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Preface to the second edition

The first edition of this book was translated into Russian by A. Zelevinsky
in 1984, and for the Russian version both the translator and the author
furnished additional material, both text and examples. Thus the original
purpose of this second edition was to make this additional material
accessible to Western readers. However, in the intervening years other
developments in this area of mathematics have occurred, some of which I
have attempted to take account of: the result, I am afraid, is a much longer
book than its predecessor. Much of this extra bulk is due to two new
chapters (VI and VII) about which I shall say something below.

For readers acquainted with the first edition, it may be of use to indicate
briefly the main additions and new features of this second edition. The text
of Chapter I remains largely unchanged, except for a discussion of transi-
tion matrices involving the power-sums in §6, and of the internal (or inner)
product of symmetric functions in §7. On the other hand, there are more
examples at the ends of the various sections than there were before. To
the appendix on polynomial functors I have added an account of the
related theory of polynomial representations of the general linear groups
(always in characteristic zero), partly for its own sake and partly with the
aim of rendering the account of zonal polynomials in Chapter VII self-
contained. I have also included, as Appendix B to Chapter I, an account,
following Specht’s thesis, of the characters of wreath products G ~ S, (G
any finite group), along the same lines as the account of the characters of
the symmetric groups in Chapter I, §7: this may serve the reader as a sort
of preparation for the more difficult Chapter IV on the characters of the
finite general linear groups.

In Chapter II, one new feature is that the formula for the Hall
polynomial (or, more precisely, for the polynomial gg¢(¢) (4.1)) is now made
completely explicit in (4.11). The chapter is also enhanced by the appendix,
written by A. Zelevinsky for the Russian edition.

The main addition to Chapter III is a section (§8) on Schur’s Q-
functions, which are the case t= —1 of the Hall-Littlewood symmetric
functions. In this context I have stopped short of Schur’s theory of the
projective representations of the symmetric groups, for which he intro-
duced these symmetric functions, since (a) there are now several recent
accounts of this theory available, among them the monograph of P.
Hoffman and J. F. Humphreys in this series, and (b) this book is already
long enough.
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Chapters IV and V are unchanged, and require no comment.

Chapter VI is new, and contains an extended account of a family of
symmetric functions Py(x;q,t), indexed as usual by partitions A, and
depending rationally on two parameters g and ¢. These symmetric func-
tions include as particular cases many of those encountered earlier in the
book: for example, when g = 0 they are the Hall-Littlewood functions of
Chapter III, and when g =t they are the Schur functions of Chapter I.
They also include, as a limiting case, Jack’s symmetric functions depending
on a parameter a. Many of the properties of the Schur functions general-
ize to these two-parameter symmetric functions, but the proofs (at present)
are usually more elaborate.

Finally, Chapter VII (which was originally intended as an appendix to
Chapter VI, but outgrew that format) is devoted to a study of the zonal
polynomials, long familiar to statisticians. From one point of view, they are
a special case of Jack’s symmetric functions (the parameter a being equal
to 2), but their combinatorial and group-theoretic connections make them
worthy of study in their own right. This chapter can be read independently
of Chapter VI.

London, 1995 I.G. M.



Preface to the first edition

This monograph is the belated fulfilment of an undertaking made some
years ago to publish a self-contained account of Hall polynomials and
related topics.

These polynomials were defined by Philip Hall in the 1950s, originally as
follows. If M is a finite abelian p-group, it is a direct sum of cyclic
subgroups, of orders p*, p%,..., p* say, where we may suppose that
MAZA> . 2 The sequence of exponents A =(Ay,...,A,) is a parti-
tion, called the #fype of M, which describes M up to isomorphism. If now u
and v are partitions, let g;‘,( p) denote the number of subgroups N of M
such that N has type u and M/N has type v. Hall showed that g, (p) is
a polynomial function of p, with integer coefficients, and was able to
determine its degree and leading coefficient. These polynomials are the
Hall polynomials.

More generally, in place of finite abelian p-groups we may consider
modules of finite length over a discrete valuation ring o with finite residue
field: in place of gJ,(p) we have g),(gq) where g is the number of
elements in the residue field.

Next, Hall used these polynomials to construct an algebra which reflects
the lattice structure of the finite o-modules. Let H(q) be a free Z-module
with basis (u,) indexed by the set of all partitions A, and define a
multiplication in H(q) by using the g},(g) as structure constants, i.e.

up.uv = E g;.)l.‘v(q)uA“
A

It is not difficult to show (see Chapter II for the details) that H(q) is a
commutative, associative ring with identity, which is freely generated
(as Z-algebra) by the generators u,,, corresponding to the elementary o-
modules.

Symmetric functions now come into the picture in the following way.
The ring of symmetric polynomials in » independent variables is a poly-
nomial ring Z[e,, ..., e,] generated by the elementary symmetric functions
ey,...,e,. By passing to the limit with respect to n, we obtain a ring
A =1Z[e,e,,...] of symmetric functions in infinitely many variables. We
might therefore map H(q) isomorphically onto A by sending each genera-
tor u.- to the elementary symmetric function e,. However, it turns out
that a better choice is to define a homomorphism ¢: H(qg) > A ® Q by
Y(uyr) =q """/ 2 for each r>1. In this way we obtain a family of
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symmetric functions ¢(u,), indexed by partitions. These symmetric func-
tions are essentially the Hall-Littlewood functions, which are the subject
of Chapter III. Thus the combinatorial lattice properties of finite o-
modules are reflected in the multiplication of Hall-Littlewood functions.

The formalism of symmetric functions therefore underlies Hall’s theory,
and Chapter I is an account of this formalism—the various types of
symmetric functions, especially the Schur functions (S-functions), and the
relations between them. The character theory of the symmetric groups, as
originally developed by Frobenius, enters naturally in this context. In an
appendix we show how the S-functions arise ‘in nature’ as the traces of
polynomial functors on the category of finite-dimensional vector spaces
over a field of characteristic 0.

In the past few years, the combinatorial substructure, based on the ‘jeu
de taquin’, which underlies the formalism of S-functions and in particular
the Littlewood—Richardson rule (Chapter I, §9), has become much better
understood. I have not included an account of this, partly from a desire to
keep the size of this monograph within reasonable bounds, but also
because Schiitzenberger, the main architect of this theory, has recently
published a complete exposition [S7].

The properties of the Hall polynomials and the Hall algebra are devel-
oped in Chapter II, and of the Hall-Littlewood symmetric functions in
Chapter III. These are symmetric functions involving a parameter ¢, which
reduce to S-functions when ¢ =0 and to monomial symmetric functions
when ¢=1. Many of their properties generalize known properties of
S-functions.

Finally, Chapters IV and V apply the formalism developed in the
previous chapters. Chapter IV is an account of J. A. Green’s work [G11]
on the characters of the general linear groups over a finite field, and we
have sought to bring out, as in the case of the character theory of the
symmetric groups, the role played by symmetric functions. Chapter V is
also about general linear groups, but this time over a non-archimedean
local field rather than a finite field, and instead of computing characters
we compute spherical functions. In both these contexts Hall’s theory plays
a decisive part.

Queen Mary College, I. G. M.
London 1979
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I
SYMMETRIC FUNCTIONS

1. Partitions

Many of the objects we shall consider in this book will turn out to be
parametrized by partitions. The purpose of this section is to lay down some
notation and terminology which will be used throughout, and to collect
together some elementary results on orderings of partitions which will be
used later. ‘

Partitions

A partition is any (finite or infinite) sequence
1.1 A=, 25,00 0A,,.00)
of non-negative integers in decreasing order:

M2 20> ...

and containing only finitely many non-zero terms. We shall find it conve-
nient not to distinguish between two such sequences which differ only by a
string of zeros at the end. Thus, for example, we regard (2,1), (2,1,0),
(2,1,0,0,...) as the same partition.

The non-zero A; in (1.1) are called the parts of A. The number of parts
is the length of A, denoted by I(A); and the sum of the parts is the weight
of A, denoted by |Al:

'/\I=A]+/\2+....

If |Al=n we say that A is a partition of n. The set of all partitions of » is
denoted by &, and the set of all partitions by . In particular, &, consists
of a single element, the unique partition of zero, which we denote by 0.

Sometimes it is convenient to use a notation which indicates the number
of times each integer occurs as a part:

A=(@Am2m2 o p™ )
means that exactly m; of the parts of A are equal to i. The number
1.2) m;=m;(A) = Card{j: A; =i}
is called the multiplicity of i in A. P
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Diagrams

The diagram of a partition A may be formally defined as the set of points
(i,j) € Z? such that 1 <j < A;. In drawing such diagrams we shall adopt
the convention, as with matrices, that the first coordinate i (the row index)
increases as one goes downwards, and the second coordinate j (the column
index) increases as one goes from left to right.} For example, the diagram
of the partition (5441) is

consisting of 5 points or nodes in the top row, 4 in the second row, 4 in the
third row, and 1 in the fourth row. More often it is convenient to replace
the nodes by squares, in which case the diagram is

We shall usually denote the diagram of a partition A by the same symbol
A

The conjugate of a partition A is the partition A’ whose diagram is the
transpose of the diagram A, i.e. the diagram obtained by reflection in the
main diagonal. Hence A; is the number of nodes in the ith column of A, or
equivalently

1.3) X;= Card{j: A; > i}.

In particular, A} =/(A) and A, =I(X’). Obviously A" = A.
For example, the conjugate of (5441) is (43331).

From (1.2) and (1.3) we have
1.4 mi(A)=Xi— i1

t Some authors (especially Francophones) prefer the convention of coordinate geometry (in
which the first coordinate increases from left to right and the second coordinate from bottom
to top) and define the diagram of A to be the set of (i, /) € Z? such that 1 <i < Aj. Readers
who prefer this convention should read this book upside down in a mirror.
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For each partition A we define

1.5 n(N) =Y (-1Dx,

izl

so that n(\) is the sum of the numbers obtained by attaching a zero to
each node in the top row of the diagram of N\, a 1 to each node in the
second row, and so on. Adding up the numbers in each column, we see
that

(1.6) LIOVEDY (;)
i»1\“

Another notation for partitions which is occasionally useful is the
following, due to Frobenius. Suppose that the main diagonal of the
diagram of A consists of r nodes (i,i) (1<i<r). Let o;=A;—i be
the number of nodes in the ith row of A to the right of (i,i), for 1 <i<r,
and let B; = X;—i be the number of nodes in the ith column of A below
(i,i), for 1<i<r. We have a;>a,> ...>a,>0 and B,;>B,> ... >
B, >0, and we denote the partition A by

A=(ay,...,a,| By,.... B)=(al| B).

Clearly the conjugate of (a| B)is (B | a).
For example, if A = (5441) we have a=(421) and B = (310).

(1.7) Let X be a partition and let m > Ay, n > X,. Then the m + n numbers
N+n—i (I<ign), n=-1+4j-X (A<j<m)

are a permutation of (0,1,2,...,m +n —1}.

Proof. The diagram of A is contained in the diagram of (m"), which is an
n X m rectangle. Number the successive segments of the boundary line
between A and its complement in (") (marked thickly in the picture) with
the numbers 0,1,...,m +n —1, starting at the bottom. The numbers
attached to the vertical segments are A, +n—i (1 <i<n), and by trans-
position those attached to the horizontal segments are

(m+n-1D-N+m—j)=n-1+j-X a<gj<m). |
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A=(5421), m=8, n=6
Let
n n
fun)= X 0vnt

i=1

Then (1.7) is equivalent to the identity
a.7) fn) +em 7 D= =" /(A -1).

Skew diagrams and tableaux

If A, u are partitions, we shall write A D u to mean that the diagram of A
contains the diagram of u, i.e. that A; > u; for all i > 1. The set-theoretic
difference = A — u is called a skew diagram. For example, if A = (5441)
and w = (432), the skew diagram A — u is the shaded region in the picture
below:

A path in a skew diagram 6 is a sequence x,, X;,..., X,, of squares in
such that x;_, and x; have a common side, for 1 <i <m. A subset ¢ of 0
is said to be connected if any two squares in ¢ can be connected by a path
in ¢. The maximal connected subsets of 6 are themselves skew diagrams,
called the connected components of 6. In the example above, there are
three connected components.

The conjugate of a skew diagram 0=A—pu is 8’ =A"—u'. Let 6,=
A=y, 6 = X;— ), and

181=23 6;=IAl =1 ul.
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A skew diagram 6 is a horizontal m-strip (resp. a vertical m-strip) if
|6]=m and 6] <1 (resp. 6§, < 1) for each i > 1. In other words, a horizontal
(resp. vertical) strip has at most one square in each column (resp. row).

If 6= A — u, a necessary and sufficient condition for 6 to be a horizon-
tal strip is that the sequences A and u are interlaced, in the sense that
MS M 2> > ..

A skew diagram 6 is a border strip (also called a skew hook by some
authors, and a ribbon by others) if 6 is connected and contains no 2 X 2
block of squares, so that successive rows (or columns) of 8 overlap by
exactly one square. The length of a border strip 6 is the total number |6| of
squares it contains, and its height is defined to be one less than the
number of rows it occupies. If we think of a border strip 6 as a set of
nodes rather than squares, then by joining contiguous nodes by horizontal
or vertical line segments of unit length we obtain a sort of staircase, and
the height of 6 is the number of vertical line segments or ‘risers’ in the
staircase.

If r=(ay...,a,1By,...,B) and p=C(ay,...,a,l| Bs,...,B,), then
A — u is a border strip, called the border (or rim) of A.

A (column-strict) tableau T is a sequence of partitions

p=AX0cAxWc . .. cxV=)

such that each skew diagram 6@ =\ — \¢~D (1 <i<r) is a horizontal
strip. Graphically, T may be described by numbering each square of the
skew diagram ) with the number i, for 1 <i<r, and we shall often
think of a tableau as a numbered skew diagram in this way. The numbers
inserted in A — u must increase strictly down each column (which explains
the adjective ‘column-strict’) and weakly from left to right along each row.
The skew diagram A — u is called the shape of the tableau T, and the
sequence (|8D),..., |6 is the weight of T.

We might also define row-strict tableaux by requiring strict increase
along the rows and weak increase down the columns, but we shall have no
use for them; and throughout this book a tableau (unqualified) will mean a
column-strict tableau, as defined above.

A standard tableau is a tableau T which contains each number 1,2,...,r
exactly once, so that its weight is (1,1,...,1).

Addition and multiplication of partitions

Let A, u be partitions. We define A + u to be the sum of the sequences A
and u:

A+ p)i= A+
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Also we define A U u to be the partition whose parts are those of A and p,
arranged in descending order. For example, if A = (321) and p = (22), then
A+ w=(541) and A U u=(32221).
Next, we define Ap to be the componentwise product of the sequences
A,
Ap)i= A ;.

Also we define A X u to be the partition whose parts are min(A;, u;) for all
i <I()) and j <I(p), arranged in descending order.

The operations + and U are dual to each other, and so are the two
multiplications:

AUp) =N+,
1.8) (o) g
(AXpu)Y=»ANu.

Proof. The diagram of AU pu is obtained by taking the rows of the
diagrams of A and p and reassembling them in order of decreasing length.
Hence the length of the kth column of A U u is the sum of the lengths of
the kth columns of A and of pu, i.e. (AU p), = A + .

Next, the length of the kth column of A X u is equal to the number of
pairs (i,j) such that A;>k and u;>k, hence it is equal to X, u.
Consequently (A X p), = X, . |

Orderings

Let L, denote the reverse lexicographic ordering on the set &, of partitions
of n: that is to say, L, is the subset of &, X2, consisting of all (A, u) such
that either A = u or the first non-vanishing difference A; — w; is positive.
L, is a total ordering. For example, when n =35, Ls arranges s in the
sequence

(5),(41),(32),(31%), 2°1), (21), (1%).

Another total ordering on &, is L, the set of all (A, ) such that either
A = p or else the first non-vanishing difference A¥ — uf is negative, where
Af=A,.1-;» The orderings L,, L, are distinct as soon as n > 6. For
example, if A =(31%) and pu=(23) we have (A, u) € Lg and (u, \) € L.

(1.9) Let A\, n €P,. Then

(M p)eLl, e (u',A)EL,.

Proof. Suppose that (A, u) €L, and A+ u. Then for some integer i > 1
we have A; <p;, and A;=p; for j>i. If we put k= A; and consider the
diagrams of A and p, we see immediately that A;=u; for 1<j<k,
and that X, <4, so that (u’,A’)eL,. The converse is proved
similarly.
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An ordering which is more important than either L, or L), is the natural
(partial) ordering N, on %, (also called the dominance partial ordering by
some authors), which is defined as follows:

(Mp)eN, e A+ . +A>p+. .+, forallix1.

As soon as n > 6, N, is not a total ordering. For example, the partitions
(31%) and (2*) are incomparable with respect to Nj.
We shall write A > u in place of (A, u) €N,

(1.10) Let A, p €,. Then
Azu=QA,weL,NL,.

Proof. Suppose that A > u. Then either A; > p,, in which case (A, p) € L,
or else A, = p,. In that case either A, > p,, in which case again (A, ) €L,
or else A, = u,. Continuing in this way, we see that (A, p) €L,.

Also, for each i > 1, we have

Ai+]+Ai+2+"' =n_(A]+...+A,’)
<n—(p+...+u)
=Mipr it

Hence the same reasoning as before shows that (A, u) € L,. |

Remark. 1t is not true in general that N, =L, NL,. For example, when
n=12 and A=(63%), n=(5%1%) we have (A, u) €L, NL,,, but (A, u) &
le.

(1.11) Let A, u€Z,. Then
Azpeu =N,

Proof. Clearly it is enough to prove one implication. Suppose then that
p' # A'. Then for some i > 1 we have

N+ o+ +. o+ (Agi<i-1)
and
6)) A+ FA> )+

from which it follows that A} > pu;.
Let I = X;, m = y;. From (1) it follows that

@ NigrH N+ <t +
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Now X}, + Xj,, + ... is equal to the number of nodes in the diagram of A
which lie to the right of the ith column, and therefore

!
Npr ¥ Xa+ o= X (A=),
j=1
Likewise
m
Misr + Mipg+ .= 2 (p— D).
j=1

Hence from (2) we have

m l m
3) Y(pi-D>Y - Y (\-9
j=1

j=1 j=1

in which the right-hand inequality holds because />m and A;>i for
1<j < /. From (3) we have

prt oo tHp, >A o +A

m

and therefore A 3 . |

Raising operators

In this subsection we shall work not with partitions but with integer vectors
a=(ay,...,a,) € Z". The symmetric group S, acts on Z" by permuting the
coordinates, and the set

P={beZ"b >b,>...>b,}

is a fundamental domain for this action, i.e. the S,-orbit of each a € Z"
meets P, in exactly one point, which we denote by a*. Thus a* is
obtained by rearranging a,,...,a, in descending order of magnitude.

For a,b € Z" we define a > b as before to mean

a, +...+a;

i

>b,+...+b;

1

(A<i<n).
(1.12) Leta € Z". Then
a€P,sa>wa foralwes,.

Proof. Suppose that a € P,,i.e.a, > ... >a,.If wa=>, then (b,,...,b,) is
a permutation of (a,,...,a,), and therefore

a,+...+a;2b;+...+b;, (1<i<n)

1]

so that a > b.
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Conversely, if a > wa for all w € §,, we have in particular
(a,...,a,)=>(ay,...,0,_1,8;,1,8;,8;,4,...,a,)
for 1 <i<n—1, from which it follows that
at+...+ta,_+a;za,+...+a;_,+a;,,,

ie. 4;>a;.,. Hence a€P,. |
Let 6=(n—1,n— .,1,00€P,
(1.13) Let a € P,. Then for each w € S,, we have (a + §—w8)*>a

Proof. Since 8 € P, we have 8§ > w8 by (1.12), hence
a+8—wd=a.
Let b=(a + § —wd)*. Then again by (1.12) we have

b>a+ &—wé.
Hence b > a. |

For each pair of integers i, j such that 1 <i <j<n define R;;:Z" - Z"
by
R (a)=(ay,...,a;+1,...,a;— 1,...,a,).

Any product R=1T1,_; Ry is called a raising operator. The order of the
terms in the product is immaterial, since they commute with each other.

(1.14) Let a € Z" and let R be a raising operator. Then
Ra>a

For we may assume that R = R,;, in which case the result is obvious.

l]’

Conversely:

(1.15) Let a,b€Z" be such that a<b and a,+ ... +a,=b,+ ... +b,.
Then there exists a raising operator R such that b = Ra.

Proof. We may take

n-1

R= kl_[l Ri¥ k41

where

k
=Z(b,~_a,‘)>0. I

i=1
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(1.16) If A, p are partitions of n such that A > u, and if A, u are adjacent for
the natural ordering (so that A > v> . implies either v= X\ or v= u), then
A=R; p for somei<j.

Proof. Suppose first that A, > u,, and let i >2 be the least integer for
which A, +...+A; =, + ... + ;. Then we have ;> A; > A, > p;yq, 5O
that u; > u;, ;. Consequently »= R,; u is a partition, and one sees immedi-
ately that A > v. Hence A = v=R,; p.

If now A, = u,, then for some j>1 we have A, =y, for k<j and
A;> p;. The preceding argument may now be applied to the partitions
(A Ajys--2) and (g g gse- o).

Remark. This proposition leads directly to an alternative proof of (1.11);
for it shows that it is enough to prove (1.11) in the case that A =R;; u, in
which case it is obvious.

Examples
1. Let A be a partition. The hook-length of A at x = (i, j) € A is defined to be

R(x) =h(i,j) =N+ X —i=j+1.

From (1.7°), with A and A’ interchanged, and m = A, we have

A n Aj+n-—-1
Y (N+hi g Y h14ind o Y 4
j=1 j=1 j=0
or, putting u;=A,+n—i(1<i<n),
A n My
) E thasi 4 E (M= E th.
j=1 j=2 j=

By writing down this identity for the partition (A;, A;,1,...) and then summing over
i=1,2,...,1(A) we obtain

My
) PIRAED I TR E I DD WIS

x€A i<j i»1 j=1

From (2) it follows that

i
ITTIa-¢)

oy 2li=1
3) E(lt ) D)

i<j
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and in particular, by dividing both sides of (3) by (1 —¢)™ and then setting ¢ =1,
that

l—Il ;!
h(x) = '>—'
@ I § (TS
i<j
2. The sum of the hook-lengths of A is

Y A(x) =n(A) +n(A) +]Al

XEA

3, For each x = (i, j) € A, the content of x is defined to be c(x) =j —i. We have

Y e(x) =n(A) —n(A).

XEA

If n is any integer 3> I(A), the numbers n + c(x) for x in the ith row of A are
n—-i+1,...,n—i+ A, and therefore

[T =em*e) =TT Buen=i(8)

x€ i1 @it
where ¢, (1) =1 —t)X1-¢%)...(1-¢").
4. If A=(A,...,A,)=(ay,..., .| By,..., B,) in Frobenius notation, then
n . r
Y A -h) = ) (Bt - ),
i=1 j=1
5. For any partition A,

Y ((x)?—c(x)®) =A%

XE€EA

6. Let A be a partition and let 7, s be positive integers. Then A; — A, > s for all
i<I(2) if and only if X;— Xj,, <r for all j <I(X).

7. The set &, of partitions of n is a lattice with respect to the natural ordering: in
other words, each pair A, u of partitions of n has a least upper bound o = sup(A, 1)
and a greatest lower bound 7= inf(A, u). (Show that 7 defined by

r r r
r "'i=min( )IR VD) /J'i)
i=1 im1 iml
for all r > 1 is indeed a partition; this establishes the existence of inf(A, u). Then
define o = sup(A, u) by ¢’ =inf(X’, u’). The example A = (31), u = (23), o= (321)
shows that it is not always true that

£ )

i=1

A%
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8. Let p be an integer > 2.

(a) Let A, u be partitions of length <m such that A D u, and such that A — u is a
border strip of length p. Let §,=(m—1,m—2,...,1,0) and let £€=A+35,
n=u+ 8, Show that 7 is obtained from ¢ by subtracting p from some part £; of
£ and rearranging in descending order. (Consider the diagrams of ¢ and 7.)

(b) With the same notation, suppose that £ has m, parts £ congruent to r modulo
p, for each r=0,1,...,p—1. These £ may be written in the form p&( +r
(I<k<m,), where (0> £00> ... >£0>0. Let M) =£0—m +k, so that
A = (AP,..., AL is a partition. The collection A* = (A9, D, A(P l)) is called
the p-quotzent of the partition A. The effect of changing m > I( /\) is to permute the
A" cyclically, so that A* should perhaps be thought of as a ‘necklace’ of partitions.

The m numbers ps +r, where 0 <s<m,—1 and 0 <7 <p — 1, are all distinct.
Let us arrange them in descending order, say §, . > £, and define a partition

Aby A, = § m +i (1 <i <m). This partition A is called the p-core (or p-residue)
of A Both X and A* (up to cyclic permutation) are independent of m, provided
that m > I(A).

If A=A (i.e. if A* is empty), the partition A is called a p-core. For example, the
only 2-cores are the ‘staircase’ partitions §,,=(m —1,m —2,...,1).

Following G. D. James, we may conveniently visualize this construction in terms
of an abacus. The runners of the abacus are the half-lines x >0, y =r in the plane
R?, where r=0,1,2,...,p—1, and A is represented by the set of beads at the
points with coordinates (£{”,r) in the notation used above. The removal of a
border strip of length p from A is recorded on the abacus by moving some bead
one unit to the left on its runner, and hence the passage from A to its p-core
corresponds to moving all the beads on the abacus as far left as they will go.

This arithmetical construction of the p-quotient and p-core is an analogue for
partitions of the division algorithm for integers (to which it reduces if the partition
has only one part).

(c) The p-core of a partition A may be obtained graphically as follows. Remove a
border strip of length p from the diagram of A in such a way that what remains is
the diagram of a partition, and continue removing border strips of length p in this
way as long as possible. What remains at the end of this process is the p-core A of
A, and it is independent of the sequence of border strips removed. For by (a) above,
the removal of a border strip of length p from A corresponds to subtracting p
from some part of ¢ and then rearranging the resulting sequence in descending
order; the only restriction is that the resulting set of numbers should be all distinct
and non-negative.

(d) The p-quotient of A can also be read off from the diagram of A, as follows. For
s,t=0,1,...,p—1let
R, ={(,j) € r: \; —i =s(mod p)},

C,=1{(i,j) € A j = X;=t(mod p)},
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so that R, consists of the rows of A whose right-hand node has content (Example
3) congruent to s modulo p, and likewise for C,. If now (i,j)eR,NC,, the
hook-length at (i, j) is

h(i,j)=A+ XN, —i—j+1=5s—1t+1(mod p)

and therefore p divides h(i, j) if and only if ¢ = s + 1(mod p).

On the other hand, if & =pg&f” + r as in (b) above, the hook lengths of A in the
ith row are the elements of the sequence (1,2,...,¢) after deletion of ¢ —
&415-+-» € — & Hence those divisible by p are the elements of the sequence
(p,2p, ., pED) after deletion of p(&" —¢XR),..., p(£0 = £0). They are
therefore p times the hook lengths in the kth row of )\(" and in particular there
are A of them.

It follows that each A is embedded in A as R, N C,,, where s =r — m(mod p),
and that the hook lengths in A are those. of the corresponding nodes in
R,NCs4,, divided by p. In particular, if m is a multiple of p (which we may
assume without loss of generality) then A =ANR,NC,,, for each r (where
C,=Cy)

(e) From (c) and (d) it follows that the p-core (resp. p-quotient) of the conjugate
partition A’ is the conjugate of the p-core (resp. p-quotient) of A.

(f) For any two partitions A, u we shall write
A~y p

to mean that A= i, i.e. that A and p have the same p-core. As above, let
E=A+39,, n=pu+34,, where m > max(/(A),/(u)). Then it follows from (a) and
(b) that A ~,  if and only if 5 =wé(mod p) for some permutation w € S,,,. Also,
from () above it follows that A ~, u if and only if A’ ~, u'.

(g) From the definitions in (b) it follows that a partition_A is uniquely determined
by its p-core A and its p-quotient A*. Since [Al= |Al+pA*], the generating
function for partitions with a given p-core A is )

Y du = Mp(ery

A=A
where P(t)=T1,,,(1—¢")"" is the partition generating function. Hence the
generating function for p-cores is

Y M =P() /P(tPY
A —enry

a»1 1-¢"
In particular, when p =2 we obtain the identity
1—¢28
(%) Y ¢mm-b/2= T =1

m»1 n»1
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We shall leave it to the interested reader to write down the corresponding identity
for p > 2. It turns out to be a specialization of the ‘denominator formula’ for the
affine Lie algebra of type A%), [K1]. Thus in particular () is a specialization of
Jacobi’s triple product identity.

9. (a) A partition is strict if all its parts are distinct. If pw=(pu,,...,p,) is a strict
partition of length r (so that u,> u,> ... > pu, >0), the double of u is the
partition A= (..., | gy —1,..., u,— 1) in Frobenius notation, and the dia-
gram of A is called the double diagram D( u) of u. The part of D( ) that lies
above the main diagonal is called the shifted diagram S( u) of u; it is obtained from
the usual diagram of u by moving the ith row (i — 1) squares to the right, for each
i>1. Thus D(u) consists of S( u) dovetailed into its reflection in the diagonal.

Let m>I(A)=p,, and let £€=A+ 5, where §,=(m—-1,m—-2,...,1,0) as in
Example 8. The first r parts of ¢ are u, +m,..., u, +m, and since the partition
(Ar415--+5 A,) is the conjugate of (u, —7,..., u, — 1), it follows from (1.7) that £ is
obtained from the sequence (u, +m, uy+m,...,u,+m,m—1,m-2,...,1,0) by
deleting the numbers m — p,,...,m — u,. Hence ¢ satisfies the following condi-
tion:

(=) an integer j between 0 and 2m occurs in ¢ if and only if 2m —j does not.

Conversely, if ¢ satisfies this condition, then A is the double of a strict partition.

(b) Let p be an integer > 2, and consider the p-quotient and p-core (Example 8) of
A. Without loss of generality we may assume that m is a multiple of p, so that
2m = (n + 1)p with n odd. As in Example 8, suppose that for each r =0,1,...,p— 1
the ¢ congruent to r modulo p are p&f” +r (1<k<m,), where £"> ... >
£ > 0. Since pg("” +r<2m=(n+ 1)p, it follows that & <n if r#0, and that
EO<n+1.

Suppose first that 7 # 0, and let s =p —r. From above, for each k=1,2,...,m,
the number 2m — (p&" +r) =p(n — £{7) +s does not occur in £. Hence the
numbers n — £ (1<k<m,) and & (1 <k <m,) fill the interval [0, ] of Z,
from which it follows first that m, +m,=n+ 1, and second (by (1.7)) that the
components A" and A®) of the p-quotient of A are conjugate partitions. In
particular, if p is even, A®?/? is self-conjugate.

Next, if r =0 we have 2m — p£{® =p(n + 1 - () and therefore the sequence
£O=(¢0,..., D) satisfies the condition (+), so that 2my=n + 1 and A? is the
double of a strict partition.

Finally, it follows from the definition of the p-core in Example 8(b) and the fact
that m +m;=n+1 when r+s=0 (modp) that the sequence £ oc. cit)
satisfies the condition (*), and hence the p-core A is the double of a strict
partition.

(c) Let u as before be a strict partition of length r. If (i,j)€ u and k>, an
(i, j)-bar of p consists of the squares (a,b) € u such that a=i or k and b >},
and is defined only when the diagram obtained by the removal of these squares has
no two rows of equal length; so that (i) if k> there is an (i, j),-bar only when
Jj =1, in which case it consists of the ith and kth rows of u; and (ii) when k=i
there is an (i, j),-bar only when j — 1 is not equal to any of ;. ,..., u,. The length
of a bar is the number of squares it contains.
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Show that for each i > 1 the lengths of the (i, j),-bars of u are the hook lengths
in the double diagram D( ) at the squares (i,k) with k >, that is to say at the
squares in the ith row of the shifted diagram S(u).

Let v be the strict partition whose diagram is obtained from that of u by

removing a bar of length p > 1 and then rearranging the rows in descending order
of length. Thus v is obtained from u in case (i) by deleting u; and u,, where
u; + me =p, and in case (i) by replacing u; by u; — p and rearranging. Show that
the double diagram of » is obtained from that of u by removing two border strips
of length p, one of which lies in rows i,i+1,..., and the other in columns
Li+1,....
(d) A strict partition is a p-bar core if it contains no bars of length p. By starting
with a strict partition u, removing a bar of length p, rearranging the rows if
necessary, then repeating the process as often as necessary, we shall end up with a
strict partition 7 called the p-bar core of u. It follows from above that the double
of 7 is the p-core (Example 8) of the double of u, and that % is independent of
the sequence of moves described above to reach it.

10. For any partition A, let
h(A) =TT h(x)

XEA

denote the product of the hook-lengths of A (Example 1). With the notation of
Example 8, we have

h(A) =p™h(A%)A’(A),

where A(A*) =TT12-) h(A?), and h'(A) is the product of the hook-lengths A(x)
that are not multiples of p. (Use formula (4) of Example 1.)
If, moreover, p is prime, then

h'(A) = g,h(3) (mod p)

where g, = +1. Hence in particular, when p is prime, A is a p-core if and only if
h(A) is prime to p.

11. Let A be a partition. The content polynomial of A is the polynomial
oX)=TT(X+e(x)

XEA
(see §3, Example 4) where X is an indeterminate.
(a) Let m>1(A) and let &= A;+m —i (1 <i<m) as in Example 8. Then

(X +m) l'_"I X+¢
aX+m-1) i} X+m—i’

(b) Let p be a prime number. If 6 is a border strip of length p, the contents c(x),
X € 0 are p consecutive integers, hence are congruent modulo p to 0,1,...,p—1
in some order. If 8= A — u, it follows that

(X)) =c,(X)(XP-X) (modp).
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Hence, for any partition A,
6\(X) = (XX = X)* (mod p)
where (Example 8) X and A* are respectively the p-core and p-quotient of A.
(c) From (a) and (b) it follows that if p is prime and |Al =] ul, then
A~ppec(X)=c,(X) (modp).

12. Let &, denote the set of partitions of 7, and N* the set of positive integers.
For each r> 1 let

a(r,n) = Card{(A,i) €®, X N*: A, =7},

b(r,n) =Card{(A,i) €®, X N*:m(A) > r}.
Show that

a(r,n)=b(r,n)=p(n-r)+p(n-2r)+...

where p(m) is the number of partitions of m.
Deduce that

I (I‘[i"'f<*>)=AH (l_[mi(A)!).

AP Nixl eP Vixl

Let h(r,n) = Card{(A, x):|Al = n, x € A and h(x) =r}, where (Example 1) h(x) is
the hook-length of A at x. Show that

h(r,n) =ra(r,n).

13. A matrix of non-negative real numbers is said to be doubly stochastic if its row
and column sums are all equal to 1.

Let A, u be partitions of n. Show that A > u if and only if there exists a doubly
stochastic # X n matrix M such that MA = u (where A, u are regarded as column
vectors of length n). (If A > p we may by (1.16) assume that A = R;; u. Now define
M =(m,,) by

and m,, = §,; otherwise. Then M is doubly stochastic and MA = p.)

14. Let A be a partition. If s=(i,j), with i,j > 1, is any square in the first
quadrant, we define the hook-length of A at s to be h(s)=A;+ X;—i—j+1.
When s € A this agrees with the previous definition, and when s € A it is negative.
For each r € Z let u,(A) denote the number of squares s in the first quadrant such
that h(s) =r. Show that u_,(A) =u,(A)+r for all r€ Z.

If u,(A) =u,(p) for all r€Z, does it follow that A=p or A=p'?
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15. (a) Let A be a partition, thought of as an infinite sequence, and let o be the
sequence (3 — l),>l Show that A + o and —(A’' + o) are complementary subse-
quences of Z+ 1.
() Let (1) =(1 =1L, , %7, which is a polynomial in ¢ and ¢~'. Show that
gA(t) =gt h.
16. Let A, u, v, 7w be partitions such that A > v and u > 7. Show that A+ u >
y+m, AUuz2vUT, Auzvr,and AX u> v X 7.
17. Let A=(Ap,...,A) be a partition of length <n with A, <n, so that A c(n™).
The complement of A in (n") is the partition A= (A,, )« ) defined by A =p-
A, +1-i» SO that the diagram of A is obtained by giving the complement of the
diagram of A in (n") a half-turn.

Suppose now that A=(a| B) in Frobenius notation. Show that A=(Bla),
where & (resp. ) is the complement in [0, — 1] of the sequence a (resp. B).

18. For A, u partitions of n, let =, be the probability that A > u. Does #,, = 0 as
n— o?

Notes and references

The idea of representing a partition by its diagram goes back to Ferrers
and Sylvester, and the diagram of a partition is called by some authors the
Ferrers diagram or graph, and by others the Young diagram. Tableaux and
raising operators were introduced by Alfred Young in his series of papers
on quantitative substitutional analysis [Y2].

Example 8. The notion of the p-core of a partition was introduced by
Nakayama [N1], and the p-quotient by Robinson [R6] and Littlewood
[L10].

Example 9. The notions of a bar and of the p-bar core are due to A. O.
Morris [M14]. See also Morris and Yaseen [M16] and Humphreys [H12].

2. The ring of symmetric functions

Consider the ring Z[x,,..., x,] of polynomials in n independent variables
Xy,..., X, with rational integer coefficients. The symmetric group S, acts
on this ring by permuting the variables, and a polynomial is symmetric if it
is invariant under this action. The symmetric polynomials form a subring

A, =Zx,,...,x, 1.
A, is a graded ring: we have

=@Al;

k>0

where A* consists of the homogeneous symmetric polynomials of degree
k, together with the zero polynomial.
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For each a=(a,,..., a,) € N" we denote by x the monomial
xT=x{..x0n
Let A be any partition of length < n. The polynomial
2.1) my(xp, ..y %,) = 2 x°

summed over all distinct permutations a of A=(A,,...,A,), is clearly
symmetric, and the m, (as A runs through all partitions of length <n)
form a Z-basis of A,. Hence the m, such that /(A) <n and |A|=k form a
Z-basis of A’f,; in particular, as soon as n >k, the m, such that |A|=k
form a Z-basis of A%.

In the theory of symmetric functions, the number of variables is usually
irrelevant, provided only that it is large enough, and it is often more
convenient to work with symmetric functions in infinitely many variables.
To make this idea precise, let m > n and consider the homomorphism

Z[x,...,x,]1 > Z[x,,...,x,]

which sends each of x,,,,...,x,, to zero and the other x; to themselves.
On restriction to A, this gives a homomorphism

pm,n: Am - An

whose effect on the basis (m,) is easily described; it sends m,(x,,..., x,,)
to my(x,,...,x,) if I(A) <n, and to 0 if I/(A) >n. It follows that p,, , is
surjective. On restriction to A¥, we have homomorphisms

k Ak k
pm,n'Am - An

for all k>0 and m > n, which are always surjective, and are bijective for
m>=n>k.
We now form the inverse limit

A¥ = lim A%
‘—

n

of the Z-modules A¥, relative to the homomorphisms p,,l .- an element of
A* is by definition a sequence f=(f,), o, Where each f,, =f(xy,...,x,)is
a homogeneous symmetric polynomial of degree k in x,,...,x,, and
fu(Xpe 3 %,0,...,0)=f,(x,,...,x,) whenever m >n. Since pf , is an
isomorphism for m > n >k, it follows that the projection

pi Ak > AX,
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which sends f to f,, is an isomorphism for all n >k, and hence that A*
has a Z-basis consisting of the monomial symmetric functions m, (for all
partitions A of k) defined by

pk(m,) =m,(x,,...,x,)

for all n > k. Hence A* is a free Z-module of rank p(k), the number of
partitions of k.
Now let
A= D A,
k>0
so that A is the free Z-module generated by the m, for all partitions A.
We have surjective homomorphisms

pn= @ pi:A-A,
k>0
for each n >0, and p, is an isomorphism in degrees k < n.
It is clear that A has a structure of a graded ring such that the p, are
ring homomorphisms. The graded ring A thus defined is called the ring of
symmetric functionst in countably many independent variables x,, x,,... .

Remarks. 1. A is not the inverse limit (in the category of rings) of the
rings A, relative to the homomorphisms p, ,. This inverse limit, A say,
contains for example the infinite product I'1.,(1 +x;), which does not
belong to A, since the elements of A are by definition finite sums of
monomial symmetric functions m,. However, A is the inverse limit of the
A, in the category of graded rings.

2. We could use any commutative ring A in place of Z as coefficient ring;
in place of A we should obtain A, =A®, A.

Elementary symmetric functions

For each integer r > 0 the rth elementary symmetric function e, is the sum
of all products of r distinct variables x;, so that e, =1 and

e, = E xiixiz cee x,-’ = m(]r)
i1 <iz<...<i,

for r > 1. The generating function for the e, is

(2.2) E{t)= Y et'=]10+x;1)

1 The elements of A (unlike those of A,) are no longer polynomials: they are formal infinite
sums of monomials. We have therefore reverted to the older terminology of ‘symmetric
functions’.
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(t being another variable), as one sees by multiplying out the product on
the right. (If the number of variables is finite, say n, then e, (i.e. p,(e,)) is
zero for all r > n, and (2.2) then takes the form

i et = ﬁ 1 +x;1),

r=0 i=1

both sides now being elements of A,[¢]). Similar remarks will apply to many
subsequent formulas, and we shall usually leave it to the reader to make
the necessary (and obvious) adjustments.)

For each partition A = (A}, A,,...) define

eA = eAleAZ ce e o
(2.3) Let A be a partition, X' its conjugate. Then
p JUg

ey=m,+ ) a,,m,
"

where the a,, are non-negative integers, and the sum is over partitions pu < A
in the natural ordering.

Proof. When we multiply out the product e,. = eye,, ... , we shall obtain a
sum of monomials, each of which is of the form

(G770 [C7% 70N ooy 2 0
say, where i) <i, < ... <iy, j; <j;< ... <jy, and so on. If we now enter
the numbers iy, i,,..., i, in order down the first column of the diagram of
A, then the numbers jy, j,,..., jy, in order down the second column, and so
on, it is clear that for each r > 1 all the symbols <r so entered in the
diagram of A must occur in the top r rows. Hence a;+...+a,<
A, + ... +A, for each r>1, i.e. we have a < A. By (1.12) it follows that

6 = E aApmp
u<A

with a,, > 0 for each x> A, and the argument above also shows that the
monomial x* occurs exactly once, so that a,, = 1.

(2.4) We have
A=17Z[e,,e,,...]

and the e, are algebraically independent over Z.
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proof. The m, form a Z-basis of A, and (2.3) shows that the e, form
another Z-basis: in other words, every element of A is uniquely expressible
as a polynomial in the e,. |

Remark. When there are only finitely many variables x,,...,x,, (2.4)
states that A, = Z[e,,...,e,], and that e,..., e, are algebraically indepen-
dent. This is the usual statement of the ‘fundamental theorem on symmet-
ric functions’.

Complete symmetric functions

For each r> 0 the rth complete symmetric function h, is the sum of all
monomials of total degree r in the variables x,, x,,..., so that

hr = E m,.
|A|=r

In particular, h, =1 and h, =e,. It is convenient to define A, and e, to be

zero for r <0.
The generating function for the h, is

@2.5) Ht)= Y ht=T[0-x0""
r>0 izl
To see this, observe that
A-xt)"' = ¥ xke*,
k>0

and multiply these geometric series together.

From (2.2) and (2.5) we have
(2.6) HWE(-t)=1

or, equivalently,
n
(2.6") Y (-1D'eh,_,=0
r=0
forall n> 1.
Since the e, are algebraically independent (2.4), we may define a

homomorphism of graded rings

w:A-A
by

w(e,)=h,
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for all > 0. The symmetry of the relations (2.6') as between the e’s and
the A’s shows that

(2.7) w is an involution, i.e. w? is the identity map. |
It follows that  is an automorphism of A, and hence from (2.4) that

(2.8) We have
A=2Zlhyh,y,...]

and the h, are algebraically independent over Z. |

Remark. 1f the number of variables is finite, say n (so that e, = 0 for r > n)
the mapping w: A, = A, is defined by w(e,) = h, for 1 <r < n, and is still
an involution by reason of (2.6'); we have A, = Z{h,,...,h,] with h,,..., h,
algebraically independent, but 4, ,, A, ,,,... are non-zero polynomials in
hy,...,h, (orin ey,...,e,).

As in the case of the e’s, we define
h, =hx,h)\2---

for any partition A = (A,, A,,...). By (2.8), the h, form a Z-basis of A. We
now have three Z-bases, all indexed by partitions: the m,, the e,, and the
h,, the last two of which correspond under the involution w. If we define

fi=olm,)

for each partition A, the f, form a fourth Z-basis of A. (The f, are the
‘forgotten’ symmetric functions: they have no particularly simple direct
description.)

The relations (2.6') lead to a determinant identity which we shall make
use of later. Let N be a positive integer and consider the matrices of
N + 1 rows and columns

H=hogjenr  E=((-De))

0<i,j&<N
with the convention mentioned earlier that 4, =e¢,=0 for r <0. Both H
and E are lower triangular, with 1’s down the diagonal, so that det H =
det E = 1; moreover the relations (2.6’) show that they are inverses of each
other. It follows that each minor of H is equal to the complementary
cofactor of E’, the transpose of E.

Let A, p be two partitions of length <p, such that A’ and u’' have
length <gq, where p+q =N+ 1. Consider the minor of H with row
indices A; +p —i (1 <i<p) and column indices u; +p—i (1 <i<p). By
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(1.7) the complementary cofactor of E’ has row indices p—1+j— A;
(1 <j < ¢q) and column indices p —1 +j — u; (1 <j <q). Hence we have

— (1Y AI+al N mit
det(hh'm"'+i)l<i.j<p (-1 det(( D e*’l'#';—"+i)x<i.j<q'

The minus signs cancel out, and therefore we have (Aitken [A1])
@9 det(h"“"!“+f)l<i.i<p = det(e"':'“’r"'+i)1<i,j<q'
In particular, taking u=0:
29" det(h, _;,;) = det(ey ;).
Power sums
For each r > 1 the rth power sum is
pr = Zx: = m(r)'
The generating function for the p, is

P()=Ypt'=Y Lxt!

r>1 i1 r>1
X
== Z !
i1 1—x;t
d 1
= — log

so that

d ., d
(210) P(¢t)=—log [T —x;t)"" = —log H(t) =H'(¢) /H(2).
de i1 d¢

Likewise we have

d
(2.10") P(-t)= Elog E(t)=E'(¢)/E(t).
From (2.10) and (2.10') we obtain

n

(2.11) nh,= Y ph,_,,
r=1

n

2.11) ne,= Y (-1)"""pe,_,

r=1



24 I SYMMETRIC FUNCTIONS

for n > 1, and these equations enable us to express the A’s and the e’s in
terms of the p’s, and vice versa. The equations (2.11') are due to Isaac
Newton, and are known as Newton’s formulas. From (2.11) it is clear that
h,€Qlp,,...,p,) and p, € Z[h,,..., h,], and hence that

Qlpys--os pal=Qlhy,.... 4]

Since the A4, are algebraically independent over Z, and hence also over Q,
it follows that

(2.12) We have
Aq=A8,Q=Qlp;,p;,...]
and the p, are algebraically independent over Q. |
Hence, if we define
PAx=P\Ps, -

for each partition A = (A, A,,...), then the p, form a Q-basis of A 4. But
they do not form a Z-basis of A: for example, 4, = 3(p? + p,) does not
have integral coefficients when expressed in terms of the p,.

Since the involution w interchanges E(t) and H(¢) it follows from (2.10)
and (2.10) that

w(p,)=(-D"""p,
for all n > 1, and hence that for any partition A we have
(2.13) w(p)) = & p,

where &, = (— DI\,

Finally, we shall express 4, and e, as linear combinations of the p,. For
any partition A, define

— ;m
zy=TTi™.m,!
i>1

where m; =m(A) is the number of parts of A equal to i. Then we have

H() = Yz'p™,
A

(2.14)
E(t)= Y &z, pyt™,
A
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or equivalently

hy= E zy IPA’
|Al=n
2.14) ,
&= Y &6z 'p
|Al=n
Proof. It is enough to prove the first of the identities (2.14), since the
second then follows by applying the involution » and using (2.13). From
(2.10) we have

H(t)=exp ) p,t'/r

r»l

= [Texp(p,t"/r)

r>1

=11 X ()™ /rme.m,!

r2l m =0
= Xzlpe. |
A

(2.15) Remark. In the language of A-rings [B5], [K13]) the ring A is the
‘free A-ring in one variable’ (or, more precisely, is the underlying ring).
Consequently all the formulas and identities in this Chapter can be
translated into this language. It is not our intention to write a text on the
theory of A-rings: we shall merely provide a brief dictionary.

If R is any A-ring and x any element of R, there exists a unique
A-homomorphism A — R under which e,(=h, =p,) is mapped to x.
Under this homomorphism

e, ismappedto A"(x) (rth exterior power)
h, o"(x)=(=1YN(-x) (rth symmetric power)
E(t) A(x)
H(t) o(x)=Ar_(-x)
P, ¥'(x) (Adams operations)

and the involution w corresponds in R to x = —ux. So, for example, (2.14")
becomes

a"(x)= Y z; W (x)

|Al=n

valid for any element x of any A-ring (where of course ¢*(x)=

gh(x)yPra(x)...).
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Examples
1. (@Let x;= -+ =x,=1,x,,;=x,,,="... =0. Then E(t)=(1+1¢)" and H(t)

=(1-1)"", so that
e’=(n), h’=(n+r—1)
r r

and p,=n for all n > 1. Also

n
m'\=u,\(l(k))a
where
_ I(A)!
“E TTm,0
i»1

(b) More generally, let X be an indeterminate, and define a homomorphism
ex:Ag = Q[X] by x(p,) =X for all r> 1. Then we have

X X+r-1 [ =X
8X(er)=(r)’ 8X(hr)=( +: )=(_1)( r )’

fOI a“ T ? 1) and
x( ) = U,
& "1A u ( ) .

For these formulas are correct when X is replaced by any positive integer n, by (a)
above. Hence they are true identically.

2. Let x;=1/n for 1 <i<n, x;=0for { > n, and then let n — . From Example 1
we have
1¢n 1
= lim —( ) =—
n—so n"\T r!

and likewise h,=1/r!, so that E(¢)=H(t)=¢'. We have p,=1 and p,=0 for
r > 1; more generally, m, = 0 for all partitions A except A =(1")(r > 0).

