# (0 < ¢ < 2n). Then
[w1] = po-teb,
OnC,, ¢ 2 4m p > Ay, and [e°—1| > 4. Hence

f l - o(qv»xﬁwf e du) = Oemen-im) = O(ete-im),

64 ey

one,é= én+meaml—c— > grte+4 where 4 > 0, since
@ 8

arctand = f A e 6

IR e e

Hence
wile—mw = Oye-lg~ihmicttsmen) — O(o-te~d=+)

and [ev—1] > 4, Hence
J' = O(yFetma,
@

On G, |e*—1] > Ae*. Hence
—1g—mw
w‘we = O[W”"exp{ —tarctan (e {m—+ l)u}].
ev—1 13
Since m+1 > z = t/5, and

4 (4e)y  u (1+¢)y
gafprean S )

1
+->0,
7
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we have :
1
arctan-———(ltc)”—}-:—; = ar%m*+ +e
= {w-}—c-al’cta,ni%—c = {nt4d,
since for 0 << 8 < 1
arctan § < J‘

o
(1—p)? [
Hence
m ®
j' - 0(.,],:-1 J’ e-Gmeax du)+0(1,"“ f e :lu)
c 4 £
= 0(1;"6‘@"*‘4")1—0(”""2’""’) = 0(,709—(%””)!)‘
Finally consider C,. Here w = ig+Aek", where A is real, [A] < ¥2¢7.
Hence
w1 = expl(s— 1){fim-+log(n-+Aetim)]

= exp[(s——l)limJ—Iogn-f- gt _ e""'+0( )”

- ol o)

e o(m) w=0), = o(j:;'":') (w < 0),

@1 T—e¥

Also

which is bounded for 4 <.~} and u > }=; and
|e=ow] = e-Mnvz,

Hence the part with |4 > §= is
oz
12 X
ot [ esnl{~35+o3H] #)
—opve
— o{ﬂo—le At f oAy d/\} Oyt Yeimt).
The argument also applies to the part |u| < 4w if e*—1} >4 on this
part. If not, suppose, for example, that the contour goes too near to

the pole at w = 2gwi. Take it round an arc of the circle |w—2gmi| = .
On this cirele, w = 2gmit hme®
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d
o log(w*~le-™%) = —fmme¥-t (s— 1){}im+log(2gnm+ bmedfi)}

= —Jmmet®Ynif(s— 1)10g(2q#}+%9+ o).

. 12 2mgm—t
Since mn—;q:%:O(l),
this is — Jort+ (s— 1)log(2gm)+O(1).
Hence [w-le-mw| = O(go-le~im).
The contribution of this part is therefore
O(n7-teim).
Since e~ imP(1—g) = Oftd-oetm)

we have now proved that

n .
00) = 3 bl 3 S OO et

The O-terms are

oensffisefi))
2 )

= O(e™4)+ 0(a=0)+- O(t-}e1~2) = Ox—).
This proves the theorem in the case considered.

To deduce the case 3> y, change s into 1—s in the result already
obtained. Then

Wes) = Y Lotxl—9) > 2406,
n<z ey

Multiplying by x(s), and using the functional equation and
(8)X(1v-9) =1

we obtain  L{s) = x{s) Z —+ Z S+ O(thmze1),
Interchanging z and y, this gives the theorem with z > y.

4.16. Further approximations.t A closer examination of the
above analysis, together with a knowledge of the formul»w of § 2.10,
shows that the O-terms in the app ion can be
Teplaced by an asymptotic series, each term of which oont&ms trigono-
metrical functions and powers of ¢ only.

+ Siogel (2).
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‘We shall consider only the simplest case in which 2 = y = JJ(¢/2#),
7 = \/(2nt). In the neighbourhood of w = iy we have

(svl)log4 = (341)log(l+ 7"’)

w—z-q

i S I

= %(w-—iy)—}-;—"(w—iq)“-#....

Hence we write

Wogtewtin (i g [
et _ g o),
here
e #e) = exp{(a—l)log(l+5E)_iz«/:+yz=}
=34,
n=0
say. Now L
dé _ _o= iz?
i z+~’t —ivtiz)b(z) P —q )
Hence @+ S g, 2t = (o—1+iz) iuan 2,
w1 =
and the coefficients a,, are d ined in ion by the e
formula

(0t 1y = (g—n—L)a,Hig, ., (n =2, 3,.),
this being true for n = 0, n = 1 also if we write a_y = a_; = 0. Thus

a—1 (o—1)o—2)
=1, 4= 2=y

It follows that a, = O(t-ir+in) (4.16.1)
(not uniformly in #); for if this is true up to n, then

4y = O in+in-3) 4 O(-in-2+idn-2-}) = Ot Hn+1+Th0nemy,
Hence (4.16.1) follows for all # by induction.

Nzl
Now let: $(z) = Z a, 2" +7y(2).
N



£ APPROXIMATE FORMULAE Chap. IV
where T' is a contour including the points 0 and z. Now

log () = (s—1 )log(l + '§)+4M_iww

2, (—1)-1
:(a—l)log(1+ ) Z ” ( )

Hence for |w| < §vt we have =

— 2

Rilogg(w)} < |o l[log +lwlt g g
Let |z| < §+, and let T be a circle with centre w = 0, radius py, where
Bzl < oy < B8

Then v(z) = O(z|Y
The function p~Ne?/6% has the minimum (5e/2NVE)s¥ for p = (2NWH/5)};
px can have this value if

2NVAS 3
a < (B < g
Hence

o= delgl”) e medpRy)

For |z| < §¢ we can also take py = 3}|2], giving

relz) = o[( ) {expﬁw(— m) ” = O{E‘Xp(-—!zl“)} (2] < 3.

Now consider the integral along C,, and take ¢ = 2. Then
N-

w,-xe-mw . 1e(illn)(w~117)'+(17/117)(w—i1/)—mw 1 w—iy nd
= - LN dw
dw f (in) T "Znaﬂ )

i aw—tD-m [y iy
-1 - dw.
+ f (n) 1 1«/(27))

If |e*~1]| > A on C,, the last integral is, as in the previous section,
2 g

At v .
o[nw-le~l!m[ f o (4(2 )) ( L l)' Dt f e-(»uwww/zsn)d)\”
)
o

predny

- o[nv-wﬂ'{(%)* 2%NF(§N+§)+e—onm'}]

-2

for N <C At. The case where the contour goes near a pole gives a similar
result, as in the previous section.
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In the ficst N terms we now replace C, by the infinite straight line
of which it is a part, C, say. The integral multiplying a, changes by

@
: A\
o—tg=1Lnt — )Nz -m A _ L .
Ol'q Lot fe (\/(277)) d/\]
i

Since m-+1 3 iy = 7/(2r), this is

) {n,,,e_g:{ ew/dv(\/(_g.ﬂ)nd/\} .

We can write the integrand as
PR
T\
J(2m)

and the second factor is steadily decreasing for A > 2//(nxr), and so
throughout the interval of integration if n < N < At with 4 small
enough. The whole term is then

0{ nw—le’}m4n‘/3£w’)(2J:12")) "} = Ofyo-te-mi-utem(Lyipyn}.

Also @y = (t,—Tp)2~ = O oo i
n n T 2l |
Hence the total error ig

{ et en Z (i“/""(zm) } - o{wue—%ﬂwwvz—l ( %)gn}.
a=0

Now (t/n)i increases steadily up to # = t/e, and so if » < 47, where

A4 < Ve, it is Ofehidlog 11y,
Hence if N < At, with A small enough, the whole term is
Ofe~thm+an),

‘We have finally the sum

&g (il X0~ Hi2mMo—in)-m0
5 a, o )
inp-L et | (w—iy)" dw.
Gy 'Z,w(zn)in_f 1 i)™ du
o &

The integral may be expressed as
- f exp[L (w+2mni—in)‘+l(w-}—me'—iq)vmw}>(
4 2m
L
(w4-2mami—ig)*
X dw

where L is a line in the direction argw = }r, passing between 0 and 27i.
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This is 7! times the coefficient of " in

— J‘ exp{— (w+2mari —in)*+

5L -+ 2 i) - o+ i —im) |
et oy
= ‘211‘!*(3 —2m+f)exp{5(;—2m+§)“—%’+
+i(2mﬂ—n)(i—:—%M+§)},
cosnljat—a—})

where Yia) = eosma

= 2n(— l)m—le‘w—(ﬂn[s)l]/’( —om+ 5) ohint

= 2m(—1ym-to-betsinin z w>(’7 m )5“ z (3"'5""

Hence we obtain
nlip-n
1) — | )m-lg-Sit~(5in(8)
ehino-D(2npyled2m(— 1=l zo g T X
20

X (E) ?"_Va,.‘l"("-m(ﬂ — 2m).
. ™
Denoting the last sum by Sy, we have the following result.

TaroreM 4,16, If 0 < 0 < 1, m = [{(4/2n)], and N < At, where A
is a sufficiently small constant,

o= Z S+ x(6) 2 et
+ (—1)m-le-bints-1(2nt)he-to- b -GmAD(1 —3){SN+ 0{ (#V)MJ + O(eAA‘)}.

4.17. Special cnses
In the app ional tion, let o = } and
z=y={eEnt

Then (4.12.4) gives
L340ty = gﬂ«‘q—x(aﬁe) g;rh“{—O(f%L (4.17.1)
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This can-also be put into another form which is sometimes useful.

We bave b+ —i) =1,
so that Ix(3+it)| = L.
Let ¥ = Ht) = —Jargx(3+it),
s0 that x(tit) = e,
Let Z(t) = ePUGHit) = {x(3+it)HE+i). (4.17.2)
; N P _ PG+
Simee - Gbriyt ’“{m ) - T
_ E(t)
we have also Z(t) = m (4.17.3)
The function Z{t) is thus real for real ¢, and
1Z()] = |53+t
Multiplying (4.17.1) by e*, we obtain
Z(t) = e® 3 poi-tp e T bt O}
ner nET
= 2 Y n-teos(S—tlogn)+O(t%). (4.17.4)
e

Again, in Theorem 4.16, let N = 3. Then
8= a,,\y(g —2m)+%(§)%a,‘[""(gﬁ2m) -
el
= ‘Y(Z" 2m) +Ooit
cos{t—(2m+1)4(2nt) %n}+ ou),

cos/(2nt)

and the O-term gives, for {(s), & term O(¢~1o-1). In the case 0 = } we
obtain, on multiplying by e®® and proceeding as before,

o < cos(d—tlogn)
=2 3 s,

teos{t—(2m+ 1)y(2at)— 4w}
cos \J(2mt)

+(_1)m4( L0, (4.17.5)
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4.18. A different type of approximate formula has been obtnim?d' by
Meulenbeld.f Instead of using finite partial sums of the original
Dirichlet series, we can approximate to {(s) by sums of the form
Z $(n/z)
NET »
where $(u) decreases from 1 to 0 as u increases from 0 to 1. This reduces
considerably the order of the error terms, The simplest result of this
type is
1—n/z 1
W=2> My >
RET sy

1 2x(s—1) 1 1 1 L)
X v<nz<zv et TKZ«V w * O(t_ﬁ Tt =y

valid for 2mey = )i, [t = (x+ 1D}, —2 <o < 2.
There is also an approximate functional equationf for {{(s)}*. This is

N (O] d(n) 1o 18.1
ey = ; Sl xte) ;y CH+0(=t-vlogt),  @181)
where 0 < o < 1, 2y = (¢/27)%, 2 2 b > 0, y > h > 0. The proofs of
this are rather elaborate.

NOTES FOR CHAPTER 4

4.19. Lemmas 4.2 and 4.4 can be generalized by taking F to be k times
differentiable, and satisfying |F®(x)| > 4 > 0 throughout [a, b]. By
using induction, in the same way that Lemma 4.4 was deduced from
Lemma 4.2, one finds that

a
j eiFdx <, A=V,
a

The error term O(i;$i;%) in Lemma 4.6 may be replaced by
elere lg), which is usually sharper in applications. To do this one
chooses § = 113‘5‘ in the proof. It then suffices to show that

3

{22 (if %) _ 1) dx < (16)-1, (4.19.1)

hel
if f has a continuous first derivative and satisfies f(x) < x35-3,

1 Moutenbeld (1).
1 Hardy and Littlewood (8), Titchmarsh (21).
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f'(x) < x75-3. Here we have written A = } F”(c) and

f(x) = F(x+c)— F(c)— }x2F"(c).
If 6 < (1)~ then (4.19.1) is immediate. Otherwise we have

s -9 ag- s
-0l
. ~da- ah

The second integral on the right is trivially O{(18)-1 }, while the third,
for example, is, on integrating by parts,
s
. i) _
@iixeitey S "L
@d)-t
. 3
. ife) 1 oad feifm_1
gidw2€ _ idxz 2 (€
[ 2idx Jss T\ )
(s}

-1

x =

3
< max @ . E'L(x)e.r(x)_(eilw_l) ax
=815 | Ax 2iix?
[CR
s
x35-3
Ad~1+ —
U J‘ i |
ah-t
< (1)1

asrequired. Similarly the error term O {(b — a)1 g,{ g } in Theorem 4.9 may
be replaced by O{(b—a)i}}.

For further estimates along these lines see Vinogradov [2; pp. 86-91]
and Heath-Brown [11; Lemmas 6 and 10]. These papers show that the
error term O((b—a)A}4f) can be dropped entirely, under suitable
conditions,

Lemmas 4.2 and 4.8 have the following corollary, which is sometimes
useful.

LEMMA 4.19. Let f(x) be a real differentiable function on the interval
[a, ], let f'(x) be monotonic, and let 0< A < [f'(x)| < 8 <1. Then

Y e g g1,

a<ngh
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4.20. Weighted approxi functional i related to those
mentioned in §4.18 have been given by Lavrik [1] and Heath-Brown [3;
Lemma 1], [4; Lemma 1]. As a typical example one has

Ly =3 dy(m)n-vu, (f)u(s)k 5 d,,(n)n'*‘w,_‘(ﬁ)
1 x 1 ¥
+O0(x1-"log*(2 + x)e ~1/Y) 4.20.1)

uniformly for ¢ > 1, |o| < }i, xy = (/20)*, x, y > 1, for any fixed positive
integer k. Here

c+ic N 2d
wr=g | (0T ot
c-ix® (¢ > max(0, —o)).

The advantage of (4.20.1) is the very small error term.
Although the weight w, (1) is a little awkward, it is easy to see, by
moving the line of integration to ¢ = + 1, for example, that

O-1) (21,
w0, = .
1+0@)+ O{u‘(log—) e‘i"} O<u<l),
u
uniformly for 0 <6 <1, ¢t > 1. More il are h
possible.

To prove (4.20.1) one writes

crim

= 1 r{}+ £ d
gd»m)nﬂw.(;):E j ((&t)-*f%}”—z’}z@u)) wen 2

(¢ > max (0,1 —o0)),

and moves the line of integration to R(2) = —d, d > max(0, ¢), giving
—d+i®
1 LT +2)} * .dz
— iz 2022 %%
2ni J‘ ((%t) I'{3s) Ho+2) | are z

_doiw

+{(s)* +Res(z =1—39).

The residue term is easily seen to be O{x!-° log*(2+x)e ~*/4}. In the
integral we substitute z= —w, x = (¢/27)*y-1, and we apply the
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functional’ equation (2.6.4). This yields
—dyim
1 T'{}s+2)} k dz
— -2z 2T 2y sl
J‘ ((} ) TGS C(3+2)> x7e” z

()k a4 r((* }
_ X —w (1-s+w) ® .
pre f (‘*” ”‘WZO-“"”) ety

d-im

- —x(s)*id.mm-f'w.,.(f),
1 Y

as required.
Another result of the same general nature is
KG+ingik= ¥ , i (m)d, (mm 3= n AW, (mn) + O(e~17%)
mon=

(4.20.9)
for ¢ > 1, and any fixed positive integer %, where

14ix
U TG T i) ¢ de
W, LAY AN R A s —zp?
=g | (= Tha sy ) e

This type of formula has the advantage that the cross terms which

would arise on ipling (4.20.1) by its 1 j are absent.
By moving the line of integration to R(z) = +4 one finds that

W, () = z+0{u*leg~<%)} O<uzgl),

and W,(u) = O(u ~}) for » > 1. Again better estimates are possible. The
proof of (4.20.2) is similar to that of (4.20.1), and starts from the formula

%MZ; \ dy(m)d, (nym =4~ itn it W (mn)

2mi TG+ TG D}

1-iw

(G+it+ DG —it+2) )"ez'di_
z
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4.21. We may write the approximate functional equation (4.18.1) in

the form ()2 = S(s, 2) + 1 (251 —5,9) + R(s,%).

The estimate R(s, x) < x}~°logt has been shown by Jutila (see Ivic [3;

§4.2)) to be best possible for

th< <th

t
® 2n
Outside this range however, one can do better. Thus Jutila (in work to
appear) has proved that

R(s, x) < thx-*(log t) log (1 +§)+,41,,u(y,+10g0

for 0 < ¢ < 1 and x» ¢» 1. (The corresponding result for x < ¢t may be
deduced from this, via the functional equation.) For the special case
x =y = /27 one may also improve on (4.18.1). Motohashi [2], [3], and in
work in the course of publication, has established some very precise
results in this direction. In particular he has shown that

1(1—9)R (s, %) = —(%’)h&(i)*— o@h,

where A(x) is the remainder term in the Dirichlet divisor problem (see
§12.1). Jutila, in the work to appear, cited above, gives another proof of
this. In fact, for the special case ¢ = }, the result was obtained 40 years
earlier by Taylor (1).

v
THE ORDER OF {(s) IN THE CRITICAL STRIP

5.1. THE main object of this chapter is to discuss the order of {(s) as
¢ >0 in the ‘critical strip’ 0 <C ¢ <{ 1. We begin with a general dis-
cussion of the order problem. It is clear from the original Dirichlet
series (1.1.1) that {(s) is bounded in any half-plane ¢ 3> 148 > 1; and
we have proved in (2.12.2) that
{)=0(t) (=9
For o < {, corresponding results follow from the functional equation
{(s) = x(8)t(1—3).
In any fixed strip e < o < B, a8t >0
AL
e~ (5:)
by (4.12.3). Hence
Us) = Ot-2) (o< =8 < D), (5.1.1)
and Us) = O+ (¢ = —B).
Thus in any half-plane o > o,
Ls) = O(t1*), & = ko),

i.e. {(s) is & function of finite order in the sense of the theory of Dirichlet
series.t

For each o we define a number u(o) as the lower bound of numbers £
such that Yoit) = 0(l10).
It follows from the general theory of Dirichlet series; that, as a function
of o, plo) is i g, and convex ds in the
sense that no arc of the curve y = u(c) has any point above its chord;
also p(o) is never negative,

Since {(s) is bounded for ¢ > 1435 (8 > 0), it follows that

woy=10 (¢>1), (5.1.2)
and then from the functional equation that
wo) =3—c (o< O). (5.1.3)

These equations also hold by continuity for ¢ = 1 and o = 0 respec-
tively.

t See Titchmarsh, Theory of Functions, §§ 9.4, 9.41.

1 Ibid., §§ 5.65, 9.41.
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The chord joining the points (0, 4) and (1, 0) on the curve y = u(o) is
y = }—}o." It therefore follows from the convexity property that

wo) < i—do O<o<I) (5.1.4)
In particular, u(}) < %, ie.
{(-+it) = O(t+) (8.1.5)

for every positive e.

The exact value of (o) is not known for any value of o betwegn 0
and 1. It will be shown later that u(}) < {, and the an:nples't possible
hypothesis is that the graph of u(o) consists of two straight lines

poy=1%—c (e<h 0 (¢>}) (5.1.6)
This is known as Lindeldf’s hypothesis. It is equivalent to the state-
ment that i+ = 0@) .17

for every positive e. ) )

The approximate fi 1 equation gives a slight ient on the
above results. For example, taking ¢ = §, # = y = f{t/2n) in (4.12.4),
we obtain

Wrin= S Laow 3 fprowy

£

ngti2m) nEAH[2m)
1
—of > voud
ns?n;mn'
= O(t}). (5.1.8)

5.2. To improve upon this we have to show that a certain amount
of cancelling occurs between the terms of such a sum. We have
S S,
n=a+1 n=a+1
and we apply the familiar lemma of ‘partial summation’. Let
bizby .. 20,20,
and 8, = GyH et Ay,
where the a’s are any real or complex numbers. Then if
loul <M (m=1,2,..),
(g by -8y byt .t a, by | < MOy (5.2.1)
For
b+ e by, = by 8+ by(8,—8y) . A, (8, —8,1)
= 81(by—ba) +83{by—bg) .48, 1{bn1 —ba) 8 br-
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Hence
10163+ 4 bl < Moy by oo -by_y—b, 4 b,) = Mby,
If0 < b < b, < ... < b, we obtain similarly
lay byt ta, b, ] < 2Mb,.
fa, =e#lotn b — o, where ¢ > 0, it follows that

b
3, vt =0 max| $ oumen]) (5.2.2)
A=a+t a<estin=a+t1
"This raises the general question of the order of sums of the form
h
S= Y ewniftn (5.2.3)

=Gt
when f(r) is a real function of . In the above cage,

_ —tlogn
HOBSS w
The earliest method of dealing with such sums is that of Weyl,

largely developed by Hardy and Littlewood. This is roughly as follows.
We can reduce the problem of % to that of

3
8= 2origtn),
where g(n) is a polynomial of sufficiently high degree, say of degree k.
ow |82 =3 T erritotm-gtny — 33 epmitotnin—gtnd
ww o
< 3| 3 ermiletnan-atny (5.2.4)
o

with suitable limits for the sums; and g(n+v)—g(n) is of degree k—1.
By repeating the process we ultimately obtain a sum of the form

3
Go= 3 ermibang,
1

=Gt
We can now actually carry out the summation. We obtain
1 —e2mid-a) 1
8| = —_— .2,
1] i 1—e2mit <|sinm\[ .2.5)

If | cosec A | is small compared with b—g, thisis a favourable result, and
can be used to give a non-trivial result for the original sum 8.
An alternative method is due to van der Corput.§ In this method we
approximate to the sum X by the corresponding integral
1

f i) gy,

i
1 Weyl (1), (2). 1 Littlewood {2), Landau (15},
§ van der Corput (1}(7), van der Corput and Koksma {1), Titchmarsh (8)-(12).
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and then estimate the integral by the principle of stationary phase, or
some such method. Actually the original sum is usually not suitable
for this process, and intermediate steps of the form (5.2.4) have to
be used.

Still another method has been introduced by Vinogradov. This is in
some ways very complicated; but it avoids the Je-fold repetition used
in the Weyl-Hardy-Littlewood method, which for large k is very
‘uneconomical’. An account of this method will be given in the next
chapter.

5.3. The Weyl-Hardy-Littlewood method. The relation of the
general sum to the sum involving polynomials is as follows:

LeMmMa 5.3. Let k be a positive integer,

=1, b—a  JEYkeD,
a

B 2 k-1
and ‘ Z exp{—it(g—%%+...+(——‘llzak " )} <M (p<b-a)

o
3
Then ' > etsn < AM.
n@1
For
» b=
| 3 i :‘ zefvzloc(awn)[
STl n=1

i exp{*it(%— ot t%@);it(%-{_ )}|
)l

»=0

=)

, 837,

<2M i le )] (b%”)
=]

(b—a)t+t
< 2Mexp[t[mi+...}]
(b—a)t+? b—a’
< 2Mexp{t.w/(l—-7>} < 2Me2.
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5.4. Thé simplest case is that of {(3-it), and we begin by working
out. i = e above lemma, a; 0 the
this e We require the case & = 2 of the above lemma, and also th

LEMMA. Let = i e2miamt+fm)
m=1
Bl
Then IS < pt2 2, min{s, |coseo 2mar).
For 18|t = ﬁ ﬁ g2rllom® 1 Bm—om—fm)
m=1m=1 N

Putting m’ = m—r, this takes the form
g ; ermicamr—art+f < "z_l , b3 em«m,,
=Snl

where, corresponding to each value of
There 7, m TUNs over at m -
tive integers. Hence, by (5.2.5), o comsect

Bl
18*< '3 minp, [cosec 2mar|)
r=<7+1

=
=put2 'Zl min(u, [cosec 2mar|).

5.5, THEOREM 5.5,  {(}+it) = O(t¥loglt).
Let 2} < a < At, b < 2a, and let
. = [fat-3]. (5.5.1)
3 ) atp  atg 3
p e—Hlogn —
n:gi»l 2ot +W+a+§y+1= R

=Tt

- -

By §5.3, Z, = O(M), where M is the maximum of

s, — i exp{_,«,(ihl_ﬂ
o 2latn

m1

where N

for ' < . By § 5.4 thisis

offu+ S min (i

=1

el
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Hence
N+l Nilaslo o "
= O{(N+I)F%}+0[{ Z 1 z Z lnln(y., cosecm)} ]
P R
== p
= 0{(N+l)‘u.:)+0|:(1.v+l)i= Z mm([.L, cosecﬁl;u—)ﬁ )}*]
=i
Now " tr trp{2at (294 1))

Tt ZaterDef 2atwfletorin
which, as » varies, lies between constant multiples of trufa®, or, by
(6.6.1), of 7/u?. Hence for the values of » for which }tr/(a—vp)? lies in
a certain interval (i, ({-44)n}, the least value but one of

. tr
\s'“ Aot
is greater than Ar/u2, the least but two is greater than 24r/u?, the least
but three is greater than 34r/u®, and so on to O(¥) = O(}) terms.
Hence these values of v contribute

,L+o(“7‘+'2i:+ ) - ,L+o(“;10gz) - o(Fglog:).
The number of such intervals {{m, (It 4)r} is
0{(N+1)/%+ 1}.
Hence the v-sum is
O{(N + 1)log -+ 0(%2 log »)4

Hence

o 0{(N+1)y%}+0(N+1)§[ "f{(1\74.1)1og:+"7‘11;,;;}]*I
“

= O{(N-+1)pd}+ O+ Dyt loght}4- O{(N +1)tulog
= O(attdloght)+ O(at-4logt).
If @ = O(t}), the second term can be omitted. Then by partial summa-

tion » 1
z = Oftilogtt) (b < 2a).
nii%

By adding O(logt) sums of the above form, we get
1 othlogh).

JHit
nt
att<ngitizmit
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’ 1 1
Also > ga= o( > ;}) — o).
n<ef n<att
The result therefore follows from the approximate functional equation.
5.6. We now proceed to the general case. We require the following
lemmas,

Lemua 5.6. Let fl@) = aa®+4...
be a polynomial of degree k with real coefficients. Let
8= 3 erniron

where m ranges over at most p. consecutive integers. Let K — 2%-1. Then
for k=2

w.here each r varies from 1 to p—1. For k = 1 the sum is replaced by the
single term min(u, |cosec mal).

We have 182 = 3 3 etmitfon-s

e

= 3 3 epmilfm-fon-r} (' — m—r,)
W

r=1

< 2 18

=Skt
where 8 = T eanilim-fim-r) — 3 gemitokramt=i..)
= =

and, for each r,, m ranges over at most u consecutive integers. Hence
by Hélder’s inequality

—1 —1
s 5O)E S (s k)
I (y.:§¢+1 ) (r.=~zp+1[ ¥ )
: st <
< @upE(pisy S 18 E)T
=g+l
where the dash denotes that the term r, = 0 is omitted. Hence
1 =] 1
I8 < utEa(udrg S 15 0),
="

If the theorem is true for £—1, then
18| #E < 2BpiE-14
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Hence

|8 24t E

and the result for % follows. Since by § 5.4 the result is true for k = 2,
it holds generally. -

57. LEMMA 5.7. Fora <b<2a, k> 2 K =21,a= O0t),t >1,,
T = z° 2l = O(ah-VEQI DR ogVKE) - O(at-1k+DE) oghRY),
G
If @ < 464+, then
T = Ofa) = O(a!-VEA&+DE])
as required. Otherwise, let

== [Rag-toe],

and write
ST T U S RS )
afan a+§+1 T arfpa TN

Then 3, = O(M), where M is the maximum, for p’ < g, of

ﬁ“‘ Y L per
S“i,,z,,,“l’{ ”(hTwF2<a+m>z+“'+‘ Y k(a+m)")}'

By Lemma 5.6
y . = 1) ry. 7y [\
— =K —k{K ) N 1"k
8, = Ot~V )+0[,u‘ { 2 mm(,;,fcosec Hafralt )] }

Y-

Hence
I = O+

N1

§ X HE— 1) rpme g [\\VE
wofse {3 melelee =)
= O{(N 41yt ¥}
’ e i He— ) 7y [\|UE
+o[,u HE(N A1) W{Z mm(l*: T l)} ]

V=1 rpnteat

by Haélder’s inequality.
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Now as v varies,
e—Dlryrey Hk—1)lrp.n,
atwpl et (v— Dp*
lies between constant multiples of t(k—1)!r..n_jpa=*1, je. of
(k—1)!ry..1_y p~*. The number of intervals of the form {Im, ((-4)=}
containing values of 4t(k—1)!7y...7_;(@+vu)-* is therefore
Of(N+1)(k—1)! ryecryy_y =%+ 1}
The part of the v-sum corresponding to each of these intervals is, as in
the previous case,

u+0 *_'."i_‘ +o(-L_ +
1) ryriy 2 h—1)I7y iy
o #*logt _ pfetlogt
= FTO((k—l)!rl.“rk_l) = O(rl...rk,,_)'

OV +1)log z}+o(rﬁ'l°gi).
1

Hence the v-sum is

Summing with respect to ry,..., 7., we obtain

Of(N+1)ut-1og )+ Oy log*t).
Hence

3 = Of(N+1)pt-YE}4- O{(N + 1)t -VE logVRs} + O N + 1)1-YE p JoghiEs},
The first term on the right can be omitted, and since
Nil=~ 0(”;"-#1) — Oy
[
the result stated follows.
5.8. TEEOREM 5.8. If [ is a fived tnteger greater than 2, and L = 2-1,
then () = O DL ogl+ilyy (g = 1—1/L). (5.8.1)
The second term in Lemma 5.7 can be omitted if
a < t2e+D]ogl-kt,
Taking k = [ and applying the result O(log?), times we obtain
T n-it = QNI -YEUIG+ DI ogl/Ly), 582
nEN
for N < t2/0+D]og!-!t, Similarly, for k < I, we find
n-it = O(N1 - V1R + DK} 1og/Kg)

ki nlog—kt <n < N
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for ¢2/k+D]og-*#¢ < N < t2t*+Dlog'-*1. The error term here is at most
O(N1-Viploghit) with

frory2z 1 g (1 1Y, 1
*=\L " KJerz T G+DE PT\LTK)TK

Thus § < 1/L. When k = I—1 we have

1 2\ 2 2 2 1
a={+-S )t =< ——,
L Lji+1 IL +1)L (+1L
and for 2 < k < /-2 we have

fr_1y2 v k1 1
*S\2K K/k+2 G+DE - 2R+ DG+DE (@+DL

It therefore follows, on summing over k, that (5.8.2) holds for
N < ttlog-1t. Hence, by partial summation, we have

n—s = Q@i+ DLilogl+ Ly,
n<wenk

ne-1 = Q2 -1+ VAU DL} Jogi/Lg,
n<(ant

and the theorem follows from the fi ional

5.9. van der Corput’s method. In this method we approximate
to sums by integrals as in.Chapter IV.
TaEoREM 5.9. If f(x) is real and twice differentiable, and

0<h <RSI lor A —f'(@) < hY)

throughout the interval [a, b], and b > a+1, then
2 — Ofh(h— -4).
L2, = O{—an]+ 005

If Ay > 1 the result is trivial, since the sum is O(b—a). Otherwise
Lemmas 4.7 and 4.4 give
O{(8—a+ 10§+ Oflog(B—a+2)},
where B—a = f'(@)—f'(b) = Of(b—a)lry).
S  opg—at2) = O(f—a-+2) = O[b—aWiA}+-0(1)

= O{(b—aA}-+0(D),
the result follows.
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5.10, Lauma 5.10.  Let f(n) be a real function, a < n < b, and ¢
a positive infeger not exceeding b—a. Then
}i

z eRmifim)
For convenience in the proof, let e2*¥® denote 0 if » < @ or n > b.

alngo
Then
2 e2mifn) — z Z mifon+m)

w om=1

GEmitfinAn-H)

b—a b—. a
<atitraly

v-l u<nsb r

the inner sum vanishing if #» <{ e—q or n > 6—1. Hence

Z e2rifm | < z' z e2mifuntn)

m=1

2
e2miftmm)

1 %

SO AD DX

Since there are at most b—a-g < 2(b—a) values of » for which the
inner sum does not vanish, this does not exceed

‘2(1» > Z P “}é,
Now »

me=1
g 2 a »
| 3 e""‘”‘*"’l =3 i‘ etmitfm ny—fu-4}
=N w1 S

wdi

= g4 ZZ et 5 8 o e,

Hence

i
Zl 3 anisomsn) <
a1
In the last sum, f(m-n)—f(p-t+n) = fp+r)—f(v), for given values
of vand r, 1 < r < g—1, just g—r times, namely p = 1, m = 71, up
to o = g—r, m = ¢, with a consequent value of » in each case. Hence
the modulus of this sum is equal to

| E q—1) z g2milien -1

z e2miftn)|
D

and the result stated follows.

2Ub—a)g+2 | IS enilfimn-fosni|
gt

i 3 exnitfan-ton L 610
r- » !

g

Hence

{4(1,_,,):”4(:,4,1)(, Z

Z 2T 4n-10)

v
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5.11. THEOREM 5.11. Let f(x) be real and have continuous derivatives
up to the third order, and let Xy < f"(2) < kg, 0r Ay < —f"(2) < Rdg,
and b—a = 1. Then
> e — OfhHb—a)\)}-+ Of(b—a)basE).

<b

adn
Let 9(x) = fa+7)—f).
Then 9'(@) = f"(@tr)—f"(x) = of "),
where x << § < x+r. Hence
A < g'(x) < Arhg,
or the same for —g"(2). Hence by Theorem 5.9
2o — Ofh(b—a)yr i+ 0(ixgE).
a<n<o—r

Hence, by Lemma, 5.10,
S e = (T)qw[_f Z {h—ayri+r u—i;]
- o( )+0{h(b M+ B—a)- Dk

= Of(b—a)gH}+ Ofh(b—alghri}+ Of(p—aybg-taH.

The first two terms are of the same order in A, if ¢ = [A; 3] provided
that 23 < 1. This gives

Ofhi(b—a)}+ O{(b—a)ir 1}
as stated. The theorem is plainly trivial if A, > 1. The proof also
requires that ¢ < b—a. If this is not satisfied, then b—a = O(A;%),

b—a = O{h—a)ix; 3},
and the result again follows.
5.12. THEOREM 5.12.
L3+it) = O(thlogt).
Taking f(z) = —(2n)~Ytlogz, we have
» 2
fre)=— o 3

Hence if b < 2a the above theorem gives

WZo= ool hof(a) )

= Ofatth)+Olat-3),
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and the second term can be omitted if & <C #8. Then by partial summa-

tion
Z Hﬁ = 0(th). (6.12.1)
a<nsh
Also, by Theorem 5.9,
> n¥ = O()+-Ofar-t),

adwsn
and hence by partial summation

2t ol ol

Hence (5.12.1) is also true if ¢§ < a < . Hence, applying (5.12.1)
O(logt) times, we obtain

Z e Ofttlogt),
n<t
and the result follows.

5.13. THEOREM 5.13. Let f(x) be real and have continuous derivatives
up to the k-th order, where k > 4. Let X, < f®(x) < k), (or the same
Jor —f®(x)). Letb—a > 1, K = 281, Then

3 ewmiin) — OR¥K(h—a)NYEE-D}4 Of(b—a)-¥FAF VEE-B),
<Rl

where the ts implied are independent of k.

If A, >> 1 the theorem is trivial, as before. Otherwise, suppose the
theorem true for all integers up to ¥—1. Let

9(@) = fle+r)—fla).
Then ¢4 a) = fEDa-t1)—fOfz) = 1f#E),
where ¥ < ¢ < +7. Hence

< g*-Yz) < bk,
Hence the theorem with ¥—1 for k gives

| emml < Ay B (D —a) (A VE D4 A, (b—a)1-HK(r),)-NE-D)
alngh—r

(writing constants 4,, 4, instead of the (’s). Hence
o=l
riom)| < 4, YK (p —g)g +INE-) IHE-2)
Bl 2, < o +

+24,4(b—a)I-H4Eg-UE-D) S UE-2)

2q1-HE-2)

"
Q=1
since 3 r-UE-D < J' PED gy =
r=1
d
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for K >> 4. Hence, by Lemma 5.10,
L3 0 < Aulba)g 4 A b= g HAMEG —a)gh e s
24, (b—a VK QLK -2p - WE -3}
< dylb—a)gt+ 4, AFBE(p—a)eE-Oer-04

A, (24,}(b—a)-¥Eg-HAE NG MK,

To make the first two terms of the same order in Xy, let
g = DEHE-D 41
Then MUK < g < IAFUE-D,
GURK-O\LEE-8) o QURK-A)EE 001K -1 < AHCE-2),
G VK-S UEK-8) < A UK -2,

and we obtain

3 i)
alnsh

< (Ao +24, ADRHEG—a) KD 4

+ A (24 PHp—a) RN VKD,
This gives the result for k; the constants are the same for & as for k—1
i A28, 4} <4, ALANR< A,

which are satisfied if 4, and 4, are large enough.

We have assumed in the proof that ¢ < b—a, which is true if
2N UE-D  p—a. Otherwise

3 erritol|  b—a < (b—a)H2AFVE-D)} 24(b—q)l-HEAF UCE -2
a<nsb
and the result again holds.

5.14. THEOREM 5.14, If 13> 3, L = 21, 0 = 1—-J(2L—2),
Us) = O(MeE-Dlogt). (5.14.1)
‘We apply the above theorem with

foy = -VBZ, gy — (SIPELDE

Ifa <n<b< 20, then

E=1 _ k—1)te
Zn@aff < PR < Tt
and we may apply the theorem with
_ (k=112 ok
7 2n(2a)F’ h=2
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Hence :
N f— 1)1 UK (k,])”}-mzx—z)
-it — 0 gy [ 12K
ee™ [ “{ 21r(2a)"} ] +O[“ { 2m(Za) ]

= O(al-HEE-DUEK-2) | ()(gt-HK+HEE-2y-1eK-2)  (5.14.2)
The second term can be omitted if

a4 < AtKIRE-2K+9) (5.14.3)
Hence by partial summation
S p~t = O(a1-o-HeK-npeK-2) (5.14.4)
a<ln<b
subject to (5.14.3). Taking o = 1—}/(2L—2),
S ne = O(aHeL-D-FHeK-2eK-2), (8.14.5)
aln<d

First take k = I. We obtain

> nd = O(fWeL-B) (a < ALNE-2L+m),
alngh

Hence Z s — b3 o
nse H <nst
= O(tVeL-2) - O@HeL-0) ¢
= O(tL-D]ogt). (5.14.6)
1
Next —== Z + z + s
LD nt H<n<t  H<n<H
and to each term Y corresponds a k < ! such that
22 ™

Rk DE 2K 41} o 9-my < (RIGK-2K+2),
Then 1 = OffIeL—D-kEE-DEI(k+)E 2K 141K -3},
]

r"l<n<k“"ln
The index does not exceed that in (5.14.6) if

L k) kK 1 1
3L—3 3K—3) i NK—3K+1 T 2K—2 S2L—2’
which reduces to L—K 2 (I-kK,
ie. 2k 21—k
which is true. Since there are again O(logt) terms,
l. = O(tVeL-2logt).
(ll(ll.fll+2)<”ggn

The result therefore follows. Theorem 5.12 is the particular case
1=38 L=4.
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5.15. Comparison between the Hardy-Littlewood result and
the van der Corput result. The Hardy-Littlewood method shows
that the function (o) satisfies

1 1
— —— .15.1
K (l 2“) < FrnE 0.15.1)
and the van der Corput method that
1
—_ s 5.15.2
"(1 2‘42) S¥z (5.15.2)

22
Then (5.15.2) and the convexity of u(o) give
1 i -1 1
1 P72 1 a3 21 1
"(l_%) B s e = v e ey wy R TR
p A3 -2
B 1
TR 2 Y (k1)261
if (b 1)(2-1—25-1)  (1—2)2-14-2.

Since 24-1 > (20-1—2)/(I—1), this is true if

<k+1>(2'-* ) < -1t
ie if 1<l
Now 2k-1 ZIT'Z <zll < 23

if1> 8. Hence the Hardy-Littlewood result follows from the van der
Corput result if I 3> 8.
For 4 7 < 7 the relevant values of 1—o are

H-L. PR
v.d. C. LA T

The values of % and 7 in these cases are 3, 4, 5 and 5, 6, 7 respectively.
Hence & < 1—2 in all cases.

5.16 IN THE CRITICAL STRIP 11

5.16. THEOREM 5.16.

oy logt
L4ty = o(loglogt)'

‘We have to apply the above results with k variable; in fact it will
be seen from the analysis of § 5.13 and § 5.14 that the constants implied
in the O’s are independent of k. In particular, taking ¢ = 1 in (5.14.4),
we have 1

Z = Oa-HeEK-DIK-D) (@ < b < 2a)
a<nsb

uniformly with respect to &, subject to (5.14.3). If

(RIGADR 2K - g o (RIRK -2+

it follows that
1 ‘. K] .
= O(MEK -D-kEIQK -DEE -K+1)) o= O(g-UKe-DE D),
alnsh
1

Py Z + z Fes
Rlr-1E ) cngt Hnge  <medt

Writing

and applying the above result with & = 2, 3,..., or », we obtain, since
there are O(log?) terms,
1
T =
et

Let » = [loglog#}. Then

O -3+ Jog ¢ (5.16.1)

2R < olsloet — (Jogtyles,
and

(B -DRAD) > exp( log¢

W) > exp{(log )1} > Alogt.

Hence the above sum is bounded. Also

1
1+il
nepitovri ™

Rlogt
= Rir-DR+1y — g
Otogt )=o)
_ poflegdy _ logt
B 0( r l) - o(ioglogt)'
This proves the theorem.

The same result can also be deduced from the Weyl-Hardy-Little-
wood analysis.
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5.17. THEOREM 5.17. For ¢ > A

{loglog t)* 5.17.1
- 5 . r .17,
Us) = Oflog®t), o1 Togt ( )
_ 4, loglogt 5.17.2
U #0, o=1—4, Togt (5.17.2)
. 1 logt
s = O —2 5.17.3
(with some A,), and e o(loglog t)' ( )
4ty _ 0 logt (5.17.4)
L+it) loglog i/
We observe that (5.14.1) holds with a constant independent of I, and
also, by the Phragmén-Lindelof tk , uniformly for
1—)(2L—2).

Let t be given (sufficiently large), and let

logt
1= [log2 g(loglogt)]

Then L < 2atog logdos oglosn-1 . 1 _10g¢
2loglog¢
L 1 logt
1 ——o
and similarly 2 iloglogt
Hence
! 4 loglogt logloglog¢t—log 2 Ioglogt (loglog t)*

L3732 ” Tog2 Togt = logl

for ¢ > A (large enough). Hence if

_ (loglogt)®
M T
14
then o= l—-m.

Hence (5.14.1) is applicable, and gives

{(s) = O@HeL-Dlogt) = O(tVLlogt)

= Oitoelostlogt log ¢) — O(logSt).
This proves (5.17.1). The remaining results then follow from Theorems
3.10 and 3.11, taking (for ¢ > A)

o) = (‘L“'g'l’, #(t) = 5loglog.

5.18 IN THE CRITICAL STRIP us

5.18. In this section we reconsider the problem of the order of
{(3+it). Small improvements on Theorem 5.12 have been obtained by
various different methods. Results of the form

L(d-+it) = O(*loght)

__ 183 27 229 19 15

T 988’ 164’ 1392° 116” 92

were proved by Walfisz (1), Titchmarsh (9), Phillips (1), Titchmarsh
(24), and Min (1) respecbively.T ‘We shall give here the argament which
leads to the index #;. The main idea of the proof is that we combine
Theorem 5.13 with Theorem 4.9, which enables us to tra.nsfor?m a given
exponential sum into another, which may be easier to deal with.

with

THEOREM 5.18.
L+ = O,
Consider the sum
3 = -t = —itlogn
* a<§< .~ a<§<be ’
where @ < b < 24, a << 4+t By §5.10

B 0(%)+0{(3§ ‘E‘l)%}’ (5.18.1)

where ¢ < b—a, and
Z,= ¢-itllog(n +r)-log ),
% n<n§bfr

‘We now apply Theorem 4.9. to Z;, We have

¢ ) oy

flo) = — o foglatn)—loga,  J'@) =,
" tr  2xtr gy b 3a3--Bar-r?
'@ = —5 st @) = sy

‘We can therefore apply Theorem 4.9 with A, = tra-3, A; = tra~%. Thus

- £2mid) thrd

et 3 Rt ofia)+ofis(r+ &) - ofir)
{5.18.2)
where ¢(v) = f(z,)—v,, « = f'(b—r), B = f'(a). Actually the log-term

can be omitted, since it is O(tiria-$).
Consider next the sum
S et (a<y <P
adiky

+ Note that the proof of the lemma in Titchmarsh (24) is incorreet. The lemma
should be replaced by the corresponding theorem in Titchmarsh (16).
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The numbers z, are given by

tr . 2!7
W =v le =z, = 2( )* }7

Hence

#0) = =) Gem, = —x, = i 2

3
— tr _ M\l ar1

¢(v)_2wv7‘(72+2!r/m;)§72( )(1 aat )
i 2 wt ot
sinee <@ = 21ra(a+r) S S
It follows that

K, (tr)z'

K,T(l_fg <|$P) < =255 (>4,

where K, K,,..., and 1, depend on k only‘ We may therefore apply
Theorem 5.13, with & = 0(1), and

e = Ey{tryb{trja2pi-* — Ky(trp-*a¥-1,
Hen:

ce
2ridor o oft { 7F K- tr\1-9K

Also [f"(z,)|~% is monotonic and of the form O(t-}+—tal). Hence by
partial summation

e2midty)
If"@)ie

AII(EKVQ)}

. 0{(")%—(kqmnx-zya(zk—vl(ix_z}—;—)+

«Sikp
+ 0{(”)}—NKHkﬂ)O(!K—ﬂ]aCIK~é—(zk—l)lﬂxd)}

Hence
1 -1
7 Z; 1Z,] = Offtgyt—-DeE-dgtktieK-2-41

- Of(tg) -4 +k-DIEK DK - }-k-1iaK -2}t O{(tg)~Pab} 4 O{(tg)baE}.
Inserting this in (5.18.1), and using the inequality

X+Y+. )b XpFi,
we obtain E )t < Xik T

2, = Ofag-1)+ Of(eg)t-- = -gk-1iax—+3) 4.
+ 0{(@)}—uxwmmx-a)uﬂxﬂ~(u_nmx4)}+ 0{(tq)’*a*}+ 0((;,1){“#5}_
The first two terms on the right are of the same order if
q= [ulax—lk—EJI(SK—’J—!)‘—(K—E)KHK—"‘”:L
and they are then of the form
O(aPK-DHE—-DgK-RIOK —4-3) — Q(OE-2k-DWEE-2) (g < AE).

iIc=4:givtas
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For k = 2,3, 4, 5, 6,..., the index has the values
1 3 5 17 E
27T 12w 11T
and of these 1] is the smallest. We therefore take & = 5,
g = [attt-#] (a > &),

and obtain
3, = O(ai%c’r})+O(u:—‘r}:;é.)+o(a}%%t—l¥)+o(a%:n':).
This also holds if ¢ 3> b—a, since then
I, = O(b—a) = Ofg) = Oatli-il),
which is of smaller order than the third term in the above right-] hand

side.
Tt is easily seen that the last two terms are negligible compared with

the first if @ = O{+f). Hence by partial summation

1 i s
z e O(aditht)+ Ola—hts) (a > 13).
a<n<d
Applying this with & = N, b= 2N—1; a = 2N, b = 4¥—1,... until
b = [A+k], we obtain
1
2 A= O(t2éa)+ O(N-Hsti)

Nngadt
= O(fa) (N > 1),

‘We require a subsidiary argument for n < 7, and in fact (5.14.2) with

b bn_u = Oitls) (@ < Ah),

ol
1 1
z = Olaeis),
a<A<h
and by adding terms of this type as before
1 » T s 51
z = O = O(tils) = O@%).

et
functional P

The result therefore follows from the approxi q!

NOTES FOR CHAPTER 5 '

5.19. Two more letely di have been given,
leading to the estimate
e pP<h (5.19.)




116 THE ORDER OF {(s) Chap. V

Firstly Bombieri, in unpublished work, has used a method related to
that of §6.12, together with the bound
11
I
to prove (5.19.1). Secondly, (5.19.1) follows from the mean-value bound
(7.24.4) of Iwaniec [1). (This deep result is described in §7.24.)
Heath-Brown [9] has shown that the weaker estimate u(}) < f5
follows from an argument analogous to Burgess’s 1] treatment of
character sums. Moreover the bound u(3) < Jy, which is weaker still,
but none the less non-trivial, follows from Heath-Brown’s [4] fourth-
power moment (7.21.1), based on Weil's estimate for the Kloosterman
sum. Thus there are some extremely diverse arguments leading to non-
trivial bounds for pu(3).

S exp{2milox+ pxd)}| dadf < P3log P,
P

1<z

5.20. The argument given in §5.18 is generalized by the ‘method of
exponent pairs’ of van der Corput (1), (2) and Phillips (1). Let s, ¢ be
positive constants, and let (s, ¢) be the set of quadruples (N, 1, £, y) as
follows:

(i) N and y are positive and satisfy yN-* > 1,
(i) I is a subinterval of (N, 2N],

(iii) f is a real valued function on I, with derivatives of all orders,

satisfying

e (x) 7;%@::4) <e

dr
0 )}. (5.20.1)

for n 2 0.
We then say that (p, ) is an ‘exponent pair’if 0 < p < } < ¢ < 1andif
for each s > O there exists a sufficiently small ¢ = ¢(p, ¢, 8) > Osuchthat

I exp{2nif(0)} <5, (N-1NC, (620.2)

uniformly for (N, L, f, y) % (s, ¢).

We may observe that yN-¢ is the order of magnitude of /'(x). It is
immediate that (0, 1) is an exponent pair. Morecver Theorems 5.9, 5.11,
and 5.13 correspond to the exponent pairs (3, 3, (, %), and

1 2—k-1
2x—2" “2x—2 J
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By using Liemma 5.10 one may prove that
P ptg+l
AP, Q) =5 s
P\ zpra spre

is an pair whi (p. 9) is. Similarly from Theorem 4.9, as
sharpened in §4.19, one may show that

Bp.g)=@—4.p+}

is an pair wh (P, 9) is, providing that p +2¢ > 3. Thus
one may build up a range of pairs by repeated applications of these A
and B processes. In doing this one should note that B2(p, ¢) = (p, q).
Examples of exponent pairs are:

BO.)=@, 1), AB@, D =@, 9, ABO, 1=, ),
ASBO, ) =(, 88),  BA2B@,1)=G,4), A4BEO,1)= (&, i)
BA®B(0,1) =G}, 4§), ABA2B(,0) = (4. 1§),
BABO, D= G148,  ABABEO,1) = G, §)),
A*BABO,1) = (4. 3}), BABA®B(0,1) = (#, ).

To estimate the sum 2, of §5.18 we may take

i
/(x)=27‘103x, y=

2’
so that (5.20.1) holds for any ¢ = 0. The exponent pair (4, 8%) then yields
¥, < thatt

whence
Y nh-ite ol < offr
a<nge

for @ < t}. We therefore recover Theorem 5.18.

The est'una'te #(§) < &% of Phillips (1) comes from a better choice of
exponent pair, In general we will have

MY <ip+e-d,

providing that ¢ >p+4. Rankin [1] has shown that the infimum of
.}(p +g —}), over all pairs generated from (0.1) by the A and B processes,
i8 0-16451067.... (Graham, in work in the course of publication, give;
further details,) Note however that there are exponent pairs bet‘ter for



118 THE ORDER OF {(a) Chap. V

certain problems than any which can be got in this way, as we shall see
in §§6.17-18. These unfortunately do not seem to help in the estimation
of u(3).

5.21. The list of bounds for x(}) may be extended as follows.

388 = 0164979 .. Walfisz (1),
£ = 01164634, Titchmarsh (9),
f&% = 0164511... Phillips (1)
0-164510... Rankin [1]
7% =0163793... Titchmarsh (24)
3% = 0-163043. .. Min (1)
£ = 0162162... Haneke [1]
T = 0-162136... Kolesnik [2]
#fy = 0-162037... Kolesnik [4}
HE = 0162004... Kolesnik [5].

The value § was obtained by Chen [1], independently of Haneke, but a
little later.

The estimates from Titchmarsh (24) onwards depend on bounds for
multiple sums. In proving Lemma 5.10 the sum over r on the left of
(5.10.1) is estimated trivially. However, there is scope for further savings
by considering the sum over r and r as a two-dimensional sum, and using
two dimensional analogues of the A and B processes given by Lemma
5.10 and Theorem 4.9. Indeed since further variables are introduced
each time an A process is used, higher-dimensional sums will occur.

Srinivasan [1] has given a treatment of double sums, but it is not clear

whether it is sufficiently flexible to give, for example, new exponent
pairs for one-dimensional sums.

Vi
VINOGRADOV’S METHOD

6..1. STILL another method of dealing with exponential sums is due to
Vinogradov.t This has passed through a number of different forms of
which the one given here is the most successful. In the theory of the zeta-
funcltion, the method gives new results in the neighbourhood of the line
=1

Let ) = ay oty net o
be a polynomial of degree k > 2 with real coefficients, and let @ and ¢
be integers,
8lg)= T ewiron,
B q

n<a+.

1 1
Jig,l) = f f 18(g) ¥ dosy...deg.
3

)

The question of the order of J(g, i) as a function of g is important in
the method.

Since 8(g) = O{g) we have trivially J(g,) = O(¢¥). Less trivially,
we could argue as follows. We have

{8 = 3 ermientrsnps.
iy
8@ = 3 ermioymbroimi-ni--ndt..,
e

Oni ing over the %-di
if any of the numbers

1 unit cube, we obtain & zero factor

mit ot ml—nt— . —nf (k= 1, k)

is different from zero. Hence J(g, ) is equal to the number of solutions
of the system of equations

Mt bmp =t nd (b= 1., k),

wherea <m, <a+tg,a<n, a+tq.
But it follows from these equations that the numbers n, are equal (in
some order) to the numbers m,. Hence only the m, can be chosen

1 Vinogradov (1)-(4), Tchudakoff (1)~(5), Titchmarsh {(20), Hua (1),
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arbitrarily, and so the total number of solutions is O{g*). Hence
J(g, k) = 0(g¥)
and Jig,1) = O{g*-*J (g, k}} = O(g").
This, however, is not sufficient for the application (see Lemma 6.8).
For any integer !, J(g,1) is equal to the number of solutions of the

equations
midm = nb 0} (h=1,2,..F),

where @ < m, < a+¢, a < n, < a+q. Actually J(g,7) is independent
of a; for putting M, = m,—a, N, = n,—a, we obtain

I 1
2 (M Aa) = ZI(NV-H)" (b= 1L,..., k),
=1 =
which is equivalent to
dm-im =1.m,
v=1 y=1

and 0 < M, < ¢, 0< N, < ¢
Clearly J(g,) is a non-decreasing function of q.

6.2. LemMA 6.2. Lef my,..., My, Ny,..., 1y, be two sels of integers, let
k

and let oy, o) be the h-th elementary symmetric functions of the m, and n,
respectively. 1f Im,| < g, In,| < g and

loa—ap] <@t (b =1, ), (8.2.1)
then |op—ch] < §2kPT (b = 2, B). (6.2.2)
Clearly lol < kg, lshl < kg
and Ioh] < (g < kgt
Now oy = 3(si—8,).
Hence log—oi] = Bl(e3—s)—(s—sp)]

< Yo —s)s+ay) +hls—el
< kg+1g < b,
the result stated for b = 2. .
Now suppose that (6.2.2) holds with ko= 2,..,j—1, where 3{j <%,

o that loy—ahl < @bgP-1 (b= L. =1
By a well-known theorem on symmetric functions
8—ay8; 1+ 0385 a— -+ (— 1oy = 0.
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Hence

, 1 l"‘l
loy—of} < Sloy—aj |+ —ols
ol < ]l J 11+j»§=1|0h81ﬂ 85l

AR , , .
= ’—]L + ; ’Zl l(on—04)8;-pn+0h(8;-4—8; )]
gt 13 . .
STtz D {2kt (kg -1}
(=

S _ 23 @RY—1
“ 7 2k—1
"
< (2kgyi-1__*
< @yt
<

2 and j 2> 3. This proves the lemma.

< §(2hg)~t < §(2kgy L
since 2k/(2k—1)

6.3. LemMma 6.3. Let1 < @ < g, and let G15---» G be integers satisfying

<o <@p<.<g<6, g—g,>1 (6.3.1)

For each value of v (1 < v k) let m, be an integer lying in the interval
—a+(g,—1)g/G < m, < —a+tg,9/Q,

where 0 < a < q. Then the number of sets of such integers m,,..., my, for

which the values of 8, (b = 1,..., k) lie in given intervals of lengths
exceeding g1, is < (4kG)ImA-D, 7 lengtho n

If z is any number such that |z} < ¢, the above lemma gives
k
H@mmy)..(z—my) — (@—ny)...(x—m,)| <Az loa—ojjafk-b
=1
k
<1+ 3 )
he=g
o eafy |, S(2k—2k
= {14+ ¢ ot
sinee k > 2. If n,,..., n, satisfy the same conditions as Myye.., My, then
Imy—n,| 2 q/@ forv =1, 2,..., k—1. Hence, putting z = =,
) (@/GY ) my—my| < (2kg)e-t,
ie. |mp—my| < (kG2

Thus the number of numbers my, satisfying the requirements of the
theorem does not exceed

(ZRGP141 < (4GP,
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Next, for a given value of m,, the numbers m,,..., M satisfy similar
conditions with z—1 instead of k, and hence the number of values of
my_y is at most {4(k—1)G}-* < (4kG)+-2. Proceeding in this way, we
find that the total number of sets does not exceed

(A G)E-DHE-Dbe — (4]00)}&):4),

6.4, LEvma 6.4. Under the same conditions as in Lemma 6.3, the
number of sets of inkegers my,..., my, for which the numbers s, (b = 1,..., k)
lie in given intervals of lengths not exceeding cgt-4¥, where ¢ > 1, does

mot eaceed (20)H(4kG)en-Dgh-,
We divide the Ath interval into
—1ky

parts, and apply Lemma 8.3. Since
ﬁ (2oql-hllc) = (2c)kq}(k_l)
h=1

wo have at most (2c)'ql®-D sets of sub-intervals, each satisfying the
conditions of Lemma 6.3. For each set there are at most (45@)H-
solutions, so that the result follows.

