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Preface to the second edition

The first edition of this book was translated into Russian by A. Zelevinsky
in 1984, and for the Russian version both the translator and the author
furnished additional material, both text and examples. Thus the original
purpose of this second edition was to make this additional material
accessible to Western readers. However, in the intervening years other
developments in this area of mathematics have occurred, some of which I
have attempted to take account of: the result, I am afraid, is a much longer
book than its predecessor. Much of this extra bulk is due to two new
chapters (VI and VII) about which I shall say something below.

For readers acquainted with the first edition, it may be of use to indicate
briefly the main additions and new features of this second edition. The text
of Chapter I remains largely unchanged, except for a discussion of transi-
tion matrices involving the power-sums in §6, and of the internal (or inner)
product of symmetric functions in §7. On the other hand, there are more
examples at the ends of the various sections than there were before. To
the appendix on polynomial functors I have added an account of the
related theory of polynomial representations of the general linear groups
(always in characteristic zero), partly for its own sake and partly with the
aim of rendering the account of zonal polynomials in Chapter VII self-
contained. I have also included, as Appendix B to Chapter I, an account,
following Specht's thesis, of the characters of wreath products G - S (G
any finite group), along the same lines as the account of the characters of
the symmetric groups in Chapter I, §7: this may serve the reader as a sort
of preparation for the more difficult Chapter IV on the characters of the
finite general linear groups.

In Chapter II, one new feature is that the formula for the Hall
polynomial (or, more precisely, for the polynomial gs(t) (4.1)) is now made
completely explicit in (4.11). The chapter is also enhanced by the appendix,
written by A. Zelevinsky for the Russian edition.

The main addition to Chapter III is a section (§8) on Schur's Q-
functions, which are the case t= -1 of the Hall-Littlewood symmetric
functions. In this context I have stopped short of Schur's theory of the
projective representations of the symmetric groups, for which he intro-
duced these symmetric functions, since (a) there are now several recent
accounts of this theory available, among them the monograph of P.
Hoffman and J. F. Humphreys in this series, and (b) this book is already
long enough.
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Chapters IV and V are unchanged, and require no comment.
Chapter VI is new, and contains an extended account of a family of

symmetric functions P,(x; q, t), indexed as usual by partitions A, and
depending rationally on two parameters q and t. These symmetric func-
tions include as particular cases many of those encountered earlier in the
book: for example, when q = 0 they are the Hall-Littlewood functions of
Chapter III, and when q = t they are the Schur functions of Chapter I.
They also include, as a limiting case, Jack's symmetric functions depending
on a parameter a. Many of the properties of the Schur functions general-
ize to these two-parameter symmetric functions, but the proofs (at present)
are usually more elaborate.

Finally, Chapter VII (which was originally intended as an appendix to
Chapter VI, but outgrew that format) is devoted to a study of the zonal
polynomials, long familiar to statisticians. From one point of view, they are
a special case of Jack's symmetric functions (the parameter a being equal
to 2), but their combinatorial and group-theoretic connections make them
worthy of study in their own right. This chapter can be read independently
of Chapter VI.

London, 1995 I. G. M.



Preface to the first edition

This monograph is the belated fulfilment of an undertaking made some
years ago to publish a self-contained account of Hall polynomials and
related topics.

These polynomials were defined by Philip Hall in the 1950s, originally as
follows. If M is a finite abelian p-group, it is a direct sum of cyclic
subgroups, of orders p Al, p A2, ... , pAr say, where we may suppose that
'A1 > A2 >' ... % Ar The sequence of exponents A = A,) is a parti-
tion, called the type of M, which describes M up to isomorphism. If now p,
and v are partitions, let gµ,(p) denote the number of subgroups N of M
such that N has type µ and M/N has type v. Hall showed that gµ (p) is
a polynomial function of p, with integer coefficients, and was able to
determine its degree and leading coefficient. These polynomials are the
Hall polynomials.

More generally, in place of finite abelian p-groups we may consider
modules of finite length over a discrete valuation ring o with finite residue
field: in place of gµ,(p) we have gµ (q) where q is the number of
elements in the residue field.

Next, Hall used these polynomials to construct an algebra which reflects
the lattice structure of the finite o-modules. Let H(q) be a free Z-module
with basis (uA) indexed by the set of all partitions A, and define a
multiplication in H(q) by using the gµ,(q) as structure constants, i.e.

uµu,, = F, gµv(q)u..
A

It is not difficult to show (see Chapter II for the details) that H(q) is a
commutative, associative ring with identity, which is freely generated
(as Z-algebra) by the generators u(11) corresponding to the elementary o-
modules.

Symmetric functions now come into the picture in the following way.
The ring of symmetric polynomials in n independent variables is a poly-
nomial ring Z[e,,..., generated by the elementary symmetric functions
e1,..., e,,. By passing to the limit with respect to n, we obtain a ring
A = Z[el, e2, ... ] of symmetric functions in infinitely many variables. We
might therefore map H(q) isomorphically onto A by sending each genera-
tor u(l.) to the elementary symmetric function e,. However, it turns out
that a better choice is to define a homomorphism iy: H(q) -> A 0 Q by
4f(u0.)) = q-r(r-1)/2e, for each r > 1. In this way we obtain a family of
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symmetric functions IlJ(ua), indexed by partitions. These symmetric func-
tions are essentially the Hall-Littlewood functions, which are the subject
of Chapter III. Thus the combinatorial lattice properties of finite o-
modules are reflected in the multiplication of Hall-Littlewood functions.

The formalism of symmetric functions therefore underlies Hall's theory,
and Chapter I is an account of this formalism-the various types of
symmetric functions, especially the Schur functions (S-functions), and the
relations between them. The character theory of the symmetric groups, as
originally developed by Frobenius, enters naturally in this context. In an
appendix we show how the S-functions arise `in nature' as the traces of
polynomial functors on the category of finite-dimensional vector spaces
over a field of characteristic 0.

In the past few years, the combinatorial substructure, based on the `jeu
de taquin', which underlies the formalism of S-functions and in particular
the Littlewood-Richardson rule (Chapter I, §9), has become much better
understood. I have not included an account of this, partly from a desire to
keep the size of this monograph within reasonable bounds, but also
because Schiitzenberger, the main architect of this theory, has recently
published a complete exposition [S7].

The properties of the Hall polynomials and the Hall algebra are devel-
oped in Chapter II, and of the Hall-Littlewood symmetric functions in
Chapter III. These are symmetric functions involving a parameter t, which
reduce to S-functions when t = 0 and to monomial symmetric functions
when t = 1. Many of their properties generalize known properties of
S-functions.

Finally, Chapters IV and V apply the formalism developed in the
previous chapters. Chapter IV is an account of J. A. Green's work [Gil]
on the characters of the general linear groups over a finite field, and we
have sought to bring out, as in the case of the character theory of the
symmetric groups, the role played by symmetric functions. Chapter V is
also about general linear groups, but this time over a non-archimedean
local field rather than a finite field, and instead of computing characters
we compute spherical functions. In both these contexts Hall's theory plays
a decisive part.

Queen Mary College, I. G. M.
London 1979
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I

SYMMETRIC FUNCTIONS

1. Partitions

Many of the objects we shall consider in this book will turn out to be
parametrized by partitions. The purpose of this section is to lay down some
notation and terminology which will be used throughout, and to collect
together some elementary results on orderings of partitions which will be
used later.

Partitions

A partition is any (finite or infinite) sequence

(1.1) A = (Al, A2, ..., A ... )

of non-negative integers in decreasing order:

Al > A2 > ... > A, > ...

and containing only finitely many non-zero terms. We shall find it conve-
nient not to distinguish between two such sequences which differ only by a
string of zeros at the end. Thus, for example, we regard (2,1), (2, 1, 0),
(2,1, 0, 0, ...) as the same partition.

The non-zero A, in (1.1) are called the parts of A. The number of parts
is the length of A, denoted by l(A); and the sum of the parts is the weight
of A, denoted by I Al:

I A is a partition of n. The set of all partitions of n is
denoted by and the set of all partitions by .9. In particular, .moo consists
of a single element, the unique partition of zero, which we denote by 0.

Sometimes it is convenient to use a notation which indicates the number
of times each integer occurs as a part:

A = (lm,2m2...rm,...)

means that exactly m; of the parts of A are equal to i. The number

(1.2) m; = m;(A) = Card(j: A = i}

is called the multiplicity of i in A. l
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Diagrams

The diagram of a partition A may be formally defined as the set of points
(i, j) E Z2 such that 1 <j < A.. In drawing such diagrams we shall adopt
the convention, as with matrices, that the first coordinate i (the row index)
increases as one goes downwards, and the second coordinate j (the column
index) increases as one goes from left to right.t For example, the diagram
of the partition (5441) is

consisting of 5 points or nodes in the top row, 4 in the second row, 4 in the
third row, and 1 in the fourth row. More often it is convenient to replace
the nodes by squares, in which case the diagram is

We shall usually denote the diagram of a partition A by the same symbol
A.

The conjugate of a partition A is the partition A' whose diagram is the
transpose of the diagram A, i.e. the diagram obtained by reflection in the
main diagonal. Hence A, is the number of nodes in the ith column of A, or
equivalently

(1.3) Ai=Card( j:A, >i).

In particular, A, = l(A) and Al = l(A'). Obviously A" = A.
For example, the conjugate of (5441) is (43331).

From (1.2) and (1.3) we have

(1.4) m;(A)=Ai-A,+1

t Some authors (especially Francophones) prefer the convention of coordinate geometry (in
which the first coordinate increases from left to right and the second coordinate from bottom
to top) and define the diagram of A to be the set of (i, j) E Z2 such that I < i < Ail Readers
who prefer this convention should read this book upside down in a mirror.
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For each partition A we define

n(A) 1) Ail
ill

so that n(X) is the sum of the numbers obtained by attaching a zero to
each node in the top row of the diagram of X, a I to each node in the
second row, and so on. Adding up the numbers in each column, we see
that

(1.6) n(A)= Ai).
ill 2

Another notation for partitions which is occasionally useful is the
following, due to Frobenius. Suppose that the main diagonal of the
diagram of k consists of r nodes (i, i) (1 < i < r). Let ai = Ai - i be
the number of nodes in the ith row of A to the right of (i, i), for 1 < i < r,
and let Ni = A, - i be the number of nodes in the ith column of A below
(i, i), for 1 < i < r. We have al > a2 > ... > a, >,0 and 01>,62> ... >
Pr >1 0, and we denote the partition A by

A=(al,...,arI /31,...,/7x)=(a1 10).

Clearly the conjugate of (a I /3) is (/3 I a).
For example, if A = (5441) we have a = (421) and /3 = (310).

(1.7) Let A be a partition and let m > A n > A,. Then the m + n numbers

Ai+n-i (1<i<n), n-1+j-Aj (1<j<m)

are a permutation of (0, 1, 2,..., m + n - 1).

Proof The diagram of A is contained in the diagram of (m"), which is an
n X m rectangle. Number the successive segments of the boundary line
between A and its complement in (Mn) (marked thickly in the picture) with
the numbers 0,1, ... , m + n - 1, starting at the bottom. The numbers
attached to the vertical segments are Ai + n - i (1 < i < n), and by trans-
position those attached to the horizontal segments are

(m+n-1)-(Aj+m-j)=n-1+j-A, (1<j<m).
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g,gg g' J`Y31 t y% is Ce`Y :acN.
:9+F

x=(5421), m=8, n-6

(t) tA;+n -i

i-1

Then (1.7) is equivalent to the identity

(1.7') fA,n(t)
+tm+n- lAm(t-1) = (1 - tm+n)/(1 - t).

Skew diagrams and tableaux

If A, µ are partitions, we shall write A D µ, to mean that the diagram of A
contains the diagram of µ, i.e. that Ai > t-i'i for all i > 1. The set-theoretic
difference B = A - µ is called a skew diagram. For example, if A = (5441)
and µ = (432), the skew diagram A - µ is the shaded region in the picture
below:

A path in a skew diagram 6 is a sequence x0, x1, ..., xm of squares in 0
such that xi-1 and xi have a common side, for 1 < i < m. A subset cp of 0
is said to be connected if any two squares in cp can be connected by a path
in 'p. The maximal connected subsets of 0 are themselves skew diagrams,
called the connected components of 0. In the example above, there are
three connected components.

The conjugate of a skew diagram 0 = A - µ is 0' = A' - µ'. Let Oi =
Ai-µi,Oi=A,-µi,and

101= E 0i=IAI-IAI.
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A skew diagram 0 is a horizontal m-strip (resp. a vertical m-strip) if
B I = m and 0, < 1 (resp. Oi < 1) for each i > 1. In other words, a horizontal

(resp. vertical) strip has at most one square in each column (resp. row).
If 0 = A - A, a necessary and sufficient condition for 0 to be a horizon-

tal strip is that the sequences A and µ are interlaced, in the sense that
Al>Al >A2>A2 > ....

A skew diagram 9 is a border strip (also called a skew hook by some
authors, and a ribbon by others) if 0 is connected and contains no 2 x 2
block of squares, so that successive rows (or columns) of 0 overlap by
exactly one square. The length of a border strip 9 is the total number 101 of
squares it contains, and its height is defined to be one less than the
number of rows it occupies. If we think of a border strip 0 as a set of
nodes rather than squares, then by joining contiguous nodes by horizontal
or vertical line segments of unit length we obtain a sort of staircase, and
the height of 0 is the number of vertical line segments or `risers' in the
staircase.

//If A = (al,..., ar l 61,...,/3,) and µ = (a2,..., ar l R2,..., f3 ), then
A - µ is a border strip, called the border (or rim) of A.

A (column-strict) tableau T is a sequence of partitions

µ= k(O)cA(l)C ... CA(r)=A

such that each skew diagram 0) = 0) - k`- l) (1 < i < r) is a horizontal
strip. Graphically, T may be described by numbering each square of the
skew diagram Bpi) with the number i, for 1 < i < r, and we shall often
think of a tableau as a numbered skew diagram in this way. The numbers
inserted in A - µ must increase strictly down each column (which explains
the adjective 'column-strict') and weakly from left to right along each row.
The skew diagram A - µ is called the shape of the tableau T, and the
sequence (16(1)1,...,1o(r)l) is the weight of T.

We might also define row-strict tableaux by requiring strict increase
along the rows and weak increase down the columns, but we shall have no
use for them; and throughout this book a tableau (unqualified) will mean a
column-strict tableau, as defined above.

A standard tableau is a tableau T which contains each number 1, 2,..., r
exactly once, so that its weight is (1, 1, . . . , 1).

Addition and multiplication of partitions

Let A, µ be partitions. We define A + µ to be the sum of the sequences A
and µ:

(A+µ)i=Ai+µi.
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Also we define A U µ to be the partition whose parts are those of A and µ,
arranged in descending order. For example, if A = (321) and µ = (22), then
A + µ= (541) and A U µ= (32221).

Next, we define Aµ to be the componentwise product of the sequences
A, µ:

(Aµ),=A,µ,.

Also we define A X µ to be the partition whose parts are min(A,, µ) for all
i < l(A) and j < 1(µ), arranged in descending order.

The operations + and U are dual to each other, and so are the two
multiplications:

(1.8)
(AUtk)'=A'+
(A X µ)' = A'µ'.

Proof The diagram of A U µ is obtained by taking the rows of the
diagrams of A and µ and reassembling them in order of decreasing length.
Hence the length of the kth column of A U µ is the sum of the lengths of
the kth columns of A and of µ, i.e. (A U µYk = Ak + µk.

Next, the length of the kth column of A X µ is equal to the number of
pairs (i, j) such that A, > k and µ, > k, hence it is equal to Ak µk.
Consequently (A X µYk = Ak µk.

I

Orderings

Let L,, denote the reverse lexicographic ordering on the set .9'n of partitions
of n: that is to say, L,, is the subset of .9' X.9' consisting of all (A, µ) such
that either A = µ or the first non-vanishing difference A. - µ, is positive.
L is a total ordering. For example, when n = 5, L5 arranges .95 in the
sequence

(5),(41),(32),(312),(221),(213),(15).
Another total ordering on .91 is L',,, the set of all (A, µ) such that either

A = µ or else the first non-vanishing difference A' - µ* is negative, where
A' = Ai+ 1 _ 1. The orderings L,,, L' are distinct as soon as n>6. For
example, if A = (313) and µ = (23) we have (A, µ) E L6 and (µ, A) E L'6.

(1.9) Let k, µ E.9',,. Then

(A, µ)EL',, (A',A')EL,,.
Proof Suppose that (A, µ) E L',, and A # A. Then for some integer i > 1
we have A, < µ and Aj = p. for j > i. If we put k = A. and consider the
diagrams of A and µ, we see immediately that A' = µ', for 1 <j < k,
and that Ak+1 < Fek+1, so that (µ', A') E L,,. The converse is proved
similarly. I
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An ordering which is more important than either Ln or L',, is the natural
(partial) ordering N,, on .19n (also called the dominance partial ordering by
some authors), which is defined as follows:

(A,µ)ENn«A,+...+Ai>µ,+...+µi foralli>1.

As soon as n > 6, N is not a total ordering. For example, the partitions
(311) and (23) are incomparable with respect to N6.

We shall write k > µ in place of (A, µ) E N,,.

(1.10) Let A, µ E-cP,,. Then

A > 1- L (.A, µ) E Ln n En .

Proof Suppose that k > I.L. Then either A, > µ,, in which case (A, µ) E L,
or else Al = µ,. In that case either A2 > µ2, in which case again (A, µ) E Ln,
or else A2 = µ2. Continuing in this way, we see that (A, µ) E L.

Also, for each i > 1, we have

Ai+1+Ai+2+... =n- (A,+... +)Li)

<n-(µ,+...+µi)
=Ai+1+1.i+2+...

Hence the same reasoning as before shows that (A, µ) E L',,.

Remark. It is not true in general that Nn = L,, n L',,. For example, when
n=12 and k=(63 2), µ = (5212) we have (A, µ) E L12 n L'12, but (A, µ) e
N12.

(1.11) Let A, µ E.pn. Then

A>µpµ'>A'.
Proof Clearly it is enough to prove one implication. Suppose then that
µ' A'. Then for some i > 1 we have

Ai+...+Aj<µ',+...+µj (1<j<i-1)
and

(1) Ai+...+Ai>µi+...+µi

from which it follows that Ai > µi.
Let I = Ai, m = µ'i. From (1) it follows that

(2) Ai+1 + Ai+2 + ... <A4+1 + µt+2 + ...
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Now Ai+1 + A;+2 + ... is equal to the number of nodes in the diagram of A
which lie to the right of the ith column, and therefore

I

Ai+1+Ai+2+... = E (Aj-i).
j=1

Likewise

j-1

Hence from (2) we have

m I m

(3) E (µj-1)> E (Aj-i)> E (Aj-1)
j-1 j=1 j=1

in which the right-hand inequality holds because l > m and Aj > i for
1 <j < 1. From (3) we have

IWt+...+µm>A,+...+Am

and therefore A A. I

Raising operators

In this subsection we shall work not with partitions but with integer vectors
a = (a1,.. . , a") E Z". The symmetric group S,, acts on Z" by permuting the
coordinates, and the set

P"={bEZ":b,>b2> ... >bj
is a fundamental domain for this action, i.e. the S"-orbit of each a E Z"
meets P,, in exactly one point, which we denote by a+. Thus a+ is
obtained by rearranging a1,..., a" in descending order of magnitude.

For a, b E Z" we define a > b as before to mean

a,+...+a;>b1+...+b; (1<i<n).

(1.12) Let a E Z". Then

aEP"pa>wa for all wES".

Proof. Suppose that a E P", i.e. a, > ... > a". If wa = b, then (b1, ... , b") is
a permutation of (a1,..., a.), and therefore

a,+...+al>b1+...+bl (1<i<n)
so that a > b.
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Conversely, if a > wa for all w E S we have in particular

(a1,...,an)> (al,...,aj-1,ai+1,aj,ai+2,.... an)

for 1 < i < n - 1, from which it follows that
al + ... +aj-l +ai > al + ... +a1-1 +ai+1,

i.e. ai >a i + 1 . Hence a E Pn. I

Let 3 =(n-1,n-2,...,1,0)EPn.

(1.13) Let a E Pn. Then for each w E Sn we have (a + S - wS)+> a.

proof Since 8 E Pn we have S > w8 by (1.12), hence

a+S-wS>a.'
Let b = (a + S - wS)+. Then again by (1.12) we have

b>a+S-w6.
Hence b > a.

For each pair of integers i, j such that 1 < i <j < n define Rid: Z" -> Z"
by

Ri1(a) = (al,..., ai + 1,..., a1 - 1,...,an).

Any product R = II i <
1

Ri J is called a raising operator. The order of the
terms in the product is immaterial, since they commute with each other.

(1.14) Let a E Z" and let R be a raising operator. Then

Ra>a.
For we may assume that R = R,1, in which case the result is obvious.

Conversely:

(1.15) Let a, b E Z" be such that a < b and al + ... +an = bl + ... +b, .

Then there exists a raising operator R such that b = Ra.

Proof We may take
n-1

R= FIRk k+l
ka1

where

k

rk= (bi-ai)>0.
i=l
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(1.16) If A, µ are partitions of n such that A > µ, and if A, µ are adjacent for
the natural ordering (so that A > v > µ implies either v = A or v = µ), then
A = Rij µ for some i <j.

Proof. Suppose first that Al > µ1, and let i > 2 be the least integer for
which Al + ... +Ai = p1 + ... +µi. Then we have µi > Ai > Ai+1 > µi+1, so
that µi > µi+. Consequently v = Rte µ is a partition, and one sees immedi-
ately that A > v. Hence A = v = R1i A.

If now Al = µ1, then for some j > 1 we have Ak = µk for k <j and
Aj > p1. The preceding argument may now be applied to the partitions
(Aj, and (Aj,'µj+1.... ). I

Remark. This proposition leads directly to an alternative proof of (1.11);
for it shows that it is enough to prove (1.11) in the case that A = Rij µ, in
which case it is obvious.