3. Let x;=¢'"! for 1<i<n, and x;=0 for { >n, where q is an indeterminate.
Then

E@t) = I-I(1+qt)— Eq"’"‘)ﬂ[ ]t’

n
where ’ r] denotes the ‘g-binomial coefficient’ or Gaussian polynomial

[n] (=g =-g""h...(01-g"""*)
A-9)1-¢»...0-¢g" °
and

n-1 n+r—
Ho=Tla-¢n" Z . ]
i=0

r=0
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These identities are easily proved by induction on n. It follows that

rr= n n+r-1
e’=q( l)/z[r]’ h’=[ , ]‘

h, is the generating function for partitions A such that () <r and () <n -1,
and e, is the generating function for such partitions with all parts distinct.
4. Let n =« in Example 3, i.e. let x;=¢'~! for all i > 1. Then

E()) = H(l rgi = T g 0),

r=0

H() = H(l -q't E t"/¢,(q),
r=0 -
where
() =010-q9)1-g?»)...A-q").
Hence in this case

e,=q"""V%/0(q), h,=1/¢(q)

and p,=(1—¢")"L
5. Since the h, are algebraically independent we may specialize them in any way,
and forget about the original variables x;: in other words, we may take H(t) (or

E(t)) to be any power series in ¢ with constant term 1. (We have already done this
in Example 2 above, where H(t) =e¢'.) Let a, b, q be variables and take

® 1-bg't
H@) = —
@ ,l}) 1-aq't
Then we have
r a—bg'! r agi~'-b
h'= —’ e'= —
;1-—[1 1-¢ .1-—11 1-¢

(see e.g. Andrews [A3], Chapter IL.) Also p,=(a"—b")/(1 — g").

6. Take H(t) =T1%_,(1 =™, so that h, = p(n), the number of partitions of n.
Then E(—t) =TIT;. (1 —¢"), and so by Euler’s pentagonal number theorem e, =0
unless 7 is a pentagonal number, i.e. of the form %m(3m + 1) for some m € Z; and
e, = (=12 if p=1Im@3m+1).

From (2.10) we obtain p, = o (r), the sum of the divisors of r. Hence (2.11) gives
in this case

1 n
6)] p(n) = ~ Y o(r)p(n-r).

r=1
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7. Take H(t) =TI . (1 —¢")~", so that h, = p,(n), the number of plane partitions
of n (§5, Example 13). From (2.10) we obtain p, = a,(r), the sum of the squares of
the divisors of r. Hence by (2.11) -

1 n
) py(n) = ~ Y o (r)py(n—r).

r=1

It is perhaps only fair to warn the reader that the obvious generalization of (1)
and (2) to m-dimensional partitions (m > 2) is false.

8. By solving the equations (2.6") for e, we obtain

e, = det(hl..,'+j)x<i.i<"

and dually

hn = det(€1—i+j)1<i,f<"'

Likewise from (2.11) we obtain the determinant formulas

e, 1 0 0
2e;, e 1 0
pﬂ= .

ne, e,,._, €,-2 e

J 2 1 0 0

P2 P 2 0
nle,=| D :

Ppn-1 Pn-2 - n—1

Pn Pn-1 . Dy

and dually

hy 1 0

_ 2h h 1 0
(_1)?1 1pn= :2 .l :

nhn hn—l hn—2 h]

J -1 0 0

P2 b -2 0
nlh,= :

Phn-1 Pn-2 . —n+1

Pn Py . D
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9. (a) Let G be any subgroup of the symmetric group S,,. The cycle indicator of G
is the symmetric function
1

c(G) = Gl

ZnG( p)pp

p

where ng( p) is the number of elements in G of cycle-type p, and the sum is over
all partitions p of n. In particular,

C(Sn)= z zp-lpp=hn

lpl=n
by (2.14"), and for the alternating group A4, we have
c(A4,)=h,+e,.

(b) If G is a subgroup of S, and H a subgroup of S,,, then G X H is a subgroup of
8, X 8pm €S8,4m» and we have

c(GXH)=c(G)c(H).

(c) Let G be a subgroup of S, and let = be the set of all sequences a = (ay,..., a,)
of n positive integers. For each such sequence a, define x, =x,, ..., . The group
G acts on 2 by permuting the terms of these sequences, and the function a— x,
is constant on each G-orbit. Show that

6)) c(G)= Y x,

where a runs through a set of representatives of the orbits of G in 3 (Polya’s
theorem). (Let

x=GI"" ¥ x,
(g,a)

summed over all (g, a) € G X 3 such that ga = @, and show that X is equal to
either side of (1).)

10. From Examples 8 and 9 it follows that the number of elements of cycle-type p
in §,, is equal to the coefficient of p, in the determinant

pl _1 O 0
P2 Dy -2 0
domnih=| G :
Pn-1 Pn-2 - -n+1
Pn Pn- . D

Let / be a prime number. We may use this formula to count the number of
conjugacy classes in S,, in which the number of elements is prime to /, by reducing
the determinant d, modulo /. Suppose that n=a;+n,l, where 0 <a,<!—1.
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Then since the multiples of ! above the diagonal in d, become zero on reduction,
it follows that

d, s'd;'ldao (mod. 1)
Now it is clear from the original definition of d, = n!c(S,,) that
dy=p!-p, (mod.l)

and therefore we have

n

1 d,=(pi-p) .d,, (mod.D).

Hence if n=ag+ayl+ayl®+ ..., with 0<a; <l —1 for all i >0, it follows from
(1) that

dy=dg, TT(p -pi™)" (mod. D).
:

Consequently, if u,(S,) denotes the number of conjugacy classes in S, of order
prime to /, we have

w(S,) = l“l(sao) l_.! (a;+1)
>

=p(ag) [1(a;+1)
i»1

where p(a,) is the number of partitions of a,. In particular, if / =2, we see that
u,(S,) is always a power of 2, because each a; is then either 0 or 1: namely
uy(S,)=2"if [n/2]) is a sum of r distinct powers of 2.

11. Let
- fnt’. 0o g"tn
()= 'EO ot gt) = ngo ~

be formal power series (with coefficients in a commutative Q-algebra) such that
g(0) = 0. We may substitute g(¢) for ¢ in f(¢), and obtain say

© n

H
HO=fg®) =Y ;'

!
0 :

Clearly each coefficient H, is of the form
n
Hn = E kan,Ic(g)
k=1

where the B, , are polynomials in the coefficients of g, called the partial Bell
polynomials. Since each H, is linear in the coefficients of f, in order to compute
the polynomials B, , we may take f, =a¥, so that f(t) = e*. Writing

H@)= Y h"

n=0
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as usual, we have H(¢) = exp(ag(#)) and therefore by (2.10)

d e ag,t""!
P(t)= Et-logH(t)—ag (t)= ; (TT)!,

so that p, =ag,/(n —1)! for all n > 1. Hence by (2.14)

and consequently

n!
B, = E ’Z"PA = Zcxg).
A

A A

where the sum is over partitions A of n such that I(A) =k, and

Br=8\8-r  o=n![[TrGD"
i>1
if A=(112"...). These coefficients c, are integers, because c, is the number of
decompositions of a set of » elements into disjoint subsets containing A, A,...
elements. Hence each B, , is a polynomial in the g, with integer coefficients.
Particular cases:

(a) if g(t) =log(1 +1¢), then B, , =s(n, k) are the Stirling numbers of the first kind,
(-1)""*s(n, k) is the number of elements of §, which are products of k disjoint
cycles. We have

Y s(n,k)-;—!a"=(1'-§-t)a= Y (Z)t”,

n,k»0 n30

from which it follows that

n

Y, stn,k)a*=a(a-1)...(a~n+1)
k=0

and hence that s(n,k) is the (n—k)th elementary symmetric. function of
-1,-2,...,—n+1.

(b) if g(t) =¢' — 1, so that g, =1 for all n > 1, then B, , = S(n, k) are the Stirling
numbers of the second kind; S(n, k) is the number of decompositions of a set of n
elements into k disjoint subsets, and is also the (n —k)th complete symmetric
function of 1,2,...,k.

12. Deduce from Example 11 that if f and g are n times differentiable functions
of a real variable, and if f;, g, (f° g); denote the kth derivatives of f, g, and
feog, then

(fogla= 2 Bn.k(gl’821"')(fk°g)'
k=1
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13. If H@®) =1 —1")/(1 —t)", we have

n+r—1 n-—1
h,= -
3)-05)
and by (2.10) we find that p, =r if n # 0 (mod r), whereas p, =0 if n =0 (mod r).
Hence from (2.14")

+r-1 -1
Zz;’r"*>=(” ' )—(" ) (r>2)
Iy r—1 r—1

where the sum on the left is over partitions A of n none of whose parts is divisible
by r.
In particular (r = 2)

Yzyl2h=2
A

summed over all partitions of n into odd parts.
14. Suppose that p, =an”/n! for n > 1. Then
h,=aCa+n)""'/nl, e,=ala—n)"""/nl
(Let t=xe™* and use Lagrange’s reversion formula to show that P(¢)=
ae*/(1 —x).)
15. Show that

1.3.5...2n-1)
-1_ - oo
Lz'=Lz 2.4.6..2n '

p a

where the first sum is over all partitions p of 2 with all parts even, and the second
sum is over all partitions o of 2n with all parts odd.

16. Suppose that e, =p, for each n > 1. Show that
N a” (-1)"a"B,
AT TR

" n!

for some a, where B, is the nth Bernoulli number.

17. If h, =n for each n > 1, the sequence (e,), . is periodic with period 3, and
the sequence (p,), ., is periodic with period 6.

18. (Muirhead’s inequalities.) For each partition A of n, the A-mean of x=
(x4, X4,...,%,) is defined to be

1
My(x) = — Y ow(xb).
‘ wes,

In particular, M,(x) is the arithmetic mean of xf,...,x;, and M;»(x) is their
geometric mean.
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Let A, u be partitions of n. Then the following statements are equivalent;
@) A> w; () My(x) > M, (x) for all x=(x,,...,x,) €R}.

(To show that (i) implies (ii), we may assume by (1.16) that A=R i M, in which case
it is enough to show that

xpxhi+xhix} > xfixli+xpx.
To show that (ii) implies (i), set x; = ... =x,=X and x,,, = ... =x, =1, where
X is large, and deduce that A, +...+A, >y + ... +u,)

19. Let p{”=Lm,, summed over all partitions A of n of length r (so that
M = p ). Show that
Pa Pn

Y pOt " = E(u—t)H(1)

n,r
and that
(-1’
Y ptrr = ——EM(—t)H(2)
r!

n>r

where E()(t) is the rth derivative of E(t) with respect to ¢. Deduce that
—fa
=Y (-1° (r)eahb
at+b=n

and that (if 7 >r) p{” is equal to the determinant of the matrix (a;)g¢; ;-

r+i e
where a;y = I LY and a;;=¢;_;,; if j>1

20. For any partition A, let u, =I(A)!/T1;,, m;(A)!, as in Example 1(a). Show that

(—I)I(A)_l )
Pa=n L ETOVRE

and that

(Let H*(1) =L, h,t", and pick out the coefficients of " in log(1 + H*(¢)) and
(1+H*(£))"!, expanded in powers of H*(t).)

21. Let x, = 1/n? for each n > 1. Then

2 .
6)) E(-)=T] (1_ f_z) _ sin 7r¢

n> 1 n mt
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so that e, = 72" /(2n + 1)! for each n > 0. We have

1
p=x — =¢@n)

n>1

where { is Riemann’s zeta function. Deduce from (1) that
d
-212P(1?) = 1 log E(~t?) = mtcotmt—1,

and hence that
{2r) = (=1)"""22" 152, /(2r)1,
where B,, is the 2rth Bernoulli number.

22. (a) From Jacobi’s triple product identity

Y oeun = [T -2 + 27~ 1)1 +120-1y71)
nez n31

by setting ¥ = —1 we obtain

2 1
r ' =T1

nez Al 1+

— "

Deduce that if

1 n
0 E® =[] —

a1 1—1t"

then A4, =2 or 0 according as n > 1 is a square or not.
(b) Deduce from (1) and (2.10) that

pa=2-1""a"(n),

where o '(n) is the sum of the divisors d > 1 of n such that n/d is odd.

(c) Let N,(n) denote the number of representations of n as a sum of r squares,
that is to say the number of integer vectors (x,,...,x,) € Z" such that x? + ... +
x2 = n. Deduce from (b) above and Example 8 that

o'(1) 1/2r 0 0
2r)" o'(2) o’'(1) 2/2r 0
N,(n) = = .
oc'(n-1) o'(n-2) (n-1)/2r
o'(n) o'(n-1) ... o'(1)

23. If G is a finite group and d is a positive integer, let w,(G) denote the number
of solutions of x¢ =1 in G. Show that

1 1 )
6)) Y - wy(S, )" = exp( Y = t’).

nx»0 rld
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(If x € S,, has cycle-type A, then x? = 1 if and only if all the parts of the partition A
divide d. Hence

2 wa(S,)/nl= Lz

summed over such partitions A of n. Let ¢;:Aq—Z be the homomorphism
defined by ¢,(p,) =1 or 0 according as r does or does not divide d. Then the
right-hand side of (2) is by (2.14’) equal to ¢,(h,) and hence the generating
function (1) is @,(H(¢)).)

24. Another involution on the ring A may be defined as follows. Let
) u=tH@t) =t +ht>+ht>+ ...

Then ¢ can be expressed as a power series in u, say

)] t=u+hfu+n5u+ ...,

with coefficients A* € A” for each r > 1. The formulas (1) and (2) show that the
ring homomorphism : A = A defined by ¢/(h,) = h¥ for each r > 1 is an involu-
tion on A.

For each feA, let f*=y(f). Thus for example h}=~h}h} ... for each
partition A =(Ay, A,,...), and the A} form a Z-basis of A.

(a) To calculate A} explicitly, we may argue as follows. From (2) we have

dt= Y (n+ Dh*u"du
nx»0

and therefore (n + 1)h% is the residue of the differential

dt/u"“ = dl/f”+lH(f)n+l,

hence is equal to the coefficient of ¢ in the expansion of H(¢)™"~! in powers of ¢.
Writing H(¢) =1+ H*(¢) as in Example 20, it follows that

(n + l)h: = Z (_ l)l(l)(n + I(A) )uAhA
|Al=n n

with «, as in Example 20.

(b) Show likewise that

=L z'(-n)Pp,
|Al=n

and that

n—1
—1e* = —
(n-1)e* IAIE-n( o )uAeA.

25. Let f(x),g(x) € Z[x]] be formal power series with constant term 1. Let

t=xf(x) and express g(x) as a power series in ¢:

g(x)=H({)= Y h,t".

n>»0
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Let ¢,(f,g) denote the coefficient of x” in (f+xf)g/f"*1, where f' is the
derivative of f. Then we have

ha=0.f,8), e,=(-10,(f,g7"
and (with the notation of Example 24)
Kr=ef887Y), er=(=D"¢,(fz,8.
Moreover, if ¢,(f, g) is the coefficient of x"~! in g’/f"g, we have

pn=¢n(frg)v P:‘=¢n(fg,g_l).
(a) Take f(x)=(1+x)"% and g(x) = (1 +x)? Then

_ B na+p)
¢n(f)g)_ na+B( n )_un(aiﬁ)’

say, and therefore
h"=u"(a,ﬁ)a en=u"(l—a,ﬁ),
Ki=ua=B,=p), e=u,l-a+p,-p),

and

p=£(na) p*=_ﬁ_(na—nﬁ)
n n b n .

B-« n
In particular, u,(2,1) is the nth Catalan number C,,=(n+1)‘1(2n”), and

u,(2,2)=C, .y, u,(2,-1)= —C,_,. Hence when p, =a(2nn) with a=1,1,- 3

we have respectively h,=C,,C,,,, —C,_;, and A% = —§,,,(=D"(n + 1),
—1( 3n )
n .
n-1
(b) Take f(x)=e~**, g(x)=eP*. Then
oa(f,8) = Blna+B)"" /nl=v,(a,B),
say, and hence
h"=U"(a,ﬁ), en=vn(_a’B)’
h:=U"(a—ﬁ,—B), e:=vn(ﬁ~a’_ﬁ)7
and

_ Blna)" ™! . -B(na—np)" !
b= T D Y
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26. Let k be a finite field with g elements, and let V' be a k-vector space of
dimension n. Let 8 =S(V) be the symmetric algebra of V" over k (so that if
Xppee-r¥n is any k-basis of V, then S = k[x,,...,x,]). Let

fV(I)= I—I (t+U)y

VeV
a polynomial in S[t].
(a) Show that
flat +bu) = af (1) + bf ()

for all a,b € k and indeterminates ¢, u. (If a €k, a # 0 we have

flat)= T[] (at+v)=a? [] (¢t +a1v)

vev vevV

= af(t).
Next, let
fa+w) =f@)=fw) =Y t'g,(u)

r>»>0

with g,(w) € S{u); since f(t+v)=f(t) and f(v) =0 for all v €V, it follows that
g (1) =0 for all v € V. Since g, has degree <gq", we conclude that g, =0 for each
r, and hence that f(¢ +u) = f(¢) + f(u).)

(b) Deduce from (a) that f,,(¢) is of the form
fr@® =17 +a,(V7" + .. +a,(Vt,

where each a,(V) €S, and in particular ,(V) is the product of the non-zero
vectors in V.
Show that

6 Y a(L)=0

L<v

where the sum is over all lines (i.e. one-dimensional subspaces) L in V. (Since each
v#0in V lies in a unique line L = kv, it follows that

fV(I) =1 I—I l—lfL(t)=1 I-[ (tq—l +a|(L))
L<Vv

L<y

and therefore the sum (1) is equal to the coefficient of 4"~ in f,(¢), which is
clearly zero.)

(c) Let U be a vector subspace of V. The mapping v+ f,(v) of V into S is
k-linear, by (a) above, and its kernel is U. Hence its image f;;(') is isomorphic to
the quotient of ¥ by U, and we shall denote it by V/U. Each element of V/U is a
product of the form I, ¢ ;(v + u) for some v €V, i.e. it is the product in S of the
elements of a coset of U in V.
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Show that
fv@®) =fy,u(fy(®)
and that if T is a vector subspace of U then
V/U=(V/T)/U/T).
(d) Show that for 1 <7< n—1 we have

@) a,(V)= Y a,(V/L)

L<V

summed as before over all lines L in V. (From (c) above we have f,,(t) =f,,,, (f,(¢)),
from which it follows that

a,(V)=a,(V/L) +a,_,(V/L)ay(L)* .
Since the number of lines L in V is1+g +... +¢"~ ! =1 (mod. g), it follows that

3) a,(V)=Y a,(V/L) + ¥ a,_(V/L)a,(L)*"’
L L

By induction on n = dim V' we may assume that

4) a,_,(V/L)= Y a,_(V/M)
M

summed over all two-dimensional subspaces M in V that contain L. The second
term on the right-hand side of (3) is therefore equal to

n-r

§a,_,(V/M)( ) a,(L))

L<M

which is zero by (1) above.)
(e) Deduce from (d) that

a,(V)=Y a,(V/U)
U

summed over all subspaces U of V of dimension n —r, where a,(V/U) is the
product of the vectors v € V such that v & U.

27. As in Example 26, let k& be a finite field with ¢ elements, let x;,...,x, be
independent indeterminates over k, and let k[x]=k[x,,...,x,] Let V be the
k-vector space spanned by x;,..., x,,, and let

1

@) fr@®) =t +ap?  +... +a,t

be the monic polynomial whose roots are the elements of V. Let k[a]=
kla,,...,a,) Cklx]
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(a) The coefficients ay,...,a, in (1) are algebraically independent over k. (Let
bys..., b, be independent indeterminates over k, and let W be the set of roots of
the polynomial

n-1

g(t)=tT"+ bt + .. +b,t

in a splitting field. The roots are all distinct, since g'(t)=b, #0, and since
glat + Bu) = ag(t) + Bg(u) for a, Bk it follows that W is a k-vector space of
dimension n. Choose a basis (y;,...,y,) of W and let 6:k[x]— k[y] be the
k-algebra homomorphism that sends x; to y; (1 <i <n). Then 6(a;) =b, (1 <i<n);
since the b; are algebraically independent over k, so are the a;.)

() Let G =GL(V) = GL,(k) be the group of automorphisms of the vector space
Y. Then G acts on the algebra k[x]; let k[x]° denote the subalgebra of G-
invariants. Since G permutes the roots of the polynomial f;,(¢), it fixes each of the
coefficients a;, so that k[a] ck[x]C. In fact (see (d) below) k[a] = k[ x]°.

(c) k[x] is a free k[a]-module with basis (x*), ¢ g, Where

E={a=(aj,...,a,):0<q,<q"—q" ' -1).

(Let V, denote the subspace of V spanned by x,,...,x,, for 0 <r<n—1 (so that
Vo = 0). The polynomial g,(¢) =f,,(¢) /f,(¢) is monic of degree ¢" — g", has coeffi-
cients in the ring k[a, x,,..., x,], and has x,,; as a root.

Now let h €k[x]. Use the polynomial g,_; to reduce the degree of h in x,
below g" —g"~!. Then use g,_, to reduce the degree of h in x,_; below
q" - q"‘z, and so on. In the end we shall obtain say

(¢) h= Y h,x*
a€l
with coefficients h, € k[a] c k[x]C.
Hence the x°, @ € E, span k[x] as k[x]°-module. They therefore also span the
field k(x) =k(x,,...,x,) as vector space over k(x)C, since every element of k(x)

can be written in the form u/v with u € k[x] and v € k[x]°. But by Galois theory
the dimension of k(x) over k(x)C is

IGl=T1(g"-¢""") =IE|;
i=1

hence (x), <  is a basis of k(x) over k(x)C, i.e. the expression (2) for h € k[x] is
unique.)

(d) Suppose now that h € k[x]°. Then in (2) we must have h, =0 if a#(0,...,0),
and h =hy o <klal Hence k[x]° = k[a] (Dickson’s theorem).

Notes and references

Example 11. For more information on Bell polymomials, Stirling numbers
etc., see for example L. Comtet’s book [C3].

Example 13. This example is due to A. O. Morris [M15].

Example 27. The proof of Dickson’s theorem given here I learnt from R.
Steinberg.
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3. Schur functions

Suppose to begin with that the number of variables is finite, say x,..., x,,.
Let x*=x"...x;» be a monomial, and consider the polynomial a,
obtained by antisymmetrizing x“: that is to say,

a,=a,(x;,...,x,)=Y, ew).w(x*)
weSs,

where £(w) is the sign ( +1) of the permutation w. This polynomial a, is
skew-symmetric, i.e. we have

w(a,) =e(w)a,

for any w € §,; in particular, therefore, a, vanishes unless ay,..., a, are
all distinct. Hence we may as well assume that a; > a, > ... > «, >0, and
therefore we may write « = A + 8§, where A is a partition of length <n,
and §=(n—1,n—2,...,1,0). Then

a,=a,.s= 2, ew).w(x**?)

w

which can be written as a determinant:
_ A+n—j
a, ., 5= det(x}¥ ))l<i.j<n-

This determinant is divisible in Z[x,,...,x,] by each of the differences
X; —X; (1<i<j<n), and hence by their product, which is the Vander-
monde determinant

[T (—x)=det(x})=a;.

1<i<jgn
So a,, ; is divisible by a; in Z[x,,...,x,], and the quotient
3.1 s =8(x;,...,x,) =a,,s/as

is symmetric, i.e. is in A,. It is called the Schur function in the variables
X1,...,X,, corresponding to the partition A (where /(1) < n), and is homo-
geneous of degree |Al.

Notice that the definition (3.1) makes sense for any integer vector
A €Z" such that A + & has no negative parts. If the numbers A; +n —i
(1 <i<n) are not all distinct, then s, = 0. If they are all distinct, then we
have A + 8 =w(p + &) for some w € S, and some partition u, and s, =
e(w)s,,.

The polynomials a, s, where A runs through all partitions of length
< n, form a basis of the Z-module A4, of skew-symmetric polynomials in
Xy,..., X,. Multiplication by a; is an isomorphism of A, onto 4, (i.e. 4, is
the free A,-module generated by a,), and therefore
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(3.2) The Schur functions 5,(xy,...,x,), where I(\) <n, form a Z-basis
Of An‘
Now let us consider the effect of increasing the number of variables. If
(@) <n, it is clear that a,(x,,...,x,,0)=a,(x,,...,x,). Hence
pn+1,n(sk(x1”"’xn+l)) =5(x,...,x,)

in the notation of §2. It follows that for each partition A the polynomials
5315005 x,), as n — o, define a unique element s, € A, homogeneous of
degree |Al. From (3.2) we have immediately:

(3.3) The 5, form a Z-basis of A, and for each k > 0 the s, such that |A| =k
form a Z-basis of A*,

From (2.4) and (2.8) it follows that each Schur function s, can be
expressed as a polynomial in the elementary symmetric functions e,, and
as a polynomial in the complete symmetric functions 4,. The formulas are:

3.4 H= det(hA:-i+i)l<i,j<n
where n > 1(A), and
(3.5) S = det(eA’,—i+j)1<i,j<m

where m = I(X).

By (2.9"), it is enough to prove one of these formulas, say (3.4). We shall
work with n variables x,,...,x,. For 1 <k <n let e denote the elemen-
tary symmetric functions of x,,..., X, _, X4 41,..., %, (omitting x,), and let
M denote the n X n matrix

M=((-D""e®))

1<ik<n’
The formula (3.4) will be a consequence of
(3.6) For any a=(ay,...,a,) €N", let

Aa=(xja‘)’ Ha= (hai—n+j)
(n X n matrices). Then A, = H, M.

Proof. Let

n—-1
E®@) = ) et = [TU+x0).

r=0 i*k
Then
HWOE®(=t) =1 —x,t)"".
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By picking out the coefficient of ¢ on either side, we obtain

f‘, Poyonsj- (=1 Te®) = x
j=1
and hence HLM=A,. |
Now take determinants in (3.6): we obtain
a,=det(A,) = det(H,)det(M)
for any @ € N”, and in particular det M = a;, since det(Hj;) = 1. Hence
3.7 a,=asdet(H,)

or equivalently

(3.7 a,=as 3, eWh,_,;

weS,

for any a € N”. Taking a= A + § in (3.7), we obtain (3.4), or equivalently
from (3.7')

(3.4 5= ¥ eWhyypors-

wesS,
From (3.4) and (3.5) it follows that
(3.8) w(sy) =s,

for all partitions A.
Also from (3.4) and (3.5) we obtain, in particular,

(3 .9) S(") = h", S(ln) = en .

Finally, the formula (3.4) or (3.4") which expresses s, as a polynomial in
the A’s can also be expressed in terms of raising operators (§1):

(3.4”) §) = I—I(l _'R,'j)hA

i<j

where, for any raising operator R, Rh, means hpg,.t

11t should be remarked that if R, R’ are raising operators, RR'h, = hp g, is not necessarily
equal to R(R’h,). For it may well happen that R'A has a negative component, but RR’A does
not, in which case R’h, =0 but RR'h, + 0. See [G3] for a discussion of this point.
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proof. In the ring Z[x*',..., x*'] we have

E s(w)xx+s—wa=xx+sa_s =+ l—[ (xi_l _xi-l)

weS, i<j
=TT(1~xxt). x*
i<j
= H(l —R,*j)xx
i<

where R(x*)=x®* for any raising operator R. If we now apply the
Z-linear map @:Z{x{!,..., x¥1]—> A, defined by ¢(x*)=h,_ for all a €
1", we see that

E eWhy o 5_ 5= H a _Rij)h)\

weS, i<j
and therefore (3.4") follows from (3.4"). |
(3.10) Remark. In view of (2.15) we may use (3.4) or (3.5) to define ‘Schur

operations’ in any A-ring R. If w is any partition and x is any element of
R, we define

S#(x) = det(o " *(x))1 i j<n

= det(A“ (X)) <i,jam
where n > I(u) and m > I( u'). We have
SH(—x) = (-D™s#(x)
and in particular
SM(x)=0o"(x), ST(x)=A"(x).

For example, the results of Examples 1-3 below evaluate S*(1+
g+...+q" 1), SMA-¢)") and S*(a —b)/(1 - q)), where a,b,q are
elements of rank 1 in a A-ring R such that 1 —gq is a unit in R.

Since each f€ A is an integral linear combination of the s,, say
f=X @Sy s
it follows that f determines a ‘natural operation’
F=Y a,S*

on the category of A-rings. F is natural in the sense that it commutes with
all A-homomorphisms (because it is a polynomial in the A"). Conversely,
any natural operation F arises in this way, from f= F(e,).
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Examples

1. Take x;=¢'"! (1 <i<n) as in §2, Example 3. If A is any partition of length
< n, we have

ay 5= det(gt=DXA*n=0Y, o icn

which is a Vandermonde determinant in the variables g%*"~/ (1 <j <n), so that

ay. 5= H(qA+n-)_qA+n 1)

i<j

___qn(A)+n(n-1)(n—2)/6 ].—I(l __qA,—A,—i+j)
i<j

which by use of §1, Example 1 is equal to
qn(A)+n(n—1Xn-2)/6 l—! ¢A,~+n—i(q)
i3>

[T —-g"®)

XEA

where A(x) is the hook-length at x € A, and ¢,(g) =(1—¢)...(1 —g"). Hence (§1
Example 3)

b

qn+c(x)
- A
H=ay,5/a5= q"» H h(x)
XEA

where c(x) is the content (§1, Example 3) of x € A.
For any partition A define

1-— qn c(x)
[-0+&

n
(which when A = (r) agrees with the notation [r for the g-binomial coefficients

introduced in §2, Example 3). Then we have
n-1 n(A)
5(1,q,...,4" DN =g [A']
n
[ A] is a polynomial in g, of degree
n
d= Y (n—c(x)=h(x) =Y (n+1-2)X,
XE) i=1
) n

by using §1, Examples 2 and 3. If a; is the coefficient of ¢’ in [ A] for 0<i<d,

then clearly a;=a,_;. We shall show in §8, Example 4 that [ ] is unimodal (or

‘spindle-shaped’), i.e. that gy <a; < ... <@y
n n
Finally, we can express )\] as a determinant in the g-binomial coefficients [ , ],

by using (3.5).
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5. Let n— o in Example 1, so that H(t) = T17.4(1 - ¢'6)~". From Example 1 we
have

5 =q"M A -g"® " =g"WH,(q)"!

XEA
where H,(g) is the ‘hook polynomial’ [T,¢,(1 — g*®™).

3, More generally, let

* 1-—bq't
H() = _
@ ,l:!; 1-aq't
as in §2, Example 5. Then
(*) =g ]I a—bg"
* .
rex 1-— qh(x)

For if we replace ¢ by a~!¢, the effect is to replace s, by a~*s,. Hence we may
assume that a = 1. Both sides of (*) are then polynomials in b, hence it is enough
to show that they are equal for infinitely many values of b. But when b =g”" and
a=1 we are back in the situation of Example 1, and (*) is therefore true for

b=q".
4, Suppose x;=1 (1 <i<n), x;=0 for i >n. Then E(¢)=(1+1)", and
n+c(x)

LS T

by setting ¢ =1 in Example 1.
More generally, if E(z) = (1 +¢)*, where X need not be a positive integer, then

X +c(x)
XEA h(x)

5=

for the same reason as in Example 3: both sides are polynomials in X which take
the same values at all positive integers.

These polynomials may be regarded as generalized binomial coefficients, and
they take integer values whenever X is an integer. For any partition A define

(¥)-055

(which is consistent with the usual notation for binomial coefficients). Then

(3) a2, %5s))
(3F)- o)

by (3.5). Also
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5. As in §2, Example 2, take x;=1/n for1 <i<gn, x;=0fori>n,andlet n » «
Then E(t) = H(t) = ¢, and from Example 4 we have

o1 n+c(x)
a=tm 5 I =55
=TT rx)7%
XE A

6. Let p(n) denote the number of partitions of n. Then
det(p(i —j + Di<i, j<n

is equal to +1 or 0 according as » is or is not a pentagonal number. (Use §2,
Example 6 together with (3.4).)

7. Let m be a positive integer. Then

m

x"—x" a

P _Imé
=—=Sm-1s

I<i<j<n Xi—Xj ag "0
=det(h(,,,_lxn-i)-i+j)1<i,i<n
=det(hpmi-); ¢ jan-1-

In particular,
[T +x;) = det(hy;_;).

i<j

8. Consider the ring Q, = Q[x{t!,..., x*!] of polynomials in x,,...,x, and their
inverses. For each a € Z" the monomial x*=x{...x " generates a symmetric
function

1 wa
m,= E x
wES,

and the s, such that a; > a, > ... > a, form a basis of Q5.
Define a linear mapping ¢:Q3»—» A, ® Q by ¢(m,)=h, (with the usual
convention that h, =0 if any «; is negative).

(a) For all a, B € Z" we have

wlaag) =detlhy 1p), ¢ icn

For
asag= ), e(wwy)xmatmb

wy,WoES,

Z S(W) Z xwl(““'”’p)

weSs, w ES,

Z 8(w)”~1a+wﬁ
weSs,

]
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) that
olaa)= ), eWh,y,5= det(hg, 4 g)-
weS,
() In particular, if A is any partition of length <n, we have

p(s\asa_y) = ¢(ay,5a_5) =det(h, _;,;) =s,

by (3.4). Since the s, form a Z-basis of A, it follows that ¢(fasa_;) =f for all
feh,

(c)Let @, BE€ N" and let B=(B,,..., B, be the reverse of B. Then Sg=ag_s/a_s,
and hence from (a), (b) we have

5a55= ¢(8,4585-5) = det(ha‘+ﬁj—i+j)l<i,j<" )

a formula which expresses the product of two Schur functions (in a finite number
of variables) as a determinant in the A,.

9. Let a,b>0, then (al|b) is the Frobenius notation (§1) for the partition
(a +1,1%). From the determinant formula (3.4) we have

Sa|p) = hosres—hosoep  + ... +(- l)bha+b+l
If a or b is negative, we define s, ;) by this formula. It follows that (when a or b is
negative) 5.5, = 0 except when a + b = —1, in which case s, ;) = (—1)°.
Now let A be any partition of length <n. By multiplying the matrix
(Ry-i+h <i,j<» ON the right by the matrix (( - 1V e, 1 1_j—i)1 < jk < n» WE Obtain
the matrix (S(,,—;(-k)1 <i,k <+ BY taking determinants and using §1, Example 4

we arrive at the formula

Stal gy = det(seq,) ﬂ;))1<-‘,j<r ‘

where (a| B) =(ay,..., a,| Byy..., B,).

10. A +x,1+x5,...,14x,) = ) d,5.(x,...,x,)
"
summed over all partitions u C A, where

= de i .
* Hptn=] 1<i,j<n

(Calculate a,,,(1 +x,,...,1+x,) and observe that as(1+x,...,1+x,)=
a&(xl,...,x").)
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This formula can be used to calculate the Chern classes of the exterior square
A’E and symmetric square S2E of a vector bundle E. If c(E) =TI7 (1 +x;) is the
total Chern class of E, then '

¢(AE) = [T +x,+x)

i<j

=27mm=D/2 TT(1 +2x;+ 1 +2x)

i<j
=2"mm=/25 (1 + 2x,,...,1 +2x,,)
by Example 7, where § =(m —1,m —2,...,0), and therefore

c(AE) =27mem=1/2 7 g, 21Ms,(xy,...,X,,).

ncé
Likewise

c(S?E) = [T +x;+x))

i<j

=27mm=D/2 3 g 25 (xyyeny X,)

vCe

where e=(m,m—-1,...,1).

11. Let pw=C(pn,,..., u,) be a partition of length <n, and r a positive integer,
Then, the variables being x,,..., x,, we have

n

(1) au+6pr= E ay.+6+req
g=1

where ¢, is the sequence with 1 in the gth place and 0 elsewhere. We shall

rearrange the sequence u + 8 +re, in descending order. If it has two terms equal,

it will contribute nothing to (1). We may therefore assume that for some p <gq we
have

Hpytn—p+1>p,+n—q+r>p,+n-p,
in which case a,,4,,, =(—1?"7a,,,;, where A is the partition
A=(ppyeesbpostgtp—q+r o+ 1+ L g,y ),
and therefore = A — p is a border strip of length r. Recall (§1) that the height

ht(6) of a border strip 6 is one less than the number of rows it occupies. With this
terminology, the preceding discussion shows that

(2) -S',,P, - E( _ l)hl(A—M)SA
A

summed over all partitions A D u such that A — u is a border strip of length r.
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From (2) it follows that, for any partitions A, u, p such that |A|=|u|+]| pl, the
coefficient of s, in s, p, is

E ( _ l)ht(s)
N

summed over all sequences of partitions S = (AQ, XD, ..., A™) such that pu=
2O c AP ... A = ), with each AV — A¢~D a border strip of length p;, and

ht(S) = ¥ ht(A® — G- D).

12. Let o:Zxy,...,x,]—> A, be the Z-linear mapping defined by o(x*) =s, for
al a€N”. Then o is A, -linear, ie. o(fg)=fo(g) for feA, and ge
Lxy-+er %, ). For o(x®) =a; 'a(x**?), where

a= Y e(ww

wesS,

is the antisymmetrization operator. By linearity it follows that o(g) =a; 'a(gx?)
forall g€ Z[x,,...,x,], and the result follows from the fact that a is A,-linear.

13. If a,b > 0 we have

§2) g 0 0
P P C 0
(a+b+Dalb!sy =
Pa+s Cat+b
Patb+1 I4!

where (¢p,...,C4p)=(—1, =2,..., —a,b,b—1,...,1).

(Use the relation s )+ Sa+16-1) = Pa+ 1€, Which follows from the first formula
in Example 9, together with the determinant formulas of §2, Example 8, and
induction on b.)

14, I1

1+ ux;
]—D.’i

=EWH@) =1+ (+u) Y, sqptud.
a,b»0

15. Let M be an n X n matrix with eigenvalues x,,...,x,. Then for each integer
r >0 we have

n—1
MM = Zo( =1)Ps0,) py(Fppeee, X, ) MPPL,
P

If M™tr=F¥a,M""?}, we have x*r=Ta,x}~P~! for 1<i<n; now solve
these equations for agy- s 8p_1.)

16. Let A, u be partitions of length <n, and let

Pn( A, F") = det(PA,-+p,i+2n—i—j)

1<i,j<n’
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with the understanding that py =n. Then in A, we have
sl\ = Pn( ’\’ [-L)/P”(O, I-"),
sAsp, =Pn(A’ M)/P,‘(0,0).

(Observe that P,(A, u) =a,, 4, 5, by multiplication of determinants.)

17. (a) Let p be an integer > 2 and let w=e?™/?. If A is any partition of length
< p, we have

w:\j+p—j _ w:\k+p—k

(%) 51, 0,..., 0P ) = = =
’ 1<j<k<p wP~i— Pk

from which it follows that 5,(1, @,..., @™ 1) = +1if A~ » 0 (§1, Example 8(f)) and
is zero otherwise. More precisely, if A~,0 we have 51, w,..., 0"~ H= a,(X),
where a,(A) is the sign e(w) of the unique permutation w € S, such that A + §, =
wé,(mod. p), where §,=(p—-1,p-2,...,1,0).

(b) Assume from now on that p is an odd prime. Then
P
E®=]]0+0" ')=1+¢°
r=1

=(1+6)” (mod.p)

and therefore

50, 0,..., 07 Y =5(1,...,1) (mod.p)

o) »
- (A)

p
(Example 4). Hence (’\) =0 (mod. p) unless \ ~ ,0

(c) Let g # p be another odd prime and let A = (g — 1)8,. Then
@ sz x,) =TT =20 /(3 —x)

i<j

from which it follows that

3) 5(1,...,1) =q#P~D/2= (%) (mod. p)

where (-‘-I-) is the Legendre symbol, equal to +1 or —1 according as q is or is not

a square modulo p. From (1) and (3) we deduce that

4 s,\(l,w,...,w”"')=(i).
p



3. SCHUR FUNCTIONS 51

d Let G, (resp. G,) denote the set of complex pth (resp. gth) roots of unity, and
choose S = G, and T < G, such that

P-1D/(x-D=J]G-a)x-0c™),

o€S
(9 =D/(x=D= [T (x=n)x =1
reT
From (2) and (4) we have
®) (%) =[I(a?=-B9/(a-B)

the product being taken over all two-element subsets {a, B} of G, where we may
assume that a~ )8 € S. We have

(a?9-B89/(a=B) =[] (a—Br)(a—pr )

reT

=1 ap=-0or)(c7' =71

reT

(6

where o= a~ '8 € S. Deduce from (5) and (6) that

¢ (p) [TA-0or)(e ' =71

a,T

(product over all o€ S, 7€ T). (Observe that l'laﬁ =1, that each o€ § arises as
a”1B from p subsets {a, B}, and that (1 — o7Xo~! — r'l) is a real number.)
By interchanging g and p we have likewise

7 (q) H(I-UT)(T -1

and therefore

(ﬂ) —( _1)(p-1xq—1>/4(1)
q p

(the law of quadratic reciprocity).

18. Let k be a finite field with g elements, let x,,..., x, be independent indeter-
minates over k, and let k[x]=k[x,,...,x,] Let a=(ay,...,a,) EN", let g*=
(g,...,q*), and let A, €k[x] be the polynomial obtained by antisymmetrizing
the monomial x9°, so that

(1) Aa=Aa(xl,...,x,,)=det(x?ai),<,~‘j<,,.

As in the text, we may assume that a; > a,> ... >a, >0, so that a=A+ 35,
where A is a partition of length <n.
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(a) As in §2, Example 26, let V denote the k-vector space spanned by x,,...,x, in
klx], and let G = GL(V) = GL,(k), acting on k[x]. Show that

2) gA,=(detg)A,

for g € G, and deduce that A4, is divisible in k[x] by each non-zero v € V. (The
definition (1) shows that A, is divisible by each x;, and G acts transitively on
vV -{0})

(b) Consider in particular the case A=0, i.e. a=8=(n-1,n-2,...,1,0). The
polynomial A, is homogeneous of degree

" '+q" 2+ . +1=(¢"-1/(g-1),

and has leading term x%. Let V, denote the set of all non-zero vectors v = 3, a,x,
in V for which the first nonvanishing coefficient a; is equal to 1. Then we have

A8=HU

vev,
and each A, is divisible in k[x] by A,.

(c) Now define, for any partition A of length <n,

3) S, =8(x1,..0yx,)=A, . 5/A5.

From (2) above it follows that S, is G-invariant, and hence depends only on A and
V, not on the particular basis (xy,..., x,) of V. Accordingly we shall write §,(V) in
place of §,(x,,..., x,). It is a homogeneous polynomial of degree I} (g% — 1)g" ",

(d) If ¢ is another indeterminate, we have from (b) above

As  (t,xy,..,x,) =As (xy,...,x,) T] (t+0)

vev
=A8"(xl,...,x")fV(t)

in the notation of §2, Example 25. By expanding the determinant A, _(¢,x,,...,x,)
along the top row, show that

fo@® =t —E (W + L +(=D"E,(V)t,

where
E,(V) = S(I’)(V) (1 <r< n)-

The E,(V) are the analogues of the elementary symmetric functions, and in the
notation of §2, Example 26 we have

E(WV)=(-1"a,(V)

=(-1D"Y a,(V/U)
U

summed over subspaces U of V of codimension r.
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19. In continuation of Example 18, let
H,(V) = S(,)(V) (r = 0)

with the usual convention that H,(V) = 0 if r <0. (Likewise we define E, (V) to be
gero if r<0or r>n) Let S(V) (=k[x]) be the symmetric algebra of V' over &,
and let ©:S(¥) - S(V) denote the Frobenius map u — u?, which is a k-algebra
endomorphism of S(V), its image being k[x{,...,x2]. Since we shall later en-
counter negative powers of ¢, it is convenient to introduce

§)= U s,

r>0
where S(V)7 =k[x{™,...,x27). On 8(¥), ¢ is an automorphism.
(a) Let E(V), H(V) denote the (infinite) matrices

i,JEL’

H(V) = (‘Pi+lHj_,‘(V))
EW)=((=D'""/E,_ ("), iy
Both are upper triangular, with 1’s on the diagonal. Show that

EW)=HW)™ "
(We have to show that

L= Do (B¢ (H)-) = 8
J
for all i, k. This is clear if i > k. If i <k, we may argue as follows: since fi(x;) =0
it follows from Example 18 that
¢"(x) —E;o" W (x)+ ... +(=1)"E,x;=0
and hence that
D "1 x) = HED " 2(x) + .+ (—D e NE) e (x) =0

for all >0 and 1<i<n. On the other hand, by expanding the determinant
A(;y+ 5 down the first column, it is clear that H, = H (V) is of the form

-

) Ho=% " (x)

i=1

with coefficients u; € k(x) independent of r. From (1) and (2) it follows that
®) H—-¢ WEDH _;+..+(-1)"¢""WE)H,_,=0

for each r > 0. Putting r =k —i and operating on (3) with ¢‘*!, we obtain the
desired relation.)
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(b) Let A be a partition of length <n. Then
5,(V) = det( o' ~iH, _;,,(V))
= det( ¢/ "Ey_i4,(1))
in strict analogy with (3.4) and (3.5). (Let a = (a,,..., @,) € N*. From equation (2)
above we have

n
@ I H, _py)) = El @i(x) @' ()
=

which shows that the matrix (go"jHa,_,,+j)i, ; is the product of the matrices
(¢®x:);,x and (@' ~Ju,), ;—all three matrices having n rows and n columns. Op
taking determinants it follows that

4 det(¢'H, _p4;) =A.B

where B = det(¢'~/u,). In particular, taking a =8 (so that a;—n +j=j —i) the
left-hand side of (4) becomes equal to 1, so that 4;B =1 and therefore

det( ‘Pl _jHa,-—n +j) =Aa/A8

for all @ € N*. Taking a= A + 8, we obtain the first formula. The second (involy-
ing the E’s) is then deduced from it and the result of (a) above, exactly as in the
text.)

20. Let R be any commutative ring and let a =(a,), ¢ 7 be any (doubly infinite)
sequence of elements of R. For each r € Z we define 7'a to be the sequence whose
nth term is a,,,. Let

(xla) =(x+a)...(x+a,)

for each r > 0.
Now let x =(xy,...,x,) be a sequence of independent indeterminates over R,
and for each a=(ay,..., a,) € N" define

1) A,(x|a) =det((x;1@))1 i jen-

In particular, when a=8=(n—-1,n-2,...,1,0), since (x;|a)*~/ is a monic
polynomial in x; of degree n —j, it follows that

2 As(x]a) =det(x!) = az(x)

is the Vandermonde determinant, independent of the sequence a. Since A,(x|4)
is a skew-symmetric polynomial in x,,..., x,,, it is therefore divisible by A;(x|a)in
Rlxy,...,x,]. As in the text, we may assume that a; > a,> ... > a, >0, ie. that
a= A+ & where A is a partition of length < n. It follows therefore that

3) s\(xla)=A,,;(x|a)/A;(x]|a)
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is a symmetric (but not homogeneous) polynomial in xy,..., x, with coefficients in
R. Moreover it is clear from the definitions that

A,,s(x1a) =a,, 4(x) + lower terms,
and hence that
5,(x]a) =s,(x) + lower terms.

Hence the 5,(x|a) form an R-basis of the ring A, g.
When A = (r) we shall write

h(x|a) =5,y (x|a) (r>0)

with the usual convention that h,(x|a) =0 if r <0; and when A=(1") (0<r<n)
we shall write

e,(x |a) = S(]')(x |a)

with the convention that e, (x|a)=0if r<0or r>n.

(a) Let ¢t be another indeterminate and let

f@®=T10¢-x).

i=1

Show that

) fO=Y (-Delxla)tla)"".

r=0

(From (2) above it follows that
) =4, (t,x,....,x,1a0) /A (x,,...,%,|a);

now expand the determinant A,  along the top row.)

(b) Let E(x|a), H(x|a) be the (infinite) matrices
H(x|a)= (hj_,.(xl'r“"a))‘.'iez,
E(x|a) = (( —l)j'iej-,o(x|'r"a)),,iez.

Both are upper triangular, with 1’s on the diagonal. Show that

E(xla)=H(xla)™".
(We have to show that

T (-1 e _j(x|r*a)h;_(x]7*1a) = 5,
j
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for all i, k. This is clear if i > k, so we may assume i < k. Since f(x,) =0 it follows
from (4) above that

n
Y (=1elxla)xla)" " =0
r=0
and hence, replacing a by 7*~'a and multiplying by (x;|a)*~!, that
n
(5) (-1 e (x| "a)(x;1a)" " 7 =0
r=0

for all s>0 and 1<i<n. Now it is clear, by expanding the determinant
A(my+5(x | a) down the first column, that 4,,(x|a) is of the form

(6) h(xla)=Y (xila)MH-lui(x)
i=1

with coefficients u;(x) rational functions of x,,..., x, independent of m. (In fact,
u(x)=1/f"(x)).)
From (5) and (6) it follows that

i (-1 e x|r*"a)h,_ (x|a)=0

r=0

for each s > 0. Putting s =k —i and replacing a by 7‘*'a, we obtain the desired
relation.)

(c) Let A be a partition of length <n. Then
s(xla) = det(h,\i_,.ﬂ(xl Tl‘fa)),
= det(e)‘.l_,-ﬁ(xl-rf" ‘a)),

again in strict analogy with (3.4) and (3.5). (Let @=(a,,..., a,) € N". From (6
above we have

n
_ —; i+j—1
ha/-n+j(x|lrl Ia) Z (xkl‘rl ja)a‘ ! uk(x)
k=1

Y (xkla)u"(xklf"fa)j_luk(x)
k=1

which shows that the matrix H,=(h, _,,;(x|7'7/a)),; is the product of the
matrices ((x, | @)); , and B = ((x; |7'/a)/~'u,(x)), ;. On taking determinants it
follows that

det(H,) = A, det(B).

In particular, when a = § the matrix Hj is unitriangular and hence has determi
nant equal to 1. It follows that A, det(B) =1 and hence that det(H,) =A_/A; for
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all a€N". Taking a= A+ §, we obtain the first formula. The second formula,
involving the e’s, is then deduced from it and the result of (b) above, exactly as in
the text.)

The results of this Example, and their proofs, should be compared with those of
pxample 19. It should also be remarked that when a is the zero sequence (a, =0
for all n) then 5,(x|a) is the Schur function s5,(x).

71. Let R be a commutative ring and let S =R[h,;:7 > 1,5 € Z], where the h,, are
independent indeterminates over R. Also, for convenience, define Ay, =1 and
h,,=0 for r<0 and all sE€Z. Let ¢:§ =S be the automorphism defined by
olh,)=h, ;41 Thus h = ¢*(h,), where h, = h,;, and we shall use this notation
henceforth.

For any partition A we define

o Si=det(e7 i )icijcn

where n >1(A). These ‘Schur functions’ include as special cases the symmetric
functions of the last two Examples: in Example 19 we take R =k and specialize &,
to ¢*H,(V), and in Example 20 we specialize 4, to h,(x|7°a).

From (1) it follows that k, = §,,. We define

e, = 5(1r)
forall r>0, and set e, =0 for r <0.

(a) Let E, H be the (infinite) matrices
H= (¢i+lhi-i)i,jEZ’
E=((-1""¢e;;), ep:

Both are upper triangular with 1’s on the diagonal. Show that

E=H"",
(We have to show that

? B (=17 gl )M _) = By
i

for all i, k. This is obvious if i >k, so assume i <k and let r =k —i. Then (2) is
equivalent to

Y (=D %(e,_ )¢~ (k) =0
s=0

which follows from e, =det(¢'~/h;_;,)1¢ij<- by expanding the determinant
along the top row.)