6.5. LemMA 6.5. Letk <U, let f(n) be as in §6.1, and let

1 1
I= [ [1Z g, o Bl 8(g 1) doty .. e
o o

where = 3 eamiftny
{or-12-"1Zn<ne
and the g, satisfy (6.3.1) with 1 <G =2 <q. Then
< 2ak+<-+m§k(k_n-mk(l_k)kk}wc-nqu-} J(gt-Vk, 1—k).
We have P
I= 5 W, N [ o [ ermitieas i) Sgioth) X0 da, ... doy
NyoNe H 4

Z"l,lh

1 1
< YNy V) | e | |8(gh 1620 da,y .. B,y
S L L

where W(V,,..., N;) is the number of solutions of the equations
it Amh—nd—..—nf =N, (h=1..k)

for m, and n, in the interval (g,— 1) 2-™¢q < x < §,2-™¢. Moreover N,
runs over those integers for which one can solve

Ny = Ak mf P ——mih
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where m{"and n| lie in an interval (a,a+¢'-V*]. As in §6.1 we

can shift each range through — g, i.e. replace a by 0. Then N, ranges

over at most 2(/ - k)g*1-1'® values. Hence by Lemma 6.4, for given

values of n, ..., n,, the number of sets of (my,..., m,) does not exceed
{4 —k)y(2m ) tek-ngle-n,

Also (ny,..., n,) takes not more than (1 +2-mg)* < (21-mg)* values.

Hence

MEM‘Y(N,,..., N} < {40~ R)Fitsb-Dtmsnbice-0-mh + kg3

and the result follows.

6.6. Lnmia 6.6, The result of Lemma 6.5 holds whether the g's satisfy,
(6.3.1) or not, if m kas the value

M [;%%g%} (6.6.1)
1Z31,] < 2-Mg+1  21-Mg,
12315, -+ Zaggy 1t < (21-2g)%,
it is sufficient to prove that
(21-Mg)ok < QUHMADIGED-Mi(] . pyefhite-ngh—},

Since

or that gHe+h o 2004 DFRE-D+ M L)

or that  (34-+3logg < $k(k-+1)M log 2+ h(k—1)log 4k,
or that logg < kMlog2 +’ﬁ(,f;‘l” log 4.

Since M kl;’fng—l,

this is true if klog2 < ’L():%” log 4k,

or log2 I]:—;% log 4k,

which is true for k > 2.

6.7. LEMMA 6.7. The set of integers (g,,..., ), where k < 1, and each g,
ranges over (1, Q), is said to be well-spaced if there are af least k of them,
Y Gpreess Gpoo S0MiSfying

G >1 (v=2,..k).
The number of sets which are not well-spaced is at most 1! $1G*-1,

Let gj,..., g; denote g,,..., g; arranged in increasing order, and let
f,=9,—g,_,. If the set is not well-spaced, there are at most k—2 of
the numbers £, for which f, > 1. .
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Consider those sets in which exactly & (0 < & < k—2) of the numbers
, axe greater than 1. The number of ways in which these & f,'s can be
chosen from the total I—1 is ("hl). Also each of the 5 ,s can take at

most G values, and each of the rest at most 2 values. Since g takes
at most @ values, the total number of sets of ¢, arising in this way is

at most (lfl) gzt
k

The total number of not well-spaced sets g, is therefore
= k-2

F -1\ I—1
nHQi-h-t < GF-1 2i-h-1
g (W)omrrsez i)

=)

< GEL(Lp2)L << FGHL,
Since the number of sets g, corresponding to each set g.isat most !, the
result follows.

6.8. Lumva 6.8. If L > k*+3k and M is defined by (6.6.1), then
J(@,1) < max(1, MAS Ik Rs-1ga-Rs s -1 T (g1 1 ).

Suppose first that M is not less than 2, i.e. that ¢ > 2%, Let p be
a positive integer not greater than M —1. Then

1089 1, je 200 gt

w< klog2 ™
Let 8 S 2mif(n) $ Z
© @= VZI w—mf"qz@sar»qe 7.72:1 ad
say. Then {8 =3 Z’w, ZI‘W

where each g, runs from 1 to 2¢, and the sum contains 2# terms.

We denote those products Z,,, ... Z,, with well-spaced ¢’s by Z,.
The number of these, M, say, does not exceed 2. In the remaining
terms we divide each factor into two parts, so that we obtain products
of the type Z,,1g, - Zus1ee each g lying in (1,2¢#+1). The number of
such terms, M,,, say, does not exceed I! 3imk—D2! = 11 6720%-1, by
Lemma 6.7. The terms of this type with well-spaced ¢'s we denote by
Z,,,,, and the rest we subdivide again. We proceed in this way until
finally Zj, denotes all the products of order M, whether containing
well-spaced g’s or not. We then have

M
5@ = 3 3 Zn
S < u 1S < i 8 M2 68)
np w=p
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where 34, is the number of terms in the sum 3 Z;,. By Lemma 6.7,
I, < U F2m-DE-DY — 1 GAM-DE-D (> ),

Consider, for example, 3 [2),[2. The general Z;, can be written
Zwm me Z,M.lnu Zp.m'
where ¢,,..., g; satisfy (6.3.1) with @ = 2+, Now, since the geometric
mean does not exceed the arithmetic mean,

1 13
12 g1 - Znal® < my;l |2, g, 1P
We divide these Z, , into parts of length ¢1-¥%—1 (or less). The number
of such parts does not exceed
2-rg 2

2-ng —#
[El-llk_“l] +1g 1 + 2l *q,,zk-f-z”‘"ql”‘  2lwglk,

sinee g'-¥¥ > gV* > 2M > 4. Each part is of the form S(g*-¥*), or with
¢*-V¥ replaced by a smaller number. Hence by Hélder’s inequalityt
|Z ’Wl—k) < (2V-HgUky2-in-1 S(g1-1k) | 26-8),
Honco ‘v K (2rghhy 3 18(g*-1k) -0,
R e sl e 1
SIGS <D i Zl® 3, 3 ISiaH S,
o v

Hence by Lemma 6.5, and the non-decreasing property of J(g,2) as &
function of g,
1

! j 3 1Z, 1% doy ... dayy, < (21 gURRR-1 )L, plopeqli ¢
X QA BFRE=D-ik(] LY IRE g 5T (-1, 1)
== QuAR DR (] e D2+ 3 T (-1, ),
A similar argument applies to Z;,, with z replaced by m. Hence
Jay <M "ﬁ o -2
o X QUHTHE(] Yo -k + ¥ 4 J (g1 I k),

A
Z‘Lzm(%k- +}k-2D M2,
M
2R S omdR - () R eUgHm-1XE-1
m=g+1
M
= bl (1262 S gmGAtfk--p-2-D
m=g+1
< 2L (I)R6Y < 21967,

1 Here S(g'~*#) denotes any sum of the form S{p) with p < ¢ %,



126 VINOGRADOV’S METHOD Chap. VI
since we can start with an integer g such that 24/ < {I. (Indeed we may
tzke p = 1) Hence

(@, 1) < M22+R5 ¢k (1260 Prpbhik =D ULk k=3 Jgl Ik, [ ),
and since Q21+ ki+k+ 162 < D6IgH — 482

the result follows.
If M < 2, ie. g < 2%, divide S{g) into four parts, each of the form

S(¢'), where ¢’ < {q < g'-Y*. By Hélder’s inequality
S(@I < 40 1S < £ T | S,
Integrating over the unit hypercube,
J(g, 1) < 4¥-1g20-10 3 (g, 1—k)
< 4RI (P, 1),
and the result again follows.

6.9. Lemma 6.9, If r is any non-negative integer, and I > k2 + }k + kr,

then Jg.l) < Krlogrqlqﬂf{“(kﬂhay
1y Y eIy
where , gmurx)(l _E) K — 4g¥(yense-D,

This is obvious if 7 == 0, since then 8, = (k1) anl‘} Jg. ) < g%
Assuming then that it is true up to r—1, Lemma 6.8 (in which M < logq)
gives

Jig ) < Klogq.gi-witk-4 Kr-tlog-3(q1-1) x
X qlhllk](?llfkp;k(kﬂ)ks,-x)’
and the index of g reduces to 21— 3k(k+1)+3,.

6.10. Layva 6,10, If I = [klog(k*+k) + Hk2-F k] +1, k =2 7,

J(g,1) < RIFEIogg. g¥- bk,

We have 8, < } if k(lc—H)(l—%) <1,

k
ie. if log{k(k+1)} < 7logk—;—1.
This is true if log{ktk+1)} < r/k,
or if r = [klog(k*+£)]-+1.
Since r < klogdk+1 < 4klogk, <k,
and

logK < 2llog48-+2llogI+klogi4-4k(k—Diogk
« Sllogl-t-llogk < 16llogh,
the result follows.
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6.11. Luvuma 6.11. Let M and N be integers, N > 1, and let $(n) be:
a real function of n, defined for M << n << M+ N—1, such that
8 <t 1)—gn) <ob (M <n < M+N—2),
where § >0, ¢ =21, 8 <}. Let W > 0. Lei & denote the difference

between x and the nearest integer. Then the number of values of n for
which $(n) << W8 is less than

(Nes+1)(2W+1).

Let  be a given real number, and let & be the number of values of %
for which ath < $(n) < athts
for some integer h. To each b corresponds at most one =, so that
@ < ky—hy+1, where kb, and &, are the least and greatest values of &.
But clearly

HM) <otk +8,  ath, < HM+N—1),

whence hy—hy—8 < HM+N—1)—$(M) < (N —1)c3,
and G < (N—1)c84+5+1 < NoS+1.
The result of the lemma now follows from the fact that an interval of
length 28 may be divided into [27 1] intervals of length less than
3 (<P

6.12. LEMMA 6.12. Let k and Q be integers, k > 7, @ = 2, and let f(z)
be real and have continuous derivatives up to the (k-+1)th order in
[P+1,P+@QJlet0<i<1and

A< e Pr1<agp 6.12.1
SEFT S ( <z < P+Q) (6.12.1)
or the same for —f* (), and let
<o (6.12.2)
P+Q
The 2mifin) AeBklogk(1-p .12,
7 [Fgﬂe | < dcmeletkgi-vlog @, (8.12.3)
where p = (24k2loghk)- 1.
Let g =[A-MksD]qq,
so that 2 < g < [QUI1 < @,
. Pio
and write 8= 3 ermism,
n=F+1

Pln) = mglemm-m»m (P+1<n g P+Q—g).
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Then 3erifn)
8| = ] edmife
as =135,
P
\\ Wz"“"eznmn) + ﬁ q
me=1n=PF1+ me=l
- I " gamisomin| | g2
Et S

__1 i eemifmen| | g2

a=F+1mis1

< e
< @] *é ’|T(n)\ﬂ]"‘”‘ 2, (6.12.4)

by Holder’s inequality, where ! is any positive integer.
We now write A_= A (n) =" (n)/r! for L<r<k, and define the
k-dimensional region O, by the inequalities
lo,— A, 1< }q" (r=1,...,8). (6.12.5)

If we set
8(m) = f(m+n)—f(R) — (m* + ... +a;m),

then, by partial summation, we will have

q
T(n) = 8(g)e2s@ — 2xi ‘[ S(p)8'(ple?= 4P dp.
[)
However, by Taylor’s theorem together with the bound (6.12.1) we obtain

@) =f@+n)— Zmp"

B+t P 0 4 20 5 Zra,p”

(k- 1)'
= $HA, —apr 1 + 2k + DAY DY,
where 0 < 3, & < 1. 1 612 holds it follows that
17O < 3 rhg-rar-1 + Bkig < Jhig- 1+ Bkigk < 24+3kq Y,

1
by our choice of g. We therefore have

1T < 24+ k3@ + o f 1S(p)ldp) = 2+ kxS,(a),
;.
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say. Integrating over the region Q,, and dividing by its volume, we
obtain

| T(n) |2 < (2%+ 4 km)2ighicn s '[ J‘ISa(q)lﬂdalmdﬁz,. (6.12.6)

The integral of | S,(g)|% over 2, is equal to its integral taken over the
region obtained by subtracting any integer from each coordinate. We
say that such a region is congruent (mod 1) to Q,. Now let », »’ be two
integers in the interval {[P+1, P+ @ —q], and let Q_, Q be the corre-
sponding regions defined by (6.12.5). A necessary condition that Q,
should intersect with any region congruent (mod 1) to €, is that

A =4, <ok < Mg (6.12.7)
Let d(n) = Au(n)—A,(n"). Then

1) —dn) = 7{f"“(n+1) —f®n)} =

where n < £ << n+1. The conditions of Lemma 6.11 are therefore
satisfied, with ¢ = 2 and 5 = Mk+1). Taking W = g/(k-+1), we see
that the number of numbers n in [P+ 1, P + @ —q] for which (6.12.7) is
possible, does not exceed

: 2% 2
{ZQA(L+])+1}(Wi+1) < (2k+3)(m+ 1) < 3kq.
Since this is independent of »’, it follows that

P+Q q
f ﬁso(q)wda

FE0)
B

'3
n=

S
. da, < kg f f 1So(@I du, .

3
21,
since < 3kq22J(g, D),  (6.12.8)

Sylg)* < 2%~ ‘(ls(q)l2‘+ f}ﬂp)l“@)

Defining ! as in Lemma 6.10, we obtain from (6.12.4), (6.12.6), (6.12.8) and
Lemma 10

|S] € 2%+ 5kn@Q!-3ig— {gikk + D3k J (g, I)}3i + @
< 2k+5an17%{3keﬁllklo‘g‘kq§}%logq+q_
Now g < 24-¥k+D < 2Q4(k+1 Hence

18] < Aehlostk @1 —dr +3/((k +Dl} |og @ + 2@k + D
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and the result follows, since ¢ — 3/{(k + 1)/} = dr and ! < 3k?logk.

6.13. Luvma 6.13. If f(z) satisfies the conditions of Lemma 6.12 in an
interval [P+1, P+ N}, where N< Q, and
Q<A (6.13.1)

then \ PgN g2nifm) ¢33k 108% Qi-rlog Q. (6.13.2)
B+

If X% < N, the conditions of the previous theorem are satisfied
when Q is replaced by N, and (6.13.2) follows at once from (6.12.3).
On the other hand, if A% > ¥, then

| Pi" il < N <3< QE< @,
n=P+1

and (6.13.1) again follows.

6.14. THEOREM 6.14.

L(1+it) = Of(logtloglog#)i}.

Ho :t (—1)f+ikte

Let )= g () = S
Let e <z <b < 2a. Smce (—1)kHfk+D(z) i3 steadily decreasing, we
can divide the interval [@, ]into not more than &+ 1 intervals, in each
of which inequalities of the form (6.12.1) hold, where A depends on the
particular interval, and satisfies

t ¢
. .14,
D <t S ey e (®14.1)

LetQ=axt, 1oga>zlog§t and
logt
= [ige] +
Then Q< abil < QU
Clearly A < Q-, while A > @-% if @ > 2t+3q(k+1), or if

loga > ( °g£+3)log2+log( Ogt+2)+logﬂ,

and this is true if ¢ is large enough. It follows from Lemma 6.13 that
T e-iflorn — O(he¥klon*hg1-slog o),
acnsh
where p is defined as in § 6.12. Hence

1 24
z = O(keR*log*tg-r log 6
a<n$b

2, _—
= 0{[0gtexp(33lc log?k 24Ic’log k)}

615 VINOGRADOV’S METHOD 131
Suppose that klogk < Alogla,
with a sufficiently small A, or
loga > A(logtloglog )t
with a snﬂiciently large 4. Then

—Alog’a
2 = Ofemtesa{ i)
= O[logtexp{—A4 logit(loglog )i}],
and the sum of Ologt) such terms is bounded.
Since & 3= 7, We also require that & << t}. Using (5.16.1) with r = 8,
and writing f = 11297X1284D_ we obtain

tin = 3 SO = Ologa)+ > —Loton).
a<p oLtp

The last sum is bounded if
loga = A(logtloglogt)i
with a sunitable 4, and the theorem follows.

6.15. If 0 < o < 1, we obtain similarly
Z W = O[a"-" exp{— A logit(loglog t)%}log 1],
a<n<p
and this is bounded if
1o < A A(loglog )i
Toght
with a sufficiently small 4. Hence in this region

i) = O(z ni,.)+0(1)
nEx

o( ot °')+0(1)

= l—ay,

=0 1, F5
[exp{A logli(loglog )3} —5~ (loglogt) ]
‘We can now apply Theorem 3.10, with
oy = Alomlogt L 4 loghiloglog
loght ° :
Hence there is a region
A
o 2 1~ iioglog 1y (6.15.1)
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which is free from zeros of {(s); and by Theorem 3.11 we have alse

— Oflogit(loglog ), i(‘; L‘)’ = Ofloght(loglog )3}
(6.15.2), (6.15.3)

i
{4

NOTES FOR (zHAPTER 6

6.16. Further improvements have been made in the estimation of
J{g, !). The most important of these is due to Karatsuba {2] who used a
p-adic analogue of the argument given here, thereby producing a
considerable simplication of the proof. Moreover, as was shown by
Steckin [1), one is then able to sharpen Lemma 6.9 to yield the bound

J(g, Iy < OFlorkg2i=—dhib 1) 45,

for I > kr, where k > 2, ris a positive integer, C is an absolute constant,
and §, = }k2(1 — 1/k)". Here one has a smaller value for 5, than formerly,
but more significantly, the condition { > }k% + 1k + kr has been relaxed.

6.17. One can use Lemma 6.13 to obtain exponent pairs. To avoid
confusion of notation, we take fto be defined on (¢, b1, with e < b < 2a
and 4"t < @ < 4-1. Then

5 etrifm
s<n<h
Now suppose that (N, I, f, y) is in the set # (s, 1) of §5.20, whence
| b+ D ()]

k+1)!

< ARk 10160 g,

[ LA RLES <foxmeh
with
s(s+1)...s+k-1)

E+ 1) .

We may therefore break up I into O(s+k) subintervals (e, b] with
b< (g)”“*") a, on each of which one has

L UEeD @) <
*k+1! g
with 1 = §a,a-2-* Wenow choose ksothat 1~} < N < 2N < i-1forall
@ in the range N < @ < 2N. To do this we take k£ > 7 such that

Nk-1 N
<§N1-e g 6.17.1)
Fp_1 ‘zh

6.17 VINOGRADOV’S METHOD 133

Note that N*/a, tends to infinity with &, if N » 2, so this is always
possible, providing that .

N6
TSN (617.2)
6

The estimate (6.17.1) ensures that 2N < A-1, and hence, incidentally,
that 4 < 1. Moreover we also have

N* < 3o,  N%-5 < §o,2-7-kN3-s
if N 224542, and so 174 < N. It follows that

):!ez’"f ™ g, ke BN P10 6.17.9
ne
for N > 2¢+4+2, subject to (6.17.2).

We shall now show that

eo=(g—sg——1-_L
D= (25(m—2)m2 Tog m’ 1_25m21<ﬁ) ©17.9
is an exponent pair whenever m > 3. If yN2-5-m > 1 then (yN-2ppNe
2 N, and the required bound (5.20.2) is trivial. If (6.17.2) fails, then
yN-¢ <, N° and, using the exponent pair (tdss B9 = ASB(0, 1) (in the
notation of §5.20) we have

L e <, (yN-o)th Nt <, Nt < Na ¢ (pN-sppNa

nel
as required. We may therefore assume that yN2-¢-m <1, and that
(6.17.2) holds. Let us suppose that N > max (22+m+2,2(}5 + 1)), Then
(6.17.1) yields

¥

s+1 s+

5s s+k—2
Ne-1 28, - z -
<4 373 -~ % yN1-¢

*|

ko1
<§<max<§, 1)) yN1-5 < 2(}s+1)4-1Nm-1,
whence

N \r-m
(#TH) <2(3s+1)m-1,

Since N > 2(}s+1)" we deduce that £ < m. Moreover we then have
N 2204m+2  2s4k+2 gg that (6.17.3) applies. Since % is bounded in
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terms of p, ¢ and g, it follows that
zlez"'“"’ < Ni-Plog N< Ne
ne

if N>, 1, and the required estimate (5.20.2) follows.

6.18. We now show that the exponent pair (6.17.4) is better than any
pair (2, f) obtainable by the A and B processes from (0, 1), ifm > 1086 By
this we mean that there is no pair (x, f) with both p >z and ¢ > §. Todo
this we shall show that

p+batz1 (6.18.1)

Then, since 5¢25m? log m < (m —2)® for m > 105, we have g +5p¥ <1,
and the result will follow. Certainly (6.18.1) holds for (0, ). Thus it
suffices to prove (6.18.1) by induction on the number of A and B
processes needed to obtain (a, f). Since B2(x, §) = (, ) and A(0, 1)
= (0, 1), we may suppose that either («, f) = A(y, §)or (a, f) = BA (3, 9),
where (y, 8) satisfies (6.18.1). In the former case we have

3 2 5yt 3
POt (T A ot ol LY (0 D A
Brbat= s Yl ne) 2 Ny 2
for 0 < y < §, and in the latter case

41 & \_2y+1 3\
B+5at= m+5<m) >m+5(m> z1
for 0 < y < }. This completes the proof of our assertion.

The exponent pairs (6.17.4) are not likely to be useful in practice. The
purpose of the above analysis is to show that Lemma 6.13 is sufficiently
general to apply to any function for which the exponent pairs method
can be used, and that there do exist exponent pairs not obtainable by the
A and B processes.

6.19. Different ways of using J(g, I} to estimate exponential sums
have been given by Korobov {1] and Vinogradov [1] (see Walfisz [1;
Chapter 2] for an al ive it These hods require more
information about f than a bound (6.12.1) for a single derivative, and so
we shall give the result for partial sums of the zeta-function only. The
two methods give qualitatively similar estimates, but Vinogradov's is
slightly simpler, and is quantitatively better. Vinogradov’s result, as
given by Walfisz [1), is

n-it g gl-? 6.19.1)

a<nsbh
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for a < b < 2a, ¢ > 1, where
Pk S g < pAR=D,

k >19, and

1
P = o000

The implied constant is absolute. Richert [3] has used this to show that
Uo+it) € L +8%0-% 100 i, ©19.9
uniformly for 0 < ¢ < 2,¢ > 2. The choices
o) = (%){ $() =loglog ¢

in Theorems 3.10 and 3.11 therefore give a region

a >1—A(log 1) ¥ (loglog
free of zeros, and in which
(')
22 & (1 3 Y
® < (og &) (loglog 1)},
1

15) < (log ¥ (loglog gt

The' superiority of (6.19.1) over Lemma 6.13 lies mainly in the elimi-
nation of the term exp(33%2 log k), rather than in the improvement in
the exponent p.

Various authors have reduced the constant 100in (6.19.2), and the best
result to date appears to be one in which 1001is replaced by 18.8 (Heath-
Brown, unpublished).

620 We shall sketch the proof of Vinogradov’s bound. The starting
point is an estimate of the form (6.12.4), but with

i o2 o +m)— fm) 6.20.1)
Wwu=1 -
in place of T(n). One replaces f(uv + n)—f(n) by a polynomial

Fuvy = Ao+ ... + A, ukpk
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as in §6.12, and then uses Holder's inequality to obtain

d
¥ e 2iF )

u

| T iF(uv)

:
<ty
v

= g1 3 () (Zehii‘(uu)),

where |9(v)| = 1, n(g,,...,0,) denotes the number of solutions of
wh+ .. +ut =0, (I1<h<k),

and
G0y, 0,30) = Ay 01U+ ... + A, 0, V%

Now, by Hélder’s inequality again, one has

" g q-b (Zr»(ti‘,...,zx,,))u‘2 x (ZH(JI,“.,H,,)Z)

)

lz (28 )

x( z |Z”(v)22xi0(ﬂp.v.,ﬂ,;v)
PR I

Here
Y nry,...,6,) =4,
Opemrty
and
Y w0y, 0,)2 =g, D
CprrerOy
Moreover

2t

5 |z P

N

where
H(oy,..., 003 Ty s ) = Ay01 7, + o + A0, T,

and n*(1,,...,,) is the sum of n(v,)...n(v,,) subject to

Ut e AU, P —ogh =1, QSRR
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)

3
< q-4d(g, 2 [] (2 min (ig", |csc nA,‘rnl))A

A=1\7

Since |n*(z4,..., T, )| < J(g, )), it follows that

z

Tn

¥ eniF) Y exp 2miA, 0,7,)

%

212 k&
<aw-aaq 2 1 (

A=1

At this point one estimates the sum over 1,,, getting a non-trivial bound
whenever ¢-2* < |A, | < 1. This leads to an appropriate result for the
original sum (6.20.1), on taking ! = [ck?] with a suitable constant c. If we
use Lemma 6.9, for example, to estimate J(g, ), then

&) <1,

One therefore sees that the implied constant in (6.19.1) is indeed
independent of k.
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MEAN-VALUE THEOREMS

7.1. The problem of the order of {(s) in the critical strip is, as we have
seen, unsolved. The problem of the average order, or mean-value, is
much easier, and, in its simplest form, has been solved completely. The
form which it takes is that of determining the behaviour of

T
7 | Wiz ar

as 7' — o, for any given value of 5. We also consider mean values of
other powers of {(s).

Results of this kind have applications in the problem of the zeros, and
also in problems in the theory of numbers. They could also be used to
prove O-results if we could push them far enough; and they are closely
connected with the Q-results which are the subject of the next chapter.

We begin by recalling a general mean-value theorem for Dirichlet
serles,

TaroreM 7.1. Let
a, b,
T =% go=1>"
a1 a1
be absolutely convergent for ¢ > oy, 6 > o, respectively. Then for o > oy,
B> ay

iim o ff a-Fitlg(B—if) dt = znw (1.11)
For
Fectitg(pity = > 2= % sl

m=1 A=

the series being at ly gent in any
finite ¢-range. Hence we may integrate term-by-term, and obtain

T
1 N . & a,,b,, 2sin{T log n/m)
57 f Jlatig(B—it) de = wﬂ it Z Z menf 3P lognim

o a=1

The factor involving 7' is bounded for all 7, m, and », so that the double
series converges uniformly with respect to 7'; and each term tends to
zero a8 7' > co. Hence the sum also tends to zero, and the result follows.
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In particular, taking b, = a, and o = 8 = o, we oblain
T

Jim 217, J‘ Yeatinra= ‘%" o>a).  (112)
p a1

These th have i di li
o > 1. We deduce at once

t0 {(s) in the half-plane

Jim f Ha+inltd = {20) (o> 1), (1.1.3)
and generally
,.

Jim f e iOB—it) dt = L+ 0(at-) (> 1, B> 1), (1.1.4)
Taking a, = di(n), we obtain
Jim o fll(a+|l)|"‘ &t = Z% @>1. (@L5)

By (1.2.10), the case k = 2 is

$4(20)

Tiay > (1.1.6)

£
lim o f It(a-+intdi =
The following sections are mainly concerned with the attempt to
extend these formulae to values of o less than or equal to 1. The
attempt is successful for k < 2, only partially successful for & > 2.

7.2. We require the following lemmas.
LeMma. We have
= O{T*%]og T 7.2.1
ng<Z<Tm°n°logn/m ( ) ( )
Jor ¥ < o < 1, and uniformly for } <o < o< 1.
Let X, denote the sum of the terms for which m < {n, =, the remain-
der. In Z,, logn/m > A, so that
. _o)2 —
I, < Amgnng o < A(”ng v) < AT,
In 3; we write m = n—r, where 1 <{ r < in, and then
logn/m = —log(l—r/n) > r/n.
Hence

—
E,<A”ZT'§“ e <Azn1‘=o'<zsn;< ATologT.
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p-tmnl

Lumya. = 0(52«—i log %) (1.2.2)

menslognjm
[ fer2) ci

Dividing up as before, we obtain

%, = 0[(2",%4.,)2] — O,

o in
and By = 0( z nl-20g—dn Z ;) = 0(8”‘”0{; %)

a=t =i
THEOREM 7.2 Py

m,—f‘f\:(aw)\z & =1Uz0) (o> 1.
{

‘We have already accounted for the case o > 1, so that we now sup-
pose that § < o <{ 1. Since # > 1, Theorem 4.11, with z = ¢, gives
Us) = T w4 0(t0) = Z+0(),
<t

say. Now

T T
i[ 1Z2dt = J‘ [";‘nz"’"“nzln"”“] dt

T
== Z Z m*"rr”f (ﬁ)d dt (T} = max(m,n))
ey e d P

(fm)T —{nfm)T

=T > S mn TTognjm

min
1

=T -20_ 1-204 () _

"ZTn MZT" + (o;<;1' m”n"logn/m)

= TU(20)+ O(TH-)]-+ O(T*-)+O(T**log T),

provided that o << 1. If o = 1, we can replace the o of the last two terms

by $, say. Ineithercase
[ 1212 dt ~ T 4(20).
i

Hence

j]g(.g);z.ic = flzvdza-o(f\z!rv .z;)-;-o( [Trzv dt)

i

T T T 4
= \Z[’dH—O(J' 1z dt | t—=v.i:) - O(log T)
H i i

= [ 12 de+0{(T1og T+ Ollog T),
i

and the result follows,
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It will be useful later to have a result of this type which holds
uniformly in the strip. It is}
THEOREM 7.2 (A).
T
J’ |¢(o+it)2 dt < ATmin(log T, ﬁ)
i
uniformly for } < o < 2.
Suppose first that § < ¢ < . Then we have, as before,
T
[1zpa<T 3 w0 log )
i LIS
uniformly in 0. Now
Satg ¥ aul<AlogT
<
H A
and also < 14+ [u—”’ du < 0—*4
] —
Similarly Ti2ologT < Tlog T,
and also, putting « = (20— 1)log T,
T1-1olog T = §Tef(o— ) < }T)(o—1).
This gives the result for o < §, the term O(¢-°) being dealt with as
before.
If } < o < 2, we obtain
T
[1212ds < T 3 n-t4-0(THog T),
i n<T
and the result follows at once.
7.3. The particular case o = } of the above theorem is
r
[ 18G+i2 de = 0T log 7).
i
‘We can improve this O-result to an asymptotic equality.; But Theorem

4.11 is not sufficient for this purpose, and we have to use the approxi-
mate functional equation.

TeEOREM 7.3. As T >
P
J1lt@+inEd ~ Tlog 7.
3

1 Littlowood (4). } Hardy and Littlewood (2), (4).
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In the app 1 eq (4.12.4), take o = 4, £ > 2,

and « = t/(2nVlog?), y = vlogt. Then, since y(}+4it) = O(1),
Wi = 3 ni-itp 0( E” 7=4)+0(-Hlogtt)+ Oflog~4)*
= »Z, 44 Oflogit)
= 2+0(1og%¢),

T
say. Since J‘ (toght)2 dt = O(T'logiT) = o(Tlog T),
H
it is, as in the proof of Theorem 7.2, sufficient to prove that

r
f |Z 2 dt ~ TlogT.
4

T e
Now [1zra =] 3 mi#3 nbid
Fi i vz <z
In inverting the order of integration and summation, it must be
remembered that x is a function of . The term in (m,=n) occurs if
z > max(m,n) = Ty/(2nvlog T})
say, where T} = T)(m,n). Hence, writing X — T/(2nvlog T),

v
_‘[\zpdt 3 f m-b-itn—t+ g
T
. T—T,(n,n) 1 n\¥
=2 D 2 g Tf )
T(n.n)
:Tn;;lh-{-O(ﬂ; ‘:n)+0(zz\,(mn)logn/m)

'mn<X
The first term is

Tlog X+0(T) = Tlog T+o(Tlog ).
The second term is
O(ﬂszlogn) = O(XVlog X) = O(T),
<
and, by the first lemma, of § 7.2, the last term is
0(X log X) = O(Tlog T).

This proves the theorem.
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7.4. We shall next obtain a more precise form of the above mean-
value formuls.}

THEOREM 7.4,
7
J' [{d+i) |2 di = Tlog T'+(2y—1—log 2m) T+ O(TH+). (7.4.1)
b

‘We first prove the following lemma.

Levma. If n < T/2x,

Jair
) T — =

s J 0omr o = 2+ Ol o). 0an

Ifn>T2me>1,
iy

—'f (1—sm= ds = Of -

We have
21-851-5

x(1—3) = 21-*n~¢cog fonT(s) = FeingonT(1—9)"

This has poles at s = —2 (v = 0, 1,...) with residues
(—1)2t+vgy
@)

Also, by Stirling’s formula, for —7+43 < arg(—s) < #—38

xi=n = (2 e o L)

The calculus of residues therefore gives

-im Jin —edin
2m(

|+ J' )X(I*B)n*ds

—wTiny, 3Sm 44m

2’": (—1)2teaw gty
= T
< 2)!

= 2c082nn = 2.
Also, since 18889 o elm),

t Ingham (1) obtained the error term O(T*log T); the method given here is due to
Atkinson (1),
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£ 27 \i
1 —r s = R
x(1—syn="ds 0[:{. (h7 iT,\) e~ du]

‘ -
= ot [ (o) o) = o gz

and similarly for the integral over (—oo—iTy, }—iT}).
Again, for a fixed o,

l—s) = (21)‘ ” —"f%”{l+0(;)j ¢ 1.

—otily

+in

Hence
i T
| xtt—ends = nhe-tin [ 0 dit OnHog T}),
T T
where F(t) = tlogi—i(log 2m-+14logn),

F'(t) = logt—log 2mn.
Hence by Lemma 4.2, the last integral is of the form

1
gz

uniformly with respect to 7;. Taking, for example, 7} = 2¢T > 4men,
we obtain (7.4.2). Again

e+if r o ¥

J. x(1—8n~*ds = n‘ce—%""J. (%') e‘F“Jdt+0(n'¢J.£‘“* dl),

efi i i
and (7.4.3) follows from Lemma 4.3.

In proving (7.4.1) we may suppose that 7'/2x is half an odd integer; -

for a change of O(1) in T alters the left-hand side by O(T%), since
L{3+it) = O(¢}), and the leading terms on the right-hand side by
O(log T'). Now the left-hand side is .

T T
3 [ @+l = § [ Lginid—in dt
-7 -T

X it 1 i
- f U1 —) ds = 5. f X(1—8)C¥(s) ds
3T Sir
1 +ir din) 1 447 &)
- (1-3) sy (1—s){ 2e)— gk
s J 000 3 ey [ xoofro- 2 50)
= L+ L, say.
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By (7.4:2),
dn} d(n))
=2 e T -
4 ﬁns;:/znd(n)_‘- 0( ngZ/:nn nxlog(T/21m)) + 0(105 KZ/:M nk
The first term isf
T, T T 3
27{%10;;54.(27—1)%4. O(T.)}
="Tlog T+(2y—1—log 2n)T+O(TH).
Since} d(n) = O(n‘), the second term is

o( S )+0{T:+s S (F/z‘}rﬁ}:o(ﬂﬂ

n<Tidm THa<n<Ti2n
The last term is also clearly of this form. Hence
1, = Tlog T+ (2y—1—log 27) T+ O(T}+%).

Next, if ¢ > 1,
AT il
11=2—‘.( [+ )x(1-5>(;“(s>— > d‘"))ds+
3
1-ir e n<Titm
e+iT
o > ) f x(1—sn-rds—A,
2 ST o

A being the residue of 7x{1—s){*(s) at s = 1.
Since x{1—s) = O(t=-}), and {¥(o+iT) xmd z d(n)n4 are both of
the form
O(Tr=7%) (e < 1), 0(7") (o> 1),
the first term is O(T}HH—O(TC*}M).
By (7.4.3), the second term is

ofr+ > )

»>Tj2m
e ; 1
= ofri )t 3, )
TRm<n&Tim n>Tin
= O(T%+).

Since ¢ may be as near to 1 as we please, this proves the theorem.

A more precise form of the above argument shows that the error-
term in (7.4.1) is O(T+log?T'). But a more complicated argument,§
+ See §12.1, or Hardy and Wright, An Introduction to the Theory of Numbers, Theorem 320.

1 Ibid. Theorem 315.
§ Titchmarsh (12).
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depending on van der Corput’s method, shows that it is O(T"%1og?T);
and presumably further slight improvements could be made by the
methods of the later sections of Chapter V.

7.5. We now pass to the more difficult, but still manageable, case of
1L(s)[*. We first provet

THEOREM 7.5.

tim 1 f otinta =5 )@=,

Take x = y = \/(¢/2) and o > } in the approximate functional equa-
tion. We obtain

W= 3 Lixw S mroeh =z zp0eh,

<2 ) n<(E2m) (7.5.1)

it
- Z (WW)" (ﬂ) ’

where each variable runs over {1, /(t/2m)}. Hence

f (it d = f > (mn) .
z y
- > WJ (%)"dz,

A Tigm)

say. Now

where T; = 27 max(m?, n%, u2,%)
717, ( )
Z e ; G g :

The number of solutions of the equations mn = pv = r is {d(r)}? if
r< J(T/?n), and in any case does not exceed {d(r)}*. Hence

Z (mn)h_ r s Eor +0( &UL)
r<HT{2m) T2my<r<Ti2m

Z{d(r»* Tz‘(im (.52

+ Hardy and Littlewood (4).
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: 2m{m?4-nP-pt4v?)
Noxt Z (mn)"’ < Z T (mnpy)” ’

and the right-] hand side, by oonmderatwns of symmetry, is

m* m? d(mn) _ t 20 o
B‘"Z(mmw)ﬂé&" g = T Tt T
= O{T«(TH~{ 1)log T} = O(Th-7+¢)+ O(T*).
The remaining sum is
d{g)d(r) ) ( e 1 ) _ 22
0| & = O T" [PUN — T K
(M qzd,z, (@) log(rfa) 2 wrogei) = )
by the lemma of § 7.2. Hence

T
£(20)
ZMdt~T .
f 1Bt~ T

Now let M = ” n"‘l‘ dt.

a<N(t2n)
The caleulations go as before, but with ¢ replaced by 1--¢. The term
corresponding to (7.5.2) is

oy e

T Z g = O(T+9),
AT

and the other two terms are O(T'i++¢) and O(T%+¢)respectively. Hence

J(T) = O(T*e),

and, since y{s) = O(ti~),
T T
[1Zp 2 <4 [propya
i i
’ T
= A[p-4oj@)]T+ Ao —2) | e-soj(e) dt
i
T
= O(Tzfzaﬂ)_‘_o("'tpza te dt) = O(T2-%+e),
1

The theorem now follows as in previous cases.

7.6. The problem of the mean value of [{(}+-if)|* is a little more
difficult. If we follow out the above argument, with ¢ = }, as accurately
as possible, we obtain

'
J’ |L(h+it)[4 dt = O(T logsT), (7.6.1)
i
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but fail to obtain an asymptotic equality. It was proved by Inghamt
by means of the functional equation for {{(s)}? that
T

Tlog T

fll(Hﬂ)l‘ d = FO(T1ogT). (1.6.2)
{

Tlog‘T

The relation f L+t dt ~ (1.6.3)

is a consequence of a result obtained later in this chapter (Theorem 7.16).

7.7. We now pass to still higher powers of [(s). In the general case
our knowledge is very incomplete, and we can state a mean-value
formula in a certain restricted range of values of o only.

THEOREM 7.7. For every positive integer k > 2
T
im L kg — S ) _n
T Tf];(a+u)1 m4;W R - R (X A1)
' =

This can be proved by a straightforward ion of the of
§7.5. Starting again from (7.5.1), we have

1 gy V¥
Zype =S 1 [P )
1% z(ml g g nk)V( Ly,

where each variable runs over{l, {t/2m)}. The leading term goes in the
same way as before, d(r) being replaced by dy{r). The main O-term is

of the form
O(T‘ S _) = o(Tha-+e),
o<a<r<u‘“(qr) logr/g
The corresponding term in
T

(T = -1 gy

0 =[], Fo
is O(Tko+e),

and since [y |2 = O(t*-29), we obtain O(T*1-9+¢) again. These terms
are o(T) if ¢ > 1—1/k, and the theorem follows as before.

7.8. It is convenient to introduce at this point the following notation.
For each positive integer & and each o, let p,(a) be the lower bound of
positive numbers ¢ such that

T
» J' Loty de = O(T%).
:

1 Ingham (1).
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Each p{c) has the same general properties as the function p(v)
defined in § 5.1. By (7.1.5), ju(0) = 0 for o > 1. Further, as a function
of @, j1(c) is continuous, non-increasing, and convex downwards. We
shall deduce this from a general theorem on mean-values of analytic
funetions.

Let f(s) be an analytic function of s, real for real s, reqular for ¢ 2= a
except possibly for a pole at s = 85, and O(e¥') as [t] — oo for every positive €
and 0 > a. Let o << B, and suppose that for all T > 0

T

[ 1flatine de < C(To+1), (7.8.1)

“T

j 1B+ dt < C(T*+1), (1.8.2)
where @ 20, b 3= 0, and C, " depend on f(s). Then for « <o < B,

T>22 7
f [flo-Hit)[? de < R(CTB-oNB-0(C'ToYo—U-,  (7.8.3)
ir

where K depends on a, b, o, B only, and is bounded if these are bounded.

We may suppose in the proof that « 3> }, since otherwise we could
apply the argument to f(s+3—a). Suppose first that f(s) is regular for

o > « Let et

o~ f Pis)f()etds = d(z) (0 > a, largz] < dm).
o
o—in
Putting z = ire-® (0 < § < }r), we find that
T(o-Hit) flotitje-sorid=—d, g(ize~d)
are Mellin transforms. Let
= [ |T{oit) fo-tit)[rem-4 de.

Then, using Parseval's formula and Hélder’s inequality, we obtain

(o) = 2 [ {gize=2) 2%~ da
i

< 2n (j? |p|2z2e-2 dz)‘ﬂ_aw—w(J' |$12tB-1
° 3
= {1 ()} B-oUB— I(B)}o B,

+ Hardy, Ingham, and Pélya (1), Titchmarsh (23).

)AamﬂﬂAm
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r

Writing F(T) = [ |flatin)?dt < O(T+1)
3

we have by Stirling’s theorem (with various values of K)

<X J?(Lm_l+1)Jf(&+if)[Ee~25ldl
[
=K j? FOESE 1) — (2 1) dt
&
< KC f(¢“+1)28(t2“—1+1)g4& 2
3
< KC f([d*‘za—l_*_])seAz& @
H

—KC J. {(%)m“’l T 1}e—zu du
F

< KC@§-0-m+14 1) < KCd-a-2a41,
Similarly for I(8). Hence
Io) < K(os—aAsul)15—0)@4)(0/544%1)<a~av<ﬂ«:)
= Ks—?d+1(os—ﬂ)(ﬂfo)l(ﬁA)(O’s—b)(dvd()'(ﬁfu)‘ .

Also 18 18
Ie) > K | ftotitypo-de > kst [ | flatit)®dt.
1j28 1728

Putting § = 1/T, the result follows.
If f(s) has & pole of order k at 5, we argue similarly with (s—s,)%f(s);
this merely introduces a factor 7% on each side of the result, so that

(7.8.3) again follows.
Replacing 7 in (7.8.3) by 7, 47,..., and adding, we obtain the result:

I x T
[ iflatipede = oze), [ ifBrord = 0T,
) d

T
then [ fta-titye de = OfTmd-ova-oi-z,
o

Taking f(s) = L¥(s), the convexity of s(c) follows.
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7.9. An glternative method of dealing with these problems is due to
Carlson.t His main result is

TreorEM 7.9. Let oy be the lower bound of numbers o such that

T
7 | i = oa). @on
{
-
Then o < max(l-T:a), % m)

for0 <a <l
We first prove the following lemma.

LremMa, Let f(s) = E a,n~* be absolutely convergent for o > 1. Then
n=1

- | o
a,
> e J' T{w—9)f ()3 daw
sl c—im
for$>0,c>1,¢>a0.
For the right-hand side is
1 et i » o 1 ¢+ im
G gq, a, -
o J‘ To—s) > Seyrwdo= Y % L f T(wo—s)(3n)y— dw
(™ n=1 =1 i
. c=otim
— &y . o’
= Z o T (w’)(3n) dw'
n=1 e—aim
- i Ty tn,
-
=

The inversion is justified by the convergence of
i ; SY AP
f IDfe—o-+ito—oj > alsee g,
A A=t

Taking a,, = d(n), f(s) = [¥s), ¢ = 2, we obtain
- 24im
> hdtlem L f Dlw—a){H)pr dw (o < 2).
25 2ai
=1 2-im
Moving the contour to R(w) = «, where 0—1 < a << o, we pass the pole
of P(w—s) at w = s, with residue [¥(s), and the pole of L¥(w) at w = 1,
where the residue is a finite sum of terms of the form
K, D1 —s)logns . 501
+ Carlson (2), (3).
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This residue is therefore of the form O(89-1+¢¢~4M), and, if § > lt|~4, it

is of the form O(e-4"). Hence
o

at
dem) ,5n _ 1 T(w—5)Lk(20)5*% drw—Oe=4M).
L¥(s) = Hledn (w—s5)L¥(0) W
2 2mi A
Let us call the first two terms on the right Z, and Z,. Then, as in
previous proofs, if o > §,

T (m +7)
aa=ofr § efrof ST HRA5)
¥

(m+n)
=0a) *’0(2 > 1W4‘\+logm/n\)

= O(T)+0(p-2-)
by (7.2.2). Also, pubting w = a4,

®

12, < f I Djw—s)tH(w)| de

3
< 5;’;‘ J |I‘(w—s)]dv7 f |I‘(w—s){2k(w)|du]"
The first integral is O(1), while for [¢| < 7'
S e S
o)L, - —Alo=tl || 4F gy = Ofe-4T),
(_L +2£)mw L) dv Um +,£)e Ioj4+ do
Hence

T T T
[ 12 = ofpre [ (guiieas | (Do) de +0(8e-)
iT —27 T

27
- o{aﬁwa [ lgtatio dv}+0(5“-h)
~2e7
= OBt e te),
Hence T
J’ |£(s) |2 dt = O(T)+O827-2-¢)4- O(§2- ST Hme),

Letd = ;-i“‘rm(“))lﬂﬂ), 80 that the last two terms are of the same order,
spart from ¢’s. These terms are then O(T) if

> 1%
‘ Tl
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For such values of o, replacing 7' by 37, }T,..., and adding, it follows
that (7.9.1) holds. Hence oy, is less than any such o, and the theorem
follows.

A similar argument shows that, if we define o}, to be the lower bound
of numbers o such that

T
}f |Uo+-it)[%* dt = O(Te), (792)
i

then actually o} = a;. For clearly o} < o;; and the above argument
shows that, if « > o}, and ¢ < o, then

T
f |Uo+i) % dt = O(T)+ O(52-2-¢) § O(520-Sx13¢),
T

Taking 8 = 7% where 0 < A < 1/(2—20), the right-hand side is O(7").
Hence o), < «, and s0 o}, < o}
It is also easily seen that

T
1 . S din
7 | Herinpan > A0 (o,
{ a1
For the term O(T) of the above argument is actually
o FER)  gpa _ dk(n)
gT;We _372 +o(T),
and the result follows by obvious modifications of the argument. This
is a case of a general theorem on Dirichlet series.t
TrEOREM 7.9 (A). If (o) is the p-function defined in § 5.1,
1—op > > 1=k
7 T 2oy )

for k=1,2,...
Since {(a+it) = Oror+e),

T T
[ 1Bt ar = o{wmmj [Uo-tit) - dt},
1 1

and hence o) < 20+ ppa(0)-

8Since py_y{a,_1) = 0, this gives pyfo,_,) < 2p(oy_,), and the result
follows on taking « = a;,_, in the previous theorem.

1 See E. C. Titchmarsh, Theory of Functions, § 9.51.
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These formulae may be used to give alternative proofs of Theorems
7.2, 7.5, and 7.7. It follows from the functional equation that

p(1—0) = pyfe) -+ 2h(e—1).

Since pifay) = 0, pg{l—ay) > 0, it follows that o, > 3. Hence, putting
« = 1—o, in Theorem 7.9, we obtain either o, = } or

<l—— Tk
S a1
ie. 20, —1 < 2oy — 11 —ay)-
Hence o;, = §, or

L<Hl—0), o< 1#%. 193

For k = 2 we obtain o, = }, but for £ > 2 we must take the weaker
alternative (7.9.2).

7.10. The following refinementi on the above results uses the
theorems of Chapter V on u(o).

THEOREM 7.10. Let k be an integer greater than 1, and let v be determined

by (r—1D2241 < k<< p2-141. (7.10.1)
v+1

— — . 7.10.2

Then o<1 DT ) . ( )

The theorem is true for £ = 2 (v = 1). We then suppose it true for
all I with 1 << < %, and deduce it for k.
Take ! = (v—1)2-241, where » is determined by (7.10.1). Then
la) = 0, provided that
v 1
>l = e

Taking « = 1—2-v+14-¢, we have, since
r T
7 [ ko] de < max takit -t | terira,
T 1T T {
3

(%) < 206 —Dp{a) + o)
= 20—l
2k—(v—1)22—1}
2T
1 Davenport (1), Haselgrove (1}

<
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by Theorem 5.8. Hence, by Theorem 7.9,
2% 22\ -1 vl
B e (it st [Ny P Ju st
S ((v+1)2v—1) e
The theorem therefore follows by induction.
For example, if & = 3, then v = 2, and we obtain
o< §
instead of the result o, <C § given by Theorem 7.7.
7.11. For integral k, d;(n) denotes the number of decompositions of n
into k factors. If £ is not an integer, we can define d,(n) as the coefficient

of »~* in the Dirichlet series for {*(s), which converges for ¢ > 1.
‘We can now extend Theorem 7.7 to certain non-integral values of k.

TrroREMT 7.11. For 0 <k < 2

T
1 . & g
;gilfll(a—)—ﬂ)l"‘dt:;%@ (0> 1. (1.1L1)

This is the formula already proved for k = 1, ¥ = 2; we now take
0<k<2 Let

1
Wo =TT w0 = do)tue).
PN
The proof depends on showing (i) that the formula corresponding to
(7.11.1) with {y instead of { is true; and (i} that {y(s), though it does
not converge to (s} for o < 1, still approximates to it in a certain

average sense in this strip.
We have, if A > 0,

8- < difn)
A — A — A
o =T —pm = > <,
say, where the series on the right converges absolutely for o > 0, and
di(n) = dy(n) if n < N, and 0 < dj(n) < dy(n) for all n. Hence
T
o1 . AN
;27f [Enlotit)P dt = Zl{;(—:” (@>0), (1.11.2)
1 w=
and
N—+wo T—~0

T
N 1 . <
lim Tim 1 f Ento+it dt =;{";—‘:}L’ >3 (1L3

 Ingham (4); proof by Davenport (1).
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‘We shall next prove that
T

lim liml,f Vo tity~Iylo+i)#dt =0 (o> }). (7119
Neseo Tseo T’ J
By Hbolder’s inequality
1 f L F w F ¥
7 f 1Lyl dt < [Tf fgn—11 dt} {Tfigy‘dk/u—k) dt]
1 i F

Now {ny{s)—1}* is regular everywhere except for a pole at s = 1, and
is of finite order in . Also, for ¢ > %,

(2 k)

(7.11.5)

4 7
J‘ [nploti)—11*dt < f{1+2‘v|§(¢+“)f}‘ dt = O(T)-
i i
Hence, by a theorem of Carlson,}
T
L1 . _ Al
;ﬂjf ax(a-+it)—1{t dt —Z il
i

for o > }, where py is the coefficient of »~7 in the Dirichlet series of
{nn{s)—1}2. Now py(n) = 0 forn < N,and 0 < py(») < d(n) for all n.
Since I d¥(n)n-2° converges, it follows that

1

i Yim o

T
j Inaloit)y— 1]t dt = 0; (7.11.6)
1

(7.11.4) now follows from (7.11.5), (7.11.6), and (7.11.3).
We can now deduce (7.11.1) from (7.11.3) and (7.11.4). We have}

{f];\?kdt}R:{ \;ﬁl—zmwt}"
!
<[ i

where R = 1if 0 < 2k < 1,

| y(’kdt}"+{f'[:»z.\-\2w}
!

7
l
T
l
R = 12k if 2k > 1. Similarly
7 & T R (T r
([ v af < { [ramea +{ [ re—gem e’

1 1 1

and (7.11.1) clearly follows.

+ Bee Titchmarsh, Theory of Functions, § 9.51.
 Hardy, Littlewood, and Pélya, Inequalities, Theorem 28.
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7.12. An alternative set of mean-value theorems.f Instead of
considering integrals of the form

T
KT) = | |Yo-tit)|* &t
o
where T is large, we shall now consider integrals of the form

J®) = [ [Zlo+it)Feddt
;

where § is small.
The behaviour of these two integrals is very similar. If J(8) = O(1/8),
then .
IT)<e J |L{o+it) [PeT dt < eJ(1/T) = O(T).
a

Conversely, if (7'} = O(T), then

J) = j Ig)e¥dt = [I(t)e-¥]5 +8 f](t)e’s’ dt
o )
- o(sfzg—&da) — 04/5).
H

Similar results plainly hold with other powers of T, and with other
functions, such as powers of 7' multiplied by powers of log T'.

‘We have also more precise results; for example, if I(T'} ~ CT, then
J(8) ~ Cf8, and conversely. .

If I(T) ~ OT, let | I(T)~CT| < T for T = T,. Then

S w @
JG) =8 f I(te-tdt+8 j {I(t)— CRe-¥ di4 C8 j te¥ dt.
o % [
The last term is Ce-3%(T,+1/5), and the modulus of the previous term
does not exceed e(Ty+1/5). That J(5) ~ C/3 plainly follows on choosing
first 7; and then 8,
The converse deduction is the analogue for integrals of the well-known

Tauberian theorem of Hardy and Littlewood, viz. that if e, > 0, and
3 na L
nznllnx == (x->1
X
then Sa,~N.
«Zo

+ Titchmarsh (1), (19).
1 Soe Titchmarsh, Theory of Functions, §§ 7.51-7.53.
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The theorem for integrals is as follows:
If f(t) = O for all t, and

J‘f(l)e’“ di~g (1121
F

T
as 8-> 0, then J'f(t) d~T (7.12.2)
I

as T - 0.
We first show that if P(z) is any polynomml

J F)e¥P(eYydt ~ f P(z) do.

Tt is sufficient to prove this for P(z) = x" In this case the left-hand

side is 1
1 1
A8 Jf P 3
J'f(t)e W s afx da
H H
Next, we deduce that
© 1
J' f(te-Sg(e=) dt ~ % f g(z) dz (7.12.3)
8

H
if g(z) is i or has a di of the first kind. For, given
¢, we cant construct polynomials p(z), P(x), such that
i) < 9(=) < P(z)
and f (o) —p@)} dx < J {Plo) gl dr < e
o
Then
nms j Fedge¥) dt < th f [E)e-SP(e-¥) dt

1

= [P@)de < J glz) da-te,

and making ¢ - 0 we obtain
™ 1
ims J’ Fedgle-¥) dt < f g(z) dz.
0 ° ]
Similarly, arguing with p(z), we obtain
® 1
lim3 [ f(Re-Sg(e) di > [ glx) d,
[

&0
and (7.12.3) follows.
+ See Titchmarsh, Theory of Functiona, § 7.53.

712 MEAN-VALUE THEOREMS 159
Now let
gr)=0 <<z <e), =1z (lge<]).
@ 18
Then f Sit)e-dg(e-®) di = f fwd
and f glx) de = J.dz
e

13
Hence f fod~}

?

which is equivalent to (7.12.2).
If f(t) = O for all t, and, for a given positive m,

ff (e ¥ dt ~ %log"‘%. (1.12.4)
F

r
then f f(t)dt ~ Tlog»T. (7.12.5)
0

The proof is substantially the same. We have

He-d¥gp o, L qoomf L ) 1 ml
of o N e s

and the argument runs as before, with % replaced by %log"‘%.

‘We shall also use the following theorem:

1 j Feddt ~ O3 (x> 0), (7.12.6)
1
e -
then fz Bi(t)e-™ di ~ c%sﬂw O<B<oa). (1127)

i

Multiplying (7.12.6) by (5—7)—t and integrating over (»,c0), we
obtain

[10d [ e¥o—npsas = 0 [ pro@-s)—npos o
{104 ]



160 MEAN-VALUE THEOREMS Chap. VII

Now w

[ oS-t ds = rntfevﬂxﬂfl dx = e=#-PT(B),
7 )
P o mprgs — [P gy pp-a DT
J'a- G-t = [ Tode = ™
2 [

and the remaining term is plainly o (3#-%) as n - 0. Hence the result.