Examples

1. Let A be a partition. The hook-length of A at x = (i, j) e A is defined to be

h(x)=h(i,j)=Ai+A' -i-j+1.

From (1.7'), with A and A' interchanged, and m = A1, we have

A, n Al+n-1
tAj+A1-j+ r tA,-l+j-Aj= ti

j-1
jc-1

j-0

or, putting µi = Ai + n - i (1 < i < n),

(1)

A, n Al
j)..F tA] ti.

j-1 j-2 j-1

By writing down this identity for the partition (Ai, Ai+1, ...) and then summing over
i = 1, 2,..., I(A) we obtain

(2) r th(x)+ r tr E tj
xEA i<j i>1 j-1

From (2) it follows that

AN

(3)

IIII(1-tj)

-7 h(x))= i>1 j-1
11(1-t

XE A 11(1-tAi-Ai)
i<j
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and in particular, by dividing both sides of (3) by (1 - t?1 and then setting t = 1,
that

(4) JJ h(x) _
xE A

JI µi 1
1

1 1(I.L Lj )
i<j

2, The sum of the hook-lengths of A is

F, h(x)=n(A)+n(A')+IAI.
XEA

3. For each x = (i, j) e A, the content of x is defined to be c(x) = j - i. We have

E c(x)=n(A')-n(A).
XEA

If n is any integer > 1(A), the numbers n + c(x) for x in the ith row of A are
n - i + 1, ... , n - i + A,, and therefore

fJ (1 - tn+c(x)) = II
VAS+n-i(t)

XEA i=1

where wr(t) _ (1- tX1 - t2)... (1- tr).

4. If A = (A1,..., An) = (a1,..., a, far) in Frobenius notation, then

n r
ti(1 -t-A') _ E (tai+1 -t-j)

i-1 1-1

5. For any partition A,

F, (h(x)2 - c(x)2) = IAI2.
XEA

6. Let A be a partition and let r, s be positive integers. Then Ai - Ai+r > s for all
i < 1(A) if and only if Aj - Xi+, < r for all j < 1(A').

7. The set .9n of partitions of n is a lattice with respect to the natural ordering: in
other words, each pair A, µ of partitions of n has a least upper bound o = sup(A, µ)
and a greatest lower bound T= inf(A, µ). (Show that T defined by

r r r

E Ti = min E, A,, E Ni

for all r > 1 is indeed a partition; this establishes the existence of inf(A, µ). Then
define o-= sup(A, µ) by Q' = inf( A', µ'). The example A = (313), (23), o-= (321)
shows that it is not always true that

r r r

ui=max A
/.5k,
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8. Let p be an integer > 2.

(a) Let A, µ be partitions of length <m such that A z> p, and such that A - µ is a
border strip of length p. Let S, = (m - 1, m - 2, ... ,1, 0) and let = A + 5m,

= µ + 5,,,. Show that 17 is obtained from 6 by subtracting p from some part 4; of
and rearranging in descending order. (Consider the diagrams of ,= and 7I.)

(b) With the same notation, suppose that 6 has m, parts e; congruent to r modulo
p, for each r = 0,1, ... , p - 1. These 4, may be written in the form pek`> + r
(1 < k < mr), where 6j > tarp > ... > 6,,(r) > 0. Let A`) = CIO - m, + k, so that
A(r) = Atm?) is a partition. The collection A* = (At°t, Atl) ...... (P-1)) is called
the p-quotient of the partition A. The effect of changing m i,1(A) is to permute the
A(r) cyclically, so that A* should perhaps be thought of as a `necklace' of partitions.

The m numbers ps + r, where 0 < s < Mr - 1 and 0 < r <p - 1, are all distinct.
Let us arrange them in descending order, say > ... > e and define a partition
A by a, = t - m + i (1 < i < m). This partition A is called the p-core (or p-residue)
of A. Both A and A* (up to cyclic permutation) are independent of m, provided
that m > i(A).

If A = A (i.e. if A* is empty), the partition A is called a p-core. For example, the
only 2-cores are the `staircase' partitions 5m = (m - 1, m - 2,...,1).

Following G. D. James, we may conveniently visualize this construction in terms
of an abacus. The runners of the abacus are the half-lines x > 0, y = r in the plane
R2, where r = 0, 1, 2,..., p - 1, and A is represented by the set of beads at the
points with coordinates (k0, r) in the notation used above. The removal of a
border strip of length p from A is recorded on the abacus by moving some bead
one unit to the left on its runner, and hence the passage from A to its p-core
corresponds to moving all the beads on the abacus as far left as they will go.

This arithmetical construction of the p-quotient and p-core is an analogue for
partitions of the division algorithm for integers (to which it reduces if the partition
has only one part).

(c) The p-core of a partition A may be obtained graphically as follows. Remove a
border strip of length p from the diagram of A in such a way that what remains is
the diagram of a partition, and continue removing border strips of length p in this
way as long as possible. What remains at the end of this process is the p-core A of
A, and it is independent of the sequence of border strips removed. For by (a) above,
the removal of a border strip of length p from A corresponds to subtracting p
from some part off and then rearranging the resulting sequence in descending
order; the only restriction is that the resulting set of numbers should be all distinct
and non-negative.

(d) The p-quotient of A can also be read off from the diagram of A, as follows. For
s,t=0,1,...,p- l let

R.,={(i,j)EA:A.-i=s(mod p)},

C,=((t,j)EA: j-A'at(modp)),
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so that R, consists of the rows of A whose right-hand node has content (Example
3) congruent to s modulo p, and likewise for C,. If now (i, j) (-= R, n C the
hook-length at (1, j) is

h(i,j)=A;+Aj-i-j+1=s-t+1(modp)

and therefore p divides h(i, j) if and only if t = s + 1(mod p).
On the other hand, if f; = pek') + r as in (b) above, the hook lengths of A in the

ith row are the elements of the sequence (1,2,..., L;) after deletion of f,-
61+ 1, ., & - Sm. Hence those divisible by p are the elements of the sequence
(p, 2 p, .... pfk')) after deletion of k+ m;)) They are
therefore p times the hook lengths in the kth row of A('), and in particular there
are Aft') of them.

It follows that each A(') is embedded in A as R, n C,,+ 1, where s = r - m(mod p),
and that the hook lengths in A(') are those. of the corresponding nodes in
R, n Cs+1, divided by p. In particular, if m is a multiple of p (which we may
assume without loss of generality) then k(') = A n R, n c,,, for each r (where
CP = Ca ).

(e) From (c) and (d) it follows that the p-core (resp. p-quotient) of the conjugate
partition A' is the conjugate of the p-core (resp. p-quotient) of A.

(f) For any two partitions A, µ we shall write

A ^'P µ

to mean that A = µ, i.e. that A and µ have the same p-core. As above, let
?; = A + 5,,,, 71 = µ + S,", where m > max(l(A),1(µ)). Then it follows from (a) and
(b) that k -P µ if and only if r) = wf (mod p) for some permutation w E S,,,. Also,
from (e) above it follows that k -,, µ if and only if A' -P µ'.

(g) From the definitions in (b) it follows that a partition _,k is uniquely determined
by its p-core A and its p-quotient k*. Since I AI = I AI +p I A`I, the generating
function for partitions with a given p-core A is

1114=tIAIP(tP)P

where P(t)= fI",1(1 - t")-1 is the partition generating function. Hence the
generating function for p-cores is

EtI AI =P(t)/P(tPN

(1 - t"P)'

n>1 1-tn

In particular, when p = 2 we obtain the identity

1 - t2n(*) E tm(m-1)/2= TT
> 11 2n-1

1 n>1 1-tm>
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We shall leave it to the interested reader to write down the corresponding identity
for p > 2. It turns out to be a specialization of the `denominator formula' for the
affine Lie algebra of type A(') 1

[K1]. Thus in particular (*) is a specialization of
Jacobi's triple product identity.

9. (a) A partition is strict if all its parts are distinct. If µ = (µl,...,µ,) is a strict
partition of length r (so that Al > µ2 > ... > µr > 0), the double of µ is the
partition A = (µl, ... , µr I Al - 1, ... , µr - 1) in Frobenius notation, and the dia-
gram of A is called the double diagram D(µ) of A. The part of D(µ) that lies
above the main diagonal is called the shifted diagram S( µ) of µ; it is obtained from
the usual diagram of µ by moving the ith row (i - 1) squares to the right, for each
i > 1. Thus D(µ) consists of S(µ) dovetailed into its reflection in the diagonal.

Let m > l(A) = µl, and let f = A + Sm where Sm = (m - 1, m - 2,..., 1, 0) as in
Example 8. The first r parts off are Al + m, .... µr + m, and since the partition
(Ar+1,..., Am) is the conjugate of (µl - r,..., µr - 1), it follows from (1.7) that f is
obtained from the sequence (µl + m, µ2 + m, ... , µ, + m, m - 1, m - 2, ... ,1, 0) by
deleting the numbers m - µ,,..., m - µl. Hence 6 satisfies the following condi-
tion:

(*) an integer j between 0 and 2m occurs in f if and only if 2m -j does not.

Conversely, if 1; satisfies this condition, then A is the double of a strict partition.

(b) Let p be an integer > 2, and consider the p-quotient and p-core (Example 8) of
A. Without loss of generality we may assume that m is a multiple of p, so that
2m = (n + 1)p with n odd. As in Example 8, suppose that for each r = 0,1, ... , p - 1
the congruent to r modulo p are pfjr) + r (1 < k < mr), where 61'> > ... >
e,r,'> > 0. Since pl;k') + r < 2m = (n + 1)p, it follows that fk') < n if r # 0, and that

fk0><n+1.
Suppose first that r # 0, and let s = p - r. From above, for each k = 1, 2,..., mr

the number 2m - (pl;k') + r) =p(n - fk'') + s does not occur in f. Hence the
numbers n - fk') (1 < k < mr) and fks) (1 < k < m,) fill the interval [0, n] of Z,
from which it follows first that Mr + m, = n + 1, and second (by (1.7)) that the
components A(') and A(s) of the p-quotient of A are conjugate partitions. In
particular, if p is even, At 12) is self-conjugate.

Next, if r = 0 we have 2m - p,`j°t =p(n + 1 - k0)) and therefore the sequence
(0) _ ,t10), ... , 640)) satisfies the condition (*), so that 2m0 = n + 1 and ADO) is the

double of a strict partition.
Finally, it follows from the definition of the p-core in Example 8(b) and the fact

that mr + m, = n + 1 when r + s = 0 (mod p) that the sequence (loc. cit.)
satisfies the condition (0, and hence the p-core A is the double of a strict
partition.

(c) Let µ as before be a strict partition of length r. If (i, j) E µ and k > i, an
(i, j)k-bar of µ consists of the squares (a, b) E µ such that a = i or k and b > j,
and is defined only when the diagram obtained by the removal of these squares has
no two rows of equal length; so that (i) if k > i there is an (i, j)k-bar only when
j = 1, in which case it consists of the ith and kth rows of µ; and (ii) when k = i
there is an (i, A -bar only when j - 1 is not equal to any of µi+ t, ... , µ.. The length
of a bar is the number of squares it contains.
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Show that for each i > 1 the lengths of the (i, j)k-bars of IA are the hook lengths
in the double diagram D( IA) at the squares (i, k) with k > i, that is to say at the
squares in the ith row of the shifted diagram S( µ).

Let v be the strict partition whose diagram is obtained from that of µ by
removing a bar of length p > 1 and then rearranging the rows in descending order
of length. Thus v is obtained from µ in case (i) by deleting gi and At, where
µi + µk = p, and in case (ii) by replacing µi by p. - p and rearranging. Show that
the double diagram of v is obtained from that of µ by removing two border strips
of length p, one of which lies in rows i, i + 1,..., and the other in columns
i,i + 1,....
(d) A strict partition is a p-bar core if it contains no bars of length p. By starting
with a strict partition IA, removing a bar of length p, rearranging the rows if
necessary, then repeating the process as often as necessary, we shall end up with a
strict partition µ called the p-bar core of µ. It follows from above that the double
of µ is the p-core (Example 8) of the double of µ, and that µ is independent of
the sequence of moves described above to reach it.

10. For any partition A, let

h(A) _ fl h(x)
xeA

denote the product of the hook-lengths of A (Example 1). With the notation of
Example 8, we have

h(A)

where h(A*) = FU :o' h(A(')), and h'(A) is the product of the hook-lengths h(x)
that are not multiples of p. (Use formula (4) of Example 1.)

If, moreover, p is prime, then

h'(A) = oh(A) (mod p)

where oA = t 1. Hence in particular, when p is prime, A is a p-core if and only if
h(A) is prime to p.

11. Let A be a partition. The content polynomial of A is the polynomial

cA(X)= fl (X+c(x))
xeA

(see §3, Example 4) where X is an indeterminate.

(a) Let m > l(A) and let fi = Ai + m - i (1 < i 5 m) as in Example 8. Then

cA(X + m) m X+ f'i

cA(X+m-1)
= i-I X+m-i

(b) Let p be a prime number. If 0 is a border strip of length p, the contents c(x),
x E 9 are p consecutive integers, hence are congruent modulo p to 0,1, ... , p - 1
in some order. If 9 = A - µ, it follows that

cA(X)=cµ(X)(XP-X) (modp).
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Hence, for any partition A,

CA(X) =CA(X)(XP -X)IA,l (modp)

where (Example 8) A and As are respectively the p-core and p-quotient of A.

(c) From (a) and (b) it follows that if p is prime and I Al = I Al, then

A ,..P µ - cA(X) = cµ(X) (mod p) .

12. Let .9 denote the set of partitions of n, and N+ the set of positive integers.
For each r > 1 let

a(r, n) = Card((A, i) E.9 X N+: A. = r),

b(r, n) = Card((A, i) E.9n X N+: m;(A) > r).

Show that

a(r, n) = b(r, n) =p(n - r) +p(n - 2r) + ...

where p(m) is the number of partitions of m.
Deduce that

II (rI II (II m;(A)!).
AE9, i>1 AE.p i>1

Let h(r, n) = Card((A, x): I Al = n, x E A and h(x) = r), where (Example 1) h(x) is
the hook-length of A at x. Show that

h(r, n) = ra(r, n).

13. A matrix of non-negative real numbers is said to be doubly stochastic if its row
and column sums are all equal to 1.

Let A, µ be partitions of n. Show that A > µ if and only if there exists a doubly
stochastic n X n matrix M such that MA = s (where A, µ are regarded as column
vectors of length n). (If A > µ we may by (1.16) assume that A = Rij µ. Now define
M = (mrs) by

mi;=mjj =(A1-Aj -1)/(A;-A.), mij=mji=1/(A;-Aj)

and m,s = Srs otherwise. Then M is doubly stochastic and MA = µ.)

14. Let A be a partition. If s = (i, j), with i, j > 1, is any square in the first
quadrant, we define the hook-length of A at s to be h(s) = A; + Aj - i -j + 1.
When s E A this agrees with the previous definition, and when s 44 A it is negative.
For each r E Z let Ur(A) denote the number of squares s in the first quadrant such
that h(s) = r. Show that u _r(A) = Ur(A) + r for all r E Z.

If Ur(A) = ur( 0 for all r c- Z, does it follow that A = µ or A = µ'?
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15. (a) Let A be a partition, thought of as an infinite sequence, and let u be the
sequence (' - i) 1. Show that A + a, and -(A' + Q) are complementary subse-
quences of Z + Z.

(b) Let g,,(t) _ (1- t)E; a 1 t'I!-`, which is a polynomial in t and t-'. Show that
ga(t) = ga-(t-1).

16. Let A, A, v, IT be partitions such that A > v and µ > ur. Show that A +
v+ 1r, AU p. > v U Ir, AA > vir, and AX p, . v X ir.

17. Let A = (A1, ... , be a partition of length 4 n with Al 4 n, so that A c (n").
The complement of A in (n") is the partition A = 61,..., defined by A, = n -
An+I_;, so that the diagram of A is obtained by giving the complement of the
diagram of A in (n") a half-turn.

Suppose now that A = (a 10) in Frobenius notation. Show that A = 0 I a ),
where & (resp. /3) is the complement in [0, n -, 11 of the sequence a (resp. B).

18. For A, µ partitions of n, let u, be the probability that A > A. Does 7r - 0 as
n -->oo?

Notes and references

The idea of representing a partition by its diagram goes back to Ferrers
and Sylvester, and the diagram of a partition is called by some authors the
Ferrers diagram or graph, and by others the Young diagram. Tableaux and
raising operators were introduced by Alfred Young in his series of papers
on quantitative substitutional analysis [Y2].

Example 8. The notion of the p-core of a partition was introduced by
Nakayama [Ni], and the p-quotient by Robinson [R6] and Littlewood
[L10].

Example 9. The notions of a bar and of the p-bar core are due to A. 0.
Morris [M14]. See also Morris and Yaseen [M16] and Humphreys [H12].

2. The ring of symmetric functions

Consider the ring of polynomials in n independent variables
X,'..., x,, with rational integer coefficients. The symmetric group S acts
on this ring by permuting the variables, and a polynomial is symmetric if it
is invariant under this action. The symmetric polynomials form a subring

A = Z[xl,..., x,, Is-.

A is a graded ring: we have

A. = ®An
k>0

where M. consists of the homogeneous symmetric polynomials of degree
k, together with the zero polynomial.
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For each a = (a1,..., an) E N" we denote by x" the monomial

xa =xal ... Xa.
1 n

Let A be any partition of length < n. The polynomial

(2.1)

summed over all distinct permutations a of A = (A1,..., An), is clearly
symmetric, and the mA (as A runs through all partitions of length < n)
form a Z-basis of An. Hence the mA such that 1(A) < n and I Al = k form a
Z-basis of Ak,; in particular, as soon as n > k, the mA such that I Al = k

form a Z-basis of A.
In the theory of symmetric functions, the number of variables is usually

irrelevant, provided only that it is large enough, and it is often more
convenient to work with symmetric functions in infinitely many variables.
To make this idea precise, let m > n and consider the homomorphism

Z[X1,...,xI - Z[XI,...,Xn]

which sends each of xn+ I, ... , xm to zero and the other x1 to themselves.
On restriction to A. this gives a homomorphism

Pm,n: A. - A.

whose effect on the basis (mA) is easily described; it sends mA(x1,..., Xm)
to mA(x1,...,xn) if 1(A)<n, and to 0 if 1(A)>n. It follows that pm,n is
surjective. On restriction to An, we have homomorphisms

k Ak -. Ak
Pm,n M. n

for all k > 0 and m > n, which are always surjective, and are bijective for
m>n>k.

We now form the inverse limit

Ak = lim An
4-
n

of the Z-modules Mn relative to the homomorphisms pnk,,,,: an element of
Ak is by definition a sequence f = (fn)n > 0, where each fn = fn(x1, ... , xn) is
a homogeneous symmetric polynomial of degree k in x1,...,xn, and
fm(x1, ... , Xn, 01 .... 0) = fn(x1, ... , xn) whenever m > n. Since pnk, n is an
isomorphism for m > n > k, it follows that the projection

pn
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which sends f to f,,, is an isomorphism for all n > k, and hence that Ak
has a Z-basis consisting of the monomial symmetric functions m (for all
partitions A of k) defined by

Pn (m,t) = MA(xi,..., xn)

for all n > k. Hence Ak is a free Z-module of rank p(k), the number of
partitions of k.

Now let

A = ® Ak,
k>0

so that A is the free Z-module generated by the ma for all partitions A.
We have surjective homomorphisms

pn= ® Pn:A - An
k>0

for each n > 0, and pn is an isomorphism in degrees k < n.
It is clear that A has a structure of a graded ring such that the pn are

ring homomorphisms. The graded ring A thus defined is called the ring of
symmetric functionst in countably many independent variables x1, x2, ... .

Remarks. 1. A is not the inverse limit (in the category of rings) of the
rings An relative to the homomorphisms p,n,n. This inverse limit, A say,
contains for example the infinite product M,-10 +xi), which does not
belong to A, since the elements of A are by definition finite sums of
monomial symmetric functions ma. However, A is the inverse limit of the
An in the category of graded rings.

2. We could use any commutative ring A in place of Z as coefficient ring;
in place of A we should obtain AA = A A.

Elementary symmetric functions

For each integer r> 0 the r th elementary symmetric function er is the sum
of all products of r distinct variables x,, so that eo = 1 and

er = E xixi2 ... xi, = m(1')
il<i2< ... <ir

for r > 1. The generating function for the er is

(2.2) E(t) _ J ertr = fl (1 + xit)
r>0 i>1

t The elements of A (unlike those of are no longer polynomials: they are formal infinite
sums of monomials. We have therefore reverted to the older terminology of `symmetric
functions'.
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(t being another variable), as one sees by multiplying out the product on
the right. (If the number of variables is finite, say n, then e, (i.e. pn(e,)) is
zero for all r > n, and (2.2) then takes the form

n n

E e,t' _ F1 (1 +x;t),
r-0 i-1

both sides now being elements of An[t]. Similar remarks will apply to many
subsequent formulas, and we shall usually leave it to the reader to make
the necessary (and obvious) adjustments.)

For each partition A = (A1, A2.... ) define

eA = eA,eA2...

(2.3) Let A be a partition, A' its conjugate. Then

eA' = MA + E aAµmµ

where the aAµ are non-negative integers, and the sum is over partitions µ < A
in the natural ordering.

Proof. When we multiply out the product ex' = eAteAi ... , we shall obtain a
sum of monomials, each of which is of the form

(x,,x;Z...)(x,lxi2...)... =xa,

say, where i1 < i2 < ... < iA , J1 <J2 < ... <j, and so on. If we now enter
the numbers i1, i 2, ... "A, in order down the first column of the diagram of
A, then the numbers j1, j2, ... , jag in order down the second column, and so
on, it is clear that for each r > 1 all the symbols 5 r so entered in the
diagram of A must occur in the top r rows. Hence a1 + ... +a, 14
Al + ... +A, for each r > 1, i.e. we have a < A. By (1.12) it follows that

eA. = E aAµmµ
µ<A

with aAµ > 0 for each µ > A, and the argument above also shows that the
monomial xA occurs exactly once, so that aAA = 1.