(b) Deduce from (a) that

5 =det( ¢/ ley_i;)-
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(c) Let @: S — S be the R-algebra homomorphism that maps ¢*h, to ¢~ ‘e, for al|
r,s. Then o is an involution and w$§) =), for all partitions A.
(d) Let A=(ey,...,a,| By,..., B,) in Frobenius notation (§1). Show that with 5 as
defined in (1) we have

= det(s-(ail ﬁ,-))1<i,j<r’
(Copy the proof in Example 9 above.)

22. Let xy,..., X,,U,,...,u, be independent indeterminates over Z, and let f(¢) =
(t=x,)...(t =x,). For each re Z let

H,= Y wx* ' f(x)

i=1
and for each sequence a = (ay,..., a,) € Z’, where r <n, let M, denote the n X n
matrix
Ma = (uijx;!j+“-j)

where u;;=u; if1<j<r,u;;=1if j>r,and a;=0if j>r. Then let

S, =as(x) " det(M,).
Show that

sa = det(Hal-i"'j)l(l',j(r'
(Multiply the matrix M, on the left by the matrix whose (i,j) element is
xj7U/f'(x) if i<r,and is & if i>r)

23. The ring A, of symmetric polynomials in n variables x,,...,x, is the image
of A under the homomorphism p, of §2, which maps the formal power series
E(t)=L,, et to the polynomial [T17.,(1 + x;7) of degree n. More generally, we
may specialize E(¢) to a rational function of ¢, say

(%) E,,@=TT+x) [ TTQ+y).
i=1 '

Jj=1

(In the language of A-rings, this amounts to considering the difference x — y, where
x has rank m and y has rank n.)

Let x™ = (xy,...,x,,), Y™ =(y,,...,y,) and let 5,(x™ /y™) (or just 5,(x/y)
denote the image of the Schur function s, under this specialization. From () we
have

(™ ym™) = L (~1e0)h(y)

itj=r

and the formula (3.5) shows that 5,(x(™ /y(™) is a polynomial in the x’s and the
y’s, symmetric in each set of variables separately.
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These polynomials have the following properties:

(1) (homogeneity) 5,(x™ /y™) is homogeneous of degree |Al.

(@) (restriction) The result of setting x,, =0 (resp. y,=0) in s5,(x™/y™) is
5 (<7D /y) (resp. 5,(xm /y@= D),

(3) (cancellation) The result of setting x,, =y, in 5,(x™ /y™) is 5,(x(" =D sy(»=D)
(if m,n > 1.

(4) (factorization) If the partition A satisfies A, >7n3> A, ., so that A can be
written in the form A =((n™) + a) U B’, where a (resp. B) is a partition of length
<m (resp. <n), then

s, (x™ fy®) = (—1)!BIR(xtm, Y5, (x™) 55 (y™)
where R(x(™, y™) is the product of the mn factors x; -y, (1 <i<m,1<j<n).

It is clear from the definition that the s, satisfy (1), (2), and (3), and it may be
shown directly that they satisfy (4) (see the notes and references at the end of this
section). We shall not stop to give a direct proof here, because this property (4) will
be a consequence of the results of this Example and the next.

Moreover, these four properties characterize the s,(x/y). More precisely, let
Ama(= A, ®A,) denote the ring Z[x,,..., X, Y1,- .., ¥, 1*"*5* of polynomials in
the x’s and y’s that are symmetric in each set of variables separately, and suppose
that we are given polynomials s}(x™)/y™) € A, , for each partition A and each
pair of non-negative integers m, n, satisfying the conditions (1*)-(4*) obtained
from (1)-(4) by replacing s, by s} throughout. Then s¥(x(™ /y() =5,(x(™ /y(")
for all A,m,n.

(a) First of all, when n = 0 it follows from (4*) that
(5) sF(x(™ /@) = 5,(x(™)

for partitions A of length < m, and likewise when n = 0 that

€p) 2@ /™) = (- D5, (y™)
for partitions A of length <n.

(b) Next, let A, ,, denote the subring of A, , consisting of the polynomials f in
which the result of setting x,, =y, =t is independent of ¢. It follows from (3*) that
Gy €A, .

Let T, , be the set of lattice points (i, j) € Z? such that i > 1, j > 1 and either
i<m or j <n. We shall show that
6) the s¥ (x™ /y™) such that AT, , span A

m/n*

This is true when m =0 or n=0, by (5) and (5’) above. Assume then that
m,n > 1 and that (6) is true for m —1,n — 1. Let f€ A,, ,, and let fy=fl. ., o,
so that fo€ A,,_,,,-, and therefore is of the form

fo= L ayst (xm=Dyym=D)
A
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summed over partitions A CT,,,_, ,_;, with coefficients a, € Z. Let

@) g=r= X a5t (x™/y™).
A

Then g€ A, ,,, so that glxm-y,, =8 Ixm-y"-() = 0. Consequently g is divisible in
A, ., by x,—y, and hence (by symmetry) by R(x‘™,y™): say g=Rh where
he€A,, ,. By writing A in the form

h= 3 b, 5, (x™)s(y™)
a, B

summed over partitions a, 8 such that /(a) <m and I( 8) <n, it follows from (4*)
that g = Rh is a linear combination of the s}(x™, y™) such that (n™)cp.cT,, .
In view of (7) above, this establishes (6).

(c) Now let A be any partition. In order to show that s¥(x(™ /y(™) =5, (x(™ /y()
we may, by virtue of (2) and (2*), assume that m and r are large, and in particular
that m > |Al. Since 5,(x(™/y) € A, ,, by (3), it follows from (6) above that we
may write

(8) 5, (x(m fy(M) = E c“s:(x"")/y("))
u

where (by (1) and (1*)) the sum is over partitions u such that | u|=[A| and hence
I( ) < m (since |\l < m). If we now set y, = ... =y, =0 in (8), we obtain

(™) = Y ¢,5,(x™)
I

by virtue of (2), (2*), and (5). Hence c, = §,, and finally s, = 3.
24. (a) Let x =(xy,...,x,,), y=(y,,...,y,). If A is any partition let

Ay =TT (& ")’j)

(i,j)eA

with the understanding that x; =0 if i >m, and y; =0 if j > n. Also let
A= JT (1-x'%), am= TI (@-»'y)

1€i<j&m 1€i<j&<n
Then we have

1 sxy)= Y w(fi(x,y)/Ax) Aly)).

weS, xS,

In this formula, S,, permutes the x’s and S, permutes the y’s.
(Let s¥(x/y) denote the right-hand side of (1). We have

() sFp =a, (D7 'a (N L eW)wlxtry®f,(x, )

weSs, XS,

from which it is clear that sf €A,, ,, in the notation of Example 23, and it is
enough to verify that s¥ has the properties (1*)-(4*), loc. cit. Of these, all but the
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cancellation property (3*) are obviously satisfied. As to (3*), let o(u)=

(x/y)I, -y, =u> Which is a polynomial in u of degree say d. It will be enough to
show that ¢@(u) = ¢(0), ie. that d=0. If weS, xS, let w™l(x,)=x; and

w () =y If (i,j) € A, then x, —y, =w(x; yj) is a factor of wa(x ¥ which
therefore vanishes when x,, =y, = u. Hence cp(u) is a sum over those w € §,, X S,
such that (i, j) € A, that is to say i > A} and j > A;. For such a permutation w, the
degree in u of w(x®»y5f,(x, y))|,m-y"_u is

m—itn—j+A+X<m+n-2;

on the other hand, the degree in u of a; (x)as (Y, wy,-u is(M—1D+ (-1 =
m +n — 2. It now follows from (2) that d'= 0, as required.)

(b) When n=0, we have f,(x,y)=x* and the formula (1) reduces to the
definition (3.1) of s5,(x). Next, when m = 0, it follows from the definition (Example
23) that s,(x/y) becomes ( —1)*ws,(y). On the other hand, f,(x,y) becomes
(- 1™y* 5o that the formula (1) in the case m = 0 reduces to (3.8). Finally, as we
have already remarked, the factorization property (4) of Example 23 is an immedi-
ate consequence of (1), and so is the fact that 5,(x/y) =0 unless ACT,, ,.

(c) The sy(x/y) such that AcT,, , form a Z-basis of the ring A, ,, defined in
Example 23(b). (It follows from Example 23 that the s5,(x/y) such that AcT,,
span A,, ,,, and it remains to be shown that they are linearly independent. ThlS xs
clearly true if m =0 or n =0, by (3.2) and (3.8). Hence we may assume m > 1 and

>1 and the result true when either m is replaced by m—1, or n by n—1.
Suppose then that

Y a5 (x/y)=0
A

where the sum is over partitions A cT,, ,. By setting x,, =0 (resp. y, = 0) we see
that @, =0 for AcT, _, , (resp. ACI" .n—1)- Since T, , is the union of T, _,
and T, ,_,, it follows that a, = 0 for all A e T, n»as requ:red.)

Notes and references

Schur functions, despite their name, were first considered by Jacobi [J3], as
quotients of skew-symmetric polynomials by the polynomial a, just as we
have introduced them. Their relevance to the representation theory of the
symmetric groups and the general linear groups, which we shall describe
later, was discovered by Schur [S4] much later. The identity (3.4) which
expresses s, in terms of the A’s is due originally to Jacobi (loc. cit.), and is
often called the Jacobi-Trudi identity.

The results of Examples 1-4 may be found in Littlewood [L9], Chapter
VII, which gives other results of the same sort. The formula in Example 8
for the product of two Schur functions as a determinant in the A’s is
essentially due to Jacobi (loc. cit.), though rediscovered since. The result of
Example 9 is due to Giambelli [G8]. Example 10 is due to A. Lascoux [L1].
The proof of the law of quadratic reciprocity sketched in Example 17 is



62 I SYMMETRIC FUNCTIONS

essentially Eisenstein’s proof (see Serre [S13], Chapter I). The presentation
here is due to V. G. Kac [K1].

For Examples 18-21 see [M8]. For Examples 23 and 24, and the history
of the Sergeev—Pragacz formula (i.e., formula (1) of Example 24), see [P3],
also [P2] and [S27]. Other proofs of this formula, in the context of Schubert
polynomials, are due to A. Lascoux (see for example [M7]). The factoriza-
tion property (4) in Example 23 (which is a special case of the
Sergeev—Pragacz formula) is due to Berele and Regev [B2].

4. Orthogonality

Let x = (x,, x,,...) and y = (y;, y,,...) be two finite or infinite sequences
of independent variables. We shall denote the symmetric functions of the
x’s by s5,(x), p(x), etc., and the symmetric functions of the y’s by
(), pA(y), ete.

We shall give three series expansions for the product
[T -x )’i)_l
ij
The first of these is

4.1) ]_[(1 —x,y)” zzA () p,(y)

summed over all partitions A.
This follows from (2.14), applied to the set of variables x;y;.

Next we have

(4.2) H(l —-x;y,)” ZhA(x)mA(y) = ZmA(x)hA(y)

summed over all partitions A.

Proof. We have [](1 —x,.yj)" = ]-[H(yj)
i,j j

= ]_[ Z h,(x)y]

r=0

= Y h(x)y"

= Y h(xImy(y)
A
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where a runs through all sequences (a,, @,,...) of non-negative integers
quch that T a; <o, and A runs through all partitions.

The third identity is
4.3 ITa ~x5) 7 = L 5,(05,()
ij

A

summed over all partitions A.

proof. This is a consequence of (4.2) and (3.7'). Let x=(x,,...,x,),
y=Opeees y,) be two finite sets of variables, and as usual let §=(n — 1,
n—2,..-,0). Then from (4.2) we have

i j= a,w

4.4) as(x)as(y) l_[l(l —Jc,-y,-)"l =as(x) ) h(x)e(w)y+v?

summed over a EN" and w € §,,,

=as(x) Y eWhy_,,5(x)y?
B.,w

= ¥ ay(x)y?
B

by (3.7'). Since a, = s(w)a,, it follows that this last sum is equal to
La,(x)a,(y) summed over v, > 7,> ... > 7,20, ie. to

Z a,,5(x)ay, 5(y),
A

summed over partitions A of length < n. This proves (4.3) in the case of n
variables x; and n variables y;; now let n — = as usual.

We now define a scalar product on A, ie. a Z-valued bilinear form
(u,v), by requiring that the bases (k,) and (m,) should be dual to each
other:

(4.5) (h,\v mp,> = 8A;4
for all partitions A, u, where §,, is the Kronecker delta.

(4.6) For each n>0, let (u,), (v,) be Q-bases of A%, indexed by the
partitions of n. Then the following conditions are equivalent:
@) Cuyp,v,) =8, forall A, p;

®) Eyu,(x)uy(p) =TT, 1 —x;)7".
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Proof. Let
uy= Yy a,h,, uv,=Yb,m,.
p o
Then

<uA’UM> =2 @b,
p

so that (a) is equivalent to

(a') Y a,,b,, =8,
p

Also (b) is equivalent to the identity
X u,(D)u(y) =Y h,(xIm,(y)
A [

by (4.2), hence is equivalent to
(b,) E aApbAa = Spa °
A

Since (a’) and (b') are equivalent, so are (a) and (b). |

From (4.6) and (4.1) it follows that
4.7 (P D) = 8,2,

so that the p, form an orthogonal basis of A,. Likewise from (4.6) and
(4.3) we have

(4.8) (8), 8,0 =38,

so that the s, form an orthonormal basis of A, and the s, such that [A|=n
form an orthonormal basis of A”. Any other orthonormal basis of A" must
therefore be obtained from the basis (s,) by transformation by an orthogo-
nal integer matrix. The only such matrices are signed permutation matri-
ces, and therefore (4.8) characterizes the s,, up to order and sign.

Also from (4.7) or (4.8) we see that
(4.9) The bilinear form {u,v) is symmetric and positive definite. |

(4.10) The involution w is an isometry, i.e. {wu, wv) = {u,v).

Proof. From (2.13) we have w(p,) = +p,, hence by (4.7)
(o(p), @(p)) =<{pp, p.>

which proves (4.10), since the p, form a Q-basis of ‘A4 (2.12). |
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Finally, from (4.10) and (4.5) we have
(ers fu) =8,
where f, = @(m,), i.e. (¢,) and (f,) are dual bases of A.

Remarks. 1. By applying the involution  to the symmetric functions of
the x variables we obtain from (4.1), (4.2), and (4.3) three series expan-
sions for the product IT; (1 +x,y,), namely

4.1 IIa +x;y;) = Y 524 () (),
A

L)

4.2) [T +x3) = X m(e(y) = X e,(xIm,(y),
3%} A A

(4.3’) l_I (1 +x,~y,~) = Z sA(x)Sx(y),
4]

A
the last by virtue of (3.8).

2. If x,y are elements of a A-ring R, we have

o) = X 27 (g ()
A
= L SM)SHyM
A

from (4.1) and (4.3), and
M) =Y g 27 ()P (y)e
A

=Y SMx)S¥(y)e
A
from (4.1’) and (4.3’).
Examples
L Ifwetake y;= ... =¥, =4 Yys1=Yns2= ... = 0in (4.3"), we obtain

EW)" =Y 5,(x)s,(»)
A

n
- G
XI\:(A)SA x

in the notation of §3, Example 4.
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The coefficients of the powers of ¢ on each side are polynomials in n (with
coefficients in A) which are equal for all positive integral values of n, and hence
identically equal. Consequently we have

E(0)X = E(X )s,tw
3 \A
for all X. By replacing X, t by —X, —t we obtain
H)*=Y% ( A:)s,‘t"".
2 \A

These identities generalize the binomial theorem.
2. Let y,=¢'"! for 1 <i<n, and y;=0 for i > n. From (4.3') we obtain

-

n n
[TE(GH =Y ¢ ’[ S\
i=1 A A
in the notation of §3, Example 1. Likewise, from (4.3),

n . n
e Too
i=1 A J

L

A"

In these formulas we may let n — % and obtain

n(A")

-y 39
JL(+54 ™) = X e,
[T (15 "= £ Ao
i,j>l( e ) =§ H).(q)s}‘x ’

where H,(q) =TI, ¢ ,(1 — ¢"®) is the hook-length polynomial corresponding to
the partition A.

3. Lety,=...=y,=t/B, Yo 4s1=Vp42= ... =0, and then let n — . We have

1]

A"
I (1 + xT,) - IT exp(x;1) = exp(e;t)

and

1
m(';)—» 1A =r)!

XE€EA

where A(A) is the product of the hook-lengths of A. Hence from (4.3") we obtain

= g
exp(e,t) ;h(h)t

and therefore

n!
ef= X R,

|Al=n
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or equivalently
(e}, s,) =n!/h(A).

4. From (2.14') and (4.7) we have

<hn’PA> =1
for all partitions A of n. Dually,
(en, PA) =&
m n
5. ITITGi+y) = X si(x)sp(y)
i=1 j=1 A

summed over all partitions A =(A,,..., A,,) such that A, <n (i.e. A <(n™)), where
V=(m=X,...,m—X). (Replace y; by y; ! in (4.3"), and clear of fractions.)
Hence from §3, Example 10 we have

i=1 j=1

TTITA+x+y)= X dy,s,.(6)s5.(»)
A

summed over pairs of partitions A, u such that u c A c(n™). (This formula gives
the Chern classes of a tensor product E ® F of vector bundles, since if c(E) =
I1(1 +x;) and c(F) =TI(1 +y;) are the total Chern classes of E and F, we have
(E®F)=TI1 +x;+y).)

6. Let A =det((1 —x;)™ "), ¢, j<» (Cauchy’s determinant). Then

A=a5(x)a3(y)'1—[ ¢! —x,-y,-)-'.

i,j=1

For if we multiply each element of the ith row of the matrix (1 —x,y,)™") by
[T} (1 —x;y;), we shall obtain a matrix D whose (i, j) element is

[Ta-xy)= ¥ x*.(-1D"*e2,(»

rej k=1

in the notation of (3.6). This shows that D =A,(x)M(y), so that det(D)=
a5(x)ay(y). On the other hand, it is clear from the definition of D that det(D) =
A .H(l —x,-yj).
Since also
A=det(1+xy;+x2y}+...)

= Y det(xy™)
a

=) a,(x)y"
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the summation being over all a =(ay,...,a,) € N", it follows that

A=3 a,,5(0)a,,5(p)
A

summed over all partitions A of length < n. Hence we have another proof of (4.3),

7. Likewise the identity (4.3') can be proved directly, without recourse to duality,
Consider the Vandermonde determinant a4z(x,y) in 2n variables
X1yeees X, Y1r+ -2 Y3 ON the one hand, this is equal to a;(x)a;(y)[1(x; —y;); on the
other hand, expanding the determinant by Laplace’s rule, we see that it is equal to

Q) T (- 1D Pa (x)ay(y),

M

summed over w € N” such that 2n — 1> u; > u, > ... > u, >0, where i is the
strictly decreasing sequence consisting of the integers in [0, 27 — 1] not equal to any
of the y;, and e(u) = L (2n —i — p;). By writing p = A + & and using (1.7), we see
that (1) is equal to

C VN CTINE k) D NN €5 RN €SB
A

summed over all partitions A such that I(A) <n and I(A") <n. If we now replace
each y; by y7!, we obtain (4.3).

8. Let M be a module over a commutative ring A, and let ¢: M XM — A4 be an
A-bilinear form on M. The standard extension of ¢ to the symmetric algebra S(M)
is the bilinear form defined on each S$"(M) by

o)=Y, T eu,v,q)

WES,, i=1

where u =u,...u,, v =v,...v, and the u,;, v; are elements of M. In other words,
®(u,v) is the permanent of the n X n matrix (¢(u;,v;)).

In particular, let A =Q and let M be the Q-vector space with basis py, p,,...,
so that S(M) = Qlp,, py,...1=Aq. Define ¢(p,,p,)=r8, for all r,s> 1. Then
the scalar product (4.5) on A is the standard extension of ¢.

9. Let C(x,y)= [T(1 —x;y)". Then for all f€ A we have
i

(Clx, ), f(x)) =f(y)

where the scalar product is taken in the x variables. (By linearity, it is enough to
prove this when f=s,, and then it follows from (4.3) and (4.8).)
In other words, C(x, y) is a ‘reproducing kernel’ for the scalar product.

10. Let p{”? = Tm, summed over partitions A of n of length r, as in §2, Example
19. Show that

b+r—-1 b
LD VIl (R PR

a+b=n
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(Under the specialization h,— X for all r> 1, the Jacobi—Trudi formula (3.4)
shows that s, — 0if A, > 1, that is to say if A is not a hook; and if A =(a,1°) it is
casily shown that s, — X(X — 1)°. Hence from the identity ((4.2), (4.3))

T m () (y) = T 5(x)s,(y)
we obtain

Tm®mX W= ¥ s, 5x0XX-1°
a,b>0

from which the result follows.)

11. @) Let A be a partition of n. Show that when m, is expressed as a polynomial
in py--+» P the coefficient of p, is non-zero. (The coefficient in question is
n~Y(p,, m,), which is also the coefficient of h, in n~'p, expressed as a polyno-
mial in the A’s, and is given explicitly in §2, Example 20.)

(b) For each integer r > 1 let u, be a monomial symmetric function of degree r (i.e.
u,=m, for some partition A of r). Show that the u, are algebraically independent
over Q and that Ag=Qluy,u,,...]. (From (a) above we have u,=c,p,+
a polynomial in p,...,p,_,;, where c,+ 0. This shows by induction on r that
Qluys..- %, 1=Qlpy,..., p,] for each r > 1. Hence for each m > 1 the monomials
of degree m in the u variables span A'Q, and are therefore linearly independent

over Q.)

Notes and references

The scalar product on A was apparently first introduced by Redfield [R1]
and later popularized by P. Hall [H3]. Example 5 is due to A. Lascoux [L1],
and Example 11 to D. G. Mead [M10].

5. Skew Schur functions

Any symmetric function f€ A is uniquely determined by its scalar prod-
ucts with the s,: namely

f= Z<f:sx>sa
A

since the s, form an orthonormal basis of A (4.8).
Let A, p be partitions, and define a symmetric function s,,, by the
relations

5.1 (sm‘,s,,) ={5,,5,8,)



70 I SYMMETRIC FUNCTIONS

for all partitions v. The s, ,, are called skew Schur functions. Equivalently,
if c are the integers defined by

(5.2) $,85,= X €5,
A

then we have

(5.3 Sap= 2 ChS

In partlcular it is clear that s, ,, =s,, where 0 denotes the zero partition,
Also ¢}, =0 unless |A|=|ul+|v|, so that s,,, is homogeneous of degree
[Al =] y.l and is zero if |A|<| ul (We shall see shortly that s, , =0 unless
ADup)

Now let x=(x;,x,,...) and y=(y,,y,,...) be two sets of variables.
Then

Y 5.(0)5() = X chs,(0)s(y)
A A, v

=Y 5,(x)s,(y)s, ()

by (5.2) and (5.3), and therefore
Y 5(0)8() =s5,(N Y A (xIm,(y)
A v

by (4.2) and (4.3). Now suppose that y=(y,,...,y,), so that the sums
above are restricted to partitions A and » of length <n. Then the
previous equation can be rewritten in the form

Y 5, (a5 ()= L h(m,()a,, ;(y)
A v

Zh (x) E 6,(w)ya+w(;.:,+6)

weS,
summed over @ € N". Hence s, ,(x) is equal to the coefficient of y**° in

this sum, i.e. we have

Sa/u = Z S(W)hua-w(ws)
wES,

with the usual convention that s,=0 if any component «; of a is
negative. This formula can also be written as a determinant

(5.4) Snu = det(hh-m'”f)ui,jﬂ

where n > I(A).
When w =0, (5.4) becomes (3.4).
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From (5.4) and (2.9) we have also
(5.5) s*/#=det(e*'i'ﬂ9'i+i)1<i,j<m
where m >1()’), and therefore
(5.6) @(83/) = Sy

From (5.4) it follows that s,,, =0 unless ;> y; for all i, ie. unless
Ao . Forif A, < u, for some r, we have \; <A, <p, <y forl<j<r<i
<n, and therefore A;—pu;—i+j <0 for this range of values of (i, ).
Consequently the matrix (h, _, _;, ;) has an (n —r + 1) X r block of zeros
in the bottom left-hand corner, and therefore its determinant vanishes.

The same considerations show that if ADu and w, > A,,; for some

r <n, the matrix (h,, _, _;4;) is of the form (’g

and columns, and B has n — r rows and columns, so that its determinant is
equal to det(A4)det(B). Hence if the skew diagram A — u consists of two
disjoint pieces 6, ¢ (each of which is a skew diagram), then we have
Sy/u = 59 - §,- To summarize:

g , where A has r rows

(5.7) The skew Schur function s, /u IS zero unless A D, in which case it
depends only on the skew diagram A — . If 6; are the components (§1) of
A=, we have s, ,, = I1s,,.

If the number of variables x; is finite, we can say more:

(5.8) We have s,,,(x,,...,x,) =0 unless 0 < X;— p;<n foralli>1.

Proof. Suppose that X, — ;> n forsome r> 1. Since e, ,;=¢€,,,= ... =
0, it follows as above that the matrix (e, _ =i+ ;) has a rectangular block of
zeros in the top right-hand corner, with one vertex of the rectangle on the
main diagonal, hence its determinant vanishes.

Now let x = (x, x5,...), y =(y1, ¥3,...), 2=(zy, 25,...) be three sets of
independent variables. Then by (5.2) we have

(a) Y 5, (2)8(2)s,(y) = ¥ 5,(3)s,(2). I_,! A-x2z)"
Ap " &
which by (4.3) is equal to
]_I(l —x,-zk)—l . I_I(l —ijk)-l
ik jk

and therefore also equal to

(b) Y 5. (x,¥)s,(2)
A
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where s,(x, y) denotes the Schur function corresponding to A in the set of
variables (x;, X,,...,¥;, ¥,...). From the equality of (a) and (b) we con.
clude that

50,9 =X 5,,(x)s,(y)
(5.9) i
E e 5,(3)s, (x).

More generally, we have

(5.10) SA/“(X, ,V) = Z s)«/v(x)sv/y,(y)

summed over partitions v such that AD v D pu.,
Proof. From (5.9) we have

E sA/“(x,y)sM(Z) = sA(xy Y, Z)
m
= E SA/,(X)S,,()’, Z)

= E Sx/v(x)s,,/,,(y)s“(z)
"V

by (5.9) again; now equate the coefficients of s5,(2) at either end of this
chain of equalities.

The formula (5.10) may clearly be generalized, as follows. Let x@, ..., x"
be n sets of variables, and let A, u be partitions. Then

(5.11) SuxD, 0 xM) = ) l_[ 8,0 /y-0(x)

(v) i=1

summed over all sequences (v) = (v®, v, .. v™) of partitions, such that
vO =y, v®W = and v@cr®Oc ... cp™,

We shall apply (5.11) in the case where each set of variables x() consists
of a single variable x;. For a single x, it follows from (5.8) that s, ,(x) =0
unless A — u is a horizontal strip (§1), in which case s, ,(x) =x*~ “r Hence
each of the products in the sum on the right-hand side of (5.11) is 2
monomial x{...x%, where a;=|v®¥ — "D and hence we have
$y/u(X1,..., x,) expressed as a sum of monomials x°, one for each tableau
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(s1) T of shape A — u. If the weight of T is a=(a,..., a,), we shall write
7 for x“. Then:

(5.12) s'\/”'= ZIT
T
summed over all tableaux T of shape A — p. |

For each partition v such that |v|=|A—u| let K,_, , denote the
pumber of tableaux of shape A — u and weight ». From (5.12) we have

(5.13) sA/p. = E KA—u,vmv

and therefore

(514) K;\—p.,vz <SA/p’hv> = <sk’su.hv)
so that

(5.15) s,h, = Z)‘:KA_“',,SA.

In particular, suppose that » = (r), a partition with only one non-zero part.
Then K,_, (»y is 1 or 0 according as A — u is or is not a horizontal r-strip,
and therefore from (5.15) we have

(5.16) (Pieri’s formula) s,h=Y s,
A

summed over all partitions A such that A — ., is a horizontal r-strip. |

By applying the involution w to (5.16), we obtain
(5.17) 5.6, = 2. 5
A

summed over all partitions A such that A — u is a vertical r-strip. |

Remarks. 1. It is easy to give a direct proof of (5.17). Consider (for a finite
set of variables x,,...,x,) the product

Gurser= L e(w)xrwt L xo
wES, a

= Z au+a+8

a

where the sum is over all @ € N” such that each «; isOor1,and L o, =r.
For each such «, the sequence

p+ta+d=(u+a,+n—-1pu,+a,+n=2,...,u, +a,)
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is in descending order, so that we have only to reject those a for which
two consecutive terms are equal. We are then left with those a for which
A=p+a is a partition, i.e. such that A — u is a vertical r-strip. This
proves (5.17), hence also (5.16) by duality. We can now play back the rest
of the argument: (5.16) implies (5.15) by induction on the length of »,
hence (5.14), which in turn is merely a restatement of (5.13).

2. Proposition (5.12) is the origin of the application of Schur functions to
enumeration of plane partitions (see the examples at the end of this
section). For this reason, combinatorialists often prefer to take (5.12) as
the definition of Schur functions (see e.g. Stanley [S23]). This approach has
the advantage of starting directly with a simple explicit definition, but it is
not clear a priori why one should be led to make such a definition in the
first place.

3. In any A-ring we can define operations S** by the formula (5.3):
SVr= 3 ch S
v

Then (5.9), for example, takes the form of an addition theorem:

SMx+y)=Y SV (x)S*(y)
m

for any two elements x, y of a A-ring. Similarly for the other formulas in
this section.

4. The formula (5.4) shows that the skew Schur functions s, ,(x), where A
and u are partitions of length <p, are the p X p minors of the matrix
H, = (h;_{(x)), i.e. they are the entries in the pth exterior power A°(H,).
The relation (5.10) is therefore equivalent to

N(H, )= N(H,) N(H,).

Thus it is a consequence of the functoriality of A?, since H, ,= H, H,.

Examples

1. Let A — p be a horizontal strip. Then s,,, =h,=h,h, ... where the integers

v; are the lengths of the components of the strip. (Use (5.7).) Likewise, if A — u is
a vertical strip, we have s, ,, =e, e, ..., where again the »; are the lengths of the
components of the strip.

2. (a) Let A be a partition of n. Then the number of standard tableaux of shape A
is
Ky am=<s,hD)

by (5.14). By §4, Example 3 it follows that the number of standard tableaux of
shape A is equal to n!/h(A), where h(A) is the product of the hook-lengths of A.
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This result is true more generally if A is a skew diagram all of whose connected
components are right diagrams (i.e. diagrams of partitions).

(b) Let p be a positive integer and let A be a partition, A its p-core (§1, Example
8). A p-tableau of shape A — A is a sequence of partitions

x=#(0)cl.‘(l)c o C“(’")=A

such that u® — ¢~V is a border strip of length p, for 1<i<m. (Thus when
p=1, a p-tableau is just a standard tableau (and A =0); when p =2, it is also
called a domino tableau.)

Let A* be the p-quotient of A, thought of as a skew diagram with components
XD (0<i<p—1),and let A(A*) = [TA(AD) be the product of the hook-lengths of
a*. From §1, Example 8 it follows that the p-tableaux of shape A — A are in
one-one correspondence with the standard tableaux of shape A*, and hence by (a)
above the number of p-tableaux of shape A — A is equal to m!/A(A*), where
m = |A*|. This number is also equal to p™m!/h,(A), where h,(A) is the product of
the hook-lengths of A that are divisible by p (§1, Example 8(&)).

3. For each symmetric function f€ A, let f*: A — A be the adjoint of multiplica-
tion by f, i.e.

(fru,v)=C(u,fv)
for all u,v € A. Then f=- f*:A - End(A) is a ring homomorphism.

(a) Since (s 55,5, ) = (5),5,5,) = {5, ,, 5,) for all partitions A, u, », it follows that
sts, =s, . Hence from (5.9) we have
w OA T A

SA(x’y) = Z SP"LSA(I).S“()')
m

and therefore, for any fe A,

fG,y) = X st f(x) . 5,(»).
m

(b) We have hitm, =0 unless =AU v for some partition », and in that case
hi:m,, =m,. For

(h,f‘m“, h,) = <murhxhv> = (my,thAU V)

which is zero unless w =AU ».

In particular, h; m, = 0 if n is not a part of u, and h;'m,=m, if n is a part of
u, where v is the partition obtained by removing one part n from . It follows that
for every f(xg, x,%3,...) €A, (B fXxy,...,x,) is the coefficient of x§ in f.

(c) Next consider p;*. If N> n we have

(Pahnspa) =<y, Pyp)) = Ay D))
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for all partitions A of N —n, by §4, Example 4. Hence

Pihy=hy_,
and therefore

= 2 hr a/ahn+r
r>0

acting on symmetric functions expressed as polynomials in the A’s.
Dually

an. =( _l)n-l E e, (9/38,'_,,,

r>0

acting on symmetric functions expressed as polynomials in the e’s.

Further, we have {p,‘'p,, p,) =Py, P» p#) which lS zero if A+ uwU(n), and is
cqual to z, if A= u U (n). It follows that p,'p, =z,z, pﬁ if nis a partof A, and y
is the partition obtained by removing one part n from A. From the definition of z,
it follows that z,z;' =n.m, (1), where m,()) is the multiplicity of n as a part of

A, and therefore
P =nd/dp,

acting on symmetric functions expressed as polynomials in the p’s. In particular,
each p,; is a derivation of A.

Since each f&€ A can be expressed as a polynomial ¢(p,, p,,...) with rational
coefficients, it follows that

fr=¢(8/3p,,23/8p,,...)
is a linear differential operator with constant coefficients.

(d) For each n € Z, let m,: A - A be the opcrator defined as follows: if n > 1, 7, is
multlpllcatlon by p,; if n< —1, then m, =p2,; and =y is the identity. Then we
have

[ s Ty ] 'm+n,070
for all m,n €Z, so that the linear span of the =, is a Heisenberg Lie algebra.
4. We have

E n(l x)”! l—[(l x,xj)

i<j

where the sum on the left is over all partitions A.

It is enough to prove this for a finite set of variables x,,..., x,. Let ®(x,,..., x,)
denote L, 5,(x,,..., x,), which is now a sum over partitions A of length <n. By
induction on n, it is enough to show that

D(xy,...,%,,y) =B(xy,...,x,)(1 -»n~! ITa —xiy)_l.
i=1
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From (5.9) it follows that

D(xy,..0s %5, ¥)= Y, YA Hs (2,0, %)
Ap

where the sum on the right is over all pairs of partitions A D u such that I(u) <n
and A—pu is a horizontal strip. For each such pair A, u, define »Cpu by
pi— Vi=Ais1— Mgy (02 1), so that |A— pl=2A — p;+|p— vl Then A can be
reconstructed from u, v, and the integer A; — u,, and hence

(%) M )’”""s“(xl,...,x") = Y yl*1 —y)'ls,,(x,,...,x,,),
Ap ®,v

the sum on the right being over pairs of partitions u > v such that I(u) <n and
p— v is a horizontal strip. By (5.16), the right-hand side of (x) is equal to

Yy A=, x)8,(X1 e %)

v, r
summed over all partitions » of length <n, and all integers > 0; and this last
sum is equal to (1 —y)~!T17. (1 —x;y) " '®(x,,..., x,), as required.
5. (a) We have
Y os.=TT0-x7'TTa-xx)7",
; L

peven i<j

where the sum on the left is over all even partitions u (i.e. with all parts u; even).

Each partition A can be reduced to an even partition p by removing a vertical
strip, in exactly one way: we take u; = A; if A; is even, and u; = A, — 1 if A; is odd.
From this observation and (5.17) it follows that

(2 )(5e)-x

r»0

the sum on the right being over all partitions A. Since Le, = [1(1 + x,), the result
now follows from Example 4.

(b) We have

Y s,= l—[(l —xixj)"'l.

v'cven i<j

The proof is dual to that of (a): each partition A can be reduced to one with even
columns by removing a horizontal strip, in exactly one way. From this observation
and (5.16) it follows that

(L s)(Zn)-LTa

v'even r»0

and since L, , o A, =T1(1 —x,)~, the result again follows from Example 4.
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The involution w interchanges the identities in (a) and (b).
6. We have

T (=0, = TTA =) [T 4,57
A i

i<j

For if we replace each variable x; by ¥ — 1 .x; in Example 5(b), we shall obtain
I—I a +xixj)—l - E( _ l)lvl/zsy
i<j v

summed over partitions » with all columns of even length. Each partition A is
obtained uniquely from such a partition » by adjoining a horizontal strip, and
therefore

a-x" [<1j(1 +x) 7 = T T (=D 2sn,

r>0 v

=Y (- l)fms)«
A

where f(A) = L;,,[3X;) (and [x] is the greatest integer < x). Since

[ ] ( ) (mod?2), it follows from (1.6) that f(A) =n(A) (mod2).

7. The same argument as in Example 5(b) shows that

§t°()‘)3)‘=l-‘](1—b‘i) 'TTa- x,x,)

i<j

where the sum is over all partitions A, and c¢(A) is the number of columns of odd
length in A. This includes the identities of Example 4 (when ¢ =1) and Example
5(b) (when ¢ = 0).

8. By applying the involution w to Example 7 we obtain

Y W, = H
A

1+uo;

7 [

lx,,<,1 —X;X;

where the sum is over all partitions A, and r(A) is the number of rows of odd
length in A. When ¢ =1 this reduces to Example 4, and when ¢ =0 it reduces to
Example 5(a).

9. The products

14 -xx), l_[(l D10 -xx), l_[(l ADTA-xx).

i<j i<j i<j

(i.e. the reciprocals of those of Examples 4, 5(a) and 5(b)) can also be expanded as
series of Schur functions. The expansions may be derived from Weyl’s identity for
the root-systems of types D,, B,, C, respectively. (If R is a root system with Weyl
group W, R* a system of positive roots, p half the sum of the positive roots, then
Weyl’s identity ([B8], p. 185) is

(*) Y ew)er= T] (e*/*—e°/?)

weW a€R*
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where £(w) is the sign of w € W, and the ¢’s are formal exponentials.)
(a) When R is of type D, the identity (%) leads to
Y (=D (x,,...,x) =[]0 -x;x;)
L4 i<j
summed over all partitions 7 =(a; - 1,...,@,— 1} a,,..., a,) in Frobenius nota-
tion, where a; <n — 1.
(b) When R is of type C,, we obtain from (*)
T (=025 (5.0 x,) = [TA-xHTTA-xx)
p i i<j
summed over all partitions p=(a;+1,...,a,+ 1] ..., @,), where a; <n-1.
(c) When R is of type B,, we obtain from (%)
Z( - 1)(I¢I+p(¢))/2s¢(xl yores Xp) = ].—.[ a —x) H a -xixi)
o i i<j
summed over all self-conjugate partitions o= (ay,...,a,la),...,a,) such that
a,<n— 1, where p(o)=p.
10. In the language of A-rings, the identities of Examples 5(a), 5(b), and 9 give

series expansions (in terms of Schur operations) for o,(a%(x)), 0,(A%(x)), A,(o %(x)),
and A,(A%(x)), namely

ag(c?(x)= Y SH(x)#7?,

peven
g (A (x) =Y S*(x)"72,
A(a%(x)) =) S"(x)P/2,

P

A(2(x) = X §m(x)eim/2,

the last two summations being over partitions p = (a, + L.,a,+1la,...,a,)
ad 7=(e; - 1,...,a,— 1| a,,...,ap).
11. Let x,=...=xy=t, Xy, 1 =Xy42=...=0 in the formula of Example 4.

Then s, = (i{)t'” (§3, Example 4) and hence, for each n >0,

Y (I;{) = coefficient of £" in (1 —¢)" V(1 - £2)~NN-D/2
[Al=n

= coefficient of ¢" in (1 — )" NN*D/2(1 4 ¢)=NN-D/2

Since this is true for all positive integers N, it is a polynomial identity, i.e.

PN (X) = coefficient of ¢" in (1 — 1) ¥ X+V/%(1 4 ()~ X¥X-1/2
|Al=n
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12. Let x;= ... =xy=t/N, Xy, =Xy, = ... =0 in the identity of Example 4
and let N — . Then from Example 11 we obtain

Y h(A) ' = coefficient of ¢" in exp(z + 3t2)
|Al=n

where (§4, Example 3) A(1) is the product of the hook lengths of A. From Example
2 it follows that the total number of standard tableaux of weight (1*) is equal to p|
multiplied by the coefficient of ¢” in exp(¢ + $¢2). This number is also the number
of permutations w € S, such that w?=1.

13. Let A be a partition. A plane partition of shape A is a mapping 7 from (the
diagram of) A to the positive integers such that 7 (x,) > w(x,) whenever x, lies
below or to the right of x; in A. The numbers 7 (x) are the parts of , and

lwl="Y =(x)

XE A

is called the weight of 7. Any plane partition 7 determines a sequence A = A® >
XD > .. of (linear) partitions such that 7 1(i) = A¢=D — A® for each i > 1.

If m(x,;)> w(x,) whenever x, lies directly below x, (i.e. if the parts of «
decrease strictly down each column) then = is said to be column-strict. Clearly 7 is
column-strict if and only if each skew diagram 7~!(;) = AC~D — A® is a horizontal
strip.

A plane partition 7 has a three-dimensional diagram, consisting of the points
(i, j, k) with integer coordinates such that (i,j) € A and 1 <k < 7 (i, ). Alterna-
tively, we may think of the diagram of 7 as a set of unit cubes, such that (x)
cubes are stacked vertically on each square x €A. As in the case of ordinary
(linear) partitions, we shall use the same symbol 7 to denote a plane partition and
its diagram.

If § is any set of plane partitions, the generating function of § is the polynomial
or formal power series

x g

mES

in which the coefficient of g”" is the number of plane partitions of weight » which
belong to S.

(a) Consider column-strict plane partitions of shape A, with all parts <n. By (5.12)
the generating function for these is 5,(¢",¢",..., q), which by §3, Example 1 is

1- qn +c(x)

1Al +a()) _
q .
o4

(b) Let I, m, n be three positive integers, and consider the set of plane partitions 7
with all parts <r and shape A such that I(A) <! and /(') < m: that is, the set of
three-dimensional diagrams 7 which fit inside a box B with side-lengths [, m, n.
By adding !+ 1 —{ to each part in the ith row of =, for 1 <i </, we convert 7
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into a column-strict plane partition of shape (m,...,m)=(m') and largest part
<1+ n. From (a) above, the generating function for the plane partitions 7 C B is
therefore

I+n+c(x)

1-¢

1
® xe(m’) 1-¢

h(x)

In this form the result does not display the symmetry which it must have as a
function of I/, m, and n. It may be rewritten as follows: for each y = (i, j, k) € B,
define the height of y to be ht(y)=i+j+k—2 (so that the point (1,1,1) has
neight 1). Then the generating function (1) may be written in the form

1_q1+ht(y)
@ L= Tl =5 P

wCB YEB

(c) We may now let any or all of I/, m, n become infinite. The most striking result is
obtained by letting all of /, m, n tend to «: the box B is then replaced by the
positive octant, and for each n>1 the number of lattice points (i, j, k) with
i+j+k—2=n and i,j,k>1 is equal to the coefficient of ¢*~! in (1 —1)7?,
hence to 3n(n + 1). It follows that the generating function for all plane partitions

is

n(n+1)/2
o 1 qn+l @

=g =[1a-¢»"".

n=1 n=1

(d) Likewise, the generating function for all plane partitions with largest part <m
is

(@) l—.[l a _q,.)-min(m,n).

14. From Example 13(a), by letting n — o, the generéting function for all column-
strict plane partitions of shape A is

o g OE ()7

where Hy(q) =TT, (1 —g"™®).

Another way of obtaining this generating function is as follows. Let 7 be a
column-strict plane partition of shape A, and let S be the set of pairs (7 (i, j), )
where (i, j) € A. The elements of S are all distinct, because 7 is column-strict. We
order § as follows: (r, j) precedes (r', j') if either r >r’, or r=r' and j <j'. This is
a linear ordering of S. Define a standard tableau T'(w) of shape A as follows:
T(i,j)=k = (n(i,j),j) is the kth element of S in the linear ordering defined
above. For example, if 7 is

33211
22
1
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then S is the ordered set

(3) 1)’ (3’2)) (2’ 1)’(2’2)) (2)3)’ (l) l)’ (1)4)’ (1)5))
and T'(mr) is the standard tableau

12578
34
6

Conversely, let T be a standard tableau of shape A, and let 7 be a column-strict
plane partition such that T(w) = T. Let |A| = n, and for 1 < k < n let a; be the part
of 7 in the square occupied by k in T. Then a,> ... >a,>1 and a;, >4, ,
whenever k € R(T), where R(T) is the set of integers k € [1,n — 1] such that k + ]
lies in a lower row than k in the tableau T. Now let

a,—a;,, if k€R(T) andk#n
bk = ak_ak+1 -1 lf kER(T)
a,—1 if k=n

so that b, > 0 for k= 1,2,...,n. Then we have

n n
Y ay=n+r(T)+ Y kb,
k=1 k=1

where

r(T) = Y {k:k+ 1lies in a lower row than k in T)

and therefore the generating function for the column-strict plane partitions 7 such
that T(w) =T is

qn+r(T)¢"(q)'1

where as usual ¢,(q)=(1—g)...(1-¢g").
Hence the generating function for column-strict plane partitions of shape A is

) q"( ); q""’) / #a(q)

summed over all standard tableaux T of shape A.
From (1) and (2) it follows that

3) Y q" ™ =q" Wy, (q)/H,(q).
T

15. Let S be any set of positive integers. From (5.12) and Example 4 it follows that
the generating function for column-strict plane partitions all of whose parts belong
to S is
[Ta-¢"" IT a-g*n7".
ies i,jES
i<j
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(a) Take S to consist of all the positive integers. Then the generating function for
all column-strict plane partitions, of arbitrary shape, is

«©

@ l—[ a _qn)-((n+l)/2].

n=1

(b) Take S to consist of all the odd positive integers. We obtain the generating
function

o

@ [Ta-g*"H7"a-g 02,

n=1

Now the column-strict plane partitions with all parts odd are in one-to-one
correspondence with the symmetrical plane partitions = (i.e. such that #(i,j) =
x(j,i). For the diagram of a symmetrical plane partition may be thought of as a
sequence of diagrams of symmetrical (linear) partitions 7V > #® > ..., piled one
on top of the other; each 7 is of the form (ay,..., a, | ay,..., @,) in Frobenius
notation, and hence determines a linear partition o =Qa,+1,...,2a,+1)
with odd parts, all distinct; and the o can be taken as the columns of a
column-strict plane partition with odd parts. It follows that (2) is the generating
function for the set of all symmetrical plane partitions.

16. Let ®(xy,...,x,) =T1,(1 —x)7'T1; (1 —x;x))! as in Example 4. By setting
=0 in the identity of Chapter III, §5, Example 5 we obtain

) Y ums\(xy,.00,x,) = Y ®(xft, .., x2) /(1 —u] [x0-/2)
m,A )

where the sum on the left is over all partitions A =(A,,..., A,) of length <n, and
integers m > A;; and the sum on the right is over all £=(¢,...,¢,) with each
; ;Veisll;all rewrite (1) in the notation of root-systems. Let v,,...,v, be the
standard basis of R”". Then the set of vectors
R={zy(l<ign), tv;ty(1<i<j<n)}

is a root-system of type B,,, for which

R*={y(1<i<n),v;xy(1<i<j<n))}
is a system of positive roots, so that

p=3(2n—-1Duv,+ 2n-3)v,+... +v,)
is half the sum of the positive roots. The subset R, of R defined by

Ry={v;—v;:i #j}

is a subsystem of R of type A,_,, and R§=R*NR, is a system of positive roots
for Ry. The Weyl group W, of R, is the symmetric group S,, acting by permuta-
tions of vy,...,u,, and the Weyl group W of R is the semidirect product of W,
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with the group (of order 2") of transformations w,: v; = £,0,(1 <i<n), where 4
before £=(¢y,...,&,) and each &; is +1. In this notation,

I (1—e-~)/ Il a-e

a€R§

(WEZWO a(w)e”"’)/( w§W a(w)ewp),

by virtue of Weyl’s identity (Example 9). It follows that the right-hand side of (1)
(with x; replaced by e ") may be written as a sum over W, and by equating the
coefficients of #™ on either side of (1) we arrive at the identity

®(e™",...,e7 )

@) Y sie7,...,e7 ) =e ™I (mb+p) /] (p)
A

where 8= 1(v, + ... +v,), and for any vector v

J(w)= Y &e(w)e*,

weW

and the sum on the left is over all partitions A such that /(A) <n and I(A') <m (e,
such that A c(m™)).

(If preferred, the right-hand side of (2) can be written as a quotient of determi-
nants:

29 Y s, (x1,...,%,) =D,, /D,
A

where D, =det(x**2""  —xi~1), ., ._,, and the summation is as before over
partitions A c(m").)

This identity (2) is a polynomial identity in n independent variables e~". We
may therefore specialize it to obtain identities in one variable g, by replacing each
e~ by g/i, where the f; are arbitrary integers. This means that each exponential
e~Y is replaced by g¢"/?, where f= T f.v; and (v, f) is the standard scalar product
on R”. In this way we obtain

2 s(w)q-(’"o+9’wf)
Es(w)q_(Fva) ’

3) Y s (gh,...,q5) = g™
A

the sum on the left being over all partitions A C(m").

17. In formula (3) of Example 16 let us take f=2p, the sum of the positive roots
of R, so that f;=2n —2i + 1. On the right-hand side, the alternating sum

E e(w)q—(mup,zw,;)
is by Weyl’s identity (Example 9) equal to the product

l_I (q—(m0+p,a) _q(m0+p,a))

a€R*
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and therefore the right-hand side of (3) is equal to
q(2m0+2p,a) -1
q(2p»a) -1

a€R*
In this product the posmve roots v; — v;(i <j) make no contribution, because they
are orthogonal to 6= 3T o Hence we obtam the identity

)]
_ ) n qm+2i-l_1 qAm*i+i-H _q
r s e Lo=TI o1

Ac(m”) =1 gt imh -1

1€i<j<n
The left-hand side of (4) is the generating function for column-strict plane
partitions with odd parts <2n —1, and with at most m columns and at most »
rows; or equivalently (Example 15) it is the generating function for symmetrical
plane partitions a7 whose diagrams are contained in the box B =B , =
(G,j,kx1<i,j<n,1<k<m).

The right-hand side of (4) can be rewritten in a form analogous to that of
Example 13, formula (2), as follows. Let G, be the group of two elements
consisting of the identity and the mapping (i, j, k) = (j, i, k), so that the box B is
stable under G,. For each orbit  of G, in B let In| (=1 or 2) be the number of
elements of 7, and let

ht(n) = Y ht(y)

yen

where ht(i, j,k) =i +j + k — 2 as in Example 13. Then the generating function for
symmetrical plane partitions m C B is

1—ghm+hl

® _.
n€B/G, 1 _qht(n)

18. Let G, be the group of three elements generated by (i, j, k) = (j, k, i) and let

C, be the cube {(i, j, k):1 <i, j, k < n}. The formula (5) of Example 17 suggests the

following conjecture: the generating function for cyclically symmetric plane parti-

tions 7 (i.e. those whose diagrams are stable under G;) contained in the cube C,

should be
1- qht(n)+lnl

® —_—
neC,/G; 1-q"®

This conjecture has since been proved by Mills, Robbins, and Rumsey [M11].

