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Now (8') gives us ¢u=1/(1— p./¢.). Hence the following
remarkable transformation theorem :— ’

INCOMMENSURABLE C.FF. CH. XXXIV

Cor. Ifb,, . . ., b, be any quantities whatsoever, then
14by+bbs+. .. +bbdy. . .0,
1 5 by bu
BT T TS R e L

from which, putting u, =5, Us=bsbs, o . ., Up=bebs. . . bpys,

we readily derive

l+w+ua+. . . +u,

U Uy Uity Uty
ltn—w+ g — vt~ ="
Un—3Un—1 Un—olp (10)

Un—o+ Up 3~ Up_y+ Uy ’

an important theorem of Euler's to which we shall return

presently.
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INCOMMENSURABILITY OF CERTAIN CONTINUED FRACTIONS.
§17.] If a3, @, .. ., @y, by, bs, . . vy by be all positive
integers, then
L The infinite continued fraction
_b_"'__ _b3 bn ( 1)
G+ ay+ " @+
converges to an incommensurable limit provided that after some
Jinite value of n the condition a,= b, be always satisfied.
IL.  The infinite continued fraction

b b b
A @)

converges to an incommensurable limit provided that after some
Jinite value of n the condition a, Z b, +1 be always satisfied, where
the sign > need not always occur but must occur wnfinttely often*.

To prove II., let us first suppose that the condition
@ Zb,+ 1 holds from the first. Then (2) converges, by § 16,

* These theorems are due to Legendre, Eléments de Géométrie, note 1v.
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to a positive value <1. Let us assume that it converges to a
commensurable limit, say A,/A;, where A, X, are positive integers,

and A\, > A,
Let now
_ b b
Ps= ds_— Gam
Since the sign > must occur among the conditions a, = bs+1,
% zb+1, ..., p; must be a positive quantity <1. Now, by
our hypothesis,
Ao\ =byf (@2 = ps),
therefore p3= (G2Ag — ba )25,

= AsfAs, say,
where \;=a,A;— b,], is an integer, which must be positive and
<, since p; is positive and < 1.

Next, put
_ b b
7

Then, exactly as before, we can show that p,= A,/A,, where A, is a
positive integer <A;.

Since the sign > occurs infinitely often among the conditions
Un Z by +1, this process can be repeated as often as we please.
The hypothesis that the fraction (2) is commensurable therefore
requires the existence of an infinite number of positive integers
Ay A, Ag, Ay, ... osuch that A >A>M>A> . . .5 but this is
impossible, since A, is finite. Hence (2) is incommensurable.

Next suppose the condition @, Zb,+1 to hold after % =m.
Then, by what has been shown,

. bm+1 bm-!-z
.. Cmir— Cmig—
18 incommensurable,
Now we have
by by bm

F=b b b
Ay — Gy — Oy — :'/
F= (@m —Y) Pm—1— bnPm-2
(a,,, _y) In-1— bm Im—2 ’
=.p_’"__: YPm— (3),
I~ Ydm—

consequently
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where pun/¢m, Pm-/gm-y are the ultimate and penultimate con-
vergents of

bbb
‘ mm e
It results from (3) that
Y (Fgn-s~ Pns) = Fn ~ pm (4).

Now Fgu-—pn_, and Fqn—pn cannot both be zero, for
that would involve the equality pm/gm = Pm-1/gm-1, which is
inconsistent with the equation (2) of § 3. Hence, if F were
commensurable, (4) would give a commensurable value for the
incommensurable y. F must therefore be incommensurable,

The proof of I. is exactly similar, for the condition a,Z b,
secures that each of the residual fractions of (1) shall be positive
and less than unity.

These two theorems do not by any means include all cases of
incommensurability in convergent infinite continued fractions.
, . 12 3 5?
Brouncker’s fraction, for example, 1 + T eiRRT
converges to the incommensurable value 4/, and yet violates the
condition of Proposition I.

CONVERSION OF SERIES AND CONTINUED PRODUCTS INTO
CONTINUED FRACTIONS,

$18.] To comvert the series

U+ U+, . cFUF L,

into an “ equivalent” continued fraction of the form
L .
0 — G Ay

A continued fraction is said to be equivalent” to a series
when the nth convergent of the former is equal to the sum of n
terms of the latter for all values of n.

Since the convergents merely are given, we may leave the

denominators ¢y, ¢, . . ., ¢n arbitrary (we take ¢,=1, as
usual),
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For the fraction (1) we have

Pal@n—Praf/@n1=b1b2 . . . bufgn-10n @);
G =a, 92=aa¢11—bm v+ In=nGn17Ongn— (3)’
Pl/ = bx/ (/1 (4).