(2.4) We have

A = Z[e1, e2,...]

and the e, are algebraically independent over Z.
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proof. The mA form a Z-basis of A, and (2.3) shows that the eA form
another Z-basis: in other words,ds, every element of A is uniquely expressible
as a polynomial in the e,.

Remark. When there are only finitely many variables x1,..., x, (2.4)
states that A = Z[el,..., en), and that e1,..., e are algebraically indepen-
dent. This is the usual statement of the `fundamental theorem on symmet-
ric functions'.

Complete symmetric functions

For each r > 0 the rth complete symmetric function h, is the sum of all
monomials of total degree r in the variables x1, x2, ... , so that

h, E ma.
IAI-r

In particular, ho = 1 and h1 = e1. It is convenient to define hr and er to be
zero for r < 0.

The generating function for the hr is

(2.5) H(t) = E h,tr = fJ (1-x;t)-'
r>O i>1

To see this, observe that

1
(1 - Xil) = F

Xktk,

k>0

and multiply these geometric series together.

From (2.2) and (2.5) we have

(2.6) H(t)E(-t) = 1
or, equivalently,

(2.6')
n

E (-1)rerhn_,=0
r- O

for all n > 1.
Since the er are algebraically independent (2.4), we may define a

homomorphism of graded rings

by

w:A ->A

w(er) = hr
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for all r > 0. The symmetry of the relations (2.6') as between the e's and
the h's shows that

(2.7) w is an involution, i.e. w2 is the identity map.

It follows that w is an automorphism of A, and hence from (2.4) that

(2.8) We have

A = Z[hl,h2,...]

and the h,. are algebraically independent over Z.

Remark. If the number of variables is finite, say n (so that e, = 0 for r > n)
the mapping w: A --> A is defined by w(e,) = hr for 1 < r < n, and is still
an involution by reason of (2.6'); we have A = Z[hl,... , h ] with hl, ... , h
algebraically independent, but are non-zero polynomials in
hl,...,h (or in

As in the case of the e's, we define

hA=hAhA2...

for any partition A = (Al, A2, ... ). By (2.8), the hA form a Z-basis of A. We
now have three Z-bases, all indexed by partitions: the mA, the eA, and the
hA, the last two of which correspond under the involution w. If we define

fA = w(MA)

for each partition A, the fA form a fourth Z-basis of A. (The fA are the
`forgotten' symmetric functions: they have no particularly simple direct
description.)

The relations (2.6') lead to a determinant identity which we shall make
use of later. Let N be a positive integer and consider the matrices of
N + 1 rows and columns

H= )OGi,jGN ' E_ OGi,jGN

with the convention mentioned earlier that h, = e, = 0 for r < 0. Both H
and E are lower triangular, with 1's down the diagonal, so that det H =
det E = 1; moreover the relations (2.6') show that they are inverses of each
other. It follows that each minor of H is equal to the complementary
cofactor of E', the transpose of E.

Let A, µ be two partitions of length < p, such that A' and µ' have
length < q, where p + q = N + 1. Consider the minor of H with row
indices A, +p - i (1 < i < p) and column indices µi + p - i (1 < i < p). By
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(1.7) the complementary cofactor of E' has row indices p - 1 +j - Xj
(1 < j < q) and column indices p - 1 + j - µj (1 < j < q). Hence we have

det(h )
(-1)1x1+lµldet((-1)A,-µ, i+je -

)Ai 1<i,j<q'

The minus signs cancel out, and therefore we have (Aitken [Al])

(2.9)

In particular, taking µ = 0:

(2.9') det(hA,_i+j) = det(eA;_i+j)

power sums

For each r > 1 the r th power sum is

=Pr = x; m(,).

The generating function for the pr is

+P(t) _ Prtr-1 L Xjtr-1

r>1 i>1 r>1

_ 37.

so that

Xi

i>1 1 -Xit

d 1_ E - log
i> 1 dt 1 -Xit

(2.10) P(t) =
d

log fJ (1-xit)-' -
d

log H(t) =H'(t)/H(t).
dt i>1 dt

Likewise we have

d
(2.10') P(-t) =

dt
log E(t) =E'(t)/E(t).

From (2.10) and (2.10') we obtain

(2.11)

(2.11')

n-+

nh = r Phn-r,
r-1
n

ne E r-'_ (-1) Pren-r
r-1
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for n > 1, and these equations enable us to express the h's and the e's in
terms of the p's, and vice versa. The equations (2.11) are due to Isaac
Newton, and are known as Newton's formulas. From (2.11) it is clear that
h E Q[pl,..., p"] and p" E Z[hl,..., h"], and hence that

Q[pl,..., pj = Q[hl,..., h"].

Since the h, are algebraically independent over Z, and hence also over Q,
it follows that

(2.12) We have

AQ=A(&z Q=Q[Pl,P2,...]

and the pr are algebraically independent over Q.

Hence, if we define

PA = PA,PA2.

for each partition A = (Al, A2, ... ), then the pA form a Q-basis of AQ. But
they do not form a Z-basis of A: for example, h2 = '-2(p' +p2) does not
have integral coefficients when expressed in terms of the pA.

Since the involution w interchanges E(t) and H(t) it follows from (2.10)
and (2.10') that

w(pn) _ (-1)"-lP,

for all n > 1, and hence that for any partition A we have

(2.13) Pa) = --,k PA

where EA = (-

Finally, we shall express h" and e" as linear combinations of the pA. For
any partition A, define

ZA= flimi.mi!
!al

where m; = m;(A) is the number of parts of A equal to i. Then we have

(2.14)

H(t) = Eza lpAtlAI,
A

E(t) _ E eAZA lpAt]AI,
A
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or equivalently

(2.14')

h = zA PA,
IAI-n

-1en = SAZA PA
IAI-n

Proof. It is enough to prove the first of the identities (2.14), since the
second then follows by applying the involution w and using (2.13). From
(2.10) we have

H(t) = exp prt'/r

r>1

_ fl exp(prtr/r)
r>1

W

= II E (prt')mr/rm'
. mr!

r>1 mr-0

= FIZA 1PAtIAI

I

A

(2.15) Remark. In the language of A-rings [B5], [K13]) the ring A is the
'free A-ring in one variable' (or, more precisely, is the underlying ring).
Consequently all the formulas and identities in this Chapter can be
translated into this language. It is not our intention to write a text on the
theory of A-rings: we shall merely provide a brief dictionary.

If R is any A-ring and x any element of R, there exists a unique
A-homomorphism A - R under which e1(= h1 = pl) is mapped to x.
Under this homomorphism

e,. is mapped to A'(x) (rth exterior power)

hr o_'(x) _ (-1)'A'(-x) (rth symmetric power)

E(t) A,(x)

H(t) cr,(x) = A_,(-x)

Pr i/!r(x) (Adams operations)

and the involution w corresponds in R to x H -x. So, for example, (2.14')
becomes

Qn(x)_ E ZA,OA(x)
IAI-n

valid for any element x of any A-ring (where of course ii A(x) _
,k,(x)Y' A2(x)... ).
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Examples

1. (a) Let x1= =x" = 1, x"+1 =x"+2 - = 0. Then E(t) _ (1 + On and H(t)
= (1 - t)-", so that

er-(nh,= (n+r_1)

and pr = n for all n > 1. Also

n
mA=uA

1(A) ,

where

1(A)!
UA

flm1(A)!
i>1

(b) More generally, let X be an indeterminate, and define a homomorphism
eX: AQ -+ Q[X] by ex(pr) =X for all r > 1. Then we have

Xex(er)=I I'
eX(hr)=(+;-1}=(-1)rl

X1,
r

for all r > 1, and ` l J \

X
eX(mA) = uA

1(A)

For these formulas are correct when X is replaced by any positive integer n, by (a)
above. Hence they are true identically.

2. Let x1= 1/n for 1 < i ' n, x1= 0 for i > n, and then let n - m. From Example 1
we have

er = lim 1 (n) = 1

n_m n r r!

and likewise hr = 1/r!, so that E(t) - H(t) = e'. We have pt = 1 and pr = 0 for
r > 1; more generally, mA = 0 for all partitions A except A = (1r) (r > 0).

3. Let x1= qi-1 for 14 i c n, and x1= 0 for i > n, where q is an indeterminate.
Then

where

n-1
nE(t) _ I 1 (1 +q't) = E qr(r-1)/2ln1 tr

i-0 r-0 T

denotes the `q-binomial coefficient' or Gaussian polynomial

In] - (1-q")(1-q"-1)...(1-q"-r+1)

rJ (1-q)(1-q2)...(1 -qr)
and

n-1

H(t)= fl (1-q't)-1 =
i-0 r-0 L T
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These identities are easily proved by induction on n. It follows that

n
rer = qr(r-1)/2 h, _

rn+r-1 1

r J

h, is the generating function for partitions A such that 1(A) 5 r and 1(,1') S n - 1,
and e, is the generating function for such partitions with all parts distinct.

4. Let n - in Example 3, i.e. let x; s q'- 1 for all i > 1. Then

E(t) _ 1(1 +q't) _ qr(,-1)/2tr/(P,(q),
1-0 r-0

H(t) _ 1(1 -q't)-1 -E tr/,Pr(q),
i-0 r-0

where

Hence in this case

er = qKr -1)/2/or(q), hr =

and p,=(1-q')-1

5. Since the hr are algebraically independent we may specialize them in any way,
and forget about the original variables x,: in other words, we may take H(t) (or
E(t)) to be any power series in t with constant term 1. (We have already done this
in Example 2 above, where H(t) = e'.) Let a, b, q be variables and take

1 - bq't
H(t) _ 1T

;_0 1-aq't

Then we have

' a - bq'-1 r aq'-1 - b
hr =F1 1-q` e'- 1-qi

(see e.g. Andrews [A3], Chapter H.) Also p, = (a' - b')/(1 - q').

6. Take H(t) = 1(1 - t")-1, so that h" =p(n), the number of partitions of n.
Then E(-t) = 11'n- ,(I - t"), and so by Euler's pentagonal number theorem e" = 0
unless n is a pentagonal number, i.e. of the form 2m(3m + 1) for some m E Z; and
e" _ (-1)"'("'+1)/2 if n = zm(3m + 1).

From (2.10) we obtain pr = o -(r), the sum of the divisors of r. Hence (2.11) gives
in this case

1'

1 n

(1) p(n) = n v(r)p(n -r).
n _I
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7. Take H(t) = tn) -n, so that hn =p2(n), the number of plane partitions
of n (§5, Example 13). From (2.10) we obtain p, = o-2(r), the sum of the squares of
the divisors of r. Hence by (2.11)

(2)

1 n

P2(n) = - E °2(r)P2(n - r).
n r= l

It is perhaps only fair to warn the reader that the obvious generalization of (1)
and (2) to m-dimensional partitions (m > 2) is false.

8. By solving the equations (2.6') for en we obtain

en = det(h1-i+j)16i,j6n

and dually

hn = det(el-i+j)16i,j6n.

Likewise from (2.11) we obtain the determinant formulas

I

e1 1 0 0

2e2 e1 1 0
Pn =

n!en=

and dually

nen en-1 en-2 el

Pi 1 0 0

P2 P1 2 0

Pn-1 Pn-2

Pn Pn - l

h1 1 0 0

2h2 h1 1 0
(-1)n-1Pn =

nhn hn-1 hn-2 hl

P1

P2

-1 0 0

P1 -2 0

n!hn=

Pn-2

Pn Pn-1
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9. (a) Let G be any subgroup of the symmetric group Sn. The cycle indicator of G
is the symmetric function

1
c(G) =

GI
F,nG( p)pv
P

where nG( p) is the number of elements in G of cycle-type p, and the sum is over
all partitions p of n. In particular,

c(Sn) ZP lpp = hn
IpI-n

by (2.14'), and for the alternating group An we have

c(An) =hn +en.

(b) If G is a subgroup of Sn and H a subgroup of Sn then G X H is a subgroup of
S,, X Sm C Sn+m' and we have

c(G x H) = c(G)c(H).

(c) Let G be a subgroup of S,, and let I be the set of all sequences a = (a1,..., an)
of n positive integers. For each such sequence a, define xa =x., ... xa,. The group
G acts on I by permuting the terms of these sequences, and the function a -+xa
is constant on each G-orbit. Show that

(1) c(G) _ Exa
a

where a runs through a set of representatives of the orbits of G in I (Polya's
theorem). (Let

X = IGI-' L' xa
(g, a)

summed over all (g, a) e G X I such that ga = a, and show that X is equal to
either side of (1).)

10. From Examples 8 and 9 it follows that the number of elements of cycle-type p
in S,, is equal to the coefficient of pp in the determinant

d,, =n!h,, =

P1 -1 0

P2 Pi -2

Pn-] Pn-2

Pn Pn-1

0

0

Let 1 be a prime number. We may use this formula to count the number of
conjugacy classes in S. in which the number of elements is prime to 1, by reducing
the determinant d,, modulo 1. Suppose that n = ao + nil, where 0 < ao < l - 1.
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Then since the multiples of 1 above the diagonal in d,, become zero on reduction,
it follows that

do = d7'dao (mod. l)

Now it is clear from the original definition of d,, =n!c(S,,) that

d1= p'l- pi (mod. l)

and therefore we have

(1) do = (pi - p,)n' . dao (mod. 1).

Hence if n=ao+all +a212+..., with 0<ai <1-1 for all i30, it follows from
(1) that

" (mod. 1).do a dao U (Pi -Pig
")a

i>1

Consequently, if µi(S,,) denotes the number of conjugacy classes in Sn of order
prime to 1, we have

µ!(S.)=p,(Sao)fl(ai+1)
i>1

=p(a0)H(a,+1)
i>1

where p(ao) is the number of partitions of a0. In particular, if 1 = 2, we see that
µ2(S.) is always a power of 2, because each a, is then either 0 or 1: namely
µ2(S.) = 2' if [n/2] is a sum of r distinct powers of 2.

11. Let

fnt
gntn

f(t) _ E nin , g(t) _ E nl
n-0 n-0

be formal power series (with coefficients in a commutative Q-algebra) such that
g(0) = 0. We may substitute g(t) for t in f(t), and obtain say

0o Hntn
H(t)=f(g(t))= F ni

0

Clearly each coefficient H,, is of the form
n

Hn = E fkBn,k(g)
k-1

where the Bn,k are polynomials in the coefficients of g, called the partial Bell
polynomials. Since each Hn is linear in the coefficients of f, in order to compute
the polynomials B,, ,k we may take fk = ak, so that f (t) = ea`. Writing

H(t) _ F, hntn
n-0
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as usual, we have H(t) = exp(ag(t)) and therefore by (2.10)

P(t) = d
log H(t) = ag'(t)

agntn-]

dt
_

(n - 1)!

so that pn = agn/(n - 1)! for all n > 1. Hence by (2.14')

n!
Hn=n!hn= -PA

IAI-n ZA

and consequently

'++
Bn,k = L PA = FCAgA

A ZA A

where the sum is over partitions A of n such that I(A) = k, and

gA=gA1gA2..., cA=n! Jr.!(i!)
i>1

if A= (1'12'2 ... ). These coefficients cA are integers, because cA is the number of
decompositions of a set of n elements into disjoint subsets containing Al, A2, ...
elements. Hence each Bn, k is a polynomial in the gn with integer coefficients.

Particular cases:

(a) if g(t) =1og(1 + t), then Bn,k = s(n, k) are the Stirling numbers of the first kind;
(-1)n-ks(n, k) is the number of elements of Si., which are products of k disjoint
cycles. We have

E
t"

s(n,k) ak=(1+t)a= (alts'
n,k>O n! ns0 n1l

from which it follows that

n

E s(n,k)ak=a(a-1)...(a-n+1)
k-0

and hence that s(n, k) is the (n - k)th elementary symmetric, function of
-1,-2,...,-n+1.
(b) if g(t) = e` - 1, so that gn = 1 for all n > 1, then Bn,k = S(n, k) are the Stirling
numbers of the second kind; S(n, k) is the number of decompositions of a set of n
elements into k disjoint subsets, and is also the (n - k)th complete symmetric
function of 1, 2, ... , k.

12. Deduce from Example 11 that if f and g are n times differentiable functions
of a real variable, and if fk, gk, (f ° g)k denote the kth derivatives of f, g, and
fog, then

n

(f ° g)n = L Bn,k(g1,g2,...)(fk ° g)-
k-1
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13. If H(t) = (1 - t')/(1 - t)', we have

h" =
lnr r11)-(r-1)

and by (2.10) we find that p,, = r if n 0- 0 (mod r), whereas p" = 0 if n = 0 (mod r).
Hence from (2.14')

I I(A)
n+r-1 n-1zA r - I - (r>2)

A r-1 r-1
where the sum on the left is over partitions A of n none of whose parts is divisible
by r.

In particular (r = 2)

FIzA
121(A)=2

A

summed over all partitions of n into odd parts.

14. Suppose that p" = an"/n! for n > 1. Then

h" = a(a + n)"-'/n!, e" = a(a - n)"-'/n!.

(Let t =xe-X and use Lagrange's reversion formula to show that NO=
ae"/(1 -x).)

15. Show that

E -1 L _1- 1.3.5...(2n-1)
zp zQ 2.4.6...2n

P o

where the first sum is over all partitions p of 2n with all parts even, and the second
sum is over all partitions v of 2n with all parts odd.

16. Suppose that e" = p" for each n > 1. Show that

a" (-1)"a"B"
h"

(n+1)!' e" ni

for some a, where B" is the nth Bernoulli number.

17. If h" = n for each n > 1, the sequence (e")n,
1

is periodic with period 3, and
the sequence (p")n>

1
is periodic with period 6.

18. (Muirhead's inequalities.) For each partition A of n, the A-mean of x =
(Xj, xl,... , x") is defined to be

1

MA(x) = - F, w(xA).
n! wes

In particular, M(")(x) is the arithmetic mean of xi,...,x', and M(1.)(x) is their
geometric mean.
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Let A, µ be partitions of n. Then the following statements are equivalent;

(i) A >, µ; (ii) MA(x) > M(x) for all x = (xl,... , xn) E R+ .

(To show that (i) implies (ii), we may assume by (1.16) that A = R;1 in which case
it is enough to show that

x1 'X i + x ' x; J i xµ;' xj i + Xj"`I X;"'f .

To show that (ii) implies (i), set xi = ... =xr=X and x,+i = ... xn = 1, where
X is large, and deduce that A, + ... + Ar > µ, + ... + µr.)

19. Let Pnr) = EmA, summed over all partitions A of n of length r (so that
p(l) = pn). Show that

F,p(r)t, -rur = E(u - OH(t)

and that

n,r

tn-r = E(r)(-t)H(t)FIPn ) r
n>r r

where E(r)(t) is the rth derivative of E(t) with respect to t. Deduce that

Pnr)= , (_)a-rraeahh
a+hen `\

and that (if n > r) p,(,`) is equal to the determinant of the matrix (a;j)o 4 iJ4 n-o
= r

l
where a;o

r + i
er+; and a;j= e;_f+i if j> 1.

20. For any partition A, let uA = I(A)!/I1;> I m;(A)!, as in Example 1(a). Show that

(-1)1(A) 1

Pn = n E
I (A)

uAhA
IAI= n

E
eA

_ -n
I( A) uAeA

IAI=n

and that

en = F, SAUAh,.

IAI-n

(Let H+(t) = E,, 1 hntn, and pick out the coefficients of to in log(1 +H+(t)) and
(1+H+(t))1, expanded in powers of H+ W.)

21. Let xn = 1/n2 for each n > 1. Then

(1)

(
E(-t2)=rl 1

t2
n -2)=

n

sin art

art
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so that en = ir2n/(2n + 1)! for each n > 0. We have

1

Pr = E Zr = C(2r)
n>1 n

where is Riemann's zeta function. Deduce from (1) that

d
-2t2P(t2) =tdt log E(-t2) = Trt cotort-1,

and hence that

(2r) = (- 1)r-122r- 1'1r2rB2r/(2r)!,

where B2, is the 2rth Bernoulli number.

22. (a) From Jacobi's triple product identity

E t'2un = f[ (1 - t2n)(1 + t2n-lu)(1 ,+, t2n-1u-1)

nEZ n>1

by setting u = -1 we obtain

+ -
L (-1)ntn==

1 tnf
nEZ n>1 1+t.-

Deduce that if

1+tn
(1) E(t) _ fl

n>1 1-tn

then hn = 2 or 0 according as n > 1 is a square or not.

(b) Deduce from (1) and (2.10') that

Pn =
2(-1)n-1Q'(n),

where o '(n) is the sum of the divisors d > 1 of n such that n/d is odd.

(c) Let N,(n) denote the number of representations of n as a sum of r squares,
that is to say the number of integer vectors (x1,..., x,) E Zr such that xj + ... +
x; = n. Deduce from (b) above and Example 8 that

v'(1) 1/2r 0 0

n
v'(2) v'(1) 2/2r 0

(2r)
N ( ) _, n

n!
o'(n-1) a'(n-2) (n-1)/2r

o'(n) Q'(n - 1) ... 0'(1)

23. If G is a finite group and d is a positive integer, let wd(G) denote the number
of solutions of xd = 1 in G. Show that

(1) wd(Sf)tn = expl E ` tr1.
.>O n! rid
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(If x e S. has cycle-type A, then x" = 1 if and only if all the parts of the partition A
divide d. Hence

(2) wd(Sf)/n! = Lz.

summed over such partitions A of n. Let (pd: AQ -4 Z be the homomorphism
defined by rpd(p) - 1 or 0 according as r does or does not divide d. Then the
right-hand side of (2) is by (2.14') equal to rpd(h") and hence the generating
function (1) is cpd(H(t)).)

24. Another involution on the ring A may be defined as follows. Let

(1) u = tH(t) = t +h1t2+h2t3 + ... .