Next, let G; be the group of all permutations of (i,j, k), and call a plane
partition completely symmetric if its diagram is stable under G4 The obvious
analogue of (5) and (6) for G is trivially false, because the rational function

1- th(n)+lnl

h
7eC,/Gg 1=
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is not a polynomial if n>3. However, it seems likelyt that the number of
completely symmetric plane partitions with all parts <n is correctly given by
setting g = 1 in this expression, i.e. it is equal to

ht(n) + Iyl
neC./G,  ht(n)

19. With the notation of Example 16, the set of vectors
Ry={+2y;(1<i<n), ty;xv;(1<i<j<n)}
is a root system of type C,, for which
Ri={2v;(1<i<n),yxv;(1<i<j<n)}
is a system of positive roots, so that
pi=nv;+(n—Duy+...+v,

is half the sum of the positive roots. The Weyl group is the same group W as in
Example 16.

We shall take f=p, in formula (3) of Example 16, so that e~ is replaced by
g™~ "*1. As in Example 17, by virtue of Weyl’s identity we have

E g(w)q-(mﬂn.wm) = H* (q-(m0+p.a/2> _q(m0+p.a/2>)
a€R]

and therefore the right-hand side of (3) is equal to

q(m0+p,a) -1
gérar—1

a€R}

Again the roots v; — v; (i <j) make no contribution to this product, and hence we
obtain

qm+i+j—l -1

@) Y s@"...9= TI1

Ac(m™ 1<icj<n ¢ 1

The left-hand side of (7) is the generating function for column-strict plane
partitions with largest part <n and at most m columns, and the right-hand side
can be written in terms of the height function introduced in Example 13, namely as

1 - ght+1
8) ,IJ) T pIe)
where D is the prism {(i, j, k): 1 <i<j<n,1 <k<m).

t This conjecture has recently been proved by J. Stembridge [S30).
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20. (@) Let 4 =(a;)) and B =(b;) be n X n matrices such that det A = 1. Let ;;
pe the determinant of the matrix obtained from A by replacing its ith column by
the jth column of B, so that

n
- ik
cij= ), a*by;,
k=1

where a'* is the cofactor of a,; in A, which since det A =1 is equal to the (i, k)
element of A~". It follows that ¢;; is the (i, ) element of A~'B, and hence that
det(c;)) = det B.

Now let r <n and suppose that for each j >r the jth column of A is equal to
the jth column of B. Then c;; = §;; whenever j >r, and hence we have

@ det(c;;), ; j<, = det B.
®) Let A=(ay,...,a,| By,..., B,) be a partition of length <n, in Frobenius

notation, and let
AP = (s &y @, | Brsees B By)

fori,j =1,2,...,r, where the circumflexes indicate that the symbols they cover are
to be omitted. Then the skew diagram [a;| B;]=A—A®) (which of course
depends on A as well as «a;, B;) is a border strip, and more precisely is that part of
the border of A consisting of the squares (A, k) such that & > i and k >j. With this
notation established, we have

@ 5= detspa, 1 89, i, s
(Let & =k — A, (1 <k <n). The sequence ¢=(£,) is obtained from the sequence
(-ay..., —a,,1,2,...,n) by deletion of B, +1,..., B, + 1. Hence the correspond-
ing sequence for the partition A%/ is obtained from ¢ by deleting —a; and
inserting B; + 1. It follows that, up to sign, Sla;8,) 18 equal to the determinant c;;
of the 7 X n matrix obtained from A =(h_, f,) by replacing its ith column by the
(B;+ Dth column of the matrix B=(h, _;,;)=(h_,,;). Moreover, the sign
involved is ( —1)#~**J, so that we have

3) det(s;,,  5,) = ( —1)'#' det(c;)).
On the other hand, by (1) above, det(c;;) is equal to the determinant of the matrix

obtained from B by rearranging its columns in the sequence (8, +1,...,8,+1,
1,2,...,n), and therefore

@ det(c;)) = (-1)""'det B= (- 1)'*'s,.

The formula (2) now follows from (3) and (4).)

21. Let 6, ¢ be two skew diagrams. Let a be the rightmost square in the top row
of 0, and let b be the leftmost square in the bottom row of ¢. Let ¢” (resp. ¢*)
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denote the diagram obtained from ¢ by a shift sending b to the square immeg;.
ately above a (resp. immediately to the right of a) and let 0% ¢ (resp. 0* ¢)
denote the skew diagram 0 U ¢” (resp. 6 U ¢").

(a) Show that

1) 565, =59, o+ 554y
v h

(From (5.12) it follows that

= T, U
5p5,= 3 x'x
T,U

summed over all pairs of tableaux T, U of respective shapes 8, ¢. Split up the set
of these pairs (T,U) into two subsets according as T(a) < U(b) or T(a) > U(b),
where T(a) is the symbol occupying the square a in T, and likewise for U(b).)

(b) In view of (5.7), the repeated use of (1) enables us to express any skew Schur
function as a sum of skew Schur functions corresponding to connected diagrams. I
particular, we have

(0)) hy= Y s,
]

summed over the 2"~! border strips (or ribbons) of length n. Taking the coeffi-
cient of x,...x, in both sides of (2) (or, equivalently, the scalar product with A])
we see that this decomposition describes the partition of the symmetric group S,
into the subsets of permutations having a given set of descents.

(c) Let A=(a| B)=(ay,...,a,| B;,..., B,) be a partition in Frobenius notation,
and let Sea1 8y S[al 81 denote the r X r matrices

Stat 8y = (5(a;1 8> Slalm=(( -7 ‘[a.lﬁ,)

in the notation introduced in Example 20. Show that
3) Sta1 8y =HaS(a p1Ep

where H, = (h, _, ), Eg=(eg_g). (Use (1) above.)

By taking determinants in (3) and using §3, Example 9, we obtain another proof
of the formula (2) of Example 20.

22. @) Let A=(ay,...,a. | By,..., B, p=C(yy,...,% | £1..., &) be two partitions
in Frobenius notation. Define matrices

S(al B~ ("(a,-l B,-))1<i.j<r’

Ha.? = (h“i'Y/)l<i<r.1<J‘<I ’
EBM‘ - (eﬁf‘é‘.‘)1<i<:,l<j<r :
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Then We have

S H
s (a|B) a,y
o Syuw=(-1) de‘( E;, 0 )

When g = 0 (so that s = 0) this formula reduces to that of §3, Example 9.

(Choose 1 > max(/(A),I(p)) and let I=(-ay..., —q,1,2,...,n), J=
(=Ypeees -%:,1,2,...,n). Then the sequence (i — A)), ¢; ¢, is obtained from the
sequence [ by deleting the terms B+ 1 (1 <i<r), and likewise the sequence
(j- pici<n is obtained from J by deleting the terms &; + 1 (1 <j <s). Hence
the matrix (A _, _;4;) is obtained from the matrix M = (h;_,) jye 1x; by deleting
the rows with indices r+ B;+1 (1 <i <r) and the columns with indices 5 + &; + 1
(1<j<s). Hence if U is the matrix of n +r rows and r columns which has 1’s in
the positions (r+ B;+1,i) (1 <i <r) and zeros elsewhere, and if V' is the matrix of
s rows and # + s columns that has 1’s in the positions (j,s + & +1) (1 <j <s) and
seros elsewhere, we shall have

s/\/p. = det(hxi_ /-‘j-i+j) = ( - l)k det B

where B is the matrix (of N=n+r+s rows and columns) (g Jll;)’ and

k=ri+rs+s*+|Bl+lel

Now let A be the N XN matrix whose first r +s rows are those of the unit
matrix 1y, and whose last n rows coincide with the last n rows of the matrix B.
From the definition of M it follows that det 4 =1. We now apply the method of
Example 20(a) (but with rows replacing columns): if ¢;; denotes the determinant of
the matrix obtained by replacing the jth row of A by the ith row of B, for
1<i,j<r+s, then det B=det(c;;). By calculating the c;; and paying careful
attention to the signs involved, we obtain the desired formula (1).)

(b) Let H, = (ha;-a;)’ Eg= (eﬂ,-ﬂ;) as in Example 21(c). From (1) it follows that

Hy'S@imBs ' Ha'Hay

@

(2) SA/ "( _1)s det _
” E; . E; ! 0

From Example 21(c) we have

- - i+
HZ'Sa p)Es ' = (( -1 Js[ailﬁjl)m,j‘,'
Consider the matrix H, lHc,‘.,. Its (i, j) element, say c;;, is equal to the determi-
nant of the matrix obtained from H, by replacing its ith column by the jth column
of H, . There are three possibilities:

(i) if ;= a, for some &, then c;; = &,;
(ii) if y; is not equal to any a;, and «; < v;, then ¢;; =0;
(iii} if y; is not equal to any a,, and ;> v, then c;; is (up to sign) the Schur
function corresponding to the border strip consisting of those squares (a, b) in
the border of A such that y;<b-a<a;
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Similar considerations apply to the matrix Ez ,E;'. Hence (2) leads to an
expression for the skew Schur function s, ,, as a determinant of Schur functions
border strips. We shall leave the precise formulation as an exercise to the reade;,

23. As in §3, Example 21, let 5,(x/y) denote the Schur functions associated wity
the rational function

m n
E, =Y eyt =TIa+xH)[TQ+yn™".
r>0 i=1 j=1
If w, denotes the involution o acting on symmetric functions of the y variables,
then 5,(x/y) is obtained from o, s,(x,y) by replacing each y; by —y;. Hence by

(5.9) and (5.6) we have

® sx/y) =Y (- 1)“_"ls#(x)s,\,/”,(y)
m

and

@ si(y/x) = (=DM, (e ).

(a) Let T, , denote the set of lattice points (i, j) € Z? such that i,j > 1 and either
i <m or j < n. By (5.8) and (1) above, 5,(x/y) # 0 if and only if there is a partition
uwCA such that I(p)<m and A;—p;<n for all i>1, and this condition i
equivalent to ACT,, ,.

(b) A bitableau T of type (m,n) and shape A — u (Where A D pu) is a sequence of
partitions

3) p=A0c\Mc camtm=)

such that the skew diagram #® = A® — \¢=D jg a horizontal strip for 1<i<m
and a vertical strip for m + 1 <i <m + n. Graphically, T may be described by
filling each square of 8% with the symbol i, for 1 <i <m, and each square of
6"+ with the symbol j’, for 1<j<n. Thus the symbols follow the order
1<2<...<m<1'<2 < ... <n’, and the conditions on T are

(i) in each row (resp. column) of T the symbols increase in the weak sense from
left to right (resp. from top to bottom);

(i) there is at most one marked symbol j’ in each row, and at most one unmarked
symbol i in each column.

With each such bitableau T we associate a monomial (x/y)” obtained by
replacing each symbol i (resp. j') by x; (resp. —y;) and then forming the product
of all these x’s and —y’s. It follows then from (2) above and (5.12) that

4) Siu(x/y) = Y (x/y)T
T

summed over all bitableaux T of type (m,n) and shape A — u.

(c) In (b) above the symbols followed the order 1 <2< ... <m <1'<2' < ... <n".
Show that (4) will remain true if this order is replaced by any other total ordering
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of the set {1,2,...,m,1,2',...,n'}. (In A-ring terms, this is simply the observation
‘thit the summands in x, + ... +x,, —y, — ... —y, may be permuted in any way.)

24"" (a) Let p be an integer >2 and let ¢,: A - A be the ring homomorphism
Jefined as follows: @ (h,)=h, ,, if p divides n, and @,(h,) =0 otherwise. (The
cffect of @, is to replace each variable x; by its set of pth roots.)

If A is a partition of length <n, let A* = (X")g, ¢, denote its p-quotient,
a5 in §1, Example 8. If p C A let

p-1
SA‘/I"‘ = 1_‘!) SA(r)/“(r) .
=

Show that qop(sA /“) = 18, if A, u have the same p-core, and that qop(sA /“) =0
.otherwise. (Even when A and p have the same p-core, we do not necessarily have
®c A®, so that 5,.,,. may be zero also in this case.)

(Let é=A+8, n=p+8, where §=(n—1,n-2,...,1,0), so that Sh =
det(hg,- ) by (5.4). For each r=0,1,...,p—1 let A, (resp. B,) be the set of
indices i between 1 and n such that ¢ =r(mod p) (resp. n,=r(mod p)). Then
7,05, /) is equal to +det M, where M is the matrix which is the diagonal sum of
the (not necessarily square) matrices M, = (h,_,,/,), (i,j) €A, X B,. It follows
that (pp(sv“) =0 unless |A4,|=1B,| for each r, i.e. unless A and u have the same
p-core. If this condition is satisfied, then @p(8y/,) = tI1det M, = ts,.,,..)

(b) Let @ =e2"!/P, Deduce from (a) that s, o, 0P 1) is zero unless

@ A and u have the same p-core;
(i) AV > u® for r=0,1,...,p—1;
(iii) each A®? — () is a horizontal strip.

Conditions (i) and (i) together mean that A — u is a union of border strips of
length p. We shall write A =, u to mean that conditions (i)-(iii) are satisfied.

If A=, u then 5,,(1,0,...,wP~")= +1. The sign, g,(A/u) say, may be
determined as follows. Let r; €[0, p — 1] be the remainder when &= A, +n—i is
divided by p, and rearrange the sequence ¢=(¢;,...,£,) so that & precedes ¢ if
and -only if either r;<r;, or r;=r; and &> §. Let £,(A) be the sign of the
corresponding permutation, and define &,(u) likewise. Then o,(A/u) =
&(Ne,( ).

25. We shall identify the elements of the ring A &, A with the functions of two
sets of variables (x) and (y), symmetric in each set separately: thus f®g corre-
sponds to f(x)g(y). Clearly, for any f€ A the function f(x,y) lies in A ® A, and
we define the diagonal map (or comultiplication) A: A - A ® A by

(Af)(x,y) =f(x,y).

Also the counit £:A = Z is the linear mapping which vanishes on A" for each
n>1 and is such that (1) =1 (so that &(f) is the constant term of f).

It is easy to verify that this comultiplication and counit endows A with the
structure of a cocommutative Hopf algebra over Z (for the definition of such an
object see, for example, [Z2]; the most important axiom is that A is a ring
homomorphism).
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(a) The definitions at once imply that

Ah,= Y h,®h,, Ae,= Y, e,®¢,,
ptq=n ptq=n

Ap,=p,®1+1®p, (n=1).
This last relation signifies that the p, are primitive elements of A.

(b) From (5.9) we have

Asy, = Z Sa/u @S,
®
for any partition A. Hence, with the notation of Example 3,
Af=Y s, f®s,
®
for any f€ A, and more generally

Af=Y ulfeu,
m

whenever (1), (v,) are dual bases of A.

(c) The ring A ® A carries a scalar product, defined by

(f1281,f2®82) =f1,f2)€81,82)

for f}, f2, 81,82 € A. With respect to this scalar product, the diagonal map A: A -
A ® A is the adjoint of the multiplication map A ® A - A (i.e. f® g — fg). In other
words,

(Af,g®h)={f,gh)

for all f, g, h € A. (By linearity it is enough to check that (As,, s, ®5,) = (s),5,5,),
which follows from (b) above together with (5.1) and (4.8).) Also the counit
e:A > Z is the adjoint of the natural embedding e:Z — A with respect to the
scalar product {m,n) =mn on Z.

These properties signify that the Hopf algebra A is self-dual.

(d) 1t follows easily from (c) that if f€ A and Af =Y a;® b, then
fHgh) =Y a(g)b (h)
i

for all g,h € A. In particular,
sit(gh) = X ¢l st (g)s,H(h).

m,v

(e) From (c) it also follows that an element p € A" (n>1) is primitive (ic.
Ap=p®1+1®p)if and only if p is orthogonal to all products fg, where f,g €A
are homogeneous of positive degree. In particular, { p,h,) =0 for all partitions A
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of n except A= (n). Since (k,) and (m,) are dual bases of A, it follows that p is a
scalar multiple of p,. Hence the p, (n > 1) are a Z-basis of the space of primitive

elements of A.

26, The identities (4.3) and (4.3') can be generalized as follows: for any two
partitions A, u we have

) L 50n (08,0 = TTA =x9) 7" L 5,0 (x)5,2(9);
P ] T
@ Y 5o (05,0 = TTA+x9) X 5,2 (2)s,, ().
P 13¥) T

(By applying the involution  to the symmetric functions of the x variables we see
that (2) follows from (1), so it is enough to prove (1). Let P(x,y)=T1; A =x yj)'l
and let (x), (y), (2), and (u) be four sets of independent variables. We shall
decompose the product

P=P(x,y)P(x,u)P(z,y)P(z,u)

in two different ways.
Firstly, from (4.3) and (5.9) we have

(a) P=Y s5,(x,2s5,(y,0)= Y s5,0(2)s,,(»)s(2)s,(u).
p

PsAp

On the other hand, using (4.3) and (5.9) we see that
(b) P=P(x,y) Y s,(x)s,(w)s,(y)s,(2)s,(2)s, (1)

o,V,T

=P(x,y) YL cks,(X)chs,(¥)s(2)s,(u)

oV, T, A

=P(x,y) X 5..(2)s,,(y)s(2)s,(u).

A B
Now compare the coefficients of s,(z)s,(«) in (a) and (b))

In view of Example 25 we may say that (1) is obtained from (4.3) by applying the
diagonal map A.

27. (a) By applying the same arguments as in Example 26 to the identities of
Examples 4 and 5 we obtain

3) Ysn=T10-x)"'TTA-xx)"" L5,
14 i i<j T
(4) Y sa=T1a —x,.xj)_I Y sy
peven igj T even
® x So/\ = [1a "xi"‘j)_l X Sp/r e

p'even i<j 7' cven



94 I SYMMETRIC FUNCTIONS

(b) Likewise, from the identities of Example 9 we obtain

(6) ZSW/A= n(l""x,’x‘,)EsA'/P,
- i<j P
@) Y= l_[ A+xx) Y Sy s
P I<) L4
8) }: a,5,0 () =TTA-x)[TA-xx) Y a,5,,,(—x).
i<j i<j o

Here, as in Example 9, 7 runs through partitions of the form (o; - 1,..., &, - |
LI ) in Frobenius notation; p through partitions of the form (a,, ,a |

a;—1,...,a,—1); o through self-conjugate partitions (ay,...,q,|ay,.. ’01,,);
and fma]ly a,=(—1lol+py2
28. Show that
iy~ ; -1
(a) Yy qlplsp/,\(x)sp/k(y) = H ((1 ) 1 H(l —‘I'xjyk) )’
PyA i»1 ik

() )y qlplsp'/a(x)sp/x(y) = H ((1 7 H(l +qixjyk))v

P A ik

1+ 2i-1
© quﬂl son(x)s, /A(y)-l_[((l+qz‘ l)H q XJYk).

le Y

(Let F(x,y) denote the left-hand side of (a). Then it follows from equation (1) in
Example 26 that

F(x,y)= 1_,‘[(1 —qx;y) " Fgr,y)
Js
and hence that

Fx,y)=T1 l_[(l qx,yk) .F(,y).

i»l j,k
But
F(O,y) = 2 q“"sp/,\(O)s /A(y) = E qlpl
Py A
=TTa-¢)"
i»1

and (a) is proved.
The identity (b) follows from (a) by applying the involution w to the symmetric
functions of the x’s.
Finally, let G(x, y) denote the left-hand side of (c). Again from Example 26 we
obtain
G(x,y) = n(l +qx;y,) . 0,G(gx, y)

ik
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where @y 18 the involution  acting on symmetric functions in the y variables, and
hence
1+gx Yk
Gx,y)=1] ——
y l—I 1— qzx y

ik Yk

.G(g%x,y).

The proof may now be completed as in (a) above.)
29. With the notation of Example 3, let
EXt)= Y eitn,
n>0

HY ()= Y hile.
n>0

Both EX(¢) and H*(¢) map A into Alt], and H*(t)w = wE*(1).
(a) Show that E*(¢) and H*(¢) are ring homomorphisms. (Use Example 25(a), (d).)

(b) Since h5; (h,) =h,_,, (with the usual convention that h, = 0 if r <0) it follows
that

HY)(HW) = Y, h,_,t™u"
(1) m,n3>0

=(1-nm) " "H)
and hence, using (a) above, that
H*()(H@Wf) = (1 — ) " HW)H (1) f
forall f€ A, so that
® H1)o H(w) = (1 — 1) ™ H(u) o H*(t)

where H(u) is regarded as a multiplication operator.
Show likewise that

®3) HY(t)o E(u) = (1 + ) E(u) o H*(1),
) EX(8)o E(w) = (1 - tu) "E(u)o E*(2),
(5) EX()o Hw) = +tw)Hu)o E*().

(c) For all f& A we have
Hl(t)f(xl,xz,...) =f(t,x1,x2,...).

(By (a) above, it is enough to prove this when f=h,, in which case it follows from

M)
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(d) Now define
B(t)= Y, B,t"=H(t)e E*(—-t7"),
nez
BX(t)= Y B}rt"=E(-t"1)e HX1),
nez
so that

= Z ( _]‘)’hn+r°er.L ’

r>0

Z(_l)e n+r

r>0

Each B, is a linear endomorphism of A, and B,}! is the adjoint of B, with respect
to the usual scalar product on A. Also B;' =(—1)wB,w for all n € Z.
Since

H(t)—GXP(Z — Pt )

n>1
( _l)n—'l
E(t)=exp| Y, ————p.t"],
n>1 n
we have
1 -1
(6) B(t)=exp| ¥ =p,t"|oexp| ¥ —ptet]|.
n>1 n n31 n
More generally, if ¢,,...,, are independent variables, let
B(ty,...,t,) =H(t)...H@t,)E*( =t ... E*(—¢]1).
Deduce from (5) that

B(t)...B(1,) = [1(1-17"). B(1y,...,1,)

i<j
and hence that

@) B(t)...B(,)1=[](1-4'4)H(,)... HG,).

i<j

Let A be a partition of length < n. By equating the coefficients of #* on either
side of (7), show that

B, () =TTA-R)h,

i<j
and hence by (3.4”) that
sy=B, ... B, (1).
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(e) Let o(tu) =X, c zt"u". Show that

(8) H(t)E( —u—l)(P(tu)'_‘(P(tu)

and deduce from (2), (4), and (8) that
B(t)B*(u) + tuB*(u) B(t) = ¢(tu),
or equivalently
B,B} +B,B,_, =8,

forall r,s €Z.
30, With the notation of §3, Example 21 define, for any two partitions A and u

s _ —j+1
sA/p—det(cp“l ! (hAs—#;-i+i))1<i,j<m

where m > max(/(1), I p)). (Thus §, ,o =35, as defined loc. cit.). Show that §,,, =0
unless A D u.

(a) Assume then that A D, and let 8= A — u. The function §, =§,,, depends not
only on the skew shape 6, but also on its location in the lattice plane. For each
(p.9) € Z? let 7, , denote the translation (i, j) = (i +p, j + ). Show that

-~ _ -~ - — _l-
Sro,100) = PSe> St o) =P e
and hence that
§ = @9-P§

In particular, §, is invariant under diagonal translation (p = ¢).

(b) Let 6 be the result of rotating 6 through 180° about a point on the main
diagonal. Show that §; = &£§,, where & is the involution defined by ¢*h, — ¢'~""h,.

(c) Let 8’ =X —u' be the reflection of @ in the main diagonal. Show that
§y = wSy, where w is the involution (§3, Example 21(c)) defined by w(¢*h,) = ¢~ %e,
for all r, s. Equivalently,

S/ = det( cp‘“?"i"(ex‘,_“}_i“)).
(The proof is the same as that of (2.9), using the relation E =H"! of §3, Example

21(a))

(d) Extend the results of Examples 20, 21, and 22 to the present situation.
(Example 20 goes throngh unchanged; so does Example 21(a), provided that the
contents (§1) of the squares a, b are related by c(b) = c(a) + 1. In Example 21(c),
the matrices H, and E, should now read

H,= (‘Paj+lha;—ai)’ Eﬂ= ((P_ﬂi_leﬂf'ﬂi)'
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In Example 22(a), the matrices H, ., and E, , should now read
H¢,7= (‘Pn*‘]h“t"“n)’ Eﬂ.$= (‘P-cl—leﬂj-e;)‘)

31. Asusual let H(t) =L, (h,t", and assume that the h, are real numbers (wity,
ho=1). The power series H(¢) is called a P-series if s, =det(h, _;,;) >0 for aj|
partitions A. In particular, the coefficients A, are > 0.

(a) If H(t) is a P-series, so also is H( —¢)~ 1,

(b) The product of P-series is a P-series. (Use (5.9) and the fact that the
coefficients ¢}, are >0.)

(o) If H(¢t) is a P-series and h,, = 0 for some n, then H(¢) is a polynomial of degree
<n. (For h,,, < hyh, since s, 1,>0, and hence A, ,, =0.)

(d) Every P-series has a positive radius of convergence. (We may assume that H(r)
is not a polynomial, hence h, > 0 for all n > 1, by (c) above. Since 5,2, > 0 we have
hpi1/hy <h,/h,_,, and hence the sequence of positive real numbers A, /h,
converges.)

(e) Let X,,,x, be a convergent series of positive real numbers. Then H(r)=
[1(1 —x,)~" is a P-series (by (5.12)).

®) If a>0, e* is a P-series. (For s, =a'*l /h(A) > 0, by §3, Example 5.)
From (a), (b), (), and (f) it follows that any H(¢) of the form
2 1+x,t

H(t) =e* s
nl--[l 1 = Yat

where @ >0 and Lx,, Ly, are convergent series of positive terms, is a P-series.
Conversely, every P-series is of this form (but this is harder to prove: see [T3)).

Notes and references

Example 2. The fact that the number of standard tableaux of shape A is
equal to n!/h(A) is due to Frame, Robinson, and Thrall [F8]. For a purely
combinatorial proof, see [F9], and for a probabilistic proof see [G15] or
[S2].

Example 3. The operators e;', A} were introduced by Hammond [H4],
and the s;* by Foulkes [F5], in both cases defined as differential operators.
See also Foulkes [F7].

Example 4. This identity is usually ascribed to Littlewood [L9], p. 238;
however, in an equivalent form it was stated by Schur in 1918 (Ges.
Abhandlungen, vol. 3, p. 456). Bender and Knuth found an elegant combi-
natorial proof (reproduced in [S23], p. 177), using the properties of Knuth’s
correspondence.

Examples 5 and 9. These identities are all due to Littlewood [L9]. The
observation that the identities of Example 9 follow naturally from Weyl’s
identity for the classical root systems is, I believe, new.
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Examples 13, 14, and 15. Plane partitions were first investigated by
MacMahon [M9], and the generating functions (1), (3), and (4) of Example
13 are due originally to him, but proved differently. The application of
gchur functions to these problems is due to Stanley [S23], who gives more
details and references.

Examples 16 and 17. MacMahon [M9] conjectured the generating func-
tion (Example 17, (4)) for symmetrical plane partitions, but was unable to

rove it. It remained a conjecture until proved by Andrews [A4].

Example 18. For an account of recent developments in the study of
gcnerating functions of plane partitions satisfying prescribed symmetry
conditions, see Stembridge [S31] and the references given there.

Example 19. The generating function (7) was established by Gordon (see
stanley [S23], p. 265) who did not publish his proof. It too was proved by
Andrews [A4]. .

Examples 20, 21, and 22. These results are due to A. Lascoux and P.
Pragacz [L2], [L3]. Examples 21(a) and (b) were contributed by A. Zelevin-

to the Russian translation of the first edition of this book.

Examples 25, 26, and 27. These examples were also contributed by A.
Zelevinsky. The Hopf algebra structure on A (Example 25) is discussed in
[G6], and it is shown in [Z2] that the whole theory of symmetric functions
can be systematically derived from this structure. The results of Examples
26 and 27 appear to have been discovered independently by various people
(Lascoux, Towber, Stanley, Zelevinsky).

Example 29. The operators B, were introduced by J. N. Bernstein (see

[Z2], p. 69).

6. Transition matrices

In this section we shall be dealing with matrices whose rows and columns
are indexed by the partitions of a positive integer n. We shall regard the
partitions of n as arranged in reverse lexicographical order (§1), so that (n)
comes first and (1") comes last. It follows from (1.10) that A precedes w if
A> p (but not conversely). A matrix (M, ) indexed by the partitions of n
will be said to be strictly upper triangular if M,, =0 unless A > u, and
strictly upper unitriangular if also M,, =1 for all A. Likewise we define
strictly lower triangular and strictly lower unitriangular.

Let U, (resp. U;) denote the set of strictly upper (resp. lower) uni-
triangular matrices with integer entries, indexed by the partitions of ».

(6.1) U,, U! are groups (with respect to matrix multiplication).

Proof. Suppose M, N € U,. Then (MN),, = £, M, N,, is zero unless there

. A . Av: o
exists a partition » such that A > v> pu, i.e. unless A > u. For the same

reason, (MN),, = M,,N,, = 1. Hence MN € U,.
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Now let M € U,. The set of equations
0 Z M, x, =y,
I

is equivalent to

(2) Z(M_l),\uy;n,:x/\‘

For a fixed A, the equations (1) for y, where v < A, involve only the x, for
w < v, hence for pu < A. Hence the same is true of the equations (2), and
therefore (M), , =0 unless p < A. It follows that M~ € U,.

Let J denote the transposition matrix:
1 i A =p,
A 10 otherwise.

(6.2) M is strictly upper triangular (resp. unitriangular) if and only if IMJ is
strictly lower triangular (resp. unitriangular).

Proof. If N=JMJ, we have N,,=M,,,.. By (1.11), A’ > ' if and only if
& = A, whence the result. |

If (u,), (v,) are any two Q-bases of A", each indexed by the partitions of
n, we denote by M(u,v) the matrix (M, ) of coefficients in the equations

uA = 2 MAuUﬂ,;
"

M(u,v) is called the transition matrix from the basis (u,) to the basis (v,).
It is a non-singular matrix of rational numbers.

(6.3) Let (u,), (v)), (w,) be Q-bases of A*. Then

® M(u,v)Mv,w) =M(u,w),

@) M, u)=M(u,v)™".

Let (1)), (v,) be the bases dual to (u,), (v,) respectively (with respect to the
scalar product of §4). Then

3 MW, v')=M,u) =M(u,v)*

(where M’ denotes the transpose and M* the transposed inverse of a
matrix M).

4) M(wu, wv) =M(u,v)

where w: A = A is the involution defined in §2.
All of these assertions are obvious.

Consider now the five Z-bases of A" defined in §2 and §3: (e,), ( s
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(n)r (my), (s,). We shall show that all the transition matrices relating pairs
of these bases can be expressed in terms of the matrix

K=M(s,m)

and the transposition matrix J.

since (m,) and (h,) are dual bases, and the basis (s,) is self-dual (4.8),

we have
M(s,h)=K*

by (6.3X3). If we now apply the involution @ and observe that
M(ws,s) =1,

by virtue of (3.8), we have

M(s,e) =M(ws,h) = M(ws,s)M(s,h) =JK*
by (6.3X1) and (4). Finally, by (6.3X3) again,
M(s,f)=M(s,e)* = (JK*)* =JK.

We can now use (6.3X1) and (2) to complete the following table of
transition matrices, in which the entry in row u and column v is M(u,v):

Table 1
e h m f s
e 1 K'JK* K'JK K'K K'J
h K'JK* 1 K'K K'JK K’
m K- VUK* K 'k* 1 KUK K!
f K~Kk* K- UK* K-VK \ 1 K-\
§ JK* K* K JK 1

Some of the transition matrices in Table 1 have combinatorial interpre-
tations. From (5.13) it follows that

(6.4) K, is the number of tableaux of shape A and weight . |

The numbers K,, are sometimes called Kostka numbers. By (6.4) they
are non-negative. Moreover,

(6.5) The matrix (K, ,,) is strictly upper unitriangular.

Proof. 1f T is a tableau of shape A and weight u, then for each r > 1 there
are altogether u,; + ... +pu, symbols <r in T, which must all be located in
the top r rows of T (because of the condition of strict increase down the
columns of a tableau). Hence pu, + ...+, <A, +... +A, forall r> 1, ie.
k<A Hence K,, =0 unless A > u, and for the same reason K, =1. |
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From Table 1 and (6.5) we can read off:

(6.6) () M(s, h) and M(h, s) are strictly lower unitriangular.
(ii) M(s,m) and M(m, s) are strictly upper unitriangular.
(iii) M(e,m) = M(h, f) and is symmetric.

(iv) M(e, f) = M(h, m) and is symmetric.

) M(e,h) =M(h,e) =M(m, f) = M(f,m).

i) M(h,s)=M(s,m).

(vii) M(e,s) =M(s, f)'.

In fact (Example 5 below) M(e, k) is strictly upper triangular (and
therefore by (6.6Xv) M(m, f) is strictly lower triangular).

(6.7 ) M(e,m),, =X, K,,K,., is the number of matrices of zeros and ones
with row sums A; and column sums .

(ii) M(h,m),, =T, K, K, is the number of matrices of non-negative inte-
gers with row sums X; and column sums ..

Proof. (i) Consider the coefficient of a monomial x* (where u is a
partition of n) in e,=¢, ¢, .... Each monomial in ¢, is of the form
I1; x{u, where each a;; is 0 or 1, and ¥; a;; = A;; hence we must have

i
I xfu= I xp
ij J

so that T, a;; = p;. Hence the matrix (a;;) has row sums A; and column
sums ;.

For (ii) the proof is similar: the only difference is that e, is replaced
by h,, and consequently the exponents a;; can now be arbitrary integers
>0.

Remark. From (6.4) and (6.7)(i) it follows that the number of (0, 1)-matrices
with row sums A; and column sums u; is equal to the number of pairs of
tableaux of conjugate shapes and weights A, . In fact one can set up an
explicit one—one correspondence between these two sets of objects (Knuth'’s
dual correspondence [K12], [S23].

Likewise, there is an explicit one—one correspondence, also due to
Knuth, between the set of matrices of non-negative integers with row sums
A; and column sums u;, and pairs of tableaux of the same shape and
weights A, u.

We shall now consider transition matrices involving the Q-basis (p,).
For this purpose we introduce the following notation: if A is a partition of
length 7, and f is any mapping of the interval [1, 7] of Z into the set N* of
positive integers, let f(A) denote the vector whose ith component is

fWi= Y A,
FG)=i
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for each i >
Let L denote the transition matrix M(p, m):

(6.8) = E th,mp'
m
with the notation introduced above we have.

69 Ly, is equal to the number of f such that f(A) = p.

Proof. On multlplymg out Pr=PyPy,--- > WE shall obtain a sum of mono-
mials x,(l,x,é) , where f is any mappmg [1,1(A)] - N*. Hence

b= E xf®
f

from which the result follows, since L, . 1s equal to the coefficient of x# in
Px

If w=f(A) as above, the parts p,, of p are partial sums of the A;
equivalently, A is of the form U, ; A, where each A is a partition of
u. We say that A is a reﬁnement of u, and write A <z u to express this
relationship between A and u. Clearly, <, is a partial order on the set %,
of partitions of n, for each integer n > 0.

Prooﬁ Let Ik=f([l’ k]) fOI’ 1 <k<l(/\). Since M = Z:f(J)_, /\J’ it fOllows
that
A’l + ... +Ak< E Mi<ﬂl + ... +p’k’

iel,
the last inequality because I, has at most k elements. |

Remark. The converse of (6.10) is false, since for example two distinct
partitions A and u of n such that /(A) = I( ») are always incomparable for
the relation <, but may well be comparable for <.

From (6.9) and (6.10) it follows that L,, =0 unless A<y u, hence
unless A < . The matrix L is therefore strictly lower triangular.

The transition matrices M(p,e), M(p, f), and M(p,h) may all be
expressed in terms of L:

(6.11) () M(p,e) = ezL*,
(i) M(p, f) =L,
(iii) M(p, h) =zL*,
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where L* is the transposed inverse of L, and & (resp. z) denotes tp,
diagonal matrix (g,) (resp. (z,)).

Proof. Since the bases dual to (k,) and (p,) are respectively (m,) apq
(z7'p,), it follows from (6.3) that

M(p,h) =M(z"'p,m)* = (z7'L)* =zL*.
Hence

M(p,e) =M(wp, we) =M(ep,h) = ezL*,
and

M(p,f)=M(wp, of) =M(ep,m)=¢L. |

Finally, we have
(6.12) M(p,s)=M(p,m)M(s,m)”" =LK',

We shall see in the next section that M(p, s), restricted to partitions of »,
is the character table of the symmetric group S,.

Finally, the relations between the six bases e, f, A, m, s, and p are
summarized in the graph below, in which the symbol attached to a directed
edge wv is the transition matrix M(u,v). (In the cases where M(u,v)=
M(v,u), the edge uv carries no arrow.) For the sake of clarity, the
diagonals of the hexagon have been omitted.

eL L
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Ex,mples

L M(h,m),, is equal to the number of double cosets S,wS, in S,, where
SA,sAleAZX e 8y =8, XS, X

5, For certain choices of A or u there are closed formulas for the Kostka number

Ky

(a) For any partition A of n, K, ;) is by (6.4) the number of standard tableaux of
shape A, SO that by §5, Example 2 we have K, o» =n!/h(}), where h(A) is the
product of the hook-lengths of A.

() Let A={(a, 1°) be a hook. Then for any partition wu of n=a+b we have

AR
the entries in the first column, which must all be distinct, and the top entry (i.e. the
aumber in the corner square of A) must be 1.

= (l( K l)>_ 1 . For the tableaux of shape A and weight . are determined by

(c) Suppose that A and u are partitions of n such that each part of u is > A,. In
any tableau T of shape A and weight p, the 1’s must occupy the first u, squares in
the top row, and hence T is determined by its entries in the remaining rows, which
constitute a tableau of shape v = (A,, A3,...) and arbitrary weight. Hence it follows
from (5.12) and §3, Example 4 that K, , = (I( p'),_ 1)

v

3. The (infinite) matrix K is the diagonal sum of matrices K, (n > 0), where
K,= K\ pe », We have Ky =K, =(1), and for n=2,3,...,6 the matrices K,
are shown on p. 111,

The matrices K, and their inverses have the following stability property, when
their rows and columns are ordered in reverse lexicographical order, as in the
examples on p. 111. Let m =X, ., ,, p(r), where p(r) is the number of partitions
of r; then the principal m X m submatrix in the top left-hand corner of K,, (resp.
;') is equal to the corresponding principal submatrix of K. (resp. K;;.!), for all
n'>n.

This is a consequence of the following fact: if u; > A,, then K, =K, ) 4+

for all r>1. (Each tableau of shape A+ (r)=(A;+r, Ay, A;,...) and weight
p+(r)=Cu; +7, 1y, u3,...) can be obtained from one of shape A and weight
by moving the top row r squares to the right and inserting r 1’s in the squares
vacated.)
4. Let K{;V denote the (A, u) entry of the inverse Kostka matrix K~'. Thus
K\ is the coefficient of k, in s, = det(h, _,,;), and is also the coefficient of s,
in m, expressed as a sum of Schur functions. We have KA(;') =0 unless A > u, by
(6.1) and (6.5), and K{; P =1.

(a) Let r, n be positive integers. Then

= ko=t
) =r r-1
[Al=n

if w is of the form (a,1%), where a + b =n; and is zero otherwise. (This follows
from §4, Example 10.)



106 I SYMMETRIC FUNCTIONS

(b) Suppose u =(a,1™) is a hook. Then

iy -ne
=D = (1) W+ ’
KGV=(-1) Hm;()t)!*“'
i»1

(By expanding the determinant det(h,, _;. ;) along the top row, we obtain

S,=hse, —h, 1€, 1+... +(=1"hyup,
from which it follows that s, is the coefficient of ¢” (where n=a +m =|pul) in

6)) (-D"E(-DL ht'=(=D"H@O 'L ht".

r»a r>a

Since

H(t)“=(1+ r h,t')-l

r>1l
- L 0" ( T )
n>0 r>1
it follows that (1) is equal to
I(v)!
-1 ’"( h,t’) —)I 1,
(-1 rg ;( ) TTmG)
i»1

the right-hand sum being over all partitions ». Now K{;V is equal to the
coefficient of h, in this expression.)

(c) Suppose u is a partition of the form (ay,...,a,,1™), where r>1, a,—a;,,>
r—2 for 1<i<r—-1, and a,>r. Then for any partition A of weight m+
a,+ ... +a, we have

)y =t .
T monr St emiei =i+ Digy s

i»1

KA(; = (__ I)I(A)'O'I(u)

(By expanding the determinant of the matrix (h ) down the first column, we

shall obtain

wi—i+j

r
5, = 2 (- l)l_lhal_,.,,ls“u),

i=1
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where pD=(a+1,...,a,_1+1,8;,4,...,a,1™). From this it follows that
- i-1 -
KL; V= Z(‘l)‘ Ki—(l?z,—:n),u(“)

where the sum is over integers { = 1,2,...,r such that ¢, —i + 1 is a part of A, and
r-lai—i+ 1) denotes the partition obtained by deleting this part. The formula

ay NOW be proved by induction on r; the starting point r =1 of the induction is
he formula of (b) above.)

(@ Let p be a partition of length l By expanding the determinant det(h,‘l_ ,-+j)
down the last column, we shall obtain

!
1=i
Su = E (-1 'hp,-i-l—isv(i)

i=1

where ¥ =(py,.o pi_yy iy — 1,..., gy — 1). These partitions »® are all con-
tained in p, and the skew diagram p — v is a border strip (or ribbon) of length
wtl=i and height / —i which starts at the square (r,1), i.e. intersects the first
column. Hence if we define a special border strip to be one that intersects the first
column, we have

(2) Ki; ) . E (- l)ht(S)
S

summed over all sequences S = (@, u®,..., u®) of partitions such that r =I(A),
0=p@cuWc ... cu® =y, with each 6;=u® — uli=1 a special border strip,
and such that the lengths of the 6, are the parts of A in some order; and finally
n(§) = i, ht(6,).

() The combinatorial formula (2) above may be used to derive closed formulas for

K{;V in certain cases, of which the following is a sample:

(5 if w=1(a,1™) is a hook (as in (b) above), §, must be a hook of length A, > a,
and 6,,..., 6, are vertical strips. Hence the formula (2) leads to the result of
(b) above.

(i) KGR = (=1 if p=(a,1°), and is zero otherwise.

(iii) If A=(a,1°) with @ > 1, then K{; " is equal to (=1)**'(b + 1) if p=(17*?);
to (—1)*"% if u=(a,2%,17) with «+ B <a; and is zero otherwise.

(iv) If A is of the form (r*), then K{;V =0 or %1, because there is at most one
choice for S.

5. A domino is a connected horizontal strip, i.e. a set of consecutive squares in the
same row. If A and u are partitions of n, a domino tabloid of shape A and type p
is a filling of the diagram of A with non-overlapping dominos of lengths u), u,,..:,
dominos of the same length being regarded as indistinguishable. Let d,, denote
the number of domino tabloids of shape A and type u. Then we have

M(e,h),, =M(h,e),,=¢5,d,,

where as usual g, = (—1)I#I=1w),
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(Since

. . -1
E()=H(-1)"'= (1 - (—1)“'h,.t")

i»1

=3 ( Y (~1)i"’hit‘)r

r»>0 Vi1

it follows that, for each integer n >0,
ell = Z stxha
a

summed over all finite sequences a=(ay,..., @,) of positive integers such thy
L @, =n, where &, =(—1)X*~D, Hence for any partition A we have

€, = E Sphﬁ
B

summed over all sequences B=(p,,..., Bs) of positive integers that can be
partitioned into consecutive blocks with sums A}, A,,.... Such sequences are in
one—one correspondence with domino tabloids of shape A.)

It follows that M(e, h),, =0 unless u <y A, and that M(e, h),, = &,. Thus the
matrix M(e,h)e is a strictly upper unitriangular matrix of non-negative integers,

6. Since by (6.7Xv) the transition matrix M(f,m) is the transpose of M(e, k), it
follows from Example 5 that the ‘forgotten’ symmetric functions f, are given by

fA =& Z du.Am/.L
M

so that ¢, f, is the generating function for domino tabloids of type A. In particular:

@) fgny=Lm,=h,, since for each partition u of n there is just one domino
tabloid of shape w and type (1").

(b) If A=(r1""") where r > 2 we have
r-1
fA =(-1 Z c.m,
u

where ¢, =, + 4, + ... . For a domino tabloid of shape u and type (r1"7") is
determined by the position of the single domino of length r, which can lie in any
row of u of length u, >r, and has u; —r + 1 possible positions in that row. Hence
C,M-=Em>r(“‘i_r+ 1)=Ei>r -

7. A domino tableau of shape pu and type A is a numbering of the squares of the
diagram of u with positive integers, increasing along each row, and such that for
each i > 1 the squares numbered i form a domino (Example 5) of length A;. In this
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t‘,’l.minology, (6.9) may be restated as follows: the number of domino tableaux of
shape 1 and type A is equal to LM. (For each such domino tableau determines a
mapping £:[1, (0] = [1,1( )] such that f(A) = p by the rule that f(i) =j if the
squares numbered i/ lie in the jth row of u; and conversely each such mapping
determines a domino tableau of shape . and type A, in which the A; squares
qumbered i lie in row f())

8. The weight of a domino tabloid (Example 5) is defined to be the product of the
jengths of the leftmost dominos in the successive rows. Let w,,, denote the sum of
the weights of all domino tabloids of shape A and type p. Then we have

) M(p,h)ru = 6,5,M,,-

(Since

P(t)=H'()H(t) ™"

=y (—1)‘( Y h,t’)i(

i»0 r>1

> rh,t"‘)

r>1

it follows that, for each integer n > 1,

Pp= E (- l)l(a)_l ah,
a

summed over all finite sequences a=(a,,...,a,) of positive integers such that
T a; =n, where /() is the length r of the sequence. Hence for any partition A we

have

Py= %( — 1)V

summed over all sequences B=(p,..., Bs) of positive integers that can be
partitioned into consecutive blocks (ﬁ,,...,Bil),(Bi,“,...,ﬁ,.z),... with sums
Ay Ag,...; where ug is the product B, B; .y Bj,+; ... Of the first terms in each
block. As in Example 5, such sequences are in one-one correspondence with
domino tabloids of shape A, and u, is the weight of the tabloid.)

From (1) and (6.11) it follows that M(p,e),, = g,w,,., M(f, p),, = 6,2, 'w,,, and
M(m, p),, = &,,2; 'w,,. Hence

_ -1
afi= Z Zy WauDy
n

is a polynomial in the power-sums with positive rational coefficients. Also eL ‘ez
is a matrix of non-negative integers, with (A, u) entry w,,.

9. From (6.11) we have M(h,m)=L’'z"'L and M(m,f)=L"'eL. Comparison
with Table 1 shows that the matrices K and L are related by

K'K=L'z"'L, K YUK=L"%L.
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Hence the matrix X =LK™ = M(p, 5) satisfies

XX' =z, X leXx=1J.

10. For each partition u let
= I—[ m;(u)!
izl

and let U denote the diagonal matrix (u,). Thenithe matrix LU is a strictly lower
unitriangular matrix of non-negative integers.

(Let A, u be partitions of » and let E,, denote the set of mappings f:[1,/(A)] »
(1,/C )] such that f(A) = u, so that by (6.9) we have L,, =|E, | Also let S»=
1S, be the subgroup of Sy, that fixes u. If f€E,, and w € S* it is clear
that wf € E, ,, so that §* acts faithfully on E,,. Hence L,, =|E, | is divisible by
|S#|=u,. Finally if A =y we have E, =S* whence L,, =u,.

The matrix Lu~! is the transition matrix M(p,m) between the power-sum
products and the ‘augmented’ monomial symmetric functions #, = u,m,. We have

m,= Y xf M

where [ =1I(u) and the sum is over all sequences (i,,...,i;) of pairwise distinct
positive integers. Since Lu~! is unitriangular, (/2,) is a Z-basis of the subring
Zp,,py...10f A.

11. Let A =(A,..., A,) be a partition of n. Show that
m, = 2 Sa

summed over all derangements « of A. (Multiply m,(x,,...,x,)=Xx* by
as(xy,...,x,)) Hence K{;V=r—s, where r (resp. s) is the number of derange-
ments a of A such that s, =s, (resp. —s,).

Notes and references

The relations between the various transition matrices contained in Table 1
and (6.6) were known to Kostka [K16], who also computed the matrices K,
and K,' up to n=11 [K17]). See also Foulkes [F7]. The formulas in
Example 4(a), (b), and (c) are taken from [K17], and those in (d) and (e)
from [E1]. The results in Examples 5-8 are due to Egecioglu and Remmel
[E2]. See also [D6].
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7. The characters of the symmetric groups

In this section we shall take for granted the elementary facts aboy
representations and characters of finite groups.

If G is a finite group and f, g are functions on G with values in
commutative Q-algebra, the scalar product of f and g is defined by

1
= e— -1
(f,8) Gl xech(x)g(x ).

If H is a subgroup of G and f is a character of H, the induced character
of G will be denoted by ind$,(f). If g is a character of G, its restriction t,
H will be denoted by res(g).

Each permutation w € S, factorizes uniquely as a product of disjoint
cycles. If the orders of these cycles are py, p,,..., Where p; > p,> ..
then p(w)=(p,, p,,...) is a partition of n called the cycle-type of w. 1t
determines w up to conjugacy in S,, and the conjugacy classes of S, are
indexed in this way by the partitions of n.

We define a mapping ¢: S, = A" as follows:

¥ (W) =Ppy.

If m, n are positive integers, we may embed S,, X S, in S, ., by making
S,, and S, act on complementary subsets of {1,2,...,m +n}. Of course
there are many different ways of doing this, but the resulting subgroups of
S,.+n are all conjugate. Hence if veES,, and weS,, vXweS, ., is
well-defined up to conjugacy in S,,, ,, with cycle-type p(v X w) = p(v)U
p(w), so that

(7.1) Yo Xw)=y¢@)w).

Let R" denote the Z-module generated by the irreducible characters of
S,, and let
R= @ R",
n>0
with the understanding that S, = {1}, so that R® = Z. The Z-module R has

a ring structure, defined as follows. Let fER™, g€ R", and embed
S, XS, inS Then fXg is a character of S,, X S,, and we define

m+n-°
f.g=ind§rsss (fxg),

which is a character of S,,,,, i.e. an element of R™*". Thus we have
defined a bilinear multiplication R™ X R” - R™*" and it is not difficult to
verify that with this multiplication R is a commutative, associative, graded
ring with identity element.
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Moreover, R carries a scalar product: if f,g€R,say f=Yf,,g=Lg,
with fn» & € R”, we define

<f’ g> = Z <fn’ gn>sn'

n>0
Next we define a Z-linear mapping
ch: R-A=A¢,C
as follows: if f€ R", then
ch(f) =(f, ¥s, = ;1,- Es fw)g(w)
! yes,

(since y(w)= ¢ (w=")). If f, is the value of f at elements of cycle type p,
we have

(72) Ch(f) = Z zp-lfppp'

|pl=n

ch(f) is called the characteristic of f, and ch is the characteristic map. From
(7.2) and (4.7) it follows that, for f and g in R",

(ch(f),ch(g) = ¥ z;'f,8,=(f.8)s,

|pl=n

and hence that ch is an isometry.
The basic fact is now

(7.3) The characteristic map is an isometric isomorphism of R onto A.