7.13. We can approximate to integrals of the form J(8) by means of
Parseval’s formula. If R(z) > 0, we have

1 2410 = d () 24w "
J = k7 T ~tds = 3 dy(n)e™™,
S f (s ds = > B f (s)nz) 2
2—iw n=1 i

the inversion being justified by absolute convergence. Now move the
contour t0 ¢ = o (0 < a < 1). Let Ry{z) be the residue at & = 1, s0

that Ry(2) is of the form

Lo o logz+ . +af), loge-12).
%

Lot $ute) = 3 dulmee— B
a+im
Then L J' D(s)ka)* ds = duf2)- (1.13.0)
2mi A
Putting z = ize-, where 0 << 8 << }m, we see that
dulize ), Dis)lHs)e-idm—dr (7.13.2)

are Mellin transforms. Hence the Parseval formula gives

L J' Tia-Fit)(H{o-+it) [2ein-2¢ dt — f | Sylize=i®) 2oL d.
R 0 (7.13.3)
Now as || >

|T(o-t-it)] = e-¥jeje-dj2m){1-+ O
Hence the part of the t-integral over (—ao, 0) is bounded as 5->0, and
we obtain, for } <o <1,

f"""(1+0(t“)}ll(v+it) [Bee-2b dt = f | ylize ) Bt dz+ O(1).
° ° (7.13.4)
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In the case o = }, we have
IT(3+it)|? = meechmt = Zme—ml 4 Ofe—371),

The integral over (—c0,0), and the contribution of the O-term to the
whole integral, are now bounded, and in fact are analytic functions of 8,
regular for sufficiently small |8|. Hence we have

| J:(Hia)[zke—wdz:f |balize- D) dz+0(1).  (7.13.5)
5

o

7.14. We now apply the above formulae to prove
THEOREM 7.14. As 5~ 0

[ e~ Liogs. (1.141)
;

In this case B(z) = 1/z, and

e 11 1
#i) ,Z.e z 2
Hence (7.13.5) gives
1 1 ®
exp(izeB)—1  ixe-# dz+0(1).
(7.14.2)

The z-integrand is bounded uniformly in 8 over (0,), so that this part
of the integral is O(1). The remainder is

[ 1ainpesa =
:

f { L } 1 L
explize®)—1  dze- {ezq:l(—ixe*s)—l-’_ﬁs

o @
:f ——s5 dz s +ie® _‘I.B[lj—
{exp(ize~®)— 1 {exp(—ixe®)—1} exp(—ize®)—1 x
P4 w
s 1 dx | [dz
—ge-15 puid @
ie fexp(ize‘“)—l = + f o (7.14.3)
w -

The last term is a constant. In the second term, turn the line of integra-
tion round to {m, w+ico). The integrand is then regular on the contour
for sufficiently small |3], and is Ofz—lexp(-—=zcos3)} as x> co. This
integral is therefore bounded; and similarly so is the third term.
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The first term is

f f 3 oxp(—imae-B4inzed) dz

EE =t

<+ exp{— (m-+n)msin S—i(m—n)mw cos 8}

= Z (m—+n)sin 84 4(m—n)cosd

aelasl

& " (m4-n)sin § cos{{m—n) cos 8} P
Z Z (m-+n)Esin?S+ (m—mn)? cos®d

o = " (m—m)eos 8 sin(m —n)m cos 3} g-omimmsind
- z & (mtn)? sin8 4~ (m—n)? 005
= Z+Z 13,

the series of i inary parts ishing identi “_y Now

1 1
2= 5o BT~ 5 l"ga
2msind _mmwsind _ 3 _mrstnd) — of!
a0 35 s ofs 3 ) = of})
and, since lsm((m n)meosd)| = [sin{2(m—n)rsin® 48} = Of(m—n)8%},

z,= o ,:gx ':z: emrsind) — Ofs S me-mmsin a)' —oq).

This proves the theorem. .
The case } < o < 1 can be dealt with in a similar way. The leading

term is

in 3. ~1 A
J‘zc 2nesin St gy feum
=

T

P w
1 f a1 1 v,

_ Kinlinlr PUUSEE SN I i
Tesney ) o=l ”N(‘zsw -1
2msin

20).
(_5)14, T(20)4(20)
Also {turning the line of integration through — i)

j? e-{on+nln Bitm—njoos Blzg20-1 Jo

P
®
_ 0{ e—tminyrsing J‘ e-im—miy 008 821 | y20-1) dy]

°
o (e.mm., .ma), (7.14.4)
m—n

114 MEAN-VALUE THEOREMS 163

and the terms with m 5 n give

oS Ets) - fpess)

=1
Hence J. 201 Lo 42) 2028 dt ~ %2_”), (7.14.5)
0
Hence by (7.12.6), (7.12.7)
f 1Z(oit) 23 dt ~ @ (1.14.6)
H

7.15. We shall now show that we can approximate to the integral
(7.14.1) by an asymptotic series in positive powers of 3.
We first requiret

THEOREM 7.15. As z > 0 in any angle |argz| < A, where A < 3,
$ e = 1= ’°Ez+ 1y Z Lo, 20 O(l2),  (T.18.1)
=1

where the b, are constants.
Nears =1
1 21
Tle)Heyes = (1—7(8—1)+~~~}(~I+y+‘.‘) 2—fo=Tlogz+t-.}

_ 1 yﬁlogz 1
- z(a—l)3+

Henes by (7.13.1), with & = 2,

adio

=gt

nzld(n)e-"‘ - Lz"gz.;.gim, f D) s)eds (0 <a < 1).
aim
Here we can move the line of integration to o = —2N, since
T'(s) = O(t|Ee-imH), [2(3) = O(|¢|E) and 2-* = O(r-%¢¥). The residue
at $ =0 is {3(0) = }. The poles of I'(s) at s = —2n are cancelled by
zeros of {2(s). The poles of I'(s) at s = —2r—1 give residues
n Ban

(2n+1)' G S = e

‘The remaining integral is O(}z/V), and the result follows.

The constant implied in the O, of course, depends on N, and the
series taken to infinity is divergent, since the function ¥ d{n)e~n*
cannot be continued analytically across the imaginary axis.

t Wigert (1).
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‘We can now prove}
THEOREM 7.15 (A). As 8 — 0, for every positive N,
f i) (22 gy — Y—log4md | & 8 SVHL
I R R )
]
the constant of the O depending on N, and the c, being constants.
We observe that the term O(1) in (7.14.2) is
© o
3 j 1L(h+it) P+ sech mt di—} j 1L(3+it) |22 sech mt d,
[ o

and is thus an analytic function of 8, regular for |3| < . Also

-

[[EESEEVA -
explizeB)—1 ize—B) lexp(—ize®)—1 ' ixe

I

is analytic for sufficiently small |§|. We dissect the remainder of the
integral on the right of (7.14.2) as in (7.14.3). As before
1 d T 1 &z

J‘exp(—ixe"s)*l N f exp(—ize®)—1 2~

x a
and the integrand is regular on the new line of integration for sufficiently
small [8], and, if § = £+i, z = ntiy, it is Ofy~Lexp(—ycosfe~n)} as
y—>co. The integral is therefore regular for sufficiently small |8].
Similarly for the third term on the right of (7.14.3); and the fourth
term is & constant.

By the calculus of residues, the first term is equal to

R 1
B D o e T 1T
+ f 2y .
J [exp{m—y)e-®—1][exp{(—in+y)e®}—1]
As before, the y-integral is an analytic function of 8, regular for |3|

small enough. Expressing the series as a power series in exp(2imet®),
we therefore obtain

f [(§+it)[2e-2 dt = 2meid i d(n)exp(2inme?®) 4 ioans" (7.15.2)
=y =

a
for |3| small enough and R(3) > 0.
+ Kober (4), Atkinson {1).
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Let 2 = 2in(1—¢2%) in (7.15.1). Multiplying by 27e, we obtain

2m6% 3 dinjexp(2inmerdy — Y=logWnelaind) 1
n=1 2sing 4

N
+ z:bn(g,',,(l _ez(S))zn+l+ o),
and the result now easily follows,

7.16. The next case is that of [EE+in|s.
In (7.14.2) the contribution of the #-integral for small = was negligible.
We now take (7.13.5) with % = 2, and

Fal2) = ’21 d(n)e*"‘y*l&. (7.16.1)

In th.is case the contribution of small  is not negligible, but is sub-
stantially the same as that of the other part. We have
atio
1 1
,s,(;) - f T ds (0 <o < 1)
a—im
1-atio
=5 T(1—8)02(1—s)2t-=ds
1-a=im
1-atio
=7
T 2m j.
1 i

i

(138} 401 e
56 {3(s)z* ds.
Now
T(1—8)/x*(s) = 22~n~2 cos? Jsx[*(s)[(1—s)
= 2Bl eop JonT(s)
- 2,4,,,1_2.{_;+0( et

W)} D(s) (¢ > Lo0).
Hr=ive®(r>2,0<8< 4n), the O term i

1-o+in
e-dot

+
O{x‘ f o] T g1 dx} — 0,
—a—iz
uniformly for small 3. Hence
1—a+tio
1 —iz
¢,(~) _= f 21-tar1-2D(5){25)e ds-+ O
1-a~0
= — Zmizdy(4n%)+ O, (7.18.2)
where « may be as near zerc as we please.
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We also use the results

3 e — o(% Log® 11]) (1.16.3)
® 1 1
$ warae-mn = o(;3 log® 7_l) (7.16.4)
nsy—)O By (1.2.10)
{ (8) 1 2440
lm f V0 F o s = 5 > le(n) L L(s)(nn) ds
= § dmem. (1165)
Hence vin
$ e =Rtz [ 1O FB s (h<e<
e—bo
= B+0(n™),

where R is the residue at 8 = 1; and
r=! (alog=l+blogzl+clogi+d),
K K K ki

where a, b, ¢, d ate constants, and in fact

11
3@ #
This proves (7.16.3); and (7.16.4) can be proved similarly by first
differentiating (7.16.5) twice with respect to 7.

‘We can now provet

THEOREM 7.16. Ag8->0

a=

[ ki g gt
Using (7.13.5), we ;Jnve
f 1§(3+in) e dt = f’l«#z(ize*‘s)l’ dz+0(1),
and i6 is suﬁ;cient to prove that '
f aize)[2dz ~ o Slogty
in

t Titehmarsh (1}.
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For then, by (7.16.2),
L o) [t dr 1

0f Igutize ﬁ)msz w2 %= f #2(0)

i

= [ |2mae-By(4ntize-B)+ O(x*) \";z O<a<i)

1/2m

2 dw
a®

i

= [ [$afize-®)+ 0@ dx
o

I

j Iy(ime=i)|2 dx+0(j alize )2 dz f e aaff+
+o(i£ e uu)

&1“8105 +0( log? )+0(1),

and the result clearly follows.
It is then sufficient to prove that

]

for the remainder of (7.16.1) will then contribute O(5-%1log®1/5).
As in the previous proof, the left-hand side is equal to

E d(n)exp(—inze~t)

A=l

.
‘“Nﬁﬂsl"g by

g—dnmsin a

2 (n) 2n smS

3 (m-A-m)sin 8 cos{2m—n)m 08} _yn e
Zz Z d(m)d(n) R )i+ (m—n) oo ° som4nirsin5_
S (m—n)cos dsin{2m —n)m 08B} oy
Z dim)d(n) (Mt n)tin®+ (m-—n)f cos®d s ng

= BT, T,
Now &)
—4moind —trnsind
)
Iog‘n 17
~2 —4rnsin§ g sin 8 J ok,
n-g;e 2"fe mesin 8 loghy da

b

1
_ g y
Fn7sing of evlogt (41'rsin5) s,ﬁs aslor's 5
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22 S dtmps 2D s

=2n=1

_ 4sind z m d{m) g-2emsind Z d(m-r)

cos?

1) <

-
_ 4sin3
= cos?d

= m d(m)d(m—r)e-tmmeind

The square of the inner sum does not exceed

i mid2(m)e-2mmsind i A3 {m—r)e-trmoind
mF mFr1

2 e
< midi{m)e-trmein s d{(m)e-2rmaind
< 3 mam) 3 )

13 1 1 1 1
o( log® ) (glogsg) - O(§log“ g)
by (7.16.3) and (7.16.4), Hence
1 1
= O(Slogag).
Finally (as in the previous proof)
Ty= 0(51 3 ,,,me_:muns) = 0.
i

This proves the theorem,
It has been proved by Atkinson (2) that

f Eh+itpte de

=3(Alog41+Blog +Clog? +D10g +E)+0‘( )H*}

‘where

A~~—,

B = «;(210g2 6y+24l,(2))

A method is also indicated by which the index }§ could be reduced to §.

7.17. The method of residues used in § 7.15 for |{(}-4t)|? suggests
still another method of dealing with [{(}+4t){* This is primarily s

question of approximating to

f |“°§::ld(n)exp(—~iux¢“5) |’dz = f’zmﬁ *
b &
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In the terms with n 2> m, put z = £{/m. We get

Z Z f {explife- “)*1}{9XP(—MM“£6‘5)—1}

nmmy,

Approximating to t.he integral by a sum obtained from the residues of
the first factor, as in § 7.15, we obtain as an approximation to this

oo s
D P e e

Z exp(Zi 7’%’ nem)

m= rom g=1

i exp(2igrme?®)
1—exp{2i(grim}mess}

g &
3 2. ¢~2arm8in 28
= (,Z, Z \léewp{m(qr/m)rem}l)

d(y)e-tmsind
[T—exp(2hm—Ime?) [)
The terms with m |v are

( Z z d(y)rzj;n za) 0(% Zm ‘VZ @e-w sms)
= 0(S id—:(i)r””"‘“ 2‘) = O(%Iog‘ %)

The remaining terms are i
S 1 2" d(km - Dehmidrein
(22

- (i S s Z dacm+z))

m=1k=1 z=1

I
S
—

9!

TM:«

e‘zkymrlln ) Z d(km+l))

I
S

Ns

d(v)e-2msinzd Z d(,,Jrl))

=1

d(y)d(, o gs)

D/ia

»

& & dz
= Z Z J.(exp(imz-ﬁ)——IXexp(—iMe“)—l)'

Mm=1A=1 gy

eJ"l n Z d()d(y-+e-tev-dmain ga)

w=t

I
Q
R =

Il
[S)

NMs
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Using Schwarz’s inequality and (7.16.3) we obtain

e—lﬂﬂnlsl
O(Z Slog ~) O(alog)

i=1
Actually it follows from a theorem of Ingham (1) that this term is

1 1
log®=
0(8 log' 8).

7.18. There are formulae similar to those of § 7.16 for larger values
of k, though in the higher cases they fail to give the desired mean-value
formula.t

‘We have atin
95,,(1) = zim f T(8){*(s)2* ds

P

&-—~ic
1-~atin
- L f D(L—8)gH(1—s)21 ds
1-a—te
1-a+in
_ .z Ii—s)
T 2m X*(8)
1-a—io
T(1—8)x~*(s) = 2k-ksq~¥* cogh}sn*(s)I(1—s)
= 2k-kop1-1% cogkLerr cosec ms[%-1(s).
For large ¢ T%-1(g) ~o gh-Die-Pe—tk-Do( 257 bik—1),
Now  F{(k—1)s—k+t 1} ~ {(k-1)sjit-Do—Forbe—tb-Ds(2m)3,
Hence we may expect to be able to replace I'*~1(s) by
(k—1)~G-De+ 132 R-DD{(k—1)s— $k+1).
Also, in the upper half-plane,
2¢

costiam cosec s ~ (Jeilompk — = — __ gl-kjg—ismt}k-D,
=l

L*(s)~* da.

Now

‘We should thus replace I'(1—s)y~*(s) by
— 21_k.,,l-he»ﬁn(§k-ll(k_ X}-("4)'%"‘}(21;){(’54)['((]:— 1s—4k+1}.
Hence an approximation to ¢,(1/z) should be
N omie < z
./,,‘(;) = —izm)i* Y’ difm5—x
1-atio n=1
X | D{(k—1)0— 3o 1)k 1)b-torbi-dgismbi-D Qo) d.
1-a—io

+ See also Bellman (3).

718 MEAN-VALUE THEOREMS 17
Putting 8 = (- 3k—1)/(k—1), the integral is

QL f D) (k—1)=o—be—tmth D+ 3D~ 2y )+ b6 gy
= —i(2n)¥z{k—1 )bt k1) 2k ez~ ~Dik =1 5
X eXP{— (o — 1)eintHk-Dik— Dkt~ hith -2 )11},

Putting z = ize~#, we obtain

(2 k2B — 1) ~haphia0e—Dhpy —hle—1ik-1) ¢

X Cpexp{—(k— 1)e’Itngkl(k—17,7k1(k~1)(M)ll(k~l)e—‘5/(k~l))’

where |G| = 1.

We have, by (7.13.5),

—i(2mke

f 14 +at) e dt = T |lize=B)[? dz+0(1)
o o

A @
= [ Igulize-)i2 dx+ [ geline)|2 dz+-0Q1).
[] A

As in the above cases, the integral over (), o) is
g-2nain a

z &) Gy 2n smS

{m-4-n)sind cos{A(m—n)cosd} . vains
+21;“2: Gym)ay () {m+n)2sin?+ (m—n)? cos® eimimtind—
: (m—m)cos 8 sin{A(?n—n)cos 088} _imima
—22 Z Dulm)dy{n) (m+n)'sm’3+(m—n)'cos‘5 emmuind

=545, +5, (1.181)

m=2n=1
Using the relation d,(n) = O(n*), we obtain

1 1
%= of )
and, since (m-+n)2sin?5-+ (m—n)?cos®d > AS(m+n)(m—n),

%= 0( Z meeinind Z m—n) (mz i i) = 0((1\5)1“)

ma2

5= o( z meg-tmsins erl_n) - 0((,\%):“)-

w2
Hence, for A < 4,

f I (izeR)2 diz — 0(()‘3),")
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A o
ize~1)|2 dar = 1 \i2dz
Ako [ 18z az — [ m(m) &
1 1A
and by the above formula this should be approximately
(2m)E-D
-1 <

w
< dyfn) . :  dy
X [ LZ;"——(H_IWH)exp{—(k~1)1(2,,)1‘/(1;_1)(m)mk-ne»ﬁ/(k_n} P
1/ -

Putting & = g1, this is

(2mpHte—D ¢
J‘ z e ~l)ltk—1) exp{—(k— 1 )i(2.”)Id(k—l)nllrk—l}fe—ﬁl(k_n} ‘z i@,
A-sikmn B

and we can integrate as before. We obtain

di{m)dy(n)
K Z Z (m;:)(’k ;‘)/\k 5 X
expf (k— 1)(2m)He—D{ (k-1 _ mle-D); 003 §/(k—1)—

— (D4 1 Dsin §](k— L)P-1e-1]
X oD DY; 608 8/ (%— 1) —(mV®-D{ 1 Djsin §/(k—1)’

where K depends on % only.
The terms with m = n are

O{EZJk(n)exp( KSnmkvn,\-m‘,,)} {S(T;)E}
a=1

The rest are

o z 1 exp(— K8mME-1x-115-1)
m; (mon)EE-Dk-1) MUE—1)__ p1k~1) } .
N

1
TR 3
£y T g D)

Now

m-1

A=)

im
= 0[ tz ! + E !
TE =iyt -
Znd I~ 1) & DD FE-D (7 — )

= O(mA-Fr-DIG=D-1/k-te) == Qm!kh-1k-Die)
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Hence we obtain

0{ i me exp(— Kgmm—n,\-mkm)l — O{fx‘exp(— K3 1k-D)-1%-D) dx}
nZa I
PR
= ol

s~ ofgh ol )

H
and taking A = 8%%-1, we obtain

Altogether

f!l(§+it);=ke—m dt = O(3-¥%-) (k= 2).
8

This index is what we should obtain from the approximate functional
equation.

7.19. The attempt to obtain a non-trivial upper bound for
| Qi e a
[

for k > 2 fails. But we can obtain a lower boundf for it which may be
somewhere near the truth; for in this problem we can ignore $ylize=10)
for small #, since by (7.13.5)

j 1L} ity |22 dt > f]¢k(ixe-‘5)]”dz+0(l), (7.19.1)
4 H

and we can approximate to the right-hand side by the method already
used.
If & is any positive integer, and ¢ > 1,

— < 4
l"(s):U(l_-_) HZ (fkr_ml)ml.?'pl 71‘:1_’:%‘

If we replace the coefficient of each term p~™* by its square, the
coefficient of each n~ is Teplaced by its square. Hence if

2, 2,
o= @

then Fls) = U i {ET,"I‘),'}B L ka(?*):

+ Titchmarsh (4).
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1 kB
say. Thus A=) =14+ 4.
Y fA(P,) +])‘+ s
and

(1"5;)”&(;,) = (l~§+-«)(l+g+u. 1+0(1712;).

Hence the product
i (1 _l)k’fk(i)
» o "

is absolutely convergent for o >}, and so represents an analytic
function, g(s) say, regular for ¢ > }, and bounded in any half-plane

o> it and Bio) = 2eigto).
2+iw
Now 3 dimjesmns — 271" f T(s)Fy(s)(2sin8)-* ds.
2%t

Moving the line of integration just to the left of ¢ = 1, and evaluating
the residue at s = 1, we obtain in the usual way

3 dtmermans  Gerggues,
Similarly
2. 2(n) 1 2+ fo
ke —2n Si 5
,Zl el ins __ = f T(s)Fifs+1)(2sin8)-* ds ~ C logk'%,

220w

since here there is a pole of order %k2+1 at & = 0.
‘We can now prove

THEOREM 7.19. For any fized infeger k, and 0 < § < 8y = By(k),
f I iy pee- e > Fioge L
o

The integral on the right of (7.19.1) is equal to (7.18.1) with A = 1;

and
- G "l
I~ —gglog‘ ¥
while BT, = G 1ogk=_:§1)_

The result therefore follows.
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NOTES FOR CHAPTER 7

7.20. When applied (with care) to a general Dirichlet polynomial, the
proof of the first lemma of §7.2 leads to
T

J

However Montgomery and Vaughan [1] have given a superior result,

namely .
N
—it]
Len
1
°

Ramachandra [2] has given an alternative proof of this result. Both
proofs are more complicated than the argument leading to (7.2.1).
However (7.20.1) has the advantage of dealing with the mean value of
{(s) uniformly for ¢ > }. Suppose for example that ¢ = }. One takes
x = 27 in Theorem 4.11, whence

(G+in= ¥ nt-#1O(T-H=Z+0(TH,
S

N 2 N
Zann‘“| dt =Y o 2{T+O0(nlog2n)}.
1 T

i = f la,12{T+O(m)}. (7.20.0)
T

say, for T < ¢ < 2T. Then
27
JlZlhit: S n-YT+0m} = Tlog T+O(T).
S
T

Moreover Z < T4, whence

7

|ZIT - tde< T.

Then, since
27

f O(T-Hz2dt = 0(),
T
we conclude that
a7
I K@ +inizde = Tlog T+ O(T),
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and Theorem 7.3 follows (with error term O(T)) on summing over

37,3 T.... . In particular we see that Theorem 4.11 is sufficient for this

purpose, contrary to Titchmarsh’s remark at the beginning of §7.3.
We now write

.
Iu(gunm - Tlog(zzn)+(2y~l) T+ET).
d

Much further work has been done concerning the error term E(T). It
has been shown by Balasubramanian [1] that E(T) < T4+ A different
proof was given by Heath-Brown [4]. The estimate may be improved
slightly by using exponential sums, and Ivic [3; Corollary 15.4] has
sketched the argument leading to the exponent {1, using a lemma

due to Kolesnik [4]. It is no coincidence that this is twice the exponent
foll
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note that the error term of (7.20.4) must be Q{ T ¥(log T')~1}, since any
estimate O{F(T)} readily yields E(T) < {F(T)log T }}, by an argu-
ment analogous to that used in the proof of Lemma  in 14.13. It would be
nice to reduce the error term in (7.20.4) to O(7T !+°) so as to include
Balasubramanian’s bound E(T) < 7}+¢
Higher mean-values of E(T') have been investigated by Ivic [1] who
showed, for example, that
T
'[E(t)ﬁdt < Ta+e, (7.20.5
o
This readily implies the estimate E(T) < T4+
The mean-value theorems of Heath-Brown and Ivic depend on a
remarkable formula for E(T) due to Atkinson {1]. Let 0 < A < A’ be

occurring in Kolesnik’s estimate for p(}), since one has the ing
result.
LeMMa 7.20. Let & be a fixed positive integer and let t > 2. Then
logt
(G + it < (logh) (1 + -[ 10} + it + i) re ~Vldu ) (7202
—log?t
This is a trivial generalization of Lemma 3 of Heath-Brown [2], which
is the case k = 2. It follows that

{(} +it)? < (log#)* + (log  max E{t + (log 8)?}. (7.20.3)

Thus, if # is the infimum of those a for which E(T') < T'% then p(}) < 4ut.
On the other hand, an examination of the initial stages of the process
for estimating {(}+if) by van der Corput’s method shows that one
is, in effect, bounding the mean square of {(}+ i) over a short range
(¢t—A, t+A). Thus it appears that one can hope for nothing better for
#(P), by this method, than is given by (7.20.3).

The connection between estimates for {(3 +i?) and those for E(T)
should not be pushed too far however, for Good [1] has shown that
E(T)=Q(T?¥. Indeed Heath-Brown [1] later gave the asymptotic
formula

T
4
_[ E®2dt = §@n) ‘i%T§+ O(Tilog2T) (7.20.9)
[}
from which the above Q-result is immediate. It is perhaps of interest to

and suppose AT < N< A'T. Put

N=NT)=—+——
@ 2n+ 2n+4

2
Then E(T) = £, +Z,+ O(log? T), where

T N (NT ivi)i

4 B
R e <'§+'§) {s'mha (%)’} ! sinf ()
with (7.20.6)

¥
f(m) = }n+2Tsinh-1 (%) +@mr2mnTY,  (1.207)

7 \-1
;=2 Y dmntlog,— ] si
5 ’EN (n)n (]og Znn) sin g(n)
where
T
=Tlog —-T-}r
g =Tlog .~ T—}x
Atkinson loses a minus sign on (1; p 875]. This is corrected above. In
applications of the above formula one can usually show that Z, may be

ignored. On the Lindelof hypothesis, for example, one has

Y dmn-i-T<T*
<z
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for x < T,so that £, < T by partial summation; and in general one finds
%, < T %@+ The sum X, is closely analogous to that occuring in the
explicit formula (12.4.4) for A(x} in Dirichlet’s divisor problem. Indeed, if
n = o(TY then the summands of (7.20.6) are

(-1 (2 T)% dm (2\/(2nnT ) _,)_H,(Tui(n))

7.21. Ingham’s result has been improved by Heath-Brown [4] to give
4
j‘l{(#+it)l‘dt = 3 ¢, T(log Ty +O(Ti+e) (7.21.1)
n=0

where ¢, = (272)-1 and
¢y =2{4y—1-log(2m) —12{'Qn -2} n-2
The proof requires an asymptotic formula for
Y dinydin+r)
a<N
with a good error term, uniform in r. Such estimates are obtained in

Heath-Brown [4] by applying Weil’s bound for the Kloosterman sum
(see §7.24).

7.22. Better estimates for 6, are now available. In particular we have
a5 < { and o, < §. The result on o, is due to Heath-Brown [8]. To
deduce the estimate for o, one merely uses Gabriel’s convexity theorem
(see §9.19), takinga =4, f=f A=}, =4 anda= 1.

The key ingredient required to obtain ¢, < § is the estimate

T
jll(%-f»it)l“dt« T2 (log THV7 (7.22.1)

of Heath-Brown [2]. According to (7.20.2) this implies the bound
#(® <} In fact, in establishing (7.22.1) it is shown that, if [[(} +i2,)|
2 V(>0 forl1<r<R, where0 <t < Tand¢ > 1, then

R<T2V-12(log T)'S,
and, if V > T 5 (log T)2, then
R<TV-5(log T)®.
Thus one sees not only that{(} + if) < £} (log )%, but also that the number

re1 =t
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of points at which this bound is close to being attained is very small.
Moreover, for V > T #(log T)2, the behaviour corresponds to the, as
yet unproven, estimate

T
Ill(§+iblﬁdl KT+,
o

To prove (7.22.1) one uses Atkinson’s formula for E(T') (see §7.20) to
show that
746
f K@ +inl2dt < Glog T+

¢

K
) (TK)‘*<IS(K)I LK1 f |S(x)|dx)e*°"“, (222
2
o

where K runs over powers of 2 in the range 7' < K < TG-21og?7, and

S(x)=8(x, K, T)= z (=1 d(n)ero
K<n<Kix

with f(n) as in (7.20.7). The bound (7.22.2) holds uniformly forlog? T < G
< T'%. In order to obtain the estimate (7.22.1) one ds to estimat,
how often the sum S(x, K, T') can be large, for varying 7. This is done by
using a variant of Halész's method, as described in §9.28.

By following similar ideas, Graham, in work in the process of
publication, has obtained

fll(% i2)[198dt < T 14 (log T')425. (7.22.3)

Of course there is no analogue of Atkinson’s formula available here, and
8o the proof is considerably more involved. The result (7.22.3) contains
the estimate p(§) < {; (which is the case I = 4 of Theorem 5.14) in the
same way that (7.22.1) implies #(}) < 3.

7.23. As in §7.9, one may define o,, for all positive real k, as the
infimum of those ¢ for which (7.9.1) holds, and ¢}, similarly, for (7.9.2).
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Then it is still true that ¢, = 0}, and that
T
®
J’ o+ dt =T Y d(n)2n-2+ O(T 1%
T
1

for o > g,, where & = (6, k) > 0 may be explicitly determined. This may
be proved by the method of Haselgrove [1]; see also Turganaliev [1]. In
particular one may take 8(s, 3 = }(d — P for } < ¢ <1 (Ivic [3; 8.111) ]
or Turganaliev [1]). For some quite general approaches to these
fractional moments the reader should consult Ingham (4) and Bohr and
Jessen (4).

Mean values for ¢ = } are far more difficult, and in no case other than
% =1 or 2 is an asymptotic formula for

T
I LG +i|22dt = I(T),
0

say, known, even assuming the Riemann hypothesis. However Heath-
Brown [7] has shown that

1
T (log 7)¥ < I(T) < T (log T)¥ (k = ;),
Ramachandra [3], [4] having previously dealt with the case & = }.
Jutila [4] observed that the implied constants may be taken to be
independent of k. We also have
I(T)» Tlog T)*

for any positive rational k. This is due to Ramachandra [4] when & is
half an integer, and to Heath-Brown [7] in the remaining cases.
(Titchmarsh [1; Theorem 29] states such a result for positive integral &,
but the reference given there seems to yield only Theorem 7.19, which is
weaker,) When £ is irrational the best result known is Ramachandra’s
estimate [5]

1(T)» T (log T)*(loglog T) ~*.
If one assumes the Riemann hypothesis one can obtain the better results

L(Ty<TQog T O<k<?

and

L(T)y» Tog TH* (k >0), (7.23.1)

7.23 MEAN-VALUE THEOREMS 181

for which see Ramachandra [4] or Heath-Brown [7]. Conrey and Ghosh
[1] have given a particularly simple proof of (7.23.1) in the form

L(T) 2 {C,+0(1)} T(log T)¥,

C, = {rk2+1)}-1 H{(I%)"’ i <FT’E%;£)_))2P_M}

» m=0

with

They suggest that this relation may even hold with equality (as it does
when k=1 or 2).

7.24. The work of Atkinson (2) alluded to at the end of §7.16 is of
special historical interest, since it contains the first occurence of
Kloosterman sums in the subject. These sums are defined by

g 2mi _
S(g;a, )= 3 exp (7 (an + br) ), (7.24.1)
wai
where n#t = 1(mod ¢). Such sums have been of great importance in
recent work, notably that of Heath-Brown [4] mentioned in §7.21, and of
Iwaniec [1] and Deshouillers and Iwaniec [2], [8] referred to later in
this section. The key fact about these sums is the estimate

1(g; a, b)| < d(@)gt (g, o, D)}, (7242

which indi a very iderable amount of 1lation in (7.24.1).

This result is due to Weil [1] when g is prime (the most important case)
and to Estermann [2] in general. Weil’s proof uses deep methods from
algebraic geometry. It is possible to obtain further cancellations by
averaging S(g; a, b) over ¢, ¢ and b. In order to do this one employs the
theory of non-holomorphic modular forms, as in the work of
Deshouillers and Iwaniec [1]. This is perhaps the most profound area of
current research in the subject.

One way to see how Kloosterman sums arise is to use (7.15.2). Suppose
for example one considers

2
e~17dt. (71.24.3)

¥ ou-i
’ry

©
'[ k@G +i)l*
°

Applying (7.15.2) with 25 = 1/ T+ ilog(v/u) one is led to examine

S de exp< e"’).
-0

2minu
v
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One may now replace e/ by 1+ (i/ T) with negligible error, producing

2400

2 2ninu 2nnu 1 Tv \* u
B amenn (7 oo - 55) -3 | vz ol )
2-i™

where
D( ) Z d(n)exp(zm )n*‘.

This Dirichlet series was investigated by Estermann [1], using the
function {(s, @) of §2.17. It has an analytic continuation to the whole
complex plane, and satisfies the functional equation

D(s, %) - ZUlea%ﬁ{D(lAs,%)—cos(ns)D(l—s, —%)}

providing that (1, v) = 1. To evaluate our original integral (7.24.3) it is
necessary to average over u and v, so that one is led to consider

¥ D( —s, ) z z d(mns-1 Y exp<M>,
L Un=1 WSl v

for example. In order to get a sharp bound for the innermost sum on the
right one introduces the Kloosterman sum:

L Y i
> exp(z_nml) Z exp(m) y o1
v v T34

wv
=1 )’1 u=m{mod v}
init b Qi —
exp 2ninm ¥ {l ) exp( ia (m u))}
v wsvlVa=1 v
.

1y 2miqu
= (v; &, n) exp ( - ),
v g Ev v

and one can now get a significant saving by using (7.24.2). Notice also
that S(v; a, n) is averaged over v, a and n, so that estimates for averages
of Kl sums are iall licabl

By pursuing such ideas and exploiting the connection with non-
holomorphic modular forms, Iwaniec [1] showed that

L+
2“: J. LG +iglidt < (RA+TRA-H T
1
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for0<t < Tt ,—1 >A > T In particular, taking R = 1, one has

ro7h
LG +iltdt< T (7.24.9
T
which again implies x(}) < 3, by (7.20.2). Moreover, by a suitable choice
of the points ¢, one can deduce (7.22.1), with 7°2*° on the right.
Mean-value theorems involving general Dirichlet polynomials and
partial sums of the zeta function are of interest, particularly in
connection with the problems considered in Chapters 9 and 10. Such
results may be proved by the methods of this chapter, but sharper
estimates can be obtained by using Kloosterman sums and their
connection with modular forms. Thus Deshouillers and Iwaniec 121, (31
established the bounds

T
2
Ir;(hiz)v 3 ant dt< THT+ TN+ TiINY Y (a2
] n<N neN
(7.24.5)
and
T
2 2
jll(§+it)l2 Y e,mt | Y b,nu| dt
meM neN
o

< T*(T+TMIN+ TMNt+ MINé)( ¥ ;a,,,v)( ¥ |b,_|2>(724,6)
net e

for N< M. In a similar vein Balasubramanian, Conrey, and Heath-
Brown [1] showed that

,

fmﬂ'mz b3 u(m)F(m)m+-‘rdl= CT+0,{T(og T)-4),
msM

0

(7.24.7)
m, T
c= 3 B b By o (logM+2" - 1)
mncM MR 2
for M < T#~¢ where A is any positive constant, and the function F
satisfies F(x) < 1, F'(x) < x- . The proof’ requires Weil’s estimate for the
Kloosterman sum, if T3 M < TH-2



VIII
Q-THEOREMS

8.1. Introd The previ h have been largely con-
cerned with what we may call O- theorems, i.e. results of the form
Uo) = O} 1/i(s) = Ofg(t)}
for certain values of o.
In this chapter we prove a cor ding set of Q-th i.e. results

oftheform  yio) — Qi) 1j2te) = Qfpt),

the Q symbol being defined as the negation of o, so that F(f) = Q{p()}
means that the inequality |F(t)| > Ag(t) is satisfied for some arbitrarily
large values of ¢

If, for a given function F(t), we have both

F@y=0ff®},  Foy =),
we may say that the order of F(t) is di ined, and the only
question is that of the actual constants involved.

For o > 1, the problems of {(¢+it} and 1/{(c+4?) are both solved.
For } < o < 1 there remains a considerable gap between the O-results
of Chapters V-VI and the Q-results of the present chapter. We shall
see later that, on the Riemann hypothesis, it is the Q-results which
represent the real truth, and the O-results which fall short of it. We
are always more successful with Q-theorems. This is perhaps not
surprising, since an O-result is a statement about all large values of ¢,
an Q-result about some indefinitely large values only.

8.2. The first Q results were obtained by means of onphsnﬁne
approximation, i.e. the approximate solution in integers of given equa-
tions. The following two theorems are used.

DiriorLET'S THEOREM. Given N real numbers ay, ay,..., @y, & positive
sniteger g, and & positive number to, we can find a number ¢ in the range

to £ tygV, (8.2.1)
and indegers y, ..., Ty, such that
lta,—2,) < 1/g (n=12,.,N) (8.2.2)
"The proof is based on an argument which was introduced and employed
extensively by Dirichlet. This argument, in its simplest form, is that,
if there are m-1-1 points in m regions, there must be at least one region
which contains at least two points.
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Consider the N-dimensional unit cube with a vertex at the origin and
edges along the coordinate axes. Divide each edge into ¢ equal parts,
and thus the cube into ¢V equal compartments. Consider the ¢¥+41
points, in the cube, congruent (mod1) to the points (ua,, ua,,..., uay),
where u = 0, ty, 2t,,..., ¢¥,. At least two of these points must lie in the
same compartment. If these two points correspond to 2 = uy, u = w,
(#y < u,), then = wu,—un, clearly satisfies the requirements of the
theorem.

The theorem may be extended as follows. Suppose that we give u
the values 0, &, 2i,..., mg™t,. We obtain mg~+1 points, of which one
compartment must contain at least m+-1. Let these points correspond
t0 % = Uy, Upyy Then £ = wuy—uy,..., U, —u,, all satisfy the require-
ments of the theorem.

We conclude that the interval (¢, mg¥t,)} contains at least m solutions
of the inequalities (8.2.2), any two solutions differing by at least .

8.3. KrONECKER'S THEOREM. Letay, @y,..., ay be linearly independent

real numbers, i.e. numbers such that there is no linear relation
Mt ot Ay ay = 0
in which the coefficients A,,... are integers not all zero. Let b,,..., by be any
real numbers, and q @ given positive number. Then we can find @ number
t and integers X,,..., Ty, such that
lta,—by—x,| < g (n=1,2,..,N) (8.3.1)

If all the numbers b, are 0, the result is included in Dirichlet’s
theorem, In the general case, we have to suppose the a, linearly
independent; for example, if the a,, are all zero, and the b,, are not all
integers, there is in general no ¢ satisfying (8.3.1). Also the theorem
assigns no upper bound for the number ¢ such as the ¢¥ of Dirichlet’s
theorem. This makes a considerable difference to the results which
can be deduced from the two tk

Many proofs of Kronecker’s theorem are known.t The following is
due to Bohr (15).

‘We require the following lemma

Lemma. If ¢(x) is pzmtwe and continuous for a < x< b, then
247

lim { j B dx} = max §(z).

A similar result holds for an integral in any number of dimensions.

+ Bohr (15), {16), Bohr and Jossen (3), Estermann (3), Lettenmeyer (1.
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Let M = max ¢(x). Then
b fr
{ [ e de)™ < (o-arry = @—armar.

Also, given ¢, there is an interval, («, ) say, throughout which
$2) > M—c.
Hence

4 n
[ [ ey ae] ™ > (g—orat—erpn = @—apnar—o),

and the result is clear. A similar proof holds in the general case.
Proof of Kronecker's theorem. Tt is sufficient to prove that we can find
& number ¢ such that each of the numbers
e2riaat-bd (= 1,2,.., N)
differs from 1 by less than a given ¢; or, if
Py = 1+”§‘ezﬂr(u.ub.),

that the upper bound of | F(f)! for real values of £ is N4-1. Let us denote
this upper bound by L. Clearly L < N41.

N
Lot o durnba) = 1 T e,

where the numbers ¢,, ¢,,..., ¢y are independent real variables, each
lying in the interval (0,1). Then the upper bound of |G| is ¥4-1, this
being the value of |@] when ¢, = ¢y = ... = ¢y = 0.

‘We consider the polynomial expansions of {F(#)}* and {Q($y,..., $x)}*
where k is an arbitrary positive integer; and we observe that each of
these expansions contains the same number of terms. For, the numbers
ay, ay,..., ¢y being linearly independent, no two terms in the expansion
of {F(#)}* fall together. Also the moduli of corresponding terms are
equal. Thus if

{Gleprreers )} == 1+ 3 Cpermiduatrsethuud,
then (FOP = 14 3 G etmiuu@-byresuxasi-ba
=14 E Ca ezn«m,t—ﬂ.),

say. Now the mean values

.
! "
= — dt
£ fim gy [ 1701
-7
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and ' Go= [ [ o [ 16 b dy.. Ay
00 o

are equal, each being equal to
1+ 3 Ci
This is easily seen in each case on expressing the squared modulus as
a product of conjugates and integrating term by term.
Since N1 is the upper bound of |G|, the lemma, gives

lim G2k — N1,
kv

Hence also lim F}i% == N+ 1.
s

But plainly Fit L L

for all values of . Hence L > N+-1, and so in fact L = N-+-1. This
proves the theorem.

8.4. THEOREM 8.4. If o > 1, then

1§l < Uo) (8.4.1)
Sor all values of ¢, while
1}l = (1—-e)(o) (8.4.2)
Jor some indefinitely large values of t.

‘We have 1¢(8)] = ’ iln"’

<3 n = ),

so that the whole difficulty lies in the second part. To prove this we
use Dirichlet’s theorem. For all values of N
N
() = 3 nve-itoen S peo-w
=1 n=N+1
and hence (the modulus of the first sum being not less than its real part)
N
1(s)] = 3 n-Ccos(tlogn)— 2 no. (8.4.3)
n=1 n=N+1
By Dirichlet’s theorem there is a number ¢ (¢, < ¢ < #,¢>) and integers
Zy,..., %y, such that, for given N and ¢ (g > 4),

tlogn

27

Zn

g; n=1,2.,N)
Hence cos(tlogn) > cos(2m/q) for these values of n, and so

5 ~
S n-ocos(tlogn) > cos(2mjg) 3 n-o > cos(2m/g)l(e) — % neo.
P-A -3 A
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Hence by (8.4.3) -
i€}l = cos(2n/g)l@)—2 3 n-e.
NT1

bt =3 u odu= L
ow to) = F o> f wea=-1,
i
® ¥ Ni-o
d - o du = .
an Ngln < J. wdn = ——
Hence 18(8)| > {eos(2m/g)—2Nt-<}¢(a), (8.4.4)

and the result follows if ¢ and N are large enough.

TEROREM 8.4 (A). The function [(s) is unbounded in the open region

e>1t>3>0.

This follows at once from the previous theorem, since the upper bound
(o) of {(s) itself tends to infinity as o — 1.

THEOREM 8.4 (B). The function [(1+-it) is unbounded as ¢ — co.

This follows from the previous theorem and the theorem of Phragmén
and Lindelof. Since {{2+if) is bounded, if {(1+3t) were also bounded
{(s) would be bounded throughout the half-strip 1 < ¢ < 2,¢ > §; and
this is false, by the previous theorem.

8.5. Dirichlet’s theorem also gives the following more precise resuls.

TurorEM 8.5. However large ¢, may be, there are values of & in the
region ¢ > 1, ¢ > 4, for which

1(s) > Aloglogt. (8.5.1)

Also {(1+4t) = Qfloglog #). (8:5.2)
Take t, = 1and g = 6 in the proof of Theorem 8.4. Then (8.4.4) gives
1&(8)] 2 (3—28")/(e—1) (8.5.3)

for & value of ¢ between 1 and 6. We choose N to be the integer next
above 84D, Then
log(¥N—1)

e 2 oy > e

for a value of ¢ such that ¥ > Alogt. The required inequality (8.5.1)

then follows from (8.5.4). It remains only to observe that the value of ¢

in question must be greater than any assigned #,, if o—1 is sufficiently

small; otherwise it would follow from (8.5.3) that {(s) was unbounded
+ Bohr and Landan (1).

> Alog N (8.5.4)
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in the region ¢ > 1, 1 <t < 4; and we know that {(s) is bounded in
any such region.

The second part of the theorem now follows from the first by the
Phragmén-Lindelof method. Consider the function

_
IO = fogtogs

the branch of loglog s which is real for s > 1, and is restricted to |s] > 1,
o >0, £ > 0 being taken. Then f(s) is regular for 1 < o < 2, ¢ > 8.
Also {loglogs| ~ loglogt as ¢~ 0, uniformly with respect to o in the
strip. Hence f(2-it) >0 as {->o0, and so, if f(1+i)—>0, f(s) >0
uniformly in the strip.} This contradicts (8.5.1), and so (8.5.2) follows.

It is plain that arguments similar to the above may be applied to all
Dirichlet series, with coefficients of fixed sign, which are not absclutely
convergent on their line of convergence. For example, the series for
log {(s) and its differential coefficients are of this type. The result for
log {(s) is, however, a corollary of that for {(s), which gives at once

[log £(s)| > logloglog{—A4

for some indefinitely large values of ¢in ¢ >> 1. For the nth differential
coefficient of log {(s) the result is that

’(d%)"log {(s)! > 4,(loglog )

for some indefinitely large values of ¢ in ¢ > 1.

8.6. We now turn to the corresponding problems} for 1/{(s). We
cannot apply the argument depending on Dirichlet’s theorem to this
function, since the coeﬁicients in the series

1 Souln)
l(s) Z

are not all of the same sign; nor can we argue similarly with Kronecker’s
theorem, since the numbers (logn)/2x are not linearly independent.
Actually we consider log {(s), which depends on the series > »~*, to
which Kronecker’s theorem can be applied.

THEOREM 8.6, The function 1/%(s) is unbounded in the open region
o>1,t>8>0.
We have for o 2> 1

{
S TP DM ED I Yo

t See e.g. my Theory of Functiona, § 5.63, with the anglo transformed into a strip.
1 Bohr and Landau (7).




190 Q-THEOREMS Chap. VIII

Now
1 < cos(tlog p,) cos(tlogp,) = 1
R( ,) = C0StE 08 Pl i Fo 1 —.
oS < 3
Also the numbers log p,, are linearly independent. For it follows from the
theorem that an integer can be expressed as a product of prime factors
in one way only, that there can be no relation of the form
oiplpy =1,
where the X's are integers, and therefore no relation of the form
Alogpy+ ... +Aylogpy = 0.

Hence also the numbers (log p,)/27 are linearly independent, It follows
therefore from Kronecker’s theorem that we can find a number ¢ and
integers ..., ¢y such that

M8yl <t =12,

or ltlogp,—7—2mzx,| < ir (n=1,2,., ).
Hence for these values of n
cos(tlogp,) = —cos(tlogp"—n—.%z“) —cosdm = —}4,
1 @
and hence R(Z;’) < -3 Z " Z“

Since ¥ p;* is divergent, we can, if H is any assigned positive number,
choose o 50 near to 1 that 3 p;° > H. Having fixed o, we can choose N

80 large that N @
2P > S we <A
Then R( s p“') < 7311“11 = —1H.
&

Since H may be as large as we please, it follows that R(3 p~*), and so
log}l(s)], takes arbitrarily large negative values. This proves the
theorem.

TrEOREM 8.6 (A). Tke function 1/{{1--it) is unbounded as t > oo,

This follows from the previous theorem in the same way as Theorem
8.4 (B) from Theorem 8.4 (A).

‘We cannot, however, proceed to deduce an analogue of Theorem 8.5
for 1/{(s). In proving Theorem 8.5, each of the numbers cos({log n) has
to be made as near as possible to 1, and this can be done by Dirichlet’s
theorem. In Theorem 8.6, each of the numbers cos(tlog p,) has to be
made as near as possible to —1, and this requires Kronecker’s theorem.
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Now Theorem 8.5 depends on the fact that we can assign an upper limit
to the number ¢ which satisfies the conditions of Dirichlet’s theorem.
Since there is no such upper limit in Kronecker’s theorem, the corre-
sponding argument for 1/{(s) fails. We shall see later that the analogue
of Theorem 8.5 is in fact true, but it requires a much more elaborate
proof.

8.7. Before proceeding to these deeper theorems, we shall give another
method of proving some of the above results.t This method deals
directly with integrals of high powers of the functions in question, 2nd
so might be described as a short cut which avoids explicit use of
Diophantine approximation.

Wewdte  H{f@)} = lim . f |flo ey di,
and prove the following lemma.

LevMma. Let g(8) = 1—”; h(s) = Z ;"
be absolutely convergent for a given value of o, and let every m with b, # 0
be prime to every n with ¢, % 0. Then for such ¢
H{lg(shhis)} = M{lg(s)P}U{|R(s)1%).
By Theorem 7.1

Mgl = Z i

12

Mo = 51l

P
=1

eod,
Now gls)hts) = Z =4
7=
where each term d,7* is the product of two terms b, m* and ¢,n~%

Hence

Mlgleyhs)1?) = Z LSS tbneal _ arggiom iz
=1

720 (mn)@

‘We can now prove the analogue for 1/{(s) of Theorem 8.4.
TaeoreM 8.7, If o > 1, then

1| e 1
£ < Zi2o) 670
Jor all values of t, while
) (o)
F\?) > (1_¢)m (8.7.2)

Sfor some indefinitely large values of t.
t Bohr and Landau (7).
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We have, for o > 1,

1 )

(n) <
1(8) _{zun g;mna
Since "%:L):l:[(l—l)

a=1

we have also

S ~T1( o) =TT =4

?

and the first part follows.
To prove the second part, write

1 N
IO H (l _Pi'sl)ﬂzv(ﬂ),
1 N %
g = L] (1) o

By repeated application of the lemma it follows that

i) = LT (1= 2 et

=1
Now, for every p,

2%
-2 g
since the integrand is periodic with peuod 2nflogp; and

H{|ny(e)*} 2= 1,
since the Dirichlet series for {ny(s)}* begins with 14-.... Hence '

-

2n/logpa
logp, f 1=
——| dt
l\{(a)}“"’ H P
2nflogp L
Now liml 1—— dt] = max
ke d o<t< 2nflogp
N
Hence llm[ { }]!/% (l+ J
15(s) 12 5

Since the left-hand side is independent of N , we can make N - o0 on
the right, and obtain

tm )] > gy
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Hence to any e corresponds & k such that

1 12k g(”)
[ael] > -9y

and (8.7.2) now follows.

Sinee I{a)/{(20) - oo as o ~ 1, this also gives an alternative proof of
Theorem 8.6

It is easy to see that a similar method ean be used to prove Theorem
8.4 (A). It is also possible to prove Theorems 8.4 (B) and 8.6 (A) directly
by this method without using the Phragmén-Lindelof theorem. This,
however, requires an extension of the general mean-value theorem for
Dirichlet series.

8.8. THEOREM 8.8.1 However large t, may be, there are values of s in
the region o > 1, t > &, for which

1
l@ > 4 loglogt.
1
Also s = Qloglogt).

As in the case of Theorem 8.5, it is enough to prove the first part.
We first prove some lemmas. The object of these lemmas is to supply,
for the particular case in hand, what Kronecker’s theorem lacks in the
general case, viz. an upper bound for the number ¢ which satisfies the
conditions (8.3.1).

LemMA o If m and n are different positive integers,

log™ s
Lk max(m, n)

Forifm <n

1
+~7+ >—

n
lOgﬁ > IOgnA 2 n?

LeMma 8. If py,..., py are the first N primes, and ..., py are inlegers,
not all 0 (not necessarily positive), then

N
fog T] ph"
~ n=t
For [ pt~ = u/v, where
nat
w= Tl pr,  v=T] Pir
HnS0 a0

 Bohr and Landau (7).

> pE*¥ (u = maxlp,)).
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and u and v, being mutually prime, are different. Also
max(u,o) < [T 74 < 7,

and the result follows from Lemma a.

Lemma y. The number of solutions in positive or zero integers of the
equation Vot ety =k
does not exceed (k+1)¥.

For N = 1 the number of solutions is k-1, so that the theorem holds.
Suppose that it holds for any given N. Then for given vy, the number
of solutions of Yokt ntry = k—pyay
does not exceed (k—wy.+1)¥ < (k+1)¥; and vy,, can take k+1
values. Hence the total number of solutions is < (k+1)¥+1, whence
the result.

LemMa 8. For N> A, there exits a t satisfying 0 <t < exp(N®) for
which 1
cos(tlog p,) < _1+1T' (n < N).
Let N > 1,k > 1. Then

(§ )t = S vz,
k!
where €(¥gser, Vx) = PARE v, =k

The number of distinct terms in the expansion is at most (k+1)¥ < k2N,
by Lemma y. Hence

(Zep<ZaZ1<iVye,
50 that 36t > k(3 o)t = k(N 1),
N,
Let F))=1-3 evieon,

80 that
N
e e e 3valog Pa)s
IF@Q = 3 T ec'(—) =+ Srtexp(it 3 (ra—sjlog )
=5 +3,

where Z, is taken over values of (v, ') for which »; = ¥}, v3 = 4},..,, and
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3, over the remsainder. Now

r
%fe‘“‘dt:l @ =0)
3

T
ITfe“"dt =
1

T
Hence %J.[F(m"‘dt;z,c*— 5,
d

elaT 1
ol

2
1Sm (o 5 0).

20’
[2 a—villogp, 1T

By Loemma 8, since the numbers v, —»; are not all 0,

13 va—v)logpnl = ]Iog HJJ‘”-"-’[ > pymexil > pgkV,

Hence Py .
1 2% x__%l ’
7| Foraz3a-BES S e
5
2
> kST 5o
= —w‘_EJﬁ" 1)
_(k EY v+,
In this we take k = N4, T = ¢, and obtain, for N > 4,

ok L vy
v PN _ N-s:v_g(g > @-NUNHL),
T v

Hence

1 F 12k
[T JEC d:] > (N1
[
Hence there is a # in (0, ¢"*) such that
1
IF@Q] > N+1— 5

Suppose, however, that cos(zlogp,) 3> —1+1/¥ for some value of n.
Then

| P()] < N—1+4[1—eto82a] = N—1-4v2(1—costlog pn)}
1\ 1
N—1+«/2(2_1_V) < 1\’+1—ﬁ,

a contradiction. Hence the result.
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‘We can now prove Theorem 8.8. Asin §8.6, foro > 1
1 cos(tlog p,)
og—r— = — » 5Pl (1),
S = T2 o
Let now N be large, ¢ = #(N) the number of Lemma 8, 8 = 1/log N, and
o= 1+8. Then

4 logp,) -, g <
ogrgy > - 3 S (5] 2 - 2

N+1
> (’—%)Z%—ZN"Z,W (- poeior-4)-2 Z Cnieger
) i S
loslﬁm >— A—%log%—ég> —4,
|L(ls)[ = = Alog N > Aloglogt.

The number ¢ = {(¥} evidently tends to infinity with N, since 1/{(s) is
bounded in |{| < 4, ¢ 3> 1, and the proof is completed.

8.9. In Theorems 8.5 and 8.8 we have proved that each of the

inequalities

1L(14-it}} > Aloglogt, ¥/|Z(14-it)] > Aloglogt
is satisfied for some arbitrarily large values of #, if A4 is a suitable
constant. We now consider the question how large the constant can be
in the two cases.

Since neither [{(I—Ht) |/loglog ¢ nor |{(1+4#)|~/loglog ¢ is known to be
bounded, the of the might not seem to be of much
interest. But we shall see later that on the Riemann hypothesis they
are both bounded; in fact if

ll(l-Ht)l e WS+
l—»u: Tloglogt * r= HE loglog? ’ @81

A=

then, on the Riemann hypothesis,
A<, w<le, (8.9.2)

where y is Euler’s constant.
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There it therefore a certain interest in proving the following results.{

THEOREM 8.9 (A). Il(l-Ht)r S,
Toglogt
TaEOREM 8.9 (B). r1/| a4y >
o loglogi ]

Thus on the Riemann hypothesis it is only a factor 2 which remains in
doubt in each case.
‘We first prove some identities and inequalities. Asin §7.19, if

LAOESY ”F“T(f” (@>1) (8.9.3)

a S (em—1)e
an Sl ”‘Z"‘ﬁk—l)!m! } @, (8.9.4)
then Fife) = TLAlp~). (8.9.5)

Now for real

1 e —1)
fleh =5 J’ ’ (kt’”ﬁ;%,;me,-mﬁd‘ﬁ

2, 1)t

=1 ! a4
"! [Tzt ;f (1—2vzcosgfa)t” 8.9.6)
[
Using the familiar formula
_if )
B =_ ! =TT os gt (8.0.7)

for the Legendre polynomial of degree 7, we see that
1+
) = B ( ) (8.9.8)
Naturally this identity holds also for complex z; it gives

F(s) = 1:[ mﬁ-:(;i‘z,.) = [¥s) 1_[ Pk—l(1+ 4)
(8.9.9)

A similar set of formulae holds for 1/{(s). We have

1 1\* ko kk—1) 1 (—1)¥
e = 1—— ) = e =
Sy ]:I ( p’) . ( “ptrE )

1 Littlewood (5), (8), Titchmarsh (4), (14).




198 N-THEQREMS Chap. VIII
1 < byfm)
Hence — = 2%
e .Z, =B (8.9.10)
where the i by(n) are def d in an obvious way from the

above product. They are integers, but are not all positive.
The form of these coefficients shows that

2P =TT (g =TT (5

T
Again, Tet Guls) = i bilm) (8.9.12)
As in the case of Fi(s), }

Gulo) = 1_[(‘+,,.+ e [l
(8.9.13)

say. Now, for real x,

o) = o amgimi " 4y

k!
&y mi—m)!

=%j}l+xle"¢["’d¢ - ;‘J (1422} cos ¢+ 2)* d.
§ B
Comparing this with the formula
Pe) = ;lr f (et —Lcos ¢ dp
°

wo sce thatt gula) = (x_z)kPkGi_z). (8.9.14)

Hence

aw=T] (l—p")"}’k(‘:t ﬁ"
»

1 14p~
)~ oo T2}
3
‘We have also the identity
Fiia(s) = 41 s)Gils)- (8.9.15)
+ This formula is, essentially, Murphy's well-known formula

BR{o0s 8) = cos*}4F(—F, —k; 1; —tan*$f)
with & = —ten?$8; of. Hobson, Spherical and Ellipsoidal Harmonics, pp. 22, 31.
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Again for 0 <z < }
ik
1 d$
Julw) > ;f A= roosg o)
o

1 ‘Tk{l_}_«/}:(l—fcos:#) }kdq*

= (=) 1—2vzcosd+z)
@

lk

1 1\)* I 16

= i | (4ol % > st @0
:

if k is large enough. Hence also

1+ /0% 1+/n*
0u () = (L—x)2*e1f (2) > L—z“{—’jT > 3% 6917
for k large enough; and
Tl < %f (L) dp = (1) (8.9.18)
5

for all values of z and k.