Then t can be expressed as a power series in u, say

(2) t=u+h*u2+hzu3,+...,
with coefficients h* E A' for each r 3 1. The formulas (1) and (2) show that the
ring homomorphism qt: A -* A defined by 41(h,) = h* for each r > 1 is an involu-
tion on A.

For each f E A, let f i/r(f ). Thus for example h*1 = h* h*1= ... for each
partition A= (Al, A2, ... ), and the ha form a Z-basis of A.

(a) To calculate h* explicitly, we may argue as follows. From (2) we have

dt = E (n + 1)h* u' du
n>O

and therefore (n + 1)h* is the residue of the differential

dt/un+1 = dtltn+1H(t)n+t

hence is equal to the coefficient of t" in the expansion of H(t)-"-1 in powers of t.
Writing H(t) = 1 +H+(t) as in Example 20, it/rfollows that

(n+1)h*,= E (-1)!(A)Jn+l(A)}uAhA
IAI-n

n JJ

with uA as in Example 20.

(b) Show likewise that

Pn = E zj 1(-n)t(A)PA
IAI-n

and that

n-1
(n - 1)e* _ - E

Z(A)
)uAeA.

IAI-n

25. Let f(x), g(x) a Z[[x]] be formal power series with
t =xf(x) and express g(x) as a power series in t:

g(x) =H(t) _ E hnt".

constant term 1. Let

n>0
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Let qn(f, g) denote the coefficient of xn in (f +xf')g/f' 1, where f is the
derivative of f. Then we have

hn=ggn(f,g), en-(-1)n<Pn(f,g-1)

and (with the notation of Example 24)

hn = con(fg,gen = (-1)n(Pn(fg,g)

Moreover, if 4f ,(f, g) is the coefficient of xn-1 in g'/f ng, we have

Pn=+Y'(f,g), Pn = fr
(fg,g-1)

(a) Take f(x) = (1 +x)-" and g(x) = (1 +x) p. Then

9n(f,9)= naJ9 (n
an ,B un(a,16),

+)9 )

say, and therefore

hn = un(a, P), en = un(1 - a, Q ),

hn = un(a -,6, -,B), en = u,,(1 - a +,6, -,B),

and

«(na1'
Pn= I`\

n11 Pn=
1ja(nannf3)

In particular, un(2,1) is the nth Catalan number C n = (n + 1)-11 2n I , and

( 1

n

un(2, 2) = Cn+ 1, un(2, -1) Cn_ 1. Hence when pn = a 1 nn
1

with a = i,1, - i

we have respectively hn = Cn, Cn+1, -Cn_1, and h*,l= -Stn, (-1)n(n + 1),
3nnt

n-1
(b) Take f(x)=e', g(x)=eOx. Then

9n(f,g) = f3(na+f3)n-1/n!=Vn(a,/3),

say, and hence

hn =Un(a,13), en =vn(-a,/3),

hn=v (a-R,-f3), en* =Vn(f3-a,-f3),

and

P(n)n-1 -f3(na-n,C3)n-1

Pn 1 (n - 1)! , Pn = (n - 1)!
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26. Let k be a finite field with q elements, and let V be a k-vector space of
dimension n. Let S = S(V) be the symmetric algebra of V over k (so that if
x1 .,x is any k-basis of V, then Let

fv(t) = rj (t + v),
VEV

a polynomial in S[11.

(a) Show that

flat +bu) =af(t) +bf(u)

for all a, b E k and indeterminates t, u. (If a E k, a 0 we have

f(at)= fl (at+v)=aq" fl (t+a-'v)
VEV vEV

= af(t).

Next, let

f(t+u)-f(t)-f(u)= E trgr(u)
r> O

with g,(u) E S[u]; since f(t + v) =f(t) and f(v) = 0 for all v E V, it follows that
g,(v) = 0 for all v E V. Since gr has degree < q', we conclude that g, = 0 for each
r, and hence that f(t+u)=f(t)+f(u).)

(b) Deduce from (a) that fv(t) is of the form

fv(t) = tq" +a,(V)tq"-' + ... +a,,(V)1,

where each a,(V) E S, and in particular is the product of the non-zero
vectors in V.

Show that

(1) E al(L) = 0
L<V

where the sum is over all lines (i.e. one-dimensional subspaces) L in V. (Since each
v # 0 in V lies in a unique line L = kv, it follows that

fV(t) °° t t-'fL(t) = t fj (tq-' +ai(L))
L<V L<V

and therefore the sum (1) is equal to the coefficient of tq"-' in fv(t), which is
clearly zero.)

(c) Let U be a vector subspace of V. The mapping v - fv(v) of V into S is
k-linear, by (a) above, and its kernel is U. Hence its image fv(V) is isomorphic to
the quotient of V by U, and we shall denote it by V/U. Each element of V/U is a
product of the form II E v(v + u) for some v E V, i.e. it is the product in S of the
elements of a coset of U in V.
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Show that

fv(t) =fv,u(fU(t))

and that if T is a vector subspace of U then

V/U = (V/T)/(U/T ).

(d) Show that for 1 < r < n - 1 we have

(2) a,(V) = E a,(V/L)
L<V

summed as before over all lines L in V. (From (c) above we have fv(t) =fv,L(fL(t )),
from which it follows that

a,(V) = a,(V/L) + a,-t(V/L)a1(L)q '.

Since the number of lines L in V is 1 + q + ... +q"-' =1 (mod. q), it follows that

(3) a,(V) = , a,(V/L) + E a,_ 1(V/L)al(L)`.
L L

By induction on n = dim V we may assume that

(4) Ear-i(V/M)
M

summed over all two-dimensional subspaces M in V that contain L. The second
term on the right-hand side of (3) is therefore equal to

Fla,-(V/M)( E al(L))
M L<M 1

which is zero by (1) above.)

(e) Deduce from (d) that

a,(V) _ E a,(V/U)
U

summed over all subspaces U of V of dimension n - r, where a,(V/U) is the
product of the vectors v e V such that v E U.

27. As in Example 26, let k be a finite field with q elements, let x,,..., x" be
independent indeterminates over k, and let k[x]=k[xl,...,x"]. Let V be the
k-vector space spanned by x1,..., x, and let

(1) fv(t) = t9" +a, tq"-'a,tq"-' + ... +a"t

be the monic polynomial whose roots are the elements of V. Let k[a] _
k[al,..., a"] c k[x].
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(a) The coefficients a1,. .. , a,, in (1) are algebraically independent over k. (Let
b1,..., b" be independent indeterminates over k, and let W be the set of roots of
the polynomial

g(t) = tq" + bltq"-' + ... +bnt

in a splitting field. The roots are all distinct, since g'(t) = b" # 0, and since
g(at + f3u) = ag(t) + 3g(u) for a, /3 e k it follows that W is a k-vector space of
dimension n. Choose a basis (yl,..., yn) of W and let 0: k[x] --> k[y] be the
k-algebra homomorphism that sends x, to y; (1:< i < n). Then 0(ai) = b; (1 < i < n);
since the b; are algebraically independent over k, so are the a,.)
(b) Let G = GL(V) ~= GLn(k) be the group of automorphisms of the vector space
V. Then G acts on the algebra k[x]; let k[x]c denote the subalgebra of G-
invariants. Since G permutes the roots of the polynomial fy(t), it fixes each of the
coefficients a;, so that k[a] c k[x]G. In fact (see (d) below) k[a] = k[x]G.
(c) k[x] is a free k[a)-module with basis (x")" E E, where

E=(a=(a,,...,a,,):0<ai<q"-qi-1
(Let V, denote the subspace of V spanned by x1..... x for 0 < r < n - 1 (so that
Vo = 0). The polynomial g,(t) = fy(t)/fv(t) is monic of degree q" - q', has coeffi-
cients in the ring k[a,x1,...,x,], and has x,+1 as a root.

Now let h e k[x]. Use the polynomial gn_ 1 to reduce the degree of h in x"
below q" - q"-1 Then use g_2 to reduce the degree of h in x" _ 1 below
" - n-2q q , and so on. In the end we shall obtain say

(2) h= L h"x"
aEE

with coefficients h" E k[a] c k[x]°.
Hence the x", a a E, span k[x] as k[x]G-module. They therefore also span the

field k(x) = k(x1,..., xn) as vector space over k(x)G, since every element of k(x)
can be written in the form u/v with u E k[x] and v E k[x]G. But by Galois theory
the dimension of k(x) over k(x)° is

n

IGI= FT(gn-gi-1)=1EI;
1-1

hence (x")" E E is a basis of k(x) over k(x)c, i.e. the expression (2) for h E k[x] is
unique.)
(d) Suppose now that h E k[x]c. Then in (2) we must have h" = 0 if a # (0,...,0),
and h = ho,...,o a k[a]. Hence k[x]c = k[a] (Dickson's theorem).

Notes and references

Example 11. For more information on Bell polymomials, Stirling numbers
etc., see for example L. Comtet's book [C3].

Example 13. This example is due to A. 0. Morris [M15].
Example 27. The proof of Dickson's theorem given here I learnt from R.

Steinberg.
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3. Schur functions

Suppose to begin with that the number of variables is finite, say x1, ... , x,,.
Let xa = xi ... xf be a monomial, and consider the polynomial as
obtained by antisymmetrizing xa: that is to say,

aa=aa(x1,...,xn)= E e(w).w(xa)
WES,,

where e(w) is the sign (f 1) of the permutation w. This polynomial as is
skew-symmetric, i.e. we have

w(aa) = e(w)aa

for any w E Sn; in particular, therefore, as vanishes unless a1,..., an are
all distinct. Hence we may as well assume that a1 > a2 > ... > a, > 0, and
therefore we may write a = A + S, where A is a partition of length < n,
and S = (n - 1, n - 2,..., 1, 0). Then

as=aA+d- E e(w).w(xA+8)
W /

which can be written as a determinant:

aA+a=det(xjAj+n-j)li,i<n-

This determinant is divisible in Z[xl,...,x,,] by each of the differences
x. - xj (1 < i < j < n), and hence by their product, which is the Vander-
monde determinant

fl (x, -x) = det(xn-j) = as .

1&i<jtn

So aA+s is divisible by as in Z[x1,...,x,,], and the quotient

(3.1) sA =SA(x1,...,xn) =aA+/as

is symmetric, i.e. is in A. It is called the Schur function in the variables
X,'..., xn, corresponding to the partition A (where l(A) < n), and is homo-
geneous of degree I Al.

Notice that the definition (3.1) makes sense for any integer vector
A E Zn such that A + S has no negative parts. If the numbers A, + n - i
(1 < i < n) are not all distinct, then sA = 0. If they are all distinct, then we
have A + 8 = w(µ + S) for some w E S,, and some partition µ, and SA =
e(W)S".

The polynomials aA+s, where A runs through all partitions of length
n, form a basis of the Z-module An of skew-symmetric polynomials in

x1,..., xn. Multiplication by as is an isomorphism of A,, onto A,, (i.e. A,, is
the free An-module generated by as), and therefore
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(3,2) The Schur functions sA(xl, .... xn), where 1(,1) < n, form a Z-basis

of An. I

Now let us consider the effect of increasing the number of variables. If
1(a) < n, it is clear that aa(xl, ... , xn, 0) = aa(xl,... , xn). Hence

Pn+1,n(SA(xl,...,xn+1)) -SA(x1,...,xn)

in the notation of §2. It follows that for each partition A the polynomials
sA(xl,..., xn), as n -> -, define a unique element sA E A, homogeneous of
degree I AI. From (3.2) we have immediately:

(3.3) The sA form a Z-basis of A, and for each k > 0 the sA such that IAI = k
form a Z-basis of Ak.

From (2.4) and (2.8) it follows that each Schur function sA can be
expressed as a polynomial in the elementary symmetric functions e and
as a polynomial in the complete symmetric functions h,. The formulas are:

(3.4) sA = det(hAi-i+j)1<i,j<n

where n > 1(O), and

(3.5)

where m > 1(A').

SA = det(eA;-i+j)1&i,j&m

By (2.9'), it is enough to prove one of these formulas, say (3.4). We shall
work with n variables x1, ... , xn. For 1 < k < n let erk denote the elemen-
tary symmetric functions of x1, ... , Xk _ 11 xk+ 11, .. , X. (omitting xk), and let
M denote the n X n matrix

M= ((- 1)n-ie^k)i)l.i,ktn

The formula (3.4) will be a consequence of

(3.6) For any a = (a1, ... , an) E Nn, let

Aa = (x70, Ha = (ha;-n+j)

(n x n matrices). Then Aa = Ha M.

Proof Let
n-1

E(k)(t) _ e(k)tr = Fj (1 + xit).

r-O i,'k

Then

H(t)E(k)( -t) = (1-Xkt)-1,
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By picking out the coefficient of t" on either side, we obtain

n
n-j (k) _ a,

F, ha;-n+j . ( -1) en-j -xk
j-1

and hence HaM=A,,.

Now take determinants in (3.6): we obtain

as = det(Aa) = det(H,,)det(M)

for any a e Nn, and in particular det M = as, since det(H8) = 1. Hence

(3.7) aq = as det(H,,)

or equivalently

(3.7') a.=a, E

e a = A + 8 in (3.7), we obtain (3.4), or equivalently
from (3.7')

(3.4') sA = L e(w)hA+s-Ws
weS

From (3.4) and (3.5) it follows that

(3.8) W(SA) = SA.

for all partitions A.
Also from (3.4) and (3.5) we obtain, in particular,

(3.9) S(n) = h,

Finally, the formula (3.4) or (3.4') which expresses sA as a polynomial in
the h's can also be expressed in terms of raising operators 01):

(3.4") 5A= fl(1-R,j)hA
e<j

where, for any raising operator R, RhA means hRA.t

t It should be remarked that if R, R' are raising operators, RR'hA = hRR'A is not necessarily
equal to R(R'hA). For it may well happen that R'A has a negative component, but RR'A does
not, in which case R'hA = 0 but RR'hA 0 0. See [G3] for a discussion of this point.
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Proof. In the ring Z[xi 1, ... , 4:9 ] we have

e(W)xA+s-ws=xA+sa-s =xA+s
F1

txi 1
wEs i<1l

_ fl(1-xix,-.i).xA
' <I

_ fl(1-Ri1)xA
i <1

where R(xA) =xRA for any raising operator R. If we now apply the
Z-linear map cp: Z[xi i, ... , xn 11 - A1, defined by cp(x a) = h. for all a E
Z", we see that

F, e(w)hA+s-ws = fl (1- Ri1)hA
wEs i<1

and therefore (3.4") follows from (3.4').

(3.10) Remark. In view of (2.15) we may use (3.4) or (3.5) to define `Schur
operations' in any A-ring R. If µ is any partition and x is any element of
R, we define

Sµ(x) = det(Qµ,-i+1(x))1<i,1<"

= det(A'4-'+1(x))1 t j,1,

where n > l(µ) and m > 1( p.'). We have

S"`( -x) = ( -1)Iµ1SK'(x)
and in particular

S(")(x) = o- (x), S(1")(x) = A"(x).

For example, the results of Examples 1-3 below evaluate SA(1 +
q + ... +qn-1), SA((1- q)-1) and SA((a - b)/(1 - q)), where a, b, q are
elements of rank 1 in a A-ring R such that 1 - q is a unit in R.

Since each f E A is an integral linear combination of the s,,, say

f= Eaµs ,

it follows that f determines a `natural operation'

F = F, aµ,S"

on the category of A-rings. F is natural in the sense that it commutes with
all A-homomorphisms (because it is a polynomial in the A'). Conversely,
any natural operation F arises in this way, from f = F(e1).
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Examples

1. Take x; = q'-1 (1 < i < n) as in §2, Example 3. If A is any partition of length
n, we have

aA+8 =
det(q(i- 1xAi+n -J))

1 Gi, j"n

which is a Vandermonde determinant in the variables qAi+n-j (1 <j <n), so that

Ai+n-j A;+n-i
i<j

= qn(A)+n(n- lxn-2)/6 [J (1 - qAi-Ai-i+j)

i<j

which by use of §1, Example 1 is equal to

q
n(A)+n(n- lxn-2)/6

i>1

(1 - qh(x))
XeA

where h(x) is the hook-length at x E A, and Ip,(q) = (1 - q)... (1 - q'). Hence (§l,
Example 3)

V.S = a /a = n(A) r
1 - qn+c(x)

A+8 8 '1
XEA 1- qh(x)

where c(x) is the content (§1, Example 3) of x E A.
For any partition A define

[I-x''
n 1 q-cEA

1-qh(x)

(which when A = (r) agrees with the notation [']r for the q-binomial coefficients

introduced in §2, Example 3). Then we have

n
SA(1,q,...,gn-1) =qn(A)

A
.

[n]
A

is a polynomial in q, of degree

d= F, (n-c(x)-h(x))= E (n+1-2i)A,
XEA is1

n
by using §1, Examples 2 and 3. If ai is the coefficient of ql in for 0<i _<d,

A

n
then clearly ai = aa_I. We shall show in §8, Example 4 that

A
is unimodal (or

,spindle-shaped'), i.e. that ao < a1 < ... < ajQ121.

Finally, we can express
[n]

as a determinant in the q-binomial coefficients !
rnJ,

by using (3.5). `
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2. Let n -a in Example 1, so that H(t) = f1 _ 0(1 - q't)-'. From Example 1 we
have

sA = q"(A) rl (1 -
qh(X))-I

= q"(A)HA(q)
xeA

where HA(q) is the `hook polynomial' fIXEA(1 - qh(X))

3. More generally, let

°° 1- bq`t
H(t) = rI;_0 1 -aq`t

as in §2, Example 5. Then

77-- a - bq`(X)
(*) sA=q"(A) 11

xE A 1 - qh(X)

For if we replace t by a-It, the effect is to replace sA by a-IAIsA. Hence we may
assume that a = 1. Both sides of (*) are then polynomials in b, hence it is enough
to show that they are equal for infinitely many values of b. But when b = q" and
a= 1 we are back in the situation of Example 1, and (*) is therefore true for
b

qn

4. Suppose x; = 1 (1 < i < n), xi = 0 for i > n. Then E(t) = (1 + t)", and

s = 1I
n + c(x)

A xE A h(x)

by setting q = 1 in Example 1.
More generally, if E(t) = (1 + t)X, where X need not be a positive integer, then

sA = rl h(x)XE A

for the same reason as in Example 3: both sides are polynomials in X which take
the same values at all positive integers.

These polynomials may be regarded as generalized binomial coefficients, and
they take integer values whenever X is an integer. For any partition d define

(x\ 7T X-c(x)
X h(x)

(which is consistent with the usual notation for binomial coefficients). Then

by (3.5). Also

(X) =detl (
'1j +j))

) =
(-1)IAII X 1.

X+c(x)
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5. As in §2, Example 2, take xi =1/n for 1 < i < n, xi = 0 for i > n, and let n
Then E(t) = H(t) = ei, and from Example 4 we have

1 n+c(x)
S, = lim

l A
lIn-n xEA h(x)

_ 11 h(x)-1.
xE A

6. Let p(n) denote the number of partitions of n. Then

det(p(i -j + 1))1 <i, j <n

is equal to ± 1 or 0 according as n is or is not a pentagonal number. (Use §2,
Example 6 together with (3.4).)

7. Let m be a positive integer. Then

x;" -x'" ama=-=S(m-1)s
1<i<j<n xi -xj as

= det(h(m_1Xn-i)-i+j)1<i,j<n

= det(hmi_j)1 <i, j<n- 1

In particular,

fJ (xi +x1) = det(h2i_j).
i<j

8. Consider the ring Qn = Q[ x t 1, ... , x 11 of polynomials in x1, ... , xn and their
inverses. For each a E Z" the monomial x° =xi ... xn^ generates a symmetric
function

t h. E X"
WES^

and the th such that a1 > a2 >1 ... > an form a basis of Qs n^.

Define a linear mapping cp: Qs- -+ An ®Q by cp(in-.) = ha (with the usual
convention that ha = 0 if any ai is negative).

(a) For all a,,6 E Z" we have

cp(aaap) = det(ha.+s.)1<i,j<n.

For

aaap = E e(W1W2 )xWla+W20
W1,W2ES^

C'' e(w) E xWl(a+Wp)
WES^ W1ES^

= E e(w)ma+Wp
WES^
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So that

1p(aaad E e(w)ha+Wy = det(ha,+aJ).
WEs.

(b) In particular, if A is any partition of length < n, we have

rp(sAasa_a) = ip(aA+sa-8) = det(hA,-i+j) =sA

by (3.4). Since the sA form a Z-basis of An, it follows that ep(fa8 a _ 6) = f for all
fEAn.

(c) Let a, p E Nn and let _ (fin, ... , a1) be the reverse of 6. Then s5 = a.- la-
and hence from (a), (b) we have

sas'jj=
(P(aa+sary-8) = det(ha,+s

J 1G1,jGn

a formula which expresses the product of two Schur functions (in a finite number
of variables) as a determinant in the h,.

9. Let a, b > 0, then (a I b) is the Frobenius notation (§1) for the partition
(a + 1,1b). From the determinant formula (3.4) we have

s(a1b) =ha+leb - ha+2eb-1 + ... +( _,)bh.+b+l

If a or b is negative, we define s(a I b) by this formula. It follows that (when a or b is
negative) s(a b) = 0 except when a + b = -1, in which case s(a b) _ ( -1)b.

Now let A be any partition of length < n. By multiplying the matrix
(hA,-i+j)1<i,j<n on the right by the matrix ((-1)j-len+l-j-k)1Gj,k<n, we obtain
the matrix (s(A,-inn-k))1<i,k<n. By taking determinants and using §1, Example 4
we arrive at the formula

s(a 10) = det(s(a,I $J))1<i,j<r

where (a I P) = (a1,..., a, I R1,..., R,).