Proof. Let us first verify that ch is a ring homomorphism. If f€ R™ and
gER", we have

ch(f.g) = (indfryes (FX ), ¥)s,,,
= (fxg,res§”*Sr(¢))s,xs,
by Frobenius reciprocity,

= <f7 ‘/’)S,,,<g, d’)s,, = Ch(f)-Ch(g)

by (7.1).
Next, let m, be the identity character of S,. Then

ch(n,)= ¥ z,'p,=h,

|pl=n
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by (7.2) and (2.14). If now A =(A;, A,,...) is any partition of n, let
denote m, .7,,..... Then =, is a character of §,, namely the characte:
induced by the identity character of S, =S, X§,,X..., and we hay,
Ch(ﬂ)‘) = hA'

Now define, for each partition A of n,

(7.4) x*=det(n, _ ;) €R",

1<i,j<n
i.e. x* is a (possibly virtual) character of S,, and by (3.4) we have
(7.5) ch( x*) =s,.

Since ch is an isometry, it follows from (4.8) that { x*, x*) = §,, for any
two partitions A, u, and hence in particular that the x* are, up to sign,
irreducible characters of §,. Since the number of conjugacy classes in §, js
equal to the number of partitions of n, these characters exhaust all the
irreducible characters of S,; hence the x* for |A|=n form a basis of R"
and hence| ch is an isomorphism of R" onto A" for each n, hence of R
onto A.

(7.6) (i) The irreducible characters of S, are x*(|Al = n) defined by (7.4).
(ii) The degree of x* is K, ), the number of standard tableaux of shape ),

Proof. From the proof of (7.3), we have only to show that x* and not — y*
is an irreducible character; for this purpose it will suffice to show that
x (1) > 0. Now we have from (7.5) and (7.2)

si=ch(xM =X z,'x'p,
P

where x; is the value of x* at elements of cycle-type p. Hence
(7.7) X, =<8, p,)
by (4.7), and in particular
x (1) = xdn = {51, P
so that
hi=pi= L x*Ds,

|Al=n
and therefore x*(1) = M(h, )y, , =K, oy from Table 1. |
(7.8) The transition matrix M(p, s) is the character table of S,, i.e.
pp = Z XpAsA'
A

Hence x,' is equal to the coefficient of x**% in asp,.
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This is a restatement of (7.7).

Remark. From Table 1 in §6 we have
h=s,+ % K,\s.,

> A

ey =5+ L K s,
<A

Hence
m=x*+ XL K, x*
>

e =x*+ Y K\ x*
mw<A

These relations give the decomposition of the induced modules H, =
ind§x(1) and E, = ind§( &) respectively. It follows that H, and E,. have a
unique common irreducible component, namely the irreducible §,-module
with character x*. This observation leads to a simple construction of the
irreducible §,-modules: see Example 15 below.

Let A, u, v be partitions of n, and let
A A v 1 A v
Y= XN X5, = — Y xw)x*(w)x”(w)
' wes,

which is symmetrical in A, u, v. Then we have, for two sets of variables
x=(x,%5,...) and y = (y;,y,,...)

(1.9 () =Y A5, (x)s,(y),

mov

where (xy) means the set of variables x;y;. (Compare (5.9).)

Proof. For all partitions p we have p,(xy)=p,(x)p,(y) and hence from
(7.8)

Y s =Y x*s(x)s,(y)
A

v

so that s,(xy) is the coefficient of x* in the right-hand side. |

Let f, g € A", say f=ch(u), g = ch(v) where u,v are class-functions on
8, The internal product of f and g is defined to be

f*g=ch(u)
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where uv is the function w— u(w)v(w) on S,. With respect to thjg
product, A" becomes a commutative and associative ring, with identity
element 4,

It is convement to extend this product by linearity to the whole of 4
and indeed to its completion A (§2); if

f=Xf™ g=Y g"”

nz0 n>0
with ™, g™ € A", we define

frg= X fMxg™.

nx>0

For this product, A is a commutative ring with identity element i=¢ h,,
and A is a subring (but does not contain this identity element).
If A, u, v are partitions of n, we have

(7.10) Sy %8, = D NS,

so that by (7.9) and the symmetry of the coefficients v,
(7.11) 5:(9) = X 5,(x)(s, % 5,)(y).
uw

Also we have
(7.12) DrA*Pu= 8,2,

so that the elements z; 'p, € A%, are pairwise orthogonal idempotents, and
their sum over all partitions A of n is by (2.14) the identity element A, of
A

Finally, for all f, g € A we have
(7.13) (f,g>=(f*g)D)

where (f * g)(1) means f*g evaluated at (x|, x,,...)=(1,0,0,...). (By
linearity it is enough to verify (7.13) when f=p, and g=p,, and in that
case it follows from (7.12) and (4.7), since p,(1) =1 for all partitions A.)

Examples

1. x™ =, is the trivial character of S, and ") = ¢, = ¢ is the sign character.
(Compare (7.10) with (2.14").)

2. For any partition A of n, y* = &, y*. For
XPX = p) =450, 6,p,) = 8PXPA

since w(sy)=s, and w(p,) = ¢,p,. Hence the involution w on A corresponds to
multiplication by ¢, in R". Equivalently, e, * f= w(f) for all f€ A",
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3 Corresponding to each skew diagram A — u of weight n, there is a character
Ve of S, defined by ch( x#) =s, ,,. If | ul =m we have from (5.1) and (7.3)

X
CxMe o x s, ={xM x* xs,.
= (res§mXSax X, x#* X x")s, xs,
by Frobenius reciprocity, and therefore the restriction of x* to S,, X S, is

E“.Ll"" Xﬂ X XVH-
The degree of x** is equal to (s,,,,ef>=K,, g, ie. to the number of
standard tableaux of shape A — pu.

4. Let G be a subgroup of S,, and let ¢(G) be the cycle indicator of G (§2,
Example 9). Then ¢(G) = ch( x5), where xg is the character of S, induced by the
irivial character 15 of G. For ch( xg) = x5, ¥)s, = (1, ¥ | G)c (by Frobenius
reciprocity) = ¢(G).

If G, H are subgroups of S,, (c(G),c(H)) is the number of (G, H) double

cosets in S,
5. From §3, Example 11 and (7.8) we obtain the following combinatorial rule for
computing X,

XPA - E ( _ 1)hl(s)
N

summed over all sequences of partitions S = (1D, A®,..., A™) such that m = I( p),
0=2Qcx®c ... cA™ =, and such that each A(‘? — A¢=D s a border strip (§3,
Example 11) of length p;, and ht(S) = £ ; ht(A®) — A¢~D),

6. The degree f = x*(1) of x* may also be computed as follows. By (7.8), it is the
coefficient of x**% in (£x,)"L,, s e(W)x"% If we put uw=2A+ 6 (so that ;=
A +n—i, 1<i<n), this coefficient is

Y e(w)n!/lﬁ[(p,-—n +w(i)!
i=1 :

weS,

which is the determinant n!det(1/(u; — n + j)!), hence equal to

!
%—'det(p,-(yi—l)...(#i—n"'j"‘1))

n! ; n!
=Fdet(n,"")=FA(#l,---,#,.)

Where l"'! = I—Ii l‘l'i! and A( Hpyeens F'n) = I—Il'<j( i~ p'j)'
7. Let p=(r,1"""), so that x, is the value of the character x* of S,, at an r-cycle
(I<r<n). By (7.8), XpA is the coefficient of x* =x**?% in
CxXZx)" 'L, e s, €(w)x*®, From the result of Example 6, this coefficient is
> (n=r)ACpy,ee sty =y )
; e Cu=r)toow,!
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and therefore

— ) .1 - —
XA/fA= (n r)' i Hi: Hi ’J'j r.
i nt (=0 i

If we put ¢(x)=TI1(x— p,) and k,=n!/z,=n!/(n —r)lr, this formula becomg,

=r?hyx A= X w( =D (= + Dol p =) /¢' ()

i=1
which is equal to the coefficient of x~! in the expansion of
x(x=1)..(x=r+De(x-r)/¢(x)

in descending powers of x.
In particular, when r = 2 we obtain

h,x)/f* =n(X) —n()).

8. If A is a partition of n, let
(@) =3"Ve,(q) / [1a-4").
XEA

Let w € S, be an n-cycle and let { be a primitive complex nth root of unity. Then
for all r> 0 we have

@ x*w) =f(LN).
(Since f,(q) = ¢,(¢)s5,(1,9,4%...) (§3, Example 2) it follows that

Y f(@)s(x)

[Al=n

is equal to the coefficient of " in ¢, ()T, ;(1—x;¢°~"1)”", and hence by the
g-binomial theorem (§2, Example 4) is equal to

Y g.(@x®

lal=n

where g,(q)=¢,(¢)/T1;,1 ¢,(q), and the sum is over all sequences a=
(ay, ay,...) of non-negative integers such that |a|=X a; =n. Now {" is a primi-
tive sth root of unity, where n/s is the highest common factor of r and n. Show
that g,({") =0 unless each «; is divisible by s, and that if a =s8 then g, ({")is
equal to the multinomial coefficient (n/s)! /IT 8;! Deduce that

@ L AU = (Ex)™ =pr/s.

|Al=n
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on the other hand we have by (7.8)

k) Y x ws(x) =pr/s,
|Al=n

and (1) now follows from comparison of (2) and (3).)

g, (a) Let A", C A" denote the semigroup consisting of the non-negative integral
inear combinations of the Schur functions s,,|Al=nr, and let A, =@&,,, A% . If
eA,then fe A, ifandonlyif (f,g)>0forall geA,.

By (7.5) and (7.6), A" consists of the characteristics of ordinary (not virtual)
characters of S,. From (7.3) it follows that A% .A% cA%*" for all m,n >0, so
at A, is closed under multiplication as well as addition. (Equivalently, the
wefficients c2, = (s,,s,s,) are non-negative.) In particular, k, and e, lie in A,
for all partitions A. From Examples 2 and 3 it follows that A, is stable under the
ivolution w, and that Sy € A, for all partitions A, u.

(b) Define a partial order on A by letting f>g if and only if f—g € A ,. Show that
the following conditions on partitions A, u of n are equivalent:

@ hy<h,; @) e, <e,; B) 5, <h,; B 5, <e,; (©) Mle,m),, >0; (DA > p.
(Since A, is stable under w, we see that (a) = (a’) and (b) « (b’). Next, the

relation hy, =Y K,,s, (6.7) shows that 5, <h, and hence that (a)=>(b). Since

¢y 25, we have M(e,m),., = (ey,h,) > (s,,h,), whence (b) = (c). The next im-

plication (c) = (d) follows from (6.6) (i). Finally, to show that (d) = (a) we may by
(1.16) assume that A =R;; u, and then we have
i

h,—h,=h,(h,h

wlty T hm+ th/-l) = h"s(l-li»m) >0,
where v is the partition obtained from u by deleting u; and u;.)

The equivalence (c) « (d) is known as the Gale—Ryser theorem: there exists a
matrix of zeros and ones with row sums A; and column sums . if and only if
A > u (use (6.6)).

Another combinatorial corollary is the following: if A > u then K, <K,, for
any skew diagram 6. (Take the scalar product of both sides of (a) with s,, and use
(5.13).) In particilar, we have K, > 0 whenever A > u (because K, = 1).

10. (@) We have
Lasn=110-p)7"
A k>1
where the sum on the left is over all partitions A. For
_ 2
SHh*5H= Zzp l(XpA) pp
p

and
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by orthogonality of characters, so that

E Sy* 8= 2 D,

|Al=n lpl=n

which is equivalent to the result stated.

(b) We have
]‘[ A-xy,2) 7" = L 53(x)s,(y)(s, * 5,)(2),
ik Ap
[T +xy2) =X si(x)s,.(¥)(s, % 5,)(2).
i,k Ap

11, Let ¢=X,,_, x*. If we S, has cycle-type p, then
1Al n typ
ew) =) x}=Y<s,p,)=(s,p,)
y A

where (§5, Example 4)
5= l_[(l x)7! Ifa- —xx)”!
i<j

By calculating log s, show that
2 2
Pn  Pn Pn
§= expl — + — exp —
nlgd P( 2")nle:£n P 2n

and hence that @(w)=T1,,,a™(P) where a{™ is the coefficient of ¢™ in
exp(t + $it?) or exp(3it?) according as i is odd or even. In particular, p(w) =0 if w
contains an odd number of 2r-cycles, for any r > 1.

12. Let C,, be the cyclic subgroup of S, generated by an n-cyc]e and let 6 bea
faithful character of C,. Show that the induced character ¢, = ind ¢(6) is indepen-
dent of the choice of 8, and that

ch(g,) = — Z u(d)ps'?
n dln

where u is the Mdbius function.

(Let V be a finite-dimensional vector space over a field of characteristic 0, and
let L(V)= @&,,,L"(V) be the free Lie algebra generated by V. Then for each
n>0, L" is a homogeneous polynomial functor of degree n, and a(L,) = ¢, in
the notation of Appendix A, (5.4).)

13. For each permutation w and each integer r > 1, let a,(w) denote the number
of cycles of length r in the cycle decomposition of w. The a, are functions on the
disjoint union of the symmetric groups S,. As such they are algebraically indepen-
dent over Q, for if f is a polynomial in r variables such that f(a,(w),...,a,(w))=0
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for all permutations w, then f(my,...,m,)=0 for all choices of non-negative
integers M and hence f is the zero polynomial. Hence

A=Qlay,a,,...]

s a polynomial ring. (The multiplication in A is pointwise multiplication of
functions: (fgXw) = f(w)g(w), not the induction product defined in the text.)

() For each partition p=(1"2":_.) let

(s)- 11

where a{™ is the ‘falling factorial’

a, a(,"")
m, ) - rl} m,! ’
a™=gq(a,~1)...(a,—m, +1).
since the a, are algebraically independent, the monomials af™ a7... form a

a
Q-basis of A, and hence the polynomials ( p) form another Q-basis.

Define a linear mapping 6: A — IA\Q by
8(f)= X ch(fIS,)

n>0

a
for fEA. If f= (p) then

a
( )(w)!ﬁ(w).

1
a(f15)=— T |,

' wes,

a
If w has cycle-type 7=(1"2"...) we have a,(w)=n, and hence (p)(w)=

n .
1,, 1( m'r), which is equal to z,/z,z, if 7=p U o for some partition o (i.e. if p

is a subsequence of 7) and is zero otherwise. It follows that
a
9(,,) = Xz'%'pp,
a

_ -1
=z, p,H,
where

H=3 z7'p,= ) h,.
[ 4 n»0

(b) Define a linear mapping ¢: Ao — A by

a
‘P(pp) =zp(p) = n rm,a£m,)

r>1
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for each partition p = (1™ 2™2...). From (a) above it follows that 6¢: Ay — A i

multiplication by H. The mapping ¢ is bijective and hence defines a new Prody
f*g on A by the rule

frg=o(e (e (8.
(a a\ Zue a
p)*(a)— 2,2, pUO’)

a(’") * a(") = a(m +n)

We have

or equivalently

for any two finite vectors m = (m, m,,...), n =(ny,n,,...) of non-negative inte.
gers, where a™ = a{™)) g{"? .. | and likewise for a(™.

(c) Let
P=T1QA+p)".

ra1l

Then ¢(f)=(P,f) for all feA.
(Introducing variables x = (x,, x,,...), we have

¢)) P(x)=T1Q+p,(xN*

ra1

=1 (;i)p,(x)m'

r>1 m, >0
a
= g(p)pp(x).

Let C(x,y) =TI, (1 —x,y)~' =E, 2, 'p,(x)p,(y), as in §4, Example 9. Then it
follows from (1) and the definition of ¢ that P(x) = ¢,C(x,y), where ¢, acts on
symmetric functions in the y’s. Hence (loc. cit.)

(P, f) = C(x, ), f(x)) = ¢, f(y) = ¢(f).)

14, Let A=(A;, Ay,...) be a partition of n and let (N,A)=(N)UA=
(N, Ay, Ay,...) where N is any integer > A,. From (7.8) it follows that, for each
WESynin XNV(w) is equal to the coefficient of x{*"x*"=1 . xM in the
product

6)) PREETNE A N FXCTIE 7S A Lol
r>1

where, as in Example 13, a,(w) is the number of r-cycles in the cycle decomposi-
tion of w. Since the polynomial (1) is homogeneous in xg, x,,..., X,,, nothing is lost
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by setting Xo=1, which shows that x™'Y(w) is equal to the coefficient of
IM*"—I e x,f" in
1

n
as(xyyee s x ) [TA=x) T +p,(xp500 0y 2, )%™
i=1 r>1

and therefore is equal to the coefficient of s, in

[T -x)TT+p)"™.
r>»1

i»1
It follows that (as functions on Sy, ,) we have

X ¥ D = (EP,s,)

@
where
E=TIU-x)= Y (-1,
i»1 r»0
and
a a
o P=T1a+p)"=Z(;)n,
r>1 P

as in Example 13.

The scalar product (EP,s,) on the right-hand side of (2) is a polynomial
x*eA=0Qlay,a,,...] called the character polynomial corresponding to the parti-
tion A. It has the property that X* | Sy, , =x™® for all N> A,.

There are various explicit formulas for the polynomials X*:

(a) Since by (2.14)
E= Y (-D""zp,
o
it follows from (3) that
a
@ X =Y (-D"z; ‘xp‘w(,,)
po

summed over partitions p, o such that | p| +|o|=]|Al

(b) Alternatively, we have

X*= Y (=D'¢e,P,s,)

r>»0

= T (=1(P,s, jry)

r>0

=Y (- #(p,s,)
»
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summed over partitions p C A such that A — u is a vertical strip. Hence
a
) X = E(—l)'*'“’):x,#(,,)
N P

summed over u as above, and p such that | p| = ul.
(©) Let uy =E*s, =L, (=15, ,qr. From (5.4) it follows that

1 1 1
hy-1 hy, Basn-1
6) u,= hp-2 Rayen-2|.
ha\,,—n hA,,—n+l h).,,

From Example 13(c) we have
X*=(EP,s,) ={P,u,) = o(u,)

where ¢: Aq — A is the mapping defined in Example 13(b). Hence if we define

m=¢h)= Y (;) €4

lpl=r

for all r (so that @, =0 if r <0), it follows from (6) that

1 1 1

My -1 M, My +n-1

@) Xr=|My-2  My-1 M, +n=2
My=n  M,—n+1 e

where the asterisk indicates that the multiplication in A is that defined in Example
13(b).

(d) By subtracting column from column in the determinant (7) we obtain

A ’
® X'= det*(ﬂ)‘i'i+i)l<i,j<n
where @] = m, — m,_,, and again the asterisk indicates that the determinant is to be
expanded using the *-product.

15. In general, if A4 is a ring and x,y € 4, then Axy is a submodule of Ay and i
the image of Ax under the homomorphism a — ay (a € 4), hence is isomorphic to
a quotient of Ax.

(a) Let A be a partition of n and let T be any numbering of the diagram of A with
the numbers 1,2,...,n. Let R (resp. C) denote the subgroup of S, that stabilizes
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cach TOW (resp. column) of T, so that R= S, and C=S,.. Let A =Q[S,] be the
group algebra of S, and let

a= Y eu, s=Y v

ueC vER

Then As is the induced module ind{(1), isomorphic to H,, and likewise 4z =E,..
Let e=as€A. Since RNC={1}, the products uv (u€C, v €R) are all
distinct, and hence

) e=1+...#0.

From the observation above, M, = Ae is a submodule of As and is isomorphic to a
quotient of Aa. From the remark following (7.8) it follows that M, is the
;reducible A4-module (or S,-module) with character x*.

(b) Let @: A — A be right multiplication by e. Then ¢(M,) = M,e = Ae* C Ae = M,.
since M, is irreducible, it follows from Schur’s lemma that ¢| M, is a scalar c € Q,
and therefore e? = g(e) = ce. Hence ¢?=c¢, so the only eigenvalues of ¢ are 0
and ¢, and the eigenvalue ¢ has multiplicity equal to the dimension of M,. Hence

)] trace ¢ = cdim M, = cn!/h(A)

by (7.6) and §5, Example 2. On the other hand, it follows from (1) above that for
each w € §,, the coefficient of w in ¢(w) = we is equal to 1; hence relative to the
basis S, of A the matrix of ¢ has all its diagonal elements equal to 1, and
therefore

3) trace ¢ =n!

From (2) and (3) it follows that ¢ = A(A) and hence that & = h(A)~'as is a primitive
idempotent of A affording the character x*.

(c) With the notation of (a) above, let m, € Q[x,,...,x,] denote the monomial
O xd™ where d(i) =r— 1if i lies in the rth row of T, and let f; denote the
product I'T(x; —x;) taken over all pairs (i, j) such that j lies due north of i in T.
Thus fr is the product of the Vandermonde determinants corresponding to the
columns of T, and m is its leading term, so that fr=amy.

Let 8: A - Q[x,,..., x,] be the mapping u — um,. Since d(i) = d(§) if and only
if i and j lie in the same row of T, it follows that the subgroup of S, that fixes m
is the row-stabilizer R, and hence that 6(A) =As. Consequently 6| M, is an
isomorphism, and we may therefore identify M, with its image 6(M,) = Aasm, =
Aam,= Af;. In this incarnation M, is the Specht module corresponding to the
partition A: it is the Q-vector space spanned by all n! polynomials f, for all
numberings T of the diagram of A, and the symmetric group acts by permuting the
x’s.

(d) The dimension of M, is equal to the number of standard tableaux of shape A,
by (7.6). In fact the polynomials fr, where T is a standard tableau, are linearly
independent over any field, and hence form a basis of M,.

(Order the monomials x¢, a € N" as follows: x* <x# if and only if a precedes

B in the lexicographical order on N”.
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(i) Suppose that i <j and d(i) <d(j) in T, and let w be the transposition (jj)
Then my <m,r.

(ii) Deduce from (i) that if T is standard then f;=m+ later monomials,
(iii) Let Ty,..., T, be the standard tableaux of shape A. The monomials my,,...,m
are all distinct, and we may assume that my, < ... <my. Use (ii) to show that the
fr, are linearly independent: if L c;fr, =0, the coefficient of my, in the left-hang
side is equal to c;, hence ¢, = 0; repeating the argument gives ¢, = 0, and so op)

(e) From (d) it follows that each f, is a linear combination of the f, say
fr="ZXcfy, with coefficients c; € Q. Show that each c; is an integer. (Let m be the
common denominator of the rational numbers c;, and let ¢, =m;/m where the ;.
are integers. Then we have '

4 mfr= Y, mfr.

If m > 1, let p be a prime dividing m, and reduce (4) mod. p. Since not all the m,
are divisible by p, we conclude that the f7, are linearly dependent over the field of
p elements, contrary to (d) above.)

Hence for each permutation w € §, the entries in the matrix representing w,
relative to the basis (f7) of M,, are all integers.

16. For each partition A of n, let R, be an irreducible matrix representation of §,
with character x*, such that R,(w) is a matrix of integers for each wes,
(Example 15(c) provides an example.) For each partition p of n, let ¢, denote the
sum (in the group ring Z[S,]) of all elements of cycle-type p in S,. Then ¢
commutes with each we S, and hence by Schur’s lemma R,(¢,) is a scalar
multiple of the unit matrix, say

o) Ry(E,) = 0},

where ) is an integer and d = n!/A()) is the degree of x*. By taking traces in (1)
we obtain

n! n!
— A= A
2, % T R
and therefore
h(A)
@ © =X

P

is an integer for all A, p.

Let C, denote the centre of the group ring Z[S,]: it is a commutative ring with
Z-basis (,), |~ . For each partition A of n, the linear mapping w*: C, — Z defined
by w*(é,) = ;' is a ring homomorphism, since R,(¢,¢,) = R,(¢,)R,(¢, ). Moreover
the w?, |Al=n, are a Z-basis of Hom(C,,,Z).

17. (a) For each partition A, the ‘augmented Schur function’ 5, is defined by

) h(A)
S=hNs,= L — x'p,= Lop,
s % P
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i1 the notation of Example 16. Thus §, is a polynomial in the power sums p, with
zlteger coefficients, i.e. 5, € ¥, where ¥ =1Z[p,,p,,...] is the subring of A
lenerated by the power sums. Moreover, §, is the smallest integer multiple of s,
(hat lies in ¥, since the coefficient of p{ in 5, is 1.

(b) Let 1 be a prime number (the letter p being preempted) and let ¥] denote the
cubring of ¥ generated by the p, with r prime to /. Show that §, € ¥] if and only
f A is an [-core (81, Example 8).

(f A is an I-core, all the hook-lengths in A are prime to /, and hence all the
porder strips of A have lengths prime to /. From this observation and Example 5 it
follows that xp*=0 if p has any parts divisible by /, and hence that §, € ¥;.
Conversely, if A is not an /-core, let A and A* denote the I-core and I-quotient of A
(51, Example 8). Let [A*| =b > 1 and let [Al=a. Then for the partition p = (1°1%)
we have XpA = talb! /A(A)h(A*) # 0, and hence §, & ¥,.)

() Let X be an indeterminate and sy: ¥ Z[ X] the homomorphism defined by
sx(P,) =X for all 7> 1. Then

ex () =¢,(X)

where ¢,(X) is the content polynomial of A (§1, Example 11).

18. Let A be a partition of n, let [ be a prime number, and let « be the I-core of
). Then

(1) 5,=5(pl-p)" (mod.1)

in¥ =2Z[py, ps,...), where r=(n —|«|)/I and §, is as defined in Example 17.

The proof of (1) uses some concepts from modular representation theory, for
which we refer to [P4]: namely the notion of the defect group of a block (or
equivalently of a central character) and the Brauer homomorphism.

Let F denote the field of / elements. For any finite group G, let C(G) denote
the centre of the group algebra F[G]. For each partition A of n we have a
character @ *: C(S,) = F of the F-algebra C(S,,), obtained from w* (Example 16)
by reduction modulo /. Each defect group D* of w* is a Sylow I-subgroup of the
centralizer of an element of cycle-type (") in §,,, CS,, where 0 <m <n/I (9],
62.39). It follows that if D* # {1}, then D* contains a subgroup Q of order /,
generated by an /-cycle. On the other hand, if D* = {1}, there is a partition p of n
for which both z, and w are prime to /, and hence (Example 16) A(A\)x,} =z, w}
is prime to /. Consequently k() is prime to / and therefore (§1, Example 10) A is
an [-core.

Assume now that A is not an I-core, so that D* contains Q as above. Let
H=Q X S§,_, be the normalizer of Q in §,. Then the mapping ¢: C(S,) = C(H)
=C(Q) ® C(S,_,) defined by restriction to H is an F-algebra homomorphism
(the Brauer homomorphism), and w* factors through ¢: say w*=(s® @w")° ¢,
where u is some partition of n — I, and & is the unique (trivial) character of C(Q).

It now p is a partition of n, the conjugacy class ¢, in S, meets H only if p is of
the form (1) U o or (I) U & for some partition o of n — L. If p=(1') U & we have
v'¢) = wh(,), and if p=(DUo we have w™E)=(-Dw*E,)=
~@#(¢,). Since w*(,) is the reduction modulo / of ;' (Example 16) it follows
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that modulo I we have w)'=wl if p=(1NVU0, o'= —wf if p=(DU 0, 4,

@) =0 for all other p. Hence ’

5= ); w}p, = (g, wa“pa)(p{ -p)
so that

§=5,(pi—p) (mod. D).

If p is not an Il-core we may repeat the argument. In this way we shall obtain
) §=5,(p} -p)’
for some integer g > 1 and some /-core v. Now apply the specialization &y: p ~ y
(r > 1) (Example 17(c)): we obtain

a(X) =c,(X)(x'-x)" (mod. )

=c,(X)

where 7= v+ (lg) has l-core v. From §1, Example 11(c) we now conclude that the
partitions A and 7 have the same [-core, so that v=x and g =r, completing the
proof.

19. Let A, u be partitions of n, and let ! be a prime number. Then with the
notation of Example 17, §, =35, (mod. 1) if and only if A, u have the same /-core
(‘Nakayama’s conjecture’). (If §, =35, then ¢,(X)=c,(X) by Example 17(c), and
hence A, u have the same [-core by §1, Example 11(c). Conversely, if A, u have the

same I-core, then it follows from Example 18 that §, =35,.)

20. As in §5, Example 25 we shall identify each f®ge A ® A with f(x)g(y),
where (x) and (y) are two sets of independent variables. Define a comultiplication
A*: A —> A® A and a counit £*: A = Z by

A*f=f(xy)
where (xy) is the set of all products x;y;, and

e*f=£(1,0,0,...)

for all fe A.
With respect to A* and ¢*, A is a cocommutative Hopf algebra over Z; both 4*
and &* are ring homomorphisms, and (1 ® £*)e A* is the identity mapping.

(a) Show that, for all n > 1,

1) A*h, = Y 5, @5, &*h, =1,
[Al=n

@) A*e,= Y 5,®s5,, &%, =08,;
|Al=n

3) A*p,=p,®p,, e*p, =1
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Also we have (7.9)
@) A*sy= Y s, ®s,.
v

(b) As in §5, Example 25 define a scalar product on A ® A by

(f1981, [2882) ={f1, 281,827

for f1»f2 81»82 € A. With respect to this scalar product, A* is the adjoint of the
internal product: in other words, we have

(5) <A‘f’g®h>=(f)g*h>
for all f,8,hEA. (By linearity we may take f=s,, 8=S, h =s,, and then both
sides of (5) are equal to v\ by (4) above.)

71, For any commutative ring A, let G(A4) denote the set of all unital ring
homomorphisms a: A — 4. Each such homomorphism is determined by the formal
power series

aH(t) = E a(hi)tiEA[[t]]

i»0

with constant term a(h,) =1, and we may therefore identify G(A) with the set of
formal power series in A[[¢]] with constant term equal to 1.
(a) The comultiplication A:A - A ® A defined in §5, Example 25 induces an
abelian group structure on G(A) as follows. If «, B € G(A), we define

a+B=myo(a®pB)-A
where m4: A ® A - A is the multiplication in A. We have then (loc. cit.)

(a+B)h,= ¥ a(hi)ﬁ(hj)

i+j=k
50 that
(a+ BIH(t) = (aH())(BH(1)),

the product of the power series aH(t) and BH(¢) in Al[¢]).
Next let w: A — A be the involution defined by w(h,;) = (—1)’¢; (i > 1), so that
on A*, @ is ( —1)"w. Then define

—a=a°w,

we have ( — a)H(t) = a(E( —1)) = (aH(t)) ™!, so that ( —a)(H(¢t)) is the inverse in
All1]] of the power series aH(?).

Finally, the zero element 0 of G(A4) is induced by the counit &: namely
0=e,oe, where e,:Z > A is the unique homomorphism of Z into A4. Since
¢(h;) =0 for each i > 1, it follows that 0H(¢) = 1.

(b) The comultiplication A* of Example 20 induces a multiplication in G(A4) by the
rule

aB=m °(a® B)oA*.
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This product may be described as follows: if we formally factorize the power serieg
aH(t) and BH(t), say

aH()=TTA+¢&), BHEO=TIA+n),

then
(aB)H(t) = H(l + Emt).
ij
The element 1 € G(A) defined by
1= €4° &*

with £* the counit defined in Example 20, is the identity element for thjs
multiplication, and 1(H(#)) = (1 —¢)~ L.

(c) With addition and multiplication as defined in (a) and (b), G(A) is a commuta.
tive ring, with zero element 0 and identity element 1. If ¢: 4 —» B is a homomor-
phism of A into a commutative ring B, then G(¢):G(A) - G(B) defined by
G(¢)a=¢o a is a ring homomorphism. Thus G is a covariant functor on the
category of commutative rings.

22. Define an internal product on A ® A by
(18f)*(8,®8) =(fi*8) ®(f%82)

for f), f2,81,82€ A. Show that A(f* g) =(Af)*(Ag) for all f,g€ A, but that in
general A*(f * g) # (A*f)=(A*g).

23. (a) Let f,g,h € A. Then the scalar product {f g, ) is symmetrical in f, g,
and A.

(b) Let (1,),(v,) be dual bases of A, and let f€ A. Then
A*f= Y (u,«f)®u,.

A "

(For (A*f,g®u,) ={f,g*u,) ={u,* f,g) by (a) above and Example 20(b).)

(c) Let f,g,h€ A and let Ah =X a; ®b,. Then

(B)xh=2(fxa)(g*b,).

In particular,

(o) xsy= L (f*s5,,)(g*s,).
"
(d) Let A, u be partitions. Then
hy*s,= Y11 $,0,6-1
i»1

summed over all sequences (u®, u®,...) of partitions such that 0 =
...Cuand | g — p" D= A, for each i > 1. (Use (c).)
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(&) If M =(m,)) is a matrix of non-negative integers, let hy, =TI1; ; h,, . 1 Aand p
are partitions, show that

hz\*hp=ZhM

summed over all matrices M of non-negative integers with I(A) rows and I( u)
columns and row sums A;, column sums ;.

24, The symmetric group S, embeds naturally in S, ., as the subgroup that fixes
n + 1. The union

- Us,

n>0

is the group of permutations of the set of positive integers that fix all but a finite
subset. If w € S, has cycle-type p, where p=(p,,..., p,) is a partition of length r,
then when rcgarded as an element of S,,, the permutation w has cycle type
(s Pl D =pU (1%). We are therefore led to define the modified cycle-type
. of w to be thc partition (pl 1,..., p,— 1). This modified cycle-type is stable
.-~.under the embedding of S, in S,,+ P
For each partition A, ]ct C, denote the set of all we S, whose modified
cycle-type is A. As A runs through all partitions, the C, are the conjugacy classes of
¢ the group S,. For example, C, is the class of transpositions, and C; consists of the
o |dentity permutation.
" For each n >0, let Z, denote the centre of the group ring Z[S,), and for each
partition A let c(n)e Z denote the sum of all w € S, whose modified cycle-type
is A, i.e. the sum of all w € §, N C,. We have c,(n) # 0 if and only if |A| +I(A) < n.
_ Now let A, p be partitions. The product cy(n)c,(n) in Z, will be a linear
‘combination of the c,(n), say

ex(n)e,(n) = ¥ a3, (n)c,(n)

with coefficients ay,(n) €N, and zero unless |v|<|Al+|ul For example, when
= p=(1), cay(m)? is the sum of all products ({j)(!) of two transpositions in S,,

:n general (see [F2]) the coefficients a; +.(n) are polynomial functions of », and are
ndependent of n if and only if [vl=|Al+]pl We may therefore, followmg [F2],

fficients (;), n>0, form a Z-basis of R), and let F be the commutative
lgebra with R-basis (c,) indexed by partitions A and multiplication defined by

= v
Oy = 2 AruCos
v

ere ay, €R takes the value a;,(n) at the integer n, and the sum is over
titions » such that |v] <[Al+| ul. If we assign each c, the degree |Al, F is not a
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graded ring, because the right-hand side of (3) is not homogeneous; but it is 4
filtered ring: if F" is the subspace of F spanned by the c, such that [Al <7, thep
F'.F* CF"™* We may therefore form the associated graded ring Gg = Gr(F): Gy
is the direct sum @&, (Gg, where G =F'/F""!, and the multiplication in Gris
induced from that in F. The effect of passing from F to Gy is simply to throw oyt
the terms of lower degree in (3): in G, the multiplication is defined by

4) C\Cy = E a}(“c,,
[vl=1Al+] pl

and (as remarked above) the structure constants aj, such that [v|=|Al+|u| are
non-negative integers. (For example, in G; we have c(zl) =3¢y +2¢4) from (2)
above.) It follows that Gz = R ®, G, where G is the free Z-module with basis (c)
and multiplicative structure given by (4).

Let us write c, in place of ¢y, r > 1 (cy =1 is the identity element of F and G),
Show that

(a) if [A|+r=m, then

(m+ 1)r1/I‘[ m (D! 1IN <r+1,
i»0

0 otherwise,

(5) a7 =

where mg(A) =r+1—1(A);
) if [Al+r=]v| then

(6) = L i)

summed over pairs (i, u) such that u U v= AU (»). Deduce that a},, =0 unless
v> AU(r), and that a};)” > 0.

From (b) it follows that, for each partition A =(A, A;,...), ... is of the
form

Cry = L iy,
m3A

with d,, > 0. Hence c,,c,,... are algebraically independent elements of G, and
generate G over Q, ie. G® Q=Qlc,,c,,...]. Moreover, the multiplicative struc-
ture of G is uniquely determined by (a) and (b).

25. Let ¢ be the involution on A defined in §2, Example 24. With the notation of
that Example, the h¥ = ¢/(h,) form a Z-basis of A. Let (g,) be the dual basis, so
that {g,,h%) = §,,. Equivalently, g, = ¢*(m,), where ¢* is the adjoint of ¢
relative to the scalar product. We shall show that, in the notation of Example 24
above, the linear mapping ¢: A = G defined by ¢(g,) = ¢, for all partitions A is
ring isomorphism.

(a) From §2, Example 24 we have
h¥= —h,+ E Uyl

p<(n)

i
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for suitable integers u,),, and hence A} is of the form

B = (=10 Pn+ ¥ uyh,.
pn<A
This shows that the transition matrix M(h*, h) (=M(h,h*)) is strictly upper
yriangular, with diagonal elements (—1)®. By (6.3X3) we have M(g,m)=
M(h,h*)', hence

1)
gA=(—1) m, + Z u,m,.
w>A
In particular, g, = —mg,= —p,.

(b) Let by, = (g,8,,h;) be the coefficient of g, in g,g,. Since the g, = —p,
generate Ay, in order to prove that ¢ defined above is a ring isomorphism it will
pe enough to show that by, =a;, whenever u is a one-part partition (r), and for
this purpose it will suffice to show that the b’s satisfy the counterparts of the two
relations (5) and (6) of Example 24,

Consider first

(1) bA(("r';= —<gAprrhtn>= _<g4\)pr'Lh:‘n>

in the notation of §5, Example 3. From §2, Example 24, k¥, is the coefficient of t™
in

! H@)™ ™! !
m+1 m

pt
T exp(—(m+l)2 ; )

r>»1

Hence —ph* = —roh* /ap, is equal to the coefficient of t™ in t"H(t)™" ",
that is to say it is the residue of the differential

1
rde ¢ m+1 _ (! m+1
()] t"de/(¢tH(¢)) | d(e™*Y) /u
where u = tH(t) as in §2, Example 24. Now
(= ur+l(z h*un)H'l
n
(r+1)!

-X I1m!

i»0

*,,|Al+r+1
hAu” ,

summed over partitions A of length I(A)<r+1, where my(A)=r+1-1(A).
Hence from (2) we obtain

ri(m+1)
—pip* = IR *
Py, Z l—I m,(A)' A
i»0
summed over partitions A such that /(A) <r+ 1 and |A|=m —r. From (1) it now

|follows by comparison with relation (5) of Example 24 that b{{3 = a{7} whenever
N+r=m.
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(c) Finally consider
b;ir) = ‘(8,{Pr’ht> = - <gA’pr-Lh:>'

Since p,* =rd/dp, is a derivation (§5, Example 3) we have

Z hv(‘)pr
where v =(v,,..., ¥;,...), and the sum is over i > 1 such that » <r. Hence
(3) bA(r) = = Z(gA! v(‘)pr h*)

in which the scalar product on the right-hand side is the coefficient of A} in
R¥op; -k}, hence is zero unless A = v U u for some partmon u,ie. pUv=)U
(v;); and then is equal to the coefficient of 4% in p,* k¥, which is (g, p,"h} )=
—b("g by (1). Hence (3) takes the form

bin= L b5

summed over pairs (i, u) such that u U v =AU (v,). We have thus established the
counterpart of relation (6) of Example 24, and the proof is complete.

26. Let 8: R— R ®R be the comultiplication on R that corresponds to A: A —
A ® A (§5, Example 25) under the characteristic map (so that (ch ® ch)e § = A «ch).
If feR,, show that

f= & fIS,xS,.

ptg=n

Notes and references

The representation theory of finite groups was founded by Frobenius in a
series of papers published in the last years of the nineteenth century, and
reproduced in Vol. 3 of his collected works; in particular, he obtained the
irreducible characters of the symmetric groups in 1900 [F10], and our
exposition does not differ substantially from his.

The internal product f * g occurs first (as far as I am aware) in the 1927
paper of Redfield [R1], and later in [L11]. (Littlewood calls it the inner
product: we have avoided this terminology, because inner product is
sometimes taken as synonymous with scalar product.)

Example 5 is due to Littlewood and Richardson [L13], but is commonly
known as the Murnaghan-Nakayama rule ((M18], [N1]). Examples 6 and 7
are due to Frobenius (loc. cit.). Example 9 was contributed by A. Zelevin-
sky.

Examples 13 and 14. Character polynomials occur already in Frobenius’
1904 paper [F11]. The formulas (7) and (8) are due to Specht [S19].

Examples 24 and 25. For proofs of Example 24(a), (b) see [F2]. A better
proof of the result of Example 25 will be found in [G9].
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8. Plethysm

In this section we shall study briefly another sort of multiplication in A,
called plethysm or composition, and defined as follows. Let f,g € A, and
write g as a sum of monomials:

§= L Uox".
Now introduce the set of fictitious variables y; defined by
(8.1) [T +y)=T1QA+x%)*
and define
8.2) fog=f(y1,y25--.).

If f€ A" and g € A", then clearly fo g € A™". Also e, acts as a two sided
identity: foe, =e;o f=f for all fE A.
From the definition (8.2) it is clear that

(8.3)|For each g € A, the mapping f — f o g is an endomorphism of the ring
A.

By taking logarithms of both sides of (8.1) we obtain
2.3 =Y u,(x*)" (n>=1)
so that
84 Pno8=8°p,=g(x},x3,...)
for all g € A. In particular,

®8.5) Pn° P =Pm °® Pn =Pmn-
- From (8.4) it follows that

(8:6) For each n>1, the mapping g~ p,° g is an endomorphism of the
ring A.

- Plethysm is associative: for all f, g, h € A we have

®.7 (fog)oh=fo(goh).

Proof. Since the p, generate Aq (2.12), by virtue of (8.3) and (8.6) it is
enough to verify associativity when f=p, and g=p,, in which case it is
obvious from (8.4) and (8.5). |
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For plethysm involving Schur functions, there are the following formu-
las: from (5.9) it follows that

syo(g+h) =3 ch(s,og)s,h)
v

(8.8)
=2 (5,,°8)s,°h)
m
and from (7.9) that
(8.9) s o(gh) =) yA(s, o g)(s, 2 h).
B, v

The sum in (8.8) is over pairs of partitions u,»C A, and in (8.9) over
pairs of partitions w, v such that | u|=|v|=|Al

Finally, let A, u be partitions. Then s, ¢ 5, is an integral linear combina-
tion of Schur functions, say

(8.10) 5108, = 2 ay,s,
m

summed over partitions 7 such that |w|=|A|l.|ul We shall prove in
Appendix A that the coefficients ay, are all > 0.

Remarks. 1. We have observed in (3.10) that to each f€ A there corre-
sponds a natural operation F on the category of A-rings. In this correspon-
dence, plethysm corresponds to composition of operations: if f,ge€ A
correspond to the natural operations F, G, then fog corresponds to
FoG.

2. Plethysm is defined in the ring R of §7 via the characteristic map: for
u,VER, uov is defined to be ch™(chuochv). If u (resp. v) is an
irreducible character of §,, (resp. S,), then uov is a character of S,
which may be described as follows: if U (resp. V) is an S,,-module with
character u (resp. an S,-module with character v), the wreath product
S, ~S,, (which is the normalizer of S'=S§,X... XS, in §,,,) acts on U
and on the mth tensor power T™(}), hence also on U® T™(V); and u-v
is the character of the S§,,,-module induced by U ® T™(V). See Appendix
A to this Chapter.

Examples
1. () Let fe€ A™, g € A". Show that

_ [ fe(wg) if n is even,
wf g)_{(wf)°(wg) if n is odd,
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and that
fo(=g)=(-D"(wf)eg.

(o) If A, p are partitions, let Ae u(= p< A) denote the partition whose parts are
A e Then we have

pAopp =pp. ° P\ =pA°p.‘
(¢) Show that w(h, o p)=(—=1)¢"De o p_.

2. Since 5, /, =s:(sx) in the notation of §5, Example 3, it follows from (8.8) that

fo(g+h) = E ((S#'Lf)o g)(s# o h)
m

forall f,g,h € A. Also
felgh)= L ((s,xf)og)(s,oh).
I

3. We have
h,o(fg)= E (5,2 f)(s,°8),
[Al=n
en°(]%)= E (Sx°f)(s,\'°g).
JAl=n

These formulas are particular cases of (8.9) (and are consequences of (4.3) and

43).

4. Let A be a partition of length <n, and consider (s, ° s,-1)X(x1,%;). By
definition this is equal to s,(x?~!, x7 " 2x,,..., x237 1), ie. to

xgn-1)|A|SA(qn—l’qn—2’”"1)’

where ¢ =x,x5 1. On the other hand, by the positivity of the coefficients in (8.10),
(s,°8,_1Xx1,x,) is a linear combination of the s,(x;,x,) with non-negative
integer coefficients, where 7 = (7, 7,) and 7, + 7, = (n — 1)|Al =d say. Now

Sp(xy,xp) =xPixfr+xPi~1xJot 4 4xT2x]
=x§(gm +qmM " + ... +q™).

Hence s,(¢""',¢""%...,1) is a non-negative linear combination of the poly-
nomials g™ +q™ !+ ... +q™, where m, > 7, and m, + 7, =d. It follows that
5(q""1,q"~2,...,1) is a unimodal symmetrical polynomial in g, i.e. that if a, is the
coefficient of g* in this polynomial, for 0 <i < d, then a; +a,_; (symmetry) and

ap<a;< ... <y

(unimodality).
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From §3, Example 1, it follows that the generalized Gaussian polynomial
nl 1- qn—c(x)
(-0
A xex 1—¢q
is symmetrical and unimodal for all » and A.

5. Let G be a subgroup of §,, and H a subgroup of §,, so that G~H j a
subgroup of the wreath product S,,~S,CS,,,. Then the cycle-indicator (g
Example 9) of G~ H is '

c(G~H)=c(H)>c(G).

6. Closed formulas for the plethysms h, o hy, h, o e,, €, hy, e, ° e, may be deriveq
from the series expansions of §5, Examples 5 and 9:

(@) h,ohy =L, s,, summed over all even partitions u of 2r (i.e. partitions with 4

parts even).
() h,oe; =1, 5,., summed over even partitions u, as in (a).

(c) e,ce;=X, s5,, summed over partitions = of the form («, — L..,a,~1
aj,..., @,), where @;> ... >a@,>0and o, +... +a,=r.

P
(d) e,ch,=%, s, summed over partitions = as in (c).
7. let K =p,oh,=h,° p,, so that
RO(xy, x4,...) =h,(x],x5,...)

which is the coefficient of ¢*" in

Mma-="'=11 ILI(I—x,.w"t)-l,

i»1 i»l j=1
where w =¢e?""", By (4.3) this product is equal to

Y 5,(x)5,(1, o,..., 0" etk
M

Now (§3, Example 17)
5, (Lw,...,0™ ) =g(p)= +1
if I(u) <r and p is an r-core, and s5,(1, w,..., "~ ') = 0 otherwise. It follows that

poha= T alws,

®
summed over r-cores u such that I(u) <r and | u|=nr.

8. More generally, if p is any partition, let A{? = P, °h,, so that

hgﬂ) = 1:[1 (pP/ o hn) = l—[ h("Pi)
J

j>1
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s the coefficient of "7 =¢7P1¢7P2 ... in

o TTa-xpepy™' = T1 (1 xwft)
i,j

ij k=1
where @; = exp(2mi/p;). By (4.3) this product is equal to
@ Y 5,25, (6, YD, 1, y™)
m

wmmed over partitions u of length <|pl, where y( denotes the sequence
(0 h<keny and m is the length of p.
By (5.11) we have

m
3) 5. (6, y D, 1, y™) = Y TII t}"w' "O-l)'s,,u)/,,u-n(y(j))
j=1

wmmed over all sequences (v@, »®, ... ™) of partitions such that 0= »©@ c
yWc ... cv™ =y Now from §5, Example 24(b) we have

{%](V(i)/,,(i-l)) if ¥ =, ¥,

@ syappu-n(y) =
otherwxse.

From (1)-(4) we can pick out the coefficient of each s, in A{?. The result may
be stated as follows: define a generalized tableau of type p, shape u, and weight
np=(npy,np,,...,np,) to be a sequence T = (v©,...,»™) of partitions satisfy-
ing the following conditions:

@ 0= O c W  cpm= ;

(i) P - v~ l)I-tnp for 1<j<m;
(iii) v = o vU=DY (1 <j <m). (§5, Example 24.)
(When p=(1") these are tableaux in the usual sense, of weight (n™).)

For such a tableau T let

o(T) = H %/(,,(i)/,,(i-l)) = 41,

j=1

and define

n,np

K(P) = Z o(T)
T

summed over all generalized tableaux T of type p, shape u, and weight np. The
integers K#) may be regarded as generalized Kostka numbers.
With these deﬁmuons, we have

pp°hn=h$:p) Z ;.l.np ;n

summed over partitions w such that | ul=n| p| and I(n) </ pl.
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9. Since
E 27 %}p,

it follows from Example 8 that

sth = Zz_lXpApp n

= E(ZZ—I pAK;(tprap) Su

the outer sum being over partitions p such that | u|=n|Al and () <Al
(a) When |A| =2 we have (Example 7)

hle) = Z 02( #“)sy,

»
summed over |ul=2n, I(u)<2, so that p=Qn—j,j); ou) =51,
(—1)/, and therefore
n .
(1) hs.z)'_' Z ( —1)15(2"_}-’1').
j=0

On the other hand,
n
2
) Ry =hl = _EO San-j. i)
j=

From (1) and (2) it follows that

hyohy= Y San-jp

jeven

e2°h = E s(2n N
jodd

By duality (Example 1) we obtain

h2°en= Z s(n+lc,n—lc)’!
k even

€°€,= E s(n+k,n—k)"
k odd

(b) When |Al = 3 we have
Kb, = number of tableaux of shape u and weight (n°)

=1+m(p)

where m( ) = min( u; — py, sy — p3), and () <3
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Next, since A = A3 (mod 3), it follows that
KR,y =1+m(u) (mod3)

and since Kﬂ;n) =0or %1, itis determined by this congruence.
Finally,
n
hgl) = hs'z)h" = E ( - l)JS(Zn_j'j)h“ )
j=0

from which we obtain

K4

i

0 if m( ) is odd,
@nm= (=" if m(p) is even.