8.10. Proof of Theorem 8.9 (A). Let 0> 1. Then
[-peioma= [ (1) 3 i) S
-7 -7

- S a3 [(-He)

n) dy(m)dy(n) 4sin?*(} T log(n/m)}
wte T Z Z e — Tlogin/m)

&5 3

=T = TF(20). (8.10.1)

2

Since (from its original definition) f,,(p-";) 2 1 for all values of p,

Eo) > LA™ > E {%C(l —%)’“} (8.10.2)

for any positive = and % large enough, Here the number of factors is
w(z) < Azflogz. Hence if x > vk

1 {1 \A=oge _ 4102\ 4 (3103
[T (™ = ol - 55557 > o 0en
!
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Also

lognl‘z_] zlogl ,%0(;1"_%)
220(10” J' ) { 1)21"31"} Of(o—1)log2).

p<e
(8.10.4)

Hence F{20) > e—4x—dko-Dlosz H (1 — l)_%’
and pET 2,

A vk 1\t
[T f (1 — T)[ Yotify> zit] > g-Aulk—Alo-1logz H (1 _;)
-7 <z
> {e7-Fo (1)je4xh—do-Dogzog &
as ¥ - o0, by (3.15.2).
Let 2 = 8%, where k-1 < § < 1,and ¢ = 147/logk, where 0 < n << L.

Then the right-hand side is greater than
(4o (1)}5"‘5’4"(log E—log %)

Also, if m, 3 ﬁ;’}f,’x,‘l(”“‘)" the left-hand side does not exceed
1 112k r vk
2 1IN 2 \* 2 L]
Z 1=y = z 2%
(o (=) e
o 1
2\ 2 22k,
< (iv) it? e, 7+

2logk
Ty’

Hence

Mgz > 2 Ver 4o (l))e"‘s’Aﬂ(logk—log%) -
Let 7' = 5%, so that
loglog T = 1ogk+log(4log1).
Then k
My > 2Ver 40 (n}z"““"{'oglog T—log(4 log %) —1"8%} -

— 27,{loglog Tflog(ﬂi logl)}.
k!

Giving 3 and 7 arbitrarily small values, and then making k — o, i.e.
T — oo, we obtain m
T Map
i iog T = &
where, of course, ¢ is a function of 7.
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The result now follows by the Phragmén-Lindeldf method. Let

_ i)
T = o)
wheroh > 4, and let A = Tim L],
loglog t’
‘We may suppose A finite, or there is nothing to prove. Ono = 1,¢> 0,
we have 1£6)]

VO < ooty <Me (6> 00

Also,ong =2 [fis) =o(l) <Ate (=)
We can choose % so that |f(s)| < A-+e also on the remainder of the
boundary of the strip bounded by o = 1, 0 = 2, and ¢ = 1. Then, by
the Phragmén-Lindelof theorem, |f(s)| < A--¢ in the interior, and so
[ A G e 140 P
lim loglog ¢ hmlc.glog(l:+h)
Hence ) > ¢, the required result.

8.11. Proof of Theorem 8.9 (B). The above method depends on the
fact that d,(n) is positive. Since b;(n) is not always positive, a different
method is required in this case.

Let o > 1, and let ¥ be any positive number. Then

4
by(m) by (n)
—pf S5

-3, Tzz”“:z:ffm o)

Wl
Bin) _ |bk("‘)bk(”)l 2
> ne T Z Z mon®  [lognjm|
i34
Now log;! > logL{—l = %l = Z;V'

50 that the last sum does not exceed

W g Byl leumi\e _ 48[ L) |2
T2 <y (n ) =l

mAn

Since (o) ~ 1/(c—1) as o1, and {(2) > 1, we have, if ¢ is sufficiently
near to 1,

{o) 1

£(20)
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Hence the above last sum is less than

4N
T(a—1)%"

B _ 1 5 15m)]
<ﬂ§, w7 <mvv¢n;—¥7.%u+

Woril 1 (2 )

N3 Yot 1) oTo—1,

Also

1 _ 5 b

for ¢ sufficiently near to 1. Since for o > 2

e <1 o) =
.

we have similarly

b3(n) b(n) 1 E(n)

Gif20)— Z :Lza = Z ;zv <Fa Zv;u+l
nEN . n>,

<Gt 1 {;(ga+§)]u< 1 (2 ),,,.

C(}o)}"‘
Lo}

NeT N1 Lo +1) No\o—],
These two diffe are therefore both ded if
N ( 2 )lkl(a—l)
o1

With this value of ¥ we have

1 q 1 2 1 J 2

T—J' Z,@.pou)’ dt= i”ﬂZ,T a
8 It

> Gi20)~

T(u 1),,,+0(1)

>11{512(’+F) )~ rat 0w
by (8.9.17). Now
14+07 . of(o—
logl:l Tip = Of(a—Dlogx}
as in (8.10.4). Hence, as in (8.10.3) and (3.15.3),

1 1\ — 47— AKa-Dlog 1)}*log:
T3] - e

where b = 6e7/r®,
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Choosing = and ¢ as in the last proof,

N 2 log k\ 2k log kin+2k
(c—1)% ( 7 ) ’

and we obtain

i

l,‘m+0(1)‘ dt > e~4%—t1k{p{ o (1)} log2kBk—

2k log kfn+2k
—%(““gk) T Foq).
7
') K log &/
Finally, let 7= (ﬂc)2 S
7
Then
loglog T = logk+log(2 og +2)+loglog-'°g F <« (14elogk

for k > &k, = ky(s,5). Hence

i

Let My =

v )+0(1)‘ dt > 3745k~47ﬂt{b+0(1))ilg(loglogT 10gé)2k+0(1).

max —,—.
o<tsrl{(o+it)|

Since the first term on the right of the above inequality tends to infinity
with % (for fixed 3, », and ¢) it is clear that M¥ ;. tends to infinity. Hence

o()| < eME
O] < 20t
if k is large enough, and we deduce that
M, > fe-Ad- Aﬂk{b+o(l)}1k(loglogT logg)%

for k large enough. Hence

loglog 7' 1
Mg > e "V{b+o(l)‘( oglog 1og§).
Giving 3, ¢, and 7 arbitrarily small values, and then varying 7T,
we obtain
i Mo
Toglog T

The theorem now follows as in the previous case.
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8.12. The above th are mainly d with the
hood of the line ¢ = 1. We now penetrate further into the critical scup,
and provet

THEOREM 8.12. Let o be a fixed number in the range } < o < 1. Then
the inequality IZ{o-i0)] > expllogas)
is satisfied for some indefinitely large values of t, provided that

a < I—o.

Throughout the proof % is supposed large enough, and & small
enough, for any purpose that may be required. We take } <o <1,
and the constants Cy, Cj,..., and those implied by the symbol O, are
independent of & and §, but may depend on o, and on ¢ when it occurs.
The case ¢ = } is deduced finally from the case o > }.

We first prove some lemmas.

LemMa o. Let

ey S (= 1mta
T(s)z¥(e) = Z et
in the neighbourkood of s = 1. Then
] < ek 1 <m <R
The af are the same as those of § 7.13. We have

T =Sefo—tn 2500 = =1 3 o= 1,

where len) < €3, e <0 (Co> 1,0 > 1)
Hence ¢ is less than the coefficient of (s—l)’I in
& U b < (k+n—1)! Iy
{3 a1 = -G+ 2 Eiyiar o=
Hence -
k-m~1 - 3
)| i t-m-n_g (B2 —1)!
mllal =] 3 e o] < 2, T e 3
o (2k—2)! Cik
< kOO G <

LeMma 8.

! f Do+ it)(a-tit)dd=oop de

> L;dk(n)exm-ime-“‘) 22991 dz—exp(C, klog k).
{

t Titchmarsh (4).
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By (7.13.3) the left-hand side is greater than
2 f |filize-i3) 2201 dz = f ’ s dk(n)exp(Ainze-fs)‘zxz"" dr—
e
i 1 .
—2 [ [ Ryfize®) a2t dr.
Since [log(sze=?)| < log2+1m,
| Rylize~®)] < (W’"H» 169 |(log 2+ pm)+ ... +-a{s log 2+ 741}
< kecl"(log:c—{-gn)"*l’
@
and
f(logx-}—gv)z""zz?"" dz < ” (2log x)2~2x20-% da 4 [172"‘212"’“ dx
i i i

T(2k—1) | =%
T il 220"

The result now clearly follows.

Levyma y.
J ‘ Z d,,(n)exp(—mze*‘s)[ 2@ 1dy

& Z ‘1:(") —ansind_ Cy log < z d(nje—4ins,

>

520

The left-hand side is equal to

Z z dk (m)dp(n) f exp(imae’® —inve~ )zt dx
= Z + Z + 3,
o w
Now J‘e-ausmazzm dr = (2nsin8)-2 f e-vyo-L dy,
2nsind
and for 2n8ind < 1
w @
J‘ euyro-l dy > J‘ evyte-l dy = O > Cye-nsing,
2nind i
while for 2rsind > 1

J' e-wye-l dy > J' eV dy — g tnaind,

2nsind 2nsind
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Hence

o
= 2
- Z d"‘(”}f e-2nwsindagro-l gy = S_C;s; z d;g:’)e<!nlhs_
{ A=t

=1

Also, using (7.14.4),

1% <G 2 Z dylmydym)

e-msind

‘Csz S domm—n

=1nsh
e~jromd & .
T Z dy(m)e=insind g (s rie-Km-rain §
marEL
e-dreind) 2 w ;
3 { > dim)emoind z d,i(m_,)e~<m-mna}
morel w5

p on s

<Oz

This proves t.he lemma.

© e
mzl d}(m)e-meind C'Clogg Z di(m)e-moins,
= m=1

Lemma 8. Foro > 1
k \2o
exp{c.(m) | < £60) < oxpiGtee.
It is clear from (8.9.6) that
Jile) < (1—v2) % (0 <z < 1).
Also it is easily verified that
{(k+m—1)1} < Bpm—1)!
E—iml| S @E=1)Tmi
Hence, for 0 <z < 1,

filw) < 2 ‘("kj';‘),;.{' = (1—z)¥.

Hence
log Fi(o) =W§k’]og fk(p-0)+r§h‘10g Flo=)

< 2k fgk. log(1 "P‘*")"%—kzugk‘log( 1—p-o)1
= Ok, ol 3 07)
= Ofh(iey=to}+ Ofk2(k#)1-0} = O(k%e),
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On the other hand, (8.10.2) gives
log Fiy(o) > 2k 3 log(1—pi7)~1— E log 2k
e

>3 Irl"—C’nEg—log 2%

ai-te
Sl 2
> 0y L 0"10 xlog k.

logx
N 2= Gy kY
Taking 3, iogk

the other result follows.
Proof of Theorem 8.12 for } < o < 1. It follows from Lemmas Band
y and Stirling’s theorem that
f ‘g(u+,t)12ke~93lﬂa 14t > 2 %:L)e-znsm s_

_oujgga Z di(n)e-nsted.C eCklonk,
Now, if 0 < € < 20—1,
< < df(n;
z ‘ii(;)rznms = F20)— z :L(“)(l_rznsm)
=

> F2o)~Ci > B sy
nm=1

= B(20)—CiobH20—)
& \Vo -
> expfGfir) |-G exp(Cio o,

=1

e 3 dtime s < 3 rand)37 = O3 Ei(29—0)
< ;827 exp{C, k¥2-9).

Let 5= exp{ _%kww},

Then ‘

7 kY
[ tovinpee-ssent e > Lo exp{Gh) ) -GaCio
3

—0,Cy 7% kz/(zoﬁc)] — €5 €K lo8k

yo
8’°exP { (log 10) }
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Suppose now that
[Uo+it)] < expllogt) (¢ > 1)
where 0 < « < 1. Then
f |8 (o+it) | Pre~2820-1 gp Cf;-ffe”“‘"““mﬂ"“ df,
o 1
If t > k%82 & > ky, then
k 1 ¢
5 <A< 5 lo‘g“t'
Hence

&8t @
ekloge-2¥ppo-1 gy < KIE U J” e-2yzo-t gy 1 f e~Big2o-1 gy
1 2t

He—g

< eulnﬂk'/&’)%?
32"

Henco (10%)"" - o(k Iog«%‘) — Ot +eaee-0),
20

20—e¢

Hence 1 <14
o
and since € may be as small as we please
lair®  ezi-o
a o
The case o = }. Suppose that
{(3+it) = Ofexp(loght)} (0 <B < ).
Then the function f(8) = L(s)exp(—logPs)

is bounded on the lines o = 4, @ = 2, £ > 4, and it is O(f) uniformly
in this strip. Hence by the Phragmén-Lindelsf theorem f(s) is bounded
in the strip, i.e.

{lo+it) = Olexp(logft)}
for } << o < 2. Since this is not true for } < o < 1—B, it follows that
Bzt

NOTES FOR CHAPTER 8

8.13. Levi [1]hassh d Th 8.9(A) and 8.9(B) to show
that the inequalities

[{(X +it)| = e’ loglogt+ O(1)
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SN SN
K+
each hold for arbitrarily large ¢. Theorem 8.12 has also been improved,
by Montgomery [3]. He showed that for any o in the range § <o <1,
and for any real 9, there are arbitrarily large ¢ such that
R{ePlogl{s+it)} = (o~ (log £}t -*(loglog £)-".
Here log {(s) is, as usual, defined by continuous variation along lines
parallel to the real axis, using the Dirichlet series (1.1.9) for ¢ > 1. It
follows in particular that
. gy (og)'~*
= = <g<1),
o +it) n{exp (0_ "3 (loglog " G <o <1,
and the same for {(¢+if)~L For o=} the best result is due to

»
% (loglog t — logloglog t) + O(1)

Balasub ian and R handra {2], who showed that
. (log H)}
Tﬂ’fim'“**”" > EXPG (IUEIOKH)i)

if log T¥ < H < Tand T > T(3), where 4 is any positive constant. Their
method is akin to that of §8.12, in that it depends on a lower bound for a
mean value of |{(} +it)|?, uniform in k. By constrast the method of
Montgomery [3] uses the formula
(logy?
4 N i 2
z e”"’log{(a+it+iy)<¥) {1+cos(9+ ylogx) }dy
~(logn?
Al
= ﬂn""“(%—llogﬁl)-fo{x(logt)‘z}. (8.13.1)
Nlog el < 1087 x
This is valid for any real x and 9, providing that {(s) # Ofor R(s) > cand
{I(s) ~t| < 2(log )2 After choosing x suitably one may use the extended
version of Dirichlet’s theorem given in §8.2 to show that the real part of
the sum on the right of (8.13.1) is large at points ¢, < ... <ty < T, spaced
at least 4(log T)? apart. One can arrange that N exceeds N(o, T),
whence at least one such ¢, will satisfy the condition that {(s) # 0in the
corresponding rectangle.
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IX
THE GENERAL DISTRIBUTION OF THE ZEROS

9.1. In § 2.12 we deduced from the general theory of integral functions
that {(s) has an infinity of complex zeros. This may be proved directly
as follows.

We have
i N1, 3
gt <gtpgtagto = z+(§ )+(§—;)+ iy
Hence for ¢ > 2
W < 1yt st € 1o < ®.L1)
and TS 1—7—... > 1‘212_4.. > %. (9.1.2)
Also R{(s)} = 1+‘%§g2)+m > 1_7_ >1 (9.1.3)

Hence for ¢ > 2 we may write
log {(s) = logl{(s)|+-iarg {(s),
where arg{(s) is that value of arctan{I{(s)/R{(s)} which lies between
—3%n and 4. Tt is clear that
log{(s)i <A (o2 2). (9.1.4)

For o < 2, £ # 0, we define log {(s) as the analytic continuation of
the above funection along the straight line (o4, 24-it), provided that
£(s)  © on this segment of line.

Now consider a system of four concentric circles G, C,, G, Cy, with
centre 3+¢7' and radii 1, 4, 5, and 6 respectively. Suppose that {(s) 7 0
in or on C,. Then log{(s), defined as above, is regular in C;. Let A4,
M,, My be its maximum modulus on (), G, and C; respectively.

Since {(s) = O@4), R{log{(s)} < Alog T in C,, and the Borel-
Carathéodory theorem gives

2.5 6+5 ;
M mAlog T+mlog|§(3+lT)[ < AlogT.
Also M, < A4, by (9.1.4). Hence Hadamard’s three-circles theorem,
applied $o the circles €y, C;, G, gives
My, < Mg ME < AloghT,
where 1—o = 8 = log4flog5 < 1.
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Hence {(—14iT) = Ofexp(loghT)} = O(T*).
But by (9.1.2), and the functional equation (2.1.1) with o = 2,
Y= 1+iT)| > ATE.
We have thus obtained a contradiction. Hence every such circle ¢y
contains at least one zero of {(s), and so there are an infinity of zeros.

The argument also shows that the gaps between the ordinates of
successive zeros are bounded.

9.2. The function N(7). Let 7 >0, and let N(T) denote the
number of zeros of the function {(s) in the region 6 < 0 < 1,0 <t < T
The distribution of the ordinates of the zeros can then be studied by
means of formulae involving N(T).

The most easily proved result is

TueoRrEM 9.2, 48 T' >0

N(T+1)—N(T) = O(log T). (9.2.1)

For it is easily seen that

N(T+1D)—N(T) < n(¥5),
where n(r) is the number of zeros of {(s) in the circle with centre 2447
and radiug ». Now, by Jensen’s theorem,

3 27

f M gr — zi f log|{(2-+5T-+3¢%)| dd—log|¢(2+iT)].

[ ’ "0

Since [{(s)| < ¢4 for —1 <
log|{(2-+iT+3¢")| < AlogT.

o < 5, we have

s
Hence f f?dr < AlogT+A4 < AlogT.
3

Sinco f "y s, f M0 gy > nivs) J' & _ An(vs),

1
the result (9.2.1) follows.
Naturally it also follows that
N(I'+h)—N(T) = O(log T)
for any fixed value of k. In particular, the multiplicity of a multiple
zero of {(s) in the region considered is at most Olog T').
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9.3. The closer study of N(7') depends on the following theorem.}
If 7 is not the ordinate of a zero, let §(7') denote the value of
=-larg{(}+4T)
obtained by continuous variation along the straight lines joining 2,
2+47T, 3447, starting with the value 0. If 7' is the ordinate of a zero,
let S(T') = 8(T+40). Let

L(T):EI;rTlogT— (9.3.1)

THEOREM 9.3, 4s T' > ©
N(T) = L(T)+S(T)+0(T). (9.3.2)
The number of zeros of the function E(z) (see § 2.1) in the rectangle
with vertices at z = +74-3iis "V(T) 80 that
IN(T) = - f By,
E(z)
taken round the rectangle. Since _(z) is even and real for real 2, this
is equal to

2 T+ Fid ) » 2407 HHIT, £

£ =8y - £y,

m‘(f * f)~(z> m(J * f)f(a) g
7 ERET H 2457

—=Zaargta),

where A denotes the variation from 2 to 247, and thence to }4-i7",
along straight lines. Recalling that

£(s) = (e~ D)m~BT(Ja){(s),

we obtain )
aN(T) = Aargs(s—1}4Aargn i+ Aarg I'(Js)+ Aarg I(s).

Now Asrgs(s—1) = arg(—}—T%) = m,

Asrgm* = Aarge #1087 — 1T ]ogy,
and by (4.12.1)
Aarg [(}s) = Ilog ['(}+4i7)
= I{(—3+ 3T Nog(JiT)— $iT+0(1/T)}
= YT log {7 —3n— 4T+ O(U/T).
Adding these results, we obtain the theorem, provided that 7" is not the
ordinate of a zero. If 7 is the ordinate of a zero, the result follows from

t Backlund (2), (3).
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the definitions and what has already been proved, the term O(1/T) being
continuous.

The problem of the behaviour of N(T') is thus reduced to that of §( Ty

9.4, We shall now prove the following lemma.

Lemma. Let 0 < o < 8 < 2. Let f(s) be an analytic function, real for
real s, reqular for o > o except at s = 1; let

Rf2+it) 2 m >0

and o+ <My (@ 2o 1<E <Y
Then if T is not the ordinate of a zero of f(s)

1
larg flo+iT)] < (1ongx+1oga)+%" (0.41)

106{(2—41)/(2 B}
foro =B

Since arg f(2) = 0, and

arg f(s) = arcta.n{ 1/(s)

Rfis)’
where Rf(s) does not vanish on ¢ = 2, we have
Jarg f2+4T)| < §m.

Now if Rf(s) vanishes g times between 247" and g4-i7', this interval
is divided into g+1 parts, throughout each of which R{f(s)} > 0 or
R{f(s)} < 0. Hence in each part the variation of argf(s) does not
oxoeed 7. HEnoo lug e)| < (g4 (o 2 )

Now ¢ is the number of zeros of the function

9(2) = H{f e HiT)+f (z—iT)}

for 1(z) = 0, 8 < R(z) < 2; hence ¢ < n(2—B), where n(r) denotes the
number of zeros of g(z) for {2—2| < r. Also

2~-a 2—a
f @dr; f ﬁ‘}’dr;n@—ﬁ)logi%;,
i1 228

and by Jensen’s theorem

2-a 2w
[ ™ar — L [ toglgfe-+(2— )} d0—Togla(2)
o o
< log M, 540+ log 1/m.
This proves the lemma.
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‘We deduce
THEOREM 98.4. As T > 0
S(T) = Oflog T, (9.4.2)
) 1
ie. NT) = & Tlog T~ m T4-0(log 7). (9.4.3)

We apply the lemma with f(s) = {(a), a=0, =14, and (9.4.2)
follows, since {(s) = O(t*). Then (9.4.3) follows from (9.3.2).

Theorem 9.4 has a number of interesting consequences. It gives
another proof of Theorem 9.2, since (0 << § << 1)

LT+ D)—L(T) = L{T+8) = O(log T).

We can also prove the following result.

If the zeros B4-iy of U(s) with y > 0 are arranged in a sequence
Pn = Putiv, 50 that y,.y 2= y,, then as n—> o

loal ~ yp ~ Togn’ ©44) |
We have N(T)~ L TlogT.
£
Hence 2nN(yu£1) ~ (rak Dlogly, £1) ~ v, logy,.
Also Ny,—1) € n < Ny, +1).
Hence 2mn ~ y,logy,.
Hence logn ~ logy,,
2an

d ~

and so YV Tog

Also |p,] ~ y,, since 8, = O(1).

We can also deduce the result of § 9.1, that the gaps between the 4
ordinates of successive zeros are bounded. For if |S(t)| < Clogt (¢ 2),

T+H
N(T+H)—N(T):%f log%dt+S(T+H)-—S(T)+O(%)
T

H T 1
>3- log . — Cllog(T+H)+log T)+0(?),

which is ultimately positive if H is a constant greater than 4nC.
The behaviour of the function S(7') appears to be very complicated.

It must have a discontinuity k where 7' passes through the ordinate of °

& zero of {(s) of order £ (sinee the term O(1/7) in the above theoren is
in fact continuous). Between the zeros, N(T') is constant, so that the
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94
variation of S(T') must just neutralize that of the other terms, In the
formula (9.3.1), the term }is p bly overwhelmed by the v

of 8(T). On the other hand, in the integrated formula
T T e
f Ny dt = j Lty dt+ f 8(t) di+O(log T)
[ B [

the term in 8(7T") certainly plays a much smaller part, since, as we shall
presently prove, the integral of S(t) over (0, T) is still only O(log T).
Presumably this is due to frequent variationsin the sign of 8(2). Actually
we shall show that S(f) changes sign an infinity of times.

9.5, A problem of analytic continuation. The above theorems on
the zeros of {(s) lead to the solution of a curious subsidiary problem of
analytic continuation.f Consider the function

1
P =S 21 (9.5.1)
® Z 7
This is an analytic function of s, regular for ¢ > 1. Now by (1.6.1)
= S Em 0.5.2
P(s) = ,Zl . log L(ns). (9.5.2)

As n - 0, log{(ns) ~ 2-7. Hence the right-hand side represents an
analytic function of s, regular for o > 0, except at the singularities of
individual terms. These are branch-points arising from the poles and
zeros of the functions {(ns); there are an infinity of such points, but they
have no limit-point in the region o > 0. Hence P{(s) is regular for
o > 0, except at certain branch-points.

Similarly, the function

Q) = —P'(s) = — z wim 222 ©.5.3)

£(ns)
is regular for ¢ > 0, except at certain simple poles,
‘We shall now prove that the line o = 0 is a natural boundary of the
Sunctions P(3) and Q(s).
‘We shall in fact prove that every point of ¢ = 0 is 2 limit-point of
poles of @(s). By symmetry, it is sufficient to consider the upper half-
line. Thus it is sufficient to prove that for every u > 0, § > 0, the

square 0<o<s, uw<i<gutd (9.5.4)
contains at least one pole of Q(s).

t Landau and Walfisz ().
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As p - oo through primes,
1 1
F{pu-+3) ~ o (ut8)plogp,  N(pu)~ 5-uplogp,

by Theorem 9.4. Henoe for all p = p,(8,u)
N{p(u+8)}—N(pu) > 0. (9.5.5)
Also, by Theorem 9.2, the multiplicity v{p} of each zero p = 8+-iy with
ordinate y > 2 is less than 4 logy, where 4 is an absolute constant.
Now choose p = p(3, u) satisfying the conditions

1 2
p>5 P2y, p2pdu), p>Algptd).

There is then, by (9.5.5), a zero p of {() in the rectangle
i<e<l, pu<t< pluts). (9.5.8)
Since y > pu 2= 2, its multiplicity v{p) satisfies
v(p) < dlogy < Alog{p(u+3)} < p,

and so is not divisible by p.

The point p/p belongs to the square (9.5.4). We shall show that this
point is a pole of Q(s). Let m run through the positive integers (finite
in number) for which {(mp/p} = 0. Then we have to prove that

z‘%v(’%’) 0. (9.5.7)

‘The term of this sum corresponding to m = p is —u(p)/p. No other m
ocewring in the sum is divisible by , since for m > 2p
R('"_P)=m.ﬂ>if’;é= L
Fa ¥4 »

H #m) fme) _a_vlp)

ence Z ot F T
where a and & are integers, and p is not a factor of 6. Since p is also
not & factor of v(p), ap % bv(p), and (9.5.7) follows.

There are various other functions with similar properties. For

example,f let @
{dun)}
Salsy = > LETL,
1 ’Z; e
where % and ! are positive integers, & > 2. By (1:2.2) and (1.2.10),
Jix(8) is & meromorphic function of s if I=1, orif =2 and & = 2.
For all other values of L and k, f,4(s) has o = 0 as a natural boundary,
and it has no singularities other than poles in the half-plane ¢ > 0,
t Estermann (1).
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9.6. An approximate formula for {'(s)/{(s)- The following approxi-
mate formula for {'(s)/{(s) in terms of the zeros near to s is often useful.

THEOREM 9.6 (A). If p = B+iy runs through zeros of {(s),
e L oflog), (9.6.1)
W= 2, 5pT0sd

ok 5
uniformly for —1 < o < 2.
Take f(s) = {(s), 9 = 2+iT, r =12 in Lemma « of §3.9. Then
M = Alog T, and we obtain
L) 1 6.2
L85z —— 4 Olog T) (9.6.2)
4(s) ngtghp .
for [s—s,| < 3,and so in particularfor —1 Lo < 2,6=T. Replacing
T by t in the particular case, we obtain (9.6.2) with error O(logt), an‘d
—-1 < o < 2. Finally any term occurring in (9.6.2) but not in (9.6.1)is
bounded, and the number of such terms does not exceed
N(t-+6)—N(z—6) — O(log?)
by Theorem 9.2. This proves (9.6.1).
Another proof depends on (2.12.7), which, by a known property of
the I'-function, gives
26 (L 1)+0 log 1).
0 2 st O
Replacing s by 2-+it and subtracting,

v Z( ! L )+0(logt),

)~ £ s—p  2Fit—p,
since £'(24-it)/L(2+t) = O(1).
Now N 0(1) = Olog)
= = O(loy
M~yl<12+ﬂ_'a "‘g“ ) €
by Theorem 9.2. Also
( L 1 z 2—a
tencySient O P 2t l+ﬁ<y<l+n+l(87p)(2+lt_la)
1 1 log(H—n)J
= 0{<y—t>=}: 0(?‘)_ 0{ )

ten<yitntl ttn<y<intl

again by Theorem 9.2. Since

< log(t+-n log 2t log2n _
Z —g(nj. ) < z n2 + Z nF Oog 1),
K n>k

n=1 =t
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1 1
it follows that (f-——) = O(log?).
y;“ sop 2ti—p (log?)
1 1
Similarl; (——7——) = O(log?
ilarly 72‘_1 =, ZFi—p, (log 2)

and the result follows again.
The corresponding formula for log {(s) is given by
THEOREM 9.6 (B). We have
! = I — O(logi 9.8.3
oglis) = 3 logle—p)+Ollog1) 9:6.3)

uniformly for —1 < o < 2, where log{(s) has its usual meaning, and
—n < Tlog(s—p) <
Integrating (9.6.1) from s to 2--#2, and supposing that ¢ is not equal
to the ordinate of any zero, we obtain
log {(s)—log {(24-12t) =, ;<l{log(s—/z)—log(2+it—p)}+0(log t).
~71

Now log {(2-if) is bounded; also log(2+it—p) is bounded, and there
are Olog?) such terms. Their sum is therefore O(log?). The result
therefore follows for such values of ¢, and then by continuity for all
values of s in the strip other than the zeros.

9.7. As an application of Theorem 9.6 (B) we shall prove the following
theorem on the minimum valus of {(s) in certain parts of the critical
strip. We know from Theorem 8.12 that |{(s)| is sometimes large in
the eritical strip, but we can prove little about the distribution of the
values of ¢ for which it is large. The following resultt stetes a much
weaker inequality, but states it for many more values of ¢.

TaroreM 9.7. There is a constant A such that eack interval (T, T+1)
contains a value of ¢ for which

) >4 (~l<os2). (9.7.1)
Fugther, if H is any number greater than unity, then
14(s)| > T-47 9.7.2)
for -1 <o<2, T <t < T+1, except possibly for a set of values of ¢
of measure 1/H.
Taking real parts in (9.6.3),
log|{(s) =|‘A§<Ilogls—Pl+0(log f)

> u—§< l10g[t-'7l+9(1°8 - (9.7.3)

4 Valiron (1), Landau (8), (18), Hoheisel (3).
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Now .
T+1 min(y+1,7+1)
logjt—y| dt = loglt—y| dt
i" 11-§<1 i T—Kgsrﬂmx(;’.lm g
loglt—y| dt
= 1<1<T+2 J.! oglt—7|
= 2) > —AlogT.
T*l<§<T+l ( ) = 8
Hence loglt—y| > —Alog T
I‘_g‘l glt—y g

for some ¢ in (T, T+1).
Hence log|{(s)| > —Alog T for some ¢ in {7,741} and all ¢ in
—1< o< 2 and
logj{(s)| > —4Hlog T
except in a set of measure 1/H. This proves the theorem,
The exceptional values of ¢ are, of course, those in the neighbourhood
of ordinates of zeros of {(s).

9.8. Application to a formula of Ramanujan.t Let a and b be
positive numbers such that ab = =, and consider the integral
L J' aw TO) g, L (PTd—s)
o T(1=2s) Zmi ) Vo 0(29)
taken round the rectangle (1+47', —}--iT). The two forms are equiva-
lent on account of the functional equation.
Let 7' - co through values such that | T'—y| > exp(—4, y/logy) for
every ordinate y of a zero of {(s). Then by (9.7.3)
log Uo+iT)] 3 — 3 dyyflogy+0llogT) > —4,T
i<

where 4, < 1 if 4, is small enough, and 7 > 7. It now follows from
the asymptotic formula for the I'function that the integrals along the
horizontal sides of the contour tend to zero as 7' — oo through the above
values. Hence by the theorem of residues}

1 —}+in o) 1 1+t bor F(# )
» 8, —38;
27;';&[@ i ® 2_m'lf e g(2s) do

Ld—1p)

= po-i2—2P)
2‘/‘” Z T
1 Hardy and Littlewood (2), 156-9.
} In formiug the seris of esiduse we have supposed forsimplisity that tho seros of L)
aro all simpl
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The first term on the left is equal to
~3tin

= i L(n") e

n=1
Evaluating the other integral in the same way, and multiplying through
by va, we obtain Ramanujan’s result
@ o
va Z L‘(nl) p~aim® __\ z lﬁ? e—oim® _2% Z o P3P}
n=1 n=1
(9.8.1)

‘We have, of course, not proved that the series on the right is eon-
vergent in the ordinary sense. We have merely proved that it is conver-
gent if the terms are bracketed in such a way that two terms for which

ly—y'| < exp(—4,y/logy)-+exp(—4,7'[log¥)
are incladed in the same bracket. Of course the zeros are, on the average,
much farther apart than this, and it is quite possible that the series may
converge without any bracketing. But we are unable to prove this,
even on the Riemann hypothesis.

9.9. We next prove a general formula concerning the zeros of an
analytic function in a rectangle.t Suppose that ¢(s) is meromorphic in
and upon the boundary of a rectangle bounded by the lines t =0,
t=17,0=a,0=48(8 > o), and regular and not zero on ¢ = §. The

function log¢(s) is regular in the neighbourhood of ¢ = 8, and here, }

starting with any one value of the logarithm, we define F(s) = log ¢(s).

For other points s of the rectangle, we define F(s) to be the value '
obtained from log ¢(84-it) by continuous variation along ¢ = constant 1
from B+it to o+it, provided that the path does not cross a zero or

pole of ¢(s); if it does, we put
F(s) = lim F(o-+ittie).
erto

Let v(o', T') denote the excess of the number of zeros over the number

of poles in the part of the rectangle for which ¢ > o', including zeros ¢

or poles on ¢ = 7, but not those on ¢ = 0.

[ .
Then j F(s)ds = —2mi ( o, T) do, (9.9.1)

the integral on the left being taken round the rectangle in the positive

direction,
T Littlewood (4).
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We. may suppose ¢ = 0 and ¢ = 7' to be free from zeros and poles of
${s); it is easily verified that our conventions then ensure the truth of
the theorem in the general case.

‘We have
B T
| Fsyas = | F@ydo— | FlotiT) dot- [P (B-ti—Flatin} iar.
& & o
The last term is equal to ©e
(o foorin, T o0
s qp [ $loti :J' J’ $'(s)
nf o St do=[ao [ G8as
and by the theorem of residues
GHAT B BT B+,
() go _ J' #'(s) ;
I % s — (,, +} _ML G B, 1)
= Flo-+iT)—F(o)—2miv(a, T).
Substituting this in (9.9.2), we obtain (9.9.1).
We deduce
T
TueoREM 9.9. If 8Ty = J. St dt,
0
2
then 8Ty =;1; f logiZ(o+iT}| do-+O(1). (9.9.3)
H

Take ¢(s) = {(s), o = }, in the above formula, and take the real part.
We obtain

8 T £

[ log!t(e)t do— [ axg 8(8+i0) di— | log) (o-+iT)| da+

i ° i g

+ j argl(3+idi = 0, (9.9.4)
[
the term in »{o, T), being purely imaginary, disappearing. Now make
B co. We have
log {{s) = log(l+2lfx+“.) = 0(2-°)

As o - oo, uniformly with respect to ¢. Hence arg {(s) = O(2-°), so that

the second integral tends to 0 as §—> 0. Also the first integral is a
constant, and

8
log| {a+iT)| do = [ O(2-9) do = O(1).
H {
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Hence the result.
THEOREM 9.9 (A).
By Theorem 9.6 (B)

8(T) = O(log T).

3 2
if loglge)ldo =, 3 !f logis—p| do-+O(log ).
The terms of the last sum are bounded, since

3 .
$log3+1) > [ loglio—BY+(y—%} do > 2 [ loglo—p| do > ~A.
H 4

3
Hence f log| {(s)| do = O(logt), (9.9.5)
i

and the result follows from the previous theorem.
It was proved by F. and R. Nevanlinna (1), (2) that

JT‘%Q dt = A+0(“L§£)< (9.9.6)
F

This follows from the previous result by integration by parts; for
T T @
8 4, [S0] S gy 8yT) RG]
f g~ [‘7], + f B g a4 54D J'?_ a.
i i Ed
Since 8,(7") = O(log T'), the middle term is O(7-'log T'), and the last
term is

mlogt _ log t]= mgt _ oflog T
offere)-of- e o))
T 7
Hence the result follows. A similar result clearly holds for
T

J'STf”dz O<a<l)

i
It has recently been proved by A. Selberg (5) that

8(t) = Q. {(log H¥(loglog t) 3} (9.9.7)
with a similar result for §,(¢); and that
8, = Q,{(logt)t(loglog 1)-4}. (9.9.8)

9.10. THEOREM 9.10.1 S(¢) has an infinity of changes of sign.
Consider the interval {(y,,¥s4,) in which N(¢§) = n. Let () be the
+ Titchmarsh (17).
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linear furiction of ¢ such that I(y,) = S(y.), {yas1) = S(yus1—0). Then
for y, <t <ypn

U —8(t) = {Styann—0)—Sra)}

Y (59— Stva)}
Pns1—¥n
- 1
= (Bl L) =2 (0~ L0 L),
Va1 "V Y
using (9.3.2) and the fact that N(¢) is constant in the interval. The first
two terms on the right give
=L E =)+ L' ()lt—ya)  (rn <9 <t yu <& <ypn)
= L&) (n—E)t—yn) (£, between £ and 7)
= O(L}y,)
since y,,;—y, = O(1). Hence
gt ot
J S dt = f 1 dt+0(ﬁ-‘-‘;7")
rm e ™ _
= Hmammn)(S00n) Sty =0+ 0[2222=72),
Suppose that S(t) 3 0 for ¢ > f,. Then "
Niy,) 2 Ny, —0)+1
gives S(rm) 2 Sra—0)41 > L.
Hence Yoot
| s0at > yonamyaoftazre)

" 2 Hran—va) (8 =)

”w
Hence | swa = toy—rah
Vuy

contrary to Theorem 9.9 (A). Similarly the hypothesis S(t) < 0 for
t > {, can be shown to lead to a contradiction.

It has been proved by A. Selberg (5) that S(t) changes sign at least

T(log T)ie-Arlovlos T

times in the interval (0, T').

9.11. At the present time no improvement on the result

S(T) = Ollog T)

is known. But it is possible to prove directly some of the results which
would follow from such an improvement. We shall first provet

THEOREM 9.11. The gaps between the ordinates of successive zeros of

$(8) tend to 0.
1 Littlewood (3).
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This would follow at once from (9.3.2} if it were possible to prove that
8(8) = o(logt).

The argument given in § 9.1 shows that the gaps are bounded. Here
we have to apply a similar argument to the strip T—38 <t < T+38,
where 8 is arbitrarily small, and it is clear that we cannot use four
coneentric circles. But the ideas of the theorems of Borel-Carathéodory
and Had d are inno way ially bound up with sets of concentric
circles, and the difficulty can be surmounted by using suitable elongated
curves instead.

Let D, be the rectangle with centre 3¢ T and a corner at —34-i(7'-+-8),
the sides being parallel to the axes. We represent D, conformally on the
unit circle Dj in the z-plane, so that its centre 3-+¢7" corresponds to
z = 0. By this rep ion a set of ic circles |z] = r inside
Dy will correspond to a set of convex curves inside D), such that as
7~ 0 the curve shrinks upon the point 3--iT, while as r 1 it tends
to coincidence with D,. Let D}, Dj, D; be circles (independent, of course,
of 7') for which the corresponding curves D,, D,, D, in the s-plane pass
through the points 2+4+¢7', — 1447, —2+4iT respectively.

The proof now proceeds as before. We consider the function

f2) = log L{a(2)},

where & = s(2) is the analytic function corresponding to the conformal |

representation; and we apply the t of Borel-Carathéodory and
Hadamard in the same way as before.
9.12. We shall now obtain & more precise result of the same kind.{
TaEOREM 9.12. For every large positive T, {(s) kas a zero B+iy
satisfying

A
ly=T1 < logloglog T*

This was first proved by Littlewood by a detailed study of the con- -

formal representahon used in the previous proof. This involves rather
lations with elliptic functi ‘We shall give here two
proofs which avoid these calculations.

In the first, we replace the rectangles by a succession of circles. Let
T be a large positive number, and suppose that [(s) has no zero S--iy |

such that 77—8 < y < T'4-§, where 8 <C }. Then the function
flo} = log L{s),
where the logarithm has its principal value for ¢ > 2, is regular in the
rectangle _2<o<3, T-5<t< T+5.
+ Littlowood {3); proofs given here by Titohmarsh {13), Kramaschke (1),
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Let c,, C,, C,, T, be four concentric circles, with contre 2— {v8+47, and
radii }3, %5 33, and 3 respectively. Consider these sets of circles for
v="0, L., n, where » = [12/5]4-1, so that 2—}nS < —1, ie. the

centre of the last circle lies on, or to the left of, ¢ = —1. Let m,, M,
and M, denote the maxima of |f(s)| on ¢,, C,, and G, respectlvely
Let A,, A4,,... denote absol (lt is i to preserve

their ldentlty throughout the proof). We have R{f(s)} < A,log T on
all the circles, and |f(2+iT}| < 4,. Hence the Borel- Carathéodory
theorem for the clrcles G, and I, gives

2 5 (Alog T+4,) = 7(A4,log T+4,),

and in paniculm-
FE—184iT)| < (4, log T+ 4,).
Hence, applying the Borel-Carathéodory theorem to C,and I},
M, < T{d,log T+ |f(2— 15 +iT)|} < (T-+7%)d,log T+ T°4,.
So generally M, <(T+4...+7+)4,log T+ T+14,,
or, say, M, < A log 7. (9.12.1)
Now by Hadamard’s three-circles theorem
M, < meMe,
where ¢ and b are Ppositive constants such that a4-b = 1; in fact
e = log3/log3, b = log 2/log 3. Also, since the circle C,., includes the
cirele ¢,, m, < M,_,. Hence
M, MM (v=1,2,.,n).
Thus My << MEMY, iy < MEM} < MEMPMS,
and so on, giving finally
ampfer Nt b
Hence, by (9.12.1), M < MEMETMETS. M
M, < M7 0428 M0t knb( 4 log T)e™"b4a""4td,
a4 20" 2%t fnb < nt,
arhar-tht .. 4b = b(l—am)j(1—a) — 1—an,
Hence M, < MET(d,log TY=0" < 4,7 (log TH-o",
since M, is bounded as 7' co.
But [{(s)] > t4 for 6 < ~1, ¢ > ¢, s0 that M, > Aglog T. Hence
A5 <A, 7(log Ty,

loglog 7 < {1)"(n210g 7—10g
oglog <(a) wtlog T—log 4.

Now

logloglog 7' << n log;l +A4glogn,
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A
that S
5o <z < logloglog 7"

and the result follows.

9.13. Second Proof. Comsider the angular region in the s-plane
with vertex at s = —3+i7, bounded by straight lines making angles
+ 3a(0 <& < 7)) with the real axis.

Let w = (s+3—iT)=,

Then the angular region is mapped on the half-plane R(w) =
point 8 = 2447 corresponds to
w = b,

w— B
= ot
Then the angular region corresponds to the unit circle in the z-plane,
and 8 = 2447 corresponds to its centre z = 0. If 8 = ¢+¢7 corre-
sponds to z = —r, then

1—r
rie — g = Gl
(0+3) w =5 )

R

Suppose that {(s) has no zeros in the angular region, so that log {(s) is
regular in it.

0. The

Let

Lot 8 = $-+iT, —14+iT, —2+iT correspond to 2z = —ry, —rg, —75 |
respectively. Let M, M,, M; be the maxima of [log {(s)| on the s-curves

corresponding t0 |z| = 7y, g, 73. Then Hadamard’s f.hree—cxrcles theorem
gives

logM, < log r,;:, log M, +5 log r,;r, log M,

It is easily verified that, on the curve corresponding to |z| = ry,

o 2 3. Forif w = £+4iy, then
o= _3+(§¥+7,l)ﬂ/“cos(5atct&n%),

which is a minimum at n = 0, for given §, if 0 < « < 4n; and the
minimum is —34 £%7, which, as a function of ¢, is & minimum when ¢
is a minimum, i.e. when 2 = —r;. It therefore follows that log M; < 4.

Since Rflog{(s)} < Alog T in the angle, it follows from the Borel-
Carathéodory theorem that

M < —(Alog T 4) < Al08T A"’ST
I
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log ra/ry 1—r,
Now if 7y, 75, and ry are sufficiently near to 1, i.e.if x is sufficiently small,

tograr, 4
log ry/r; log| ( i =

Hence log M, < A+ 1087, (A log T)

1—ry 1—r,

= _ Lbn Ton 1ty g

and
7o=h T Ty T T S
147 I4rg
< 1—A{g)m,

log ry/r,
Hence B Ta/Ty 3y

log ry/r, < 1-dgy
Also 1/(1—ry) << A5mia,

Hence  logM, < A+(1_A(gy/a}{1og10g T+ Tlog 5+A}.
Let a = n/(clogloglog T'). Then
log M, < 4-+{1—A(loglog T')-"=4}{loglog T+clog 5logloglog T+ 4}
< loglog 7'—{loglog T}
if ¢log$ < 4 and T is large enough. Hence
My <log Teoaoe < elog T (T > Tyfe)).

In partioular logl{{—1+4T)| < elog 7,

U—144T)| < Te.
But U= 144T)] = |x(—1+iT)2—iT) > KTH.
We thus obtain a contradiction, and the result follows.
9.14. Another resultt in the same order of ideas is
THEOREM 9.14, For any fixed h, however small,
N(T+h)—N(T) > Klog T
for K = Kk), T > T,

This result is not a consequence of Theorem 9.4 if % is less than a
certain value,

Consider the same angular region as before, with & new « such that

+ Not previously published.
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tana < }, and suppose now that [(s) has zeros p;, py-... s In the
angular region. Let
Fls) = ()

(5—po)3—pa)
Let C be the circle with centre 3-+¢7" and radius 3. Then [s—p,| 2> 1
on €. Heneo 1P| < 116 < T4
on O, and so also inside C.

Let f(s) = log F(s). Then f(s} is regular in the angle, and
Rf(s) << Alog T.

Also o .
FEHT) = log U +T)— 3 logi2-+iT—p)
— o+ go(]) = 0n).

Let M,, M,, and M; now denote the maxima of |f(s)| on the three

s-curves. Then
My <

A -
l—r3(10g7—' n).
Also M, < An, as for f(2+iT). Hence

log |[f(—1+4iT)| < log M,

logry/ry
“logr Tog rafr; (A+10gn)+lﬂg" /ry

log ry/ry 1 (log T)}
< A+logn+ Tog o, logl_r —+log|

logre/ry lo {A(n+log T)}

< Atlognt{1— A(‘)"/"){ loga+log( °gT),
as before. But N
(= 14T)] = |log {—14iT)— 5, log(—1+iT—p,)

> log|L{{—1+iTH— 2 0)
> A, log T— A4y,
say. If n > }(d,/4,)log T the theorem follows at once. Otherwise
[f(—14iT)| > 34, 1og T,
and we obtain
103(1"_31) < A+{1—A(g)n/a){’_’1og 5+10g(1°g 7)},
n o n

A= log(log T) < A+H{1—-A(fym) Tlog5,
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and hence Ioglog(loi

1 4
< zIogg-f_log-—{—A <=
« T4 o «
n > e¢log T.
This proves the theorem.

9.15. The function ¥(o, T). We define N(o, T) to be the number
of zeros By of the zeta-function such that 8 > o, 0 < ¢t < 7. For
each 7', N(o, T') is a non-increasing function of o, and is 0 for ¢ 2> 1.
On the Riemann hypothesis, N(o, T) = 0 for ¢ > }. Without any
hypothesis, all that we can say so far is that

Nio,T) < N(T) < ATlog T
for} <o<l
The object of the next few sections is to improve upon this inequality
for values of @ between } and 1.
We return to the formula (9.9.1). Let ¢(s) = I(s), a = o, B = 2,
and this time take the imaginary part. We have

o, T)=N(@,T) (e<<l), Ho,T)=0 (@=1)
We obtain, if 7 is not the ordinate of a zero,

1 7 T
2 [ N(o,T)do = jloggz(u.,+it)J dt— jlogjg(zﬂz)} dt+
oo 0 o

+ f arg {{o+iT) do+ K(ay),
%
where K(c,) is independent of 7. We deducet
THEOREM 9.15. If} < 0y < 1,and T - o0,
o f N(o,T)do = flog\ Uog+it)| dt+O0log T).
4 [
We have

Ay(n) n-T—1
—ilogn

flog]§(2+1t)] dt=R Z = oq).

Also, by § 9.4, arg{(¢+¢7") = O(log T') wniformly for o > 3, if 7' is
not the ordinate of a zero. Hence the integral involving arg ;(q+zT)
is O(log I'). The result follows if T is not the ordinate of a zero, and
this restriction can then be removed from considerations of continuity.

1 Littlewood (4).
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TaEOREM 9.156(A).t For any fized o greater than },
N, T)= O(T).
For any non-negative continuous f(f)

b b
b_ia f log f(f) dt<log[bTIE J' 7o .u}.

Thus, for } <o <1,

T T
[ toglgto-tityide = 4 [ loggo-tityt ai
a ;

< wog{% fT 1z(a+»‘z)th] = o)
by Theorem 7.2. Hence, by Theorem 09.15,
f N, T) do — O(T)
for o, >> . Hence, if u,q—; 1+ 3Hoy—13),
o 1
Nioo T) < ;o-l.;lof Nio, T)do < %{j Nio,T)do = O(T),

the required result.

From this theorem, and the fact that N(7T) ~ ATlog T, it follows
that all but an infinitesimal proportion of the zeros of {(s) lie in the strip
-8 < o < 343, however small § may be.

9.16. We shall next prove a number of theorems in which the O(T)
of Theorem 9.15(A) is replaced by O(7%), where § < 1.} We do this by
applying the above methods, not to {(s) itself, but to the function

Lowdx(s) = 2ts) >, 0,
<X

The zeros of {(s) are zeros of {(s)Mx(s). If o > I, My(s)-> 1/l(s) as
X — o0, s0 that {(s)Mx(s) -» 1. On the Riemann hypothesis this is also
true for <o < 1. Of course we cannot prove this without any
hypothesis; but we can choose X so that the additional factor neutralizes
to a certain extent the peculiarities of I(s), even for values of rless than 1.
Let Sz(8) = {(s)Mx(s)-1.
+ Bohr and Landau (4), Littlewood ().
% Bohr and Landau (6), Carlson (1), Landau (12), Titchmarsh (5), Ingham (5,

9.16 GENERAL DISTRIBUTION OF ZEROS 231
‘We shall first prove
TrrorEM 9.16. If for some X = X(o, T), T < X < T4,
T
[ @2 dt = O(T%lognT)
ir

as T'—co, uniformly for o > o, where (o) is @ positive non-increasing
Sfunction with @ bounded derivative, and m is @ constant 2> 0, then

- N(o,T) = O(Tlogm\T)
uniformly for o = at1flog T.

We have fx(s)zl(s)z"%flzz%f),
fre

where ¢,{X) = 0,
2,(X) :‘ﬂfﬂ#(d) =0 (n<X),

and fa,(X)] = Lmz #(d)‘ <dw
for all n and X. <X
Let 1% = L2~ M) — Lolg(s) == (s)

say, where g(s) = gy(s) and A(s) = kx(s) are regular except at s = 1.
Now fore = 2, X > X,,

N - 1 1
1o < ( > dfT”)) —oey < <l
nzX

50 that i(s) 3 0. Applying (9.9.1) to A(s), and writing

(o, T, ) = v(o, Ty)—v(e, Th),
we obtain

H T
Zﬂfy(o,%T,T)(lo' = [ {log Ioo-+it) | —log | (2-+in)]y di +-
£ ir

2
- [ g ho--iT) —arg Mo+ 4iT)} do.

Now tog | h(s)| < log{1+ifx(8)|%) < |fx()I%

so that, if 65 22 o,

T Ed
[ loglhoy+it)| dt < | ifx(og+it) 2 dt = O(T"Vlog™T).
i 7
Next

—log [A(2+it)] < —log{l—Ifx(2-+if[} < 2fx(2+ith? < X-1
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50 that — f log|h(2+1t)[dt< — O(THew).

Also we can apply the lemma of §9.4 to A(s), witha =0, 8 >},
m > §, and M, = O(X4T4). We obtain

h(s) = O
fora >3, Honee argh(s) (log X +log?)
j {arg {a+-iT)—arg ho+4T)} do = Olog X +log T) = O(log 7).

2
Hence [ v(0, 47, ) do = O(T%enLogn ).
Also -
2 2
[ #0347, Ty do > [ Mo AT, 1) do > (01— 0 V(e 4T, T)
if 0y << 0y < 2. Taking o; = 0+ 1/log T', we have
THo0 — THodtOo—o0 — ((Ted),
Hence Ny, 3T, T) = O(T%dlognhiT),
Replacing 7' by 37, $7,... and adding, the result follows,
9.17. The simplest application is
THEOREM 9.17. For any firxed o in } < o < 1,
N(o, T) = O(Tiett-orse),
We use Theorem 4.11 with # = 7T, and obtain

= 3 05 > B oy
m< <X

m'

X
=z bal )+0(’1'~°X1-") (9.17.1)

where, if X < 7, b,(X) = 0 for n < X and for n > XT; and, as for
a,, [b,(X)]| < d(n) = O(n*). Hence

p e P ZZWI ()
=013 )10 35 carig)

A<M XT

= O(TX1-20+¢) 4 QX T)2-20+¢}

ir
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by (7.2.1). These terms are of the same order (apart from ¢’s) if
X = 7?1, and then

T
i |Z b———"ﬁ’ra = O(Twlt-9+1),
T

The O-term in (9.17.1) gives
O(T1-w X220y = O(T1-2X) = O(1).
The result therefore follows from Theorem 9.16.

9.18. The main instrument used in obtaining still better results for
N{(o, T) is the convexity theorem for mean values of analytic functions
proved in §7.8. We require, however, some slight extensions of the
theorem. If the right-hand sides of (7.8.1) and (7.8.2) are replaced by
finite sums 3 O(Te+1), 3 o),
then the right-hand side of (7.8.3) is clearly to be replaced by

KIS (OTa)<ﬂwr/(ﬁ~a)(c'Tn)(o—au(ﬂ—uL

In one of the applications a term T=log*T occurs in the data instead
of the above 7% This produces the same change in the result. The only
change in the proof is that, instead of the term

o
\atza-t K
J. (g) e du = Satia-1
é
we obtain a term

? \a+2a-1 ‘E 2w
f (3) log! 3¢ du
[

£ f\atgat 1 1 K 1
- J' (%) {log‘s-}—‘llog’slogu+“.}e‘“ du < g logts
i

TurorEM 9.18. If L(}+it) = O(t°loget), where ¢ < 3, then
Nia, T) = O(THr=e1-210g5T)
uniformly for } <o << 1.

If 0<d<,
T
ax(max(n) [ fm\*
f L8+ dt = ZX Z o (;) d
E b
a%(n) @ x(m)ax(n) sin(T log m/n)
=13 S22 2 AT g

"
<r3 S 5 s det)

X<m
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__dim)d(n)
Now' 4%n) < Azlog’r, E E 3,
TZI (n) 8 2, 2 mnFlognim < Azlogiz.
Hence

Zd(n) z d’(n)fl+§dx J‘l+§ d’('n)dx
x&x

(1184 AQL1g) [ logd(Xyl#
<f Odlog 4, _ AULY )f °g"yzy ) ay
X 1

{putting x = Xy'¥) fo(IOgX + f)
d*(n) _ Alog3X
Hence z ey X‘lf:s b

since X — ¢®logX &(2«3 log X ).
Also, since 1 <logA+A-1 < logA+x-#
fora>1,
d(m)d(n) d(m)din) dim)d(n)
g% (mn)+¥logn/m < z z {mn)i+ + ng:m; mEn+E(mn)? log nfm

d
(S35 ot L

1<m<n

< U+8+ J‘ 1;522( d(m)d(n)
1

{mn)Flognjm n/m

<vro+ [UETeE 2
: ,

T
Hence j[fx(1+8+it)|*dt < A(§+ 1)5»4. (90.18.1)
3
For ¢ = } we use the inequalities
- Ifx* < 20108 Mx|241),
[sinpa< T3 E ee) g >3
F

mn)l lognfm

<7> e
z g,«zx (mn)t log njm
< A(T+X)lo X,
by (7.2.1). %
t The first result follows easily from (7.16.3}; for the second, see Ingham (1); the
argument of §7.21, and the first result, give an extra logz.
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T
Honce [ Ifx(+itll2dt < ATS(T+X)log¥(T+2)logX.  (9.18.2)
6
The convexity theorem therefore gives
» -
[ \fxloinie e
T

s
= of(F+1)p T i g 2pog Tyt

—olT+X Tad1-o)
= l_sT Xt
Taking 5 = 1/log(7'+X), we obtain
O{(T+ X)Tea-0X1-2logh( T+ X)}.
If X = T, the result follows from Theorem 9.16.
For example, by Theorem 5.5 we may take ¢ = }, ¢’ = §. Hence
Nio, T) = O(TH1-9logsT). (9.18.3)
This is an improvement on Theorem 9.17 if ¢ > §.
On the unproved Lindelof hypothesis that {(3-+it) = O(t¢), Theorem
9.18 gives N{o, T) = O(T21-o)+),

(X Tee)fo-08ircd +9(38 1ogd( T+ 2)log X)ya+3-ond «‘57}_

9.19. An improvement on Theorem 9.17 for all values of o in
} < @ < 1is effected by combining (9.18.3) with

TuroreM 9.18(A). No, T) = O(Th-7logsT).