10. sA(1+x1,1+x2.... ,1+xn)= LdAµs,(X1,...,Xn)

summed over all partitions µ c A, where

dA=detl(Ai+n-i11

µ fL.j+n-j
1Gi,/<n

(Calculate aA+B(1 +xl,...,1 +xn) and observe that a8(1 +x,...,1 +xn) _
aa(Xk,..., xn).)
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This formula can be used to calculate the Chern classes of the exterior square
A2E and symmetric square S2E of a vector bundle E. If c(E) = H ,T-1(1 +xi) is the
total Chern class of E, then

c(A2E) _ (1 +xi +x1)
i<j

= 2-m(m -1)/2 TZ (1 + 2xi + 1 + 2x1)

2-m(m-1)/2SS(1 + 2x1,...,1 + 2xm)

by Example 7, where S = (m - 1, m - 2, ... , 0), and therefore

c(A2E) = 2-m(m -1)/2 E dsµ21 F`I Sµ(x1, ... , xm ).
µC6

Likewise

c(S2E) _ fT (1 +xi +x1)
i<j

m(m -1)/2 v1=2- dS1,2
PCs

where e = (m, m - 1,-, 1).

11. Let = be a partition of length < n,
Then, the variables being x1,..., x, we have

(1)

n

aµ+6Pr = L aµ+6+req
q-1

and r a positive integer,

where eq is the sequence with 1 in the qth place and 0 elsewhere. We shall
rearrange the sequence µ + S + req in descending order. If it has two terms equal,
it will contribute nothing to (1). We may therefore assume that for some p < q we
have

µp_1+n-p+l> µq+n-q+r> µp+n-p,

in which case a,,,,+6+req = /( -1)q-paa+S1 where A is the partition

A=(µ11...,µp-1,µq+p-q+r, AP +1.... ,µq_1+1,µq+11...1µn)1

and therefore 0 =A - µ is a border strip of length r. Recall (§1) that the height
ht(0) of a border strip 0 is one less than the number of rows it occupies. With this
terminology, the preceding discussion shows that

(2) S
(-1)ht(A-µ)S

µPr - r'
A

A

summed over all partitions A µ such that A - µ is a border strip of length r.
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From (2) it follows that, for any partitions A, µ, p such that I Al = I Al + I pl, the
coefficient of s,A in sµpp is

E Wt(s)

S

summed over all sequences of partitions S = (O), V)_., A(')) such that µ =
a(0) c Ail) c ... c k(-) = A, with each k') - k('- 1) a border strip of length pi, and

ht(S) = E ht(P) - V-1)).
i

12. Let o : Z[xl,..., xn] -> A" be the Z-Iinear mapping defined by v(xa) = S. for
all a E N". Then o is An-linear, i.e. o (fg) = fo (g) for f E A" and g c=
Z[xl,...,xn]. For o.(xa)=as ia(xa+a), where

a = F, e(w)w
WE S

is the antisymmetrization operator. By linearity it follows that o (g) = as la(gx s)
for all g E Z[xl,..., xn], and the result follows from the fact that a is An-linear.

13. If a, b > 0 we have

P1

P2

Cl 0 0

P1 C2 0

(a +b + 1)a! b! s(aI b) =

Pa+b

Pa+b+l

Ca+b

P1

where (c1,...,Ca+b)=(-1, -2,..., -a, b,b-1,...,1).

(Use the relation Spa I b) + S(a + 1 I b -1) = h a + 1 eb which follows from the first formula
in Example 9, together with the determinant formulas of §2, Example 8, and
induction on b.)

1 + ux
14. F1 `=E(u)H(t)=1+(t+u) F, S(aI b)taub.1-txi a,b>0

15. Let M be an n x n matrix with eigenvalues x1,..., x,,. Then for each integer
r > 0 we have

n-1
Mn+r= r- ( -1)"S(rIp)(X1.... ,Xn)M"-p-1

P-0

(If Mntr=EapMn-p-1, we have x;+r=Eapxi-p-1 for 1,<i,<n;
these equations for a0, . , a _ 1 . ).)

16. Let A, µ be partitions of length n, and let

now solve

PP(A, FA,) = det(PA;+µj+2n-i-j)lti,jtn'
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with the understanding that po = n. Then in A we have

sAS, = P (A, µ) /P (0, 0).

(Observe that by multiplication of determinants.)

17. (a) Let p be an integer > 2 and let (o = e2"`1P. If A is any partition of length
p, we have

(*) SAQ, P-1) = r l
1<j<k<p

wAj+P-j - wAk+P-k

wP-j - wp-k

from which it follows that sA(1, w,..., wp-1) = ± 1 if A 0 (§1, Example 8(f)) and
is zero otherwise. More precisely, if A -P 0 we have sA(1, w,..., WP-') = vP(A),
where op(A) is the sign e(w) of the unique permutation w E SP such that A + SP
w8P(mod. p), where 8P = (p -1, p - 2, ... ,1, 0).

(b) Assume from now on that p is an odd prime. Then

P

E(t)= fl(1+wr-It)=1+t1
r-1

=-(1+t)P (mod.p)
and therefore

(1)

sA(11 (0,.,., 0jP-1) =sA(1,...,1) (mod.p)

(Example 4). Hence
l

A
/

- 0 (mod. p) unless x A

(c) Let q # p be another odd prime and let A = (q - 1) 8P. Then

(2) sA(x1,...,xP) = (4 -x?)/(x; -x1)
i<j

from which it follows that

od. p)(3) sA(1,...,1) qP<P-1)/z_ (i-) (m

where ( qP ) is the Legendre symbol, equal to + 1 or - 1 according as q is or is not

a square modulo p. From (1) and (3) we deduce that

(4) sA(1,w,...,(OP-1)=1P1
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(d) Let GP (resp. Gq) denote the set of complex pth (resp. qth) roots of unity, and
choose S C G. and T C G. such that

(xP -1)/(x - 1) = fl (x - o)(x - 0-1),
PES

(xq -1)/(x - 1) = F1 (x - T)(x - T 1).
TET

From (2) and (4) we have

(5)
Q T-T

li(aq-13q)/(a-13)

the product being taken over all two-element subsets (a, p) of GP, where we may
assume that a-113 a S. We have

(6)

(aq- j3q)/(a-13) = 1l (a-13T)(a-/3T 1)
TE T

a(3(1-QT)(o. 1 - T1)
rE T

where o = a-113 e S. Deduce from (5) and (6) that

(7) (±P)F1(1-UT)(o-'-T 1)

(product over all o e S, T e T). (Observe that U a f3 = 1, that each r e S arises as
a-113 from p subsets {a, /3), and that (1- orX U-' - z 1) is a real number.)

By interchanging q and p we have likewise

(7')

and therefore

P JJ(1-or)(T'-v')
Q a,T

\ p
1)(P 1Xq-1)/4(q

Q P

(the law of quadratic reciprocity).

18. Let k be a finite field with q elements, let x1,...,x" be independent indeter-
minates over k, and let k[x] = k[x1,..., x"]. Let a = (a1,..., a") E N", let q" _
(q"',..., and let A. a k[x] be the polynomial obtained by antisymmetrizing
the monomial xe", so that

(1) A, =Aa(x1,..., x") = det(x7')i<1 1<n .

As in the text, we may assume that a1 > a2 > ... > a,,'>0, so that a = A+ S,
where A is a partition of length < n.
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(a) As in §2, Example 26, let V denote the k-vector space spanned by x1,.. . , x, in
k[x], and let G = GL(V) = GL"(k), acting on k[x]. Show that

(2) gA. _ (det g)A,

for g e G, and deduce that A. is divisible in k[x] by each non-zero v E V. (The
definition (1) shows that A. is divisible by each x;, and G acts transitively on
V_ (0).)

(b) Consider in particular the case A = 0, i.e. a = S = (n - 1, n - 2, ... ,1, 0). The
polynomial A8 is homogeneous of degree

q"-1 +q"-2 + ... +1 = (q" - 1)/(q - 1),

and has leading term x4°. Let Vo denote the set ,of all non-zero vectors v a,x,
in V for which the first nonvanishing coefficient a, is equal to 1. Then we have

As= H V
VEV0

and each A. is divisible in k[x] by A8.

(c) Now define, for any partition k of length c n,

(3) S,=S,(x,,...,x..)=A,.

From (2) above it follows that SA is G-invariant, and hence depends only on A and
V, not on the particular basis (x1,..., x") of V. Accordingly we shall write S,A(V) in
place of SA(xl,..., x"). It is a homogeneous polynomial of degree E°_ 1(q A, - 1)q"-'

(d) If t is another indeterminate, we have from (b) above

Abp+,(t,xl,...,x") =A8,(xl,...,xn) 11 (t+v)
VEV

=As (xl,..., x")fv(t)

in the notation of §2, Example 25. By expanding the determinant A8 ,(t, x1, ... , xn)
along the top row, show that

fV(t) = tq" -E1(V)tq"-' + ... +(-1)"E"(V)t,
where

Er(V)=S(lr)(V) (1<r<n).

The Er(V) are the analogues of the elementary symmetric functions, and in the
notation of §2, Example 26 we have

Er(V) _ (-1)rar(V )

_ (-1)rE ar(V/U)
U

summed over subspaces U of V of codimension r.
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19. In continuation of Example 18, let

Hr(V) = S(r)(V)

53

(r> 0)

with the usual convention that Hr(V) = 0 if r < 0. (Likewise we define Er(V) to be
zero if r < 0 or r > n.) Let S(V) (= k[ x ]) be the symmetric algebra of V over k,
and let (p: S(V) --> S(V) denote the Frobenius map u - u' , which is a k-algebra
endomorphism of S(V), its image being k[x?,... , xx ]. Since we shall later en-
counter negative powers of (p, it is convenient to introduce

§(V) = U S(V)4
r>0

where S(V)q-' = k[xf ', ... , xn
,
]. On §M, (p is an automorphism.

(a) Let E(V), H(V) denote the (infinite) matrices

H(V) = ((p;+1Hj-i(V ))i
jez,

E(V) = (( -1)'-'(pjEJ_i(V));
jez

Both are upper triangular, with 1's on the diagonal. Show that

E(V) =H(V)-1.

(We have to show that

(-1)k-J(pk(Ek_j)q,i+1(Hj_i) = Sik

for all i, k. This is clear if i > k. If i < k, we may argue as follows: since fv(xi) = 0
it follows from Example 18 that

(p"(xi) -Elcpn-1(xi) + ... + ( -1)"Enxi
= 0

and hence that

(1)
(pn+r-1(Xi) - (pr-1(E1)(pn+r-2(Xi) + ... +( - 1)"(pr-1(En)(pr-1(x1) = 0

for all r > 0 and 1 < i < n. On the other hand, by expanding/ the determinant
A(r)+8 down the first column, it is clear that H, =Hr(V) is of the form

n

(2) Hr= E Ui(pn+r-1(X')
i=1

with coefficients u, E k(x) independent of r. From (1) and (2) it follows that

(3) Hr-(pr-1(El)Hr_1+ ...+(-1)npr-1(En)Hr_n=0

for each r >, 0. Putting r = k - i and operating on (3) with (pi+1, we obtain the
desired relation.)
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(b) Let A be a partition of length < n. Then

SA(V) = det( ip1-jHA,_,+j(V))

= det( ipj-1EA,-i+j(V ))

in strict analogy with (3.4) and (3.5). (Let a = (a1,..., an) E N". From equation (2)
above we have

ip1-j(Ha _n+j) = F, cpa,(xk)!pl-1(llk)

i-1

which shows that the matrix (ip1_jHa,-n+j);
j is the product of the matrices

((Pa'xk)i,k and
(91-illk)k,j-all three matrices having n rows and n columns. On

taking determinants it follows that

(4) det(cpl-jHa,-n+j) =AaB

where B = det(ip1-juk). In particular, taking a = S (so that ai - n +j =j - i) the
left-hand side of (4) becomes equal to 1, so that A8B = 1 and therefore

det(ipl-jHa,-n+j) =Aa/As

for all a E N". Taking a = A + S, we obtain the first formula. The second (involv.
ing the E's) is then deduced from it and the result of (a) above, exactly as in the
text.)

20. Let R be any commutative ring and let a = (a")" E z be any (doubly infinite)
sequence of elements of R. For each r e Z we define rra to be the sequence whose
nth term is an+r. Let

(xIa)r = (x + a1) ... (x + ar)

for each r > 0.
Now let x = (x1,..., x,,) be a sequence of independent indeterminates over R,

and for each a = (a1,..., a") E N" define

(1) Aa(X I a) = det((x, I a)ai)1ti,jtn

In particular, when a=8=(n-1,n-2,...,1,0), since (x i I a)" -i is a monic
polynomial in xi of degree n -j, it follows that

(2) A8(x I a) = det(x; -j) = as(x)

is the Vandermonde determinant, independent of the sequence a. Since Aa(x I a)
is a skew-symmetric polynomial in x1, ... , x,,, it is therefore divisible by AS(x I a) in
R[x1, ... , x,, ]. As in the text, we may assume that a1 > a2 > ... > a,, > 0, i.e. that
a = A + 8 where A is a partition of length < n. It follows therefore that

(3) sA(x l a) =AA+S(x l a)/AS(x l a)
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is a symmetric (but not homogeneous) polynomial in x1,. .. , x" with coefficients in

R. Moreover it is clear from the definitions that

A,1+a(x I a) = aA+6(x) + lower terms,

and hence that

sA(x I a) = sA(x) + lower terms.

Hence the sA(x I a) form an R-basis of the ring A,, R.
When A = (r) we shall write

h,(xla)-s(,)(xIa) (r>0)

with the usual convention that h,(x a) = 0 if r < 0; and when A = (jr) (0 4 r < n)
we shall write

e,(x I a) = s(,,)(x I a)

with the convention that e,(x I a) = 0 if r < 0 or r > n.

(a) Let t be another indeterminate and let

n

f(t) _ (t - xi).

i-1

Show that

(4)

n

f(t) _ (-1)'e,(x I a)(t I
a)"_'.

r-0

(From (2) above it follows that

f(t) =A6..,(t, x1,...,x,, I a)/A6 (x,,...,x l a);

now expand the determinant A6,+ , along the top row.)

(b) Let E(x I a), H(x I a) be the (infinite) matrices

H(x I a) = (hf_;(x I r1+1a))ijEz'

E(x l a) _ (( -1)i 'ei-i(x l Tia))i ,Ez

Both are upper triangular, with 1's on the diagonal. Show that

E(x l a) =H(x I a)-1.

(We have to show that

(- 1)k iek_1(x I rka)hi-i(x I ri+'a) = sik
1
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for all i, k. This is clear if i > k, so we may assume i < k. Since f (xi) = 0 it follows
from (4) above that

n

L. (- 1)rer(x I a)(xi I On-r
= 0

r- 0

and hence, replacing a by T'_ la and multiplying by (xi 105 -', that

n

(5) , ( -1)rer(X I T5-'a)(xi I a)"-r+s-'
0

r- O

for all s > 0 and 1 < i < n. Now it is clear, by expanding the determinant
A(m)+8(x I a) down the first column, that hm(x I a) is of the form

n

(6) hm(x I a) _ (xi I a)m+n-1u.(x)

i-1

with coefficients ui(x) rational functions of x1,...,x" independent of m. (In fact,
ui(x) = 1/f'(xi).)

From (5) and (6) it follows that

n

F, (-1)rer(x I Ts-'a)hS_r(x I a) = 0
r- O

for each s > 0. Putting s = k - i and replacing a by Ti+1a, we obtain the desired
relation.)

(c) Let A be a partition of length < n. Then

s,A(x I a) = det(hA,.-i+j(x I T1-!a)),

= det(ea;-i+j(x I T!-1a))
,

again in strict analogy with (3.4) and (3.5). (Let a = (a1,..., an) a N". From (6)
above we have

n

ha.-n+j(x I T1-!a) = E (xk I
T'-!a)a,+j-IUk(X)

k-1

n

_ E (xkIa)a.(xkIT'_ia)1-1uk(x)

k-I

which shows that the matrix Ha = (ha,-n+j(x I T1-!a))i,j is the product of the
matrices ((Xk I k and B = ((Xk I T' -ja)j-1 uk(X))k j. On taking determinants it

follows that

det(H,) =Aa det(B).

In particular, when a = S the matrix H8 is unitriangular and hence has determi-
nant equal to 1. It follows that A. det(B) = 1 and hence that det(H,) =A,/A8 for
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all a e=- N. Taking a = A + S, we obtain the first formula. The second formula,
involving the e's, is then deduced from it and the result of (b) above, exactly as in
the text.)

The results of this Example, and their proofs, should be compared with those of
Example 19. It should also be remarked that when a is the zero sequence (a = 0
for all n) then sa(x I a) is the Schur function sa(x).

21. Let R be a commutative ring and let S = R[h,s: r > 1, s E Z], where the hrs are
independent indeterminates over R. Also, for convenience, define hos = 1 and
h,, - 0 for r < 0 and all s E Z. Let cp: S -+ S be the automorphism defined by
Qp(hrs) = hr, s+ i Thus hrs = cps(hr), where hr = hro, and we shall use this notation

henceforth.

For any partition A we define

(1)

where n > 1(,1). These 'Schur functions' include as special cases the symmetric
functions of the last two Examples: in Example 19 we take R = k and specialize hrs
to cpsHr(V), and in Example 20 we specialize hrs to hr(x I Ta).

From (1) it follows that hr = i(r). We define

er = s(,,)

for all r > 0, and set er = 0 for r < 0.

(a) Let E, H be the (infinite) matrices

H=

E ((-1)i-',piei-j);.1EZ'

Both are upper triangular with 1's on the diagonal. Show that

E=H-1.
(We have to show that

(2) sik

for all i, k. This is obvious if i > k, so assume i < k and let r = k - i. Then (2) is
equivalent to

r
E 0

s-o

which follows from er = det((p' -ih1-;+i )i < i, j < r by expanding the determinant
along the top row.)

(b) Deduce from (a) that

f, = det(cpi-'eA;-I+i)
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(c) Let w: S - S be the R-algebra homomorphism that maps rpsh, to cP-re, for all
r, s. Then w is an involution and Usa = 3,1, for all partitions A.

(d) Let A = (a1,..., ar 101 .....Rr) in Frobenius notation 61). Show that with s,A as
defined in (1) we have

s = det(s(o._I

(Copy the proof in Example 9 above.)

22. Let x1,...,xn,ul,...,u,, be independent indeterminates over Z, and let f(t)
(t - xi)...(t - xn). For each r e Z let

n
Hr = E u,xn+r-1/f.(x')

i- 1

and for each sequence a - (all... , ar) a Z', where r < n, let M. denote the n x n
matrix

M.= (u jx
ni+n-j1

where ui j = u, if 1 <j < r, ui j = 1 if j > r, and aj = 0 if j > r. Then let

Sa=a8(x)-ldet(MQ).

Show that

S. = det(Ha,-i+j)1 ci, jcr'

(Multiply the matrix M,, on the left by the matrix whose (i,j) element is
x,'

.

-1/f'(xj) if i < r, and is Sij if i > r.)

23. The ring A,, of symmetric polynomials in n variables x1,. .. , xn is the image
of A under the homomorphism p,, of §2, which maps the formal power series
E(t) = E o e,tr to the polynomial II,""_ 1(1 +xit) of degree n. More generally, we
may specialize E(t) to a rational function of t, say

( ) Ex/,,(t) _ 11(1 +xit)/ (1 +yjt).

(In the language of A-rings, this amounts to considering the difference x - y, where
x has rank m and y has rank n.)

Let x(m) _ (X1,...,xm), y(") = (yl,...,y,,) and let S,(x("')/y(")) (or just s,1(x/y))
denote the image of the Schur function sa under this specialization. From (*) we
have

e,(x(m)/y(n)) = F, ( -1)'ei(x)hj(y)
i+j-r

and the formula (3.5) shows that s,,(x("")/y(")) is a polynomial in the x's and the
y's, symmetric in each set of variables separately.



3. SCHUR FUNCTIONS 59

These polynomials have the following properties:

(1) (homogeneity) sA(x(m)/y(")) is homogeneous of degree IAI.
(2) (restriction) The result of setting xm = 0 (resp. y" = 0) in sA(x(m)/y(")) is
s,,(x(m - u/Y(")) (resp. sA(x(m)/Y(n - 1)).

(3) (cancellation) The result of setting xm =y,, in SA(x(m)/y(")) is
(if m, n Z 1).
(4) (factorization) If the partition A satisfies Am > n 3 Am+1, so that A can be
written in the form A = ((nm) + a) U f3', where a (resp. /3) is a partition of length

m (resp. < n), then

sA(X(m)/Y(")) _ (- 1)1 R(x(m),Y("))SQ(X(m))S$(y("))

where R(x(m), y(")) is the product of the mn factors x; -yj (1 < i < m, 1 < j < n).

It is clear from the definition that the sA satisfy (1), (2), and (3), and it may be
shown directly that they satisfy (4) (see the notes and references at the end of this
section). We shall not stop to give a direct proof here, because this property (4) will
be a consequence of the results of this Example and the next.

Moreover, these four properties characterize the sA(x/y). More precisely, let
Am,n(aAm ®A") denote the ring Z[xl,...,X,,yl,..., y"]S_"s. of polynomials in
the x's and y's that are symmetric in each set of variables separately, and suppose
that we are given polynomials sa (x(m)/y(")) a Am,,, for each partition A and each
pair of non-negative integers m,n, satisfying the conditions (1*)-(4*) obtained
from (1)-(4) by replacing sA by s,* throughout. Then sa (x(m)/y(n)) = sA(x(m)/y(n))

for all A, m, n.

(a) First of all, when n = 0 it follows from (4*) that

(5) SA* (x(m)/Q) = SA(X(m))

for partitions A of length < m, and likewise when n = 0 that

(5') SA (0/y(")) _ (- 1)111SA(y(n))

for partitions A of length < n.

(b) Next, let Am/n denote the subring of Am,,, consisting of the polynomials f in
which the result of setting xm - y,, = t is independent of t. It follows from (3*) that
SA (x(m)/Y(n)) a Amen.

