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o. Polya’s Derivation
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rivation of the fundamental tr sfg/rmation formula
Polya which utilizes nothing more than the binomial
expansion for the factorial.

Let us now present z de
of the theta function due to
cxpansion and Stirling’s asymptotic

We start with the identity
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we derive the result
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Let & = ¢2%/* be an /th root of unity. Then from 30.1
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Let s and ¢ be fixed quantities, ‘with s an arb
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where 7 and r'are positive integers. é
The equation in 30.4 yields in the limit E
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the desired. theta function transformation, given in Section 9. ;’/ .