We have

r r
[ irxtrinieas < 4 [ 1a+ior Hy@+inp dit-AT
: i

T T }
<A[ [ 1ta+iora | |Mx<;+mrd¢} +AT.
J

Now My = > 2 e, < dln).
<X‘n
Hence
d(n) d{m)d(n)
f{Mx(}-Ht)l‘dt <7 z +2 ZKZX () lognjm
< ATlog!X +AX%log*X.

r
Heneo [ |fx@+ifl2dt < ATHT -+ X9 og(T+2)log?X.  (9.10.1)
8
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From (9.18.1), (9.19.1), and the convexity theorem, we obtain
T
| xloinyizde
LERVERS)
= of(F+ 1)) i g+ g xyss ok,

If X = T%, 35 = 1flog(T4-2), the result follows as before.

This is an improvement on Theorem 9.17 if } < o < #.

Various results of this type have been obtained,} the most successful}
being

TrEOREM 9.19(B). N(o, T) = O(T%-2-0logsT),

This depends on & two-variable convexity theorem;§ if
T A
Jlo,3) = { [ a+inp dt} .
3

then (o, phtgu) = O[T, NJB, )} (x <o < f),
B—o o—a
A= TR

‘where p=
‘We have

T @
[ @it a < A [15Q-HO8 M3 +i)[$ dit AT
o o

T i .
< A{a[ i af | [Larioe a + a7
q

< A{Tlogh T+ 2P {(T+X)og X} + AT
< AT+ X)log¥ T+ X). T (9.19.2)

In the two-variable convexity theorem, take o = }, 8 = 1-+§,2 = §,
=}, and use (9.18.1) and (9.19.2). We obtain

T
| xlotinx at
o
< A{(T 4 X)log¥(T+ X)jha~ n&y/ﬂ—.‘wis»{( +1)5 «:‘"’%""1’:"*‘}3’,
where K = pA+gu lies between } and §. Taking X = 7, § = 1/log 7',
we obtain T

| UslotinvE dt < ATx-or-alogsr.
4

t Titchmarsh (5), Ingham (5), (6). 1 Togham (8). § Gabriel (1).
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The result now follows from a modified form of Theorom 9.186, since
log | 1—f%| << log(1-4 [fx[%) < Alfx V5.

A. Selbergt has recently proved

TagorEm 8.19(C). N(o,T) = O(Tt¥o-Plog T}
uniformly for <o

This is an improvement on the previous theorem if o is a function of 7'
such that o—} is sufficiently small.

9.20. The corresponding problems with o equal or nearly equal to }
are naturally more difficult. Here the most interesting question is that
of the behaviour of N
j N(o, T) do (9.20.1)
¥

as T — co. If the zeros of [(s) are f--iy, this is equal to

1 8
1) do = do = —3).
{ (ﬁ>ﬂ,0§y<T ) 5>§,£7<T { i 5>).oz<ysz'(ﬂ i)
Hence an equivalent problem is that of the sum
> 184l (9.20.2)
o0<yET
There are some immediate results.{ If we apply the above argument,
but use Theorem 7.2(A) instead of Theorem 7.2, we obtain at once

1
f Nio,T) do < ATlog{miu(log T,10g ! 1!)] (9.20.3)
-
for } < o, < 1; and in particular
1
f N{o, T) do = O(T loglog T). (9.20.4)
These, h , are ded by the foll g analysis, due to
A. Selberg (2), the prmclpal result of which is that
j N{o, T)do = O(T). (9.20.5)
1
We consider the integral
T+U
zj [E+iOpE+inl* b,
+ Selberg (5). 1 Littlewood (4).
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where 0 < U < T and y is a function to be specified later. We use the
formulae of §4.17. Since

, R b,
o — (x3Hiyt = (‘fie) Bt +0(:)]
we have Z(t) = «t)+2) -0, (9.20.6)
AL g
where 2(t) = (m) 5 3"1’2::, tad
and x = (#/2mk. Let T < ¢
Let

T+U, 7= (T)2a)}, 7 = {(T+U)/2n)},

Y A L it
z,(t)_(z—”e) ¥ ;nx .

Proceeding as in § 7.8, we have
T+U

f [z(t)-z,(t)l‘dt:O(U s %)-{—O(T%logT)
r

T<ngT
- o(U" ")+0(Tilog )

= O(U¥T)+0(Ttlog T). {9.20.7)
9.21. Lemya 9.21. Let m and n be positive integers, (m,n) =1,
M = max(m,n). Then

r+U
(n\# v
f z‘(t)z,(t)(%) it = WZM Lrogriarsioguay.

7

T+U
N . 1 ny\#
The integral is f (_) a.
i 3 2 ;e
The terms with my = nv contribute
1 1
U =
Z Z ()t v Z (rn. rm); mn)i z r
mp—my mETImEr
The remaining terms are

N33 o) = 2. 2. twogwme)

ey m,uam

- o[ . MZM, o Iog gl } O{Mrlog(M~)),
and the result follows.
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9.22. Lemma 9.22. Defining m, n, M as before, and supposing

TY<U<T,
T+U
a0 a= Y 5 Liomrhowrm+orh
] A0 =, 2

(9.22.1)

ifn < m. If m <n, the first term on the right-hand side is to be omitted.
The left-hand side is

“ﬁg, Z,(;TV){ j (%WVM)

The integral is of the form considered in § 4.6, with
2apvm

t
Ft) = tloga, o=

Hence by (4.8.5), with Ay = (T+U)1, Ay = (T4 U)?, it is equal to

i ! i
@neYetri-ic L O(TH +O{mm(llogc/T|,T )}

1
f Yy
+ o{mm(logl(T+ U)/cI’T )}, (9.22.2)

with the leading term present only when T'< ¢ < T+ U. We therefore

obtain a main term
m\} —2mipvmin
2,.(") Z 2 -t (9.22.3)
pET ST

where p and v also satisfy
afm < py < v'nfm.

The double sum is clearly zero unless n < m, as we now suppose. The
v-summation runs over the range v, < v < v,, where v, = 12n/my and
v, = min(z'2n/my, 7), and px runs over tn/m < u < 7. The inner sum is
therefore v, — v, + O(n) if nlyt, and O(n) otherwise. The error term O(n)
contributes 0{(mn)91} = O(MT?) in (9.22.1). On writing p = nr we are

left with
2n (ﬂ>’ Y vy-vp)
R ym<r<n

Let v; = 7'2/mr. Then v, = v; unless r < 1'2/mz. Hence the error on
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replacing v, by v, is
AP 8 ool EHE 5]
ol (2 ol ()

= O(U2T-1)+ O(MAUT -3,

Finally there remains

m\} m\} 2 72
2n( = (rg—v )=2n<7> 5 (7_7
(") <m sirzg w R/ ymsrcys \TOT MI

1

= U =
- ("‘"); Ym<r<n r
Now consider the O-terms arising from (9.22.2), The term O(T#) gives
L) _ o(1te) = o(1%
o{mz > m] — O(Ttr) — O(T).

4T vET
Next

1 . 1
FZ, Z,W*“’“‘(\ gz T
= O{T‘;ﬁ‘“‘“(J st 7))

Suppose, for example, that 7 < m. Then the terms with - < in+*/m or
r > 2nr¥{m are
1
O(T‘ > 7%) = O(Tr) = O(Th+e).

r<7

In the other terms, let r = [nr%/m]—+. We obtain

"‘T‘Zm ) (0 < D
= O[Te(%’)ﬁlog T} = O(TH),

omitting the terms ' = —1, 0, 1; and these are O(T#+<),
A similar argument applies in the other casea.
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9.23. LEMMA 9.23. Let (m,n) =1 with mn< X< T If TH <U<T,
then

T+U
n\# U 7 _
Tf Z‘(t)(ﬁ) di = (mn)é{logmb-}»Zy}‘l— OWUIT-blog T).

Let Z(5) = 2,(t) +2,(D) +e(?). Then
T+U

'[ {z,(t)+m}2<$> dt
T
rev rew o
= j zu)z<%) dHo(J |Z(t)e(z>|dt>+o<_[ Ie(l)lzdt)
T T T
We have

T+U
J‘ le(®)|2dt = O(U%/T)+ O(Ttlog T) = O(U/T)
T

by (9.20.7), and
74U

-[ 1Z()12dt = O(Ulog T) + O(Tt+¢) = O(Ulog T),
T
by Theorem 7.4. Hence
THU

j 1Z(e(®)|dt = O{(U?/TYHUlog T)}}
T
by Cauchy’s inequality. It follows that

v _

J Zy2 (1)"&
m

T

T+U

= f {2,(02+2, (07 + 22,07, (D)) (%)“dt +O(UT-HlogtT).
T

By Lemmas 9.21 and 9.22 the main integral on the right is

#;( > L b %)+O{T§X210g(XT))+O(XT%)+

) rSv/n; révm
+O2/T) +O(TT)
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whether n < m or not. The result then follows, since

1 1 72 X
- 2 =log— 2
Y o=+ ) s=log "+Zy+0(z),

r<yn’  r<eym

and since the error terms O{T1X21og(XT)}, O(XTt), O(U?/T), o)
and O(UXT-4) are all Q(UT-}log T).

9.24. THEOREM 9.24.
s
j N(o,T)do = O(T). (9.24.1)
i
Consider the integral
T+U T+U
I= [ -ringd-+ined — Tf ZUOWA-HiDE dty
T
where (8) = %8 it
T Henele) o) P A

and 3, = =
pg{#’(P)N’(P) G Pg{»’(p)/r#(p)
Clearly 18] < ¢(r)
for all values of 7. Now
S bt f Z’(t)( )

<X £<X

where m = ¢/(¢,7), » = r/(g,r). Using Lemma 9.23, the main term
contributes to this

21 T 2y A 2
2 2.h “*’}(mn)&“’g =V Z PRRNBTEEL e

gEX <X <X r<X
Tetr
— Ul 5,5,(¢,)—2U 8,8,(g, )log
og =5 — ZX«Z\: (San)—2U3 3 83 nloga+
+2U 3 2 33, 7Mlogle ).
For a fixed ¢ < X,

_ 2(p)] (g, rulorilp)
,-<zx(q’ e, = {p<x’;(”)} Z Z e

rEE X

Now @n =v‘(qzr)9‘(") :szlr\#(”)-
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Hence the.second factor on the right is
werlulp) _ u(PT)M(p)
;FZX for) 2,0 =2, 90) Z Z
Put pr = I. Then pvipr, pv|l, ie. p|(Ifv). Hence we get

) .
% W% 50 > we)

Pl

The p-sum is 0 unless I = v, when it is 1. Hence we get
[20] 1 (g=1)
Zw:¢(v)¢(v) 0= {0 @>1).
#4p)) [t
B B = [ 20 = {,<x )

and DDA N S(q,r)logq~{2%}4 8,log 1 = 0.
X

Hence

o<x €
Let ¢,(n) be defined by
Z $alm) _ flo—a—1)
i)

s0 that Paln) = nl+e E "(m) = nl+e 1_[( 1+a)
Let y:(») be defined by

isb(n) _ -
n= L

[
Then 1) = o 3 H,
n=1
and hence nlogn = d‘z (d).
Hence (g.7)loglg,r) = 3 (d)
dlg.dir
and qg{ 2 2dda rllogle 1) = 3 did) dgEJm '%5,
<X <X
2
:dg"l‘(d)(d\m%xs") ’

243
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@ log @’
Now n) = [— n] = (n)(logn+ —==|,
g0 = |t =9 ¥

¥m) < ptm)logn + 3 logp) < 24(mlogn.
Also i

AN {p2)ielp)

B S e ) [ 5 E )
{ X+ z;l%"“’“lgﬁ(:)} s

neX

dln
Hence 53 5,30, rlogla,r) < 2log X{p;: %}"
Since
< ) )\ _ 1
,_Z; Foow = H (I +¢:;p):n‘) - U (1+(P41)p‘)
1
= et [T (1=5) (- s
we have #2p) ~AlogX.

% $p)

The contribution of all the above terms to I is therefore

log -
o(u log;)w(v) =ow)

on taking, say, X = T'rba,
The O-term in Lemma 9.23 gives

b
OWETHog T) Y T w?;)i;(r)
S

= O(UT-Hog T)O(X)
= O(UIT -flog T').

Taking say U= T'%, this is O(U). Hence I = O(U).
By an argument similar to that of § 9.16, it follows that

1
J‘ {N(e, T+U)—N(o, T)} do = O(U).
i
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Replacing 7' by T+ U T+2U,... and adding, O(T(U) terms, we

obtain 1

f {¥(o,2T)—N(o, T)} do = O(T).

4

Replacing 7' by 37, }7'.... and adding, the theorem follows.
1t also follows that, if } <o < 1,

Nio, T) = 772 f No!, T) do’

gwl

J Nie, T)do — (é) (9.24.2)

<
=

a—}
Lastly, if ¢(t) is positive :md increases to infinity with 1, all but an
infinitesimal proportion of the zeros of [(s) in the upper half-plane lie in
the region $(0)
The curved boundary of the region
o=+ moicnp

loge’
lies to the right of 0= 0 = ,}+";§:§Z,
—of T )_ ofTlegT\ _
and N(ay T) = o(a,—k) - o( s ) — o(Tlog 7).

Hence the number of zeros ontside the region specified is o (Tlog T),
and the resulb follows,

NOTES FOR CHAPTER 9

9.25. Themean value of S(2) has been investigated by Selberg (5). One
has

k' (27‘)“ ———T(loglog T)* (9.25.1)

T
jl S(t)2dt ~

°
for every positive integer k. Selberg’s earlier conditional treatment (4) is
discussed in §§14.20-24, the key feature used in (5) to deal with zeros off
the critical line being the estimate given in Theorem 9.19(C). Selberg (5)
also gave an unconditional proof of Theorem 14.19, which had pre-
viously been blished op the Ri hypothesis by Littl d.
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These results have been investigated further by Fujii [1], [2] and Ghosh i

[1], [2], who give results which are uniform in k.
1t follows in particular from Fujii [1) that

r
JIS(t+h)—S(!)|2dt = n-2Tlog 3+ hlog T) + O[T {log(3+ hlog T}

©259 |

and
T

j\S(l +h)—8(t)12* dt < T{Ak4log(3+hlog T)}* (9.25.3)
[
uniformly for 0 < & < } 7. One may readily deduce that
N{(T) €« N(T)e=4Vj,

where N,(T) denotes the number of zeros § + iy of multiplicity exactly j,

in the range 0 <y < 7. Moreover one finds that
#{m:0 <y, < T3, 1—7, > Mlog T} €« M(T)exp{—Al}(log H7H},

uniformly for 4 > 2, whence, in particular,

N(T)
DI PE A Gog T

0<y, 8T

(9.25.4)

for any fixed & > 0. Fujii [2] also states that there exist constants 1 > 1
and g < 1 such that

Tng1 =V 9.25.5)

2n/log yn

and

Yns17¥n o 9.25.6)

2n/logy,
each hold for a positive proportion of r (i.e. the number of » for which

0<y,<Tis at least AN(T) if T > T,). Note that 2z/log y, is the |

average spacing between zeros. The possibility of results such as (9.25.6)
and (9.25.6) was first observed by Selberg [1].

9.26. Since the deduction of the results (9.25.5) and (9.25.6) is not
obvious, we give a sketch. If M is a suff ly large integer
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then (9.25:2) and (9.25.3) yield

27
f |S(t+hy—S@)2dt > T
o
f 1SE+h)-S(t)*dt< T
7

uniformly for

2rM 4nM
log7 = logT’

By Hélder’s inequality we have

27 er §
f 18t +h)—S@)Pdt < (I 1S¢ +h)—S(t)|dt>
T r

2r s
X(J |S(t+h)—S(t)|4dl> s
T

so that

ar

I 1St +hy—S(t)ide> T.
T

We now observe that

S+ -8 = Ne+h— Nu)-“°“T (ﬁ
for T < t < 2T, whence
”N(Hh) N(t)—M‘dt>T

We proceed to write A = 22M2/log T and

a(z,»=1v( e T) NOY-2,

)

i

247
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80 that

Thus

and hence

uniformly for 1 € 1 < 2, since M is constant.

Now, if I is the subset of [T, 2T} on which N(

GENERAL DISTRIBUTION OF ZEROS

T M1 () gama
N(x+h)—1v<z)-“;’f ( e

z s log T’

| T+ mflog T
T< ) 18(¢, A\t
m=o
T+ 2ami/log T
ar

= M_[ 16(2, Alde+ O(1),

T

or

Ilé(l,l)ldl} T

log

seH+20  (teD,
1666 M < {6(t, D+24-2 (te[T,2T]-D),

so that (9.26.1) yields
o

< .[ 8(t, e+ @A — DT +2m(D),

T

where m(I) is the measure of I. However

whence m(l) » T, if > 1 is chosen sufficiently close to 1. Thus, if

then

21
T

j o(t, Nydt = O(m),

T

p273
S={"~'T$7n$27'»1’,..1 ~Va ;m}'

Tem(l)< Zs(v,., 1 =)+ O,

)

(9.26.1)

2ak
T) = N(), then |
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so0 that

2
Tiq { % Onon -w} <@ ST s -1
ne neS

T
< #S g T*
by (9-26.4) with & = 2. It follows that
#8» N(D), (9.26.2)

proving that (9.25.5) holds for a positive proportion of n.
Now suppose that u is a constant in the range 0 < 4 < 1, and put

U={n:T<y,<2T},
and

b
V={nsU:y,”,vy,_sm},
whence pU= %logT+ O(T). Then
T= 3 @1 =¥+ 00
neu
kS ): (y,.+,—y,,)+0(1)

logT(#U #V*#S)+AS+O(1)

_ 2 (T 2n(d— )
logT( logT— #V) TogT #S+O(logT)

If the implied constant in (9.26.2) is , it follows that # V> N(T), on
taking 4 = 1—v, with 0 < v < 5(4— 1)/(1 — ). Thus (9.25.6) also holds for
a positive proportion of n.

9.27. Ghosh [1] was able to sharpen the result of Selberg mentioned
at the end of §9.10, to show that S5(?) has at least

Aloglog T
(logloglog T) ¢
sign changes in the range 0 < t < T, for any positive 5, and A = A(9),

T > T(5). He also proved (Ghosh [2]) that the asymptotic formula
(9.25.1) holds for any positive real k, with the constant on the right hand

T(log T)exp( -
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side replaced by I'(2k + 1)/T'(k + 1)(2m)2*. Moreover he showed (Ghosh
[2]) that 1s®!

:? (loglog 1) =f@®,

say, has a limiting distribution
«
P(o) = 2n§f e~*dz,
¢

in the sense that, for any o > 0, the measure of the set of te [0, T'] for

which f(t) < o, is asymptotically TP(¢). (A minor error in Ghosh’s

statement of the result has been corrected here.)

9.28. A great deal of work has been done on the ‘zero-density
estimates’ of §§9.15-19, using an idea which originates with Halasz [1].
However it is not possible to combine this with the method of §9.16,
based on Littlewood's formula (9.9.1). Instead one argues as follows
(Montgomery {1; Chapter 12)). Let

M6 =T a,n
T

sothata, = 0for2 < n < X. If{(p) = 0, where p = f + iy and § > }, then

we have

e Y+ ¥ g.n-re V=Y a,n-oe"MY
a>X a=1

2+
1 cl
=om j M (s+p){(s+PT(s) Yrds,
2 o .
by the lemma of §7.9. On moving the line of integration to R(s) = 4~ 8
this yields
MOra-p¥i-*+

+i J MX(Q+it)C(Q+it)l‘(Q—ﬂ+i(l~y))Y9""““—7)dt,

since the pole of I'(s) at 8 = 0 is cancelled by the zero of {(s + p). If we
now assume that log27 < 7 < 7, and that log 7" <log X, log Y <log T,
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then e "!¥» 1 and

M (A —p)Y'-# = o(1),
whence either

Y a,n-fe ™Y1

> X

or

_[ IML G+ G +IOTG— f+it—Wde> Yo L

In the latter case one has
IM G +it) G +it) > G- Vit

for some 1, in the range |t, —y| < log?7. The problem therefore reduces
to that of counting discrete points at which one of the Dirichlet series
Za,n-%e~ Y, Mx(s), and {(s) 1s large. In practice it is more convenient to
take finite Dirichlet polynomials approximating to these.

The methods given in §§9.17-19 correspond to the use of a mean-value
bound. Thus Montgomery [1; Chapter 7] showed that

N
Y e,n %
a1

R

)

r=1

(TN logNY: 3 lapn-  ©281)
e

for any points s_ satisfying

R(s,) >0, s < T, Is,,,~s) =1, (9.28.2)
and any complex a,. Theorems 9.17, 9.18, 9.19(A), and 9.19(B) may all
be recovered from this (except possibly for worse powers of log T).

However one may also use Halasz's lemma. One simple form of this
(Montgomery [1; Theorem 8.2]) gives

a1

R

z

r=1

N

Y an
1

n=

N
* <« (N+RTH(log T Y la,i2n-2 (9.28.3)
I

for any points s, satisfying (9.28.2). Under suitable circumstances
this implies a sharper bound for R than does (9.28.1). Under the Lindel6f
hypothesis one may replace the term RT#in (9.28.3) by RT*N}, whichis
superior, since one invariably takes N < T in applying the Halasz
lemma. (If N2 7 it would be better to use (9.28.1).) Moreover
Montgomery [1; Chapter 9] makes the conjecture (the Large Values
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Conjecture):

R

z

r=1
for points s, satisfying (9.28.2). Using the Halasz lemma with the!
Lindeléf hypothesis one obtains 7

N(o, T)< T,
(Halasz and Turan {1], Montgomery [1; Theorem 12.3]). If the Large }
Values Conjecture is true then the Lindelsf hypothesis gives the wider
range }+¢ < 0 < 1 for (9.28.49)

2 N
<(N+RT9 ¥ la,l2n-2%

n=1

N
Y a4

n=1

jre<a<l, 9284

9.29. The picture for is more lex. At
present it seems that the Halasz method is only useful for ¢ > §. Thus |
Ingham's result, Theorem 9.19(B), is still the best known for } <o < §. |
Using (9.28.3), Montgomery [1; Theorem 12.1] showed that

N, T)y< T*1-97(logT)'* (§<o<]),
which is superior to Theorem 9.19(B). This was improved by Huxley (1] }
to give

N(g,T) € T¥1-9/Ga-D(log T)*4 (3 < o< 1) 9.29.1)

Huxley used the Halisz lemma in the form
N N 3
R« {NV'Z Y la,ltn- %+ TNV'“( 5 |an|2n—2v) }(log e,
1 n=1

for points s, satisfying (9.28.2) and the condition

N

Y ae.n-or
n=1
In conjunction with Theorem 9.1%(B), Huxley’s result yields

N(o, T) < T'#50-2(og T)** (3 <o<1),

(c.f.(9.18.9)). A considerable number of other estimates have been given,
for which the interested reader is referred to Ivic[3; Chapter 11). We
mention only a few of the most significant. Ivic {2] showed that

Geo<i®)
<o),

which supersede Huxley’s result (9.29.1) throughout the range
% <o < 1. Jutila [1] gave a more powerful, but more complicated, result,

=V

TB-30/Te-D+e
N, T)< T80 /(8s~D +e
B
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which has a similar effect. His bounds also imply the ‘Density
hypothesis’ N(o, T) < T2-20+¢ for # <o € 1. Heath-Brown [6] im-
proved this by giving

Nio, T) € T®-90/1e-Dee (L <o)

When ¢ is very close to 1 one can use the Vinogradov-Korobov
1 sum esti as d ibed in Chapter 6. These lead to

Nio, T) € T4u-9(log T)*,

for suitable numerical constants A and A’, (see Montgomery (1;
Corollary 125, who gives A = 1334, after correction of a numerical
error).

Selberg’s estimate given in Theorem 9.1%(C) has been improved by
Jutila {2] to give

N@, Ty« T\-0-%¢-blogT
uniformly for } < o < 1, for any fixed § > 0.

9.30. Of course Theorem 19.24 is an immediate consequence of
Theorem 19.9(C), but the proof is a little easier. The coefficients 8, used
in §9.24 are essentially

logX/r
-1 08X/
Horyr TogX "’
and indeed a more careful analysis yields
T
. log X/r _al? logT
[KG+ivl2 Ny Y| de~
J‘ 1 Ex/t() ogX | T X )
o

Here one can take X < T4-* using fairly standard techniques, or
X<TH* by ploying i for Kl sums (see
Balasubramanian, Conrey and Heath-Brown [1]). The latter result
Yields (9.24.1) with the implied constant 0-0845.




X
THE ZEROS ON THE CRITICAL LINE

10.1. General discussion. The memoir in which Riemann first con-
sidered the zeta-function has become famous for the number of ideas
it contains which have since proved fruitful, and it is by no means ;
certain that these are even now exhausted. The analysis which precedes
his observations on the zeros is particularly interesting. He obtains, as
in § 2.6, the formula

Plerils) = 5+ [owiah ot ds,
!

where

@) = 3 e,
n=1
Multiplying by }s(s—1), and putting s = }+it, we obtain

() = 3—(2+1) [ $iz)e cos(ltloga) dz. (10.1.1) |
1

Integrating by parts, and using the relation
S+ = —4,

which follows at once from (2.8.3), we obtain

E(t)=4 J. %{ﬁnﬁ’(z))z‘% cos(jtlogz) da. (10.1.2)
{ .

Riemann then observes:

+Diese Function ist fiir alle endlichen Werthe von ¢ endlich, und Jésst sich nach
Potenzen von # in eine sehr schnell convergirende Reihe sntwickeln. Da fiir einen
Werth von s, dessen reslier Bestandtheil grosser als 1ist, log {(s) = — 3 log(1—p~*)
endlich bleibt, und von den Logarithmen der iibrigen Factoren von E(f) dasselbd
gilt, 50 kann die Function E(f) nur verschwinden, wenn der imaginare Theil von
¢ zwischen }i und — % liegt. Die Anzahl der Wurzeln von E(t) = 0, deren roeller.
Theil zwischen 0 und T liegt, ist etwa

Tl T,

=2 %%
denn dass Integral § dlog E(¢) positive um den Inbegriff dor Werthe von §
erstreckt, deren imaginére Theil zwischen i und — 3%, und deren reeller Theil
zwischen 0 und T liegt, ist (bis auf einen Bruchtheil von der Ordnung der Grosse
1/T) gloich {T log(T/2m)— T}; dieses Integral aber ist gleich der Anzahl der in
diesem Gebiet liegendon Wurzeln von E(t) — 0, multiplicirt mit 2mi. Man findet
nun in der That etwa so viel reello Wurzeln innerhalb dieser Grenzen, und es ist
sehr wabrscheinlich, dass alle Wurzeln roelle sind.’
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This statement, that all the zeros of E(f) are real, is the famous
‘Riemann hypothesis’, which remains unproved to this day. The memoir
goes on:

‘Hiervon wiire allerdings ¢in strenger Beweis zn wiinschen; ich habe indess die
Aufauchung desselben nach einigen fitiohtigen vergeblichen Versuchen vorliufig
bet Se}w gelassen, da er fiir den niichsten Zweck meiner Untersuchung [i.e. the
explicit formula for 7(z)] entbehrlich schien.”

In the approximate formula for ¥(7T), Riemann’s 1/7" may be a
mistake for log T'; for, since N(T'} has an infinity of discontinuities at
least equal to 1, the remainder cannot tend to zero. With this correction,
Riemann’s first statement is Theorem 9.4, which was proved by von
Mangoldt many years later.

Riemann'’s second statement, on the real zeros of E(t), is more obscure,
and his exact meaning cannot now be known. It is, however, possible
that anyone encountering the subject for the first time might argue as
follows. We can write (10.1.2) in the form

() =2 f@(u)cosuz du, (10.1.3)
4

whers () = 2 3 (2nintedv— Bntmelu)g-ntne, (10.1.4)
n”=1

This series converges very rapidly, and one might suppose that an
approximation to the truth could be obtained by replacing it by its first
term; or perhaps better by

D*(u) = 2n?cosh Ju e-2r oob 2,
sinc'o this, like ®(x), is an even function of u, which is asymptotically
equivalent to ®(u). We should thus replace E(¢) by

EXE) = 41r3f cosh Ju e~27 osh 26 gog ut du.
H

The asymptotic behaviour of E¥(¢) can be found by the method of
steepest descents. To avoid the calculation we shall quote known
Bessel-function formulae. We havet
K. (a) = ) e~ °osh « cogh 2y du,
)
and hence FH() = w{ Kyl 2m)+ Ky-ggl2m)).
For fixed z, as v > o0
L(z) ~ 2y [Tv+1).
+ Watson, Theory of Besael Functiona, 8.22 (5).
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Hence ) \
L) 1 amft AL
L3l ~ § g~ e (") (a:) e
e N
Iy 14(2m) ~ T Ofed™=),

Ky 3ud2m) = Y coseen(t Bt Ly 2m)— T 3al27))
= o e\
~ e iﬂ(%) (276) i,

EX(t) ~ nio-itde-int cos(%t log ";:re+ §7r)
The right-hand side has zeros at

Hence

frlog 5o+ b = (o),

and the number of these in the interval (0, T') is
T T T
grlthZr——gr-(—O(l).
The similarity to the formula for N(7T') is indeed striking.
However, if we try to work on this suggestion, difficulties at one
appear. We can write
E()—E*() = j {D()— 0 w))e™ du.

To show that this is small compared with E(¢) we should want to mov o]
the line of integration into the upper half-plane, at least as far a8
I{u) = }=; and this is just where the series for () ceases to convergo.
Actually |E@)] > Attt (3 +i)], :
and [{(}+if)] is unbounded, so that the suggestion that Z*() iz an|
approximation to E(f) is false, at any rate if it is taken in the most
obvious sense.

10.2. Although every attempt to prove the Ri hyp
all the complex zeros of {(s) llB on ¢ = }, has failed, it is known
{(3) has an infinity of zeros on o = }. This was first proved by Hardy
in 1914. We shall give here a number of different proofs of this theorem.3

First method.t We have

B(f) = —HE+Ha DG+ 30+,
where E(#) is an even integral function of ¢, and is real for real £. A zero§

t Hardy (1).
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of {(s) ofi o = } therefore corresponds to a real zero of E(¢), and it is
& question of proving that E(¢) has an infinity of real zeros.
Putting = —i« in (2.16.2), we have

% J. ;—(if)i coshod dt = e-bia—gebiog(e2in)
3 (20.2.1)
= 2cos ho—2ehiaf} L ih(e2in)).
Since {(3-+if) = O@4), E(t) = O(t4e~i), and the above integral may
be differentiated with respect to « any number of times provided that
« < }n. Thus

E() yon
;J.t 2t coshot dt =
1

S_—_lz);'co_sia 2( ) ebtaf} 1 etia),

1

We next prove that the last term tends to 0 as o — }, for every fixed .
The equation (2.6.3) gives at once the functional equation

-t —2xk(z) = 2t —22x 4 (;)
or ) = x‘i¢(§)+§z'*—§.
$i+8) = T emd = 3 (—pyngnd
= 2(43)—4{(8)

- Sofd)-Sef)-4

It is easily seen from this that 3+y(x) and all its derivatives tend to
zero as x —> 4 along any route in an angle |arg(z—i)| < ar.
We have thus proved that

lim j (t)itz"eoshatdl (LIM

—3m
oy
o

(10.2.2)

Suppose now that E(f) were ultimately of one sign, say, for example,
positive for { > T. Then

1m11 f ()it“coshmtdt 1,
T

say. Henco f t;‘” prcoshatdt < L
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for all « < }r and 7" > 7. Hence, making o —> }=,

o~
ﬂ)_ 27 cosh dt < L.
ft’+}t cosh 1t dt

) B 4 i
Hence the integral f 1 i_t cosh i
H

is convergent. The integral on the left of (10.2.2) is therefore uniformly
convergent with respect to o for 0 < a < {7, and it follows that

J' t"'(t)*t“"cosh}ﬂt dt= ‘_”"”““"

for every n.

This, however, is impossible; for, taking # odd, the right-hand side
is negative, and hence E

@ T o_
f %m cosh Jmt df < — J‘ ‘T“_g)—}t’"cosh Yt dt
i 13

< KT,

where K is independent of 7. But by hypothesis there is a positive
m = m(T) such that Z(@#)/(2+1) > m for 2T < t < 27+1. Hence

@ T+1
f !ig)}t’"cosh trtdt f mit dt > m(2T)m,
i F o1
Hence m2 < K,

which is false for sufficiently large n. This proves the theorem.
10.3. A variant of the above proof depends on the following theorem.
of Fejér:}

Let n be any positive integer. Then the number of changes in sign %]
the interval (0,a) of @ continuous function f(%) is not less than the nu: ¢
of changes in sign of the sequence

o [row . [ford

We deduce this from the following theorem of Fekete:}

+ Fojér (1). $ Fekete (1).
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The number of changes in sign in the interval (0,a) of a continuous
function f(x) is not less than the number of changes in sign of the sequence
fla), hl@), ... fo@). (10.3.2)

= [falrdt o) = flz).

To prove Fekete’s theorem, suppose first that » — 1. Consider the
curve y = fi(x). Now f,(0) = 0, and, if f(a) and f,(a) have opposite
signs, ¥ is positive decreasing or negative increasing at x = . Hence
f(x) has at least one zero.

Now assume the theorem for n—1. Suppose that there are % changes
of sign in the sequence f,(2),..., fo(*). Then f,(z) has at least k¥ changes
of sign, We have then to prove that

(i) if f(a) and fy(a) have the same sign, f(x) has at least & changes of

sign,

(ii) if f(a) and f;(a) have opposite signs, f(x) has at least k+1 changes

of sign.
Each of these cases is easily verified by considering the curve y = f,(%).
This proves Fekete’s theorem.
To deduce Fejér’s theorem, we have

where

FAC) v=12,..,m),

fla) = 1)‘ f @—tp-fo d,

and hence

fla) =

f =t d = 5 f fla—tp-rde.

We may therefore replace the sequence (10.3.2) by the sequence
feay f Jla—n)d, j fla—gmtds.

Since the number of cha,nges of sign of f(t) is the same as the number
of changes of sign of f(z—t), we can replace f(¢) by fla—z). This proves
Fejér's theorem.

To prove that there are an infinity of zeros of | (3) on the critical line, we
Prove ag before that

lim f 20 ¥ cosh ot dt —
eyl AW
o

a
Hence J‘
]

1)!

(10.3.3)

{—1)"wcosin
L i

o

) 2" cosh ot dt

b
R
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has the same sign as (—1)* for n =0, 1,..., N, if a = a(N) is large’

enough and a = o(N) is near enough to m. Hence E(t) has at least N

changes of sign in (0,a), and the result follows.t
10.4. Another methody is based on Riemann’s formula (10.1.2).
Putting # = €% in (10.1.2), we have

E() =4 f éiu{e““l[;’(e"‘)}e’hcosut du
H

=2 fd)(u)cos ut du,
[
say. Then, by Fourier’s integral theorem,

o) =1 f E(t)cosut dt,
=
and hence also ° ©

@) = (U J' S(e)n cos ut di.

[
Since () is regular for R(x) > 0, B(u) is regular for —}r < I(w) < iﬂ.j
Let O = cotoyutbogutt... (] < ). ]

Then @n)le, = (—1ypoev0) = 1 f S(tyee dt.
™
BR1
Suppose now that E(¢) is of one sign, say E(t) >0, fort > T.

¢, = 0 for n >> ny, since

w© T+2 T
j () dt > J' e di— | (B e dt
[ TH 0

T+2 T
> (T+1)m j B(t) dt—T™ j 12| dt.
r¥1 0

1t follows that ®™(ix) increases steadily with u if n > 2r,. But in
®(u) and all its derivatives tend to 0 as u > }im along the imaginary
axis, by the properties of () obtained in § 10.2. The theorem therefored
follows again.

10.5. The shove proofs of Hardy’s theorem are all similar in that}g
they depend on the consideration of ‘moments’ J' fityer de. The following?
1 Pélya (3).

+ Fokote (2).
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method{-depends on a contrast between the asymptotic behaviour of
the integrals ar T

[zma [ 1ze6

r 7
where Z(#) is the function defined in § 4.17. If Z(f) were ultimately of
one sign, these integrals would be ultimately equal, apart possibly from
sign. But we shall see that in fact they behave quite differently.

Consider the integral
J ety ds,

where the integrand is the function which reduces to Z(t) on o = §,
taken round the rectangle with sides o =3, =4 t =7, t = 27.
This integral is zero, by Cauchy’s theorem. Now

327 2T
[ ortwas=i [ zoa
AT T
Also by (4.12.3)
- (AL s LV 1
(et = (g) otk lH'O(t_)}'
Hence, by (5.1.2) and (5.1.4),
{x()}3L(s) = O(fto-t .t dore) = O(Et+) (Ao 1),
= O(tto-b+e) = O(fi+) (1< o <))

The integrals along the sides ¢ = T, ¢ = 27" are therefore O(T'#+¢).
The integral along the right-hand side is

2T
e\,
Tf (E) ﬂ«wtv(uo(;l)}g(gﬁt)i dt.

The contribution of the O-term is
2T

J' (%) dt = O(T3).
T

The other term is a constant multiple of

w ar 5
Z 7l J‘ (L)“}"gfia -idlgn gy,
& )

Now z * !
Flittog - — yi—ttogn) = 1.

H'ence, by Lemma 4.5, the integral in the above sum is O(7'%), uniformly

with respect to #, so that the whole sum is also O(T%).

t Seo Landau, Vorlesungen, ii. 78-85.



262 ZEROS ON THE CRITICAL LINE Chap. X

Combining all these results, we obtain

oTh). (10.6.1)

27
J' ZWydt =
T

On the other hand,

i 2r o
J 1z a = | gl a > | [ dain
T T T

But
ar 3427 2T 2HAUT L 20T
iftarina— [ fods= [ + [ + |
- 3T PE S SR 2+2UT
X, 2T
2[3_2 ! ]H fO(T%)da—.zTJrO(Tl)
= nilogn|,,
2T
Hence j 12(6)] dt > AT. (10.5.2)
T

Hardy’s theorem now follows from (10.5.1) and (10.5.2).
Another variant of this method is obtained by starting again from
(10.2.1). Putting « = }=—8, we obtain

f tf&cosh{qﬂ—w} de = 0(1)+0( § expl—nrie- ")
§

= 0()+0( E} g-nnin) — 0(1)+0(“ w‘ﬂ‘nﬁdz) = o)

as § 0. If, for example, E(f) > 0 for ¢ > £, it follows that for 7' > #;

f 1Z0)dt =

f 2 di

<Af El) it

< AT szE% ebnt-lT gy < AT f u_;)icosh{(}nA—%,)}dt
#

= O(T%:.TYH = O(T‘).
This is inconsistent with (10.5.2), so that the theorem again follows.
10.6. Still another method} depends on the formula (4.17.4), viz.
-2y OB o,

a<e
t Titchmarsh (11}
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where @ = |/(t/27). Here & = #(f) is defined by
)

go that

G+ie }

(+ht)

1
2Ty 2

) = _1x @+ _1{1 ogr— 1 I'(1—3it)

I
2 x(3+1t) T

1 P udu
T R f AT —
°
() = }logt—}log 2+-4-0(1)1),
&) ~ itlogt,

= —}log7+}log(ds+1#)

and we have
" 1
)~

The function #(¢) is steadily increasing for ¢ > 4,. If v is any positive
integer (3> vp), the equation $(f) = v therefore has just one solution,
say {,, and §, ~ 2mflogv. Now
Z0) = 2—1y cos(t, logn) _1
@) = 21y > BN L og .

=
The sum

_ cos(t, log n) cos(#, log 2)
96) = ,Z et = 1By
congists of the constant term unity and oscillatory terms; and the
formula suggests that g(z,) will usually be positive, and hence that Z(t)
will usually change sign in the interval (2,,,,,).
‘We shall prove
TazorEM 10.6. A3 N -0

N N
S A~ F B~ 2N,

It follows at once that Z(t,,) is positive for an infinity of values of »,
and that Z(ty,,,) is negative for an infinity of values of »; and the
existence of an infinity of real zeros of Z(t), and so of E(t), again follows.

We have

x

i (b)) = cos(ly, logn)
" vn

v=2T%1 v="0¢1 n<Ahnizm
1
=N—_M+ = z cos(ty, logn),
2E RS V(fyy/2m) TSy
Wwhere 7 = max(t,y .z, 27n?). The inner sum is of the form

2 cos{2ng(v)},
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‘where i) = %’ .

We may define ¢, for all v 22 v, (not necessarily integral) by #(;,) = vm.

Then

logn dt,, dtz,,

TIOR L TR
so0 that ¢'(y)=%.
»

Hence ¢’(v) is positive and sbeadily decreasing, and, if v is large enough,

(b, 8mlogn logn
= —2xl — it 4=,
F) = —on ogn{#,(t )}s t, log’t;, < toy log®lay
Hence, by Theorem 5.9,

login ) (té log?t, )
cos(ty, | = Oty 25— )+ O[22
7sr§<tm oslle log™) (” thy loghtay, + login

= Ot} logit,y).

Hence

1 3 3
- cos(ty, log n) = O(tiy logityy)
2R V(ten/2T) ‘/" Y(lwzif!,\
— O(NElogiN).
N
Hence ; Z(t;,) = 2N+ O(NElogihN),
o

and s similar argument applies to the other sum.

10.7. We denote by Ny(7T) the number of zeros of {(s) of the form
}+it (0 < ¢ < T). The theorem already proved shows that Ny(7') tends
to infinity with T. We can, however, prove much more than this.

TuroreM 10.7.F N(T) > AT.

Any of the above proofs can be put in a more precise form so as to ’
give results in this direction. The most successful method is similar in ]

principle to that of § 10.5, but is more elaborate, We contrast the
behaviour of the integrals
t+H +
I= f w5 * evIT du, f 12|
J i
where 7' <t < 27 and 7 — c0.

e-"ﬂ' du,

=

+ Hardy and Littlewood (3).
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We use the theory of Fourier transforms. Let F(u), f(y) be functions
related by the Fourier formulae

. .
Flu) = ~/T;w“) [y, o= W”J Fluye-m du.

Integrating over (t,t+H), we obtain
H+H

‘f Flu) du — W;T) f £

t+H
gl ]
so that J‘ F(u) du, f(y)—i—y_
t
are Fourier transforms. Hence the Parseval formula gives
t+H

f Flu) du

T Ly &

@

]

If F(u) is real, |f(y)| is even, and we have
[7e:e

f Flu) du

4sin? x}Hy ay.

ot f i

@

)

= f !f(yw““"*””dj

vH

<2HﬁJ' @) dy+8 f‘f(y“ dy.  (101.1)

v

[
Now (2.16.2) may be written

~(') ot gt — Jot— e Yo
27 * dt = jebf—edy(e-¥).
Putting £ = —i( 11—*8)4‘1/, it is seen that we may take
g *
1 B a, YR VPRI
F(t) = i, fy) = je-bidmid-dv—
)
J( s — ehiGm-Brduy (gidr-di2v),

Let H 3> 1. The contribution of the first term in f(y) to (10.7.1) is clearly
O(H). Puttmg y= logz @ = eV¥, we therefore obtain

dt = O{HIJ' (e dm-Ba2) 2 dx}+

f Fuydu

1t

+0[ f S }+O(H) (10.7.2)
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Now
I(edr-Ba)|2 — | 3 eAn'-vrz‘{lln8+iw5D|ﬁ
n=1
= 3 tttnd L 3 p-imtendwsteind simt nimatooss,
=1 i

As in § 10.5, the first sum is O(z-18-}), and its contribution to (10.7.2) is
therefore

G ®

o(m f 21574 .1:)4.0( 2;::;)
1 (2]

= O{HYG—1)54}+0(3log ) = O(H54).

The sum with m 7 n contributes to the second term in (10.7.2) terms
of the form

~0m +ntyrztsin S 4{imt —nfymzt cosd dz__ of etmiwimeuind |
log®z [m3—n%] Glog*G|

’ ofHie o and
- (W}

by Lemma 4.3. Hence the sum is

ofr 35 ) ol 3 L)

m=2 Be=1 n=1
- O(H' z l°i"‘rmlnma) - O{H“( z lofnm_'_ Z E-w.'wu.ns)}
m=2 'm<18 m>18
- O(H'log’ %) —owsh

for 3 < 8(H). The first integral in (10.7.2) may be dealt with in the
same way. Hence

j-gH-

=l

Taking 6 = 1/T and T > T, (H), it follows that

H |2
f Flu) dul dt = O(H5 ).

T
j |Ij2dt = O(HTY). (10.7.3)
T
10.8. We next prove that
J > (AH4Y)T-4, (10.8.1)
T
where [wpat=0T) (0<H<T). (10.8.2)

b
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We have,if s = 3+it, 7' < ¢ 27,

elnt
#+}

THE@®| > AG 4.

Hence

HH i+ H
TH > A Wi du > A‘ |t au
; /

i+H

f { s ,,Tl+ O(H)} du

; ‘a<ar

s
L du
Z ndrin
7 r<nlar

=4

=AH+0[

]+0(HH)

1 1
- AH+0{ S (m~m@)“+ouﬂv—h.
2€n<AT
Tt is now sufficient to prove that
27

]
and the caleulations are similar to those of § 7.3, but with an extra
factor logmlogn in the denominator.

To prove Theorem 10.7, let S be the sub-set of the interval (T, 27)

where I = J. Then J‘\I{dl—f]dt
§ 5

o7 T &
Now f|I\dt<J' It < (TJ' |IJ‘dt) < AHYTH
s T 7

2
dt = O(T),

1
z n¥+logn

24T

by (10.7.3); and by (10.8.1) and (10.8.2)
f Jdt > 7% j (AH+Y) dt
s 8

2r
> AT’%Hm(S)—T-%J' 1) dt
b4
27 i
> AT%Hm(S)_T—i(T J' [‘l’i’dt)
r
> ATHm(S)—ATE,
where m(8) is the measure of S. Hence, for H > 1 and T > Ty(H),
m(8) < ATH.
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Now divide the interval (7, 27) into { T/2H] pairs of abutting intervals
J1» Ju» each, except the last j,, of length H, and each j, lying to the
right of the corresponding j;. Then either j, or j, contains a zero of
E(?) unless j, consists entirely of points of S. Suppose that the latter
oceurs for » 5;’s. Then

vH < m(S) < ATH L.
Hence there are, in (7', 27), at least

T A T
(rm)—> 56-3) > i

zeros if H is large enough. This proves the theorem.

10.9. For many years the above theorem of Hardy and Littlewood,
that Ny(T) > AT, was the best that was known in this direction.
Recently it has been proved by A. Selberg (2) that Ny(7') > AT log T.
This is & remarkable improvement, since it shows that a finite propor-
tion of the zeros of {(s) lie on the critical line. On the Riemann hypo-
thesis, of course,

N(T) = F(T) ~ 2_1”1103 T,

The ical value of the
small.t

The essential idea of Selberg’s proof is to modify the series for {(s)
by multiplying it by the square of a partial sum of the series for {{(s)}¥.

4 in Selberg’s theorem is very

To this extent, it is similar to the proofs given in Chapter IX of theorems

about the general distribution of the zeros.
‘We define «, by

1 wa,
WZZF @>1, o=1

It is seen from the Euler product that a, &, = o, if (u,v) = 1. Since
the series for (1—z)} is majorized by that for (1—z)-3, we see that, if

Vi) = ;3, a=1
then [, <o < L.

logv

= 1— <

Let 8 a,,( logX) 1<v<X)
Then Bl<1

+ Tt was caleulated in an Oxford dissertation by S. H. Min,
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All sums involving B, run over [1, X] (or we may suppose §, = ¢ for

v X). Let
o= >

ctim
o) — 41% J' T}t {a)pla)g (1~ ds
where ¢ >> 1. Moving the line of integration to o = }, and evaluating
the residue at 8 = 1, we obtain
$+io

o) = %195(1)95(0)+$ f Tk} By (s)p(s)p(1—s)2" ds
1

10.10. Lett

= o2 [ 2 prionar

On the other hand,

etio

W =5 Y S IAE [ Taark ot

n=1 p e i
=2, 2,2
- 53 3hbe(-)

Putting z = e-%m§3-v, it follows that the functions

1 E(Y)
0= Jom w1

|$(3-+it) 2ot dY,

10 = 0 3 S S Bl ey
PP

are Fourier transforms. Hence, 88 in § 10.7,

o Atk 2 b ®
I J ¥ aufas < o [ 1P dy+s [If@lydy (10100
- [ 1A

where & < 1 is to be chosen later.
Putting y = logz, G = ek, the first integral on the right is equal to

3 3
ej;:_-i'" H(L)$(0)— z z Z Evvﬁv exp (7#&({"—%2)
Ses

J- 2
i
t Titchmarsh (26).

dx.,
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Calling the triple sum g(z), this is not greater than

-] [ <2
2 [BOHO e [l s < g0 12 [ oo do
1 1 1

Similarly the second integral in (10.10.1) does not exceed

J¢(1)¢(0)V‘+ \9(1)[‘
2616 " | log¥e

16.11. We have to obtain upper bounds for these integrals as 8 - 0,
but it is more conveniens$ to consider directly the integral

J@,0) = [ lguPu—tdu 0 <6<}, 23 1)

This is equal to

Z Z 2 ﬂ«ﬁAﬁuﬂvJ"exp{ (m;a’+ )u”sin8+

e

tin (mz 2 du

ub”

Let %, denote the sum of those terms in which mx/A = npfv, and Z,
the remainder. Let (xv,Au) = ¢, so that
ww=ag, M=0bg (ab)=1
Then, in Z,, ma = nb, so that n = ra, m = rb (r = 1, 2,...). Hence
E—-Zﬁ“m 'Zfexp( rk“ u“sms)du
r=1y

@

i fe-"""l = it} i J. -t &Y dy

=
= it} f e ( L) d
K —3) %Y
A ¥ mgzw'l
The last r-sum is of the form

S —ieronoliz))
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where K(#), and later K,(8), are bounded functions of §. Hence we
obtain

T e
) *U. eV dy - O(z«/v,)] 7— [J‘ eviy-d dy+0{(1~/’1)"”}] +

+H-EK(B) [ [ey-? dy+ Of(avoy=9] +0(eHlog@-+171)
v +K,(e)7,i0—i
= 2P 3
Putting 7 = 2n«®ul¢-2sin§, it follows that

xlfﬁ 1
+0{T log@+7-1) b

= SO K)o gin syie-t
2‘42(2ST5)*015+ 19 (2w sin 8)30-38(6) 4+

1-%log(2+1-") « 1885, /LI}
ol oe@tn) o WPl Pl (10.11.1)
(e g
9\ B.BrB.B,
where 8(6) = Z (;) #

I
Defining ¢,(n} as in § 9.24, we have
7= Ztlto(ﬂ) = 3 éolp)-

plviptdps

Hence 86y = z é- a(.ﬂ)(z ﬂ,(ﬂ,)

Let d and d; denote posmve integers whose prime factors divide p.
Let x = de’, v = d,v’ where (', p) = 1, (/,p} = L. Then

Z B~ 2 v, 2 Boy > By,

v

a, X
Now, for (<,p) =1, Bar= l:g:}log e
Hence the above sum is equal to

1 g0, LN 3
e G > ale og —
ot gy B0, £y, ¥ d d,v

Fia v ¥
10.12. LeMMa 10,12, We have
X x 1Y)
> Sl ~0{( )log} H(l-;—;)} (10.12.1)
wEXid »lp
uniformly with respect to 8.
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We may suppose that X > 2d, since otherwise the lemma is trivial.
1 l+iﬂ7:‘
Now = f ;ds=0 O<e<g]), logz (z>1)
Also

1w

= 11, (1] = 3 (=) uom
LB = T plfref = T pi8+x *
Wb g (;l,l: P % pi-ff  J(1—0+8)
Hence the left-] hand side of (10.12.1) is equal to

2’" s (X) H( 1-5") ﬁi‘},jx). (10.12.2)

There are singularities at s = 0 and s = 8. If § > {log(X/d)}-%, we can
take the line of integration through s = 8, the integral round & small
indentation tending to zero. Now

’ 1
L1+
for all ¢ (large or small). Also

1105 =l

< Al
Pl

-1
Hence (10.12.2) is

X\¢ 3 (e X\¢ JATY!
oA 103 [558 =o(F TI0 3
d I;PI o ) ETa d 11;[ o 6}
and the result stated follows.

If 8 < {log(X/d)}~, we take the same contour as before modified by
a detour round the right-hand side of the circle || = 2{log(X/d)}-2.
On this circle |(Xjdy| < ¢
the p-product goes as before, and

18(1—8-+8)| > Alog(X/d).
Hence the integral round the circle is
3 X 1\3 [ |ds| X Py
1= = e | el
oot ST o3 (140 - ol 1041

The integral along the part of the line o = # above the circle is

AT, [ el eI 1)

Allog Xjay-t wlp
The lemma is thus proved in all cases.

10.18 ZEROS ON THE CRITICAL LINE
10.13, Lemma 10.13,
laaoal _ o {1 (1 1)}
%] _ gl i 1
;l ady P I;,[ P,
Defining o a8 in § 10.9, we have
log o o4 0 1
laca] o S N,
ﬂ%: dd, ﬂ;x dd, PJZD D

where D is a number of the same class as & or d;,
SLI0= = oG T 0+3)
== 1—= ol 141

10.14. Lemma 10.14.

o<

wniformly with respect to 0. In particular

8(0) = O(E;TY)‘

By the formulae of § 10.11, and the above lemmas,
z ﬁxﬁv _ { 1
log’X

=olgx [1(1+3) 3, M)
‘0{mﬂ(‘+5) :

Hence 114
so-ofx 3 LI (+3))
X2 1 1\
= Oz ,,Z,H mall (”5) )
20
=0 l;:‘x Z %ﬂﬂ}[’;;.li}’
since

»lp ) Pl

L1 (3 = ofTT () = o{T (ol =

»lp

Jotg g, 1% ot X (1 l)}
d“”dl( )lg log: d‘]-;[ +P

)

273
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Hence
.G 1
6 =0l =
50 =00z 3, %, o
n<X p <X

_olX* =1 1}
- log2X S1+0]
REX 20, 2 A
[log‘X Z nt 2 .}
neX
Xzﬁ
=fex)

10.15. Estimation of X;,. From (10.11.1), Lemma 10.14, and

the inequality |8,| < 1, we obtain
3k X2y 2'-?log(X /3)
- ol ¢ 2]0g2X |,

G- o(s}sxﬁog X) + {s*ezﬁlog x} + { g X g X}
We shall ultimately take X = 8¢ and % = (alog X)-%, where @ and ¢
are suitable positive constants. Then G = X* = 6~ if x < G, the last
two terms can be omitted in comparison with the first if GX2 = O(3-1),
i.e. if (a +2)e < }. We then have

1
5 = 0(5 whgx). (10.15.1)
10.16. Estimation of X,. If P and @ are positive, and z > 1,

r du 1 e-Pv [
—Pu? mu' iQo *’
fe i f A3 ° do = (1 Q)

e.g. by applying the second mean-value theorem to the real and

imaginary parts. Hence
= 2" 2,,2)
exp[——fr(m)‘2 "v—’:) sin 8}]

S EPINLS

The terms with m«fA > nufv contribute to the m,n sum

IR 2 a1
0{,2_.* s S

<ol
miE  nPuP _ muc fmx  np) _ mk(mer—ndp)
Now »_vz/,\(a 7)‘ o

1 1 1 log mX'
and Zm<l+x+%\_#+...:l+0(17).
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Hence the m,n sum is

My (L logmX) a2 s]
0{7,;(m+ mAg )e "

o fAw log X X2 v X
_O{K(1+ o )log7+ log! 5

O(Aivlog )+0( log? 5)

since, as in §10.16, we have X = §-¢, with 0 <c¢ < }. The remaining
terms may be treated similarly. Hence

1 A 1 X4
5, = O{F;(;logg+$log=§)]=o(__1°g ) (10.18.1)

10.17. Lemma 10.17. Under the assumptions of § 10.15

t4h

f fF(u)du &= O(W) (10.17.1)
By (10.15.1) and (10.16.1),
1
J(z,0) = 0(31—9 zai@() (10.17.2)

uniformly with respect to 8. Hence
G aq oF e
f;g(z)pdx - fx"a?dx - [_xﬂJ]f+ofz€—lJ¢z
i i i

&
1 de _ log @
= o(sielog x) +0(0 f Sdzlog x) = O(si Tog X)’
3

taking, for example, § = . Also

J’ 0 (G, 6) d6 = J’ |g(a)i® dx f 020 df
’ 3

1 1
lg)I? (log’z 2 logz_glog’z)dz

9@ ;.3 [ lg@)i
& ‘Euf B
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since G = el’» > ¢. Hence

. i
J””’”""dngw(a,a) aW-+37(6, 1)
F

log?x

3
N a8 Ly 1y
= 0( f simogx)"'o(smnogx) = O(Silog Glog X/
0

Also ¢(0) = O(X), $(1) = O(log X). The result therefore follows from
the formulse of § 10.10.

10.18. So far the integral: idered have involved F(f). We now

turn to the integrals involving |F(#)|. The results about such integrals
are expressed in the following lemmas,

) T )
Lawws 10,18, .[ IF@QPdt = o(m .

By the Fourier transform formulae, the left-hand side is equal to
2 [ Ve = f
o 1

4 f |9(@)]? dz+O(X*1og X)),
o

T 10— d=

Taking z = 1, 8 = {log(1/8)}~* in (10.17.2), we have

7 log 1/
20—log ullog 1) dyy — _*_8
f |g(u)|2e-1o8 du = 0(8 logX)'
i
b

Hence f {glu)® du = 0(;;{50%;).
i

We can estimate the integral over (8-%,c0) in & comparatively trivial
manner. As in §10.11, this is less than

3 ;Iﬁkﬂ»ﬁ»ﬁvl f exp{-ﬂ('"’:ﬁr )u’sinﬁ} au

m=1n=1 i

S
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Using, for example, x%i-2sind > AX-25 > Ad? (since X = 6-¢ with
¢ <}), and [,] < 1, this is

0{ X2logtX z J‘ p-Almt 1 ntBtut du}

= O(X’los=X [ emar du) — O(X?log?X e~45"),
o
which is of the required form.