Let Fm,n be the set of lattice points (i, j) a Z2 such that i 3 1, j 1 and either
i < m or j < n. We shall show that

(6) the sa (x(m)/y(")) such that A e I'm,n span Am/n .

This is true when m = 0 or n = 0, by (5) and (5') above. Assume then that
m, n > 1 and that (6) is true for m - 1, n - 1. Let f e Am1n and let fo =f 1XT _y._o,
so that fo e Am - n -1 and therefore is of the form

fo= E aAsA (x(m-1)/Y(m-1))

A
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summed over partitions A c r,,, _ 1, n -1, with coefficients aA E Z. Let

(7) g =f - E aASA (X(m)/Y(n))
A

Then g E Am/n, so that gl X,,_y, =g1 Xm_y,_o = 0. Consequently g is divisible in
Am, n by xm - yn and hence (by symmetry) by R(x(m), y(n)): say g = Rh where
h e Am,n. By writing h in the form

h = E ba,asn(x(m))Sp(y(n))
a,9

summed over partitions a, /3 such that 1(a) < m and 1(/3) < n, it follows from (4*)
that g = Rh is a linear combination of the sµ*(x(m), y(n)) such that (am) c µ c rm n

In view of (7) above, this establishes (6).

(c) Now let A be any partition. In order to show that s, (x(m)/y(n))=SA(x(m)/y(n))
we may, by virtue of (2) and (2*), assume that m and n are large, and in particular
that m >I Al. Since SA(x(m)/y(n)) E Amen by (3), it follows from (6) above that we
may write

(8) SA(X(m)/Y(n)) _ cµSµ*(x(m)/Y(n))

where (by (1) and (1*)) the sum is over partitions µ such that I µI = I AI and hence
1(µ) < m (since l Al < m). If we now set yl = ... = y = 0 in (8), we obtain

SA(X(m)) = E c"Ss(x(m))
W

by virtue of (2), (2*), and (5). Hence c}, = SAµ and finally SA = sa .

24. (a) Let x = (xl,... , xm), y = (y1..... Yn) If A is any partition let

fA(x,Y) = fl (xi - yj)
(i,j)EA

with the understanding that xi = 0 if i > m, and yj = 0 if j > n. Also let

A(x) _ fl (1 -x7'xj), A(y) = fT (1-y, lyj).
i4i<j-4m 14i<j4n

Then we have

(1) SA(x/Y) = E w(fA(x, y)/A(x) A(y)).
weSmXS

In this formula, Sm permutes the x's and S. permutes the y's.
(Let sa (x/y) denote the right-hand side of (1). We have

(2) s,*k (x/y)=aa.(x)-laa(y)-1 E e(w).w(xamya"fA(x,y))

from which it is clear that sa E A,n,n, in the notation of Example 23, and it is
enough to verify that s*, has the properties (1*)-(4*), loc. cit. Of these, all but the
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cancellation property (3*) are obviously satisfied. As to (3*), let V(u) _
SA(x/y)1 which is a polynomial in u of degree say d. It will be enough to
show that 9(u) _ (p(0), i.e. that d = 0. If w E Sm X S, let w-1(xm) =x1 and

W_ 1(y,) =yp If (i, j) cA, then x,,, -y,, = w(xi -y,) is a factor of wfA(x, y), which
therefore vanishes when xm = y = u. Hence p(u) is a sum over those w E Sm X S
such that (i, j) a A, that is to say i > A, and j > A. For such a permutation w, the
degree in u of w(xsmys^fA(x,y))Ixm_y,_ is

m-i+n-j+Ai+Ai<m+n-2;

on the other hand, the degree in u of as (x)a8 (y)Ix._y,_ is (m -1) + (n - 1) =
,n + n - 2. It now follows from (2) that I= 0, as required.)

(b) When n = 0, we have fA(x, y) = x A, and the formula (1) reduces to the
definition (3.1) of sA(x). Next, when m = 0, it follows from the definition (Example
23) that sA(x/y) becomes (- 1)l Al wsx(y). On the other hand, fA(x, y) becomes
(-1)IA1y"', so that the formula (1) in the case m = 0 reduces to (3.8). Finally, as we
have already remarked, the factorization property (4) of Example 23 is an immedi-
ate consequence of (1), and so is the fact that sA(x/y) = 0 unless A c

(c) The sA(x/y) such that A clm,,, form a Z-basis of the ring Am/ defined in
Example 23(b). (It follows from Example 23 that the sA(x/y) such that A c Fm.,,
span Amy,,, and it remains to be shown that they are linearly independent. This is
clearly true if m = 0 or n = 0, by (3.2) and (3.8). Hence we may assume m > 1 and
n > 1 and the result true when either m is replaced by m - 1, or n by n - 1.
Suppose then that

F1aASA(x1y) = 0
A

where the sum is over partitions A c Fm ,,. By setting xm = 0 (resp. y = 0) we see
that aA = 0 for A c r. _ 1.,, (resp. A c I'm.,, Since I'm,,, is the union of F.
and Fm,_ 1, it follows that aA = 0 for all A as required.)

Notes and references

Schur functions, despite their name, were first considered by Jacobi [J3], as
quotients of skew-symmetric polynomials by the polynomial as, just as we
have introduced them. Their relevance to the representation theory of the
symmetric groups and the general linear groups, which we shall describe
later, was discovered by Schur [S4] much later. The identity (3.4) which
expresses sA in terms of the h's is due originally to Jacobi (loc. cit.), and is
often called the Jacobi-Trudi identity.

The results of Examples 1-4 may be found in Littlewood [L9], Chapter
VII, which gives other results of the same sort. The formula in Example 8
for the product of two Schur functions as a determinant in the h's is
essentially due to Jacobi (loc. cit.), though rediscovered since. The result of
Example 9 is due to Giambelli [G8]. Example 10 is due to A. Lascoux [Ll].
The proof of the law of quadratic reciprocity sketched in Example 17 is
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essentially Eisenstein's proof (see Serre [S13], Chapter I). The presentation
here is due to V. G. Kac [K1].

For Examples 18-21 see [M8]. For Examples 23 and 24, and the history
of the Sergeev-Pragacz formula (i.e., formula (1) of Example 24), see [P3],
also [P2] and [S27]. Other proofs of this formula, in the context of Schubert
polynomials, are due to A. Lascoux (see for example [M7]). The factoriza-
tion property (4) in Example 23 (which is a special case of the
Sergeev-Pragacz formula) is due to Berele and Regev [B2].

4. Orthogonality

Let x = (x x2, ...) and y = (y1, y2, ...) be two finite or infinite sequences
of independent variables. We shall denote the symmetric functions of the
x's by sa(x), pA(x), etc., and the symmetric functions of the y's by
sA(y), pp(y), etc.

We shall give three series expansions for the product

fl(1-xiyr)-i

i.i

The first of these is

(4.1) J(1-x;y1)-' _ za lpk(x)pA(y)

summed over all partitions A.

This follows from (2.14), applied to the set of variables x; yi.

Next we have

(4.2) fl (1-x,yi)-' = FhA(x)mA(y) = FmA(x)hA(y)
i.1 A A

summed over all partitions A.

Proof. We have fI(1-x;y1)-' _ fIH(y1)
'.1 1

00

_ r hr(x)yj
I r-0

_ h,,(x)y
a

_ hA(x)mA(y)
A
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where a runs through all sequences (al, a2, ...) of non-negative integers
such that E ai < x, and A runs through all partitions.

I

The third identity is

(4.3) II (1-x;y;)-1= sa(x)sa(y)
i,i

swnmed over all partitions A.

proof. This is a consequence of (4.2) and (3.7'). Let x = (x1, ... , x"),
y (yl, ... , y") be two finite sets of variables, and as usual let S = (n - 1,
n - 2,, .. , 0). Then from (4.2) we have

n

(4.4) aa(x)as(y) [1 (1-xiyj)-1 =as(x) E h"(x)e(W)ya+Wa

id-1 ",w

summed over a E N" and w E S" ,

=aa(x) E e(w)hP-Wa(x)ya
s,w

_ a,, (x)ya

by (3.7'). Since aws= e(w)ap, it follows that this last sum is equal to
Ea,y(x)a,(y) summed over yl > y2 > ... > y" > 0, i.e. to

E aA+a(x)aA+a(y),
A

summed over partitions A of length < n. This proves (4.3) in the case of n
variables xi and n variables yi; now let n - - as usual. I

We now define a scalar product on A, i.e. a Z-valued bilinear form
(u,v), by requiring that the bases (hA) and (mA) should be dual to each
other:

(4.5) (hA, mµ) = SAH

for all partitions A, µ, where SAµ is the Kronecker delta.

(4.6) For each n > 0, let (uA), (VA) be Q-bases of AQ, indexed by the
partitions of n. Then the following conditions are equivalent:

(a) (uA, vµ) = SAµ for all A, µ;

(b) EA uA(x)vA(y) = IIi.i(1-xiy;)-1.
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Proof Let

UA = E aAPhp, vµ = E bµomo.
P v

Then

(uA, vp) = L. aAP bb,P
P

so that (a) is equivalent to

(a') E aApbµp = 5A/c
P

Also (b) is equivalent to the identity

E, UA(X)vV(y) = E h4(X)mp(y)
A p

by (4.2), hence is equivalent to

(b) aApbAQ= 8pv.
A

Since (a') and (b') are equivalent, so are (a) and (b).

From (4.6) and (4.1) it follows that

(4.7) <PA,PP) = 8AµZA

so that the pA form an orthogonal basis of AQ. Likewise from (4.6) and
(4.3) we have

(4.8) <SA, Sµ) = 8A,,

so that the sA form an orthonormal basis of A, and the sA such that I Al = n
form an orthonormal basis of V. Any other orthonormal basis of A" must
therefore be obtained from the basis (sA) by transformation by an orthogo-
nal integer matrix. The only such matrices are signed permutation matri-
ces, and therefore (4.8) characterizes the 5A, up to order and sign.

Also from (4.7) or (4.8) we see that

(4.9) The bilinear form <u, v) is symmetric and positive definite.

(4.10) The involution w is an isometry, i. e. < w u, w v) _ (u, v ).

Proof From (2.13) we have w(pA) = ±PA, hence by (4.7)

(w(pA), w(pµ)) = (p, p"')

which proves (4.10), since the pA form a Q-basis of A. (2.12).
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Finally, from (4.10) and (4.5) we have

(eA,fµ) = SAµ

where fµ = u)(mµ), i.e. (e,,) and (f) are dual bases of A.

Remarks. 1. By applying the involution a to the symmetric functions of
the x variables we obtain from (4.1), (4.2), and (4.3) three series expan-
sions for the product 17,,x(1 +x,y,), namely

(4.1') fl (1 +x;y;) = E EAZa'PA(x)PA(y),
i.1 A

(4.2') jI (1 +x,y;) _ mA(x)eA(y) _ eA(x)mA(y),
i,i A A

(4.3') fl (i +xtyt) _ E sA(x)sA.(y),
+,i A

the last by virtue of (3.8).

2. If x, y are elements of a A-ring R, we have

Qt(xy) = E ZA'1'/A(x)1'/A(y)tjAj
A

_ sA(x)sA(y)tIAI
A

from (4.1) and (4.3), and

Al(xy) _ 2 PAZA'II1A(x)I41A(y)tIAl
A

sA(x)sA'(y)tIAl
A

from (4.1') and (4.3').

Examples

1. If we take yi = ... =yn = t, Yn+1 =Yn+2 = = 0 in (4.3'), we obtain

E(t)n=
A

= E (n)s,(X)t,Al

A

in the notation of §3, Example 4.
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The coefficients of the powers of t on each side are polynomials in n (with
coefficients in A) which are equal for all positive integral values of n, and hence
identically equal. Consequently we have

}
E(t)X = E ASAtIAI

for all X. By replacing X, t by -X, -t we obtain

H(t)X= E(j)sAtA'.

These identities generalize the binomial theorem.
2. Let yi = qi-1 for 1 < i ' n, and yi = 0 for i > n. From (4.3') we obtain

n n
TT E(qi-1) = E qn(A') f sA

it-lI A L

in the notation of §3, Example 1. Likewise, from (4.3),

i-l A

n n

f[ H(q[-1) = E qn(A) A, SA

In these formulas we may let n -> - and obtain

1F1

q n')
(1+x,q'-')= E sA(x),

i,j>I A HA(q)

1
qn(A)

i 1

where HA(q) = l1 E A(1- qh(x)) is the hook-length polynomial corresponding to
the partition A.
3. Let y1= ... =yn = t//n1 ,

+ -
yn+I =Yn+2 = = 0, and then let n - 00. We have

xit
exp(xit) = exp(eIt)

n i[ \

and

nl

(n)
-- fl h(x)-'=h(A)-I

IAI xEA

where h(A) is the product of the hook-lengths of A. Hence from (4.3') we obtain

s
exp(e1t) = E

h(A)
tlAl

and therefore
n!

e1
IA n N(A)SA



4. ORTHOGONALITY 67

or equivalently

(ei,sA) =n!/h(A).

4. From (2.14') and (4.7) we have

(hn,pA) = 1

for all partitions A of n. Dually,

(en,pA) = eA

M n

5. II fl (xi +y1) = E sA(x)sA'(y)
i-1 f-I A

summed over all partitions A = (A1, ... , Am) such that Al < n (i.e. A c (am)), where
_ (m - A',,,..., m - Al). (Replace yi by y, ' in (4.3'), and clear of fractions.)
Hence from §3, Example 10 we have

m n-7 -7

1 1 1 1 (1 +x, +y) = E dAµ,ss(X)sa.(y)
i-1 1-1 A,µ

summed over pairs of partitions A, µ such that µ c A c (nn'). (This formula gives
the Chern classes of a tensor product E ® F of vector bundles, since if c(E) =
1-1(1 +xi) and c(F) = II(1 + yj) are the total Chern classes of E and F, we have
c(E ® F) = II(1 +xi +yi).)

6. Let A = det((1-x.y;)-1)1,,

i, j,, n (Cauchy's determinant). Then

n

A=aa(x)as(y) (1-x;y;)-'.
i,j-1

For if we multiply each element of the ith row of the matrix ((1 -xiy)-) by
IIj_1(1-xiy), we shall obtain a matrix D whose (i, j) element is

Jl

[(1-xiyr)= E x7 -k (-1)n-ke(nj)k(y)
r"j k-1

in the notation of (3.6). This shows that D =A8(x)M(y), so that det(D) =
aa(x)a8(y). On the other hand, it is clear from the definition of D that det(D)
o.II(1-xiy).

Since also

A = det(l +xiyj +x?y? +...)

_ E det(xi°iy°i)
a

F, aa(x)ya
a
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the summation being over all a = (a1,..., a") E N", it follows that

A _ F, aA+s(x)aA+8(y)
A

summed over all partitions A of length 5 n. Hence we have another proof of (4.3).

7. Likewise the identity (4.3') can be proved directly, without recourse to duality.
Consider the Vandermonde determinant as(x, y) in 2n variables
x1, ... , x,, y1, ... , y"; on the one hand, this is equal to as(x)as(y)II(xi - yj); on the
other hand, expanding the determinant by Laplace's rule, we see that it is equal to

(1) E (- 1)e(µ)a,(x)a,,(y),
FL

summed over µ E N" such that 2n -1 > µ1 > µ2 > ... > µ" > 0, where µ is the
strictly decreasing sequence consisting of the integers in [0, 2n - 1] not equal to any
of the µi, and e(µ) = E (2n - i - µi). By writing µ = A + S and using (1.7), we see
that (1) is equal to

(-1)n(y1...y")2n-1 E aA+s(x)aA-+s(-y-1)

A

summed over all partitions A such that 1(A) < n and 1(A') < n. If we now replace
each yi by y,7-', we obtain (4.3').

8. Let M be a module over a commutative ring A, and let cp: M X M -A be an
A-bilinear form on M. The standard extension of cp to the symmetric algebra S(M)
is the bilinear form defined on each S"(M) by

in
-r(U,v) = ,, II P(ui,vW(i))

WES i-1

where u = u1... u", v = v1... v" and the ui, vj are elements of M. In other words,
c(u, v) is the permanent of the n X n matrix (9(ui, v1)).

In particular, let A = Q and let M be the Q-vector space with basis p1, P2, . ,

so that S(M) = Q[ p1, p2, ... ] = AQ. Define (p(pr, p) = rS,s for all r, s > 1. Then
the scalar product (4.5) on AQ is the standard extension of cp.

9. Let C(x, y) = [J(1 -xiyj)-'. Then for all f E A we have
i.)

(C(x,y),f(x)) =f(y)
where the scalar product is taken in the x variables. (By linearity, it is enough to
prove this when f = s, and then it follows from (4.3) and (4.8).)

In other words, C(x, y) is a `reproducing kernel' for the scalar product.

10. Let p( ,') = EmA summed over partitions A of n of length r, as in §2, Example
19. Show that

p(r) - L b+r- 1 b
n (-1) r-1)s(a'1'),a+ban
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(Under the specialization h, --* X for all r > 1, the Jacobi-Trudi formula (3.4)
shows that sA -+ 0 if A2 > 1, that is to say if A is not a hook; and if A = (a, 1b) it is
easily shown that sA _ X(X - 1)b. Hence from the identity ((4.2), (4.3))

F1m,k(x)h1(Y) = E sa(x)sa(y)

we obtain

F1m)(x)X<(a) _ E spa lb)(x)X(X -1)b
a,b>0

from which the result follows.)

11. (a) Let A be a partition of n. Show that when mA is expressed as a polynomial
in P1, ... , p,,, the coefficient of p is non-zero. (The coefficient in question is
n-I (p,,, mi), which is also the coefficient of h in n-'p expressed as a polyno-
mial in the h's, and is given explicitly in §2, Example 20.)

(b) For each integer r > 1 let u, be a monomial symmetric function of degree r (i.e.
u, = ma for some partition A of r). Show that the u, are algebraically independent
over Q and that AQ = Q[ ul, u2.... ]. (From (a) above we have u, = c, p, +
a polynomial in pl, ... , p,_ 1, where c,.00. This shows by induction on r that
Q[ul, ... , u, ] = Q[ p 1, ... , p, ] for each r>1. Hence for each m1 the monomials
of degree m in the u variables span AQ, and are therefore linearly independent
over Q.)

Notes and references

The scalar product on A was apparently first introduced by Redfield [R1]
and later popularized by P. Hall [H3]. Example 5 is due to A. Lascoux [Ll],
and Example 11 to D. G. Mead [M10].

5. Skew Schur functions

Any symmetric function f E A is uniquely determined by its scalar prod-
ucts with the sA: namely

f= Ec(f,sA)sA
A

since the sA form an orthonormal basis of A (4.8).
Let A, µ be partitions, and define a symmetric function slµ by the

relations

(5.1) (sA/", S') = <S"S"Sy)
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for all partitions v. The sA/µ are called skew Schur functions. Equivalently,
if cµ are the integers defined by

(5.2) sµs _ C., s,
A

then we have

5,,.(5.3) sA/w = CµA

In particular, it is clear that sA 0 = sA, where 0 denotes the zero partition.
Also cµ = 0 unless I Al = I Al + (v 1, so that sA/µ is homogeneous of degree
Al - I l, and is zero if I Al < I µl. (We shall see shortly that sA/µ = 0 unless

AZ) A.)
Now let x = (x1, x2,...) and y = (y11 y2, ...) be two sets of variables.

Then

sA/µ(x)S)(y) _ cµvsv(x)sA(y)
A A, V

_ E s,(x)s,LL(y)s,(y)
Y

by (5.2) and (5.3), and therefore

E SA/µ(x)SA(y) =s,(y) E hv(x)mv(y)
A v

by (4.2) and (4.3). Now suppose that y = (y1, ..., y"), so that the sums
above are restricted to partitions A and v of length < n. Then the
previous equation can be rewritten in the form

F,sA/µ(x)aA+s(y) _ E
A

_ E ha(x) E e(w)ya+W(µ+a)
a WES,,

summed over a e N". Hence sA/µ(x) is equal to the coefficient of yA+B in
this sum, i.e. we have

SA/µ = e(W){IA+E-w(µ+b)
WES

with the usual convention that ha = 0 if any component ai of a is
negative. This formula can also be written as a determinant

(5.4) SA/w = det(hA,-µi-i+J)1<i,i<n

where n > 1(A).
When µ = 0, (5.4) becomes (3.4).
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From (5.4) and (2.9) we have also

(5.5) SA/A = det(eA _,4/-i+j)l',i,j',m

where m > l(A'), and therefore

(5.6) W (SA/,,) = Sa,/µ,.

From (5.4) it follows that s,,/µ = 0 unless Ai > µ; for all i, i.e. unless
3 pt. For if A, < µ, f o r some r, we have Ai < A, < µ, < µ j f o r 1 < j < r < i
n, and therefore Ai - µj - i + j < 0 for this range of values of (i, j).

Consequently the matrix (hA, _µ'_i+j) has an (n - r + 1) X r block of zeros
in the bottom left-hand corner, and therefore its determinant vanishes.

The same considerations show that if A i µ and it,. > ,l,+I for some

r<n, the matrix (ha,_µ,_j+j) is of the form I 0 B), where A has r rows
and columns, and B has n - r rows and columns, so that its determinant is
equal to det(A) det(B). Hence if the skew diagram A - µ consists of two
disjoint pieces 0, p (each of which is a skew diagram), then we have
SA/A = se . sc. To summarize:

(5.7) The skew Schur function sa/µ is zero unless d 3 µ, in which case it
depends only on the skew diagram A - A. If 0. are the components (§1) of
A-µ, we have sa/µ= II se,. I

If the number of variables x; is finite, we can say more:

(5.8) We have sa/µ(xt, ... , xn) = 0 unless 0 < Xi - µ, < n for all i > 1.

Proof. Suppose that ,l; - µ, > n for some r > 1. Since en+2 = _
0, it follows as above that the matrix (eA _ ,_i+j) has a rectangular block of
zeros in the top right-hand corner, with one vertex of the rectangle on the
main diagonal, hence its determinant vanishes.