Since
Pal@a=tU+Uat . « . +Un ),

we get from (2) and (5)

Uy = bxbz LU bn/Qn-lQm
Un1=bybs . . . Das/gn-2Gn-1,

] . . (6).
%y = b1/ s,
U = bl/ ¢1.
From (6), by using successive pairs of the equations, we get
bi=qitty, bu=qusftry, by=qsthe/q1tha, . . ., bn=9nun/gnz;;ln—1

Combining (8) with (7), we also find

G=q, O=g(t + W) qth, Os=qs(ts+us)/qatts, . . .,
O = Gn(Un—1 + Un)[qu-1¥n-r  (8).

Hence
Sp=u+ug+ . .. +u,,
_ ity R Ga¥s/ Q1 s

G~ @+ w)[qtn— g5t + we) Qara— "
Qn un/ q»—z Un—1 (9 )'
G (thny + ) [qn1%n

It will be observed that the ¢’s may be cleared out of the
fraction. Thus, for example, we get rid of ¢, by multiplying
the first and second numerators and the first denominator by
1/¢:, and the second and third numerators and the second
denominator by ¢;; and so on. We thus get for §, the
equivalent fraction

g=t W Ufla Ut (10),
".— 1- (ul + uﬂ)/“l - (w+ ) [ty — (ty—y + ’“n)/’um—x
vgBich may be thrown into the form
S = U Uy Uy Us o Un—alUn (11).
Tl mt— UptUs— Un—y + Un
‘: v
>
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If only » be taken large enough, the fraction inside the
brackets satisfies the condition of § 16 throughout : its value is
therefore < 1, however great m may be ; and it follows from (12)
that Lg¢p/¢n— =1 when m=co.

Since LG (n+m, —y)=1 when m = o, it follows that all the
requisite conditions are fulfilled in the present case also.

We have thus shown that
F(1,a) 1 aly(y+1) z/(y+1) (y+2)

F,z) 1+ 1+
w/(')""n 1)(’)""”) Cad o (13)
1+ }
whence, by an obvious reduction,
"F(1, %) @ z @ (14),

F(@,z) 'y+'y+l+-y+2+ Tlydn+t
a result which holds for all finite real values of #, except such

as render F'(0, z) zero*, and for all values of y, except zero
and negative integers.

If we put +2%/4 in place of # in the functions F(0, ) and
F(1, ), and at the same time put y=13, we get
F(0, —2*/4)=cos2, F(1,-2*/4)=sinz/z;
F(0, a?/4)=coshz, PF(1, x’/4) sinh z/a.
Cor. 1. Hence, from (14), we get at once

xz 2 2 b

ta.nw—)l——— 3°FC  emrisc (15) ;
z 2 2 2P

tanh o = 153555 ‘amsis " (16).

Cor. 2. The numerical constants = and =* are incommensurable.
For, if = were commensurable, =/4 would be commensurable,
say =XA/p. Hence we should have, by (15),

* In a sense it will hold even then, for the fraction

1 z z

Y {7+y+1+ y o+ }
which represents F (0, £)/F (1, z) will converge to 0. Of course, two consecu-
tive functions F(n, x), F(n+1, ) cannot vanish for the same value of z;
otherwise we should have F (e, £)=0, which is impossible, since I (e , z)=1.

.

- o poscnt i saen

R

§§ 21,22 INCOMMENSURABILITY OF 7 AND e 523
_Mp Nfpt N A
T1- 8= 5-""'om+1-"""
AA N A2
S el el e yyrent R €L

Now, since A and p are fixed finite integers, if we take n large
enough we shall have (2n+1)u>A*+1. Hence, by § 17, the
fraction in (17) converges to an incommensurable limit, which
is impossible since 1 is commensurable.

That #* is also incommensurable follows in like manner very
readily from (15).

By using (16) in a similar way we can easily show that

Cor. 3. Any commenswrable power of e is incommensurable*.

§ 22.] The development of last paragraph is in reality a
particular case of the following general theorem regarding the
hypergeometric series, given by Gauss in his classical memoir
on that subject (1812)1:—

If

e+ 2@t DBB+) o

F(“’B:Y:w) 1+ 127(7_'_1) -..,

and

G<a’ B’ Y’ w)::F(a’ B+ 1, Y+ 1’ m)/F(a) Bl Y’ w),
then fro p

1 ,31.27 o on
Gla By a)=1-7-7-- " 1JG(a+m, B+ m y +2n)
(18),
where
B a’(‘Y B) B (:8+1)(7+1_a)
Cyly+1y D +2)

Bs= (e+1)(y+1-8)

(Y+2)<7+3) , ﬁ4 (B+2)(Y+2_a)

(7+3)(7+4) ’

. (a+n——1)(y+n—1 B\ ‘ (B+n)(y+n a.)
Fna= (r+2m-2)(y+20-1) ’ Fn = (y+2n—1)(y+2n)

* The results of this paragraph were first given by Lambert in a memoir
which is very important in the history of continued fractions (Hist. d. I'de.
Roy. d. Berlin, 1761). Thearrangement of the analysis is taken from Legendre
(L.c.), the general idea of the discussion of the convergence of the fraction
from Schlomilch, t Werke, Bd. 111., p. 1384.