10.19. Lremma 10.19.
i+

J(Jimorefa- ofiz)

For the left-hand side does not exceed

f{h’j‘h]F(u)J’ du} dt=h ji[l'(u)[’ du“jidt —m E\F(u)\’ du,
and‘;le result follows from the previous lemma. )
10.20. Lemma 10.20. If 8 = YT,
fu‘(m dt > ATE.
H

We have
(:H 2HT RHir

+ + [ Juoweas=o.
1'4’-.-' 24 z+'[T +f )

Since $(s) = O(X#) for o 3> §, the first term is O(X), and the third is
O(xTt). Also e,
LUsgts) = 1+ Z =

where |a,| < dy(n). Hence
24iT o B HT
| vz i+ Sa, [ 2
2% "=2 i

- i(T—1)+0(§: dn} )

2
Pt log »/

= iT+0(L).
r

1t follows that [ta+ingd+idi~ T,
i
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Hence

T Fi
{1F@|dt > 4 [ 2LQ-+inga+in) a
8 8

T
> AT [ |(+ingg-it)| e
¥

Fd
> ANl | ta-ringy-+in a
‘T
> AT,
10.21. Lemma 10.21,

T t+h
[ dt [ 1F@)] du > arT?,
[
The left-hand side is equal to
T+h min(P,u) T 6 r
f |Fw)| du j dt;f |Flw)| du f.z;=hj | Flu)| du,
13 13

) ‘max(0,u—h} 13 u—h
and the result follows from the previous lemma.
10.22, THEOREM 10,22.
Ny(T) > ATlog T.
Let E be the sub-set of (0, ') where

t4h
[ 1P du >
i

t+h
J' F(u) dul
1

For such values of ¢, F(u) must change sign .in (,#4-%), and hence so
must E(u), and hence {(}+iu) must have a zero in this interval.
Since the two sides are equal except in B,

tih t+h
[ @ [ 1P du >j{ { 1P du—
E t E i

= j{ ‘j’;F(uN du—|‘IhF(u) du]] at

k.
!F(u) du“ dt

T (t+h
> AhTi— f ] f Fu) dul dt.
0 t

The left-hand side is not greater than
teh

( J at J (T]F(u)\ du)“dt}* < {m(E)_f( ! [F ()] du)"dt}*

< A{m(E)}%hT%(%’)&
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by Lemma 10.19 with 8 = 1/7. The second term on the right is not

greater than
i AT

T 2
Udta[ z[ Flu) .tu{ dc}* < TogTX
by Lemma 10.17. Hence
gt > 4, T4,
where 4, and A, denote the particular constants which occur. Since
X = T and h = (alog X)™ = (aclog 7)1,
(BB > A, cdTH—Ay(ac)iTE,
Taking a small enough, it follows that
m(B) > A, T.
Hence, of the intervals (0, k), (%,2k),... contained in (0,7), at least
[A5 T/#) must, contain points of E. If (nh, (n+ 1)k} contains & point ¢ of
E, there must be a zero of {(}+iw) in (¢,¢+4), and so in (nh, (n+2)h).
Allowing for the fact that each zero might be counted twice in this way,
there must be at least

YA, T/h] > ATlog T
zeros in (0, 7).

10.23. In this section we return to the function E*(¢) mentioned in
§10.1. In spite of its deficiencies as an appr ion to E(¢), it is of
some interest to note that all the zeros of E¥(t) are real.t

A still better approximation to () is

@**(u) = (27 cosh ju— 3 cosh fu)e—27 cosh 2w,

This gives ) =2 j D**(u)oos ut du,
[

and we shall also prove that all the zeros of E**(2) are real.

The function K (a) is, for any value of @, an even integral function
of 2. We begin by proving that if a s real all ity zeros are purely
imaginary.

It is known that w = K,{a) satisfies the differential equation

43

This is equivalent to the two equati
dw W aw 2
E.—_?, a = (a+E)w.

1 Pélya (1), (2}, (4).
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Thess give Towe) = Luw s @y,

It is also easily verified that w and W tend to 0 as a - 00. It follows
that, if w vanishes for a certain z and @ = a, > 0, then

Jwe @ = o.
2

Taking imaginary parts,
@
i [w}?
2 —da =
iy J. 2 da = 0.
a
Here the integral is not 0, and K,(a) plainly does not vanish for z real,

i.e. y = 0. Hence x = 0, the required result.
We also require the following lemma.

Let ¢ be a positive constant, F(z) an integral function of genus 0 or 1,

which takes real values for real z, and has no complex zeros and at least

one real zero. Then all the zeros of

F(a+ic)+ Fz—ic) (10.23.1)
are also real.
‘We have F(z) = Crtex ]—I (1 —7)e'4'¥-
n=l
where C, a, ... are real constants, o, % 0 for n =1, 2,..., 3 a2

is convergent, g a non-negative integer. Let z be a zero of (10.23.1). Then
|F(z-tic)| = |F(z—ic)],
s0 that
_ | Fz—ic)?
~ |F(ztic)

{z’+(y—c)*}° ﬁ (B o)+ (y—0)*
P+ L e yte?

Ify > 0, every factor on the right is < 1; if y < 0, every factoris > 1.

Hence in fact y = 0.
The theorem that the zeros of E*(t) are all real now follows on taking

F&) = Ky (2m),  c=3.
10.24. For the discussion of E**(¢) we require the following lemma.
Let |f(6)| < Ke "™ for some positive 8, so that

Flo) = ﬁ— f Floet de
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is an integral function of z. Let all the zeros of F(z) be real. Let $(t) be
an integral funclion of t of genus 0 or 1, real for real t. Then the zeros of

1 f N
6) = W,J; Fytite dt
are also all real,
Wo have Ht) = Cteest f‘[ (1 _ai)e«“—,
m=1 e

where the constants are all real, and 3 o® is convergent. Let

2 t
= of et
$a(t) = Otte H(l am)e“"m
Then $,(t) - $(¢) uniformly in any finite interval, and (as in my Theory
of Functions, § 8.25) 1falt)] < Kem*

uniformly with respect to n. Hence

e) = lim —os f(t)¢n(zt)e‘” dt = lim G,(2),

«/(2 )

say. It is therefore suﬁcxent. to prove that, for every =, the zeros of
@,(2) are real.

Now it is easily verified that F'(z) is an integral function of order less
than 2. Hence, if its zeros are real, so are those of

(D—)F(z) = e”%{r“’l‘(z)}

for any real «. Applying this principle repeatedly, we see that all the
zeros of
Hiz)
= — — a(it— t—a, )eid df
DD —ay)...(D—a,) F(z) = J(z‘”) f JOE(EE—ay).. (it —a, )e d

are real. Since

&, (Z+vx+mll+...+
the result follows.
Taking flt) = 4y(2m)e2moosn ¥
we obtain F2) = Ky (2m),

all of whose zeros are real. If

$(2) = n?cosit,
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then G(z) = E*(z), and it follows again that all the zeros of E*(z) are

real. If 9 3 5
8) = }mY —f——. =
Hlt) = o (cos2t 2"<xos2t),
then G{z) = E**(z). Hence all the zeros of E**(z) are real.
10.25. By way of to the Ri ta-function we shall

now construct a function which has a similar functional equation, and
for which the analogues of most of the theorems of this chapter are true;
but which has no Euler produet, and for which the analogue of the
Riemann hypothesis is false.

‘We shall use the simplest properties of Dirichlet’s L-functions (mod 5).
These are defined for o > 1by

Lo = - M—~+ gt

-
Lys) = Z"‘(") L ~—31,—i—.+é+...,
n=1
C
T AT
'l-l
L= M 11,—5——+ EE -
n=1

Each x(n) has the period 5. It is easily verified that in each case
x(m)x(n) = x(mn)
if m is prime to n; and hence that X
-1
Lie) = H{l—%} (@ >1).
»
It is also easily seen that
1
Ly = (1- )0,

s0 that Ly(s) is regular except for a simple pole at 8 = 1. The other
throe series are convergent for any real positive s, and hence for o > 0.
Hence Ly(8), Ly(s), and Ly(s) are regular for o > 0.
Now consider the function
£(8) = 450060 L, (s)-+e¥ Lye)}
tand tanf 1 1

1
=wtTe e TEtEt

= 2.+ ton 86, D—tan (s, H— 105,
where [(s, a) is defined as in §2.17.
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By (2.17)f(s) is an integral function of s, and for ¢ < 0 it is equal to

2I'(1—s)
5'(2n)1-'[m’}" X
S 2ma 4mm 6mm 8ma\ 1
X Z (cosT+mn9cosTftanﬁcosA5——-cosT F+
m=1

< 2 ma . Smr) 1
+cos ims Z (smﬂ+ta.n0sm——5——ta,nasm 5 s
=

_ 4D(1—s)eos §ms i ( . 2m1r+mn95m4) 1

FEm Ly mi=t
2 4
I sin4l+eanosin8_"=mne(sm;+canosm_f'), (10.25.1)
5 5 5 5

this is equal to
4T (1—8)cos }m]
5@
The equation (10.25.1) reduces to

+tnnﬂsm )f(l——s)

2r  AB6—1
8in 20 = Zcos~5— -3

and we take @ to be the root of this between ¢ and }=. We obtain

_ J(10—245)—2
tan @ = faor s m]
. 2m L dn A5
slnF+tamﬁsm—5——— 3

and f(s) satisfies the functional equation
2F(1—s)eos }sﬂf(l#,)

s =T
There is now no difficulty in extending the theorems of this chapter
to f(s). We can write the above equation as

(&) ra+iare = () ra-tsa-a,

and putting s = }--it we obtain an even integral function of ¢ analogous
to E(z).
‘We conclude that f(s) has an infinity of zeros on the line o = }, and
that the number of such zeros between 0 and 7' is greater than 47‘.
On the other hand, we shall now prove that f(s) kas an infinity of
2eros in the half-plane o > 1.
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If p is a prime, we define o(p) by
a(p) = H1+a)x(P)+ H1—i)xulp),
so that afp) = 41 or i.
For composite 1, we define «(r) by the equation
alnyng) = afn,)alny).
Thus [«(n)] is always 0 or 1. Let

Mo, ) — i u(nng(n) =TI (1 _a(PI)))f(p))"
»

where y denotes either y, or x,. Let
N(s) = H{M(s, o)+ M (s, x5}
a(P)xa(P) = H1+d+H30—)x1 X2
a(P)xa(p) = H1+0xs xe+H1—9)xd
and these are conjugate since x} = 3 and x} and y, x, are real. Hence

M(3,x;) and M (s, y,) are conjugate for real 5, and N(s) is real.
Let s be real, greater than 1, and — 1. Then

Now

log Mia, ) = 3 224 o)
;

2
=114 SHE@) 1 S @@ o).
H +'>§ AR n; 208 oq

Now xi = y, and x; xs = x,. Hence

)a(:n) z x(P) _ = log Ly(s)+0(1) = 0(1),

X(P(P) _ 5 xolP) _ —
Z % = z % = log Ly(s)+0(1) = log;l +0(1).

Hence 1
log Ms, x2) = (1 —illog —7 -+ 0(1),

N(s) = RM(3, 3,) = ﬁws({log;?li)e“‘".

It is clear from this formula that N(s) kas a zero at each of the poinis
§ = lfetmadm (m = 1,2,.).
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Now for ¢ 2 143, and x = x; or x,,
log L{s+ir, x)—log M{s, x)

ﬁz{ (1 a(p)x(m) log(l—p;'x(m)} +0(

»<P

lz Iadp)— ww]w( 5

PP

Let o(p) = €2™8®. By Kronecker’s theorem, given g, there is a number
+ and integers z, such that

!
T EL | Bp)—m,| < (P < P

Then o p)—pi7| = |t B log e _ 1|  etri—1,
Hence log Ls-+ir, y)—log M(s, x) = o(lﬂ:_lf) +0(pia)'

and we can make this as small as we please by choosing first P and
then ¢. Using this with y, and y,, it follows that, given ¢ > 0 and
& > 0, there is a 7 such that
|fs+in)—N(@s) <e (o> 1143).
Let s, > 1 be a zerc of N(s). For any n > 0 there exists an n, with
0 < my < 9, 7y < 8—1, such that N(s) 7= 0 for |s—s| = 1,. Let
€= min |N(s)|
[8=ait=a
and § < &-—n,—1. Then, by Rouché’s theorem, N(s) and
N(s)—{N(s)—f(s-+im)}
have the same number of zeros inside |s—s,| = 7, and so at least one.
Hence f(s) has at least one zero inside the circle |8—s—i7| = 7,.

A slight extension of the argument shows that the number of zeros of
Si8)ino > 1,0 <t T, exceeds AT as T - 0. For by the extension
of Dirichlet’s theorem (§ 8.2) the interval (t,, mgP%,) contains at least m
values of ¢, differing by at least #,, such that

1

B2 gl<l w<P)

L A

The above argument then shows the existence of a zero in the neigh-
bourhood of each point &,+i(r4-1).
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The method is due to Davenport and Heilbronn (1), (2); they proved

that a class of functions, of which an example is

>

mnE0,0 (mz+5nﬂ)*
has an infinity of zeros for ¢ > 1. Tt has been shown by calculationt
that this particular function has a zero in the critical strip, not on the
critical line. The method throws no light on the general question of
the occurrence of zeros of such functions in the critical strip, but not
on the critical line.

NOTES FOR CHAPTER 10

10.26. In §10.1 Titch h's onR ’s st about
the approximate formula for N(T'} is erroneous. It is clear that Riemann
meant that the relative error {N(T) — L(T)}/N(T) is (T -1).

10.27. Further work has been done on the problem mentioned at the
end of §10.25. Davenport and Heilbronn (1), (2) showed in general that if
Qis any positive definite integral dratic form of discrimi d,such
that the class number A(d) is greater than 1, then the Epstein Zeta-
function

@
{ee)= ¥ Qxy»—* (¢>1
@ HEO

has zeros to the right of ¢ = 1. In fact they showed that the number of
such zeros up to height T'is at least of order T (and hence of exact order
T). This result has been extended to the critical strip by Voronin (3],
who proved that, for such functions { ¢(s), the number of zeros up to
height 7, for} < o, < I{s) < 0, < 1,is also of order at least T (and hence
of exact order T'). This th ion raised by Titct h at the
end of §10.25.

10.28. Much the most significant result on Ny(7T) is due to Levinson
[2], who showed that

No(T) = aN(T) 10.28.1)

for large enough 7, with « = 0-342. The underlying idea is to relate the
distribution of zeros of {{s) to that of the zeros of {'(s). To put matters in

t Potter and Titchmarsh (1).
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their proper perspective we first note that Berndt [1] has shown that
. , T T
#{s=0+i:0 <t < T,{'(s) =0} = —|log——1]+Olog T),
2n 4n

and that Speiser (1) has proved that the Riemann Hypothesis is
quivalent to the ishing of {'(s) for 0 < ¢ < }. This latter result
is related to the unconditional estimate

#ls=otit~1<o<} T <t<T,{E) =0}
=gls=otitt0<o<h T, <t<T,Us)=0}
+0Q0g Ty), 1028.2)

zeros being counted according to multiplicity. This is due to Levinson
and Montgomery [1], who also gave a number of other interesting
results on the distribution of the zeros of {'(s).

We sketch the proof of (10.28.2). We shall make frequent reference to
the logarithmic derivative of the functional equation (2.6.4), which we
write in the form

U = (TG r'(é—h))
T T di= " %(F(M “Tg-19
= —F(s), (10.28.3)

say. We note that F(} +it) is always real, and that
F(s) = log(t/2m) + O(1/) (10.28.4)

uniformly for ¢ > 1 and |o| < 2. To prove (10.28.2) it suffices to consider
the case in which the numbers T, are chosen so that {(s) and {'(s) do not
vanish for ¢ = T;, —1 < ¢ < }. We examine the change in argument in
{'(s)/{(s) around the rectangle with vertices }—&+iT,, }—5+iT,,
—1+iT,, and —1+iT,, where 4 is a small positive number. Along
the horizontal sides we apply the ideas of §9.4 to ((s) and ('(s)
separately. We note that [(s) and {'(s) are each O(t4) for —3< o< 1.
Moreover we also have |{(—1+ iT)l» T}, by the functional equation,
and hence also

{(—1+:iT)

K(=1+T)I> T} 1t iT)

i

> TllogT,,

by (10.28.3) and (10.28 4). The method of §9.4 therefore shows that arg {(s)
and arg {'(s) both vary by O(log 7)) on the horizontal sides of the
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rectangle. On the vertical side 0 = —1 we have
[£C)] ( )
=log + 01
D) o),

by (10.28.3) and (10.28.4), so that the contribution to the total change in
argument is O(1). For the vertical side ¢ = } — & we first observe from
(10.28.3) and (10.28.4) that
{G+ il))
R{ — — =1 (10.28.5)
( {G+iny

if ¢ > T, with T sufficiently large. It follows that
{G-0+ip)
R| 22— 10.28.6)
( W+ )7 (10258
for T, < T,, if 8 = 8(T,) is small enough. To see this, it suffices to
examine a nelghbourhuod of a zero p = } +iy of {(s). Then
_te
NCHEEET)
where m > 1 is the multiplicity of p. The choice s = } +it with ¢t~y
therefore yields R(m’) > 1, by (10.28.5). Hence, on taking s = § -5 +it,
we find that

o
R(’«s)) P pl““‘””"o"s D=4

for |s—p| small enough. The inequality (10.28.6) now follows. We

therefore see that arg {'(s)/{(s) varies by O(1) on the vertical side

R(3) = 4 - of our rectangle, which completes the proof of (10.28.2).
If we write N for the quantity on the left of (10.28.2) it follows that

Ny(Ty) = No(Ty) = {N(Ty)— N(T,)} —2N+0(log T,), (10.28.79 |

s0 that we now require an upper bound for N. This is achieved.by
applying the ‘mollifier method’ of §§9.20-24 to {'(1 —s). Let (s, T, T,)
denote the number of zeros of {'(1—s) in the rectangle o < R(s) <2,
T, < I(s) < T,. The method produces an upper bound for

2

J Wo, T,, Ty)do, (10.28.8)

u

which in turn yields an estimate N < ¢{N(T,) — N(T,)} for large T,. The
constant c in this latter bound has to be calculated explicitly, and must
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be less than § for (10.28.7) to be of use. This is in contrast to (9.20.5), in
which the implied constant was not calculated explicitly, and would
have been relatively large. It is difficult to have much feel in advance for
how large the constant ¢ produced by the method will be. The following
very loose argument gives one some hope that ¢ will turn out to be
reasonably small, and so it transpires in practice.
In using (10.28.8) to obtain a bound for N we shall take
u=4}—aflogT,,

where a is a positive constant to be chosen later. The zeros p’ = § +iy’ of
{(1—s) have an asymmetrical distribution about the critical line.
Indeed Levinson and Montgomery [1] showed that

T
(3 —p) ~ ;- loglog T,
Z’ D~

whence §' is 3 —(loglog y')/log y’ on average. Thus one might reasonably
hope that a fair proportion of such zeros have §' < u, thereby making the
integral (10.28.8) rather small.
We now look in more detail at the method. In the first place, it is
convenient to replace {'(1—s) by
)+ i; = G(s),

say. If we write A(s) = Pt I'(}35) then (10.28.3), together with the
functional equation (2.6.4), yields

o FOREGCE
{1-s)= -5
so that G(s) and {’(1 - s) have the same zeros for ¢ large enough. Now let
)= Y bn-e (10.28.9)
n<y

be a suitable ‘mollifier’ for G(s), and apply Littlewood’s formula (9.9.1) to
the function G(s)y/(s) and the rectangle with vertices u +iT,, 2+iT,,
2+iT), u+iT,. Then, as in §9.16, we find that

5
1
og 7, '[ wa, Ty, T,) do

u

N<g

o 1, f
; log 1GQu + i) y (u + i) dL -+ Olog T,).

7,
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Moreover, as in §9.16 we have

T

J log |G(u + ity (u +it) |dt

kN

T

< H(T,-T, )log( I |G(u+zt)w(u+tt)|2dt)

Hence, if we can show that
T
-[ |G + ity (u+ iz dt ~ @) (T, — T;) (10.28.10)

for suitable T,, T,, we will have
N< (1°g loge@ | (1)){N(T )= N(T)}, (10.28.11)

whence

NyT) - NgT)) > ( e oa)

+ou>)(1v(T )— M)}

by (10.28.7).
The computation of the mean value (10.28.10) is the most awkward
part of Levinson’s argument. In (2] he takes y = T,}~* and
logy/n
logy
This leads eventually to (10.28.10) with

1y 1 1 2 7 @
24a

b, = p(nynt

c(a) = e ! St —t
2a? 26 a® 240 12 12

The optimal choice of a is roughly & = 1-3, which produces (10.28.1) with

=0-342.

The method has been improved slightly by Levinson [4], [5], Lou [1]
and Conrey [1] and the best constant thus far is « = 0-36568 (Conrey [1]).
The principal restriction on the method is that on the size of y in
(10.28.9). The above authors all take y = 7,4~¢ but there is some scope
for improvement via the ideas used in the mean-value theorems (7.24.5),
(7.24.6), and (7.24.7).
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10.29. ‘An examination of the argument just given reveals that the
right hand side of (10.28.11) gives an upper bound for N+ N*, where

N*=g{s=4+it: T) <t < T, [(s) =0},

(zeros being counted according to multiplicities). However it is clear
from (10.28.3) and (10.28.4) that {'(3 +£0) can only vanish if {(} +£¢) does.
Consequently, if we write N for the number of zeros of {(s) of
multiplicity 7, on the line segment s = } +if, T, <t < T,, we will have

=Y (r-1No,
r=2
Thus (10.28.7) may be replaced by
NO_ T (r—2) N = {N(Ty)— N(T,)} — 2N+ N*) + Olog T).
r=3

If we now define N*>(T) in analogy to N, but counting zeros } + it with
0 <t < T, we may deduce that

NO(T)— Z -2 NOUT) > aN(T), (10.20.1)

forlarge enoughT, and « = 0-342. In particular at least a third of the non-
trivial zeros of {(s) not only lie on the critical line, but are simple. This
observation is due ind. dently to Heath-B: [6] and Selberg
(unpublished). The improved constants « mentioned above do not all
allow this refinement. However it has been shown by Anderson {1] that
(10.29.1) holds with a = 0-3532.

10.30. Levinson’s method can be applied equally to the derivatives
&m(s) of the function £(s) given by (2.1.12). One can show that the zeros
of these functions lie in the critical strip, and that the number of them,
N, (T) say, for 0 <t < T, is N(T)+ O, (log T). If the Riemann hypo-
thesis holds then all these zeros must lie on the critical line. Thus it is of
some interest to give unconditional estimates for

tim inf N,(T) -1 4 {t:0 <t < T, &G+ i) = 0} =a,,,
T-w
say. Levinson [3), [6] showed that @, > 0-71, and Conrey [1] improved

and extended the method to give «, > 0:8137, «, > 0-9584 and in general
%y, = 1+ Om-2).



XI

THE GENERAL DISTRIBUTION OF
THE VALUES OF {(s)

11.1. I the previous chapters we have been concerned almost entirely
with the modulus of {(s}, and the various values, particularly zero,
which it takes. We now consider the problem of {(s) itself, and the
values of s for which it takes any given value a.}

One method of dealing with this problem is to connect it with the
famous theorem of Picard on functions which do not take certain values.
‘We use the following theorem:}

If f(s) is regular and never 0 or 1 in |s—s,] < r, and |f(3))] < o,
then |f(8)| <X Alw, 8) for Js—s,] << Or, where 0 < 6 < 1.

From this we deduce

THEOREM 11.1. {(s) takes every value, with one possible exception, an
infinity of times in any strip 1—8 < o < 148,

Suppose, on the contrary, that {(s) takes the distinct values @ and b
only a finite number of times in the strip, and so never above t = i, say.
Let T' > t,-+1, and consider the function f(s) = {{(s)—a}/(b—a) in the
circles O, ¢, of radii 48 and }§ (0 <3 < 1), and common centre
8 = 14+ 18+4iT. Then

o)l € o = {{1+18)+|al}/lb—al,
and f(s) is never 0 or 1 in C. Hence
@] < Al
in ¢, and so |L(e+iT)| < A(a,b,a) for 1 < o < 1445, T > o1
Hence {(s) is bounded for o > 1, which is false, by Theorem 8.4(A).
This proves the theorem.

We should, of course, expect the exceptional value to be 0.

If we assume the Riemann hypothesis, we can use a similar method
inside the ecritical strip; but more detailed results independent of the
Riemann hypothesis can be obtained by the method of Diophantine
approximation. We devote the rest of the chapter to developments of
this method.

+ Seo Bohr (1)~(14), Bohr and Courant (1), Bohr and Jessen (1), (2), (5), Bohr and
Landau (3), Borchsenins and Jossen (1), Jessen (1), van Kampen (1), van Kampen and
‘Wintaer {1), Kershner (1), Kershner and Wintner (1), (2), Wintner (1)-{(4).

1 See Landau's Ergebnisse der Funktionentheorie, § 24, or Valiron's Integral Functions,
Ch. VI, §3.
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11.2. We restrict ourselves in the first place to the half-plane o > 1;
and we consider, not (s} itself, but log {(s), viz. the function defined
for o > 1 by the series

log{(s) = — g (P~ +p4..).

We consider at the same time the function

140}

2 S 1oy 2 ppt4l).

Ty = 3 BB P )
We observe that both functions are represented by Dirichlet series,
absolutely convergent for ¢ > 1, and capable of being written in the

fi —

o Fl) = fpr )+ o)+

where f,(2) is a power-series in z whose coefficients do not depend on .
b

Rt 0= —logi—2), /i) = 2logp, /1)

in the above two cases. In what follows F(s) denotes either of the two
functions.

11.3. We consider first the values which F(s) takes on the line o = ¢,,
where o, 18 an arbitrary number greater than 1. On this line

F) = 3 fulpameriionm,

and, as ¢ varies, the arguments —flogp, are, of course, all related.
But we shall see that there is an intimate connexion between the set U
of values assumed by F(s) on ¢ = o, and the set ¥ of values assumed
by the function

®(y, 0, 3...

= 2 Jopieeini®)
of an infinite number of independent real variables 6, 6,,....

We shall in fact show that the set U, which is obviously contained in V,
is everywhere dense in V, i.e. that corresponding to every value v in V
(i.e. to every given set of values 8, 0,,...) and every positive <, there exists
a t such that .

|F(oy+it)—v] < e

Since the Dirichlet series from which we start is absolutely convergent

for o = ay, it is obvious that we can find N = W, (95, €} such that

| b3 Julpameimin)) < fe (11.3.1)

=+
for any values of the u,, and in particular for Hy = b, or for
B = —(tlogp,)/2m.
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Now since the numbers log p, are linearly independent, we can, by
Kronecker’s theorem, find a number £ and integers g,, gy,..., gy such that
|—tlogp,—2nf,—2ng,] <% (n=1,2..,N),

7 being an assigned positive number. Since f,(p5 %e?¥) is, for each n,

a continuous function of 8, we can suppose % so small that
N
| 2, tutproemt—f prmeaiemm)| <. (1132)
n=1

‘The result now follows from (11.3.1) and (11.3.2).

11.4. We next consider the set W of values which F(s) takes ‘in the
immediate neighbourhood’ of the line o = g, i.e. the set of all values
of w such that the equation F(s) = w has, for every positive §, a root
in the strip |o—a,| < 8.

In the first place, it is evident that U is contained in W. Further,
it is easy to see that U is everywhere dense in W. For, for sufficiently
small 3 (e.g. for § < §(op—1)),

1F(8)} < K(oo)
for all values of s in the strip [o—ay| < §, so that
[Fiogtit)— Floy-it)] < Klag)loy—o| (ly—cg] < 8). (11.4.1)
Now each value w in W is assumed by F(s) either on the line ¢ = g,
in which case it is a u, or at points o;1-4¢ arbitrarily near the line, in
which cass, in virtue of (11.4.1), we can find a u such that
lw—u| < Klo)loy—ay] < &

‘We now proceed to prove that W is identical with V. Since U is con-
tained in and is everywhere dense in both ¥ and W, it follows that
each of ¥ and W is everywhere dense in the other. It is therefore
obvious that W is contained in ¥, if V is closed.

‘We shall see presently that much more than this is true, viz. that V
consists of all points of an area, including the boundary. The following
direct proof that V is closed is, however, very instructive.

Let v* be a limit-point of V, and let v, (v = 1, 2,...) be a sequence of
v’s tending to »*. To each v, corresponds a point F(fy,, 0,,,...) in the
space of an infinite number of dimensions defined by 0<4,, <1
(n = 1, 2,...), such that ®(og, byyrer.) = ¥,

Now since (F,} is & bounded set of points (i.e. all the coordinates are
bounded), it has a limit-point P* (6}, 6}....), i.e. a point such that from
(P,) we can choose & sequence (P, ) such that each coordinate 4,,,, of B,
tends to the limit 6} as r - 0.
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It is now easy to prove that P* corresponds to v*, i.e. that
Dlog, 0,...) = v,
so that v* is a point of V. For the series for v, viz.

ﬂg Fol D 02700,

is uniformly convergent with respect to 7, since (by Weierstrass’s
M-test) it is uniformly convergent with respect to all the ¢s; further,
the nth term tends to f,(p; ®e27#3) as » - o0, Hence

v =limo, =lim 5 f,(proeeitn) = @(a,, 81,.),
fim e, = lim 3,

which proves our result.

To establish the identity of ¥ and W it remains to prove that V is
contained in W. Tt is obviously sufficient (and also necessary) for this
that W should be closed. But that W is closed does not follow, as might
perhaps be supposed, from the mere fact that W is the set of values
taken by a bounded analytic function in the i di ighbourhood
of a line. Thus e~ is bounded and arbitrarily near to 0 in every strip
including the real axis, but never actually assumes the value 6. The
fact that W is closed (which we shall not prove directly) depends on
the special nature of the function F(s).

Let v = ®(oy, 8, ,,...) be an arbitrary value contained in V. We
have to show that v is a member of W, i.e. that, in every strip

lo—a,| < 8,
F(s) assumes the value v.

Let G = 3 fatpyromin,

so that G(s,)) = v. We choose a small circle C with centre d, and radius
less than & such that G(s) # v on the circumference. Let m be the
minimum of {G(s) - v| on C.

Kronecker’s theorem enables us to choose ¢, such that, for every s

inC, |F(s-ity)— G(e)] < m.
The proof is almost exactly the same as that used to show that I/ is
overywhere dense in V. The series for #(s) and G(s) are uniformly

convergent in the strip, and, for each fized W, ‘Ev Jo(Dyoetmiie) ig 8
1

continuous function of o, p,..., py. Xt is therefore sufficient to show
that we can choose f, so that the difference between the arguments
of pi* at a = oy+ity and pyeermis at ¢ = oy, and consequently that
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between the respective arguments at every pair of corresponding points
of the two circles is (mod 2x) arbitrarily small for n = 1, 2,..., N. The
possibility of this choice follows at once from Kronecker’s theorem.
‘We now have
Flatity)—v = {G(s)—}+{Fs+ity)—G(s)},
and on the circumference of ¢
[Flsity)— )] < m < |6()—0.
Hence, by Rouché’s theorem, F(s + if;) — v has in C the same number of
zeros as G(s) —v, and so at least one. This proves the theorem.

11.5. We now proceed to the study of the set V. Let ¥, be the set
of values taken by f,.(p7®) for o = o, ie. the set taken by f,(z) for
|z = p;°. Then V is the ‘sum’ of the sets of points ¥, V..., Le. it is
the set of all values v, +,..., where v, is any point of ;, v, any point
of ¥, and so on. For the function log{(s), ¥, consists of the points of
the curve described by —log(1—z) as z describes the circle |z = py*;
for {'(s)/{(s) it consists of the points of the curve described by

—(zlogp,)f(1—2).
‘We begin by considering the function {'(s)/Z(3). In this case we can
find the set V explicitly. Let

_zulogp,

e 1—z,

As z,, describes the circle |z,| = p;%, w, describes the circle with centre

pa e logp,
O = e
; Palogp,

and rading Pn = I‘_p;m”,
Let W, = CpF it = €, tpy €%,

$ £'(200)

d let = = 2%

anc o €= 2.5 = Ty

Then V is the set of all the values of
=
ot 3 pueits
f=it

for independent ¢, ¢s,.... The set ¥’ of the values of 3 p, e is the
‘gum’ of an infinite number of circles with centre at the origin, whose
radii p;, py.... form, as it is easy to see, a decreasing sequence. Let
V;, denote the nth circle.
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Then V34 V; is the area swept out by the circle of radius p, as its
centre describes the circle with centre the origin and radius p;. Hence,
since p, < p,, V) + V} is the annulus with radii p, —p, and p, +p,.

The argument clearly extends to any finite number of terms. Thus
V1+...+ V) consists of all points of the annulus

N N
=3 m<wl< Yo
n=2 n=1
or, if the left-hand side is negative, of the circle
x
0] < 3 pu
Tt is now easy to see that

{) if py > pa-t-pst-.., the set V' consists of all points w of the annulus
o 2 < Bl < 3
(i) #of py < patpat..., V' consists of all points w for which
[0l < 3 poe
n=1

For example, in case (ii), let w, be an interior point of the circle. Then
we can choose N so large that

® X
W2y Pr < 2 el
Henc: Wy = wy— 3 idn
o L= 3 o
lies within the circle Vi+..4-Vy for any values of the ¢,, e.g. for

by4p = ... = 0. Hence ~
Wy =3 paeite
A=l

for some values of ¢,,..., ¢,, and so
=3 pue
f=ih

as required. That ¥’ also includes the boundary in each case is clear
on taking all the ¢, equal.

The complete result is that there is an absolute constant D = 2-57...,
determined as the root of the equation

2-Plog 2 piPlogp,
1—2-0 Z 1=p 0
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such that for g, > D we are in case (i), and for 1 < g, < D we are in
cage (ii). The radius of the outer boundary of V' is
B - Lo Llog)
L{20y)  Llog)
in each case; the radius of the inner boundary in case (i) is
r = 2p,— R = 21-%log 2/(1—2-%)—R,
Summing up, we have the following results for £'(s)/{(s).
TreoreM 11.5(A). The values which ['(s)/{(s) takes on the line
o =0, > 1 form a set everywhere dense in a region B(og). If oo > D,
R(o,) is the annulus (boundary included) with centre ¢ and radii r and B;
if 0o < D, Rlo,) is the circular area (boundary included) with centre ¢ and
radius R; ¢, r, and R are continuous functions of o, defined by

e = U'(20)/{{200), R =c—Lla)/ilog), 7= 2"log2/(l—2-2")—R.
Further, as 6y — 0,

lime =limr =limR =0, lim¢/R = im(R—r)/{R = 0;
as oy > D, limr = 0; and as ¢, 1, lim R = o0, lime¢ = £'(2)/{(2).

TreosEM 11.5 (B). The set of values which ['(s)/l(s) takes in the
immediate neighbourhood of o = oy 18 identical with R(og). In particular,

since ¢ tends to a finite imil and R to infinity as o4 > 1, {'(s)/L(s) takes

all values infinitely often in the strip 1 < o < 148, for an arbitrary
positive 8, '

The above results evidently enable us to study the set of points at
which {'(s)/{(s} takes the assigned value a. We confine ourselves to
giving the result for @ = 0; this is the most interesting case, since the
zeros of 1'(s)/L(s) are identical with those of {'(s).

TuEOREM 11.5 (C). There is an absolute constant B, between 2 and 3,

such that {(s) # 0 for o > E, while {'(s) has an infinity of zeros in every 4

sirip between ¢ = 1 end 0 = E.

In fact it is easily verified that the annulus B{s,) includes the origin

if @y = 2, but not if o = 3.
11.6. We proceed now to the study of log {(s). In this case the set V'
consists of the ‘sum’ of the curves ¥, described by the points
w, = —log{l—z,)
as z, describes the cirele |z, | = pro.
In the first place, ¥, is a convex curve. For if
utiv = w = f(z) = flz+iy),

116 THE VALUES OF {(s) 209

and z desotibes the circle |z| = 7, then

du v _ ok
Wil (z)(1+|;i;) SACE

Hence arctan g.s = argfaf'(2)}— 1.

A sufficient condition that w should describe a convex curve as z
describes |z| = r is that the tangent to the path of w should rotate
steadily through 2= as z describes the cirels, i.e. that arg{zf’(z)} should
increase steadily through 27. This condition is satisfied in the case
S(z) = —log(1—2); for zf'(z) = z/(1—=) describes a circle enclosing the
origin as z describes [z] = r < 1,

If z = 7e®, and w = —log(1—=z), then
rainf

u = —}log(1—2rcos8+72), v = gretan ————.
1—-rcosé

The second equation leads to
70088 = sin®v4-cos v(r—sin%w)t.
Hence, for real r and 6, jv| < arcsinr. If 0036, and cosé, are the two
values of cos# corresponding to a given v,
{1—2r cos by +72)(1—2r cos 6, 412) = (1—r?)2,
Hence if u, and u, are the corresponding values of u,
Uy, = —log(1—r?),
The curve V, is therefore convex and symmetrical about the lines
u=—}log(l1~r?) and v=0.
Its diameters in the u and v directions are §log{(1+r)/(1—-r)} and
arcsinr,
Let ¢n = —3}log(1—p; %)
and w,, = €},

o= 3 o0 = blogliey).

Then the points w, describe symmetrical convex figures with centre the
origin. Let V" be the ‘sum’ of these figures.

"It is now easy, by analogy with the previous case, to imagine the
result. The set V', which is plainly symmetrical about both azxes, is either
(i) the region bounded by two convex curves, one of which is entirely interior
to the other, or (if) the region bounded by a single convex curve. In each
case the boundary is included as part of the region.

This follows from a general theorem of Bohr on the ‘summation’ of
& series of convex curves.



300 THE GENERAL DISTRIBUTION OF Chap. XI

For our present purpose the following weaker but more obvious
results will be sufficient. The set V" is included in the circle with centre
the origin and radius

< l4pr>
R= 41og 2 = 1log

L¥ag)
(20)
If o, is sufficiently large, V' lies entirely outside the circle of radins

< 14poe L 14-2-0
aresin 2-% — z tlog I i—ﬁ"%w = arcsin 2-% -} log == —R.
=
LN 142-%
It n}::ﬂarcsm Py > %logm,

and so if 0, is sufficiently near to 1, ¥’ includes all points inside the circle
of radius " .
> aresinpg .

n=1

In particular ¥’ includes any given area, however large, if g, is suffi-
ciently near to 1. . .

‘We cannot, as in the case of circles, determine in all circumstances
whether we are in case (i) or cage (ii). It is not obvious, for ex.s,mple,
whether there exists an absolute constant D’ such that we are in case
(i) or (ii) according as oo > D' or 1 < 64 < D'. The discussion of this

point d a closer tigation of the g

one of considerable intricacy. ) )
The relations between U, V, and W now give us the following
analogues for log {(s) of the results for ¢'(s)/Z(3).

THEOREM 11.6 (A). On each line o = oy > 1 the values of log [(s) are |
everywhere dense in a region R{o,) which is either (i) the ring-shaped area

bounded by two convex curves, or (ii) the area bounded by one convex curve.
For sufficiently large values of o, we are in case (i), and for values of oy
sufficiently near to 1 we are tn case (ii).

THEOREM 11.6 (B). The set of values which log {(s) takes in the *

ighbourhood of o = o, i3 identical with B(a,). In particular,
since Ro,) includes any given finite area when o is sufficiently near 1,
log {(8) takes every value an infinity of times in 1 < o < 14-8.
As a consequence of the last result, we have
TeEOBEM 11.6 (C). the function {(8) lakes every value except O an
infinity of times in the strip 1 << o < 14-3.
This is a more precise form of Theorem 11.1.

ry of the special |
curves with which we are dealing, and the question would appear to be ]
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11.7. We have seen above that log {(s) takes any assigned value a
an infinity of times in ¢ > 1. Tt is natural to raise the question how
often the value a is taken, i.e. the question of the behaviour for large 7'
of the number M,(T") of roots of log{(s) =aino > 1,0 < t < T. This
question is evidently closely related to the question as to how often, as
t-> oo, the point (a,¢, ayt,...,axt) of Kronecker’s theorem, which, in
virtue of the theorem, comes (mod 1) arbitrarily near every point in the
N-dimensional unit cube, comes within a given distance of an assigned
point (by, by,...,by). The answer to this last question is given by the
following theorem, which asserts that, roughly speaking, the point
(ay1,...,ayt) comes near every point of the unit cube equally often, i.e.
it does not give & preference to any particular region of the unit cube.

Let ay,..., ay be linearly independent, and let v be a region of the N-
dimensional unit cube with volume T (in the Jordan sense). Let 1(T) be
the sum of the intervals between t — 0 dnd { — T Jor which the point P
(@rt,...,an1) is (mod 1) inside y. Then

lim I(T)/T = T.
T-wo

The region y is said to have the volume ' in the Jordan sense, if, given
€, we can find two sets of cubes with sides parallel to the axes, of volumes
I} and L, included in and ineluding y respectively, such that

L-e< T g Gte

If we call a point with coordinates of the form (@yt,...,ayt), mod 1,
an ‘aceessible’ point, Kronecker’s theorem states that the accesgible
Points are everywhere dense in the unit cube €. If now Y15 V3 8T€ twWo
equal cubes with sides parallel to the axes, and with centres at accessible
Ppoints F, and F,, corresponding to ¢, and &, it is easily seen that

lim L(T)/L(T) = 1.
For (a,¢,...,ayt} will lie inside y, when and only when {a,(i+5,—4),...}
lies inside ,.

Consider now a set of p non-overlapping cubes ¢, inside C, of side ¢,
each of which has its centre at an accessible point, and ¢ of which lie
inside y; and a set of P overlapping cubes ', also centred on accessible
Points, whose union includes C and such that 7 is included in a union of
Q of them. Since the accessible points are everywhere dense, it is
Possible to choose the cubes such that q/P and @/p are arbitrarily near
to I'. Now, denoting by YI(T) the sum of rintervals in 0, 7)

Y
corresponding to the cubes ¢ which lie in y, and so on,

1)
D3 <P < s 13,
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Making T - o we obtain

4 iip 2T @

4 < fim A2 €

P S

and the result follows.

11.8. We can now prove

THEOREM 11.8 (A). If o = o, > 1 is a line on which log [(s) comes
arbitrarily near to a given number a, then in every strip 0,—3 < o < 0y+8
the value a is taken more than K (a, oy, 8)T times, for large T, in 0 <t < T.

To prove this we have to reconsider the argument of the previous
sections, used to establish the existence of a root of log {(s) = a in the
strip, and use Ki ker’s th d form. We saw that

s inits li:
a sufficient condition that log{(s) = @ may have a root inside a circle
with centre o,+it;, and radius 25 is that, for a certain N and
corresponding numbers 8,,..., 8, and a certain n = n(c,, 8, 8,,..., 8y)
[—tylog p,—2nmb,—2mg,| <n (n=1,2,..,N)
From the generalized Kronecker’s theorem it follows that the sum of
the intervals between 0 and 7' in which 4, satisfies this condition is
agymptotically equal to (y/2#)VT, and it is therefore greater than
(n/27)¥T for large T. Hence we can select more than §(/2m)VT'/5
numbers 7, in them, no two of which differ by less than 43. If now we
describe circles with the points o,+i# as centres and radius 23, these
circles will not overlap, and each of them will contain a zero of log (s) —a.
This gives the desired result.
We can also prove

TREOREM 11.8 (B). There are positive constants K,(a) and K,(a) such
that the number M(T) of zeros of log{(s)—a in o > 1 satisfies the
inequalities Ky(@)T < M(T) < Kyfa)T.

The lower bound follows at once from the above theorem. The upper
bound follows from the more general result that if b is any given constant,
the number of zeros of {{s)—bin o > 3+8 (8 > 0), 0 <t < T, is O(T)
as T —co.

The proof of this is substantially the same as that of Theorem 9.15(A),
the function {(s)—b playing the same part as {(s) did there. Finally the
number of zeros of log {(s)—a is not greater than the number of zeros
of {(s}—e, and so is O(T).

11.9. We now turn to the more difficult question of the behaviour
of {(s) in the critical strip. The difficulty, of course, is that {(s) is no
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eolntel

longer d by an Dirichlet series. But by
a device like that used in the proof of Theorem 9.17, we are able to
obtain in the critical strip results analogous to those already obtained
in the region of absolute convergence.

As before we consider log {(s). For o < 1, log{(s) is defined, on each
line ¢ = constant which does not pass through a singularity, by con-
tinuation along this line from ¢ > 1.

‘We require the following lemma.

Lemma. If f(2) is regular for [z—z,| < R, and

[ [ s sty = B,

iz—z[<R
Hm)}
then ren < 2
Forif [z'—z)| < R,

2
U=, f Md”:%f{ﬂluﬁe""))’da.

(=—2l < B < R).

z—2'
le—#1=r
Hence R-R R-R o
ver [ rar<g | [iresneopaan <
2m 27
[] 3 o

and the result follows,

TEEOREM 11.9. Let o, be a fixed number in the range } < o < 1. Then
the values which log {(s) takes on o = a,, t > 0, are everywhere dense in
the whole plane. v

Let Ln(e) = L(s) E (1—p5*).

This function is similar to the funetion {(s)Mx(s) of Chapter IX, but
it happens to be more convenient here.

Let § be a positive number less than }(o,—3%). Then it is easily seen
as in §9.19 that for ¥ > Ny(og,¢), T == Ty = Ty(N),

T
j [nlotit)y—1[2dt < €T
i
uniformly for 6,—8 < ¢ < 0,438 (g, > 1). Hence
T o+8
[ ] leato-+iy—11t dodt < (01— +28)eT.
1 o8
vt e+

Hence f | letoti 112 dodt < (o;—ep+25)Ve
8

v 0>
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for more than (1-./¢)T integer values of v. Since this rectangle
contains the circle with centre s=o+it, where ¢,<o<o0,,
v—3+8 <t<v+}-4, and radius §, it is easily seen from the lemma
that we can choose é and ¢ so that given 0 <n <1, 0 <y’ <1, we have

o +i—1] <7 (<o <) (1191
for a set of values of t of measure greater than (1—x")T, and for

NN T30,
Let By(s) = — 5 Logll—25) (o> 1,

where Log denotes the principal value of the logarithm. Then
{ls) = exp{Ry(s)}-
We want to show that Ry(s) = Log{y(s), i.e. that |IRy(s)| < }m, for
a 2> o, and the values of ¢ for which (11.9.1) holds. This is true for
o = oy if oy is sufficiently large, since |RBy(s)| ~ 0 as o, > 0. Also, by
{11.9.1), Riy(s) > 0 for ¢y < ¢ < 0y, 50 that IRy(s) must remain
between —4 and 4= for all values of o in this interval. This gives the
desired result.
‘We have therefore

[By(8)| = |Log[1+{Zn(s)— 1]l < 2 [Ln(8)—1| < 29
N 2 Njogn,9), T 2 Ty(N), in a set of values of ¢

for op <o < oy,
of measure greater than (1—y')7.
Now consider the function
N
Byfowtit) = — 3 logll—py=-s),

with it the function of N ind variables

and in
x

Dpfby,en., By) = — EIIOS(I—P{"'G’"”-).
=

Since 3 p, ™ is divergent, it is easily seen from our previous discussion
of the values taken by log {(s) that the set of values of ¥ includes any
given finite region of the complex plane if N is large enough. In
particular, if @ is any given number, we can find & number N and values
of the s such that _

Dn(byy.., Oy) = a.

We can then, by Kronecker’s theorem, find a number ¢ such that
|Fy(oo+it)—a| is arbitrarily small. Bub this in itself is not sufficient to
prove the theorem, since this value of ¢ does not necessarily make
|Ry(s)] small. An additional is theref ired
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Let

N
Py = — g log(1—py weeimifs) =
a=3+1

&1 i mosgtmimda

m
n=Pf+1m=1

Then, expressing the squared modulus of this as the product of con-
jugates, and integrating term by term, we obtain

[{-] partatsan = 3§25
o0 o

n=3T+1 m=1

x o
1
< P > < d
which can be made arbitrarily small, by choice of M, for all N. It
therefore follows from the theory of Riemann integration of a con-
tinuous function that, given ¢, we can divide up the (¥ — M)-dimensional
unit cube into sub-cubes g,, each of volume A, in such a way that

A3 max Byl < jeb.
v L

Hence for M = My(e) and any N > M, we can find cubes of total volume
greater than } in which |@y x| << <.

We now choose our value of # as follows.

(i) Choose M so large, and give 8,,..., @ such values, that

Dy (85,..., O3) = a.
It then follows from considerations of continuity that, given ¢, we can
find an M-dimensional cube with centre 8),..., 0 and side d >0
through hi
oughout which o (..., By)—a] < ke.

(ii) We may also suppose that M has been chosen so large that, for
any value of N, |@yy| < 3¢ in certain (N—M)-dimensional cubes of
total volume greater than }.

(iil) Having fixed M and d, we can choose N so large that, for
T > Ty(N), the inequality |Ry(s)| < 4e holds in a set of values of ¢ of
measure greater than (1— }d)7T,

(iv) Let I(T') be the sum of the intervals between ¢ and 7T for which

the point
poi {—(tlog p)/2m,..., —(tlog py}/2m}

is (med 1) inside one of the N -dimensional cubes, of total volume greater
than }d¥, determined by the above construction. Then by the extended
Kronecker’s theorem, I(7) > 3d¥T if T ig large enough. There are
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therefore values of ¢ for which the point lies in one of these cubes, and
for which at the same time |Ry(s)| < }e. For such a value of ¢
[log {(s)—al| < |Fy(s)—al+|By(s)]
< [ @arllyyeees Oar)—al+ [Qar x|+ [ Byls)]
<Jetletde—e
and the result follows.

11.10. TrEoREM 11.10. Let } < « < B < 1, and let a be any complex
number. Let M, o(T) be the number of zeros of log L(s)—a (defined as
before) in the reciangle o << o < B, 0 <<t << T. Then there are positive
constants K,(a,w, B), Ky(a, «, B) such that

Ko, 0, B)T < Moo p(T) < Kyla, 0, )T (T > D).

We first observe that, for suitable values of the #’s, the series

~ 3 1og(1—piermit)
n=]

is uniformly convergent in any finite region to the right of o = }. This
is true, for example, if 6, = 4n for sufficiently large values of ; for then
S prterih = 3 (—1rp;7,
nShe nShe

which is convergent for real s > 0, and hence uniformly convergent in
any finite region to the right of the imaginary axis; and for any 8's
> |pstetmi|2 = 3 po% is uniformly convergent in any finite region to
the right of o = .

If @ is any given number, and the &’s have this property, we can ]

choose #, so large that
|- 3 togtt—piretmti| <e (o= da+h),
n=m+1

and at the same time so that the set of values of

— 3 log(1—pyi=-thesmite)
n=1

includes the circle with centre the origin and radius |a|-+|¢|. Hence by

choosing first 8, ,4,..., and then 8,,..., 8,,,, we can find values of the 8’s, |

say 6, 63,..., such that the series
(6 = — 3 log(1—pirervih
is uniformly convergent in any finite region to the right of ¢ = }, and
Glla+1f) = a.
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‘We can then choose a circle ¢ of centre o+ }8 and radius p < }(8—a)
on which G{s) + a.

Let m = min |G(s)—al.
s00C
Now let Dy i) = — g log(1—py; %),
n=M+1

Then, as in the previous proof,

1 1
{ oj |~~ia—i'£ L ;wm!% N Ay s... dBy dodt < A“zrlp;’“.

Hence for M > My(e) and any N > M we can find cubes of total
volume greater than } in which
@y () |? dodt < e
lo—fa-3fI<d@-o)
and so in which {by the lemma of § 11.9)
Do ()] < 2AefmtB—a)h (ls—da—3B] < HB—a)).

We also want a little more information about Ry{s), viz. that Ry(s)

ig regular, and |Ry(s)| < %, throughout the rectangle
le—3o—38] < HB—0), th—i <t 1l H),

for a set of values of ¢, of measure greater than (1—#')T. As before it
is sufficient to prove this for {{s})—1, and by the lemmas it is sufficient
to prove that

B byl

$it) = [do [ iui)—1pdt <«
a fo—1

for such ¢, by choice of N. Now

T 8 7 fo+1
[t dt=[do[at [ lestr—112a
1 3 1 -1

8 TH1 ti1 B T4
< [do [ Une)—1pat Jdty=2[do [ itye)—12dt < eT
P ¢ 151 & i
by choice of N as before. Hence the measure of the set where ¢(f) > ve
is less than +eT', and the desired result follows.
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Tt now follows aa before that there is a set of values of ¢, in (0, 7'), of
meagure greater than K7, such that for [s—3a—38( < 1(B—a)

x x
| 3, logt1—piresms#)— 3 log(1—pi ] < dm,

1@arn($)] << im,
and also |Byls-+ito)| < Yom.
At the same time we can suppose that M has been taken so large that

oo+ 3 togtt—pirern®)| <im (o> o).

Then flog {(s)—G{s)| <m

on the circle with centre }a-+38+it, and radius p. Hence, as before,
log {(s)—a has at least one zero in such a circle. The number of such
circles for 0 < ¢, <. 7 which do not overlap is plainly greater than K7
The lower bound for M, ,4(T') therefore follows; the upper bound holds
by the same argument as in the case o > 1.

Tt has been proved by Bohr and Jensen, by & more detailed study of
the situation, that there is a K(a,a, 8) such that

M, plT) ~ K(a,0,8)T.

An immediate corollary of Theorem 11.10 is that, if N, ,o(T) iz the
number of points in the rectangle §} < o« <o < <1,0 <t < T where
Us) = a (a # 0), then

NooptT) > Kia, 0, $)T T > 1)
For {(s) = a if log [(s) = loga, any one value of the right-hand side
being taken. This result, in conjunction with Theorem 9.17, shows that

the value 0 of {(s), if it occurs at all in ¢ > §, is at any rate quite J

1, zeros being il 1y rarer than a-values for any value of ¢

other than zero.

NOTES FOR CHAPTER 11

11.11. Theorem 11.9 has been generalized by Voronin (1], [2], who
obtained the following ‘universal’ property for {(s). Let D, be the closed
disc of radius r <, centred at s =%, and let f(s) be any function
continuous and non-vanishing on D,, and holomorphic on the interior
of D,_. Then for any ¢ > 0 there is a real number ¢ such that

max |{(s +it)— f(8)] <& (11111
seD,
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It follows that the curve
70) = (Lo +i8), Lo +it),..., ("= D(o +it))

is dense in C*, for any fixed o in the range 4 <o < 1.(Infact Voronin [1]
establishes this for 0 = 1 also)) To see this we choose a point z =
(29, 2y, 2,_,) With 2, # 0, and take f(s) to be a polynomial for which
fo(o) =2, for 0 <m <n. We then fix an R such that 0 <R
<}—lo—}l|, and such that f(s) is nonvanishing on the closed disc
ls—ol < R. Thus, if r=R+|o—}|, the disc D, contains the circle
|s— | = R, and hence (11.11.1) in conjunction with Cauchy’s inequality

m!
le™E) < 7 max g2,
OIS g 5 1802)

yields

1
Wm(a +it)—z,| < %e ©<m<n).

Hence y(¢) comes arbitrarily close to z. The required result then follows,
since the available z are dense in .

Voronin’s work has been extended by Bagchi {1] (see also Gonek [11)
sothat D, may be replaced by any compact subset D of the strip} < R(s)
<1, wh 1 inCij d. The condition on fis then that
it should be i and ishing on D, and hol phic on
the interior (if any) of D. From this it follows that if & is any continuous
function, and h; < h, < ... <h,_ are real constants, then {(s) cannot
satisfy the differential-difference equation

Qs +hy), U +Ry), ., (TN s +Ry), s +hy), L(s+hRy),...,
{"s+hy),..} =0

unless @ isk identically. This imp:
Ostrowski [1] and Reich [1}.

earlier results of

11.12. Levinson [6] has investigated further the distribution of the
solutions p, = B, +iy, of {(s) = a. The principal results are that
T
#{p0<y, €T} =ﬂlog T+O(T)
and
#{pai 0Ky, ST IB,—} 26} = O(T) (3>0).

Thus (c.f. §9.15) all but an infinitesimal proportion of the zeros of {(s) —a
lie in the strip } — & < ¢ < }+ 5, however small 5 may be.
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In reviewing this work Montgomery (Math. Reviews 53 % 10737) )

quotes an unpublished result of Selberg, namely

(B, —%) ~ 7 Tdloglog T)*.
[ g§< T 4 4”’
bazl

This leads to a stronger version of the above principle, in which the
infinite strip is replaced by the region

t) (loglog )}
lo—3l < #()(oglog?)

logt
where ¢(f) is any positive function which tends to infinity with ¢. It
should be noted for comparison with (11.12.1) that the estimate
2 (B~ =0Q0gT)

0sy < T

11121

is implicit in Levinson’s work. It need hardly be emphasized that despite i

this result the numbers p, are far from being symmetrically distributed
about the critical line.

11.13. The problem of the distribution of values of {(} + it) is rather

different from that of { (¢ + it} with § <o <1. In the first place it is not }

known whether the values of { (} + it) are everywhere dense, though one
would conjecture so. Secondly there is a difference in the rates of

growth with respect to £. Thus, for a fixed ¢ > }, Bohr and Jessen (1), (2) |

have shown that there is a continuous function F(z; 6) such that

Zleue [=T, T]:logl (o +if)e R} — ”F(xny; Sdxdy (T )
A

for any rectangle R < C whose sides are parallel to the real and

imaginary axes. Here, as usual, m denotes Lebesgue measure, and

log {(s) is defined by continuous variation along lines parallel to the
real axis, using (1.1.9) for ¢ > 1. By contrast, the corresponding result
for o = } states that

log{ (3 +it)
t T,
7 {E[ T 75 loglog @+ 11D} }
(T - c0).
(The right hand side gives a 2-dimensional distribution with mean 0 and

variance 1) This is an unpublished theorem of Selberg, which may be

obtained via the method of Ghosh [2].