Now let x = (xl, x2, ... ), Y = (Yl, Y2, ... ), z = (zt, z2, ...) be three sets of
independent variables. Then by (5.2) we have

(a) E s,/µ(x)sa(z)sN,(y) = E s,(y)sN,(z). [1
(1-xizk)-I

A, A µ i, k

which by (4.3) is equal to

fl(1 -xizk)-I 'F1 (1 -yjZk)
i, k j, k

and therefore also equal to

(b) E sa(x,Y)5A(z)
A



72 I SYMMETRIC FUNCTIONS

where sA(x, y) denotes the Schur function corresponding to A in the set of
variables (x1, x2, ... , yl, yz, ... ). From the equality of (a) and (b) we con-
clude that

sA(x, y) _ SA/µ(x)sµ(y)

(5.9)
= L cµvSµ(y)sjx).

A,v

More generally, we have

(5.10) SA/µ(X, Y) _ ESA/y(X)SV/µ(y)
V

summed over partitions v such that A D v J A.

Proof. From (5.9) we have

E sA/µ(x,y)s,,,(z) =sA(x,y,z)
µ

z)

µ,v

by (5.9) again; now equate the coefficients of sµ,(z) at either end of this
chain of equalities. I

The formula (5.10) may clearly be generalized, as follows. Let x(1), ... , x(n)

be n sets of variables, and let A, p, be partitions. Then

(5.11) SA/µ(X(1),... , X(n)) = E
n

F1 Sv(i)/ P- o(X(`)
(v) i-1

summed over all sequences (v) = (v(0), v(1),...,(n)) of partitions, such that
V(0) =A, v(n) _ A, and V(0) C 0) C ... C (n).

We shall apply (5.11) in the case where each set of variables x(') consists
of a single variable x;. For a single x, it follows from (5.8) that sA/ (x) = 0
unless A - µ is a horizontal strip (§1), in which case s,/,(x) Hence
each of the products in the sum on the right-hand side of (5.11) is a
monomial xi) ... x," where a t = Iv(`) - v('-1)j, and hence we have
sA/µ(x1,...,xn) expressed as a sum of monomials xa, one for each tableau
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(§1) T of shape A - A. If the weight of T is a = (al,...) an), we shall write
XT for x a. Then:

T
(5.12) SA/, = x

T

summed over all tableaux T of shape A - µ.

For each partition v such that I v I = I A - Al, let KA- µ, v denote the
number of tableaux of shape A - µ and weight v. From (5.12) we have

(5.13) SA/" _ KA- m,,

and therefore

(5.14) KA-µ,V = <SA/µ, h,,) _ (sA, sµh,,)

so that

(5.15) sµhv- E KA-µ,VSA.
A

In particular, suppose that v = (r), a partition with only one non-zero part.
Then KA_µ,,(,) is 1 or 0 according as A - µ is or is not a horizontal r-strip,
and therefore from (5.15) we have

(5.16) (Pieri's formula) sµh, _ sA

A

summed over all partitions A such that A - µ is a horizontal r-strip.

By applying the involution w to (5.16), we obtain

(5.17) S,. e, _ E sA
A

summed over all partitions A such that A - µ is a vertical r-strip.

Remarks. 1. It is easy to give a direct proof of (5.17). Consider (for a finite
set of variables x1,.. . , x,,) the product

aµ+ser- E E(W)xw(A+S)FIX a

wES a

F, aµ+a+b
a

where the sum is over all a E N" such that each ai is 0 or 1, and E a1 = r.
For each such a, the sequence

µ+a+S=(µl+a,+n-l,µ2+a2+n-2,...,µn+an)
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is in descending order, so that we have only to reject those a for which
two consecutive terms are equal. We are then left with those a for which
A = µ + a is a partition, i.e. such that A - µ is a vertical r-strip. This
proves (5.17), hence also (5.16) by duality. We can now play back the rest
of the argument: (5.16) implies (5.15) by induction on the length of v,
hence (5.14), which in turn is merely a restatement of (5.13).

2. Proposition (5.12) is the origin of the application of Schur functions to
enumeration of plane partitions (see the examples at the end of this
section). For this reason, combinatorialists often prefer to take (5.12) as
the definition of Schur functions (see e.g. Stanley [S23]). This approach has
the advantage of starting directly with a simple explicit definition, but it is
not clear a priori why one should be led to make such a definition in the
first place.

3. In any A-ring we can define operations SA/µ by the formula (5.3):

S A/µ - E c A S

Then (5.9), for example, takes the form of an addition theorem:

SA(x+y) = E SA/µ(x)Sµ(y)
µ

for any two elements x, y of a A-ring. Similarly for the other formulas in
this section.

4. The formula (5.4) shows that the skew Schur functions sA/µ(x), where A
and µ are partitions of length < p, are the p X p minors of the matrix
Hx = (hi-i(x)), i.e. they are the entries in the pth exterior power A (HY).
The relation (5.10) is therefore equivalent to

/"(HX.y) _ AP (H,) AP (HY).

Thus it is a consequence of the functoriality of A", since Hx, Y = HXHy.

Examples

1. Let A - µ be a horizontal strip. Then s/,, = h,, = where the integers
v, are the lengths of the components of the strip. (Use (5.7).) Likewise, if A - µ is
a vertical strip, we have sA/µ = where again the v; are the lengths of the
components of the strip.

2. (a) Let A be a partition of n. Then the number of standard tableaux of shape A
is

by (5.14). By §4, Example 3 it follows that the number of standard tableaux of
shape A is equal to n!/h(A), where h(A) is the product of the hook-lengths of A.
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This result is true more generally if A is a skew diagram all of whose connected
components are right diagrams (i.e. diagrams of partitions).

(b) Let p be a positive integer and let A be a partition, A its p-core (§1, Example
8). A p-tableau of shape A - A is a sequence of partitions

A=eCtP)C ... CAPO) =A

such that µt`t - L i-') is a border strip of length e, for 1 < i < m. (Thus when
p =1, a p-tableau is just a standard tableau (and A = 0); when p = 2, it is also
called a domino tableau.)

Let A* be the p-quotient of A, thought of as a skew diagram with components
A(') (0 < i <p - 1), and let h(A*) = IIh(AM) be the product of the hook-lengths of
A. From §1, Example 8 it follows that the p-tableaux of shape A - A are in
one-one correspondence with the standard tableaux of shape A*, and hence by (a)
above the number of p-tableaux of shape A - A is equal to m!/h(A*), where
m - I Al. This number is also equal to p 'm! /h p(A), where hpp(A) is the product of
the hook-lengths of A that are divisible by p (§1, Example 8ld)).

3. For each symmetric function f s A, let f1: A - A be the adjoint of multiplica-
tion by f, i.e.

(f1u,v) = (u,fv)

for all u, v E A. Then f - fl : A -+ End(A) is a ring homomorphism.

(a) Since (sµ SA, s S,,) _ (sA,µ, s,,) for all partitions A, µ, v, it follows that
s,SA = sAlµ,. Hence from (5.9) we have

SA(X,y)= ES

and therefore, for any f s A,

f(X, y) Sµ f(x) . Ss(Y)

(b) We have ht m,, = 0 unless µ = A U v for some partition v, and in that case
ham,, - m,,. For

(mµ,hAh,.) = (mµ,hA,,,,)

which is zero unless µ - A U P.
In particular, h' mµ = 0 if n is not a part of µ, and h' m,, = m,, if n is a part of

µ, where v is the partition obtained by removing one part n from µ. It follows that
for every A X0, x1, x2, ...) e A, Xxl,... , is the coefficient of xo in f.

(c) Next consider p.1. If N > n we have

(p,, hN,pA) = (hN,pnpA) = (hN-n,pA)
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for all partitions A of N - n, by §4, Example 4. Hence

P hN = hN-n

and therefore

Pn = . h, 8/ahn+r

ra0

acting on symmetric functions expressed as polynomials in the h's.
Dually

Pn = (-1)n-I F, er a/aen
r> 0

acting on symmetric functions expressed as polynomials in the e's.
Further, we have (pnpa, pµ) = (PA, pnP,,)' which is zero if A * µ U (n), and is

equal to za if A= µ U (n). It follows that p,1pa =z,Azµ 1p,, if n is a part of A, and µ
is the partition obtained by removing one part n from A. From the definition of zA
it follows that zxzµ 1 = n. mn(A), where mn(A) is the multiplicity of n as a part of
A, and therefore

Pn = n a/apn

acting on symmetric functions expressed as polynomials in the p's. In particular,
each pn is a derivation of A.

Since each f r= A can be expressed as a polynomial (p(p1, P2.... ) with rational
coefficients, it follows that

fl = w (a/ap 1, 2'9/ape .... )

is a linear differential operator with constant coefficients.

'(d) For each n E Z, let irn: A -i A be the operator defined as follows: if n 3 1, IT,, is

multiplication by p,,; if n 4 -1, then irn =p 1n ; and 9r0 is the identity. Then we
have

[?rm, 1rn] = nsm+n,01T0

for all m, n E Z, so that the linear span of the am is a Heisenberg Lie algebra.

4. We have

L ss = fl (1 -xi)-' fl (1 -xix.)-1,
A i i<j

where the sum on the left is over all partitions A.
It is enough to prove this for a finite set of variables x1, ... , X. Let P(x1, ... , xn)

denote Ea xn), which is now a sum over partitions A of length < n. By
induction on n, it is enough to show that

n

(D(x1,...,xn,y) _
(D(xl,...,xn)(1-y)-,

fl (i -x;y)-'.
i-1
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From (5.9) it follows that

O(x1,...,xn,Y) = L YIA-µlS,,(x,,...,xn)

A, µ

77

where the sum on the right is over all pairs of partitions A 0 µ such that 1(µ) < n
and A - µ is a horizontal strip. For each such pair A, µ, define v C µ by
Ai - v1= A.+ i - µi+ 1 U> 1), so that IA - µI = Al - µl + I µ - P1. Then A can be
reconstructed from µ, v, and the integer A, - µl, and hence

(*) ylµ-vl(1 -y)-'Sµ(x,,...,xn),

the sum on the right being over pairs of partitions µ 0 v such that 1( µ) < n and
µ - v is a horizontal strip. By (5.16), the right-hand side of (*) is equal to

, yr(1 - y) -'hr(x, .... ) xn )
v,r

summed over all partitions v of length < n, and all integers r > 0; and this last
sum is equal to (1 -y)-1 I1;_,(1-x,y)-1c(x,,...,xn), as required.

5. (a) We have

F, sµ = fl (1-x?)-' fl (1-xixi)-',
,u even i i<j

where the sum on the left is over all even partitions µ (i.e. with all parts µi even).
Each partition A can be reduced to an even partition µ by removing a vertical

strip, in exactly one way: we take ,u, = A. if A. is even, and µ, = A1- 1 if A, is odd.
From this observation and (5.17) it follows that

Sµ) ( E er) _F, SACµeven r>O A

the sum on the right being over all partitions A. Since E er =11(1 + x,), the
now follows from Example 4.

(b) We have

F, Sv= [j(1-xixj)-'.
v'even 1<J

result

The proof is dual to that of (a): each partition A can be reduced to one with even
columns by removing a horizontal strip, in exactly one way. From this observation
and (5.16) it follows that

( Sv E hr F, SA,
v' even r> O A

and since Er> 0 hr =11(1-xi)-1, the result again follows from Example 4.
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The involution w interchanges the identities in (a) and (b).
6. We have

£,(-1)n(A)sA= 11(1
-x;)-111(1+x;x1)-1.

A i i<j

For if we replace each variable x; by . x, in Example 5(b), we shall obtain

fl (1 +x;xj)-1 = E( -1)I"112s
i<j v

summed over partitions v with all columns of even length. Each partition A is
obtained uniquely from such a partition v by adjoining a horizontal strip, and
therefore

(1 -X;)-1 fJ (1 +xixj)_ 1 = F, E (-1)I 'V zsvhr
i i<j r>O v

_ E 1)I(11sA
A

where

()moiz
f(A) = Ei> 1[zA;] (and [x] is the greatest integer 5 x). Since

L 21
, i t follows from (1.6) that f(A) = n(A) (mod2).

7. The same argument as in Example 5(b) shows that

E t`(A)sA = [] (1 -1x;)-1 [1 (1 -xix)_1
A i i<j

where the sum is over all partitions A, and c(A) is the number of columns of odd
length in A. This includes the identities of Example 4 (when t = 1) and Example
5(b) (when t = 0).
8. By applying the involution w to Example 7 we obtain

tr(A)sA
-7j'7j

1 + tx;
7j'"J

1

( 1 -X? ,<j 1 -XiXj

where the sum is over all partitions A, and r(A) is the number of rows of odd
length in A. When t = 1 this reduces to Example 4, and when I = 0 it reduces to
Example 5(a).
9. The products

fl (1-x;x), fl (1-x;) [f (1 -xixj), (1-x?) fl (1-x;x).
i<j i i<j i 1<j

(i.e. the reciprocals of those of Examples 4, 5(a) and 5(b)) can also be expanded as
series of Schur functions. The expansions may be derived from Weyl's identity for
the root-systems of types D, B,,, C,, respectively. (If R is a root system with Weyl
group W, R+ a system of positive roots, p half the sum of the positive roots, then
Weyl's identity ([B8], p. 185) is

(+) E e(w)e' = 1-1 (e"12 - e-"/2)

wEw "E/i+
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Where 6(w) is the sign of w e W, and the e's are formal exponentials.)

(a) When R is of type D", the identity (*) leads to

( -1)1"V2s"(x1, ..., x") _ [1 (1 -xixj)
" i<i

summed over all partitions it = (a1 - 1, ... , ap - 1 a1, ... , ap) in Frobenius nota-
tion, where a1 6 n - 1.

(b) When R is of type C,,, we obtain from (* )

E (-1)I PV2s,,(x1,..., x") = HO -x?) fI (1-xixi)
P i i<j

summed over all partitions p = (a1 + 1,..., ap + 1 i a1,..., ap), where a1 <n - 1.
(c) When R is of type B,,, we obtain from (* )

( - 1)(Io1+P(v))/2So(x1, ... , X") _ [1 (1 -Xi) [1 (1 -xixj)
o i i<j

summed over all self-conjugate partitions o =(a,,..., aP I a1,..., aP) such that
a1 e. n -1, where p(o)=p.
10. In the language of A-rings, the identities of Examples 5(a), 5(b), and 9 give
series expansions (in terms of Schur operations) for o( 0-t(A2(x)), A,(v2(x)),

and A,(A2(x)), namely

o,(o 2(X)) = E S,,(X)tlµl/2r
A even

o,(A2(x)) = E S°(x)tlvl/2,
even

A,(o 2(x)) = S"(X)t1P112,
P

A,(A2(x)) = S"(x)tl"I/2,

the last two summations being over partitions p = (a1 + 1,..., aP + 1 I al) ..., a,,)
and a=(al-1,...,ap-11 a1,...,ap).
11. Let x1(N)tl.,,= ... =XN = t, XN+1 =XN+2 = ... = 0 in the formula of Example 4.

Then sA = (§3, Example 4) and hence, for each n > 0,

1AI-n

= coefficient of t" in (1 -t)-N(N+1)/2(1 +t)-N(N-1)/2

Since this is true for all positive integers N, it is a polynomial identity, i.e.

IAI-n

(N) N 2 -N(N-1)/2
A =coefficient oft" in (1 - t) - (1 - t )

+ " in (1 - t) -x(x+1)/2(1 + t) -X(x-1)/2
L., A = coefficient of t
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12. Let x1 ... =xN = t/N, xN+1 =xN+2 = ... =0 in the identity of Example 4,
and let N --> -. Then from Example 11 we obtain

h(A)-1 = coefficient of t" in exp(t + Zt2)

IAI-n

where (§4, Example 3) h(A) is the product of the hook lengths of A. From Example
2 it follows that the total number of standard tableaux of weight (1") is equal to nl
multiplied by the coefficient of t" in exp(t + Zt2). This number is also the number
of permutations w e S. such that w2 = 1.

13. Let A be a partition. A plane partition of shape k is a mapping it from (the
diagram of) A to the positive integers such that ar(il) 3 ar(x2) whenever x2 lies
below or to the right of x1 in A. The numbers 7r(x) are the parts of ar, and

HMI= E ir(x)
x c= A

is called the weight of ar. Any plane partition it determines a sequence A = A(0)
A(1) z) ... of (linear) partitions such that it-1(i) = A(i-1) - A(`) for each i > 1.

If 1r(x1)> ar(x2) whenever x2 lies directly below x1 (i.e. if the parts of jr
decrease strictly down each column) then ar is said to be column-strict. Clearly ar is
column-strict if and only if each skew diagram it 1(i) A(`) is a horizontal
strip.

A plane partition ar has a three-dimensional diagram, consisting of the points
(i, j, k) with integer coordinates such that (i, j) e A and 1 < k < ar(i, j). Alterna.
tively, we may think of the diagram of it as a set of unit cubes, such that ar(x)
cubes are stacked vertically on each square x E A. As in the case of ordinary
(linear) partitions, we shall use the same symbol it to denote a plane partition and
its diagram.

If S is any set of plane partitions, the generating function of S is the polynomial
or formal power series

F, ql*1

arEs

in which the coefficient of q" is the number of plane partitions of weight n which
belong to S.

(a) Consider column-strict plane partitions of shape A, with all parts < n. By (5.12)
the generating function for these is s,(q", q" - ', ... , q), which by §3, Example 1 is

IAI+n(A) T

1 - gn+c(X)

1q
XEA 1-qh(X)

.

(b) Let 1, m, n be three positive integers, and consider the set of plane partitions it
with all parts < n and shape A such that 1(A) < 1 and l(A') < m: that is, the set of
three-dimensional diagrams ar which fit inside a box B with side-lengths 1, m, n.
By adding 1 + 1- i to each part in the ith row of ar, for 1 < i < 1, we convert it
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into a column-strict plane partition of shape (m,.. . , m) = (m') and largest part
1 + n. From (a) above, the generating function for the plane partitions yr c B is

therefore

(1) qh(x)
xe(MI) 1

In this form the result does not display the symmetry which it must have as a
function of 1, m, and n. It may be rewritten as follows: for each y = (i, j, k) E B,
define the height of y to be ht(y) = i +j + k - 2 (so that the point (1,1,1) has
height 1). Then the generating function (1) may be written in the form

V' 1+T1= VT
1 -ql+ht(y)

(2)
acB

q
yEB 1-gh1(y) '

(c) We may now let any or all of 1, m, n become infinite. The most striking result is
obtained by letting all of 1, m, n tend to -: the box B is then replaced by the
positive octant, and for each n > 1 the number of lattice points (i, j, k) with
i +j + k - 2 = n and i, j, k > 1 is equal to the coefficient of t"-1 in (1 - t)-3,
hence to Zn(n + 1). It follows that the generating function for all plane partitions
is

(3)
n-1 q

1-q
/ n-1

(d) Likewise, the generating function for all plane partitions with largest part
is

(4)
(1 - qn)-min(m,n)

n-1

'm

14. From Example 13(a), by letting n - , the generating function for all column-
strict plane partitions of shape k is

(1)
glAI+n(A)HA(q)

where HA(q) = ri a A0 - qh(x)).

Another way of obtaining this generating function is as follows. Let 7r be a
column-strict plane partition of shape ,1, and let S be the set of pairs (7r(i, j), j)
where (i, j) a A. The elements of S are all distinct, because it is column-strict. We
order S as follows: (r, j) precedes (r', j') if either r > r', or r = r' and j < j'. This is
a linear ordering of S. Define a standard tableau T(Tr) of shape l as follows:
T(i, j) = k - (7r(i, j), j) is the kth element of S in the linear ordering defined
above. For example, if 7r is

1 - qI+n+c(x)

33211

22

1
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then S is the ordered set

(3,1),(3,2),(2,1),(2,2),(2,3),(1,1),(1,4),(1,5),

and T(ar) is the standard tableau

12578

34

6

Conversely, let T be a standard tableau of shape A, and let it be a column-strict
plane partition such that T (7r) = T. Let I AI - n, and for 1 < k 5 n let ak be the part
of it in the square occupied by k in T. Then a1 > ... > an > 1 and ak > ak+l
whenever k E R(T), where R(T) is the set of integers k E [1, n - 1] such that k + 1
lies in a lower row than k in the tableau T. Now let

ak-ak+1 if k44R(T) and k#n

bk= ak-ak+1-1 if kER(T)
an-1 if k=n

so that bk > 0 for k = 1, 2,..., n. Then we have

where

n n

F. ak=n+r(T)+ k kbk
k-1 k-1

r(T) _ F, (k: k + 1 lies in a lower row than k in T)

and therefore the generating function for the column-strict plane partitions it such
that T(ar) = T is

qn+r(T),p"(q)-1

where as usual cpn(q) _ (1- q) ... (1- q").
Hence the generating function for column-strict plane partitions of shape A is

(2) q"(E qr(r))/ipn(q)
T

summed over all standard tableaux T of shape A.
From (1) and (2) it follows that

(3) F, qr(T) = gn(A)(pn(q)/HH(q).
T

15. Let S be any set of positive integers. From (5.12) and Example 4 it follows that
the generating function for column-strict plane partitions all of whose parts belong
to S is

F1 0- q')-' F1 (1 -q'+j)
{ES I,JES

i<j
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(a) Take S to consist of all the positive integers. Then the generating function for

all column-strict plane partitions, of arbitrary shape, is

(1)

M

rj (1 _ qn)-[(n+1)/2]
n-1

(b) Take S to consist of all the odd positive integers. We obtain the generating

function

(2) rl (1-q2n-1)-1(1-q2n)-[n/2]
n-1

Now the column-strict plane partitions with all parts odd are in one-to-one
correspondence with the symmetrical plane partitions a (i.e. such that 1r(i, j) =
1r(j, i)) For the diagram of a symmetrical plane partition may be thought of as a
sequence of diagrams of symmetrical (linear) partitions ar(1) > ir(2) 2) ..., piled one
on top of the other; each 4r(') is of the form (a1,..., ap I a1,..., a.) in Frobenius
notation, and hence determines a linear partition o'= (2 a 1 + 1, ... , 2 a, + 1)
with odd parts, all distinct; and the v(') can be taken as the columns of a
column-strict plane partition with odd parts. It follows that (2) is the generating
function for the set of all symmetrical plane partitions.