From these values we obtain

hyoh, = ¥ ([Em(w]+&(p))s,
M
Szl°h = Z( m(lv‘)}

e;oh, =E([ m(wWl+e(p) - (=D,

summed in each case over partitions u such that | u|=3n and I( u) <3, where
e(p)=1if m(u) and u, are even or if m(u)=3 or 5 (mod 6), and &(u)=0
otherwise; and where {x} = —[ —x] is the least integer > x.

10. Foulkes conjectured that h, °h, <h,°h,, whenever m <n, with respect to
the partial ordering on A defined in §7, Example %b). The results of Example 6
and Example 9(a) show that this is true for m =2 and all n > 2.

11. From §5, Example 4 it follows that
ESA Eh (h' er)_ Zer(hsth)'

r,s r,s

On passing to representations of S, these formulas give

m L x*=Ennee)=Yelnen)

|Al=n

where r + 25 = n in the second and third sums. Now 7, ¢ &, is the character of S,
induced from the sign character of the wreath product S, ~ S, (the hyperoctahe-
dral group of rank s), hence 7,(n, ° &,) is the character of S, induced from the
character 7, X (7, ° &,) of the group S, X (S, ~ S,), which is the centralizer in S, of
an involution of cycle-type (2°1"), i.e. a product of s disjoint transpositions. It

follows that
Y xt=X¢
(4

|Al=n
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where ¢ runs over the conjugacy classes of elements w € S, such that w? =1, ang
£, is the induced representation from the centralizer of an element w €c just
described. The other sum in (1) may be interpreted analogously.

Notes and references

Plethysm was introduced by D. E. Littlewood [L9]. His notation for our
syes, is {u}®{A}. Many authors have computed (or have described
algorithms to compute) s, o s, for particular choices of either A or u. For
their work we refer to the bibliographies in Littlewood [L9] and Robinson
[R7], and to [C2]. Examples 9(a) and 9(b) are due to R. M. Thrall [T5]. For
the next case (|A| = 4) see H. O. Foulkes [F6] and R. Howe [H10].

9. The Littlewood—Richardson rule

If 4 and v are partitions, the product s,s, is an integral linear combina-
tion of Schur functions:

—_ A
5,5, = 2 Co 5
Y

or equivalently

9.1) Sau= L ChS, .

The coefficients ¢}, are non-negative integers, because by (7.3) and (7.5)
ch =X X".x’g is the multiplicity of x* in the character x*.x”; also
we have ¢}, =0 unless [Al=|ul+|v|and p,vCA.

This section is devoted to the statement and proof of a combinatorial
rule for computing c,,, due to Littlewood and Richardson [L13]

Let T be a tableau. From T we derive a word or sequence w(T) by
reading the symbols in T from right to left (as in Arabic) in successive

rows, starting with the top row. For example, if T is the tableau

111]12]3
2|3
114

w(T) is the word 32113241.
If a word w arises in this way from a tableau of shape A — u, we shall
say that w is compatible with A — .
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Aword w=aa,...ay in the symbols 1,2,...,n is said to be a lattice
ermutation if for 1 <r <N and 1 <i<n — 1, the number of occurrences
of the symbol i in a,a,...a, is not less than the number of occurrences of
i+1

We can now state the Littlewood—Richardson rule:

(9.2) Let A, p, v be partitions. Then c}, is equal to the number of tableaux T
of shape A — n and weight v such that w(T) is a lattice permutation.

The proof we shall give of (9.2) depends on the following proposition.
For any partitions A, u, 7 such that A C u, let Tab(A — u, 7) denote the
set of tableaux T of shape A — u and weight =, and let Tab%(A — u, 7)
denote the subset of those T such that w(T') is a lattice permutation. From
(5.14) we have

9.3) [ Tab(A — p, W) =K, _, =<5, /. 0.

We shall prove that

(9.4) There exists a bijection
Tab(A — p,m) > LI (Tab®(A — u,v) X Tab(v, m)).

Before proving (9.4), let us deduce (9.2) from it. From (9.4) and (9.3), we
have

(S jurbg) = Y 1Tab%(A — p, ) (s, , b,

for all partitions 7, and therefore

SA/M = E ITabo(A - M, V)ls,,.
1 4

Comparison of this identity with (9.1) shows that ¢}, =ITab’(A — p, .

To construct a bijection as required for (9.4), we shall follow the method
of Littlewood and Robinson [R5], which consists in starting with a tableau
T of shape A — p and successively modifying it until the word w(T)
becomes a lattice permutation, and simultaneously building up a tableau
M, which serves to record the sequence of moves made.

If w=a,a,...ay is any word in the symbols 1,2,..., let m, (w) denote
the number of occurrences of the symbol 7 in w. For 1 <p <N and r > 2,
the difference m,(a,...a,) —m,_(a,...a,) is called the r-index of a, in
w. Observe that w is a lattice permutation if and only if all indices are
<0.
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Let m be the maximum value of the r-indices in w, and suppose that
m > 0. Take the first element of w at which this maximum is attaineq
(clearly this element will be an r), and replace it by r — 1. Denote the
result of this operation by §,_; ,(w) (substitution for  — 1 for r). Obserye
that §,_, ,(w) has maximum r-index m — 1 (unless m = 1, in which case jt
can be —1).

(9.5) The operation S is one-to-one.

r=1,r

Proof. Let w'=S§,_; (w). To reconstruct w from w’, let m’' be the
maximum r-index in w'. If m’ > 0, take the last symbol in w' with r-indeyx
m’, and convert the next symbol (which must be an r — 1) into 7. If m’ <,
the first symbol in w' must be an r— 1, and this is converted into r. I
either case the result is w, which is therefore uniquely determined by w’
and r.

(9.6) Letw' =S,_, (w). Then w' is compatible with A — p. if and only if w s
tompatible with A — .

Proof. Let w=w(T), w' =w(T'), where T and T' are arrays of shape
A — p. They differ in only one square, say x, which in T is occupied by r
andin T’ by r— 1.

Suppose that T is a tableau. If T' is not a tableau there are two
possibilities: either (a) the square y immediately to the left of x in T s
occupied by r, or (b) the square immediately above x is occupied by r - 1.

In case (a) the symbol r in square y would have a higher r-index in
w(T) than the r in square x, which is impossible. In case (b) the square x
in T will be the left-hand end of a string of say s squares occupied by the
symbol r, and immediately above this string there will be a string of s
squares occupied by the symbol r— 1. It follows that w(T) contains a
segment of the form

r=1"...r

where the unwritten symbols in between the two strings are all either >r
or <r—1, and the last r is the one to be replaced by r— 1 to form w'.
But the r-index of this r is equal to that of the element of w immediately
preceding the first of the string of (r — 1)’s, and this again is impossible.
Hence if T is a tableau, so also is 7.

The reverse implication is proved similarly, using the recipe of (9.5) for
passing back from w' to w.

Suppose now that the word w has the lattice permutation property with
respect to (1,2,...,r— 1) but not with respect to (r—1,r), or in other
words that all the s-indices are < 0 for 2 <s <r— 1 but not for s = r. This
is the only situation in which we shall use the operator S,_ ,. The effect of
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replacing r by r—1 in w as required by §,_, , may destroy the lattice
permutation property with respect to (r—2,r—1), ie. it may produce
some (r — 1)-indices equal to +1. In this case we operate with S,_, ,_, to
produce

Sr— 2,r(w) = Sr-2,r—lSr— l,r(w)'

At this stage the (r — 1)-indices will all be <0, but there may be some
(r — 2)-indices equal to +1, and so on. Eventually this process will stop,
and we have then say

Sa,r(w) = Sa,a+l Sr—l,r(w)

for some a such that 1<a<r—1, and the word S, ,(w) again has the
lattice property with respect to (1,2,...,r — 1), and maximal r-index strictly
less than that of w.

At this point the following lemma is crucial:

0N Ifw, S, (wWy=w'and S, (w')=w" all have the lattice property with
respect to (1,2,...,r— 1), then b < a.

Proof. Let w=x,x,x,.... We have to study in detail the process of
passing from w to w'. This starts by applying S,_, ,, i.e. by replacing the
first symbol r in w with r-index m, where m is the maximum of the
r-indices, by r — 1. Suppose that this happens at x, . Then for each s > 1,
the (r — 1)-index of x, is unaltered if s <p,, and is increased by 1 if
s>po. The element on which §,_,,_, operates is therefore in the p;th
place, where p, is the first integer > p, for which x, has (r — 1)-index in
w equal to 0. Likewise the element on which S,_, ,_, operates is in the
p,th place, where p, is the first integer > p, for which x,, has (r — 2)-index
zero, and so on.
In this way we obtain a sequence

PosSP1< oo SPpg

with the property that, for each i > 1, x,, is the first element not preceding
x,,_, for which the (r — i)-index is 0. Observe that in w' the element in the
pith place still has (r —i)-index zero, for each i>1 (though it will no
longer be the first with this property).

Now consider the passage from w’' =y,y,y;... to w". In w' the maxi-
mum r-index is m — 1 (which by assumption is still positive) and occurs
first at say y,, where g, <p,. (This is because the r-index can by its
definition only go up or down in single steps, and therefore the r-index
m~—1 occurs first in w at some element to the left of x,; and the
elements to the left of the p,th are the same in w' as in wS In w' the
(r—1)-index of Yp, is zero, and is therefore +1 in S,_; (w'). Hence
s,_l,,(w’) admits the substitution S,_,,_,, which will operate on the
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element in the g;th place, where g, is the first integer > g, for which th,
(r— 1)-index of y, in w’ is 0, so that g, < g, <p,. Continuing in this Wway
we get a sequence

G<©h<qsS...<q 4

with g; <p; for all i >0, and w’ admits the operator S, ,.

If S, (w)=w", then b =ag; if not, then S, ,(w’) admits further subs;.
tutions S,_; ,,..., until w” =S8, (w’) is attained, so that b <a in thig
case. In either case we have b <a, as required.

We shall now describe the algorithm of Littlewood and Robinson which
constructs from a tableau T of shape A — u and weight o, where A, u, »
are partitions, a pair (L, M) where L € Tab%(A — p, v) for some partition
v, and M € Tab(y, 7).

If A is any array—not necessarily a tableau—and a, r are positive
integers such that a <r, we denote by R, ,(A4) the result of raising the
right-hand element of the rth row of 4 up to the right-hand end of the
ath row.

The algorithm begins with the word w,=w(T) and the array M,
consisting of &, 1’s in the first row, 7, 2’s in the second row, and so on
(i.e. M, is the unique tableau of shape 7 and weight ).

Operate on w;, with §;, until there are no positive 2-indices, and
simultaneously on M, with R,, the same number of times: say

wy=Sn(w)),  M,=R}(M,).

Next operate on w, with S, or §,; as appropriate until there are no
positive 2- or 3-indices, and simultaneously operate on M, with R,; or
R,;: say

w3 = Saz,3Sa, 3(wy), M, = "’Ra1,3Ra,,3(M2)
where each a,, a, is 1 or 2.

Continue in this way until we reach (w,, M,), where [ =I(w). Clearly
from our construction w, is a lattice permutation. From (9.6) it follows that
w, is compatible with A — u, so that w, = w(L) where L € Tab’(A — u, )
for some partition ». Next, it is clear from the construction that at each
stage the length [,(M,) of the ith row of the array M, is equal to the
multiplicity m;(w,) of the symbol i in the corresponding word w,, so that
the final array M = M, has shape v and weight 7.

We have to show moreover that M, is a tableau. For this, we shall prove
by induction on r that the first » rows of M, form a tableau. This is clear
if r =1, so assume that r > 1 and the result is true for r — 1.
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Consider the steps that lead from M,_; to M,: we have, say,

M,=R, ,...R, (M, ,);

Jet us put

M, =R

r—1,i a;,r**"

R, ,(M,_) (1<ism)

and likewise

W,_ 1,i< Sa,,r e Sa,,r(wr—l)’

where each word w,_, ; has the lattice property with respect to (1,2,...,
r—1). Each array M,_, ; is obtained from its predecessor M,_,;_, (or
M,_, if i =1) by moving up a single symbol r from the rth row to the a;th
row. By our construction the length [;(M,_, ;) of the jth row of M,_, ; is

equal to the multiplicity m;(w,_, ;) of jinw,_,,, foreach j>1; and : sxnce
each word w,_, ; has the lattice property with respect to (1,2,...,r — 1), it
follows that

LWM,_ )= ... 21 (M,_, ).

Also, by (9.7), the integers a; satisfy a, > ... >a,,. It follows that no two
symbols r can appear in the same column at any stage, and consequently
the first r rows of M, form a tableau.

The algorithm therefore provides a mapping

Tab(A— pu,7) > ][] Tab’(A - u,v) X Tab(v, ).

To complete the proof of (9.4) we have to show that this mapping is a
bijection. For this purpose it is enough to show that, for each r > 1, we can
unambiguously trace our steps back from (w,, M,) to (w,_,, M,_,). With
the notation used above, we have

wr Sa,,,,r te Sa,,r(wr—l)’

and the sequence (a,,...,a,,) can be read off from the array M,, since the
g; are the indices <r of the rows in which the symbols r are located in
M,, arranged in descending order: a, >a, > ... > a,, (by virtue of (9.7)).
Since by (9.5) each S,, is reversible, it follows that (w,_;, M, ,) is
uniquely determined by (w,, M,). Finally, by (9.6), if w, is compatible with
A= p, then so also is w,_ ,, and the proof is complete. Q.E.D.
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Remark. A lattice permutation w =aya,...ay of weight v may be de.
scribed by a standard tableau T(w) of shape v, in which the symbol ,
occurs in the a,th row, for 1 <r < N (the fact that w is lattice ensures that
T(w) is a tableau). Hence the algorithm described above constructs from 3
word w a pair of tableaux T(w;) and M, of the same shape v, the first of
which is standard and the second of weight . It may be verified that thig
algorithm coincides with one described by Burge [B9] (see also Gansner
[G1D.

Notes and references

The Littlewood—Richardson rule (9.2) was first stated, but not proved, in
[L13] (p. 119). The proof subsequently published by Robinson [RS5], and
reproduced in Littlewood’s book ([L9], pp. 94-6) is incomplete, and it is
this proof that we have endeavoured to complete.

Complete proofs of the rule first appeared in the 1970s ([S7], [T4)).+
Since then, many other formulations, proofs and generalizations have
appeared, some of which are covered by the following references: Berg-
eron and Garsia [B4]; James [J7]; James and Peel [J10]; James and Kerber
[19]; Kerov [K8]; Littelmann [L7], [L8]; White [W3]; and Zelevinsky [Z2],
[z3].

+Gordon James (J8] reports that he was once told that ‘the Littlewood—Richardson rule
helped to get men on the moon, but it was not proved until after they had got there. The first
part of this story might be an exaggeration.’



APPENDIX A: Polynomial functors
and polynomial representations

1. Introduction

Let k be a field of characteristic 0 and let 8 denote the category whose
objects are finite-dimensional k-vector spaces and whose morphisms are
klinear maps. A (covariant) functor F: 8 — 8 will be said to be a
olynomial functor if, for each pair of k-vector spaces X, Y, the mapping
F:Hom(X,Y) —» Hom(FX, FY) is a polynomial mapping. This condition
may be expressed as follows:

(.1 Let f: X>Y (1 <i<r) be morphisms in B, and let A,,..., A, Ek.
Then F(A fi + ... +A,f,) is a polynomial function of A,,..., A,, with coeffi-
cients in Hom(FX, FY') (depending on f,,..., f,).

If F(A\fy+...+A,f,) is homogeneous of degree n, for all choices of
fise++» f;» then F is said to be homogeneous of degree n. For example, the
nth exterior power A" and the nth symmetric power $”" are homogeneous
polynomial functors of degree n.

Each polynomial functor F is a direct sum &,,, F,, where F, is
homogeneous of degree n (§2). We shall show that each F, determines a
representation of the symmetric group S, on a finite-dimensional k-vector
space E,, such that

F(X)=(E, @ x*")"

functorially in X, and that F, — E, defines an equivalence of the category
of homogeneous polynomial functors of degree n with the category of
finite-dimensional [S,]-modules. In particular, the irreducible polynomial
functors correspond to the irreducible representations of symmetric groups,
hence are indexed by partitions.

The connection with symmetric functions is the following. Let u: k™ —
k™ be a semisimple endomorphism, with eigenvalues A,..., A, (in some
extension of k). Then trace F(u) is a symmetric polynomial function of
Apeeny Ay 88y X (FX(Ap,..., A,), where x, (F)EA,. As m—x, the
Xn(F) determine an element y(F)€ A.If F= F, is irreducible (where
is a partition), it will appear that y(F,) is the Schur function s,,.

Notation. If X €8 and A €k, we shall denote by Ay (or just A if the
context permits) multiplication by A in X.
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2. Homogeneity

Let F be a polynomial functor on 8B, and let A € k. By (1.1), F(Ay) is a
polynomial function of A with coefficients in End(F(X)), say

.1 F(Ay)= Y u,(X)A".

n>0
Since F((Ap)y) = F(Ay py) = F(Ax)F( py), we have

>z un(X)(Au)"=( )y un(X)A")( )y u,.(X)u")

n>0 n»0 n»0

for all A, n €k, and therefore (because k is an infinite field) u,(X)*=
u,(X) for all n >0, and u,,(X)u,(X) =0 if m #n. Also

n>0
by taking A =1 in (2.1). It follows that the u,(X) determine a direct sum
decomposition

2.2) F(X)= & F/(X)

n>0
where F,(X) is the image of u,(X): F(X) - F(X). Since F(X) is finite-
dimensional, all but a finite number of the summands F,(X) in (2.2) will
be zero, for any given X.

Moreover, if f: X —>Y is a k-linear map, we have fAy=A,f for all
A€k, and hence F(f)F(Ay)=F(Ay)F(f). From (2.1) it follows that
F(fu,(X)=u,(Y)F(f)for all n> 0, so that each u,, is an endomorphism
of the functor F. Hence F(f) defines by restriction k-linear maps
F(f). F,(X) - F,(Y), and therefore each F, is a functor, which is clearly
polynomial. Consequently we have a direct decomposition

(2.3) F= @ F,

n»0

in which each F, is a homogeneous polynomial functor of degree n.

Remarks. 1. The direct sum (2.3) may well have infinitely many non-zero
components, although for any given X € 8 we must have F,(X)=0 for
all sufficiently large n. An example is the exterior algebra functor A.

If F,=0 for all sufficiently large n, we shall say that F has bounded
degree.

2. F, is homogeneous of degree 0, so that Fy(A) =1 for all A €k, and in
particular Fy(0) = Fi(1). It follows that for all morphisms f: X —»Y we
have Fy(f) = F(0), which is therefore independent of f and is an isomor-
phism of Fy(X) onto F(Y). Hence all the objects Fy(X) are canonically
isomorphic.
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More generally, let r be a positive integer and B’ =8 X ... X B the
category in which the objects are sequences X =(X,,..., X,) of length r
of objects of B, and Hom(X,Y) =IT, Hom(X;,Y;). As before, a functor
F: 8" > B will be said to be polynomial if F:Hom(X,Y) - Hom(FX, FY)
is a polynomial mapping for all X,Y € 8", If F is polynomial and () =
(App-+-» A,) €K', then F((A)y) =F((A)x,,...,(X,)x) will be a polynomial
function of A,,..., A, with coefficients in End(F(X)), say

2.4) F(NDy)= ¥ tp (X, XA A

Exactly as before, we see that the u,, , are endomorphisms of F, and
that if we denote the image of u,, . (X,...,X,)by F, . (X,,..., X)),
then the F,, , are subfunctors of F which give rise to a direct decompo-
sition

(2.5 F= @& F,

my,...,m,

1.eem, "

Each F,, ., is homogeneous of multidegree (m,,...,m,), ie. we have
le...m,(’\l» ) A,) = A" LLAT

3. Linearization

Again let F: 8 — 8 be a polynomial functor. In view of the decomposition
(2.3), we shall assume from now on that F is homogeneous of degree
n > 0. The considerations at the end of §2 apply to the functor F': 8" - 8
defined by F'(X,,..., X,)=F(X, & ...  X,), and show that there exists a
direct sum decomposition, functorial in each variable,

F(X,®..0X,)=®F, .(X,..X,)

where the direct sum on the right is over all (m,,...,m,) € N" such that
m+...+m,=n.

Our main interest will be in the functor Fj ,, the image of the
morphism u; ,. For brevity, we shall write Ly and v in place of F; , and
u; 1, respectively. We call L the linearization of F: it is homogeneous of
degree 1 in each variable.

To recapitulate the definitions of L, and v, let Y=X, & ... ® X,. Then
there are monomorphisms i,: X, —»Y and epimorphisms p,:Y—-X,
(1 < @ < n), satisfying

(3.1) paia=1x°, paiﬁ——-o if a#ﬂ, Eiapa':ly.
a

For each A=(A;,...,A,)€KL", let (A)y or (A) denote the morphism
LAi,p,:Y>Y, so that (A) acts as scalar multiplication by A, on the
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component X,. Then v(X,,...,X,) is by definition the coefficient of
Ay... A, in F((A)y), and Lg(X,,..., X,) is the image of v(Xj,..., X,), and
is a direct summand of F(X; ®...®X,).

(3.2) Example. If F is the nth exterior power A", we have
F(X,®..0X,)= & ANu(X)e...e A™(X,)

summed over all (m,,...,m,) € N" such that m, + ... +m, = n, and hence
Ly(X,,...,X,)=X,®...0X,.

4. The action of the symmetric group

Let F as before be homogeneous of degree n > 0, and let
LP(X)=Lg(X,...,X).

For each element s of the symmetric group §,, let sy or s denote the
morphism i ,)p,: X" > X", where X"=X@&... X, so that sy per-
mutes the summands of X”. For any A =(A,,...,A,) €k" we have from
(3.1

SX(A) = E An:ri.\'(n:r)pn:r = (SA) . sX

where sA = (A;-13y,..., A;-1.,,y), and hence

4.1) F(s)F((A)) =F((sA).F(s).
By picking out the coefficient of A,... A, on either side, we see that
4.2) F(s)v=vF(s)

from which it follows that F(s) defines by restriction an endomorphism
F(s) of LY. Explicitly, if

(43)  j=jyi LX) >F(X"), q=qy:F(X") - LX)

are the injection and projection associated with the direct summand
LP(X) of F(X™), so that gj =1 and jg = v, then

(4.4) F(s) = qF(s5)j.

From (4.2) and (4.4) it follows that F i(st) = F(s)F(t) for s5,t €S, so that
s F(s) is a representation of S, on the vector space L{(X), functorial
in X.
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we shall now show that this representation of S, determines the functor
Fup to isomorphism, and more precisely that there exists a functorial
somorphism of F(X) onto the subspace of S,-invariants of L{(X).

gumple. In the example (3.2) we have L{W(X)=T"(X), the nth tensor
power of X over k, and the action of S, on L{(X) in this case is given by

F(s)(x;8...8x,) = &(s)x,-1, ® ... ®X;-1(s)

where €(s) is the sign of s € S,. Hence L{(X)5 is the space of skew-
metric tensors in T"(X), which is isomorphic to A*(X) since k has
characteristic 0.

leti=Xi, X—>X" p=Xp,: X" > X Then we have

4.5) vF(ip)v= Y F(s)v.

SES,

Proof. Consider linear transformations f:X"—»>X" of the form f=
Lo p bapliaPp> With &5 €k; F(f) will be a homogeneous polynomial of
degree n in the n? variables £,,, with coefficients in End(F(X™")) depend-
ing only on X (and F). For each s €, let w, denote the coefficient of

byt -+ Gsgmyn I F ).
We have F(s)v=vF(s)v by (4.2) (since v2=v), hence F(s)v is the

coefficient of Aj... A, ... p, in

FIODFF( ) = FO)5C ) = F( T Aoy adicor P

and therefore F(s)v =w,.
On the other hand, vF(ip)v is the coefficient of A,... A, py... p, in

FAO)FGp)F(( ) = F((Dip( w)) = F( L bl p,,)

and this coefficient is clearly

Y w=Y F(s)v. |

SES, s
We now define two morphisms of functors:
£=qF(i):F> LY, n=F(p)j:LP ->F.

(4.6) We have n¢ = n! (i.e. scalar multiplication by n!) and én="T, s, F(s).
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Proof. n§=F(p)jqF(i)=F(p)vF(i) is the coefficient of A,...A in

F(p)F((MD)F(@i) = F(p(A)i). Now p(A)i: X > Y is scalar multlphcatlon b

M + ...+, so that F(p(A)i) is scalar multiplication by (A, + oA

and the coefficient of Ay... A, is therefore nl. ’
Next, we have ¢n=gF (i)F (p)j, so that by (4.3) and (4.5)

jéng =vF(ip)v =Y F(s)v

and hence &n =X, qF(s)j = L, F(s) by 4.4). |

Let L&(X)5 denote the subspace of S,-invariants in L{(X). Frop
(4.6) it follows that o= (n!)"Y%n is ldempotent with image L‘")(X )55, Let

e LP(X) > LP(X),  m: LX) - LP(X)*

be the associated injection and projection, so that we=1 and emr=
From (4.6) we have immediately

(4.7) The morphisms
¢ =mg: F(X) - LX),

n' = ns:L(,?)(X)S" - F(X)

are functorial isomorphisms such that ¢'n' =n! and n'¢' =n!l.

5. Classification of polynomial functors

It follows from (4.7) that every homogeneous polynomial functor of degree
n is of the form X — L(X,..., X)5, where L: 8" —» B is homogeneous of
degree 1 in each variable. The next step, therefore, is to find all such
functors.

We shall begin with the case n =1, so that L: 8 — 8 is homogeneous
of degree 1. From (1.1), L is clearly additive: L(f, +f,) = L(f,) + L(f,).

(5.1) There exists a functorial isomorphism

L(X)=L(k)®X.

Proof. For each x € X let e(x): k = X denote the mapping A — Ax. LetY
be any k-vector space, and define

Yx:Hom(L(X),Y) -» Hom(X,Hom(L(k),Y))

by Yy (fXx) = f o L(e(x)). Clearly ¢, is functorial in X, and to prove (5.1)
it is enough to show that ¢ is an isomorphism.



5. CLASSIFICATION OF POLYNOMIAL FUNCTORS 155

since L is additive we have L(X, ® X,)=L(X,) ® L(X,). It follows

pat if ¥y, and ¢ are isomorphisms, Yy oy, is also an isomorphism.

Hence it is enough to verify that ¢, is an isomorphism, and this is
obvious.

Now let L: 8" — B be homogeneous and linear in each variable.
(5.2) There exists a functorial isomorphism
L(X,,...,X,)=L"(k)®X,®...0X,
where L™(k) = L(k, ..., k).
Proof. By repeated applications of (5.1),
L(X,,...,X,)=L(X,,...,X,_,,k) ®X,
=L(X,,....,X,_2,k,k)®X,_,®X,

=L(k,....k)®X,08X,9...8X,. |
From (5.2) and (4.7) we have immediately

(5.3) Let F be a homogeneous polynomial functor of degree n. Then there
exists an isomorphism of functors

F(X) = (LPK) @ T(X )™,
where T"(X) =X ® ... ® X is the nth tensor power of X. |

Let &, denote the category of homogeneous polynomial functors of
degree n, and B the category of finite-dimensional k[S,}-modules.

(5.4) The functors a: &, > B, B: Bs — &, defined by
a(F)=LPk),  BMX) =(MeT(X)™
constitute an equivalence of categories.

Proof. We have Ba =14 by (5.3), and we have to verify that af = lg, . If
MeB; and B(M)= F then

F(X,®..0X)=(MeT(X,®...0X,))"
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and therefore

. Sa
Le(Xy,..., X,) = M®( ® Xs(l)®"°®Xs(n))) :

SES,

Hence
af(M) =LP(k) = (M KIS, D" =M. |

It follows that « and B establish a one—one correspondence betweey,
the isomorphism classes of homogeneous polynomial functors of degree p,
and the isomorphism classes of finite-dimensional k[S,]-modules. '

In particular, the irreducible polynomial functors (which by (2.3) ap
necessarily homogeneous) correspond to the irreducible representations of
the symmetric groups S, and are therefore naturally indexed by partitiong.

For each partition A of n, let M, be an irreducible k[S,]-module wit
character x*. From (5.4) the irreducible polynomial functor F, indexed by
A is given by

(5.5 F(X)=(M, T (X)™.

Now if G is any finite group and U, V are finite-dimensional k[G).
modules, there is a canonical isomorphism (U* ® V)¢ = Hom,,U, V),
functorial in both U and V, where U* = Hom, (U, k) is the contragredient
of U. In the present context we have M;* = M,, and therefore

(55" F(X) = Homys (M, T"(X)).

Consider T*(X) as a k[S,]-module. Its decomposition into isotypic
components is

T (X)= & M, ® Hom,‘[sn](MA,T"(X))
A
so that

(5.6) T(X)= @ M, ®F,(X)
A

functorially in X.

6. Polynomial functors and &[S, ]-modules

We shall need the following facts. Let G, H be finite groups, M a
finite-dimensional k[G]-module, and N a finite-dimensional k[H}
module. Then M ® N is a k[G X H]-module, and we have

(A) MC@NH=(MeN)**!
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as subspaces of M ® N.

Suppose now that H is a subgroup of G, and let ind$ N = k[G] & N
pe the k[G]-module induced by N, and resi M the module M regarded as
a k[H]-module by restriction of scalars. Then

(B) N = (ind§ N)°.
This is a particular case of Frobenius reciprocity:
Homk[H](reng’ N) = Homk[G](M’ lndgN)

in which M is taken to be the trivial one-dimensional k[G]}-module.
Suppose again that H is a subgroup of G. Then

©) ind§, (N ® res M) = (ind§N) @ M.

For both sides are canonically isomorphic to k[G] B H) Neg, M.

Finally, suppose that H is a normal subgroup of G, that M is a
finite-dimensional k[G}-module and L a finite-dimensional k[G/H}
module, hence a k[G]-module on which H acts trivially. Then

G/H

(D) (LM  =(LeM)°

as subspaces of L ® M.
For L ® M¥ = (L ® M)" since H acts trivially on L, hence

(LeM™) " =L oM™ =(LeMC.

Now let E, F be homogeneous polynomial functors, of degrees m and n
respectively. Then

E®F:X—-E(X)®F(X)

is a homogeneous polynomial functor of degree m + n, hence corresponds
as in §5 to a representation of S, ..
Suppose that E = B(M), F = B(N) in the notation of (5.4). Then

(E®@F)(X)=(MeT"(X)* & (NeT'(X))™
=(M@NST""(X))*"™> by (A)
= (indSrizs (M® N) ® T"*7(X))™™" by (B) and (C)

so that E ® F corresponds to the k[S,,, ,J-module

m+n

(6.1) M.N=ind§i (M®N)

which we call the induction product of M and N.
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Since tensor products are commutative and associative up to isomor.
phism, so is the induction product.

Consider next the composition of polynomial functors. With E, F g
before we have

(E+F)(X)=E(N®T"(X))*)
— (M T"(N®T(X)*)™
= (Mo (T"(N) @ T (X)) by (A)
where S;' =S, X ... XS, as a subgroup of S,,,. Now the normalizer of §™
in S,,, is the semidirect product S;' X S,,, in which §,, acts by permuting

the factors of S,": this is the wreath product of S, with S,,, denoted by
S, ~ S,,- Using (D) it follows that

(E°F)(X)=(M®T"(N) ® T™(X))™ "
= (ind$rs 5 (M ® T"(N)) @ T™(X))*™
by (B) and (C). Hence E - F corresponds to the k[S,,,]-module
(6.2) Mo N=ind§ g (M®T™(N)),

which we call the composition product or plethysm (Chapter 1, §8) of M
with N. Plethysm is linear in M:

(6.3) M,eM,)e N=(M,>N)® (M,>N)

and distributive over the induction product:

(6.4) (Mo N).(M,>N)=(M;.M;)°N.

For the corresponding relation for the functors is
(EcF)®(E,°F)=(E,®E;)°F

which is obvious.

7. The characteristic map

If U is any abelian category, let K() denote the Grothendieck group of
A.
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Let § denote the category of polynomial functors of bounded degree
(§2) on B. From (2.3) and (5.4) it follows that § is abelian and semisimple,
and that

K@= @ K(§,)= @ K(By).
n»0 n>0

Moreover, K(®8 ) =R" in the notation of Chapter I, §7.

The tensor product (§6) defines a structure of a commutative, associa-
tive, graded ring with identity element on K($). In view of (6.1), this ring
structure agrees with that defined on R = @R" in Chapter I, §7, so that
we may identify K(§) with R.

K(§) also carries a scalar product. If E, F are polynomial functors, then
Hom(E, F) is a finite-dimensional k-vector space, and we define

(E,F)=dim, Hom(E, F).

Again by (5.4), it is clear that this scalar product is the same as that
defined on R in Chapter I, §7.

We shall now give an intrinsic description of the characteristic map
¢h: R = A, defined in Chapter I, §7. Let F be a polynomial functor on .
For each A=(A;,...,A,)€k’, let (A) as before denote the diagonal
endomorphism of k’ with eigenvalues :A,,..., A,. Then trace F((A)) is a
polynomial function of Ay,..., A,, which is symmetric because by (4.1)

trace F((s\)) =trace F(s(A)s™1) = trace F(s)F((X))F(s)~’
= trace F((A))

for all s € S,. Since the trace is additive, it determines a mapping
Xr: K(%) g Ar ’

namely x,(FXA,,..., A,)=trace F((A)); and since the trace is multiplica-
tive with respect to tensor products, y, is a homomorphism of graded
rings. Moreover, it is clear from the definitions that x,=p,,° x, for
g>r, in the notation of Chapter I, §2, and hence the y, determine a
homomorphism of graded rings

(1.1) x:K(¥) - A.

To see that this homomorphism coincides with the characteristic map
c¢h: R — A defined in Chapter I, §7, we need only observe that y(A") =e,
and that A" corresponds to the sign representation &, of S, in the.
correspondence (5.4).
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Hence from Chapter I, (7.5) and (7.6) it follows that

(7.2) If F,: B > B is the irreducible polynomial functor corresponding to th,
partition A, then x(F,) is the Schur function s,.

If F is any polynomial functor, the decomposition (2.5) applied to the
functor F':(X),...,X,) > F(X; ® ... ®X,) shows that the eigenvalues of
F((A)) are monomials Af... A, with corresponding eigenspaces
F, . na(k,..., k), and therefore

my...
x(F)= Y dimF, (k... kKx". . xm".
yeeym,

m
From this and the definition of plethysm in Chapter I, §8, it follows that
(7.3) x(E°F)=x(E)e x(F)

for any two polynomial functors E, F.
In particular, if A and u are partitions, the functor F,° F, is a direct
sum of irreducible functors F,, so that in K(&) we have

FoF,= Y a,F,
w

with non-negative integral coefficients aj,. By (7.2) and (7.3) it follows that

(7-4) sA ° sp, = Z a;rp.s‘rr

ko

with coefficients aj, > 0.

Example

It follows from §7 that a polynomial functor F is determined up to isomorphism by
its trace y(F). Hence identities in the ring A may be interpreted as statements
about polynomial functors. Consider for example the identities of Chapter I, §5,
Examples 5, 7, and 9. From Example 5(a) we obtain

6)) sk(s?V)= @ F,(V)
"

summed over even partitions u of 2k, and from Example 5(b)

) SY(NV)= @ F(V)

summed over partitions v of 2k such that v’ is even (i.e. all columns of v have
even length). Likewise Example 7 gives

(3) Sk(Ve AW)= @ F(V)
A
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summed over partitions A such that |A|+ c(A) = 2k, where c(A) (loc. cit.) is the
qumber of columns of odd length in A, or equivalently the number of odd parts of
). Finally from Example 9(a) and %(b) we obtain

) N(NV)= @ F,(V)
o
summed over partitions 7= (a; - 1,..., a,—1 lag,..., ap) in Frobenius notation,
and
(5) NESV)= @ F()
P

summed over partitions p=(a;+1,...,a,+ 1| a),..., ).

8. The polynomial representations of GL,,(k)

Let G be any group (finite or not) and let R be a matrix representation of
G of degree d over an algebraically closed field k of characteristic 0, the
representing matrices being R(g) = (R;/(g)), g€ G. Thus R determines
d* functions R, it G — k, called the matrix coefficients of R. If we replace R
by an equivalent representation g — AR(g)A ™!, where A is a fixed matrix,
the space of functions on G spanned by the matrix coefficients is unal-
tered. It follows that if R is reducible, the R;; are linearly dependent over
k, because in an equivalent representation some of them will be zero.
Again, if R and S are equivalent irreducible representations of G, the
matrix coefficients of S are linearly dependent on those of R.

(8.1) Let RV, R, ... be a sequence of matrix representations over k of a
group G. Then the following are equivalent:

(i) All the matrix coefficients R, R

P RD,...
(ii) The representations RV, R®,... are irreducible and pairwise inequivalent.

are linearly independent;

We have just seen that (i) implies (ii). The reverse implication is a
theorem of Frobenius and Schur (see [CS5], p. 183).

Now let V=k™ and let G = GL(V) = GL,,(k). Let x;; (1 <i,j<m) be
the coordinate functions on G, so that x;;(g) is the (i,)) element of the
matrix g € G. Let

P= @ P"=kl[x;:1<i,j<m]
n>0
be the algebra of polynomial functions of G, where P” consists of the
polynomials in the x;; that are homogeneous of degree n. A matrix
representation R of G is said to be polynomial if its matrix coefficients
are polynomials in the x;;. Clearly, each polynomial functor F, such that
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I(A) <m (so that F,(V) + 0) gives rise to an equivalence class of polyng.
mial representations R* of G, in which g € G acts as F,(g) on F(V).
We shall show that

(8.2) The representations R* such that I(A\) < m are inequivalent irreducible
polynomial representations of G, and conversely every irreducible polynomig]
representation of G is equivalent to some R*.

Proof. By (7.2), the dimension of F,(V') is equal to s,(x,,..., x,,) evaluated

at x, = ... =x, =1, and hence by Chapter I, (4.3)
6)) d,= ¥ (dimF,(V))
|Al=n

is equal to the coefficient of " in (1 — £)~™", so that
2 d, =dim, P".
On the other hand, the decomposition (5.6)

™W)= & M FWYV)
|Al=n

shows that the representation of G on T*(V) is equivalent to the diagonal
sum of dim M, copies of R*, for each partition A of n of length < m. Now
the matrix coefficients of T” are the monomials of degree n in the x;,
hence span P,. Consequently the R} also span P"; but from (1) and (2)
above it follows that the total number of these matrix coefficients is
d, = dim, P". Hence the R}, such that |A| =7 and I(A) <m form a k-basis
of P", and it follows from (8.1) that the R* are irreducible and pairwise
inequivalent.

Finally, if R is any polynomial representation of G, the argument of §2
shows that R is a direct sum of homogeneous polynomial representations.
So if R is irreducible, its matrix coefficients R;; are homogeneous of
degree say n, i.e. R;; € P". Hence by (8.1) R is equivalent to some R*.

In the course of the above proof we have shown that

(8.3) The matrix coefficients R};, where A ranges over all partitions of length
< m, form a k-basis of P.

If f€ A is any symmetric function, we may regard f as a function on G
by the rule

fx) =f(&,.... &)

where §,,...,&, are the eigenvalues of x € G. For example, e,(x)=
trace( A'x) is the sum of the principal r X r minors of the matrix x, and
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hence is a polynomial function of x. Since each f& A is a polynomial in
the e,, it follows that f is a polynomial function on G.

(8.4X0) The character of the representation R* of G is the Schur function s,.
(i) A polynomial representation of G is determined up to equivalence by its
character.

Proof. () From (7.2), s5,(x) is the trace of F,(x) if x€ G is a diagonal
matrix, and hence also if x is diagonalizable. Since the diagonalizable
matrices are Zariski-dense in G (because x is diagonalizable whenever
D(x) # 0, where D(x) is the discriminant of the characteristic polynomial
of x) and both s,(x) and trace F,(x) are polynomial functions of x, it
follows that s,(x) = trace F,(x) for all x € G.

(ii) This follows from (i), since the Schur functions s, such that I(A) <m
are linearly independent.

The group G acts on P (and on each P") by the rule
(gp)(x) =p(xg)
for p€ P and g, x € G. Hence

gRA(x) =RA(xg) = L RMx)R)(g),

so that
gRA: =Y RA(g)R}.

r
This equation shows that for each i =1,2,...,d,, where d, = dim F (V) is
the degree of R*, the subspace of P spanned by the R} (1<j<d,) is an
irreducible G-module affording the representation R*, and hence is iso-
morphic to F,(V). Consequently, if P, is the subspace of P spanned by all
the R}, we have

8.5 P=@ P,
A

where A ranges over all partitions of length <m, and P, = (V).

Examples

1. (@) Let A be a partition of n and let M, (§7, Example 15) denote the Specht
module corresponding to A. It has a basis (f,) indexed by the standard tableaux ¢
of shape A, where (loc. cit.) f, is a product of Vandermonde determinants on the
columns of ¢, so that

(1) wf, = e(w)f,

if we S, lies in the column stabilizer C, of ¢.
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If v €S, then vf, is a Z-linear combination of the f;, say

2 o, = L ph (W),

summed over standard tableaux s of shape A, and the mapping v = ( p;(v)) is an
irreducible representation of S, by integer matrices.

(b) Let X be a k-vector space with basis x,,...,x,. Then T"(X) has a basis
consisting of the tensors

x.,.=x.,,(l) ... ®x,(,,)

where 7 runs through all mappings [1,7] = [1,¢]. If w € S, we have w(x,) =x, ..,

Hence M, ® T"(X) has as basis the products f, ®x,, where ¢ is a standard
tableau of shape A, and 7:[1,n] = [1,q). Now consider F,(X) = (M, ® T"(X))%.
clearly it will be spanned by the elements

3) x.,= ), w(f,®x,)= Y wf®x,,.

weSs, weS,

Given 7 as above, we may choose v €S, so that o= r1v7!

mapping of [1, n] into [1, g). We then have

is an increasing

xt.f= 2 wft ®xn:ruw'l

wes,
= Y wf ®x,,
wes,
and hence by (2) and (3) we have
) .= Lpa(x,
s

and therefore F,(X) is spanned by the elements x,, such that ¢ is a standard
tableau of shape A and 7:[1,n] - [1, ¢] is an increasing mapping.

(c) We regard a standard tableau ¢ of shape A as a bijective mapping of (the shape
of) A onto [1, ], so that ¢(, ) is the integer occupying the square (i, j) € A. Then
T=ret is a mapping A—[1,q], i.e. it is a filling of the squares of A with the
numbers 1,2,...,q. If 7 is increasing, then T is increasing (in the weak sense)
along rows and down columns, and we have x, ,=0 unless T is a (column-strict)
tableau. For if there are two squares a, b in the same column of A such that
T(a) =T(b), ie. 1(t(a))=7(¢t(b)), let weS, be the transposition that inter-
changes t(a) and t(b). Since w € C, it follows from (1) above that wf,= —f,, and
since also wx, =x, we have w(f,®x,)= —f, ®x,, and consequently x, ,=0.

(d) On the other hand, if T= ¢ is a tableau, then 7 is uniquely determined by
T, because the sequence (r(1),...,7(n)) is the weight of T (Chapter I, §1). In
general the standard tableau ¢ is not uniquely determined by T: for example, if
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% then f can be either 3 3% or 3% However, if T= Tot=rot, with ¢, t,

standard tableaux, then ¢, = vt for some v € §, such that 7= 7o v, and hence

Xyr = Z w(fll @x,)

weSs,

= ), wo(f,®x,)=x,,

weS,

and we may therefore unambiguously define x;=x, , when T is a column-strict
tableau.

(¢) It follows from (b) and (c) above that F,(X) is spanned by the elements x.,
where T: A = [1,q] is a column-strict tableau. But now the dimension of F(X) is
by (7.2) equal to the Schur function s, evaluated at (17) =(l,...,1), which by
chapter I, (5.12) is equal to the number of tableaux T as above. Hence the xr
from a k-basis of F(X).

2. In continuation of Example 1, let Y be a k-vector space with basis y,,...,y,,
and let @: X > Y be a k-linear mapping, say

P
ax;= E a;iYi»
i=1

so that « is represented by the p X g matrix 4 = (a;;) over Kk, relative to the given
pases of X and Y. Then « induces T"(a): T*(X) - T"(Y), given by

(5) T"(a)x7= Zadfyd

where a,.=a,a),1)-+ Bg(nyr(ny @nd in the sum o runs through all mappings
(1,n] (1, pl

If now A is a partition of n, we have a k-linear mapping F(a): F,(X) - F(Y),
say

) F(a)xp =) agrys
s

summed over column-strict tableaux S§:A —[1,p]. We shall now compute the
matrix coefficients agy.
If T= 1ot as in Example 1, then

F(a)xr= Y w(f)®T"(a)x,,

wES,

= E W(f:)@z:aa,m-‘)’a

wesS,

-1

by (3) and (5) above. By replacing o by ow™! in the inner sum above and

observing that a,,,-1 ,,-1=a, ,, We obtain

(7) FA(a)xT= E aa‘ryt,a

o,
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summed over o:[1,n] = [1, p]. For each such o, choose v €S, such that 0y~
ov~! is an increasing mapping; then by (4) of Example 1 we have

Yoo= L P20y, o,
s

®
= E psAt(v)yS

summed over standard tableaux s such that § = o< s is a tableau. From (7) anq
(8) we obtain

E\(a)xT = E p,‘)(v)aaou,f)’s

summed over all triples (o, s,v) such that o:[1,n] = [1, p] is increasing, s is 5
standard tableau of shape A, § = gy ° s is a column-strict tableau, and v € S, rung
through a set of representatives of the cosets Gv of the stabilizer G of o, in §,,
Hence finally

A
ast= Z p:t(v)aaou,'r
s,V

summed over s, v as above. In particular, this formula shows that ag; is a
polynomial in the a;; with integer coefficients.

3. As in Chapter 1, §7, Example 15, let A be a partition of n and let T be any
numbering of the diagram of A with the numbers 1,2,...,n. Let R (resp. C) be the
subgroup of S, that stabilizes each row (resp. column) of 7, and let

e=er= Y e(wuveklS,],

u,v

summed over (,v) € C X R. Then (loc. cit.) k[S,le; is a minimal left ideal of the
group algebra £[S,], isomorphic to M,. Deduce from (5.5") that

E(V) =e,T(V)
as G-modules.
4. Let e,...,e,, be the standard basis of V' = k™, so that
m
ge; = iZl 8ij€i

if g=(g;)€G. Then T=T*(V) has a basis consisting of the tensors e, =
€,q1y® ... ®e,(,), Where 7 runs through all mappings of [1, n] into [1, m]. Let {u,v)
be the scalar product on T defined by (e, ,e,) =4,,, and for each u €T let
¢=¢,: T — P" be the linear mapping defined by

o(v)(g) = (u, gv)

for v € T and g € G. Verify that ¢ is a G-module homomorphism and deduce that
(in the notation of Example 3) ¢(e,T) is either zero or is a G-submodule of P"
isomorphic to F(V).
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5.1 g=(8;)€G let
87 =(8yasjer
for 1 <r <m (so that g" =g), and for any partition A of length <m let

A,(g) =TT det(g™).
i»1
Then A, is a polynomial function on G. If b =(b;;) € G is upper triangular, we
have

A(B) =bY...b)m,

and
A,(gb) = A,\(b'g) = A\(g) A\(b)

for all g€ G.

Show that the G-submodule of P generated by A, is irreducible and isomorphic
to F,(V). (This is a particular case of the construction of Example 4. Take T to be
the standard tableau of shape A in which the numbers 1,2,...,n =]|A| occur in
order in successive rows, and let u=e, where (7(1),...,7(n)) is the weakly
increasing sequence in which i occurs A; times, for each i=1,2,...,m. The
subgroup of S, that fixes u is the row-stabilizer R =S, X... XS, of T, so that
L,erW(u) =ru, where r=|R|=A;!...A,!. Hence ¢(e;u) is the function on G
whose value at g€ G is

r. Y ew)e,, gwe,) =ra,(g)

weCl

where C is the column stabilizer of T. Hence A, € ¢(e,T); since A, # 0, it follows
that ¢(e;T) is irreducible and isomorphic to F,(V).)

6. The Schur algebra of degree n of G (or V) is
6” = Endk[s"]Tn(V).‘

For each g € G we have T*(g) € ©”, and G acts on &” by the rule ga =T"(g)e
forgeG and a € &",
If a € @", let p, be the function on G defined by

(6)) D.(g) = trace(ga).

(a) Show that p, € P" and that a~ p,: &" - P" is an isomorphism of G-mod-
ules. (Relative to the basis (e,) of T*(V') (Example 4), each a € &” is represented
by a matrix (a,,) such that a,, ., =4,, for all weS,. We have trace(go) =
L, .a,,8, and hence

pa= E aroxtrr
o,T

where x,, =T17_| X,() riy =¥ow,rw fOr w €S, It follows that a— p, is a linear
isomorphism of &” onto P”", and it is clear from (1) that hp, =p,, for h € G.)
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(b) The T"(g), g € G, span &" as a k-vector space. (Suppose not, then there existg
a#0in ©” such that trace(T"(g)a) =0 for all g€ G, since the bilinear forp,
(a, B)— trace(aB) on &” is nondegenerate. But then p,(g) =0 forall g€ G, g
that p, =0 and therefore a=0.)

Hence the G-submodules of &” are precisely the left ideals.

(c) We have
&" =[] End,(F(V))
A

as k-algebras, where the product is taken over all partitions A of n of length <m.
(Use (5.6).)

Notes and references

Practically everything in this Appendix is contained, explicitly or implicitly,
in Schur’s thesis [S4] and his subsequent 1927 paper [S6]. We have
assumed throughout that the ground field k has characteristic zero; for a
study of the polynomial representations of GL,(k) when k has positive
characteristic, see [G14], and for polynomial functors over k (or indeed
over any commutative ring) see [A2].



APPENDIX B:
Characters of wreath products

1. Notation

If G is any finite group, let G, denote the set of conjugacy classes in G,
and let G* denote the set of irreducible complex characters of G. If
(€ Gy and y € G* we shall denote by y(c) the value of y at an element
1€c, and by . the order of the centralizer of x in G, so that the number
of elements in ¢ is |c|=|G|/¢..

Let R(G) denote the complex vector space spanned by G*, or equiva-
lently the space of complex-valued class functions on G. We have
dim R(G) =|G*| =1G4|. On R(G) we have a hermitian scalar product

u(x)o(x)
xeC

1.0 (u,v)6 Tel
relative to which G* is an orthonormal basis of R(G), i.e. { B,v)s = 8,
for B,y € G*.