1

— =972 gy g

2n jje drdy |
®

3
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By using a different techni based on the lue bounds of
§7.23, Jutila {4] has obtained on ‘large deviations’ of

log |{(} + it)|. Specifically, he showed that there is a constant A > Osuch
that

mi{te[0, TE: LG +iD) > V) < Texp(_A M)
loglog T J

uniformly for 1< V<log 7.



XII
DIVISOR PROBLEMS
12.1. Tur divisor problem of Dirichlet is that of determining the
asymptotic behaviour ag # — oo of the sum
Diz) :..sz(")’
where d(n) denotes, as usual, the number of divisors of n. Dirichlet
proved in an elementary way that

D(z) = zlogz+(2y—1)z+ Ofat). (12.1.1)
In fact
= 1=
D =22 = R 2 e

= [VaJet2 m;z ( [fn] —[~/x])
2> [%]f[xfz]’

mevz
- 2,2«2 {%.}.0(1)}4“”0(1)}*

= 2u{log vr-+y+ Oz )} 4+ O(vVa)— {z+ O(v)},
and (12.1.1) follows. Writing
Dix) = zlog x+(Zy—-l)x+A(x)
we thus have A(z) = O(zh). (12.1.2)
Later researches have improved this result, but the exact order of
A(z) is still undetermined.
The problem is closely related to that of the Riemann zeta-function.
By (3.12.1) with @, = d{n), s = 0, T > 0, we have
cHiw
D) = % J' p@Z e o>,
eio
provided that » is not an integer. On moving the line of integration to
the left, we encounter a double pole at w = 1, the residue being
zlogz+(2y— 1)z, by (2.1.16). Thus
& +iw
Alr) = 2 f 2w dw (0 <o <1).
27 w

eSim
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The more general problem of
D2) = 3 dy(m),
A
where dy(n) is the number of ways of expressing » as a product of k
factors, was also considered by Dirichlet. We have
otio
= 1 g
Do) = o, f ) Zaw > 1.
e=im
Hers there is a pole of order & at % = 1, and the residue is of the form
zh(log ), where F; is a polynomial of degree k—1. We write
Dy(x) = xP{log x)+Ay(%), {12.1.3)
30 that Ay(x) = A(z),
The classical elementary theoremt of the subject is
Aylz) = O Wlogt-2) (k= 2, 3,....). (12.1.4)
‘We have already proved this in the case k = 2. Now suppose that it
ig true in the case k—1. We have

D)= 3 1= i Bealm)

P P
,,.?,m ngzmdk () + I'<2m<= "gz dya(m)
mszx"'ngc/mdk“(n)+ LS l(n)x”*<§<z/n

= . =zl 0(1 }d —
m\zszk 1( ) ng;l/l{n * (1} dy—y(n)

z dy4(n) _
+O0{Dy (¥R}

Let us denote by p,(2) & polynomial in z, of degree k—1 at most, not
always the same one. Then

Z log::m - p,‘(logf)"'o(long_:f)A

m<é
H z 2) 1-Uk|ogh-2,
ence mgzz,,.mp""(m) 2P, {log )+ O(ai-Velogh-tz),
Also
1
Ay (ﬁ)=o{x1_mk_1>10 = Z }
m<§=:m Hom, e wiztn D)

= Ofat-Hk-D Jogh-33 gWHE-1)} = O(al-Uk logh-Sz),
+ See o.g. Landau (5).
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The next term is

Dy a(n)— Dy a{n—1) _ ()| 2Dy (N)
s = =z > n(’;:}—l)‘i— Nl

,
- n<mtn

where N = [21-¥%]. Now

z Piallogn) + xNPk-x(log N) = ap,(log z)+ O(xV* logh-1z)

ntan Tkl
and
Ayy(n) | @B nlN) _ Bpa(n) | 2By (N)
n&;‘/.n(n+l)+ Nl =% ”n>;_,/,n(n+1)+ N+1
k3,
=0z S 0 ::fm,cjy}JrO(zN -Ue-D]ogh-3)
AST
— Or-- 01—k logh-2z).
Finally

2V D,y (21-VE) = gUKA-YK P _, (log 21-VF) 4 Ofaf1-MiX1 -1k~ Jogk—32)}
= ap_(log )+ O(x-V*Jogk-3z).

This proves (12.1.4).
‘We may define the order o, of A,(¥) as the least number such that

Ayla) = Ofzm+)
for every positive e. Thus it follows from (12.1.4) that

a g"%‘ k=23 (12.1.5)

The exact value of o, has not been determined for any value of &.

12.2. The simplest theorem which goes beyond this elementary ]

result is

THEOREM 12.2.1 R
—1
o S f w1
Take a, = dy(n), $(n) = n¢, « =k, ¢ = 0, and let x be half an odd
integer, in Lemma 3.12. Replacing w by s, this gives

(k=2,84,.).

o= 2"% ngk(g)’%' ds+0(7—,(£1—),‘)+0("~;) > 1)
e—iT

1 Voronol (1), Landau (5)-
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Now tale the integral round the rectangle —a—i7, ¢—iT, ¢+i7,
—a+$7T, wherea > 0. We have, by (5.1.1) and the Phragmén-Lindelof

principle, £(s) = Ogarbro—oitara)
in the rectangle. Hence
cHiT ¢
J. lk(s)%' ds = 0( f Pa+iXe-oNa-+d—1z0 da)
—a+iT -a

= O(THa+b-1p-a) L O(T-127),
since the integrand is a maximum at one end or the other of the range
of integration. A similar result holds for the integral over

(—a—iT, c—iT).
The residue at s = 1 is zB,(log x), and the residue at s = 0 is
{0 = 0(1).
Finally
—aqif —a+ilT
f )T ds = f (I —s)E ds
—a—il —a—iT ¢
atiT )
8) &
Z dyfn) f el
= —a—iP
e S ) [ atin
— i zl—n]_w e
= -7

For1 <t T,
x(—atit) = Ce»itlogl+ulogzr+ﬂta+§+0(ta7§)
1
d
oo Zati +0( )
The corresponding part of the integral is therefore

T
—iCk J’ eH-log 4108 2m- 1) yia D1 g | O(Tt@+Di-1),
1

provided that (a+3)k > 1. This integral is of the form considered in
Lemma 4.5, with

F(8) = k(—logt+log 2n+1)+tlogna.

Sin Py=_Fe_k
nce (t) 7 < T’
the integral is O(Ta+tut),
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uniformly with respect to » and #. A similar result holds for the integral
over {— T, —1), while the integral over (—1,1) is bounded. Hence

s -l 5 o=

Lz z diln) ) o(avbe-ty

= oleZu) o) o)

Taking ¢ = 1+4¢, @ = ¢, the terms are of the same order, apart from
€5, if T = k4D,

Hence Aglx) = Ok -Ditk+D+e),

The restriction that « should be half an odd integer is clearly unnecessary
to the result.

12.3. By using some of the deeper results on {(s) we can obtain a
still better result for & > 4.

THEOREM 12.3.1 o < (e =4,5,..).

—1
k+2
We start as in the previous theorem, but now take the rectangle as
far as o = } only. Let us suppose that
{3+t = 0.
Then Us) = O(Xe-ove~h)
uniformly in the rectangle. The horizontal sides therefore give
¢
O(J' Tide-oYe—P-140 da) = O(T¥-1z})+ O(T-'2°).
H
d+iT T
z -~
Also B5)Z ds = O@zh)-+ 0k | JLd+inlEg).
1

3T

T T P
[ 1arinn < max e vines [ iga e
{ t TasisT ¢

T
= ofpes | a+i0+%).
1

1 Hardy and Littlewood (4).
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. T
Also #T) = [ L@+inf de = 071,
by (7.6.1), so that ’

f et ipie 2 f s [ f’¢_
£ 2

T

- 0(T=)+o( f tﬁau) o(T).
3+iT
Hence f l’%s)gd& = 0(1§)+0(1§T(k—l)).+5)'
3T

Altogether we obtain
Ayfe) = O(T-122)+ O(AT-1) - O(ad Th-0Ase),

The middle term is of smaller order than the last if X < }. Taking
¢ = l+e¢, the other two terms are of the same order, apart from €’s, if
T = Mak—dhs2)

This gives Ay(z) = o(z((w:-aww(wc-mmm).
Taking A = 3+ (Theorems 5.5, 5.12) the result follows. Further slight
improvements for % 3> 5 are obtained by using the results stated in
§5.18.

12.4. The above method does not give any new result for & — 2 or
k = 3. For these values slight improvements on Theorem 12.2 have
been made by special methods.

27
< g
The argument of § 12.2 shows that

Alz) — _,ig'z(n) f el +0( )+0(T) (2.4

where & > 0, ¢ > 1. Let 7%/(4n%) = N+, where N is an integer, and

consider the terms with n > N. As before, the integral over 1 T
is of the form

THEOREM 12.4.1

T
rnlm f eT0{gn+ O(a-1)) di, (12.4.2)
i

t van der Corput (4).
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where F(t) = 2(—logt+ log 2m+1)+tlog n,

, dnng
F) = log 7~

Hence F'(£) = log and (12.4.2) is

n
N+y
1 i
O = i
s g ) O
For n 3> 2N this contributes to (12.4.1)

ofF 3 5= o,

and for N << n < 2N it contributes

og‘ﬂg T ™ O(N‘mi ) = 0w

=N+1
Similarly for the integral over — T < t < —1; and the integral over
—1 < £ < 1is clearly O(z—%).
If » < N, we write

—a+il io ir
i+ T+ T)
—a—'[i f ( j j f -J:iT
The first term is
1 f gronte-tgin? fon TH(1—) "L s
n 8
i 1+ie
— 'f cost faom D(w)T{w—1){2my(na)}>-2 dw
i 1—iw

= 4 [[E)imisninirionna)

in the usual notation of Bessel functions.
The first integral in the bracket is

7 . A’ 1
f em(" +roun)is ol {<N+¢)/n}}’
!

y i) .
which gives Z ATy~ 2

 See, o.g., Titohmersh, Fourier Integrals, (1.9.8), (1.9.11).
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a8 befote; and similarly for the second integral. The last two give

US5[S0 )
Altogether we hav:now proved that

A(’”’=—2:’Zd‘"’[K{w(m)}ﬂﬂ(h«m)}ﬂo( =)+o(z)

(12.4.3)
By the usual ptotic f laet for Bessel functi this may be
replaced by
N
Az) = IT Z ~z)+o( )+o( )
(12.4.4)
Now
N
d(n)etmivna) = 9 ATV Amivinna),
ALY w2 neln © e 2B
(12.4.5)
Congider the sum gamivimna),

;N/m<zn<zv/m
We apply Theorem 5.13, with k& = 5, and
fim) = 2mnz),  fOn) = A(ma)int,
Hence the sum is
N{ (ma)h \& N\ (N fm) R\
ol ol (@)
= OV jm)b{ma)is}+ Of( fm)tb(max) 3},

Replacing N by 3N, }¥,..., and adding, the same result holds for the
sum over 1 < » <{ N/m. Hence the first term on the right of (12.4.5) is

o[zt 3 m‘f)+O(Nﬂz—-‘f 3 mH) = O(ituds) + O thar).
MEIN meIN
Similarly the second inner sum is
O{(WN ¥ (mayds}+ O{(VNibma) ¥},
and the whole sum is
O(Nh'sxi‘smg Nm‘h)-{—O(N&x‘t‘o‘mgNm—t‘n‘)
=O(NHzd) - O(N ).

+ Wateon, Theory of Bassel Funotions, § 7.21, 7.23.
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Hence, multiplying by e ¥ and taking the real part,

N

Y d{n)cos{dm(nz)—}n} = O(Nthads)+ O(NHbas).

n=t

Using this and partial summation, (12.4.4) gives
Aw) = OWH-Tet+dv) -+ O(NE-tot—30) + O(N )+ Ot )
= O(N¥hz¥)+ O(Nthave)+ O(Ne)+ O(N e d).
Taking a = ¢, ¢ = 1+¢, the first and last terms are of the same order,
apart from ¢’s, if N = [oH].
Hence Afz) = O(ahlte),
the result stated.
A similar argument may be applied to Ay(z). We obtain
o5 d, ('n)
Aglz) = 3 005{617(%x):}+0( ) (12.4.6)
3 <T;(81r‘x) ut
and deduce that o <.
The detailed argument is given by Atkinson (3).

Tf the series in (12.4.4) were absolutely convergent, or if the terms
more or less cancelled each other, we should deduce that a, < }; and
it may reasonably be conjectured that this is the real truth. We shall
see later that oy > 1, so that it would follow that o = §. Similarly
from (12.4.6) we should obtain o = }; and so generally it may be
conjectured that r—1

O = g
12.5. The average order of Ay(x). We may define 8, the average order
of A(x), to be the least number such that

.
3| sy = owp
§
for every positive e. Since
.
1 f Aby dy — f Oyms+e) dy = Ofetore),

we have B, < a; for each k. In particular we obtain a set of upper
bounds for the B, from the above theorems.

As usual, the problem of average order is easier than that of order,
and we can prove more about the f, than about the o We shall first
prave the following theorem.t

+ Titchmarsh (22).
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TaroREM 12.5. Let y, be the lower bound of positive numbers o for
which -
[Lot+it)|*

o < (12.5.1)

Then By, = vys and

T
= 1![(31:21 'it:J.Ai(I)Z""" dx (12.5.2)
A 3
provided that o > By.
cHIT -
Wehave Difz) = }i'.'i J' ZT@znz.g (> 1).
T

Applying Cauchy’s theorem to the rectangle y—iZ7, ¢—i7T, ¢+i7,

y-+4¢7", where y is less than, but sufficiently near to, 1, and allowing for
the residue at $ = 1, we obtain

HiT
A4e) = o lim J' @x’ ds. (1253)
747‘
Actually (12.5.3) holds for y, <y < 1. Fort {*(s)/s - 0 uniformly as
t— Foo in the strip. Hence if we integrate the integrand of (12.5.3)
round the rectangle y'—iT, y—iT, y+iT, y'+iT, where
<y <y<l,
and make 7' - oo, e obtain the same result with o' instead of y.
If we replace = by 1/v, (12.5.3) expresses the relation between the
Mellin transforms
J@) = M (1jz),  F(s) = [Ks)fs,
the relevant integrals holding also in the mean-square sense. Hence
Parseval’s formula for Mellin transforms} gives

zk
L [t Pl [
—- (12.5.4)

provided that y, <y < 1.
It follows that, if ¥, <y < 1,

X
| Stmr-or-tds < K = Kby,
x

X
f Aj(x) dw < KX+,
ix

t By an application of the lemma of § 11.9.
1 Soco Titchmarsh, Theory of Fourier Integrals, Theorem T1.
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and, replacing X by 31X, }X,..., and adding,

X
j Ab(x) da < KX®r4,
H

Hence B, < 7, and 80 B, < 7z

The inverse Mellin formula is
He) f A,,(l)z'—‘ dn = f A1 do. (12.5.5)
8 X
0 0

The right-hand side exists primarily in the mean-square sense, for
yx <o < 1. But actually the right-hand side is uniformly convergent
in any region interior to the strip 8, < ¢ < 1; for

f 1 f aze do J— }*
ol g < 20
A’{ |A@) et dx < ‘*L () J‘ z '

= {O(X'ﬁﬁ+‘+‘)0(X—”4))§ = O(XPote),
and on putting X = 2, 4, 8,..., and adding we obtain

f |Agiz) |zt dw < K.
i

Tt follows that the right-hand side of (12.5.5) represents an analytic
function, regular for §; < ¢ < 1. The formula therefore holds by
analytic continuation throughout this strip. Also (by the argument
just given) the right-hand side of (12.5.4) is finite for B, <y < 1.
Hence so is the left-hand side, and the formula holds. Hence v, < B
and so, in fact, y;, = B;. This proves the theorem.

12.6. THEOREM 12.6 (A).f
k—1
By = o (k=2,3,..).
If } < o < 1, by Theorem 7.2
T T vy T \1-1k
C,T < [ iHlotinfde < { | tto-rin dl} ( | dz) R
ir ¥ i
7
Hence | 1o+t de > 2+10E T
T

+ Titchmarsh (22).

4
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Hence, if 0 <o <4, T>1,

@ r
et , 1o +i8) |2
) Tlerap t>" TRE T

T
> %*J' |2o-it) B de
»

T
> ("THi-20-3 J‘ 1{(1—o—3)|* dt (by the functional equation)
ir
= OrZe-1CE | Tha-z-1,
This can be made as large as we please by choice of T if o < 3(k—1)/k.
k-1
Hencs =
Vi 2 o
and the theorem follows.
TrEorEM 12.6(B).T
k—1
%2 g (k=23.).
For o = B
Much more precise theorems of the same type are known. Hardy
proved first that both
Afx) > Kxt,  Ax) < —Kat
hold for some arbitrarily large values of z, and then that #} may in each

case be replaced by @log 2}t loglog .

12.7. We recell that (§ 7.9) the numbers o, are defined as the lower
bounds of o such that
T
7 | Worinpeae = oq).
i
We shall next prove

Tarorem 12.7. For each integer k >> 2, a necessary and sufficient
condition that E—1
=21 (12.7.1)

is that P (12.7.2)
Suppose first that (12.7.2) holds. Then by the functional equation
T T
[ 1o+t a = o{T'«hw [ 1e—o—inpe dt} = O(TH-241)
1 1

1 Haxdy (3).
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for @ < }(k—1)/k. It follows from the convexity of mean values that

T
J’ |Llait) |2 dt = O(T1++uzkse2k-ak)
i

k—1—c k4-14€
for 5 <<%
The index of 7' is less than 2 if
b—14e
o> e
F i) |2%
Then Lot 5 oir-5) > o).

ot

Hence (12.5.1) holds. Hence y; << $(k—1)/k. Hence B, <#(k—1)/k,
and so, by Theorem 12.6(A), (12.7.1) holds.
On the other hand, if (12.7.1) holds, it follows from (12.5.2) that

T
J 1ttorinpe ds = oz
{
for o > }(k—1)/k. Hence by the functional equation
T
[ 1totinpe at = o(rr-rosz)
i

for o < }(k+-1)jk. Hence, by the convexity theorem, the left-hand
side is O(T'+¢) for ¢ = }(k-+1)/k; hence, in the notation of §7.9,
o < ${k+1)/k, and so (12.7.2) holds.
12.8. TEEOREM 12.8.1
B=1 B=1% B<i
By Theorem 7.7, 03, << 1—1/k. Since
k1

1
I—ng *k<3)

it follows that 8, = §, B3 = 3.

The available material is not quite sufficient to determine 8,. Theorem
12.6(A) gives S, >> 3. To obtain an upper bound for it, we observe that,
by Theorem 5.5. and (7.6.1),

. .
[ ki as = 075+ [ tgine ) = orhes,
1 i

+ The value of f, is dus to Hardy (3), and that of 8, to Cramér (4); for f, see
Titchmersh (22).
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and, since o, < {5 by Theorem 7.10,
[ it @ = ofrt f it a) = o,
Hence by1 the convexity theorem '
fT |Uo+ithh di = O(Te-Ho+<)
forf<o<t It e;sily follows that y, < 4, ie. B, < 3.

NOTES FOR CHAPTER 12

12.9. For large k the best available estimates for «, are of the shape
a, < 1—Ck~%, where Cis a positive constant. The first such result is due
to Richert [2]. (See also Karatsuba [1], Ivic [8; Theorem 13.3] and Fujii
[3]) These results depend on bounds of the form (6.19.2).

Fortherange4 < k < 8one has «, € $—1/k (Heath-Brown [8]) while
for intermediate values of  a number of estimates are possible (see Ivic
[3; Theorem 13.2]). In particular one has oy < 84,0, < #h 0, < 7o and
. <§

12.10. The following bounds for «, have been obtained.
£ = 0-330000 ... van der Corput (2),
#3= 0329268 ... van der Corput (4),
4% = 0326086 ... Chih [1], Richert [1],
4% = 0324324 ... Kolesnik [1],
£ = 0324273 ... Kolesnik [2],
#r = 0324074 ... Kolesnik [4],
133 = 0324009 ... Kolesnik [5].

In general the methods used to estimate o, and u(}) are very closely
related. Suppose one has a bound
T exp [2Zri{x(mn)+cx-Lmn)i) ) < (MN)ix 4,
M<msM, NmEN,

(12.10.1)

for any constant ¢, uniformly for M < M, <2M, N <N, < 2N, and
MN < x2-49. It then follows that u(3) < }9,¢, < 9,and E(T) < T *** (for
E(T) as in §7.20). In practice those versions of the van der Corput
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method used to tackle u(}) and a, also apply to (12.10.1), which explains
the similarity between the table of estimates given above and that
presented in §5.21 for u(}). This is just one manifestation of the close
similarity exhibited by the functions E(T) and A(x), which has its origin
in the formulae (7.20.6) and (12.4.4). The classical lattice-pcint problem
for the circle falls within the same area of ideas. Thus, if the bound
(12.10.1) holds, along with its analogue in which the summation
condition m = 1 (mod 4) is imposed, then one has

#{(m, n)e22 m2+n? < x} = nx + O(x%+*).

Jutila [3] has taken these ideas further by demonstrating a direct
connection between the size of A(x) and that of {(} +i#) and E(T). In
particular he has shown that if a, = } then #(}) < ; and E(T) € T%*2

Further work has also been done on the problem of estimating «;. The
best result at present is a; < §#, due to Kolesnik [3). For a,, however, no
sharpening of the bound «, <  given by Theorem 12.3 has yet been
found. This result, dating from 1922, seems very resistant to any attempt
at improvement.

12.11. The Q-results attributed to Hardy in §12.6 may be found in
Hardy [1]. However Hardy’s argument appears to yield only

Atx) = Q, ((x log )+ loglog 1), (12.11.)

and not the corresponding Q_ result. The reason for this is that
Dirichlet’s Theorem is applicable for @ Whlle Kronecker’s Theorem is
needed for the Q_ result. By using a q ive form of Ki ker’s
Theorem, Corradi and Katai [1] showed that

L
logl 4
A =0 {stesp(o LoD}
(logloglog x)+
for a certain positive constant c. This improved earlier work of Ingh’am

(1] and Gangadharan [1]. Hardy’s result (12.11.1) has also been
sharpened by Hafner [1] who obtained

A@) = Q, [(xlogx)i(loglog x)s #+2*Dexp { _ c(logloglog %)%} |

for a certain positive constant c. For k£ > 3 he alsc showed [2] that, for a
suitable positive constant ¢, one has

2, = 0, [ log ¥+~ D2k (loglog £)° exp { — clogloglog ©)F} ],
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where

k-1
a=7(klogk+k+1)

and Q, isQ, fork=3and Q, for k>4,

12.12. As mentioned in §7.28) we now have o, < §, whence §, = ¢,
(Heath-Brown [8]). Fork = 2 and 3 one can give asymptotic formulae for
x

j A (»)?dy.
o
Thus Tong [1] showed that
_[ A (y)2dy =
o
with R,(x) < 2 (logx)> and

x2h-Dik
T z d,(n)2n-k+ Vit 4 R, (x)

3-4o,

oy te =2 _
Ry, (x) < x%*, ¢ =2 Wi-ay 1’

(& 23).
Taking o, < 7y (see §7.22) yields ¢, < 14, However the available
information concerning o, is as yet insufficient to give
¢, < (2k—1)/k for any k > 4.1t is perhaps of interest to note that Hardy’s
result (12.11.1) implies R,(x)= Q{xi(logx) -1}, since any estimate
R,(x) < F(x) easily leads to a bound A,(x) < {F(x)logx}3, by an argu-
ment analogous to that given for the proof of Lemma « in §14.13.
Ivic [3; Theorems 13.9 and 13.10] has estimated the higher moments of
Ay(x) and A,(x). In particular his results imply that
%
J Ay(y)Pdy € x3+2,
o
For Ay(x) his argument may be modified slightly to yield

IIAs(y)I"dJ’< e,

These results are readily seen to contain the estimates a, < }, 8, < }and
a3 < §, B3 < § respectively.
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THE LINDELOF HYPOTHESIS
13.1. THE Lindel6f hypothesis is that
L+ = 09
for every positive ¢; or, what comes to the same thing, that
{lo+it) = Ofr)
for every positive e and every o > }; for either statement is, by the
theory of the function u(c), equivalent to the that u(e) = 0
for o > 4. The hypothesis is suggested by various theorems in Chapters

V and VIL. It is also the simplest possible hypothesis on u(c), for on it |

the graph of ¥ = p(c) consists simply of the two straight lines
y=1-c (@<}) y=0 @@=}

‘We shall see later that the Lindelof hypothesis is true if the Riemann

hypothesis is true. The converse deduction, however, cannot be made

—in fact (Theorem 13.5) the Lindel6f hypothesis is equivalent to a §
much less drastie, but still unproved, hypothesis about the distribution

of the zeros.
In this chapter we investigate the consequences of the Lindel6f
hypothesis. Most of our arguments are reversible, so that we obtain
'y and suffici ditions for the truth of the hypothesis.

13.2. TrrorEM 13.2.1 Alternative necessary and sufficient conditions
for the truth of the Lindelsf hypothesis are
T

;,J.ll(i+it)|“ d=0T9 (k=12.);  (1321)
1 H '
?f Yot dt = O(T) (0>% k=1,2..); (13.2.2)
1

T
%f}g(gwnﬂc dt z% (0>3 k=1,2.). (13.2.3)
{ Asl

The equivalence of the first two conditions follows from the convexity
theorem (§ 7.8), while that of the last two follows from the analysis of
§7.9. Tt is therefore sufficient to consider (13.2.1).

t Hardy and Littlewood (5).
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The necessity of the condition is obvious. To prove that it is sufficient,
suppose that {(}14t) is not O(t<). Then there is & positive number A,
and a sequence of numbers 344, such that ¢, > co with v, and

i£@-+is) > o (€ >0
On the other hand, on differentintng (2.1.4) we obtain, for ¢ > 1,
184 +48)) < B,
E being a positive absolute constant. Hence

L3+ —L3+it)) = < 2Bli—t,lt, < 308

t
Jra+ineu
&
if [t—t,| < ¢1 and v is sufficiently large. Hence

153+l > 308 (t—8] <870
Take T = $t,, so that the interval {t,— ¢, ¢,-£;1) is included in (7, 27')
if v is sufficiently large. Then

2P L6t
[1ea+ina > [ goa d = 2oy,
4 t—t7*
which is contrary to hypothesis if k is large enough. This proves the
theorem.
We could plainly replace the right-hand side of (13.2.1) by O(T4)
without altering the theorem or the proof.

13.3. TureoREM 13.3. 4 necessary and sufficient condition for the truth
of the Lindelof hypothesis is that, for every positive integer & and ¢ > 3,

dy(n)
(s) = Lo (> 0), 13.3.1
;()ﬂ;nﬂ+()( ) (1331
where & is any given pasitive number less than 1, and A = A(k, 8,0) > 0.

We may express this roughly by saying that, on the Lindeléf hypo-
thesis, the behaviour of {(s), or of any of its positive integral powers,
is dominated, throughout the right-hand half of the critical strip, by &
section of the associated Dirichlet series whose length is less than any
positive power of £, however small. The result may be contrasted with
what we can deduce, without unproved hypothesis, from the approxi-
mate functional equation.

Taking a,, = dy(n)in Lemma 3.12, we have (if % is half an odd integer)

ctir

ZMZL f l"(,g-{-w)iﬂd’w+0(
n* 2t w

n<z T
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where ¢ > 1—o+e. Now let 0 << ¢ < T'—1, and integrate round the
rectangle }—o—iT, c—iT', c+iT, }—o+4-iT. We have
1 2 Ea T e 1
= f Porw) D dw = ¢ (")+EP(1__.9’ logz)
roctangle
= {¥(8)+ Ot -otei+e),
P being a polynomial in its arguments. Also
e=iT  }-o+iT,
( f + ) ot * o = O T1+)
$—0—iT oFiT
by the Lindeldf hypothesis; and
}-o+iT
L“(a+w)— dw — Olzt- fwd,,
. 14+1v]
Yomir
= O(zh-oT)
by the Lindelof hypothesis, Hence

) = 5 B0 of
&

x°
T e O
+ Oz T-14¢) 4 Owi-oT),
and (13.3.1) follows on taking # = [#]+}, ¢ = 2, T'= £,
C y, the dition is clearly since it gives

8(6) = Of 3 o)+ 0 = oga—c-o),

where 3 is arbitrarily small.

The result may be used to prove the equivalence of the conditions

of the previous section, without using the general theorems quoted.

13.4. Another set of conditions may be stated in terms of the munbem
o, and B, of the previous chapter.

THEOREM 13.4. Alternative necessary and sufficient conditions for the

truth of the Lindeldf hypothesis are

o <} (k=23,..), (13.4.1)
A<t *k=238,.), (13.4.2)
B= k—;k—l (k=2,3,.). (13.4.3) 4

As regards sufficiency, we need only consider (13.4.2), since the other

13.4 THE LINDELOF HYPOTHESIS 331
conditions dre forma.lly more stringent. Now (13.4.2) gives y; < 4, and

80

ll(o+|t)lz"
—|‘7—+‘—dt oL (o>,

P 2
[ 1o +indt = 0T (@ > b
ir

The truth of the Lindelsf hypothesis follows from this, as in § 13.2.
Now suppose that the Lindelof hypothesis is true. We have, as in
§12.2,

1 2447 2 2
Do) = f 0= ds+0(i).
2—iT

Now integrate round the rectangle with vertices at 3—iT, 2—iT,
2447, }+iT. We have
2EdT
) Z ds = 0@ T,
4T ¢
btir

-
f 1) ds = (:c% f [3itlet dt}:O(aM’e).
-

The residua at s = 1 accounts for the difference between Di(z) and
A(x). Hence Aylw) = O@ETe)+OET<1).
Taking T = 22, it follows that a, < 3. Hence also B, < 4. Butin fact
o, < } on the Lindeldf hypothesis, so that, by Theorem 12.7, (13.4.3)
also follows.

13.5. The Lindelof hypothesis and the zeros.

THEOREM 13.5.% A necessary and sufficient condition for the truth of
the Lindeldf hypothesis is that, for every o > 4,

N{o, T+1)—N(o, T) = o(log T).

The necessity of the condition is easily proved. We apply Jensen’s

formula

-
2= | toaifire®) ao—log 1)),
3

where 7,,... are the moduli of the zeros of f{s} in |s| < 7, to the circle
with centre 2-4-it and radius §—18, f(s) being {(s). On the Lindelsf

t Backlund (4).
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hypothesis the right-hand side is less than o (log#); and, if there are

N zeros in the concentric circle of radius §—18, the left-hand side is

greator than Nlog{3—19)/3—19))-

Hence the number of zeros in the circle of radius §—48 is o (log #); and
the result stated, with o = 18, clearly follows by superposing a
number (depending on 8 only) of such circles.

To prove the converse,} let C; be the circle with centre 2-+i7" and
radius §—3 (8 > 0), and let =, denote a summation over zeros of {(s) ]

in C,. Let 0, be the concentric circle of radius §—28, Then for s in G,

Lo 1 pfleeT
#or =5~ 3725 = (5%

This follows from Theorem 9.6 (A), since for each term which is in one }

of the sums

Sy 2

R—yl<

but not in the other, {s—p| 3> §; and the number of such terms is

Olog T).

Let C, be the concentric circle of radius $—33, C the concentrio circle

of radius 3. Then ¢(s) = o(log T') for s in C, since each term is O(1),
and by hypothesis the number of terms is o (log 7). Hence Hadamard’s
three-circles theorem gives, for ¢ in C,,

19(6)| < {o(log PO~ log T
where a-+8 =1, 0 < 8 < 1, « and 8 depending on 3 only. Thus in 0,

#ls) = o{log T),
for any given 8.

Now
J’ $(s) do = log {(2-+it)—log {(}+ 35+ it)—

~ 3, {log(2-+it—p)—log(4-+38-+it—p)}
= O(1)—log {(}+38+it)+o(log T)+
+3, 108(é+33+t¢—;'),
since z‘ has o (log T') terms. Also, if ¢ = T', the left-hand side is o (log 7).
Hence, putting ¢ = 7' and taking real parts,
log|{(3+38-+iT)| = o(log T)+ 3, log|4+38+iT—p|.
Since |34-38+iT—p] << 4 in (, it follows that
log [{(§+85+iT)| < o(log T),
ie. the Lindeldf hypothesis is true.
 Littlewood (4).
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13.6. THEOREM 13.6(A).1 On the Lindeldf hypothesis

8(6) = oflog).

The proof is the same as Backlund’s proof (§ 9.4) that, without any
hypothesis, S(t) = O(log?), except that we now use {(s) = O(t°) where
we previously used {(s) = O(t4).

THEOREM 13.6(B).} On the Lindeldf hypothesis

8,(t) = o (log?).

Integrating the real part of {9.6.3) from } to 433,

3488 $+38
| togltes) da = b3 I log|s—p| do+0(8log?),
i ly=f<t

where p = -y runs through zeros of {(s). Now
3438 4+33

33
| rogts—pldo =3 | tostio—pr+tr—0 do < Floe2
3 E3

and
$+38
> [ loglo—glda > jlog|o_; —$5 do = 35(log$8—1).
i
Hence 3438

f loglt@ido= ¥ (slog )+0(Blogt)
H

= O(3log 1/3.log ).
Also, as in the proof of Theorem 13.5,
log {(s) = leog(s‘p)-i—o(logt) B+ <o 2)
Hence 2 2
[ togit) do =3, [ logls—pldo-tologt
338 3+
=3, 0(1)+o(logd)
= o(logt).
Hence, by Theorem 9.9,
3
50 = £ [ ogl (o) do-+-000)

¥
= O(3log 1/8.log )+ (log )+ O(1),
and the result follows on choosing first 3 and then #.
+ Cramér (1), Littlewood (4). % Littlewood (4).
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NOTES FOR CHAPTER 13
13.7. Since the proof of Theorem 13.6(A) is not quite straightforward
we give the details. Let
82) =Hl+2+iT)+ {(z+2—iT)}

and define n(r) to be the number of zeros of g(2) in the disc Izl €< r. Asin
§ 9.4 one finds that S(7) < n(3)+ 1. Moreover, by Jensen's Thorem, one
has
R 2x
n(r) 1 :

JT—dr = ﬂj loglg(Rei®)|d9 —log | g(0)]. (13.7.1)

o o
With our choice of g(2) we have log | g(0)] = log|R{ @+iT) = 0(1). We
shall take R = 3 + 6. Then, on the Lindelsf Hypothesis, one finds that

{(Ret*+2+iT)| < T¢

for cos 9 > —3/(2R) and T sufficiently large. The remaining range for 3 ]

is an interval of length O(5%). Here we write R(Rei*+2) = o, 50 that
QA—E < 0 < 4. Then, using the convexity of the u function, together
with the facts that u(0) = § and, on the Lindelsf Hypothesis, that
#(3) =0, we have u(s) < 4. It follows that

1(Re®+22iT)| < To+:

for cos § < —3/2R, and large enough T. We now see that the right-hand
side of (13.7.1) is at most

O(e10g T) + O{3%(5 + ) log T').

Since
R

3
3 n@) < I @ dr
]
we conclude that

@) = 0{(§+Hta+e)>1og r},

and on taking & = &5 we obtain n(3) = O(s} log T), from which the result
follows. ’

18.8. It has been observed by Ghosh and Goldston (in unpublished
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work) that the converse of Theorem 13.6(B) follows from Lemma 21 of
Selberg (5).

THEOREM 13.8. If S,(¢) = o’(logt), then the Lindeldf hypothesis holds.
We reproduce the arguments used by Selberg and by Ghosh and
Goldston here. Let 4 < 0 < 2, and consider the integral

ds.
2 i—@-or
S—jmw

St
1 j logl(s +iT)

Since log{(s +iT) <2-* the integral is easily seen to vanish, by
moving the line of integration to the right. We now move the line of
integration to the left, to R(8) = o, passing a pole at s = 2+4, with
residue —}log{(2+a+iT)=O(1). We must make detours around

=1—iT, if 6 <1, and around s = p—i7, if ¢ <f. The former, if
present, will produce an integral contributing O(T -2), and the latter,
if present, will be

[
du
T ) - lutig-mE
o
It follows that
@ s-o
1 log{{o+it+iT) du
= dt— . =0Q),
2n _[ 4+ E, 14— {u+iG-1)}* o
o

for T = 1. We now take real parts and integrate for } < ¢ < 2. Then by
Theorem 9.9 we have
@ B4 1
501Dy, —3- R(A———)du—fO(l).
i j revat P B e S et V1E
[

(13.8.1)

By our hypothesis the integral on the left is o(log T'). Moreover
( 1 )){A(>0) ifly-TI< 1,

4—{u+i(y—T)}? 0, otherwise.
If 6>4 is given, then each zero counted by N(s, T+1)~N(e, T)
contributes at least (¢ — $)2A to the sum on the right of (13.8.1), whence
N(o, T+1)— N(s, T) = o(log T). Theorem 13.8 therefore follows from
Theorem 18.5.
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CONSEQUENCES OF THE RIEMANN
HYPOTHESIS

14.1. In this chapter we assume the truth of the unproved Riemann
hypothesis, that all the complex zeros of {(s) lie on the line o = }. It
will be seen that a perfectly coherent theory can be constructed on this
basis, which perhaps gives some support to the view that the hypothesis
is true. A proof of the hypothesis would make the ‘theorems’ of this

chapter essential parts of the theory, and would make unnecessary

much of the tentative analysis-of the previous chapters.

The Riemann hypothesis, of course, leaves nothing more to be said
about the ‘horizontal’ distribution of the zeros. From it we can also
deduce interesting consequences both about the ‘vertical’ distribution

of the zeros and about the order problems. In most cases we obtain

much more precise results with the hypothesis than without it. But
even a proof of the Riemann hypothesis would not by any means com-
plete the theory. The finer shades in the behaviour of {(s) would still
not be comp]etely determined.,

On the R hyr the function log {(s), as well as {(s), is
regular for o > } (except at s = 1). This is the basis of most of the
analysis of this chapter.

We shall not repeat the words ‘on the Riemann hypothesis’, which
apply throughout the chapter.

14.2. TeeorEM 14.2.1 We have
log £(s) = Of(logt)?-2o+¢} (14.2.1)
wniformly for } <oy <o << 1.

Apply the Borel-Carathéodory theorem to the function log {(z) and °
the circles with centre 24i¢ and radii §—43and }—3 (0 < § < §. On |

the larger circle
R{log {(2)} = log|{(z}| < Alogt.
Hence, on the smaller circle,
3—28
llog £(2)] < < Alogt+ ;32 {log |Z(2+i8)]|

< Atlogt. (14.2.2)

1 Littlowood (1.
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Now apfly Hadamard's three-circles theorem to the circles Cy, Cy, Cy
with centre o,+if (1 < o, < #), passing through the points 1+n+it,
o+it, }+8+it. The radii are thus
n=06—1—m, = 0y—a, 1y =0 —4—8.
If the maxima of |log{(2}| on the circles are M, M,, M;, we obtain
My < Mi—M3,

where s
a= logrl/log log(l+ 1+7’ 0)/log(l+ ’H'ﬂ )
Ty )
R o( )—2 20+0)+0 0( )
= -5+ o+ 0(8)+0(n)+
By (14.2.2), M; < A5-llogt; and, since
log(s) = > A*’(,") (A < 1), (14.2.3)
=2
& 1 A
nspes| S0 < S <
Hence

og {o-+it)| < (é)H(A 7 l)a < ‘n.su (log 1t-2e+OO<Om=ode,
1

The result stated follows on taking & and 7 small enough and o, large
enough. More precisely, we can take
1 1
= 5 = — = loglogt;
Ll b g
since (log 1)0® = 081818 — (OB = (1),
ete., we obtain
1 1
log {(s) = Ofloglog H{log £y} (ﬁﬁglogt <o< 1).
(14.2.4)
Since the index of log ¢ in (14.2.1) is less than unity if ¢ is small enough,
it follows that (with a new ¢)
—elogé < log|L(s)| < elogt (¢ > fye)),
ie. we have both E(s) = 0(e), (14.2.5)
— = Oft¢ (14.2.6)
% a) (&)
for every ¢ > }. In particular, the truth of the Lindeldf hypothesis follows
Jrom that of the Riemann hypothesis.
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Tt also follows that for every fized o > }, as I'> 0

J' dt ~ {(20)
[lo+it)* ~ Z(40)
For o >> 1 this follows from (7.1.2) and (1.2.7). For } < o < 1it follows
from (14.2.6) and the analysis of § 7.9, applied to 1/{(s) instead of to {%(s).
14.3. The function} v(0). For each ¢ > } we define v(0) as the
lower bound of numbers a such that
log £(s) = O(loget).
It is olear from (14.2.3) that »(0) < 0 for ¢ > 1; and from (14.2.2) that
v{o) < 1for } <o < 1; and in fact from (14.2.1) that v(o) < 2— 20 for
(<ol
On the other hand, since A,(2) = 1, (14.2.3) gives
1 < An)
fogZ(s)] > 5 — > =1,

=
and hence v(g) 2= 0 if ¢ is 80 large that the right-hand side is positive.

Since
Aylm) _ _ o
2 = Z n° x" o—1
H

this is certainly true for ¢ 2> 3. Hence v(o) = 0 for ¢ > 3,
Now let } < 03 <o < oy < 4, and suppose that
log {{ay+it) = Oflog®),  log {{oy+it) = Ofloght).
Let (s} = log [(s){log(—is)} ),
where %(s) is the linear function of & such that k(a;) = @, k(o) = b, viz.
k(s) — (s—o)b+(ogy—s)a

Ty—a
Here {log(—is)} 4 — g-wlomlogt-ts),
where log(—1s) = log{t—io), loglog(—is) (¢ > e)
denote the branches which are real for o = 0. Thus

log(—t8) = log t+log(l — logt+ 0(?1) R
loglog(—is) = loglog t+log{ 1+0 (t Tog t)}

= loglog ¢+ O(1/t).
+ Bohr and Landau (3), Littlewood {5).
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N{log(—ieR] = ¢ ) — g-botostost
= (log )51+ 0(1/8).
Hence g(s) is bounded on the lines o = ¢, and o = a,; and it is O(log™¢)

for some K uniformly in the strip. Hence, by the theorem of Phragmén
and Lindeldf, it is bounded in the strip. Hence

log {(s) = Of(log £)%},
ie. o) < ko) — (=t (oa—ala, (14.3.0)

03—
Taking ¢ =3, 0p=4, ¥3)=0, b= 0, we obtain a >> 0. Hence
¥(o) = 0 for o > }. Hence »(o) = 0 for o > 1.
Since »(¢) is finite for every o >}, we can take a = v(gy)-+e,
b = v{gg)+e in (14.3.1). Making e > 0, we obtain

o) < Lo Hoy—olioy)
L
i.e. ¥(o) is a convex function of o. Hence it is continuous, and it is non-
increasing since it is ultimately zero.
We can also show that {'(s)/{(s) has the same v-function as log{(s).
Let v,(s) be the v-function of £'(s)/(s). Since

) _ log{(z) - o—8ve
o 21" f & 0{ (og i) 6>+}

we have v,(a) < v(e—9)
for every positive 3; and since v{o) is continuous it follows that
nio) < o)

‘We can ghow, as in the case of ¥(a), that »,(c) is non-increasing, and
is zero for o >> 3. Hence foro < 3

logl(s) = — f l{((’”: ’t‘)) dz—log £(3-+it)

8
- o{ | togopsane dz}+0(1)

= Of(log i@+,

ie. v(o) < wlo)-
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The exact value of v(c) is not known for any value of ¢ less than 1.
All we know is

THEOREM 14.3. For § <o <1,

—a < ¥o) < 2(1—0).

The upper bound follows from Theorem 14.2 and the lower bound
from Theorem 8.12. The same lower bound can, however, be obtained
in another and in some respects simpler way, though this proof, unlike
the former, depend: tially on the Ri hypothesis. For the
proof we require some new formulae,

14.4. TEROREM 14.4.7 A8t > o0,

_t®
{(s)

uniformly for 3 <
Taking a, = A(n), f(s) = —{'(s)/{(s) in the lemma of § 7.9, we have

2+icw
S AM), 5 _ L i@,
> A e ﬁJm Te—gbBloea g4z

- i A::)e‘s"+ 3 5 T(p—s)+- 0@t logs), (14.4.1)
n=1

<he"<sgL

(=]

Now, by Theorem 9.6 (A},
4O O(log?
) u;«“_é_ + O(log1),
and there are O(log¢) terms in the sum. Hence
Y _ ogogs
T (fog )
on any line o % §. Also
fo o(igi_) OQlog?
Ty~ “lainiz—| 70087
uniformly for —1 < ¢ < 2. Since each interval (n,n--1) contains
values of ¢ whose distance from the ordinate of any zero exceeds
Aflogn, there is a £, in any such interval for which
lg((") Ofloght) (—1< o< 2 t=1)

+ Littlewood (5), to the end of § 14.8.
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By the theorem of residues,
2+ify  FHits Poite 2-ih
w [+ f + f re—o§@e-ras
2! i)
2lity 24t Pl
_L (3) - .
T(p—s)3*+—T(1—s)3s%
= T ST
The integrals along the horizontal sides tend to zero as n > co, so that

i
ARy . _ L ST 4G PO
"Zl e — 2“_*‘[ Te—s) o de
_f
sy
Since I'(z—s) = O(e~4v-), the integral is

= 3 Tlp—oproT(1—ejor

of [ e-aw-t1og(ly1-+2p+ do)
o{J' e-4v4log(|2t]4-2)8°-% dy=+

+{( f +] )e-%“wuog(m+2)a°** @)
= O(-tlog)4 0(5°1) = O(3otlogt).
T(1—8)%1 = O(e~4157-1) = O(e-4'5-1)
= O(e~4+5) = O(e~4) = O(8°-tlogt).
This proves the theorem.

14.5. We can now prove more precise results about; {(s)/{(s) and
log {(s) than those expressed by the inequality v(o) < 2—20.
TuroreM 14.5. We have

(G- 220 14.6.1
20 — ofogy), ass1)
log L(s) = o[%,, (14.5.2)
uniformly for } <oy Lo Lo <
We have
l“(:)) E A sy 5oy 3 INp—a)|+ 0= Hlog).
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Now
w 2im §
S0 L[ Do)} @sera: = ope,
ne 2 )
n=1 2Nt

since we may move the line of integration to R(z) = #, and the leading
term is the residue at z = 1. Also

ID(p—s)] < de-4iv-t
uniformly for ¢ in the above range. Hence

3 ID(p—a)] < 4 ge—A\l—'yl A 2‘ g y|<ﬂen4n‘y\'

n=1n-1
The number of terms in the inner sum is
Oflog(t+n)} = Ollog)+-Oflog(n+1)}-
Hence we obtain

OLzle“A"(log t+log(n+ 1)}] = Oflog?).
Hence % — 0(-1)+ O(3-+ log 1) + 0"t log 1),

and taking 8 = (log#)~* we obtain the first result.
Again for gy < 0 < oy
_ o Lzt
log 4(6) = log Loy +it) f et

= Ofgog-1+<)+0] [ og-+ do)

» (log l)“"}

= 220, +€ .

Of(log) }+0{ e

Ho < 0y < 0yand € < 2(0;—0y), this is of the required form; and since
o, and 80 o, may be as near to 1 as we please, the second result (with
oy for oy) follows.

14.6. To obtain the alternative proof of the inequality ¥(e) = 1—a
we require an approximate formula for log {(s).

THREOREM 14.6. For fived « and o such that } <a <o <1, and

e8],
log 4(s) = Z Ailn) ,5n Ofso-s(log @<} +0Q1).

A=l
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Moving the line of integration in (14.4.2) to R(w) = a, we have

- akin
AW _EO_pg gy L B CF
Z e = ) I(1—3s) & 1_2‘m' :J:m T'(z—s) T 8+ dz.

g
R=1 w

Since £'(s)/4(s) has the »-function v(¢), the integral is of the form
ofse= [ e-aw-iog(lyl-- 2w dy)  Ofe-~(og )
and T'(1—s)8*-1 is also of this form, as in § 14.4. Hence
_ie AR s g
So-a(log fri@+e
o 2; +0{87-2(log tp+e}.

This result holds uniformly in the range [, §], and so we may integrate
over this interval. We obtain

Tog {(s)— z Al("’e—&»+0(sv a(log Oy}
&
= log{(t+it)— z L) o o),

as required.
14.7. Proof that v(¢) 3> 1—o. Theorem 14.6 enables us to extend

the method of Diophantine approximation, already used for o > 1, to
values of ¢ between } and 1. It gives

log {1(s)] = i A;—Lﬂ”!cos(llogn)e'”-{—O(B""“(logt}"‘“)+‘}+0(1),
=l

@,

x
= 3 20 gogylogmge-teatof 3, o)+ 0p*-~(og iy} 0(1)
& a=fr1

for all values of N. Now by Dirichlet’s theorem (§ 8.2) there is & number

¢ in the range 27 < ¢ < 2mg?, and integers ,,..., £y, such that

; logn
2

22 g,
2]

gé (n=1,2..,8).

Let us assume for the moment that this number ¢ satisfies the condition
of Theorem 14.6 that e~ < 8. It gives

Z A‘(") cos(tlogn)edr > z ‘(") cos2? 7 7 gt

— Z .(n) 4»_'_0( )iﬂl

=l
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Z el iy E 2
= IogN Z e "75”’0( %,e_h)

> S ()

+0(55 ) +0[7) +op-=togyass o),

Take g =N = [8-"], where @ > 1. The second and third terms on the
right are then bounded. Also

logt < Nlogg-+log2n < & 1og§+1og 2,

asin § 14.5. Hence

log|(s)] > K“"S" -

so that § << K(logt)-Vo+e,
Hence logj{(s)] > K(log §)t—o—7+ Of(log f)x-o++7},
where 5 and 4" are functions of a which tend to zero as ¢ - 1.

If the first term on the right is of larger order than the second, it
follows at once that v{e) > 1—o. Otherwise
a—otu(e) > 1—g,
and making « - ¢ the result again follows.
We have still to show that the ¢ of the above argument satisfies
e~* < 8. Suppose on the contrary that 8 <C e~¥ for some arbitrarily
small values of 8. Now, by (8.4.4),

@] > (s0s 2 —21-0)g(e) > A —2mnes)
foro > 1, ¢ = 6. Taking o = 1-4log8/log N,

&)l > ﬁ = AlogN > Alog% > Ad.

Since |{(s)| - oo and ¢ > 2m, { > 00, and the above result contradicts

Theorem 3.5. This completes the proof.
14.8. The function [(1-4it). We are now in a position to obtain
fairly precise information about this function. We shall first prove
THEOREM 14.8. We have
[log {(14-it)| < logloglogi+-4. (14.8.1)
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In particular
{(1-+it) = O(loglog?), (14.8.2)
1
Frrapary = Olloglog?). (14.8.3)
Taking ¢ = 1, « = § in Theorem 14.6, we have

llog £(1 0] < iﬁ'jll’

e-3n 4 O3t log 1)+ 0(1)

< Z M) z e+ 0t logt)+0)
Al
< loglog N+ 0(e-3V/8)+ 0(3tlog ) +-0(1)
by (3.14.4). Taking 8 = log~%, N = 1+[log®], the result follows.
Comparing this result with Theorems 8.5 and 8.8, we see that, as far
as the order of the functions {(1-+it) and 1/{(1+4it} is concerned, the
result is final. It remains to consider the values of the constants involved
in the inequalities.
14.9. We define a function f(o) as
o)
Blo) = 234"

By the convexity of v(z) we have, for } <o <o’ <1,

o) < U= 10,
—g 1—a
ie. Bo') < Blo).

Thus 8(¢) is non-increasing in (},1). We write
A = lim B),  B(1)= lim Blo).
o—~}+0 o—>1-0
Then by Theorem 14.3, for } < o < 1,
<A KB <AL

We shall now provef
TaEOREM 14.9. Ast-> o0
11 +it)| < 2ﬁ(1)e7{1+o(1)}loglogt (14.9.1)
< Zﬂ(l) (1+o(1)}loglogt (14.9.2)

1
1A+
t Littlewood (6).
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We observe that the O(1) in Theorem 14.6 is actually o(1) if § > 0.
Also, taking o = 1,
Si-s{log fpe = o(1)

if 8 = (logt)-2Ba-n (n > 0).
Hence, for such §,
tog{(1-+it) = SR im0 1)

Preas

= Z mpw1+u>+°(l)

P
= z mpmu+u>+ Z Z e —prara— o)

Now the modulus of the second double sum does not exceed

o8 g-dmw

P m>1

Jt

This is evidently uniformly convergent for 8 2> 0, the summand being
less than p—". Since each term tends to zero with & the sum is o(1).
Hence

log L1+ = 3 <20 +o()
3
- z log(l —;;i:)+a(l)
- Zlog(l—exz)+0(z '5")+o(l)‘

P24
The second term is O(e3%(8) = o(1) if = = [§-1~¢]. Also

e-bp

1¢1<’1_ +7

pxm
Hence, by (3.15.2),

1
log [L(1+it)] < — log[1 —~]+o(1)
og |£(1-+if)] < ,,Z.. og(l p)ﬂ 1

= loglog w+y+eo(1),
or JU{14it)] < er+o®logw.
Now logw < (1+s)log§ = (1+e){28(a)+n}loglog?,
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and taking « arbitrarily near to 1, we obtain (14.9.1). Similarly, by

(3.15.3), L ¥
o8 g < 3, o8{ 1+ ) Hom

=loglog w+log%+0(l),
and (14.9.2) follows from this.

Comparing Theorem 14.9 with Theorems 8.9 (A) and (B), we see that,
sinee we know only that §(1) < 1, in each problem a factor 2 remains
in doubt. It is possible that 8(1) = 4, and if this were so each constant
would be determined exactly.

14.10. The functlon 8(t). We shle next discuss the behaviour of
this function on the R
Ifl<a<o<$, T<Z<T' we have
1 BT atiT et o £2)
L0} z,
log 4(s) = 2_1"( f + J' ) logllel 4,
BT p+-'z' afir  afir
Let B > 2. By (14.2.2),

24iT 2
f I—"ZE_Z‘T’) gz = o{ﬁf log Lz-+iT)| dx} - 0(1“’_577,').

a+iT
B+iT
Ao [0S am | e
siir 2T
Now
Burnd T 2
ST =S g
vt z—8 (z—aMlogn), .. logn aiir (z a)
1 1 £ dz 1
= O{n*(t—m}*"{? f [ T)'} = o{nm—r)}'
ﬂ+(T1 o 1
log {{2, .
Hence J‘ ﬁdzfo(—‘_T),
Hu'
and hence f log{(z)d 0(‘%’)
at+iT -

uniformly with respect to 8. Similarly for the integral over
(B+iT", atiT).
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"log2t2) T
Also f 28 o — o(ﬁT:).
BHiT
Making B - o, it follows that
log 4(6) = o f 1"3 l(’) &z -;_o(l"g T)+o('°g T) (14.10.1)

A similar argument shows that, if R(s) < §,

f Iog LOPA +0(log7)+o(1°sT)‘ (14.10.2)

u+|,T
Taking ¢’ = 2a—a+it, so that
§'—z = 2a—atit—(atiy) = a—iy—(a—it),
and replacing (14 10.2) by its conjugate, we have
J‘ lag|§(z)|—mrg {(z) dz+0(l°g T) +0(log T )

atiT

21ﬂ

(14.10.3)
From (14.10.1) and (14.10.3) it follows that

log ) = & J‘ ‘"3[5(2)‘d+o('°57')+o(‘°ﬂ) (14.1049)

LR
and logL(a):% f ”'gl‘z)d +o(1°g7)+0 °gT). (14.10.5)
a+il

14.11. We can now show that each of the functions
maxflog |{(s)],0},  max{—log |{(s)],0},
max{arg {(s}, 0}, max{—arg {(s), 0}
has the same »-function as log {(s). Consider, for example,
max{arg {(s), 0},
and let its y-function be »(c). Since
largZ(a)] < [log £(s)]

<
we have at once nlo} < vo).
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Also (14.10.5) gives

arg{ls) = argtlein) dy-+ 050+ o 7L

T
(14.11.1)

.
<< A(log T"yriee f = o—a (log T) +o[2 og T )
7

1 —
;Tf {e—a)T+(t—y)?

B =
< A(log yrt0+e 4+ O(t-log 1),
taking, for example, T' = §¢, T = 2.
It is clear from this that »,(¢) is non-increasing. Also the Borel-

Carathéodory inequality, applied to circles with centre 2--i¢ and radii
2—a—3, 2—a—28, gives

ltog Lot dit)] < 2 {logt)v-w"#"“’} Aitogi(2-tip) .
If a3 < 1, 50 that v{a+38) > 0, it follows that
Ve t8) < vila)te.
Since € and 5 may be as small as we please, and v(o) is continuous, it
follows that (o) < vyl
Hence nie)=we) (3 <e<1)
Similarly all the v-functions are equal.
14.12. Q-resultst for S(t) and Sy(¢).
TaroreM 14.12 (A). Fach of the inequalities
8(t) > (logt)k-e, (14.12.1)
8(t) < —(logt)t-« (14.12.2)
has solutions for arbitrarily large values of t.
Making « > § in (14 11.1), by bounded convergence

argfs) = 8@ aly+0('°g ‘) (o> 1.

(14.12.3)

f ("‘i)“r(t ¥
If 8() < logst for all large t, this gives

o—% log?!

arallo) < dlog? ’f(a e o)

<4 ]og"t+ O(t-*log ).
1 Landau (1), Bohr and Landsu (3), Littlewood (5).
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The above analysls shows that this is false if @ <C »(c), which is satisfied

Ve < } and o is near enough to 4. This proves the first result, and the
other may be proved similarly.
THEOREM 14.12 (B).
8(t) = Q{(log )t~}
From (14.10.5) with « — } we have

b3
log {fe) — i jg

A

E:]
_ Si(y)
= [ oDy o0

Sf’) dy+0(1)

f(s;(y, s d+0()

(14.12.4)

since S;(y) = O(logy). The result now follows as before.

In view of the result of Selberg stated in § 9.9, this theorem is true
of the R hypothesis. In the case of S(t), Selberg’s
method gives only an index } instead of the index } obtained on the
Riemann hypothesis.

14.13. We now turn to results of the opposite kind.t We know that
without any hypothesis

8() = OQlogt),  $(t) = Olog),
and that on the Lindelof hypothesis, and a fortiori on the Riemann
hypothesis, each O can be replaced by 0. On the Riemann hypothesis we
should expect something more precise. The result actually obtained is

s Janendent]

THEGREM 14.13.

_ logt
St = O(W)’ (14.13.1
logt
b = ((loglogt)‘) (132

We first prove three lemmas.
Lmnons o Let $() = max 18,u),
Tgugt
30 that () is non-decreasing, and $(t) = Oflogt). Then

8(t) = O[{p(2t)log 1]
+ Landau (11}, Crameér (1), Littlewood (4}, Titchmarsh (3).
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This is independent of the R hypothesis. We have
N(t) = Lin+ R,
where L(t) is defined by (9.3.1), and R(f) = 8(t)+0(1/t). Now
N(T+2)—N(T) 20 (0 <z<T).

Hence
R(T+2)—R(T) >
Hence iz

f R(t) dt = zR(T)+ j {R(T+u)— B(TY} du
T 0

—{L(T+a)— L(T)} > —Axlog T.

> 2R(T)— A f ulog T du
H
> 2R(T)—Aa?log T.
Hence Tia
BTy <3 f R(t) do-+ Azlog T
»
:w+o(l,)+ArlogT
) 7
o ¢(2T>} £ "
{ — 0]+ Az log 7.

Taking z = {$(27)/log T}, the upper bound for S(T') follows. Similarly
by considering integrals over (7—z, T') we obtain the lower bound.

Levma B. Let o < 1, and let

1
F(T) = max|log (s)] +logh T (q_; > pgogr 4SIS T)
Then
logl(s) = O{F(T+ l)efA(v—%mmloRT}

1 | .
(§+W§a<2, 4<z<7’).

We apply Hadamard’s three-circles theorem as in § 14.2, but now take

L T -1
%t _2+loglogT' 1=} 4= loglog T’ 7<E
We obtain M, < AME = AM /Mo,
where < P(T+1),
and
1—a — loglog * 1og(1+@)/1og("‘_*‘s)
10 a—I—y,
> A(o—}—3).
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Hence

M, < AF(T+1)'" 449 < AF(T+1) (log! T) =449,
This gives the required result if o < §, and for § < o < 2 it is trivial,
if the A is small enough.

LemMa y. Foro> 1,0 <& < ¥,

+f
—i [ B9 g ofF®) Log).  (eass
log {(s) l,-‘; P et ly+ { £ ]+ (1) )

We have
f S0 gy [ S0 ]“ » f” 80) gy
s—4—1y s—1—1yl ¢ (s—3—iy)?
243 t+§

2
47(2!)] f dy _ l#(ﬂ)}
— o[t Lolgen [ 2| o[22
(Ee) ol A
and similarly for the integral over (3¢,¢—£). The result therefore follows
from (14.12.4).
Proof of Theorem 14.13. By Lemmas « and ¥,

tif
dy $(2t)
Tog(s) = Ofpstog it | ey + O{E - 0(0)
‘J; {o—1P+ly—0% [ 3 ]

- 1_¢ | of2¢D)
= ofeanmoent 5]+ o{*) oy
for o—% > 1jloglog T', 4 < ¢ < T. Taking

_ 4fdant 1
e =40 wgog

we obtain log {(s) = O[(log TY:(loglog T)Hg(4T)}].
Hence by Lemma 8, for c—4 = 1/loglog 7',
log {(s) = Of(log T)(loglog T){p(4T'+4)}ie-4o-Plogloa 7],

Hence

2

[ toglte)l do = O[(log T){loglog T)Hg (4T + 4]

$+1Noglog T
(14.13.4)
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Again, the real part of (14.13.3) may be written

£
g2l = [ oy (S(—o)— St dot o220 L o).
| e=iwr= ()

(14.13.5)
Hence

$+u ¢
J’ log| {(s)| do = f arctan ‘J_; {S(t—2)— S(t+)} do+
i 3

+O0fu(21)/£}+0p)
= O[£{p(4t)log 1]+ Ofu $(26)/}+ Olp)-
Taking p = 1/loglog 7', and ¢ as before,
$+1loglog T
I log]{(s)} do = Of(log T)k(loglog T)~Hp(4T)}].
(14.13.6)
Now (14.13.4), (14.13.6), and Theorem 9.9 give
8y(t) = O[(log T)k(loglog T)-H(BTI] (¢ <t < 7). (14.13.7)
Varying ¢ and taking the maximum,
$(T) = O[(log T)¥(loglog T)—H(5T)}2).
- (loglog1)*$(¢)
Lot A = s B
so that (7} is non-decreasing and

log 7'
T < W‘I‘(T)'
Then (14.13.7) gives
log 7

41 = o[ Sl T

or fmﬁ,‘f# = O[T = OLHGTH (T < 7).

Varying T and taking the maximum,
W) = OlsTL
But (5T}) << 5y(1}) for some arbitrarily large 7}; for otherwise
P(5") 2= BMilty),
ie. §(T) > AT for some arbitrarily large 7', which is not so, since in
fact $(T) = O(log T), $(T) = Of{loglog T')?}. Hence
W) < ATIR, (T < 4,
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for some arbitrarily large 7}, and so for all 73, since i is non-decreasing.

_ log T }
Hence o) = o{r(loglog -t
This proves (14.13.2), and (14.13.1) then follows from Lemma a.
The argument ¢an be extended to show that, if Sy(¢) is the nth integral

of 8(t), then

8,0 = (14.13.8)

Ol —=———t.
{(loglog t)"*‘}
14.14. Theorem 14.13 also enables us to prove inequalities for £(s}
in the immediate neighbourhood of o =}, a region not touched by
previous arguments. We obtain first
THEOREM 14.14 (A).

oy logt
(d+it) = O‘exp(A ot t)} (14.14.1)
‘We have
S(t+z)—8() = {N(t-+z)—NO}—{L(t+)— L)} - {ft+2)—f )},
where f{(2) is the O(1/t) of (9.3.2), and arises from the asymptotic formula
for log T(s). Thus f'(t) = O(1/), and since N{¢+2) 3 N()
S(t+x)—8(t) > — Awzlogt+O(wft?) > —Axlogt.
Hence, by (14.13.5),
_ a*logt og ¢
log Z(e)] < 4 j et o g sl o
<4 “‘*"(W}* 2
uniformly for o > %, and so by continuity for o = {. Taking
¢ = 1floglogt
the result follows.
THEOREM 14. 14(B} We kave
Alog 2

Alogt
“loglogt log (Ufg)loglogt

] <logl8e <ielogt
(3 <o <} +Afoglogt), (14.14.2)
1
arg£(s) = o(ﬁlgo—;t) (4 <o < b+ Afloglogh). (14.14.3)
By (14.13.1) and (14.13.3),
¢

_o| gt ___dz |, pof logf
logdte) = "[loglogz of 4{(a—w+zﬂ}]+o{faoglog ) £ o0
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tHo—h
dx’

f [ N
I e~ ] vy
which is less than 1 if £ <{ o—}, and otherwise is less than

Now

Taking ¢ = 1/loglog¢, the lower bound in (14.14.2) follows. The upper
bound follows from the argument of the previous section. Lastly,
taking imaginary parts in (14.13.3),

{Stt-+2)— S(t— @)} da+

¢
arglla) = f e

logt
+0[§(1°glogt)‘} +o

_ logt o—1} logt
= o{loglogt f P d’] +{ogingar O

s

i
Now fzﬂ+(o T f et in

Hence, taking £ = 1, (14.14.3) follows uniformly for ¢ > }, and so by
continuity for ¢ = §.
In particular
logt 1 A
! =0 =
ogL(e) (loglog t) (0 3t loglog t)' (14.144)
From (14.14.4), (14.5.2), and a Phragmén-Lindeléf argument it
follows that

_ (logt)ﬂ—iﬂ

log{(s) = O{f‘)glog : } (14.14.5)
uniformly for }+i—<o< 1-3
2" loglog? =~ :

14.15. Another result in the same order of ideas is an approximate
formula for log {(s), which should be compared with Theorem 9.6 (B).

THEOREM 14.15. For } <o < 2,

log tlogloglog #

! = log{a— gtlogloglog

og ) 1t—yi<Shoglog! ‘ug(a P)+O( loglogt [’
(14.15.1)

where p = }-+1y runs through zeros of {(s).
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In Lemma. « of § 3.9, let
4

for =1, o + LotiT, = b

where § = 1/loglog 7. By (14.14.4)

1o AlogT)
gl P loglog 7/’

The upper bound in (14.14.2) gives

AlogT)

1K) < explrE T

for |s—sg| < r,0 2> %; and for |s—s,| < r, 0 < §, the functional equa-
tion gives
g T Alog T
ol f(1—. 35
1(8)] < Ad-o|{(1—s)] < AL exp( aog 1‘) < ex; (loglog T)
Tt therefore follows from (3.9.1) that
— — log(s—
logl(s)—logllon)— & logls—p)t

o o8 = O
for |s—s,| < §r, and so in particular for } < o < 348, ¢ =T
Now log §(s,) = O(I—OI;'IETTT).
Also fo—p = 7‘38+5(T—-,).
Hence 7135 < 18—pl < 4,

and so, if the logarithm has its principal value,
Tog(s,—p) 0(log ) O(logloglog T').

Also the number of values of p in the above sums does not exceed

2 og T' log 7'
N(T + Y 3) _N(T —ﬁ) 0@log T)+ o(loglng T) o(loglog Ty

by Theorem 14.13. Hence
log Tlogloglog
1 = o8- 055800 —
toe—pl38im og(es—p) ( Toglog T
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Since [T—y| < 8 if |3,—p| < 25/v3, the result follows, with 7' for ¢
and } < o < $43. Itis also true for 43 < o < 2, since in this region
. log T
log {(s) — o(l—ﬁ == T),
and, as in the case of the other sum,

v g 7' logloglog
les— E’amlag(a = 0(10 loglog T

This proves the theorem.
For {'(s)/L(s) we obtain similarly from Lemma « of § 3.9

1
AL — -+ Olog). (14.15.2)
Wy, gZ;..gmg:"””

14.16. THEOREM 14.16. Each interval [T, T+ 1) contains a value of ¢

such that logt

1) > exp( *loglog 1

) G<o<2). (14.16.1)

Let 6 = 1/loglog T. Then the lower bound (14.16.1) holds automati-
cally for ¢ >} +9, by (14.14.4). We therefore assume that } < ¢ < }+96.
If s = o +it and s, = } + & + it then, on integrating (14.15.2), we find

{@® s—p log T
1 - log T
8 o)~ es l°g(s.,—p)+ 0(loglog T)'

log T
Moreaver log{(s) = o(%) by (14.14.4) so that, on taking real

parts loglo er
8—p og
logli()l = ¥ log J+o( )
|,_§s‘; $o=p loglog T'
lt=yt < log T )
> lognt +Of —BZ ),
|,_§|:Q 26 loglog T'
since |s—p| = |t—y| and 18, —p| < 28. We now observe that
741 mingy+8, T+1)
li—yl Yl dt
log dt= M log
n-rl<s 28 T-3<ySTHI+E
mex(y—5,T)

v

dt

5 J’ Jog 122!
T-6<y<T+145 26
e

(—25—-28log2)
T-85yET+1+8

—Aslog T,
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as there are O(log T) terms in the sum. Hence there is a ¢ for which
iyl
log—-—- > —Adlog T
1s-vi<s 28
and the result follows.
In particular, if < is any positive number, each (T, 7+1) contains &
 such that
= 0(F) 3<oe<2). (14.16.2)
{( )
14.17. Mean-value theoremst for §(¢) and §,(¢). We consider first
8,(t). We begin by proving

Tagopey 14.17. For 3T <t < 7,8 = T4,
,(n)cos(tlogn) =
aSy(t) = O— z o +010g1 ox T (14.17.1)
where Cc= ;[ log | (o)| do-

Making g — co in (9.9.4), we have
S (t) = C— flOSll(aJrim do. (1417.2)
Now, integrating (14.4.1) from s o ity
log L(s)—log Lb-+it) = 2 M)y SO oy
=

s
+ 3 [ -t (p—,) doy +0@ -Hlogt) (<o <Y
K
Also,ifo 2§,
log {(o+it)— ZA“L") et = ZAu;if)(l—efﬁn)
n=2 nm2
- o( f n-"(l—e“"))= o( ¥ a4+ % n"')
n=2 2<n<1/e n>1/8
= 0((§H+2-~&)log¢}. (1417.3)

Hence, for } < o < §
log {(s) — 2““"’ ety Z f s+ Tp—sy) day - OB+ O3 log ),

1 Littlewood (5), Titchmarsh (2).
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and integrating over } < ¢ < §,

s
[ 1ogtte) der = f ( ZAI‘"’ rsn) dot Z f (1= Bn-eT{p—s,) doy -
t . + 04+ 03k log ).

Also, by (14.17.3),

f log L(s) da = f (i%ﬁ”e»sn) do+0@h),

3 ‘ac?

Ml0), g0 g, ”Z Aw) g

nEilogn

and f z

the inversion being justified by absolute convergence. Hence

Syt = C— ZAI(,LL(:OM edng

»n
+o{§_ f (61— 187~} D(p—s))] do,}+o(a&)+0(sﬂogz).
H

Now I(p—sy) = Ofe-4r=) (jy—t| = 1),
1
T(p—s8,) = O —_— —i 1).
om0 = Off2 ) = oo (<D
Hence
pz:kyftkl loglog ¢ +l/lo¢lo¢lgy4l<l + lY—%BI
.
- o1
- O(IvAtKlz/lozlov!!a da1)+

3
1
+o( = { (o= oot da,) +

loglogi<ly ~# <1

S
+o(xy§> R { (-t da;)‘
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B e

w
5-1 doy < J‘ g-#108 18 gy = log=1(1/3),
[

2

[ oot doy < [ ze-stoe s dz — log*(13).
} 0
As in § 14.5, % e—diy-ti = O(logt).
y=ilz1
Also, by (14.13.1), for t—1 << ¢/ < ¢-+1
’ 1 logt
N{t4——)—N@) = g
( +loglogt N o(loglogt)'

Hence 1= log?
|1*(J<12/laglogt 0(loglogt ’
and

1 1
-3 .S
41 10g1opT<ytrr mfogtogt t4miogtopteySTem + itoglogt ¥

1 t
z o(mik lo¥g) = O(logtlogloglog #).
m<loglogi

/loglog ¢ loglog ¢,
Hence
logt og tlogloglog ¢ logt 1
o oflogtlogloglog ogt | _
; (log 1/31loglog t) + (1 Tog?1/8 +0 log®1/5) — o loglog

for the given 3 and ¢. This proves the theorem.
14.18. LeMMa 14.18. Ifa, = O(1), 3 < }, then
T
2”‘”%51 < a, [t 1 1
= SRt dt= S [Zn g-2n —log=
f1ea- Somiotioe)

uniformly for o > §. Similarly, if a, = O(logn), the formula holds with
a remainder term

1 1
O(Tslogss).
The left-hand side is
3 @ 2 T
@y
= n g—(mim)3, =
2.2n [l -5z,
Clearl; = G
Y ,,.Z.. &y e
-n8
Also 2
( ) Z (mn)tlogn/m’

mln
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2m b 2m e—mb
n:Zn(mT)ﬁOg ™~ ? (Fzﬂmlog(l +(n—m)/7n})

m

= —m3 — )= —md

= O(e Z n—m) = O(e—™logm),
nlml

R R B e

n=2m+1 =2m

Hence m; = O(%) Z (Iogm+ mS) e = 0( log 8)

Thls proves the first part. In the second part we have a pair of
ith running th hout the i terms, and this is easily

seen to produce the extra log? 1/8 in the result.

14.19. TaEorEM 14.19. As T > oo,

T
1 0,13 Al
7] SOpa~ T >
:

Let flt) = Ce-d— Z"'—’
&

Then, as in the lemma,
2 f{f(t)}z dt = CreBy ) z (") ) etin 0] og 1/3)
and we can replace 8 by 0 in the first two terms on the right with error

o] 3 ) - 0] 3 b+ 3, )

»>18
= O{1/log(1/8)}.
Hence, taking § = T4,

2 f oy ai= 043 5 A ol

Hence
. T
% [sopa=g [ {rorofgmzg)f
i #

-2 fT T e f a0l
. ir i .
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7 T T %
ond, since [ [f(®)]dt < [ [ (f(t))‘dt] = o),
ir g
it follows that
r
2 Aln) 1
= 'S, (12 1
T{I S de = ﬂ"'zn Z  mloghn T (loglog T)

Replacing T by 47, }7,... and adding, we obtain the result.

14.20. The ponding problem involving §(¢) is naturally more

difficult, but it has recently been solved by A. Selberg (4). The solution
depends on the following formula for {'(s)/{(3)

THEOREM 14.20. Without any hypothesis

PO _ g Adn) | a0
W= +(1—.:)ﬂlog=+

i

1 RS S TP
+logxz TP +EE5§ ey
where

Ay = A@m) (L<a<a,

Let « = max(2, 140). Then
1 "]3‘” aF-1—a%9 ['(z) &

i ) e e

1 < “H”f-u 2e~8)
= L SA pdli g
2,,,'2 ) f oy &
ax—to

A(n)log(x?/n)
T logz

<2,

=1
L e A¢ )a—u+i I N
n, o —a
- _ﬁz n* Wi dw
=l a—g—iw
© a—atiw a—atio
__1 Z An) 2\* dw 23\ duw)
T 2mi we n Wt ] Wi
=1 a—o—in x—g—ix
_ Atn) Afn) 2
= — z (logf_log ) z - ‘log—;)
n<z zngat
- Ayln)
= logznzz’ el
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Now consider the residues obtained by moving the line of integration
to the left. The residue at z = ¢ is —logx {'(s)/{(s); that at 2 = 1 is
215 ¥

=

(1—g)
those at 2 = —2¢ and z = p are
2-U-8 U2 P2 _z2p—9)
(—2q—ap (o=~

respectively. The result now easily follows.

14.21. TaEoREM 14.2). Fort > 2,4 < a < &,

1 1
75t g
we have
1 A, (n)sin(tlogn) 1 Agn) logt
S = _;IZ, not " logn + :logx ”Zl o+l +0 logz/"
By the previous theorem,

{lotit) A xA1- pxl-e)  2pxt "): 1
Uo+it)y  Shantti t¥logx " logz 7o =2 +E-7)?

(14.21.1)

for o 2 0,, where [} << 1. Now
xH1-0) p xl-0  y1-20 4 x-a
i S .

o
t2logx  logx <2

Hence

lotin Adw) g i, 3 s
! =_"ZE + 2wt Z(u—a})“r 5+ Oi—).

Yo+1t) , nHE P
(14.21.2)
Now by (2.12.7)
T _ 5 L.
b _2( +3)+ouso.
Hence L(““H') Z{”;i.f, }+0(logt)
R oo o= t—y1 " "

- o—i ‘
= 2ot OB
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Taking real parts in (14.21.2), substituting this on the left, and taking
o =0y,
o1~}
2 = _ 4 Oflogt
2t e

RS A, 01 .
Ranﬁ Serhras 10

Hence
2 a1} Ayn)
(- )Z G agp T R 2 e olst:
n<zt
Here l___>1_g>l,
3 e’ 4
Hence

Z(.,, })’+(tfy)2 0’ Z n:’("""‘) +0(logt).  (14.2L3)

Inserting this in (14.21.2), we get

Uotit) _ 5 M), ofo] 5 Asln)
Tt — 2. nnw { ® "Zz- i }+O(x log ).
(14.21.4)
Now
Llo-tit)
arg{3-+it) = ;[ 1t
) Loy +it)
f Lo P~ W oy +
T Entin _otin,
I
+ 1ot - torin)
=
By (14.21.4)

J= 1f S /—;%'f}dwo[ z Adn)
<t n <z

Ax(n}
=I Z n'"“‘logn+ {logx

J' prae .za} +0[logt f e da}

}+o(logt)
log z,

Agln)
, norvd

1421 CONSEQUENCES OF RIEMANN HYPOTHESIS 365
Also, by (14.21.4) with ¢ = o,

Wil < b5t
—ofe—| T 281 |+ 0(e,— gy
n<xt
_ 1 An) ogt
= Olioga] 2, 5ol +o s}
Tt remains to estimate J;. For § <o < oy,

Feit_Totin) _ 1
oo {(a+it)} = EP: I(a,.)..'t— a+lt~p) +Ollog?)

_ o
= 2 i P Otoe-

Hence

[Z'(a,+_m _ z'(o+iz)}|
Tort#) Lot

lt—yl(ea—H)® Olloz 1),
<2 T i TP s

Hence

(GO VR R I L e
w<;qﬂ), o g+ Olter—Plogy)

(o1 —%) _
< wa,—;)g Fro Rt e blogd

Ayn) log t)
gl 2, 3%+ ol
by (14.21.3). The theorem follows from these results.

Theorem 14.21 leads to an alternative proof of Theorem 14.13; for
taking « = 4/(log?) we obtain

s0=of 3, ) rolgz 2 5 +olies)
= 0(x>+0(x>+0('°i‘)

logz,
_ logt
- o(loglog t)'
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14.22. THEOREM 14.22. For
Te<ae<Tt O<a<gh)
T
i 2
f{sm.;.l > SM’H)} @ — O(T).
TSn

5 »<E

We have

S® +;1 Z sin(g;gp) z A(P)—AI(P)ﬁ in(tlog )+

pllogp
bl 2
e

z s vo(3 S ) vole),

e >

Adp)
pmw

_AdpY) |
2“’”"')10gp

+0

‘logz } +

+0f=

logx

The last term is bounded if 37 < ¢ < 7, x 2> T, where a is a fixed
positive constant. The last term but one is

(Z 2?*’) ( f

Now consider the first term on the nght. Ifp<y
Alp)—A(pipt = (1—phologp

= (1—p-Log )], = (1—g-logplog — og?p
(1—p Mogp = (1—e Mogp olog:c

= 0Q1).

and, if 2 < p < a2 it is
loga? /p} log’p
Of = .
i) = 0f1og ' EZL2) — o1
Hence the first term is the imaginary part of

z ;m’

p<an
_ A=A p)pt
where =" s = O(log pflog x).
Now
T . T
[13 5mfe=3 > 55 [ (§n
i pan P p<1“ ¢<z’ v}T
2
= O(T ﬁ) O( lopog| 1 )
p‘Z« o)t zqu gt [log pfa]
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" log?p' log.
2 _ P
Since of = O(IOg“x) = O(logr 5

(h,;xz ) o),

<z

the first term is

by (3.14.3). The second term is

o2 3wl 2,2, 7l

p<z? o< ip p<2 fp<g<n
logp \* ( log'p )
= 0(p<z: p?logx) +0 FZ, log’x‘loxp

o 3 o3

pat
= O(®)+ 0@} = O(T)
ife < VT.
A similar argument clearly applies to the second term. In the third
term, the sum is of the form

pgf""
where of, = O(1); and >
T E’g_ z )
’.1: IZEP:: p<z q<z 7 *l (
= 0( Z )"'O(Zﬂz rqllogplq\)
- O(TH—O(; qu M) (; h§<’ m/_l’)

= O(T')+ O(log?z)+ O(log®z) = O(T).
Similarly for the fourth term, and the result follows.

14.23. TuvoreM 14.23. If T* < = < T%,

il

> s‘“‘“"”’} @t = 7 loglog T4 O(T).

p<zt
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This is
1 T
S f sin(tlog pjsin(tlog g) df
p<ae g P i
- 3 sl 5 )
,,Z, P{ log Z,,MZ pigt|log p/g|
Now, by (3.14.5),
1
Z — = loglog #*--- O(1) = loglog T4 O(1)
P

and (since p, > Anlogn)
1
zm = 0Q1).
1T loglog T+ O(T).

Also llogpfg| > Ajp > Afz%
Hence the remainder is

o{xz( s pi)z} = O(z2.2%) = O(at),

pat
and the result follows if z < 7.

Hence the first term is

14.24. THEOREM 14.24.

T
J‘ {St)2dt ~ ﬁ Tloglog T'.
1

For
f h 1 in(? 1 1 in{t1
Sopd= | [snsl S ntlep) 1 X sinitlogp)lts,
i':[ : i‘[ [ v »Z' P ",,Z, ? ]

T
=”s<z)+}, z s“‘(_{/h’gl)]”dt_
i 72 P
*7"' |S(l)+ Z sm(tlogp)’ z sm(tlogp) at

17<z‘
{ z sin(? logp)}

}1‘ Pzt

= O(T)+0{T(loglog T)}} +3 Tloglog T+0(T)
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(using Schwarz’s inequality on the middle term). The result then
follows by addition.
It can be proved in a similar way that

T
J' (SO de~ k,(é’j:;m T(loglog T (14.24.0)
3

for every positive integer k.

14.25. The Dirichlet series for 1/{(s). It was proved in § 3.13 that
the formula 1 ® ln)
HO R
which is elementary for o >> 1, holds also for ¢ = 1. On the Riemann
hypothesis we can go much farther than this.t

TeEOREM 14.25 (A). The series

#4n) (14.25.1)
I
f=t
is convergent, and its sum is 1{{(s), for every s with ¢ > }.
In the lemma of § 3.12, take a, = u(n), f(s) = L/l(s), ¢ =2, and z
half an odd integer. We obtain

) 1 2+iT 1 2
wn) _ 1 ) fual
w = J. T w T,
=

_a+5 S 24T

2m<f i + fr)l(s;w)x:d z(s)+o()

} a+8-iT  d-o+d+i
where 0 <& <o—}
By (14.2.5), the ﬁ.rst and third integral§ are

2
O(TAW J ¢ du) = O(T1+a),
1-7+8
and the second integral is

T
o{z.; —04d J (L4 [e])-1+ dt} = Ofzt-o3Te).
“r

+ Littlewood (1).
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Hence ple) ﬁ_;_o(anI:H O(Text-o43),
Lol

Taking, for example, 7' = 23, the O-terms tend to zero as x — oo, and
the result follows.

Conversely, if (14.25.1) is convergent for o > , it is uniformly con-
vergent for ¢ 2> gy > 4, and so in this region represents an analytic
funetion, which is 1/{(s) for ¢ > 1 and so throughout the region. Hence
the Riemann hypothesis is true. We have in fact

TaeorREM 14.25(B). The convergence of (14.25.1) for ¢ > % is a
necessary and sufficient condition for the truth of the Riemann hypothesis.

‘We shall write M) =»§zl“(")-

Then we also have

TrroREM 14.25(C). A necessary and sufficient condition for the

Riemann hypothesis is M(z) = O(h+e). (14.25.2)
The lemma of § 3.12 with s = 0, # half an odd integer, gives
T e "
x f
e = 2m ) Lol w awofz)

F+8-iT  R+8+iT 24T

=%n( [+ J +w[f )z<w)wd“’+0()

R (14259
T
- o( J' (1 [o])-treghst dv)+0(T« ‘z')+0( )
-T
= O(Teat¥)4-O2Te-),
by (14.2.6). Taking T = 2, (14.25.2) follows if 2 is half an odd integer,
and so generally.

Conversely, if (14.25.2) holds, then by partial summation (14.25.1)
converges for ¢ > 4, and the Riemann hypothesis follows.

14.26, The finer theory of M(z) is extremely obscure, and the results ,

are not nearly so precise as the corresponding ones in the prime-number
problem. The best O-result known is
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Trroney 14.26 (A).

= ofat 8% 26.1
Mz)= 0{::: exp( loglogx)} (14 )
To prove this, take
T = a8,

1
8= iq}—loglog T
in the formula (14.25.3). By (14.14.2),

1 log7
TW)' < exP(A loglog T)
on the horizontal sides of the contour. The contribution of these is
therefore

1 log T logz )}
3. P .oy | Y .
O{I Texp(A loglog T)] Olexp(A loglog )
On the vertical side, (14.14.2) gives

logv , _2loglog
= eXP(A loglogv log Toglog v

({(1}+8+w)

for v, < » < 7. Now it is easily seen that the right-hand side is &
steadily mcrea.smg funetion of v in this interval. Hence

1 og 7 <o T
lfw) < exP(A loglog T) <ot
Hence the integral along the vertical side is of the form

T
1 log 7 dv
3 3
Ofat+ )+O[n+ BXP(Aloglog T) f v]

log 7' logz )]
- s - .
- 0{:&* exp(A s T)Iog T} = o{zt exp(A )

This proves the theorem.

TaroREM 14.26 (B). M(x) = Qad). (14.26.2)

This is true without any hypothesis. For if the Riemann hypothesis
is false, Theorem 14.25 (C) shows that

M) = Q=)

+ Landau (13), Titchmarsh {3).
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with some @ greater than 1. On the other hand, if the Riemann hypo-
thesis is true, then for o > }

o™ 3= S i) = [ £

i
Suppose that (14.26.3)
M) <M 1 S2<ng), <t (x3>a).

Then
o< la\Mof z;+|ﬂl5J.;;q
< bl f day MSLH,
— 20siMy+ ""i (14.26.4)
But if p = } iy is & simple zero of {(s), and s = o4y, o> §, then
1 1

o Z(S)Al(p) e—DTp)
‘We therefore obtain a tradiction if
1
ST

This proves the theorem.

14.27. Formulae ing the fi
with series of the form

of pri ber theory
ar

etc., are well known, and are discussed in the books of Landau and

Ingham. Here we prove a similar formula for the function M(x).
THEOREM 14.27. There is a sequence Ty, v < T, < v+ 1, such that

2 & (—1)r-Y2mjz)n

M(z) = lim —— =2+ T Fige T

o Lo PR 2y @a)lnl(EntT)

if x is not an integer. If x is an integer, M (x) is to be replaced by

M(z)—pa).

In writing the series we have supposed for simplicity that all the
zeros of {(s) are simple; obvious modifications are required if thisis not so.

(14.27.1)
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For a fixed non-integral z, (3.12.1), with a, = p(n), 8 = 0, ¢ = 2,and
w replaced by s, gives
ﬂ+iTx. 1 1
Moy - [ 2 m)"“fo(i)'
2—iT
If z is an integer, 4u(x) is to be subtracted from the left-hand side.
By the calculus of residues, the first term on the right is equal to
(=1 Y 2mfz)in
MZ, pre Z @nlalEn+n) T
~—2N -1—{7 —2N -1+iT 24iT

ﬁ( ,_-‘,; + + f )EZZ(.?)“’

~IN -1-iT —2N —14HiT
where 7' is not the ordinate of a zero. Now

—ON 14T AV 42+iT s
z* -t
——dg = [
.. 8%(s) l—ﬂ)l(l—s)
—aN S1ir 2N 43T
W AT

gl-s 21y 1 ds
15 cos 3s71(3) L(s)

v 43T

1 g4a—Plog a}} = o—{o—log lal+§mit
Ty = Ollerebiose)) = Ofere- )

= 0(80—(07{)log0+{7‘1\)_
Hence the integral is

T
O 1 (2 2N+292N+2-(2N¢§)IUB(ZN+2)dt
T\= ’

-r

which tends to zero as N — oo, for a fixed 7. Hence we obtain
2447

o < (—1)n—1(2n/z)2n B
) Ot S Sl bt = d
> T 2 Gmatznan ( f + Lf)sz(a) 8

m<T =1
Also
_14iT @il @ 4iT
2 g [ B g [ ER 2 L
slis) a—sf1—s 1—s cos gsnl(s) L(s)
i T o

- o{f;(ﬂg) et ~oft).
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Also by (14.16.2) we can choose T = 7}, (v < 7}, < v-+1) such that

m—ou) F<o<2 t=T).

Hencofor —1 o<}, t=1T,

1 le-t ) _
= Ot = 0
24iTy
Ll e )
Hence f ST — O,

~1}iT,
Similarly for the integral over (2—37', —co—¢T'), and the result stated
follows.
It follows from the above theorem that

1
z 108" (e}

is divergent; if it were convergent,

S-2

oL'lp)

would be uniformly convergent over any finite interval, and M{z)
would be continuous.

14.28. ‘The Mertens hypothesis.i It was conjectured by Mertens,
from numeriesl evidence, that
| M(n)] < Vo (n> 1) (14.28.1)
This has not been proved or disproved. It implies the Riemann hypo-
thesis, but is not appsarently a consequence of it. A slightly less precise
hypothesis would be M) = O(h). (14.28.2)
The problem has a certain similarity to that of the function ¢(z)—2
in prime-number theory, where
#z) =3 Aln).
nET
On the Riemann hypothesis, y(z)—a = O(xt+), but it is not of the
form O(zi), and in fact
(z)—a = Q(zi logloglog z). (14.28.3)

The influence of the factor logloglog# is quite inappreciable as far as .

‘t See references in Landau's Handbuch, and von Sternsck (1).
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the calculations go, and it might be conjectured that (14.28.2) could be
disproved similarly. We shall show, however, that there is an essential
difference between the two problems, and that the proof of (14.28.3)
cannot be extended to the other case, at any rate in any obvious way.
The proof of (14.28.3) depends on the fact that the real part of
i
>0 P
is unbounded in the neighbourhood of z = 0. To deal with M{z) in the
same way, we should have to prove that the real part of

=3 o ®O>0
>0

h 1 < hhourh

is d in the
case. For consider the integml

d of z = 0. This, however, is not the

i J- 8!(-?)
taken round the rectangle (—1, 2, 2+i7,,, —1+447},), where the 7, are
those of the previous section, and an indentation is made above s = 0.
The integral along the upper side of the contour tends to 0 as n - o,
and we calculate that

2 _
1 i 1 Ll
ro=5 [ ess [ i 2mfsz(a)
H 1
The last term tends to & finite limit as z - 0. Also
letr) = v L ¥ (s = —14i4t, 2 =z+it, ¥ > 0)
and 1/{(—1+i¢) = O(t-}). The second term is therefore bounded for

R(z) > 0.
The first term is equal to 2him

2 »Z"(") j Td”

Now, if n > 1,

I atisom) sislogm) 2+""’+ 1 ”‘”ew»lon)’k

f ~ Ls(iz—logn)], 1z—logn &

2z
and eleritxis—log w) — g-2—2WEN—tn < p—2e2,
B iatogm 1
ia-]
Hence J. —-;—ds = O(m)
2
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iformly in the neighbourhood of z = 0. Hence

- Btio
i
;um f o a5 = o).

If z = rei®, we have
i im0 weilz-0)

‘Zl‘u
[T
J5e,

it
:
— o)+ deA
7
-
— o)+ f—x-dx

1 1 ©
= -
—om+ [£4 [Cany [Tae

)
1
= log;-i- o(1).
Hence $e) = gozlog 2+ OLL),

and consequently Rf(z) is bounded.

14.29. In this section we shall investigate the consequences of the
hypothesis that x

M (x))?

—| dz = O(log X). (14.29.1)
i

This is less drastic than the Mertens hypothesis, since it clearly follows
from (14.28.2). The correspond.mg formula wnh M(x) replaced by
Y(r)—zisa 'l of the R hyp

Turorem 14.29 (A). If (14.29.1) is true, all the zeros of I(s) on the
critical line are stmple.

By (14.26.3),

1 D) M@ _1
‘@’g‘”_f e Mf AT A

{ M) )t s Mz, \E
S T [
N

1 Cramér (5).
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. X
Mx)|®
Lot X)) === dx
1)
Then
F M) '@ 1)
fm-dx f Vi = (o— %)fxﬁrdx
logz [ dz _
[(a » j logs } ( j é) =of,%)
Isf
H —
ence l(ﬂ) 0( 7})
Let p be a zero and 3 = p-+k, where A > 0. Then ¢ = }-+-k, and
hence
1 flethl
TR 0( - ) (14.29.2)

This would be false for & —> 0 if p were a zero of order higher than the
first, so that the result follows.
Multiplying each side of (14.29.2) by 4, and making % - 0, we obtain

1o . 14.29.3)
) O(lpl) {

We can, however, prove more than this.

TrEoREM 14.29 (B). If (14.29.1) is true,

I
TR (14.29.4)
i convergent. Z 1oL (p)12

This follows from an argument of the ‘Bessel’s inequality’ type. We
have

ap1 |2

dz

x
1
2SS | Mzt da.
\ ﬂzq, eL(p) !
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In the first sum, the terms with p’ = I—p are

1 dz 1
— { Z=1lgX TTETOR?
2 p(lfp)z'(p)z'(lfp)‘f PR W,Z,!pz (Pl

i<T
since 1—p is the conjugate of p. In the remaining terms, p = }+iy.
p’ = }+iy’, where y* % —y. Hence
X

. Xpr-1-1 1
et gy = X001 o(_,).
J ptp'—1 fr+v'l
Hence the sum of these terms is less than K, = K(T).
In the last sum we write

X X 1 X
J' M2 dz = J' M(z)zﬂ-i(l_%)dz+X lf Miz)? do.
1 1

The last term is

0[% j‘zw(,”ﬁ ,zz] - o[XU W) f deH

— o{ f M_;ﬁi)}* — OQloghX),
by (14.20.1). Also i

i

X
g z 1 Xer-1—1 2
Jamei=3)ie= 5 | gmwromrpn e 04209

To prove this, insert the Dmchlet series for 1/{(w) on the right-hand
side and integrate term by term. This is justified by absolute con-
vergence. We obtain

,L(n) T 1 Xwslol
& 2m, ) # o g = v

Evaluating the integral in the usual way by the calculus of residues,
we obtain

ST o S [T

f x
:‘J n<xl‘(ﬂ)a}° 2(1_7) =]J‘1V(z)zp—l(1_2) i,

and (14.29.5) follows.
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Let U be not the ordinate of a zero. Then the right-hand side of
(14.29.5) is equal to
-V j-iv §+m U 24w

)+
R } o }+cv 243U
~+sum of residues in —U < Iw) < U.
Let o” run through zeros of {(s) with imaginary parts between —U
and U. Let U > 7. Then there is a pole at w = 1—p, with residue
log X :
(I—p)'(1=p)’
At the other p” the residues are
XFei-1 _ 0( 1 of 1
Cenp e +p—1)p"+p) I(P"+p—1)(/="+p)1) - (I'y”+7\’)’
by (14.29.3), and

1 1
SRS s < &,
T S yaripr] 2
—l;,;y;itfly +71 szly +yI

where K, depends on 7', if |y| < 7, but not on U.

Again
2+io
Xwtp-1—1
f Ywhwlw+p)w+p— 1) )

Xi
or-m)
and similarly for the integral over (2—iw, 2—iU). Also by (14.2.6) and
the functional equation

1 |k ot
e = i) = 004D

Hence, since |w+p| 2> §, [w+p—1] 2= },

1+

f - [ 1t g, = oq).
Toomotwt s p—1) ) o *)%

Finally, by Theorem 14.16, we can choose a sequence of values of U
such that 1
m=0(lw|) t=U, <0<
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Suppose on the contrary that (¢—¢-3;£+4-¢-%) is free from ordinates of

zeros. Theorem 14.15 gives
o og tlogloglog #
log |k +i0)] = og—yi-+-of B 80808,

By the functional equation the same result then holds for } <o <}
also. Hence
24U

Xwip-1_1 —o X1 ) 0 Xt }
f l(wlw(wﬁLp)(erP*l) (Ul U {U"‘(U*T)2 !
nnd sxmllarly for the integral over (2—iU, }—iU). Making U —» o, it

te—yl i?"lwlozt

There are O(log#/loglogt) terms in the sum, each being now O(log#).
Hence

L1 logh [ Alog
follows that o log {4 +if)] = O(loglog_t)' G+ O{GXP (Ioglogt)}'
lf M(z)xﬂ-’(l ~§) dz = (l_—P‘;?,“TP)JrR, Now m~HT(}9){(s) is real on o = 4. Hence

1IGs), £60)
2T T o)

is purely imaginary on o = . Hence, ono = §,

where |R| < K, = Ky(T) if [y| < T. —}logm o

Hence we obtain

1
Alog X +log X s — 2log X
O< Alog X tlogX 3 1y 2loe 3. et

T L6 _rE® _ 4 rLIG) _ 4
+Alogh XK (D), to)| = gty = THOBTHIR Ty = HosiH O oo
Z A+ +K4(T) Hence (without any hypothesis)
IR
e P W 108*X log X 1G] > L@+l > t).
n This proves the theorem.
Making X - oo, |,ZT AR <

14.31. Let 3+iy, b+iy b uti lex N
Since the right-hand side is now independent of 7, the result follows. ez it ”f:rw Y0y’ be consecutive complex zeros of L(s). If

. 1 4 !
In particular 7= = o{lp]- =2 _ 4 %87 )
o pe (o) [Gae VEXP( Aloglogv)

14.30. If (14.29.1) is true,t We have

1 _ A logzt)}
TaFD O{ex (loglogt
Suppose that the interval ({—#-3,¢-+1-3) contains y, the ordinate of
a zero. By differentiating (2.1.4) twice, :
T@+it) = Ofe).
Using this and (14.29.3), we obtain

v ¥
= [ra+ina = =G+t [ o/—0ra-+inde
k4 Y
Hence by (14.29.3)

Y= 4
Y

,.
f O E+it) d:'
Y

be R , I
[T+ = ll'(§+i'y)+*f L'(s) ds’ < A;gfg;ll (Htt)lyf (' —t) dt = A(y 77)“;22:7)5 (38
+iy

A Now
> 2 Atle—y) ] - .
4 v+ = m%gi)"e‘“ = {%f E(d+it+re)] d0
re! I’
A A_A :
TITET T

1 logt
= o{_ exp(A )(1+t4')}
t Cramér and Landau (1). 72 Toglog ¢,
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by (14.14.1) and the functional equation. Taking r = 1/log?,

" - g

Fin O‘exP( losbgt)]
and the result follows.

14.32. Necessary and suffici ditions for the Ri h
Two such conditions have been given in § 14.25. Other similar con-
ditions oceur in the prime-number problem.f

A different kind of condition was stated by M. Riesz.] Let

(et 14.32.1
Flay = Z F=NTER” (14.32.1)
Then a simple application of the calculus of residues gives
| aiw

atin
Pt i T(1—s)

z*
3 J: T ™ = 2 D) ds,

where } < @ < 1. Taking a just greater than }, it clearly follows that
Flz) = O(t+e).
On the Riemann hypothesis we could move the line of integration to
@ = }+e (using (14.2.5)) and obtain similarly

F(z) = Ofzte). (14.32.2)
C ly, by Mellin’s i ion formula,
=0 o
e J' Pleyet~ ds.
o

If (14.32.2) holds, the mtegml converges uniformly for o 3> ¢, > }; the
analytic functi herefore regular for ¢ > }, and the
truth of the Riemann hypothesls follows Henoe (14 32.2) is a necessary
and suffi dition for the R

P
A similar condition stated by Hardy and Littlewoods§ is
et ) 14.32.3
k'l(2k+1) = O~4). (14.32.3)
These diti }mve & sup ial since they depend
explicitly only on values taken by {(s) at points in o > 1; but actually
no use has ever been made of them.

t Landau, Vorlesungen, ii. 108-56. 1 M. Ricez (1).
§ Hardy and Littlewood (2).
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Conditions for the Riemann hypothesis also occur in the theory of
Farey series. Let the fractions 2k with 0 <A < k, (3, %) = 1L, k < N,
arranged in order of magnitude, be denoted by r, (v = 1, 2,..., ®(N),
where (N} = $(1)+...-+$(N)). Let

8, = r,—v/®(N)
be the distance between r, and the cor g fraction obtained by
dividing up the interval (0,1) mbo B(N) equs,l parts Then a necessary
and sufficit dition for the R hypothesis is
2 —
2’ 5= o(NH). (14.32.4)
An alternative y and suffici dition is§
o)
): 18,] = O(N}+e), (14.32.5)

Details are given in Landau’s Vorlesungen, ii. 167-77.

Still another condition|| can be expressed in terms of the formulae of
§ 10.1. If 5(2) and @(u) are related by (10.1.3), a necessary and sufficient
condition that all the zeros of Z(¢) should be real is that

f f D()D(B)eix+Prga—Py(a—L dodf > 0 (14.32.6)

for all real values of x and y. But no method has been suggested of
showing whethel‘ such criteria are sansﬁed ot not.
ditiontt for the R hypothesis is that the partial

a
sums Y v~ of the series for {(s) should have no zeros in ¢ > 1.
»=1

NOTES FOR CHAPTER 14

14.33. The argument of §14.5 may be extended to the strip} < 6, < 0
< §, giving

e _ (-1
s o\1=
The choice & = (log#)- 2 then yields
{s) <log HE-F -1
¢ 1-0
} Franel (1). § Landau (18). I See Pélya (3), § 7. 11 Turén (3).

) +0(°-5log ).
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uniformly for 6, < 6 < § and # > 2, and hence

if 1+ L <8
g 2to logT—7 o geg << F
og {(s) €
(ogty?-2—1 . 1
————— tlogloglogt if o1+ ——.
(1-0)loglogt +logloglogt 120, loglogt

These results, together with those of § 14.14 are the sharpest conditional
order-estimates available at present.

14.34. TheQ-result given by Theorem 14.12(A) has been sharpened by
Montgomery [3], to give

1
500, (Lot )
(loglog 8)2
on the Ri hypothesis. A minor ification of his method also
yields s
logt)?
8,0 = Qt(L.g__’)‘
(loglog 2)z

It may be conjectured that these are best possible.

Mueller [2] has shown, on the Riemann hypothesis, that if ¢
is a suitabl then S(t) ch sign in any interval
[T, T +cloglog T'.

Further results and conjectures on the vertical distribution of the
zeros are given by M y [2], who & i d the pair corre-
lation function

1 -
Fo T)= < T -Dw(y—y),
&1 =KD Zer

where w() = 4/(4+u?). This is a real-valued, even, non-negative
function of a, and satisfies
1
= -2 —— |+ O0@T=-1)+ O(T ~¥
Fe,T)=a+T logT+0(logT)+ (o )+ 0( )
(14.34.1)
for a 0, whence F(x, T) — « as T— oo, uniformly for0 <é <a<1-9.
Montgomery conjectured that in general
F(a, T) - min(a, 1) (14.34.9)
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uniformly for 0 < 6 < @ < A. This is related to a number of conjectures
on the distribution of prime b (See Gallagher and Mueller [1],
Heath-Brown [10], and joint work of Goldston and Montgomery in the
course of publication.) From (24.34.2) one may deduce that

. | 2ma ]
#{m [0, T].rgT <y-y slogT}

p
~N(T) {s(a, B+ J 1- (?)2@}

for fixed «, B, as T'— a0. Here d(a, ) = 1 or 0 according as « < 0 < f or
not.
Using (14.34.1), Montgomery showed that

Y m(p)? < {$+0()}N(T),
o<y<T
where m(p) is the multiplicity of p, and X’ counts zeros without regard to
multiplicity. One may deduce, in the notation of §10.29, that
NO(T) 2 {3 +0(D)}N(T), (14.34.3)
on the Riemann hypothesis. The conjecture (14.34.2) would indeed yield

NO(T) ~ N(T), i.e. ‘almost all’ the zeros would be simple. Montgomery
also used (14.34.1) to show that

B A A
lim inf £+l 1. < 0.68; 14.34.4)
i enflog 3 adg
here 2r/logy, is the average spacing between zeros.
By using a different method, Conrey, Ghosh, and Gonek (in work in
the course of publication) have improved (14.34.3). Their starting point
is the observation that

2
SNO(T) ¥ MG+l +in,
0<y<T

(14.34.5)
by Cauchy’s inequality. The function M(s) is taken to be a mollifier

Y ME+i{G+in
0<y&T

logy/n
Mis)= (n) P(— -3, =Tt
) E, HmP{ = )" ¥
where the polynomial P(z) is chosen optimally as §x —}x2. One may
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write the sums ing in (14.34.5) as int 1
o [ 52 Mereas
and ni Jp 06
o |, Sy MO - @r -y,
{(s)
taken around an appropriate rectangular path P. The estimation of
these is long and li d, but leads ulti ly to the lower bound

NOX(T) 2 {§8 + oD} N(T).

The estimate (14.34.4) has also been imp d, firstly by M
and Odlyzko {1}, and then by Conrey, Ghosh and Gonek [1}]. The latter
work produces the constant 0-5172. The corresponding lower bound

lim sup L .z ix1 (14.34.6)
aw 2rflog
has been considered by Mueller [1], as well as in the two papers just
cited. Here the best result known is that of Conrey, Ghosh, and Gonek
[1], which has 1 = 2:337. Indeed, further work by Conrey, Ghosh, and
Gonek, which is in the course of publication at the time of writing,
yields A = 2-68 subject to the generalized Riemann hypothesis (i.e. a
Riemann hypothesis for {(s) and all Dirichlet L-functions L(s, x).)
Moreover it seems likely that this condition may be relaxed to the
ordinary Riemann hypothesis with further work.

If one asks for bounds of the form (14.34.4) and (14.34.6) which are
satisfied by a positive proportion of zeros (as in §9.25) then one may take
constants 0-77 and 133 (Conrey, Ghosh, Goldston, Gonek, and Heath.
Brown [1]).

14.35. It should be remarked in connection with §14.24 that Selberg
(4) proved Theorem 14.24 with error term O(T), while the method here
yields only O{T(loglog T)}}. Moreover he obtained the ervor term
O{T(oglog T)*-1} for (14.24.1).

14.36. The argument of the final paragraph of §14.27 may be
quantified, and then yields

T WG+t T,
<7

uniformly for T > T, ing the Ri hypothesis and that all the

zeros are simple. However a slightly better result comes from combining
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the asymptotic formula

Y IZ'(Q +iy)I2 ~ e N(TXlog T)?
e<ys

of Gonek [2] with the bound (14.34.3). Using Holder’s inequality one
may then derive the estimate

* 1
a2 T
:T§7<T|l G+in)l
where Z* counts simple zero only, and ¢ > 0 is a suitable numerical
constant.

14.37. The Mertens hypothesis has been disproved by Odlyzko and
te Riele [1], who showed that

5 M(x)
1 r
u::_s;xp T" > 106

s M(x)

lim inf 7; < —1:009.

R
Their treatment is indirect, and produces no specific x for which
[M(x)} > x}. The method used is computational, and depends on solving
numerically the inequalities occurring in Kronecker’s theorem, so as to
make the first few terms of (14.27.1) pull in the same direction. To this
extent Odlyzko and te Riele follow the earlier work of Jurkat and
Peyerimhoff [1], but they use a much more efficient algorithm for
solving the Diophantine approximation problem.

and

14.38. Turan (3) conjectured that

¥ Mm >0 (14.38.1)

nsx I
for all x > 0, where A(n) is the Liouville function, given by (1.2.11).
He showed that his condition, given in §14.32, implies the above
conjecture, which in turn implies the Riemann hypothesis. However
Haselgrove [2] proved that (14.38.1) is false in general, thereby showing
that Turan’s condition does not hold. Later Spira {1] found by
calculation that

has a zero in the region ¢ > 1.



XV
CALCULATIONS RELATING TO THE ZEROS

15.1. It is possible to verify by means of calculation that all the
complex zeros of {(s) up to a certain point lie exactly (not merely
approximately) on the critical line. As a simple example we shall find
roughly the position of the first complex zero in the upper half-plane,
and show that it lies on the critical line.

We consider the function Z() = ¢®f(}+it} defined in § 4.17‘. Tl?is is
real for real values of ¢, so that, if Z(t,) and Z(t;) have opposite signs,
Z(t) vanishes between ¢, and #,, and so [(s) has a zero on the critical
line between }4-it, and }+it,.

It follows from (2.2.1) that {(}) < 0, then from (2.1.12) that £(}) > 0:
i.e. that E(0) > 0; and then from (4.17.3) that Z(0) < 0.

‘We shall next consider the value ¢ = 6. Now the argument of § 4.14
shows that, if z is half an odd integer,

- 227"

1 e 15.1.1
)= Z g < \l—a}+2w—lt|/z. { )
n<r
Hence, taking t > 0,
_9 + 2k
Izm_ S &wl_;sl"_ﬂ <D (15.1.2)

n<e
For ¢ = }, ¢ = 6=, the right-hand side is about 0-6.
‘We next require an approximation to #. We have

) ) -3t
e~ — y(it) = ﬂ“%,
so that & = —}tlogm+Tlog T(H+4it)

= %tlog%,—st—wro(;).

It may be verified that the term O(1/¢) is negligible in the calculations.

Writing # = 27K, and using the values
log2 = 0-6931, log 3 = 1:0988,
it is found that
K = 01168, 3log3—K = 3-179
3log2—K = 1-963, 3log4—K = 4:042,
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approximately. Hence the cosines in (15.1.2) are all Ppositive, and
cos 27K = 0-74.... Hence Z(6x) > 0.

There is therefore one zero at least on the critical line between ¢ — 0
and ¢ = 6x.

Again, the formulae of § 9.3 give

N(T) = 142K+ L Aurg 160,

where A denotes variation along (2, 2437, 3+4iT). Now R{(s) > 0 on
o = 2, and an argument similar to that already used, but depending on
(15.1.1), shows that R{(s) > 0 on (2+iT, }+4T), if T = 6. Hence
|Aarg {(s)] < o, and

N(6r) < §+2K < 2.
Hence there is at most one complex zero with imaginary part less than
6r, and so in fact just one, namely the one on the critical line.

15.2. It is plain that the above process can be continued as long as
the appropriate changes of sign of the function Z(t) occur. Defining
K = K(t), as before, let ¢, be such that

Kit)=t—1 (p=1,2..). (15.2.1)
Then (15.1.2) gives
2y~ -1y S lblogn)
n<r "*
If the sum is dominated by its first term, it is positive, and so Z(t,) has
the sign of (—1)*, If this is true for » and v+-1, Z(¢) has a zero in the
interval (¢,,£,,,).

The value ¢ = 6x in the above i8 & rough appr
to .

The ordinates of the first six zeros are

14:13, 21-02, 25-01, 30-42, 32.93, 37-58

to two decimal places.t Some of these have been caleulated with great
accuracy.

15.3. The calculations which the above process requires are very
Iaborious if ¢ is at all large. A much better method is to use the formula
(4.17.5) arising from the approximate functional equation. Let us write
= 2mu, %y = a(u) = n~t cos 2n(E—ulog ),

__cos2a{ff—f—4)
and A§) = ~GostmE "

1 See the references Gram (6), Lindelf (3), in Londau's Handbuch.
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Then (4.17.5) gives
Z(2mu) = 2 g‘an(u)—l—(—l)"‘-lu‘ih(«/u—mH»R(u),

where m = [V, and R(x) = O(u~%). The o, (u) can be found, for given
values of u, from a table of the function cos2mz. In the interval
0<< ¢}, A(¢) decreases steadily from 0-92388 to 0-38268, and
B1—£) = h(&).

For the purpose of calculation we require a numerical upper bound
for R(u). A rather complicated formula of this kind is obtained in
Titchmarsh (17); Theorem 2. For values of u which are not too small
it can be much simplified, and in fact it is easy to deduce that

LRl < oy (u > 125).

This inequality is sufficient for most purposes.

Occasionally, when Z(2nu) is too small, a second term of the Riemann—
Siegel asymptotic formula has to be used.

The values of u for which the calculations are performed are the
solutions of (15.2.1), since they make a, alternately 1 and —1. In the
calculations described in Titchmarsh (17), I began with

w=16 K = —0-04865
and went as far as

u = 62-785, K = 98-5010.
The values of & were obtained in succession, and are rather rough
approximations to the u,, so that the K’s are not quite integers or
integers and a half.

1t was shown in this way that the first 198 zeros of {(s) above the real
axis all lie on the line o = §.

The calculations were carried & great deal farther by Dr. Comrie.f
Proceeding on the same lines, it was shown that the first 1,041 zeros
of Z(s) above the real axis all lie on the critical line, in the interval
0 <t < 1,468,

One interesting point which emerges from these caloulations is that
Z(t,) does not always have the same sign as (—1). A considerable
number of exceptional cases were found; but in each of thege cases there
is & neighbouring point # such that Z{f,) has the sign of (—1), and the
succession of changes of sign of Z{t) is therefore not interrupted.

15.4. As far as they go, these caleulations are all in favour of the
truth of the Ri hypothesis. Ne heless, it may be that they do

1 8ee Titchmarsh (18).
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not go far enough to reveal the real state of affairs, At the end of the
table constructed by Dr. Comrie there are only fifteen terms in the series
for Z(t), and this is a very small number when we are dealing with
oscillating series of this kind. Indeed there is one feature of the table
which may suggest a change in its character farther on. In the main,
the result is dominated by the first term o,, and later terms more or
less cancel out. Occasionally (e.g. at K = 435) all, or neaxly all, the
numbers o, have the same sign, and Z(#) has a large maximum or
minimum. As we pass from this to neighbouring values of ¢, the first
few «, undergo violent changes, while the later ones vary comparatively
slowly. The term «, appears when « = n?, and here
cos 2r(K —ulogn) = cosn{ulog(u/n?) —u—3}+...}
= cosn{n?+{4..) = (—1)*cosin+..,
and
1 1
oz T ™ T Tozaar
At its first appearance in the table a, will therefore be approximately
(—1)*n~¥ cos }, and it will vary slowly for some time after its appear-
ance.

It is conceivable that if #, and so the number of terms, were large
enough, there might be places where the smaller slowly varying terms
would combine to overpower the few quickly varying ones, and so
prevent the graph of Z(t) from crossing the zero line between successive
maxima. There are too few terms in the table already constructed to
test this possibility.

There are, of course, relations between the numbers «, which destroy
any too simple argument of this kind. If the Riemann hypothesis is
true, there must be some relation, at present hidden, which prevents
the suggested possibility from ever occurring at all.

No doubt the whole matter will scon be put to the test of modern

thods of caloulsati Naturally the Ri hypothesis cannot be
proved by calculation, but, if it is false, it could be disproved by the
discovery of exceptions in this way.

d
d—u(K—ulogn) = }logu—logn—

NOTES FOR CHAPTER 15

15.5. A number of workers have checked the Riemann hypothesis
over increasingly large ranges. At the time of writing the most extensive
calculation is that of van de Lune and te Riele (as reported in Odlyzko
and te Riele [1]), who have found that the first 1-5 x 10° non-trivial zeros
are simple and lie on the critical line. .
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