Later we shall encounter families of partitions indexed by G, and by
G*.In general, if X is a finite set and p = ( p(x)),cy a family of partitions
indexed by X, or equivalently a mapping p: X =% (where & is the set of

-all partitions), we denote by || pll the sum

lell= % 1p(0)l
xeX
and by P(X) (resp. £,(X)) the set of all p: X - (resp. the set of all
p: X = such that || pll =n). Finally, if p,oc €2(X), then pU o is the
function x — p(x) U o(x) for x € X.

2. The wreath product G ~ S,

‘let G"=GX...XG be the direct product of n copies of G. The
- ymmetric group S, acts on G” by permuting the factors: s(g,,...,8,) =
(8-1y>+++» &5-1(ny)- The wreath product G, = G ~ S,, is the semidirect prod-
fuct of G" with S, defined by this action, that is to say it is the group
“whose underlying set is G" X S,,, with multiplication defined by (g, s)(h, ¢)
-=(g.s(h), st), where g,h € G" and s,t €S,. More concretely, the ele-
“ments of G, may be thought of as permutation matrices with entries in G,
- the matrix corresponding to (g,s) having (i, ) element g;§; where

g ,5(J)?
§=(81serns )
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When n =1, Gl is just G. When n =0, G, is the group of one elemep;
The order of G, is |G|" . n! for all n> 0.

An embeddmg of S,XS, in §,,, gives rise to an embedding ¢
G, X G, in G, ,,, and any two such embeddings are conjugate in G, |

3. Conjugacy classes and types

Let x=(g,s) € G,, where g=(g,,...,8,) € G" and s € S,. The permut,.
tion s can be written as a product of disjoint cycles if z=(iiy...1,)is one
of these cycles, the element g; g;  ...g; € G is determined up to conju.
gacy in G by g and z, and is called the cycle-product of x corresponding to
the cycle z. For each conjugacy class ¢ € G, and each integer r> 1, lgt
m (c) denote the number of r-cycles in s whose cycle-product lies in ¢, I
this way each element x € G, determines an array (m,(c)),,; ccq, of
non-negative integers such that ¥, . rm,(c) =n. Equivalently, if p(c) de-
notes the partition having m,(c) parts equal to r, for each r> 1, thep
p=(p(c),cq, isa partition-valued function on G, such that || pll = n, ie,
p€%,(G,) in the notation introduced in §1. This function p is called the
type of x=(g,s)€G,. Note that the cycle-type of s in S, is o=
UceG, p(C).

We shall show that two elements of G, are conjugate if and only if they
have the same type.
@ If wes,, let w=(A,w)eG,. If x=(g,s)€G, we have mw '=
(wg,wsw™ ). If z=C(i;...i,) is a cycle in s, as above, then wzw™'=
(w(@i,p)...w(@,)) is a cycle of wsw™!; moreover (wg)w(, =g;,, so that the
cycle-product is unaltered, and therefore x and #wxw ™~ have the same type.

(b) Let h=(hy,...,h,) €G". Then hxh~'=(hgs(h™!),s), and hgs(h™')
has ith component h;g;h-\ ;. Hence the cycle-product of hxh™! corre-
sponding to the cycle z in s is

(h glhl, ,)(h, Igl, ,hi, 2) (hllgtlh', )=hi,(gi,°"gi,)hi:l

which is conjugate in G to g; ...g; . It follows that x and hxh~' have the
same type.

(c) From (a) and (b) it follows that conjugate elements in G, have the same
type. Conversely, suppose that x =(g,s) and y=(h,t) in G, have the
same type. Then s,¢ €S, have the same cycle-type o= (0, 05,...) and
are therefore conjugate in §,. Hence by conjugating y by a suitable_
permutation w € S, we may assume that ¢ =s; then both x and y lie in
the same subgroup G,=G, X G, X... of G,, and it is enough to show
that they are conjugate in G This effect1ver reduces the question to the
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ase where s €S, is an n-cycle, say s =(12...n), and the products g =
g gn-1-+ 81 h= h h ...h; are conjugate in G. Now choose u, € G
such that g=u, hu , and define u,,...,u,_, € G successively by the
quatlons
gi=whiu, gy =uzhput, .. gy =y iy quyls.
A simple calculation now shows that uyu~!=x, where u=(uy,...,u,);
pence x and y are conjugate in G,, and the proof is complete.

(d) We shall now compute the order of the centralizer in G, of an element
¢=(g,s) of type p €, (G,). First, the number of possibilities for s € S,
is

) n [T]r™.m,!

r»1

where m, = X_m,(c). Next, for each such s and each r>1 there are
® m,! / [1m, ()
c

ways of distributing the m, r-cycles among the conjugacy classes of G.
Finally, for each cycle z= (zl .i,) in s such that g; ...g; €c, there are

[0) IGI"" ! .lcl=1GI' /¢,

choices for (g;,...,8; ). From (1), (2), and (3) it follows that the number of
clements in G, of type p is
n! IGI"

l"[ Z,0) : I"[ {cl( p(c)
c c

énd hence that the order of the centralizer in G, of an element of type p
is

‘(_'3_1) z =111 zp(c){cl(p(c»'

p
ceqG,

4. The algebra R(G)

Lt

: R(G)= ® R(G,).
n>0

We define a multiplication on R(G) as follows. Let u € R(G,,), v € R(G,),
and embed G, XG, in G, ,,. Then u Xv is an element of R(G,, X G,),
and we defme

(4 1) uv = indgrs (u X v)
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which is an element of R(G,,, ,). Thus we have defined a bilinear multipy;.
cation R(G,) XR(G,) > R(G,,,,), and just as in Chapter I, §7 (whig,
deals with the case G={1}) it is not difficult to verify that with
multiplication R(G) is a commutative, associative, graded C-algebra With
identity element.

In addition, R(G) carries a hermitian scalar product; if u,v € R(G), say
u=Xu, and v=Lv, with u,,v, € R(G,), we define

4.2) (u,v)="Y (u,,v,q,

n»0

where the scalar product on the right is that defined by (1.1), with G
replacing G. "

5. The algebra A(G)
Let p,(c) (r>1,c € G,) be independent indeterminates over C, and let
AG)=C[p,(c):r=>1,ceG,].

For each ¢ € G, we may think of p,(c) as the rth power sum in 3
sequence of variables x, = (x,.);, ;. We assign degree r to p,(c), and then
A(G) is a graded C-algebra.

If o= (0}, 0y,...) is any partition, let p,(c) =p,(c)p,(c).... If now p
is any partition-valued function on G,, we define

(5.1 P, = l_G[ Pocey(©).

Clearly the P, form a C-basis of A(G). If f€ A(G), say f=L, f,P, (where
all but a finite number of the coefficients f‘D € C are zero), let

(5.2) f=Xrf>p
p

so that in particular I—’p =P,
Next, we define a hermitian scalar product on A(G) as follows: if
f=E,f,F, 8=L,8,F, then

(5.3) (f.8)=X 1,82,
P
with Z, given by (3.1). Equivalently,
(5.3") (P,,P,>=8,,Z,.
Finally, let ¥:G, — A(G) be the mapping defined by ¥(x)=">, if
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1€ G,, has type p. If also y€ G, has type o, then xXye G, XG, is
well-defined up to conjugacy in G, ,, and has type pU o, so that

(5.4 Y(xXy)=¥(x)¥(y).

6. The characteristic map
This is a C-linear mapping
ch: R(G) - A(G)
defined as follows: if f& R(G,) then
ch(f) = (f,¥)q,

6.1) 1
( Y f)¥(x).

lGnI x€G,

If f, is the value of f at elements of type p, then
6.2) ch(f) =Y Z;'f,P,.
P
In particular, if ¢, is the characteristic function of the set of elements

x€G, of type p, we have ch(g,))=Z> le, from which it follows that ch is
a linear isomorphism.

Let f, g € G,. Then from (5.3) and (6.2)
(ch(f),ch(g)) = ¥ Z;'f,8,
P

= <f’g>G,,

from which it follows that ch is an isometry for the scalar products on
R(G) and A(G) defined by (4.2) and (5.3).

If u € R(G,)), v € R(G,), then by (4.2) and (6.1)

ch(uv) = (indGrss; (u X 0), ¥)g

=(uXv,¥g, xc,)6,xG,

'by Frobenius reciprocity,
=(u,¥)c {v,¥)s, by(5.4)
= ch(u)ch(v).
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Hence we have proved that

(6.3) ch: R(G) = A(G) is an isometric isomorphism of graded C-algebras.

7. Change of variables

For each irreducible character y € G* and each r>1 let

(7.1) p,(v)=Y ly()p,(c)

ceCG,

so that (by the orthogonality of the characters of G) we have

(7.1") @)=Y yOp= ¥ y©pH).

Y€G* 7€G*

The p,(v) are algebraically independent and generate A(G) as C-algebra,
From (7.1') we have

El @ ep )= ¥ '7()B)p,(y)®p,(B)

c B,7

=Y <(B,7)sp,(v) ®p,(B)
- %%

(7.2) =Y p.(y)®p,(y)
Y

in A(G) @ A(G).

We may regard p,(y) as the rth power sum of a new sequence of
variables y,=(y,);,;, and we may then define, for example, Schur
functions s,(y) =s,(y,) for any partition u, and more generally

(7.3) =TT s,0)(¥)
7€G*

for any A €2(G*).
(7.4) (S\)rc 2+ s an orthonormal basis of A(G).

Proof. In view of the definition (5.3') of the scalar product on A(G), it is
enough to show that

1) ESAQSA ZZ 1Pp®Pp’
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where the sum on the left is over all A €4(G*), and that on the right is
over all p €P(G,). Now the left-hand side of (1) is equal to

I1 ():s (o5 - 1 (exp 3 —p,cwsp,(y))

yeG* yeG* ra»1
1 -
@) =eXP(E = M p,(v)ep,(v))-
r»1 T yeG*

On the other hand, the right-hand side of (1) is by virtue of (3.1) equal
to

11 (Z Oz 1p (c) ®p,(c)) ]_G[ (exp ¥ —gc 1p,(c) ®p,(c))

céG. c€ r»1l
1
3) =eXP(E - X & ‘p,(c)®p,(c))
r»1 ceG,

Now (7.2) shows that (2) and (3) are equal. |

8. The characters 7,

Let E, be a G-module with character y € G*. The group G, acts on the
nth tensor power T"(E,)=E ® ... ® E, as follows: if u,,...,u, €E, and
(g,5) € G,, where g = (g,, o g,,) eG” and sE€S,, then

(g,8)(u; ®...8u,) =gu,;-13,® v gyl

We wish to compute the character 1, = n,(y) of this representation of
G,. First, if x € G, and y € G,_,, so that x acts on the first r factors of
T*(E,) and y on the last n —r factors, it is clear that

(8.1) N.(x Xy) = n,(x)n,_,(»).

Hence it is enough to compute 7,(g,s) when g € G" and s is an n-cycle,
say s = (12... n). For this purpose let e,,..., e, be a basis of E, and let

ge] = E aij(g)el'

so that g~ a(g) = (a;;(g)) is the matrix representation of G defined by
this basis. Then we have

(g,5)(e; ®...0¢;)=g1¢; ®g,¢; ®...8¢g,¢;
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in which the coefficient of €; ® ... ®¢; is
1) a;;(8)a;;(8)...a;; (g,).
To obtain the trace we must sum (1) over all j,,..., j,, which gives
n,(g,s) = trace a(g,)a(g,_,)...a(g,;)
= trace a(g,g,-1..- &) = v(c)

if the cycle-product g,g,_, ... &, lies in the conjugacy class c. From (8.1) j;
now follows that if x € G, has type p, then

(8.2) 1, (y)(x) = [T v(c)"?.

We now calculate:

¥ ch(n, () =22z TT v()*“p,\(c)
p

n»0 ceG,

Il (E({[ "y(c))'(a)z;'p,(c))

ceG,

1
Il GXP( > —Zc"y(c)p,(c))
r>»1 r

ceG,

1
- X & ‘7(c)p,(c))

ceG,

=eXP(E

r>1

~

1
=exp( x 711,(7)) by (7.1)

r»1

=Y h,(y).

n»0
Hence

(8.3) ch(n,(y)) =h,(y)

for all ye G* and n > 0.

9. The irreducible characters of G,

For each partition u of m and each ye G*, let

9.1) x*(y) = det(n,_;4;(v)).
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This is an alternating sum of induction products of characters, hence is a
(perhaps virtual) character of G,,. From (8.3) and (6.3) we have

(92) Ch( X“(')')) = det(h#}_i.'.j(‘)/)) = S#(‘)’).
Next, for each A € #,(G*), define
9.3) x*=T1 x*(y)
Y€G*

which for the same reason is a character of G,. From (9.2) it follows that

9.4 ch(Xx*) = 11 Sxn(¥) =5y
v€G*

and since ch is an isometry (6.3) it follows from (7.4) that
<XA9 Xﬂ')G" = <SA9S#> = SA”,

for all A, u €2,(G*). Hence the X* are, up to sign, distinct irreducible
characters of G,; and since | 2,(G*)|=12,(G,)|=I|(G,),l, there are as
many of them as there are conjugacy classes in G, so that they are all the
irreducible characters of G,. It remains to settle the question of sign,
which we shall do by computing the degree of each character X*.

Let X, denote the value of X* at elements of G, of type p €Z,(G,).
From (9.4) and (6.2) we have

©.5) S$\= L Z'X)P,
p

or equivalently

(95’) XPA: <Sp Pp))

9.5") P=Y X5, = T XS,
A A

Let ¢, € G, be the class consisting of the identity element. The type of the
identity element of G, is p where p(c,) =(1"), p(c) =0 if ¢ # c,. Hence
P,=p\(cy)", and since p\(cy) =X, d, pi(y), where d, = y(c,) is the degree
of v, it follows from (9.5’) that the degree of X* is equal to the coefficient
of S, in (Z, d, p)(y))", i.e. to the coefficient of T, s,(,,(y) in

n! Ay
e LH{42®)
Y
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which by Chapter I, (7.6) is equal to
(9.6) n! TT(d¥/h(A(y)))
Y

where h(A(y)) is the product of the hook-lengths of the partition A(y),
Since this number is positive, it follows that X* (and not —X*) is ap
irreducible character. So, finally,

(9.7) The irreducible complex characters of G,=G ~ S, are the X* (A e
#,(G*)) defined by (9.3), and the value of X* at elements of type p €#,(G,)
is

X} =<(S,,B).

Moreover the degree of X* is given by (9.6).

Example

The simplest nontrivial case of this theory is that in which the group G has two
elements +1. Then G, is the group of signed permutation matrices, of order 2”n!,
or equivalently the hyperoctahedral group of rank n. The conjugacy classes and the
irreducible characters of G, are each indexed by pairs of partitions (A, u) such that
[Al+ | pl=

If the power sums corresponding to the identity (resp. non-identity) conjugacy
class are denoted by p,(a) (resp. p,(b)), and those corresponding to the trivial
(resp. nontrivial) character by p,(x) (resp. p,(y)), the change of variables formula
(7.1') reads

p(@) =p(x)+p,(y), p,(b)=p(x)-py)
and the formula (9.5”) reads

p(@)p,(b) = 1 X} ts5,(x)s,(y)
A p

where XM is the value of the character indexed by (A, u) at the class indexed by
(p, o) (where Al +]ul=]pl+|c|=n).

Notes and references

The characters of the wreath products G ~ S,, where G is any finite
group, were first worked out by W. Specht in his dissertation [S17], and our
account does not differ materially from his. See also [M3].
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HALL POLYNOMIALS

1. Finite 0-modules

Let o be a (commutative) discrete valuation ring, p its maximal ideal,
k=o0/p the residue field. Later we shall require k to be a finite field, but
for the present this restriction is unnecessary. We shall be concerned with
finite o-modules M, that is to say, modules M which possess a finite
composition series, or equivalently finitely-generated o-modules M such
that p"M =0 for some r>0. If k is finite, the finite o-modules are
precisely those which have a finite number of elements.
Two examples to bear in mind are

(1.1) Example. Let p be a prime number, M a finite abelian p-group.
Then p"M =0 for large r, so that M may be regarded as a module over
the ring Z /p"Z for all large r, and hence as a module over the ring 0 = Z
of p-adic integers. The residue field is k =F,.

p

(1.2) Example. Let k be a field, M a finite-dimensional vector space over
k,and let T be a nilpotent endomorphism of M. Then M may be regarded
as a k[¢t]-module, where ¢ is an indeterminate, by defining tx = Tx for all
x€M. Since T is nilpotent we have ¢’M = 0 for all large r, and hence M
may be regarded as a module over the power series ring o = k[[¢]], which is
a discrete valuation ring with residue field k.

Remarks. 1. In both these examples the ring o is a complete discrete
valuation ring. In general, if M is a finite 0-module as at the beginning, we
have p"M = 0 for all sufficiently large r, so that M is an 0/p"-module and
hence a module over the p-adic completion 8 of o, which has the same
residue field k as o. Hence there would be no loss of generality in
assuming at the outset that o is complete.

2. Suppose now that k is finite. The complete discrete valuation rings with
finite residue field are precisely the rings of integers of p-adic fields
(Bourbaki, Alg. Comm., Chapter VI, §9), and a p-adic field K is either a
finite extension of the field Q, of p-adic numbers (if char. K=0) or is a
field of formal power series k((¢)) over a finite field (if char. K> 0). The
two examples (1.1) and (1.2) (with k finite) are therefore typical.

3. The results of this chapter will all be valid under the wider hypothesis
that o is the ring of integers (i.e. the unique maximal order) of a division
algebra of finite rank over a p-adic field (Deuring, Algebren, Ch. VI, §11).
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Since o is a principal ideal domain, every finitely generated o-module jg
a direct sum of cyclic o-modules. For a finite 0-module M, this means thy¢
M has a direct sum decomposition of the form

r
(1.3) M= & o/p™
i=1
where the A; are positive integers, which we may assume are arranged iy
descending order: A; > A, > ... > A, > 0. In other words, A =(A,,..., 1) is
a partition.

(1.4) Let p;=dim(p""'M/p'M). Then p=(p,, 1y,...) is the conjugate
of the partition A.

Proof. Let x; be a generator of the summand o/p A in (1.3), and let 7 be
a generator of p. Then p'~!M is generated by those of the 7'~ ‘x which
do not vanish, i.e. those for which A; >i. Hence p; is equal to the number
of indices j such that A; >, and therefore u; = A;.

From (1.4) it follows that the partition A is determined uniquely by the
module M, and we call A the type of M. Clearly two finite 0-modules are
isomorphic if and only if they have the same type, and every partition A
occurs as a type. If A is the type of M, then |A| =L A, is the length I(M) of
M, ie. the length of a composition series of M. The length is an additive
function of M: this means that if

0->M ->M-M' -0

is a short exact sequence of finite o-modules, then

M) = U(M) +1(M") =0.

If N is a submodule of M, the cotype of N in M is defined to be the
type of M/N.

Cyclic and elementary modules

A finite 0-module M is cyclic (i.e. generated by one element) if and only if
its type is a partition (r) consisting of a single part r=1I(M), and M is
elementary (i.e. pM =0) if and only if the type of M is (1"). If M is
elementary of type (1"), then M is a vector space over k, and I(M)=
dim, M =r.

Duality

Let 7 be a generator of the maximal ideal p. If m < n, multiplication by
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«""" is an injective 0-homomorphism of o/p™ into 0/p”. Let E denote
the direct limit:

E=limo/p".

Then E is an injective 0-module containing 0/p =k, and is ‘the’ injective
envelope of k, i.e. the smallest injective o-module which contains & as a
qubmodule.

If now M is any finite o0-module, the dual of M is defined to be

M =Hom, (M, E).

M is a finite 0-module isomorphic to M, hence of the same type as M. (To
see this, observe that M ~ M commutes with direct sums; hence it is
enough to check that M = M when M is cyclic (and finite), which is easy.)
since E is injective, an exact sequence

0> N->M-M/N-0

(where N is a submodule of M) gives rise to an exact sequence
0NeMe(M/NY0

and (M/N )" is the annihilator N° of N in M, i.e. the set of all ¢ eM

such that ¢(N) = 0. The natural mapping M —»M is an isomorphism for
all finite 0-modules M, and identifies N with N%. Hence

(1.5) N & N° is a one-one correspondence between the submodules of M, M
respectively, which maps the set of all N C M of type v and cotype p onto the
set of all N® C M of type . and cotype v.

Automorphisms

Suppose that the residue field & is finite, with g elements. If M is a finite
o-module and x is a non-zero element of M, we shall say that x has height
rif p'x=0 and p"~!x +# 0. The zero element of M is assigned height 0.
We denote by M, the submodule of M consisting of elements of height
<r, so that M, is the annihilator of p" in M.

(1) The number of automorphisms of a finite 0-module M of type A is
aA(q) = q“]"’ 2n(A) l_[ ‘Pm,(A)(q~ l),
i»1
where as usual ¢, (t)=@1 —-t)}1—1t2)...(1 —¢t™).

The number of automorphisms of M is equal to the number of se-
quences (x,..., x,) of elements of M such that x; has height A1 <i<r)
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and M is the direct sum of the cyclic submodules 0x;. To enumerate sy},
sequences we shall use the following lemma:

(1.7) Let N be a submodule of M, generated by elements of height >r, angy
let x € M. Then the following conditions on x are equivalent:

() x has height r and ox "N =0;

(i) xeM,—(M,_,+N,).

Moreover the number of x € M satisfying these equivalent conditions is
1.8 q4\'1+ +x,(1 - qv;-a;)
if v is the type of N.
Proof. If x satisfies (i), clearly xeM,. If x€M,_, +N,, then 0# p"~ !y
N,CN, so that oxNN=+#0, contrary to assumption. Conversely, if
satisfies (ii), it is clear that height (x)=r. If ox "N # 0, then for some
m <r we shall have p™x CN, and therefore p"~'x is contained in the
socle N; of N. Since N is generated by elements of height > r, it follows
that p"~'x=p’"!y for some yEN; hence x—yEM _1 and therefore
xeM,_;+N)NM,=M,_, +N,.

We have M /M, = p'M, so that

IM,) = 1(M) — I(p"M) = ):l o= IM /o M) = X, + ... +X,
by (1.4). Also
IM,_,+N,)=IM,_)+1((M,_, +N)/M,_))
=I(M,_,) +I(N,/N,_))
=X 4. +X_
which proves (1.8). |

The number of automorphisms of M is therefore the product of the
numbers (1.8) for r=A,, A,,..., where v=(A;,...,A_y) if r=2A,. Itis
not hard to see that this product is equal to a,(g) as defined in (1.6).

Example

Let M, N be finite 0-modules of types A, u respectively. Then M ® N has type
AU g, and M & N, Hom(M, N), Tor(M, N), and Ext!(M, N) all have type AXp
(Chapter I, §1).

2. The Hall algebra

In this section the residue field k of o is assumed to be finite.
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Let A, u®, ..., u" be partitions, and let M be a finite 0-module of type
. We define

G’%x)m,,(r)(o)

"
to be the number of chains of submodules of M:
M=M;DM,>...OoM,=0

such that M;_, /M, has type u®, for 1 <i <r. In particular, G},(0) is the
number of submodules N of M which have type » and cotype u. Since
(M) =1(M/N) +I(N), it is clear that

2.1) GAL(0)=0 unless |Al=|pl+|vl
Philip Hall had the idea of using the numbers GJ,(0) as the multiplica-

tion constants of a ring, as follows. Let H = H(0) be a free Z-module on a
pasis (u,) indexed by all partitions A. Define a product in H by the rule

A
u,u, = ), GA(0)u,.
A

By (2.1) the sum on the right has only finitely many non-zero terms.
(22) H(0) is a commutative and associative ring with identity element.

Proof. The identity element is u,, where 0 is the empty partition. Associa-
tivity follows from the fact that the coefficient of u, in either u,(u,u,) or
(ufu u, is ]USt G,J,,- Commutativity follows from (1.5), which shows ’that
G,

The ring H(o) is the Hall algebra of o.

(2.3) The ring H(0) is generated (as Z-algebra) by the elements u ;- (r > 1),
and they are algebraically independent over Z.

Proof. For convenience let us write v, in place of w,r, and for any
partition A consider the product

UX = vx‘sz co vx'

where X' = (A},..., X}) is as usual the conjugate of A. This product v, will
be a linear combination of the u,, say

1)) vy= ) a4,
m
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in which the coefficient a,, is by definition equal to the number of chajns
2) M=M,DM;>...OM,=0

in a fixed finite 0-module M of type u, such that M;_, /M, is of type (1%,
i.e. elementary of length X, for 1 <i<s. If such a chain (2) exists (that js,
if a,, + 0) we must have pM;_; CM; (1 <i<s) and therefore p‘MCMi
for 1 <i <s. Hence

I(M/p'M) > 1(M/M)
which by virtue of (1.4) gives the inequality
[P /Sy S

for 1 <i<s. Hence x> X and therefore by Chapter I, (1.11), u <.
Moreover, the same reasoning shows that if p=A there is only one
possible chain (2), namely M; = p‘M.

Consequently we have a,, =0 unless n<A, and a,,=1. In other
words, the matrix (a,,) is strictly upper unitriangular (Chapter I, §6), and
so the equations (1) can be solved to give the u, as integral linear
combinations of the v,. Hence the v, form a Z-basis of H(o), which
proves (2.3).

From (2.3) it follows that the Hall algebra H(o) is isomorphic to the
ring A of symmetric functions (Chapter I). The obvious choice of isomor-
phism would be that which takes each u ;- to the rth elementary symmet-
ric function e,; however, as we shall see in the next chapter, a more
intelligent choice is to map uy,, to g7~ 1/2¢,, where g is the number of
elements in the residue field of o. Thus each generator u, of H(o) is
mapped to a symmetric function. We shall identify and study these
symmetric functions in the next chapter; the remainder of the present
chapter will be devoted to computing the structure constants G,;‘,,(o).

3. The LR-sequence of a submodule

Let T be a tableau (Chapter I, §1) of shape A — un and weight v=
(v,...,%). Then T determines (and is determined by) a sequence of
partitions

S = (/\(0)’ )\(l),. . /\('))

such that X® =, X =), and A 2 A¢~D for 1 <i <7, by the condition
that A® — AC¢~D) is the skew diagram consisting of the squares occupied by
the symbol i in T (and hence is a horizontal strip, because T is a tableau).
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A sequence of partitions S as above will be called a LR-sequence of type
Vs A) if
(LRl) A=y A=) and AP DAV forl<gigr;
(LR2) A — \¢=D s a horizontal strip of length v;, for 1 <i <r. (These
two conditions ensure that § determines a tableau T)
(LR3) The word w(T) obtained by reading T from right to left in
successive rows, starting at the top, is a lattice permutation (Chapter I, §9).

For (LR3) to be satisfied it is necessary and sufficient that, for i > 1 and
k>0, the number of symbols i in the first K rows of T should be not less
than the number of symbols i + 1 in the first X +1 rows of T. In other
words, a condition equivalent to (LR3) is

k k+1
B L) L (- a)
= /=

forall i>1and k> 0.

We shall show in this section that every submodule N of a finite
o-module M gives rise to a LR-sequence of type (i, v'; X'), where A, u, v
are the types of M, M/N, and N respectively. Before we come to the
proof, a few lemmas are required. We do not need to assume in this
section that the residue field of o is finite.

(3.1) Let M be a finite o-module of type A, and let N be a submodule of type
v and cotype p. in M. Then . C A and vC A,

Proof. Since
p"M/N) p"'M+N  pTM
p(M/N)  pM+N  p"'Mn(p'M+N)
and since also p‘~!M N (p‘M + N) D p’M, it follows that
I(p="(M/N)/p"(M/N)) <I(p"~'M/p'M)

and hence that w)< A; by (1.4). Consequently wx C A. By duality (1.5), it
follows that » C A also.

Let M be an o-module of type A, N an elementary submodule of M.
Then pN =0, so that NC S where

S={xeM:px=0}

is the socle of M, i.e. the unique largest elementary submodule of M.

(3.2) The type of M/S is A=(A, = 1,2, —1,...).
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Proof. 1f M ®o/p™, then clearly S= ®p*~1/p*, whence M/S=
®o/phl

(3.3) Let M be a finite o-module of type A, and N an elementary submody],
of M, of cotype p. Then A — p is a vertical strip (i.e. \;— ;=0 or 1 fy
each i).

Proof. We have NC S, hence M/S=(M/N)/(S/N), and therefore } c
p C A by (3.1) and (3.2). Hence

0<A,—[-L,<A,—X,=1

and therefore A — u is a vertical strip. |

Notice that if u C A then A — u is a vertical strip if and only if X ¢ L.

(3.4) Let M be a finite o-module of type A, and let N be a submodule of M,
of type v and cotype p. For each i > 0, let )\") be the cotype of p‘N. Then the
sequence

S(N) = (X0 \Or \O7)

(where p"N = 0) is an LR-sequence of type (i, v'; X).

Proof. Clearly A9 = i and A = ), and A®) D A~ by (3.1) applied to the
module M/p‘N and the submodule p'~'N/p‘N. Hence (LR1) is satisfied.
Since p‘~IN/p‘N is an elementary o-module, it follows from (3.3) that
A® — AG=D) s a vertical strip, and hence that A®’ — A¢~1" is a horizontal
strip, of length equal to I(p’~!N/p‘N) = (by (1.4)). Hence (LR2) is
satisfied.

As to (LR3'), we have

A = 1(pi=Y(M/pN) /pH(M/P'N))

(again by (1.4)), so that

k
T XD =1((M/p'N)/p*(M/p'N)) = I(M/(p*M + p'N))
j=1

and therefore
k
Z (/\5;)1 _ /\ﬁ.l—- l)r) - I(Vk,)
j=1
where V;; = (p*M + p~N)/(p*M + p'N). Likewise

k+1 ‘
E (Aﬁ-‘“” - '\5")') = I(Vk+l,i+l)'
j=1
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since multiplication by a generator of p induces a homomorphism of V,;
onto I/k'l' 1,i+1 it fOl]OWS that I(Vki)>l(l/k+l,i+l)’ and hence (LR3,) iS

satisfied. |

Example

Let V be an n-dimensional vector space over an algebraically closed field k. A flag
in V is a sequence F = (V,V),...,V,) of subspaces of V, such that 0=V, cV, c

.cV,=VanddimV, =i for 0<z < n. Let X denote the set of all flags in V. The
roup G GL(V') acts transitively on X, so that X may be identified with G/B,
where B is the subgroup which fixes a given flag, and therefore X is a (non-singu-
Jar projective) algebraic variety, the flag manifold of V.

Now let u € G be a unipotent endomorphism of V. Then as in (1.2) V' becomes
a k[t]-module of finite length, with ¢ acting on V' as the nilpotent endomorphism
u—1. Let A be the type of V, so that A is a partition of n which describes the
Jordan canonical form of u, and let X, CX be the set of all flags F € X fixed by u.
These flags F are the composition series of the k[¢}-module V. The set X, is a
closed subvariety of X.

For each F =(V,,V,,...,V,) €X,, let X® be the cotype of the submodule V,_;
of V. Then by (3.1) we have

0=XA0cxWc .. cAM=)

and |A® —A¢"1=1 for 1<i<n, so that F determines in this way a standard
tableau of T of shape A. Hence we have a partition of X, into subsets X, indexed
by the standard tableaux T' of shape A.

These subsets X have the following properties (Spaltenstein [S16]):
(a) Xy is a smooth irreducible locally closed subvariety of X,.
(®) dim X = n(A).
(©) Xy is a disjoint union UJ.,Xr ; such that each X, ; is isomorphic to an
affine space and U k<Xt 5 is closed in Xy, for j=1,2,...,m

From these results it follows that the closures X, of the X, are the irreducible
components of X,, and all have the same dimension n(A). The number of
irreducible components is therefore equal to the degree of the irreducible charac-
ter x* of S, (Chapter I, §7).

If k contains the finite field F, of g elements, the number X,(q) of F,-rational
points of X, is equal to Q~)(g) (Chapter III, §7).

More general results concerning the partial flags may be found in [H8], [S14].

4. The Hall polynomial

In this section we shall compute the structure constants G}, (o) of the Hall
algebra. (The residue field of o is assumed to be finite, as in §2.) Let S be
an LR-sequence of type (u/,»'; X'), and let M be a finite o-module of
type A. Denote by Gg(o) the number of submodules N of M whose
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associated LR-sequence S(N) is S. By (3.4), each such N has type v apq
cotype . )

Let g denote the number of elements in the residue field of o, apg
recall that n(A) = (i — 1)A,, for any partition A. Then:

(4.1) For each LR-sequence S of type (w,v'; X), there exists a monj,
polynomial g¢(t) € Z[t] of degree n(A) —n(p) — n(v), independent of
such that ’

gs(q) = Gs(0)
(In other words, G5(0) is a ‘polynomial in ¢’.)

Now define, for any three partitions A, u, v

(4.2) gh () =Y g5(t)
N

summed over all LR-sequences S of type (w/, v'; X'). This polynomial is:
the Hall polynomial corresponding to A, u, v. Recall from Chapter I (§§5
and 9) that c;, denotes the coefficient of the Schur function s, in the.
product s,s,; that ¢, = c:,',,.; and that c;‘,',,, is the number of LR-sequences
of type (&, v'; X). Then from (4.1) it follows that

(4.3) (i) If ¢}, = 0, the Hall polynomial g,,,(t) is identically zero. (In particu--
lar, gp,(t) =0 unless |\ =|p|+|v| and p, vC )
@ii) If ¢, # 0, then g2.(t) has degree n(\) — n( ) — n(v) and leading coeffi-
cient c},,. ;
(iii) In either case, G(0) =g}, (q).

(iv) g2, () =g..(0).

The only point that requires comment is (iv). From (2.2) we havé_i,
G2, (0) = G,(0) for all o, hence g2,(q)=g,,.(q) for all prime-powers g,
and so g, () =g;,.(t).

The starting point of the proof of (4.1) is the following proposition:

(4.4) Let M be a finite o-module of type A and let N be an elementary.
submodule of cotype a in M (so that A — a is a vertical strip, by (3.3)). Let B
be a partition such that a« C BC A and let H,g,(0) denote the number of
submodules P C N of cotype B in M. Then i

HaﬂA( 0)= ham(‘])
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where b op)\(t) € Z[t] is the polynomial

“.4.1) hap(t) = td(a'ﬁ'”il:[l (X, =B, B —a1t™1),

in which

(4.4.2) d(a,B, )= (B,—a,)(\,—B,)
r<s

+
and [r, s] is the Gaussian polynomial [r ; s] (Chapter I, §2, Example 1) if
r,s > 0, and is zero otherwise.

Proof. Let 0=A— B, o= pB— a. Also let N;=NNp'M. Since
p'‘M/N,=(p'M +N)/N=p'(M/N)
we have

I(N) =1(p'M) — I(p"(M/N))

=) X;—a))
j>i
by (1.4), or equivalently
) n=IN)=Y (6 +¢)).

j>i

Now let P be a submodule of N, of cotype B in M, and let P,=
PNp‘M=PN N, Then

P/P,=(P+p'M)/p'M
and therefore
I(P_))—I(P)=I(P/P)—I(P/P;_))
=1((P+p'M)/p'M) = I((P +p'~'M) /p'~'M)
=I(p"~'M/p'M) = I((P+p""'M) /(P +p'M))
=X-B=6
by (1.4). Conversely, if P is a submodule of N such that

® IP_,/P)=0 (iz1)
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then the preceding calculation shows that P has cotype B in M.
Suppose that i>1 and P; are given. We ask for the number of

submodules P;_, of N;_, which satisfy (2) and
(3) I’i— 1 N M = I’i‘

The number of sequences x=(x,,...,xg) in N,_; which are linearly
independent modulo N, is

(4) (q"'-' - q”')(q”'-l _ qn,+1)“ .(q"'-l — qn,+0;—l).

For each such sequence x, the submodule P;_; generated by P; and x
satisfies (2) and (3). Conversely, any such P;_; can be obtained in this way
from any sequence x of 6; elements of P;,_; which are linearly indepen.
dent modulo P,. The number of such sequences is

(5) (qP:-1 - qpl)(qpt-l - ql’t"’l )... (qpi-l - qu"’ol"'l)
where
(6) pi=lP)=Y 6

j>i

by virtue of (2). So the number of submodules P;_; of N,_; which satisfy
(2) and (3) is the quotient of (4) by (5), namely

qot'("l-l‘l’l-n)[ 0:"’ ¢l{](q"1)_

Taking the product of these for all i > 1, and observing that n;,_, —p;,_; =
L;, ¢ (from (1) and (6)) we obtain

HaBA(D) =qdl_[l [X;— B, B - a,f](q’])
>

where

d=Y 6¢].

i<j

Now 6/ is the number of squares of the skew diagram 6= A — B in the
ith column, and L; , ;¢ is the number of squares of ¢ = 8 — « in the same
or later colums, hence in higher rows. It follows that

d=1Y ¢6=d(a,B,)

rss

which completes the proof of (4.4). |
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Suppose in particular that N in (4.4) is the socle S of M, so that a = A
by (3.2). Then Hjg,(0) is the number of elementary submodules P of
cotype B in M, so that
me(o) = GﬁA(IM)(D)

where m=|A—B|=|6|. In this case we have ¢=pB— A, so that ¢ =
8—Ai+1=1- 6, and the exponent d = d(}, B, A) is therefore

d=Y (1-4,)6,
rg<s
= Z(l_or)os= E 0:— Z oros
r<s r<s r<s

pecause 6, = 67 for all r. Since £6, =m we have

4.5) Y 66,=m*>-1Y ’°=im(m-1)

r<s

and hence
d=Y (s—16,—3m(m—1)=n(A) —n(B) —n(1™).
So from (4.4) we have the formula

Gé‘(l,,.)(o) = qn().)—n(ﬁ)—n(l"')n [/\r‘ _ ﬁi” ﬁi’ _ Xi+1](q_1)

i»l

(because X;= X, for all i > 1). This is valid for any partitions A, B, where
=|Al—| BI (If A — B is not a vertical strip, both sides are zero.)
Equ1valently, if we define

68 Blum(t) =XV DM (x, = B, B = Xy 1)

i»l
then we have gjm(g) = G3ym(0).
The next stage in the proof of (4.1) is
@4.7) Let R=(a', B, X) be a three-term LR-sequence. Then there exists a
monic polynomial Fg(t) € Z[t), depending only on R, of degree n(B)—
n(a) - (:) where n =| B — al, with the following property: if M is a finite

0-module of type A, and P is an elementary submodule of cotype B in M, then
fF"le( number of submodules N of cotype a in M such that p N = P is equal to
().
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(Observe that when B=A (so that A — a is a vertical strip) we have
P =0, so that N is elementary and therefore Fy(t) =gJ~(¢) in this case )

Proof. Let Q be a submodule of P, and let y be the cotype of Q in M, g
that we have aC S C yCA.

Let f(P,Q) (resp. g(P,Q)) denote the number of submodules N of
cotype a in M such that NODPDOQDpN (resp. NODPDQ=pN). The
number we want to calculate is g(P, P). Now f(P, Q) is easily obtained, ag
we shall see in a moment, and then g(P,(Q) can be obtained by Mobiyg
inversion [R8].

First of all let us calculate f(P, Q). We have

NDPD>QDpNe NDP and N/Q is elementary
< SDONDP, where S/Q is the socle of M/Q
< N/PcS/P.

By (3.2) S has cotype ¥ in M, and so by (4.4) (applied to the module M/p
and its elementary submodule S /P) we have

@) f(P,Q) = Hypg(0)

if yC a, i.e. if ¥y — a is a vertical strip, and f(P, Q) = 0 otherwise.
Now it is clear that

(ii) f(P,Q)= Y g(P,R)

RcQ

summed over all submodules (i.e. vector subspaces) R of Q. The equations
(ii) for fixed P and varying Q C P can be solved by Mdbius inversion: the
solution is

g(P,Q)= Y, f(P,R)u(R,Q)

RcQ

where p is the Mobius function on the lattice of subspaces of the vector
space P, which (loc. cit.) is given by

#(R,Q) = (=1)"g#-/2

where d = dim,(Q/R). Hence in particular we have

(iii) g(P,P)= Y (-1)"gmm-Y/2f(P,R)
RcP

where m = dim,(P/R) and the summation is over all subspaces R of P.



4, THE HALL POLYNOMIAL 193

Now for each partition & such that BC 8C A, the number of RCP of
cotype 8 in M is Hp;,(0). Hence from (i) and (iii) it follows that

@iv) g(P,P)= Y (~1)"gmm=b/2H,.,(0)H;,5(0)
)

where the sum is over all & such that BC 8C A and such that §—a is a
vertical strip, and m =|8 — B|. So if we define the polynomial Fg(¢) by

4.8) Fp(t) = X (=1)"emm=0/2p o (£)hs,q(t)
8

summed over partitions & as above, then it follows from (iv) and (4.4) that
g(P, P) = FR(Q)

To complete the proof it remains to be shown that this polynomial Fg(t)
n
is monic of degree n(B8) — n(a) — 2), where n=|8— al

The degree of the summand corresponding to & in (4.8) is by (4.4.2)
equal to

d=3sm(m-1D+ ¥ (g4, +(1—-6-¢)6),
r<s
where =B —a, p=8— B and y=A— 8, and m =|¢|. Each of 6, ¢, ¢
is a vertical strip, so that each 6,, ¢,, and ¢, is 0 or 1: in particular we have
Imm =1 =X, . ¢ ¢ —m by (45), so that

) d= Z ‘Pr(‘Ps""l’s_ os)+ E(l_or)os_lgpl‘

r<s rs

Now (a’, B’, A') is an LR-sequence. This implies that, for each r > 1, the
number of squares of B' — a’ = 6’ in the columns with indices >r is not
less than the number of squares of A’ — 8’ in the same columns: that is to
say, we have

(vi) Yo=Y (o+4)

s2r s>r
for each r > 1. From (v) and (vi) it follows that
d< ). (1-6)6
rs
with equality if and only if ¢=0, i.e. if and only if 6= . Hence the
dominant term of the sum (4.8) is hp,q(t) = g2 (2), which by (4.6) is

monic of degree n( 8) — n(a) — (; . This completes the proof. |
The proof of (4.1) can now be rapidly completed. Let M be an

o-module of type A, and let § =(A?",..., A7) be an LR-sequence of type
(p',v';A"). Let N be a submodule of M such that S(N)=S, and let
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N, =pN. Then clearly S(N;)=(A®",..., A"") = S, say. Conversely, if w
are given a submodule N, of M such that S(N,)=S,, the number o
submodules N such that S(N) =S and pN =N, is equal to F(g), where
Ry = (A7, X7, x®"), as we see by (4.7) applied to the module M/ppy
and its elementary submodule N,/p N,. Consequently !

Gs(0) = Gs(0)-Fy(q)

and therefore
Gy(0) = [1Fa(q)
i=1

where R;=(AG-17 207 (G+D1) (When i=r we take AC*D" =)\ o
that as remarked earlier Fy(q)=g2,~(q), where a=A"""" and m=
(A —eal)

Hence if we define

(4.9) gs(t) = l'[l Fr (1)

we have gg(q)= Gg(o), and by (4.7) the polynomial gy(¢t) is monic of
degree

r

5 w1060 - 7]] 2000 -0 02

i=1

The proof just given provides an explicit (if complicated) expression for
g, (1), via the formulas (4.2), (4.4), (4.8), and (4.9). If a, b, c, N are
non-negative integers such that b <c, let us define

(4.10) ®(a,b,c;N;t)= Y (_1)’tNr+r(r+l)/2[a][C-r]
= rilb-r

a c—r
where [ ] and
r b-r
right of (4.10) is finite, since the term written is zero as soon as r>
min(a, b).)
With this notation we have

] are Gaussian polynomials in ¢. (The sum on the

(4.11) Let S=(a©®,aW,..., &™) be an LR-sequence of type (u',v'; X').
Then

gs(t)=t"(")"'("""(") H CD(a,-,-,bi,-,c;,-;M,-;t'l)

ij>»1



4. THE HALL POLYNOMIAL 195

where

e . G-t .
aij—ai(ix)"ai(i)ls bij—aiu = aff,

Cij = ai(’) - ai(i)v Nij= Z (ah-l,j—l -ah,j)'
h<i

(Thus a;; is the number of symbols j + 1 in the (i + 1)th row of the tableau
defined by S; c;; is the number of columns of a” of length i, and
¢~ bj=a;_y;- 1 is the number of j’s in the ith row of S. Finally, N; is
the excess of the number of J’s in the first i rows of S over the number of
(j+1’s in the first i +1 rows, and hence is >0 by virtue of the lattice

permutation property.)

Proof. With the notation of (4.7) let R=(a’,B’,A’) be a three-term
LR-sequence, and let

a;=X1— Bis1y bi=al— By, =B — B

Asin (4.8)let & be a partmon such that § Cac BC 5C A, where &/ = 8,+1
foralli>1,andlet r;=8/,, — B/, ,sothat m=|8—B|=CLr,. (Since R is
an LR-sequence we have B] = 8] = A}, so that ag=r;=0; also 0<r;<aq
<c;and 0<r;<b;<c;)

We shall use (4.8) to calculate Fg(¢). From (4.4) we have

. C,'_ri
§)) D2 (Ohs s (1) =4 [‘:f](t“)[b —r ](t"),
i»1L? i i

in which the exponent of ¢ is

@  A=3(Zn) 3T 5+ E(@=mn+ (- b)b-r))

i<j
=—3XL i+ = L Nrj+ ¥ (c;—-b)b;
igj

where N; =L, . (c; — a; — b)). Moreover,

'Z. (c;=b))b; = ;( Bi — ai)(ej = Bjsy)

i) i<)
which reduces to
® n(B)—n(a)—3is(s—1)

where s=|B8— al.
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From (1), (2), (3), and (4.8) we obtain

@) Fa(t) = t"®=n@=s=0/2 ] ®(a,, by, c;; Ny 1),
i»l

Since by (4.9)

gs(1) = TTF(®),

j=1

where R;=(aU™D, a0, aU*D), the formula (4) leads directly to (4.11),
(Since (j + 1)’s appear for the first time in the (j + 1)th row of S, it follows
that a;; =0 if i <j, whence the restriction i>j in the product on the
right-hand side of (4.11). |

As an example (which we shall make use of later) we shall compute
g, (t) when v=(r) is a partition with only one part » =|A — ul. (The case
when v=(1") is given by (4.6).) First we have

(4.12) g},\(t) =0 unless A — . is a horizontal strip of length r.

Proof. Let M be a finite o-module of type A, and let N be a cyclic
submodule of cotype w in M. Let N;=N N p‘M. Then since p'M/N,=
(p'M + N)/N = p'(M/N) we have

I(N,_1/N) = X, — i
and since pN;_; =p(NNp"'M)c NN p'M = N, it follows that
0<X; = pi <IN,_ /PN, ).

Since N is cyclic, so is N, and hence I(N;_,/pN,_;) < 1. Hence X, — ;=0
or 1 for each i>1, and therefore A — u is a horizontal strip. So unless
A — p is a horizontal strip we have g ,,(g) = 0 for all prime-powers g, and
therefore g, ,,(t)=0.

Remark. Alternatively (and more rapidly) (4.12) follows from (4.3): we
have gJ,,(t) =0 unless cj,, # 0, i.e. unless s, occurs in the product sk,
which by Chapter I, (5.16) requires A — u to be a horizontal strip.

Assume then that A — u is a horizontal r-strip. Then X — ' is a vertical
r-strip, and there is only one LR-sequence S = (a®, a®,..., a”) of type
(w,(1"); X), namely that obtained by filling in the squares of the vertical
strip X' — w’ consecutively, starting at the top. For this § we have a;; =0or
1 for each pair (i, j), and also ¢;; — b;; =a;_, ;_, =0 or.1, since there is at
most one square of X' — u' in any row. Moreover, if a;; =1 (so that there is



4, THE HALL POLYNOMIAL 197

a square labelled j+ 1 in the (i + 1)th row) we have N = 0. Hence, from
the definition (4.10) of ® we find that ®(a; t) is equal to

1 ifai_l'j_1=a,-’-=001‘l;

ijs u’ u’ u’

1-¢ ifa;1,j-1=0,a;=1;
—t)/(A—1) ifay; =1, a;=0.

Moreover, in the latter case (i.e. when there is a square labelled j in the
ith row, but none labelled j in the row below), c;; is the number of
columns of A’ of length i, that is c;; =m,(A). Putting these facts together,
we obtain

(4.13) Let o= A — p be a horizontal stn'p of total length r, and let I be the set
of integers i > 1 such that o =1 and o, ,=0. Then

t"()‘) n(u)

gy (1) = ——— T[T (1 =)

iel

where m(A) is the multiplicity of i in A. |

Examples

L Let (x;8),=Q —xX1—=xt)...01 —xt""?) for all r>0. Then ®(a,b,c; N;t) is
equal to the coefficient of x® in (xt¥*1;1),/(x;1),_),,. (Use Chapter I, §2,
Example 3.) Deduce that if N=c —a — b we have

c—a
<D(a,b,c;N;t)=[ b ]

This applies in particular to the terms corresponding to i =j in the product (4.11),
since N;;=c; —a; — by
2. Let

(a;t).(B;1),
201(a, Byt x)= »ZOW

in the standard notation for basic hypergeometric series (see e.g. [GS]). In this
notation we have

lD(a b c, N t)-[ ]2¢1(t t -l tN)

so that gg(¢) is a product of Gaussian polynomials and terminating , ¢,’s.

Notes and references

The contents of §§1 and 2, together with the theorem (4.3), are due to
Philip Hall, who did not publish anything more than a summary of his



198 II HALL POLYNOMIALS

theory [H3]. The contents of §3, in particular (3.4), are due to J. A. Gregy
[G13]. Theorem (4.1) was first proved by T. Klein [K10], a student of
Green. Our proof is different from hers.

It should be pointed out that Hall was in fact anticipated by more thap
half a century by E. Steinitz, who in 1900 defined what we have called the
Hall polynomials and the Hall algebra, recognized their connection with
Schur functions, and conjectured Hall’s theorem (4.3). Steinitz’s note [S2¢]
is a summary of a lecture given at the annual meeting of the Deutsche
Mathematiker-Vereinigung in Aachen in 1900; it gives neither proofs nop
indications of method, and remained forgotten until brought to light by K,
Johnsen in 1982 [J13].

For generalizations of the notion of the Hall algebra, see the papers by
C. M. Ringel [R2], [R3], [R4].



APPENDIX*: Another proof of
Hall’s theorem

This Appendix is devoted to a simple proof of the following slightly
weakened form of (4.3) (we shall freely use the terminology and notation
of Chapter II):

(AZ.1) For any three partitions A, p, v there exists a polynomial g, (t) € Z{[t]
such that G}, (0) =g},(q). Moreover, g} (t) has degree <n()\)—n(u)—
n(v), and the coefficient of t" V="~ s equal to c),.

Our proof does not use the Littlewood—Richardson rule (Chapter I,
(9.2)). Therefore, combining it with the arguments of §§3 and 4 of Chapter
11 we shall obtain a new proof of the Littlewood—Richardson rule which
makes the appearance of the lattice permutations more natural.

Our proof is based on a combinatorial interpretation of the coefficients
a,, from the formula (1) of Chapter II, §2. We need some definitions.

A composition is a sequence a = (a,, a,,...) of non-negative integers
with only a finite number of non-zero terms. So a partition is a composi-
tion such that a; > a,> .... The group S, of finite permutations of
N*={1,2,3,...} acts on compositions by wa = (a,-14), @,-13),...). We
shall write a ~ B if @ and B are conjugate under this action: clearly , each
§.-orbit contains exactly one partition.

As well as partitions the compositions have diagrams: the diagram of a
is formally defined as the set {(i,j) € Z%*1<j<a;} and is graphically
displayed as the set of squares containing «; squares in the ith row.

If @ and B are two compositions, an array of shape « and weight B is a
numbering of the squares of the diagram of a by positive integers such
that for any i > 1 there are B; squares numbered by i (more formally, an
array is a function A: @ —» N* such that Card 4~ '(i)=g; for all i>1; it
will be convenient for us to assume that A is defined on all of N*X N* so
that A(i,j) = + when j> ;). For any x=(i,j)EN*XN™* let x~ =
G,j+1). An array a will be called row-ordered (resp. row-strict) if
A(x~) > A(x) (resp. A(x~) > A(x)) for any x € a. Likewise we define
column-ordered and column-strict arrays.

* This Appendix was written by A. Zelevinsky for the Russian version of the first edition of
this book, and is reproduced here (in English, for the reader’s convenience) with his
permission.
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We define a total ordering on N*X N* by
(i,j) <, (i',j") e either j<j',or j=j' and i > i".
Finally, for each row-strict array 4 of shape a we let
d(A) = Card{(x,y) €EaX a:y <, x, A(x) <A(y) <A(x™)).

(AZ.2) Let A, p be partitions and a, B compositions such that a~ and
B~ X'. Then the coefficient a,, (Chapter II, §2) is equal to

= d(A4
a)m_zq( )
A

summed over all row-strict arrays A of shape a and weight B.

Before proving (AZ.2) we shall derive from it (AZ.1). From (AZ.2) the
polynomial

Y 14N e z[e],
A

where the sum is the same as in (AZ.2), depends only on A and p; we
denote it by a,,(¢).

(AZ.3) (a) a,,(¢) has coefficients > 0.

(®) a,,Q1) is equal to the number of (0,1)-matrices with row sums w,, u,,...
and column sums A}, X,,... .

(©) a,,(t) =0 unless u < A. Moreover, a,,(t)=1.

Proof. (a) is evident. To prove (b) it is enough to establish a bijection
between row-strict arrays of shape u and weight A’, and (0, 1)-matrices
with row sums u,, i,,... and column sums A}, A,... . To do this we assign
to an array A4 the matrix (c;;), where c;; =1 if the ith row of A contains j,
and c;; =0 otherwise; this is the required bijection. Finally, (c) follows at
once from (a), (b), and the Gale—Ryser theorem (Chapter I, §7, Example
9).

From (AZ.3Xc), (a, (1)) is a strictly upper unitriangular matrix over Z{t].
Hence it is invertible, and its inverse has the same form. Therefore, the
entries in the transition matrices between the bases (vy) and (,) in H(o)
are integer polynomials in g. Since the multiplication law in H(o) with
respect to the basis (v,) does not depend on g, it follows that the structure
constants in the basis (u,) are integer polynomials in g. This proves the
existence of the Hall polynomials g.),(¢) € Z[¢t]. It remains to find their
degrees and leading coefficients.

(AZ.4) a,,(t) has degree <n(w)—n(A), and the coefficient of t"#)~"™ is
equal to K, (Chapter I, §5).
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This follows at once from the next combinatorial lemma:

AZ 5) For any row-strict array A of shape p and weight X' let d(A) denote
the number of pairs (x,y) € X u such that y lies above x (in the same
column) and A(x) < A(y) <A(x ™). Then

(a) d(A) + d(A) = n( w) — n(X);

(b) d(A)=0 if and only if A is column-ordered.

Proof. (a) Let
D(A)={(x,y) e uxpu:y< x, A(x) <A(y) <A(x")},

N(p)={(x,y) € wX u:y lies above x},
D(A) ={(x,y) e N(pn): A(x) <A(y) <A(x™)};

then we have

Card D(4) =d(A) + T (';) — d(A) +n(N),

i>1

Card N(p) = ), (#}) =n(p),
i>1\2

and
Card D(A) =d(A).

We shall construct a mapping ¢: D(A) = N(u). Let (x,y) € D(A) and
suppose that x= (i}, j,), y=C(iy, j,). Clearly i, #i,; let i=max(i,i,),
i'=min(iy, i,), j = min(j,, j,) and finally ¢(x, y) = ((i, ),(i’, j)). The defi-
nitions readily imply that ¢ is a bijection of D(A) onto N(u)—D(A),
whence our assertion.

(b) The ‘if’ part is evident. Now suppose that A4 is not column-ordered:
that is to say, there are x=(i,j), y=(/,j) € p such that i>i' and
A(x) < A(y). Choose such a pair with least possible j; clearly it belongs to
D(A), hence d(A) + 0.

Now let g,,(¢) =¢"#W~"Ng, (¢71), From (AZ.4) and (AZ.5) we have

(AZ.6) PR OEDWES
A

summed over all row-strict arrays of shape u and weight \'; in particular,
i, (t) € Z[t]. Moreover, a,,(0) =K,

Now consider the ring A[¢]= Az, of polynomials in ¢ with coefficients
from A; we shall write down the elements of A[¢] as P(x;¢). Clearly, Alt]
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is a free Z[¢]-module with basis (e,). From (AZ.3Xc), the matrix (g, (1)) j5
strictly upper unitriangular. Therefore, the equations

1) ey =3, a4,,()P,(x;1)
"

uniquely determine the elements P,(x;t) € Alt], and they form a Z[¢].
basis of A[f]. Let f.},(¢) be the structure constants of A[¢] with respect to
this basis, i.e.

P(x; )P, (x;8) = LA (OPR(x;1);
A

it is clear that f},(¢) € Z[¢] for all A, p,».

(AZ.7Xa) g}, (8) = "V~ n(m=ntIfR (1=1),
(b) P(x;0)=s,(x). In particular, f},(0)=c,), are the structure constants of
A in the basis (s,)).

Proof. (a) follows at once from the definitions. To prove (b) it is enough to
observe that

M(e, S)A';L = KI-‘-"" = [iA#(O)
by (AZ.6) and the results of Chapter I, §6. |

From (AZ.7), g;‘,,(t) has degree <n(A)—n(u)—n(v), and the coeffi-
cient of this power of ¢ is equal to f2,(0) = cJ,. This completes the proof
of (AZ.D.

It remains to prove (AZ.2). For this we reformulate the definitions of an
array and of d(A) in terms of sequences of compositions. If a and B are
two compositions, we shall write B4 a if a;— 1< B;<a; forany i> 1. If
B a then we define d(a, B) to be the number of pairs (i, j) such that
Bi=a;, Bj=a;—1and (j, &) <, (i, a)).

(AZ.8) Let a and B be two compositions and suppose that B;=0 fori>r.
There is a natural one-to-one correspondence between row-strict arrays A of
shape « and weight B, and sequences of compositions (a®, a®,..., a")
such that 0=a® 4a® < ... 42" =a and |aP|-|atV|=g; fori>1
Moreover, this correspondence transforms d(A) into ¥, 1d(a®, a¢~D).

Proof. We attach to an array A the sequence (@), where a=
A~'({1,2,...,i)). All our assertions are verified directly. |

Remembering the definition of a,, (Chapter II, §2) we see that an
evident induction reduces the proof of (AZ.2) to the next statement:
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(AZ.9) Let A, p be partitions with |A|=| pl+r, and a a composition such
that a ~ A. Then

Glur(0) = X g¥=®
B

summed over all compositions B such that B~ a and B~ p.

Proof. Let M be a finite o-module of type A. Recall that GJ;,(0) is the
number of submodules N CM of type (1') and cotype u. The condition
that N has type (1") means that N is an r-dimensional vector k-subspace
of the socle S of M. Let G,(S) denote the set of these subspaces. We shall
use the decomposition of G,(S) into Schubert cells. Recall that if a basis
(v)ie s Of S is given, where I is a totally ordered set, then the correspond-
ing Schubert cells C, in G,(S) are parametrized by r-subsets JC 1. The
clements of C; have coordinates (c;; €k:jeJ,iel~-J,j<i); the sub-
space corresponding to (c;;) has the basis (v; + Z;c;v;);¢ ;. It is known
(and easy to prove) that G,(S) is the disjoint union of the C,. Moreover,
we have Card (C,) = ¢, where d(J) is the number of pairs (i, j) such
that j€J,i€l—J and j <i.

Now we express M in the form M = @, ,0x;, where Ann(x;) = p . Let
I denote the set of indices i > 1 such that a; >0, and for each i € let
y=m % 'x;, where = is a generator of p. It is clear that the v,(i €I) form
a k-basis of S. We order I by requiring that j precedes i if and only if
(j» @) < (i, ;). Consider the corresponding decomposition of G,(S) into
Schubert cells. The subsets J C I are in natural one-to-one correspondence
with compositions 8 — «: to a subset J there corresponds the composition
B such that B;=a;—1for i€J, and B;=a; for i€ I—J. It is clear that
this correspondence transforms d(J) into d(a, B). Finally, it is easy to
prove that all submodules N € C, have the same cotype u, where u is the
partition such that u ~ B. This completes the proof of (AZ.9). |

Remarks. 1. The polynomials P,(x;¢) defined by (1) are called the Hall-
Littlewood functions. They will be studied in detail in Chapter III.

2. It is easy to see that (AZ.9) is equivalent to Chapter II, (4.6): each of
these statements follows at once from the other by means of the following
well-known expression for Gaussian polynomials:

o [7]- 5
7

where the sum is over all r-subsets of a totally ordered n-set I, and d(J) is
defined in the proof of (AZ.9) above. The formula (2) follows e.g. from
Chapter I, §2, Example 3. On the other hand, one of the standard ways to
prove (2) is to count the number of points on a Grassmannian over a finite
field in two different ways, which was essentially done above.
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HALL-LITTLEWOOD SYMMETRIC
FUNCTIONS

1. The symmetric polynomials R,

Let x,...,x, and ¢ be independent indeterminates over Z, and let A be 4
partition of length < n. Define

x,_txj

. —_— A A"
Ry(xpyesxst)= 2 wlxp..xp [T —
wes, i<j XpTXj

The denominator in each term of the sum on the right-hand side is, up to
sign, the Vandermonde polynomial

ag=[1(x;—x)

i<j

(Chapter I, §3), and therefore we have

1) R(xyenyx,;0)=a;! ¥ e(w).w(x,’“...x,',‘"n(x,-—txj))

wES, i<j

where as usual e(w) is the sign of the permutation w. The sum on the
right-hand side of (1.1) is skew-symmetric in x;,..., x,, hence is divisible
by a, in the ring Z[x,,...,x,,t], and consequently R, is a homogeneous
symmetric polynomial in x,,..., x,, of degree |A|, with coefficients in Z[¢].
Hence R, can be expressed as a linear combination of the Schur functions
s,(xy,..., x,), with coefficients in Z[¢]. In fact we have

1.2) Ry(xp,, x58) = Y uy,(0s,(xy,..., x,)
m

where u, (t) € Z[t), and u, (t) =0 unless |A|=|pl and A > p.

Moreover, the polynomial u,,(¢) can be explicitly computed. For each
integer m >0 let

m Yy

v,(t) = 9= =q,t)/(1—1)
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" and for a partition A=(A,,..., A,) of length < n (in which some of the A,
may be zero) we define

n@)=T]uv,®
i30

where m; is the number of A; equal to i, for each i > 0. Then we have
13) u, (1) =u,(t).

Proof of (1.2) and (1.3). The product I'T; . ;(x; — &;), when multiplied out, is
a sum of terms of the form

l_I x‘m( — txj)"‘

i<j
where (r;;) is any n X n matrix of 0’s and 1’s such that
(i) rh'=0, r,1+ri,=1ifi=#j.

For such a matrix (r;), let

J
i<j

Then from (1.1) it is clear that R, is a sum of terms
(-0)%a a;!

where as in Chapter I, §3, a, is the skew-symmetric polynomial generated
by x*=x{...x7. Since a, =0 if any two of the a; are equal, we may
assume that «,..., a, are all distinct. We rearrange them in descending
order, say

(iv) a,pn=m+n—i (1<i<n)

for some permutation w € S, and some partition p=(g,,..., w,). Then
a,a;" is equal to £(w)s,, and to prove (1.2) it is enough to show that

r<A
Let s;; =, ;- The matrix (s;;) satisfies the same conditions (i) as the

matrix (;;), and from (ii) and (iv) we have

;L,+n—i=)\w(,)+ ESU.
J
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Hence for 1<k <n

k n k
W) ot Fm= At Ayt L X s - L (n-i).
i=1

i=1 j=1
Now
k n k k n
> Esij= oSt X X sy
i=1 jm=1 ij=1 i=1 j=k+1

k
Yk-D+ Y T sy

i=1 j>k

<tk(k-1)+k(n—-k)
k

=) (n—i).
=1

Hence it follows from (v) that
[.Ll + cee +l“‘k < AW(1)+ cee +Aw(k)
<A+ A

and therefore w < A. This proves (1.2).
Furthermore, these calculations show that A = u if and only if A, ;) = A,
for 1 <i<n, and 5;;=1 for all pairs i <j. It follows that

(vi) Uy () =Y ew)(-0)*

w

summed over all w € §,, which fix A, where

d= 3, ri= ) Sw=1(),w=1G)

i<j i<j

is equal to the number n(w) of pairs i<j in {1,2,...,n} such that
w™1(j) <w™1(i); this number n(w) is also the number of pairs ! <k such
that w(k) < w(l), and the signature £(w) is equal to (—1)"™). Hence from
(vi) we have

(vii) U= Y

wes)

where S is the subgroup of permutations w éS,, such that A, =A; for
1<i<n. Clearly S} =T1;,,S,, where as before m; is the number of };
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equal to i, and hence to prove (1.3) it is enough to show that

(viil) Y =y (o).

wEeS,,

We prove (viii) by induction on m. Let w; denote the transposition
(i,m), for 1 <i<m (so that w,, is the identity). The w; are coset represen-
tatives of S,,_, in §,,, and we have

nww)=nw)+m-—i

for w' € S, 1, because in the sequence (W' w,(1),...,w'w,(m)) the number
m occurs in the ith place and is therefore followed by m — i numbers less
than m. Consequently

Y t"("')=( Y t"("'))(1+t+...+t'"“)

wES,, w'eS,,_,

' from which (viii) follows immediately. This completes the proof of (1.3). |

- By taking A =0 in (1.2) and (1.3) we have

(1.4) Y w( I ""'“") =,(t),

wes, \i<ji *i~X;

which is independent of x,,...,x,.

Next we shall show that
‘(1.5) R)(xy,...,x,;t) is divisible by v,(¢) (i.e. all the coefficients of R, are
divisible by v)(¢) in Z[t]).

E:Proof. Suppose for example that A;=...=A, > A, ,,. Then any we S,
“which permutes only the digits 1,2,...,m will fix the monomial x}... x},
“and by (1.4) we can extract a factor v,,(¢t) from R,. It follows that

x"—'a}
Ry(xp,. x50 =0(8) L wixh..xh ] —
wes,/s) AN XX

=u,()P(xy,...,x,;t),  say.

;i%:iSinoe R, is a polynomial in x,,..., x,, 50 also is P,; and since ¢ occurs only
_in the numerators of the terms in the sum P, it follows that P, is a
“ymmetric polynomial in x,,...,x, with coefficients in Z[¢]. |

It is these polynomials P,, rather than the R,, which are the subject of
~this chapter.
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2. Hall-Littlewood functions

The polynomials Py(xy,...,x,;¢) just defined are called the Fyp_
Littlewood polynomials. They were first defined indirectly by Philip Hay
terms of the Hall algebra (Chapter II) and then directly by D. E. Lit},.
wood [L12], essentially as we have defined them. From the proof of (1.5)
we have two equivalent definitions:

X, — i
L owlixpox T —=],
i<j X;i—X

21)  P(xy,...,x,;0)=
( A( 1 n UA(t) wes, ;

U

X —Ix.:
22 P(xp,.c,x;t)= Y w(x,"l...x,ﬁ‘" . ’).

wes, /S o> xp X T X;

The P, serve to interpolate between the Schur functions s, and the
monomial symmetric functions m,, because

(2.3) P(x1y.00y%,30) = 5,(xy,..., x,)
as is clear from (2.1), and
(2.4) P(xy,...,x; 1) =my(xy,...,x,)

as is clear from (2.2).

As with the other types of symmetric functions studied in Chapter I, the
number of variables x,,...,x, is immaterial, provided only that it is not
less than the length of the partition A. For we have

(2.5) Let X be a partition of length < n. Then
P(xy,...,x,,0;t) =P(x,,...,x,;t).

Proof. From (2.2) we have

X; —Ix;

) — A A ¢ J
PA(xl""’xn-{-l’t)_ Z w xl‘...x"’,';'ll . —x
WES,.1/Sh A Ay iy

When we set x,,, equal to 0, the only terms on the right-hand side which
survive will be those which correspond to permutations w € S,,,, which
send n + 1 to some r such that A, = 0; modulo S, ;, such a permutation
fixes n + 1, so that the summation is effectively over S, /S, |

Remark. The polynomials R,(x,,..., x,;¢) defined in §1 do not have this
stability property, and are therefore of little interest.
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. By virtue of (2.5) we may pass to the limit and define P(x;¢) to be the
clement of A[¢] whose image in A, [¢] for each n > I(M) is P(x,,...,x,;1).
The symmetric function P,(x;¢) is the Hall-Littlewood function corre-
gponding to the partition A. It is homogeneous of degree |Al.

From (1.2), (1.3), and (1.5) it follows that

P(xy,e, x58) = 3w, (0)s,(xy,...,x,)
M

with coefficients w,,(¢) € Z[¢] such that w,,(t)=0 unless |A|=|u| and
2>, and w,,(¢) = 1. Hence

(2.6) The transition matrix M(P, s) which expresses the P, in terms of the s, is
strictly upper unitriangular (Chapter I, §6).

Since the s, form a Z-basis of the ring A of symmetric functions, and

therefore also a Z[t]-basis of A[t], it follows from (2.6) that the same is
true of the P,:
(2.7) The symmetric functions P(x;t) form a Z[t}-basis of Alt]. |

Next we consider P, when A =(1") and when A =(r). In the first case
we have

(2.8) Pyry(x; 1) =e,(x),
the rth elementary symmetric function of the x;.

Proof. By stability (2.5) Py is uniquely determined by its image in A,[t]:
in other words, we may assume that the number of variables is r. But then
it is clear from (2.2) that Pyr(xy,...,X,58) =x;... X, =e¢,.

We now define
q,=q,(x;t)=Q—)P,(x;¢t) (r=1),

Go=qo(x;t)=1.
From (2.2) we have, for r > 1,
xi _aj

2.9 g, (xpyeen 2y t) =1 -0 Y xT1

im1 jRi X TXj

The generating function for the g, is
> 1—x;tu
(2.10) 0w = ¥ q,(x;0)u"=T] :

r=0 !

=H(u)/H(tu)
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in the notation of Chapter I.

Proof Supposc first that the number of variables x; is finite, angd put
z=u"". By the usual rule for partial fractions we have

noz—tx; no(1-0)x; x; —tx;
%o, g S0 ans

i=1 27X; i=1 —X; i X TX

so that

- X, —tx;

-1+(1-:)}: [T—

—ux; 1—xu jui X —X;

I

in which the coefficient of u’, for r > 0, is equal to ¢,(x,,..., x,; ) by (2.9),
Now let n — = as usual.

It will be convenient to introduce another family of symmetric functiong
Q,(x;t), which are scalar multiples of the P,(x;t). They are defined as
follows:

(2.11) 0,(x;8) =b,(t) P, (x;1)

where

(2.12) bA(t) = l_! ¢m,(A)(t)
i3>

Here, as usual, m,(A) denotes the number of times i occurs as a part of A,
and ¢(t) =1 —t)X1—¢?)...(1 —¢"). In particular,

(2.13) Qi (x;8) =q,(x;1).

We shall refer to the O, as well as the P, as Hall-Littlewood functions.
They may also be defined inductively, as follows. If f is any polynomial or
formal power series in x,,..., x,, (and possibly other variables), and 1 <i <
n, let £ denote the result of setting x; =0 in f. Then if we write Q, for
0,(xy,..., %, t), we have

(2.14) E xg, 00,
i=1

where u = (A,, A5,...) is the partition obtained by deleting the largest part
of A, and

.—(1—t)1"[

jwi X xj
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proof. Let | be the length of A. From the definitions of b,(¢) and v,(¢r) we
have

n(t) =v,_ (Db () /(1 —1),

and therefore

( Py 0
Xypeoes X, 3t)=———R,(X1,...,X,;
QA 1 s Vn U,,_,(t) A\AT sApns
!
X; —Ix;
=a-0" ¥ wlxm.. . x}M1 T —
weS,/Sn-1 i=1 j>i X;—X;

py (1.4), where S, _; acts on x;,,,..., x,. It follows that

O(xpnx;)= X w(x1giQu(xs,..,%,50))

wesn/sn—l

which is equivalent to (2.14). |

Let
1-u
F(u)= -
=1+ Y ("=
r>1

as a power series in u. Then we have

(215) Let uy,u,, ... be independent indeterminates. Then Q,(x;t) is the
coefficient of u* = ujulz... in
Quy,uy, ... ) = [T Q) TT F(ui ;).
i1 i<j

Proof. We proceed by induction on the length / of A. When /=1, (2.15)
follows from (2.13). So let />1 and assume the result true for u=

(A, Az, .20
As before, let Q®(u) (resp. Q)(u,, u,, ...)) denote the result of setting
y,=0in Q(u) (resp. O(u;, u,, ...)). From (2.10) we have

O0D(u) = F(x;u)Q(u)

and hence

(1) OD(uy,u,,...) =0y, u,, ...)l_[lF(xiuj).
i>
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From (2.14), Q,(x,,...,x,; ) is the coefficient of u* in

n .
L ul ¥ xg09uy,us,..)

A>0 =1

(2) =Q(u2»u3’ °") Z ull Z x“gan(x:uj)

A0 i=1

by (1) above. Let us expand the product IT;, , F(x;u;) as a power series in
x;, say

[TF(xu)= Y fuxI"
IEY)

m3>0

where the coefficients f,, are polynomials in ¢,u;,us,.... Then the
expression (2) is equal to Q(u,, us, ...) multiplied by

Youp Y fm Z xprmg= Y u} 195 +mSfm
Apm

M0 m>0 i=1

= Q(ul) Z fmul—m

m30

= Q(ul) l_[ F(ul'luj)

j>2
and hence finally Q, is the coefficient of u*

Q(ul) l_IzF(ui-luj)°Q(u2)u3) ---) = Q(ula uz, u3’ ~-~) I
I

For any finite sequence a = (a,, a,, ...) of integers let
9.=q.(x;)=TT1q.(x;)
i>1

with the convention that ¢,=0 if r <0 (so that g,=0 if any a; is
negative). The raising operators R;;,i <j (Chapter I, §1) act as follows:
Riiqa =R a- Then the coefficient of u“ in

F(u! )l_IQ(uk)_(1+ Y @ =t D u)):qﬁua

r>1
is
1-R,;
1+ tr—gr-1 Ya..
L=t DR g, =T 5 da

r>1 ij
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it follows that (2.15) may be restated in terms of raising operators:

1-R,
2.15) 0,=11 T-R, 9\

i<j

for all partitions A.
Hence

0, = ’]3(1+(t—1)R,.j+(t2—t)R,?j+...)qA

and it follows from Chapter I, (1.14) that

O, = Z aau(')qp
m

where the polynomials a, ,(¢) € Z[t] are such that a,,(t) =0 unless A < u,
and a,,(t)=1. By (2.7), the Q, form a Q(¢)-basis of A ®, Q(¢); and
therefore

(2.16) The symmetric functions q, form a Q(t)-basis of A ®, Q(t), and the
transition matrix (Chapter 1, § 6) M(Q, q) is strictly lower unitriangular.

Examples

1. If we set x; =¢'"!(1 <i <n) we have
R(,t,...,.t" V0) ="My, (¢)

directly from the definition (1.1), because the only term in the sum which does not
vanish is that corresponding to w = 1. Hence

O\(L, ..., "1 0) ="V (1) / ¢, (8)

where my=n —1I(A). Let n > », then also my— » and so when x;=¢"! for all
i>1 we have

0,(1,8,6%,...,58) =t"W,

1 We can use the inductive definition (2.14) to define Q, for any finite sequence
(A Ag,..., A;) of non-negative integers, not necessarily in descending order. The
formula (2.15") will still be valid and can be used to extend the definition of Q, to
.gny sequence (Aj, Ay, ... A;) Of integers, positive or negative. If A; <0, clearly
QA =0.
To reduce @, when the A; are not in descending order to a linear combination
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of the O, where u is a partition, we may proceed as follows: since interchange .
x, and x, transforms of

xix3(x; — 1) (x, — &)

X1—=X;

into

x1x5(xy — 0)(x; — &x,)

b

X=X,
it follows that
Qir,s+1y = Q41,5 = = (Qs.re1y = Q41,1
or, replacing r by r — 1, that
Q(;,r) = tQ(r,,) - Q(r-l.:+ 1) + tQ(:+l,r—l)'

Assuming s <r, this relation enables us to express Q, , in terms of the Q-

where 0 <i <[3(r — 5)]1 =m say. The result is hat

m
— ' i1
Qi =105+ P GARETY )Qr—i,s+i
i=1

if r—s=2m + 1, whereas if r —s = 2m the last term in the sum must be replaced

by (tm - tm_l) Q(r—m, s+m)*
For simplicity we have stated these formulas for a two-term sequence (s, r): but
the same holds for any two consecutive terms of a sequence A.

3. The definitions (2.1) and (2.2) of P, can be written in terms of lowering
operations R (i <j):

P =007 [T -R;)s,

i<j

>Ny
Hence, for example,

n

Pyy= T -tR;)s,

j=2
J
J jelJ

summed over all subsets J of {2,3,...,n}. The only J for which IT; ; Rj15(*0
are J=1{2,3,,...,i} (2 <i<n), and therefore

n=1

r
Py = Y (-0 S(n=r,17)°
r=0
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The Hall algebra again

2 (2.7), the product PP, of two Hall- Littlewood functions will be a
ar combination of the P,\, where |)t|-|/.l.|+|1/| (A, u, v being parti-
s) with coefficients in Z[t]: that is to say, there exist polynomials
(¢) € Z[t] such that

P(x;)P,(x;t) = Zf* ()P (x;1).

_When ¢ =0 we have by (2.3)
3.1) 20 =c),,

e coefficient of s, in s,s,. Likewise, from (2.4), f2,(1) is the coefficient
m, in the product m,m, when expressed as a sum of monomial
gmmetric functions.

In order to connect the symmetric functions P, with the Hall algebra,

¢ need to compute the polynomial f2,(¢) in the case v=(1").
Recall that

[':] =e.(t) /0, () @, _,(2)
1f0 <r<n and that [’:] = 0 otherwise, where

e ()=0-0)1-12)...(1 —¢").
(32) We have

X+1‘
Fam(t) = H ‘

izl /-"':

(and therefore fJm(¢) =0 unless A — u is a vertical m-strip).

Proof. We shall work with a finite set of variables x,...,x,, where
n>I(u) + m. We have to multiply P,, given by the formula (2.2), by Py,
which by (2.7) is equal to the mth elementary symmetric function e,,. Let
k=, be the largest part of u, and split up the set {x,,..., x,} into subsets
Xy,..., X, (some possibly empty) such that x; € X; if and only if u; =1, so
that IX | = m;, the multiplicity of i as a part of u. Let e,(X;) denote the
elementary symmetric functions of the set of variables X;. Smce

n k
[TAQ+x)=T11 TT @+x;0)

i=1 j=0 x€X;



216 II1 HALL-LITTLEWOOD SYMMETRIC FUNCTIONS

it follows that
1) en(Xy,..,x,) =Y €,(Xy)...e, (X))

summed over all r=(ry,...,r,) € N**! such that r, <m; for each ; apq
Lri=m

To each such r there corresponds a partition A defined by
N=wi+r_, (A<i<k+1).

Clearly A — u is a vertical m-strip, and conversely every partition A such
that A — u is a vertical m-strip arises in this way.

Each e,(X;) on the right-hand side of (1) is equal to Py.(X;; ) by (2.7),
and hence by (2.1) can be written as a sum over the symmetrlc groug S,
acting on the set X,. In this way (1) takes the form

) (X 2,) =Y ¢, (D7 ® (2,0, x,51)
A

summed over all partitions A D'u such that A — u is a vertical m-strip,
where

X, —Ix.
D, ,= L wlxpm e [T —2
wesy i<j X;7X;
Hi=
and
k
a0 =T1v,(Dy,, (0.
i=0

If we now multiply both sides of (2) by P(x,,..., x,;¢) as given by (2.2)
we shall obtain

Pe,=Y ¢ (O7'R,
A
from which it follows that the coefficient of F, in P,e,, is
f:(lm)(t) = UA(t)CA,“(t)_l
which easily reduces to the expression given. |

If we now compare (3.2) with Chapter II, (4.6) we see that

(3.3) Glym(0) = gV =nw=na™pA (g1,
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m this we deduce the following structure theorem for the Hall algebra

):
) Let : H(0) ® Q — A be the Q-linear mapping defined by
Y(uy) =g "MP(x;471).

Then ¥ is an isomorphism of rings.

of By (2.7), ¢ is a linear isomorphism. Since H(o) is freely generated
Z-algebra) by the u., (Chapter II, (2.3)), we may define a ring
omorphism ¢': H(0) &, Q = A by

W' (ugr) =g~ %,

‘We shall show that ¢’ =y, which will prove (3.4). To do this we shall
prove by induction on the partition A that ¢'(u,) = ¢(u,). When A =0,
his is clear from the definitions. Now assume that A # 0, and let u be the
partition obtained from A by deleting the last column. Suppose that this
Jast column has m elements. Then from Chapter II, (4.6) we have GJ;m\(0)

=1, and G;am)(o)=0 unless »Du and v—pu is a vertical m-strip.

‘{Moreover, if v— p is a vertical m-strip, it is easy to see that v < A. Hence
(1) U Ugmy =ty + 3, Glam(0)u,

e v<A

‘ﬁnd likewise

® Py Pumy =P+ Z,\ fuam(@™ P,

] v<

where P, stands for P(x;¢™"), and so on. If we now apply ¢’ to both
sides of (1) and recall that Pm) =e,, by (2.7), and compare the result with
(2), taking as inductive hypothesis that ¢'(u,) = ¢~ " )P, for all v < A, then
it follows from (3.3) that ¢'(u,) = ¢~ "MP, = y(u,).

Remark. This proof depends on the identity (3.3), which appears as merely
a happy accident. It is possible to give a proof of (3.4) which does not
depend on an apparent miracle: see the notes at the end of Chapter V.

* From (3.4) it follows that
(3.5) G,f,,(o) =q"“""“‘""‘”’f,ﬁv(q")

for any three partitions A, u, v, and therefore by Chapter II, (4.3) the
polynomials f}, are related to the Hall polynomials g, of Chapter II as
follows:

(3.6) gh (1) = =W =npA (41,
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In particular:

(37D @) Iff30)=0, then f,f,,(i) is identically zero.
(i) £),(¢) =0 unless |Al=| pl+|v| and p, vC A,

The results of Chapter II, §4 (especially (4.2) and (4.11)) provide an
explicit formula for f7,(¢), namely

(3.8) MOEDW A
S

summed over LR-sequences of type (u/, »'; X'), where in the notation of
Chapter II, (4.10) and (4.11)

3.9 fs(t)= I—[ (D(a,'j,b,'jacij;lvij;t)-

i»j

In particular:

(3.10) If AD w and 6= A — u is a horizontal r-strip, then
Fho@® =0 =" TTQ—-tm®)
iel

where I is the set of positive integers i such that 6] > 6], (so that 6] =1 and
6!.,=0) and mA) is the multiplicity of i as a part of A. In all other cases
fin®)=0.

In view of (3.6), this is simply a transcription of Chapter II, (4.13).

Remark. We have arrived at this result (which we shall later make use of)
by an indirect route, via the Hall algebra. It is also possible to derive (3.10)
directly from the definition of the P,(x;¢): see Morris [M13].

Examples
1. Let A be a partition. Then for each m > 0,

pM Gp'\(l'")(o)
w

is the number of elementary submodules E of type (1™) in a fixed o-module M of
type A. All these submodules E lie in the socle S of M, which is a k-vector space
of dimension /=1/(A), and the sum above is therefore equal to the number of
m-dimensional subspaces of an /-dimensional vector space over a finite field with ¢

elements, which is [”11](q). Hence by (3.3) we obtain

n(p) A — )=-mm-ny2] 1|1
%t fuam(t) =t [m](t ).
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w let y be an indeterminate. Then

(Zewn,)(Tearm) = T ymerpim(orn
- z

A, p,m
= Y rOp Y ymt—m(m—l)/2[l()‘) ](t" 1y
A m m

A)

§;:5(1) N (e
i A j=1
by the identity of Chapter I, §2, Example 3. In particular, when y = —1 we obtain
( E tn(u)p“)( Z (- l)me,,,) =

I m

and therefore
(2) ¥ t"®p =h,.

lpl=n

]-Ience the identity (1) takes the form

I(a)

(3) I'[ A+xy)/A-x)= Et"<*>l"l(1+t1“’y> B(x;0).

; i
2. () Let
: B=q""MP(x;q7Y),  0,=q"*"®Q,(x;97Y)

s that O, =a,(¢)P,, where by Chapter II, (1.6) a,(g) is the order of the
automorphism group Aut M, of an o-module of type A. From §2, Example 1 it
follows that the spec1allzat|on x;-q~(i > 1) maps each 0, to 1 and hence P, to
a(¢)~". Hence from (3.4) the mapping u, - JAut M,|™" of the Hall algebra H( 0)
into Q is multiplicative, i.e. is a character of H(0).

(b) From Example 1 above we have
) B A=
|Al=n
and therefore, specializing as above,
Y lAutM,"' =h,(q7",q7%,...).
|Al=n

Hence

YlAutm ' =[Ta-g) "= Lq™
A A

i»1
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or equivalently

Y laut M7 = Y M7
A A

as convergent infinite series.

(c) More generally, the identity (3) of Example 1 above leads to

(x; Diny 1-xq~'
L Aut M| 14—
A ut M, i»1 1—¢q

where (x;¢), =(1 —xX1 —gx)...(1 —g" " 'x).
3. (@) Let uw=(u®,..., u) be any sequence of partitions, and let
v (M) =glw 0(q)
be the number of chains of submodules
M,=MyDM,>...OoM,=0
such that M;_, /M, has type u®, for 1 <i <r. Show that

v(M) L -1
m %‘, At it] H lAut MO,

In particular, if v(M,) is the number of composition series of M,, then

v(M,) 1
|/\|2=r Aut M| (g-1"

(Specialize the identity

; g;)u)_”“m(q)u,\ SUm . UG

as in Example 2 above.)

(b) Let H=(H,,..., H,) be any sequence of finite abelian groups, and for each
finite abelian group G let v,(G) denote the number of chains of subgroups

G=Gy2G,>...2G,=0

such that G;_,/G;=H, for 1 <i <r. Show that

UH(G) _ L -1
(GZ, AutG| .l=_[1 Aut Hj

where the sum on the left is over all isomorphism classes of finite abelian groups.
(Split G and the H; into their p-primary components, and use (a) above.)
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4, The fact (Example 2 (a)) that u, > a,(q)™" is a character of the Hall algebra
S H(o)is equivalent to the following relation:

0 ¥ 4,(@) " a,(@)a, (gl () =1
£ A

for all partitions u, v. This may be proved directly as follows.
Fix o-modules L, M, N of respective types A, u, v, and let Ejzy denote the set
of all exact sequences

8
E(a,B): 05N> L>M—0.

In such an exact sequence, N'= a(N) is a submodule of L of type », with
L/N'=M of type pu; hence the number of choices for N’ is ga(q). Given N,
there are a,(g) choices for «, and a,(g) choices for B, and therefore

exn=|Exinl=a.(q)a,(9)g2.(q).
* Hence (1) is equivalent to

@ Y aplen=1
(L)
where a; = |Aut L| and the sum is over isomorphism classes of finite 0-modules L.

The group AutL acts on Exy by ¢E(a,B)=E(pa,Be "), and it is not
difficult to verify that ¢ € Aut L fixes E(«, B) if and only if ¢ =1+ a6B, where
¢ Hom(M, N). Hence the orbits are all of size a; /h, where h =|Hom(M, N)),
and the number of them is therefore aj 'efyh.

On the other hand, the orbits of Aut L in Ejy, for all L, are the equivalence
classes of extensions of M by N (see e.g. [C1], Chapter XIV) and are in one-one
correspondence with the elements of Ext!(M, N). Now ExtY(M, N) and
Hom(M, N) are finite 0-modules of the same type u X v (Chapter II, §1, Example)
and in particular have the same order A(=g!#*”!). Hence we have

Y ajlefyh=h
(L)

which proves (2) and therefore also (1).

5. Let w={u,,...,u,) be a partition of length r, and for a finite 0-module M let
w#(M ) denote the number of chains of submodules

M=My,oM,;>...oM,=0
such that |M;_,/M;|=q* for 1 <i<r. Thus
WM(M/\) = Zg:'\(])‘.‘v(')(q)

summed over all sequences (v®,..., ") of partitions such that |»®| =y, for
1<i<r. From Example 2 it follows that

Y wM(MA)ISA =h,
A
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and hence that
w,(M,)
1 M A
™ ; |Aut M,|

Since (Chapter I, §2, Example 4)
h(q7,q7%, .0 =q""/¢(q™")

=q"""V2/(qg-1)...(¢" - 1),

=hM(q'1,q'2, )

we may rewrite (1) in the form

wM(MA) (i) i - i
@ L faungy ~T -0

In particular, when r =2 and p =(n -k, k), w,(M,) is the number of suby
ules of M, of order g*. More particularly still, when u=m-11, w(M)is
number of submodules of M, of order g. These all lie in the socle, which j
k-vector space of dimension (A), so that w,(M,)=(g'®—1)/(g—1) when
(n —1,1). Deduce that

g'®e 1+t
Y lautM,|  [Ta-¢7'

i»1

where the sum on the left is over all partitions A.

Notes and References

The identities of Examples 2(b) and 3(a) are due to P. Hall [H1], [H2]. See?f
also [M4]. :

4. Orthogonality

We shall now generalize the developments of Chapter 1, §4 by giving three-
series expansions for the product

10 - 6,y)/0-x).

'J
The first of these is

(4.1) [Ta-oy)/Q-xy) =% 507 p (D))
ij A

summed over all partitions A, where

2 () =z . [TA—-tM)

i»1

-1
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: jog n A -ey)/A=xy)=} (log(l —tx;y;) — log(1 —x,-yj))
12y

iJ
=Y Z (xiyj)m
i,j m=1
= ¥ —p.()pa0y),
m=1
therefore
ﬂ(l ;y) /A =x;y,) = ]—Il exp () p,.(»)
iJ m=
) tm)rm
- 11 E P —— Pu(0) " ()"

m=1, =0 m'm

Y 507 p(0)p (). |
A

~ Next we have

[TA-txy)/Q-xy) =} q,(x;0m,(y)
iJ A
42)
=Y m(x)q,(y;t)
A

smmed over all partitions A.

Proof. From (2.10) it follows that

[TA-ey)/Q-xy)=TI X q,(x;0)yp
t)

; J =0
and the product on the right, when multiplied out, is equal to
Y g, (x; 0Om,(y).
A
Likewise with the x’s and y’s interchanged. |
- From (4.2) it follows that

43) The transition matrix M(q, m) is symmetric.



224 IIT HALL-LITTLEWOOD SYMMETRIC FUNCTIONS

Next, in generalization of Chapter I, (4.3) we have

(44) n(l —'DC,-yj)/(l ';‘x,'y]')= ZPA(x;t)QA (y7t)
L3Y) A

=Y b(OP(x;)P(y;0).
A

Proof. Consider the transition matrices
A=M(q,Q), B=M(m,Q), C=M(q,m)

and let D = B'A. By (2.16), A~! is lower unitriangular, hence so is 4. Aly
B is upper triangular, because

B~'=M(Q,P)M(P,s)M(s,m)

and M(Q, P) is diagonal by (2.11), M(P, s) is upper triangular by (2.6), and
M(s,m) is upper triangular by Chapter 1, (6.5). It follows that D is lower
triangular. On the other hand, D =B'CB, and C is symmetric by (4.3),
hence D is symmetric as well as triangular, and is therefore a diagonal
matrix, with diagonal elements equal to those of B, so that D =M(P,()
and therefore D,, = b,(¢)7.

Hence

Y a(x;0m(y)= ¥ A4,,B,,0,(x;)0,(y;1)
A

Al v

= Y b7 0, (x;00Q,(y;1)
o

= L P(x;0,(y; 1)
o

and so (4.4) follows from (4.2). |

Remark. There is yet another expansion for IT(1 — tx;y;) /(1 —x,y;). Let us
define

4.5 Sy(x;0) = det(g,, ;4 (x;0))

for any partition A, so that

(4.6) S,(x;)=T1Q-R;)q,= [TA-1R)Q,
i<j i<j

by Chapter I, (3.4") and (2.14"). If we introduce a set of (fictitious) variables
¢, by means of

[Ta-oy/A-xy) = TTA- &7
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“then g, (x;t)=h,(£) and therefore S,(x;t)=s,(¢) by Chapter I, (3.4).
Hence from Chapter I, (4.3) we have

(4.7) 1—[(1 - tx,y])/(l _x,'y,‘) = Z SA(X; t)s)‘()’)
i,j A

=Y 5, (x)S,(y;0).
A

We now define a scalar product on A[t] (with values in Q(#)) by
requiring that the bases (g,(x;¢)) and (m,(x)) be dual to each other:
(4.8) (g,(x;),m,(x))=§,,.

The same considerations as in Chapter I, §4, applied to the identities (4.1),
(4.4), and (4.7) show that

4.9) (B(x;8),0,(x;6))=38,,,
(4.10) (8)(x;1),5,(x))=8,,,
(@11 (p(x), p(x))=2(1)3,,.

(4.12) The bilinear form {u,v) on Alt] is symmetric.

When ¢ = 0, this scalar product specializes to that of Chapter I, because
P(x;0) = Q,(x;0) = s5,(x). When ¢ =1 it collapses, because b,(1)=0 and
therefore Q,(x;1) = 0 for all partitions A # 0.

Remark. Since z,(t) =z, p,(1,t,t2, ...), it follows from (4.11) and Chapter
I, (7.12) that the scalar product (4.8) is given by
(4.13) (f.g)=(f+g)1,t,¢%..)

for all f, g € Alt], where f = g is the internal product of f and g defined in
Chapter 1, §7.

Examples

1. By taking y;=¢"! for all i > 1 in (4.4) and making use of §2, Example 1, we
obtain

Y p () =[] -x)7",
A

so that
Y t"OP(x;t) =h,(x).

|Al=n

(See also §3, Example 1.)
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2. By applying the involution w (Chapter I, §2) to the y-variables in (4.7) we obtaj,
Y 5 (x; )50 (y) = H (M +x,y) /(0 + ;).
A ij

Now take y;=¢'"! for all i > 1; then (Chapter I, §3, Example 2)

se(y) =1"OH, ()~

and therefore

¥ S0 OH, ()7 = TT +x)).
A

3. For each integer n > 0, under the specialization
pmr A=)/ -t)  (r21)

Q,(x;t) specializes to
i)
;n(A)n (1 —¢r-itl)
i=1

(§2, Example 1). Since this is true for all n >0, we may replace " by an
indeterminate u: under the specialization

pmA-u)/Q-t) (2D
Q,(x; t) specializes to
I(A)

tn(A)l—I(l tl l

By applying this specialization to the y-variables in (4.4), we obtain another proof
of the identity (3) of §3, Example 1.

Notes and references

The identity (4.4) is equivalent to the orthogonality relations for Green’s
polynomials (§7). The proof given here is due to Littlewood [L12].

5. Skew Hall-Littlewood functions

Since the symmetric functions P, form a basis of Alt], any symmetric
function u is uniquely determined by its scalar products with the P,: for by
(4.9) we have

u= Z(u’PA>QA‘
A
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In particular, for each pair of partitions A, u we may define a symmetric
function Q, ,, by

(5.1) <Q,\/#,Py>=<QA’PF,Pv>= VA[J.(t)
or equivalently
5.2 0y, = LfL1Q,.

Since ,f,,(t) =0 unless u C A (3.7), it follows that

(5.3) Q). =0 unless pC A

From (5.1) we have (Q, ., u) = (Q,, P,u) for any symmetric function u.
In particular, when p=0 it follows that Q, ,=Q,. When =0, Q, ,
reduces to the skew Schur function s, ,,.

Likewise we define P, ,, by interchanging the P’s and Q’s in (5.1):

(5.1’) <PA/F:QV>=<PA’Q;;QV>
for all partitions ». Since Q, = b,(+)P, it follows that
(5.4) QA/# = bA/u(t )PA/#

where b, ,(¢) = b\(¢)/b,(¢).
From (5.2) it follows that
Y Oy OR(y;0) = X f1,(00,(x; )R (y; 1)
A A v

=Y 0,(x;)P(y; )P, (y;0)
and therefore by (4.4)

1-tx;y;
Y 0.,.(0PR ;) =Py, 0[] —.
A ij 1 —X;);
From this we have

Y 0. (xR (y;00,(2;1)
An

1—;y;
= L B(00.(50]] —d
A ij 1-

i,j l_xiyj .k I—szk
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which by (4.4) again is equal to
Y 0.(x, ;)P (y;1).
A

Consequently,
(5.5 O\(x,z;)= ¥ 0,,.(x;)0,(z; 1)
m

where by (5.3) the summation is over partitions u C A. Likewise,

(5.5) P(x,z;t) =} B, (x;)P,(z;1).
"

Just as in Chapter I, §5, these formulas enable us to express the
symmetric functions P, , and Q, ,, as sums of monomials. Since (mm,) and
(g,) are dual bases for the scalar product (4.8), it follows that

(56) QA/p, = E <Q)«/p,) qv>mv

= Z<Q,\’PAQV>mV'

Now from (3.10) we have

5.7 ,Lq, Z ‘P,\/,,L(t)P

summed over all partitions A such that 6=\ — u is a horizontal r-strip,
where

(5.8) @ ult) = I';(l - ™)

in which I is the set of integers i > 1 such that 6; > 6;,, (ie. §; =1 and
9: +1= 0.

We shall use (5.7) to express P,q,, where u and » are any partitions, as
a linear combination of the P,. Let T be a tableau (Chapter I, §1) of shape
A — p and weight v. Then T determines (and is determined by) a sequence
of partitions (A?,...,A") such that w=A0cA®Vc .. cAP =)
and such that each A®> — A¢~D is a horizontal strip. Let

(5.9 er() =11 o e-n(t),
i=1
then we have

(5.10) Pgq,= Z(ZT‘, goT(t))PA

A
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ummed over all partitions 4 D u such that |4 — x| = |v|, the inner sum
eing over all tableaux T of shape A — p and weight v. This is a direct
onsequence of (5.7) and induction on the length of ».

From (5.6) and (5.10) it follows that

%‘.,:’(5~11) Or= 2 er(x”
T

~summed over all tableaux T of shape \ — ., where as in Chapter 1, (5.13) xT
~is the monomial defined by the tableau T.

© There is an analogous result for P,,. First, when A—p=260 is a
_ horizontal strip, we define

68) U (0 = TT( = 1)

jeJ

“where J is the set of integers j>1 such that 6 < 6,, (ie. /=0 and
©6/,1=1), and then we define

(5.9) Yr(6) = E Yo p-n(8)
for a tableau T as above. It is easily verified that
(5.12) (D)8, (8) = by (£) /B, (1)
and hence that
(5.13) er(6) /¥ (t) = b(¢) /b, (1)
if T has shape A — p. From (5.4), (5.11), and (5.13) it follows that
(5.11") P= ZT: ()T

summed over all tableaux T of shape A — .

Also, in place of (5.7) we have
(5-7’) Qp.qr= E l/JA/y.(t)QA
A

summed over all A D u such that A — p is a horizontal r-strip, by virtue of
(5.7) and (5.12).

Remarks. 1. Whereas the skew Schur function s, ,, depends only on the
difference A — p, the symmetric functions P,,, and Q, ,, depend on both
A and u; this is clear from (5.11) and (5.11").
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2. In the case where there is only one variable x, we have

(5.14) QA/”(x; t)= <P)‘/”(t)x“—”l
if A— p is a horizontal strip, and Q, ,(x;¢) =0 otherwise. Similarly
(5.14) P, (x;8) =i, (£)xh=w

if A — p is a horizontal strip, and P, (x t) = 0 otherwise.
These are special cases of (5.11) and (5.11").

Examples

Several of the formal identities given in the Examples in Chapter 1, §5 can e
generalized.

1. Eﬂ(x t)=l_[(1 x,)_ll_[(l ox)/(1-x,x;),

I<]

summed over all partitions A.

It is enough to prove this identity when x={x,,...,x,}, the sum on the left
being over all partitions of length < n. By induction on n, it is therefore enough to
prove that

Y P(x,y; 1) 1% 5 p(x;0)
X, ;t = ,,x;
A il 1-y ;=1 l_xt)’ v

where we have written y in place of x,,,. Now by (5.5') and (5.14') we have

P(x,y;)= ¥ P, (y;)P(x;0)

HCA

=X (D yPHP (x;51),

HCA

summed over partitions u C A such that A — u is a horizontal strip. On the other
hand, by (2.9),

1-
tx;’ Y P(x;0)= Y B(x;8)q,(x;0)y",

v,r

11

i=1 1
and
P(x;0q,(x;0)y" = X 4, ()P, (x; )y,

uwov

by (5.7), the summation being over all u O » such that u — » is a horizontal r-strip.
Hence we are reduced to proving that

1 Y 0,0y =0-»"" T g,y

ADp vCpu

for any partition u, where A — u and p — v are horizontal strips.
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For each subset I of [1, u;] consider the partitions A D x and v C u such that

) ‘l’)‘/#(t) = (Pp/,,(t) = 1_; (1 — ™),

t iy,i; +is,...,i;+ ... +i, be the elements of I in ascending order. Then it is
sily seen that the contribution to the left-hand side of (1) from the partitions A
tisfying (2) is

) Q4y+.. 4yt D(y+y2+ . 4y ) L+ YD yA -y

and likewise that the contribution to the right-hand side of (1) from the partitions
1y satisfying (2) is

Qa —y)-l(y +y24+ Ay (y+y 4+ D L (4 YD

_which is visibly equal to (3). Hence the two sides of (1) are indeed equal, and the
i proof is complete.
- When = 0, this identity reduces to that of Chapter I, §5, Example 4.

LR =TI10-x)" [TA-0,x)/0 -xx)
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