16. Let 4(x1,..., xn) = IIi(1-xi)-1IIi <1(1 -xix,)-1 as in Example 4. By setting
t - 0 in the identity of Chapter III, §5, Example 5 we obtain

(1) E umsA(xl,...,xn)_ E F(xi,...,X )/(1-uJJx;1-v2)
m,A e

where the sum on the left is over all partitions A = (A1,..., An) of length <n, and
integers m > A1; and the sum on the right is over all e= (e1,..., en) with each
ei ° ±1.

We shall rewrite (1) in the notation of root-systems. Let v1,...,vn be the
standard basis of R. Then the set of vectors

R={±vi(1<i<n), ±vi±vt(1,<i<j<n)}

is a root-system of type B,,, for which

R+= {vi(1 4i _< n), vi±v,(1 _< i <j <n))

is a system of positive roots, so that

p= ((2n-1)v1+(2n-3)v2+...+vn)

is half the sum of the positive roots. The subset Ro of R defined by

Rn=(vi-vf:i#j)

is a subsystem of R of type A,,_ 1, and Ro = R+fl Ro is a system of positive roots
for Ro. The Weyl group Wa of Ra is the symmetric group S, acting by permuta-
tions of u1,...,vn, and the Weyl group W of R is the semidirect product of Wa
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with the group (of order 2") of transformations we: v, H eivi(1 < i < n), where as
before e = (81,..., a") and each e; is ± 1. In this notation,

fl (1-e-') / fl (1 -e-a)
aERo aER+

E e(w)e't't)/( F, e(w)e"),
WE WO WEW

by virtue of Weyl's identity (Example 9). It follows that the right-hand side of (1)
(with xi replaced by a-U') may be written as a sum over W, and by equating the
coefficients of u' on either side of (1) we arrive at the identity

(2) F, sA(e-°',...,e-°^) =e-meJ(mO+ p)/J(p)
A

where 0= 2(vl + ... +v"), and for any vector v

J(v) _ E e(w)eWD,
WEW

and the sum on the left is over all partitions A such that 1(A) <n and 1(A') <m (i.e.
such that A c (Mn)).

(If preferred, the right-hand side of (2) can be written as a quotient of determi-
nants:

(2') E SA(xl,...,xn) =Dm /Do
A

where Dm =det(xin+2n-i-x'J-1)1<i,j<, and the summation is as before over
1

partitions A c (m").)
This identity (2) is a polynomial identity in n independent variables a-° We

may therefore specialize it to obtain identities in one variable q, by replacing each
e-Uj by qf', where the fi are arbitrary integers. This means that each exponential
e° is replaced by q(°.f ),where f = E fivi and (v, f) is the standard scalar product
on R". In this way we obtain

(3)

E e(w)q-(mB+P,wf)
E SA(gf',...,gf")=gm(a,f) Ee(w)q-(P,wf)A

the sum on the left being over all partitions A c (m").

17. In formula (3) of Example 16 let us take f = 2p, the sum of the positive roots
of R, so that fi = 2n - 2i + 1. On the right-hand side, the alternating sum

E e(w)q-(mB+p,2wp)

is by Weyl's identity (Example 9) equal to the product

rT (q-(mB+P,a) -q(mO+P,a))
ajER+
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and therefore the right-hand side of (3) is equal to

1 1
q<2m9+2p,a) - 1

aER+ q(2p.a) - 1

In this product the positive roots vi - vj(i <j) make no contribution, because they

are orthogonal to 0 = z E vi. Hence we obtain the identity

(4)

n qm+2i-1 - 1 q2(m+i+j-1) - 1
2n-3sa(q 2n-1,q ,...,q)= 2i-1-1 2(i+j-1)-1

Ac(m") i-1 q 1<i<j<n q

The left-hand side of (4) is the generating function for column-strict plane
partitions with odd parts < 2n - 1, and with at most m columns and at most n
rows; or equivalently (Example 15) it is the generating function for symmetrical
plane partitions it whose diagrams are contained in the box B = B(n, n,m) =
{(i,j,k):1 <i, j <n,1 <k <m).

The right-hand side of (4) can be rewritten in a form analogous to that of
Example 13, formula (2), as follows. Let G2 be the group of two elements
consisting of the identity and the mapping (i, j, k) ti (j, i, k), so that the box B is
stable under G2. For each orbit 77 of G2 in B let JrtI (= 1 or 2) be the number of
elements of q, and let

ht(o) = F, ht(y)
YETI

where ht(i, j, k) = i +j + k - 2 as in Example 13. Then the generating function for
symmetrical plane partitions 4r C B is

(5)

1 - ght(,i)+711

71ED/GZ 1 - ght(o)

18. Let G3 be the group of three elements generated by (i, j, k) - (j, k, i) and let
Cn be the cube ((i, j, k): 1 < i, j, k < n). The formula (5) of Example 17 suggests the
following conjecture: the generating function for cyclically symmetric plane parti-
tions a (i.e. those whose diagrams are stable under G3) contained in the cube Cn
should be

(6)
7

1 - ght(71)+1711

eC /G3 1 -ght(71)

This conjecture has since been proved by Mills, Robbins, and Rumsey [Mll].

Next, let G6 be the group of all permutations of (i, j, k), and call a plane
partition completely symmetric if its diagram is stable under G6. The obvious
analogue of (5) and (6) for G6 is trivially false, because the rational function

1 - ght(71)+1711

71E1 1
G6

1 _ ght(71)
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is not a polynomial if n 3 3. However, it seems likelyt that the number of
completely symmetric plane partitions with all parts < n is correctly given by
setting q = 1 in this expression, i.e. it is equal to

ri ht(-q) + 1711

,,EC"/c6 ht(q)

19. With the notation of Example 16, the set of vectors

R1=(±2vi(1<i<n), ±v,±vj(1<i<j<n))

is a root system of type C,,, for which

Ri=(2v,(1<i<n),v,±v1(1<i<j<n)}

is a system of positive roots, so that

p1=nv1+(n-1)v2+...+v,,

is half the sum of the positive roots. The Weyl group is the same group W as in
Example 16.

We shall take f = pl in formula (3) of Example 16, so that a"D' is replaced by
°-i+1q . As in Example 17, by virtue of Weyl's identity we have

E(w)q-(me+p,wpl) = rT (q-<m O+p,a/2) -q(mO+p,a/2))

aER1

and therefore the right-hand side of (3) is equal to

ri
q(m8+p,a) - 1

ac-R+ q(p.a)

Again the roots v, - vj (i <j) make no contribution to this product, and hence we
obtain

(7)

gm+i+j-l - 1
E s,(4n,...,q) = qi+j-1 -1

AC(m") 1<i<j<n

The left-hand side of (7) is the generating function for column-strict plane
partitions with largest part < n and at most m columns, and the right-hand side
can be written in terms of the height function introduced in Example 13, namely as

(8)

1 - ghl(y)+ 1

Y 1- ght(y)

where D is the prism ((i, j, k):1 < i < j < n,1 < k < m}.

t This conjecture has recently been proved by J. Stembridge [S301.
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20. (a) Let A = (a,j) and B = (b,) be n X n matrices such that det A = 1. Let c,j

be the determinant of the matrix obtained from A by replacing its ith column by

the jth column of B, so that

n
C,j = L aikbkj

,

k-1

where aik is the cofactor of ak, in A, which since det A = 1 is equal to the (i, k)
element of A-1. It follows that cij is the (i, j) element of A-1B, and hence that
det(c,J-) - det B.

Now let r <n and suppose that for each j > r the jth column of A is equal to
the jth column of B. Then cij = S,, whenever j > r, and hence we have

(1) det(c,1)1ci j , ,= detB.

(b) Let A = (a1, ... , a, I pl, Pr) be a partition of length < n, in Frobenius
notation, and let

A(t.J)=(al,...,a,,.. ,a,I pl,.. Ai, ,Pr)

for i, j r, where the circumflexes indicate that the symbols they cover are
to be omitted. Then the skew diagram [ a, I p; ] = A - Ati,j) (which of course
depends on A as well as a,, 13) is a border strip, and more precisely is that part of
the border of A consisting of the squares (h, k) such that h > i and k >-j. With this
notation established, we have

(2) sa = det(s[a,
I

(Let l;k = k - Ak (1 < k < n). The sequence _ is obtained from the sequence
(- a1,... , - a, 1, 2,..., n) by deletion of p, + 1, ... , Rl + 1. Hence the correspond-
ing sequence for the partition P'1) is obtained from 6 by deleting -a, and
inserting P3 + 1. It follows that, up to sign, s[a,.P,) is equal to the determinant
of the n x n matrix obtained from A = (h_t.+f,) by replacing its ith column by the
(p,+ 1)th column of the matrix B = (h,,_,+f) _ (h_ e,+,). Moreover, the sign
involved is ( -1) 6,-1+j, so that we have

(3) det(s[a,1 p,]) _ ( -1)ISI det(c,j).

On the other hand, by (1) above, det(c,j) is equal to the determinant of the matrix
obtained from B by rearranging its columns in the sequence (61 + + 1,
1, 2,..., n), and therefore

(4) det(c,j) = ( -1)1 " det B = ( -1)161sA .

The formula (2) now follows from (3) and (4).)

21. Let 0, p be two skew diagrams. Let a be the rightmost square in the top row
of 0, and let b be the leftmost square in the bottom row of cp. Let cp° (resp. (ph)
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denote the diagram obtained from cp by a shift sending b to the square immedi.
ately above a (resp. immediately to the right of a) and let 0 * p (resp. B * cp)

h
denote the skew diagram 0 U cp° (resp. 0 U (P').

(a) Show that

(1) sesc=so . w+se.,P.

V h

(From (5.12) it follows that

seso _ F, xTxU
T,U

summed over all pairs of tableaux T, U of respective shapes 0, cp. Split up the set
of these pairs (T, U) into two subsets according as T(a) < U(b) or T(a) > U(b),
where T(a) is the symbol occupying the square a in T, and likewise for U(b).)

(b) In view of (5.7), the repeated use of (1) enables us to express any skew Schur
function as a sum of skew Schur functions corresponding to connected diagrams. In
particular, we have

(2) h' =
se

0

summed over the 2n-1 border strips (or ribbons) of length n. Taking the coeffi-
cient of x1... x,, in both sides of (2) (or, equivalently, the scalar product with h' )
we see that this decomposition describes the partition of the symmetric group S
into the subsets of permutations having a given set of descents.

(c) Let d = (a 10) = (a1,... , a, 113j.... , A3,) be a partition in Frobenius notation,
and let S(, I P)' S[a I P] denote the r X r matrices

S(aIP)=(S(atIPj)), S[a1P]-
(-1)i+j

S1-iIPjl

in the notation introduced in Example 20. Show that

(3) S(aI P)=H.S[aI P1EP

where H. = (ha,_aj), EP = (eP1_ 1). (Use (1) above.)
By taking determinants in (3) and using §3, Example 9, we obtain another proof

of the formula (2) of Example 20.

22. (a)Let A=(al,...,ar1
in Frobenius notation. Define matrices

S(a10) _ (s(ai1 Pj))1<i,j4r,

H.,7= (ha,Y)1<i<r,1<j<s'

EP a
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Then we have

(1) A/µ -(-1)sdet S(aIp) Ha,r
s - E,9E 0

When µ = 0 (so that s = 0) this formula reduces to that of §3, Example 9.
(Choose n > max(l(,1), l(µ)) and let I = ( -at,..., - ar, 1, 2, ... , n), J =

1 , 2 , . . . , n ) . Then the sequence (i - ,1i)1, i is obtained from the

sequence I by deleting the terms Pi + 1 (1 < i < r), and likewise the sequence
(j _ 1,Lj)14 j is obtained from J by deleting the terms ej + 1 (1 < j < s). Hence
the matrix (hA.-_;+j) is obtained from the matrix M= (hj_i)(;,j)E Ix, by deleting
the rows with indices r + f3i + 1 (1 < i < r) and the columns with indices s + ej + 1
(,.<j < s). Hence if U is the matrix of n + r rows and r columns which has 1's in
the positions (r + Jai + 1, i) (1 < i < r) and zeros elsewhere, and if V is the matrix of

s rows and n + s columns that has 1's in the positions (j, s + ej + 1) (1 <j < s) and
zeros elsewhere, we shall have

sA/µ = det(hA.-µ;-i+j) _ (-1)k det B

where B is the matrix (of N = n + r + s rows and columns) I U M I , and

` /k=rz+rS+s2+1 f31+lel.
Now let A be the N X N matrix whose first r + s rows are those of the unit

matrix 1N, and whose last n rows coincide with the last n rows of the matrix B.
From the definition of M it follows that det A = 1. We now apply the method of
Example 20(a) (but with rows replacing columns): if cij denotes the determinant of
the matrix obtained by replacing the jth row of A by the ith row of B, for
1 < i, j < r + s, then det B = det(ci j). By calculating the cij and paying careful
attention to the signs involved, we obtain the desired formula (1).)

(b) Let Ha = (ha.EE as in Example 21(c). From (1) it follows that

s H.ls(aIR)ER 1 Ha 1Ha.Y
(2) SA/W = (-1) det

Ep E 0

From Example 21(c) we have

H. Is(al p)Ep 1
(-1)i+jStaiI

Qjl 1<l,j<r

Consider the matrix H,t 1Ha,Y. Its (i, j) element, say cij, is equal to the determi-
nant of the matrix obtained from H. by replacing its ith column by the jth column
of Ha Y. There are three possibilities:

(i) if yj = ak for some k, then cij = Sik;
(ii) if yj is not equal to any ak, and ai < yj, then cij = 0;
(iii) if yj is not equal to any ak, and ai > yj, then cij is (up to sign) the Schur

function corresponding to the border strip consisting of those squares (a, b) in
the border of d such that yj < b - a < ai.



90 I SYMMETRIC FUNCTIONS

Similar considerations apply to the matrix E,9,EEj1. Hence (2) leads to an
expression for the skew Schur function s,,,,, as a determinant of Schur functions of
border strips. We shall leave the precise formulation as an exercise to the reader.

23. As in §3, Example 21, let s,(x/y) denote the Schur functions associated with
the rational function

m

EE1y(t) _ e,(x/y)N = rj (1 +xit) jI (1 +y1t)-'.
r>0 i-1 j-1

If ay denotes the involution w acting on symmetric functions of the y variables,
then sa(x/y) is obtained from ulysa(x, y) by replacing each y1 by -y1. Hence by
(5.9) and (5.6) we have

(1) SA(X/y) _ Fµls (x)S"/"(y)
K

and

(2) sx(y/x) _ (-1)lals",(x/y).

(a) Let rm n denote the set of lattice points (i, j) E Z2 such that i, j > 1 and either
i < m or j < n. By (5.8) and (1) above, s,A(x/y) , 0 if and only if there is a partition
µ c A such that 1( µ) < m and Ai - µi < n for all i > 1, and this condition is
equivalent to A C rm,n-

(b) A bitableau T of type (m, n) and shape A - µ (where d µ) is a sequence of
partitions

(3) 11(0)CA(l)C ... Ck(m+n)='k

such that the skew diagram 9) _ .lei) - .l(i-') is a horizontal strip for 1 < i <m
and a vertical strip for m + 1 < i < m + n. Graphically, T may be described by
filling each square of B(') with the symbol i, for 1 < i < m, and each square of
0(1 +1) with the symbol j', for 1 < j < n. Thus the symbols follow the order
1 < 2 < ... < m < 1' < 2' < ... < n', and the conditions on T are

(i) in each row (resp. column) of T the symbols increase in the weak sense from
left to right (resp. from top to bottom);

(ii) there is at most one marked symbol j' in each row, and at most one unmarked
symbol i in each column.

With each such bitableau T we associate a monomial (x/y)T obtained by
replacing each symbol i (resp. j') by xi (resp. -y1) and then forming the product
of all these x's and -y's. It follows then from (2) above and (5.12) that

(4) Sa/µ(x/y) = E (x/y)'
T

summed over all bitableaux T of type (m, n) and shape A µ.

(c) In (b) above the symbols followed the order 1 < 2 < ... < m < 1' < 2' < ... < n'.
Show that (4) will remain true if this order is replaced by any other total ordering
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of the set (1, 2,. . ., m,1', 2', ... , n'). (In A-ring terms, this is simply the observation
that the summands in x1 + ... +x,,, -Yi - ... -y,, may be permuted in any way.)

24 (a) Let p be an integer > 2 and let (pp: A -3- A be the ring homomorphism
defined as follows: (pp(h") = h"/p if p divides n, and (pp(h") = 0 otherwise. (The
effect of cpp is to replace each variable x; by its set of pth roots.)

If A is a partition of length < n, let A* = (A(r))0, , , P-1 denote its p-quotient,

as in §1, Example 8. If µ e A let

p-I
SA(r),, (.) .

r-0

Show that (pp(SAl,) = ±SA./µ. if A, µ have the same p-core, and that (pp(sAIµ) = 0
-otherwise.

(Even when A and µ have the same p-core, we do not necessarily have
e) c A('), so that SA.yµ. may be zero also in this case.)

(Let e = A + S, rt = µ + S, where 8=(n-1,n-2,...,1,0), so that sAlµ =
det(hf,_,,) by (5.4). For each r = 0,1,..., p -1 let Ar (resp. B,) be the set of
indices i between 1 and n such that f, = r(mod p) (resp. rl; = r(mod p)). Then
gp(sA/µ) is equal to ± det M, where M is the matrix which is the diagonal sum of
the (not necessarily square) matrices M, _ (h((,_,,J)1p), (i, j) EA, X B,. It follows
that (pp(sAlp) = 0 unless IA,! = IB,I for each r, i.e. unless A and µ have the same
p-core. If this condition is satisfied, then (pp(sAlµ) = t 11 det M, = f

(b) Let w = e2"' 1P. Deduce from (a) that sAl, (1, w, ... , wp -1) is zero unless

(i) A and µ have the same p-core;
(ii) A(r) D µ(r) for r = 0,1, ... , p - 1;
(iii) each A(r) - µ(r) is a horizontal strip.

Conditions (i) and (ii) together mean that A -,a is a union of border strips of
length p. We shall write A =p µ to mean that conditions (0-(iii) are satisfied.

If A= p µ then SA1µ(11 w,...,(0p-1)= ±1. The sign, ap(A/µ) say, may be
determined as follows. Let r; E [0, p - 1] be the remainder when f; = A; + n - i is
divided by p, and rearrange the sequence r; = e,,) so that t:; precedes 6, if
and -only if either r; < ri, or r, = rt and 6, > C.. Let ep(A) be the sign of the
corresponding permutation, and define ep(tt) likewise. Then o,(A/µ) _
e(A)e( p .

25. We shall identify the elements of the ring A ez A with the functions of two
sets of variables (x) and (y), symmetric in each set separately: thus f ® g corre-
sponds to f(x)g(y). Clearly, for any f E A the function f(x, y) lies in A ® A, and
we define the diagonal map (or comultiplication) A: A -4 A ® A by

(Af)(x,Y) =f(x, y).

Also the counit e: A -4 Z is the linear mapping which vanishes on A" for each
n 31 and is such that e(1) = 1 (so that e(f) is the constant term of f ).

It is easy to verify that this comultiplication and counit endows A with the
structure of a cocommutative Hopf algebra over Z (for the definition of such an
object see, for example, [Z2]; the most important axiom is that A is a ring
homomorphism).
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(a) The definitions at once imply that

Ahn= hp®hq, Aen= ep®eq,
p+q-n p+q=n

Apn=pn®1+1OX (n>1).

This last relation signifies that the p are primitive elements of A.

(b) From (5.9) we have

A SS = SA/µ ®Sµ

for any partition A. Hence, with the notation of Example 3,

Of= ESµ f®Sµ
IL

for any f e A, and more generally

Of= Uµf®v

whenever (uµ), (vs,) are dual bases of A.

(c) The ring A 0 A carries a scalar product, defined by

(fl ®g,,f2®g2) = (fI,f2>(g1,g2>

for f1, f2, g1, g2 e A. With respect to this scalar product, the diagonal map A: A -
A ® A is the adjoint of the multiplication map A 0 A -' A (i.e. f (9 g - fg). In other
words,

(Af,g®h)=(f,gh)
for all f, g, h e A. (By linearity it is enough to check that (0 sA, sµ (sA, sµsI),
which follows from (b) above together with (5.1) and (4.8).) Also the counit
e: A -4 Z is the adjoint of the natural embedding e: Z - A with respect to the
scalar product (m, n) = mn on Z.

These properties signify that the Hopf algebra A is self-dual.

(d) It follows easily from (c) that if f e A and A f = E a; 0 bi then

f(gh) _ a,1(g)b;1(h)

for all g, h e A. In particular,

sA (gh) = F, c,,s, (g)sv (h).
µ,v

(e) From (c) it also follows that an element p E An (n > 1) is primitive (i.e.
Ap =p ® 1 + 1 ®p) if and only if p is orthogonal to all products fg, where f, g e A
are homogeneous of positive degree. In particular, (p, h,A) = 0 for all partitions A
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of n except A = (n). Since (hA) and (mA) are dual bases of A, it follows that p is a
scalar multiple of p,,. Hence the p,, (n > 1) are a Z-basis of the space of primitive
elements of A.

26. The identities (4.3) and (4.3') can be generalized as follows: for any two
partitions A, µ we have

(1)

(2)

E sP/A(X)sP/W(y) = (1-x;y1) E sp/r(X)SA/r(Y),
p 1,1 r

F, sP/A'(x)s4 /w(Y) _ [1 (1 +x;y1) F, Sp,./,(x)SA/r.(y)
p ',1 r

(By applying the involution w to the symmetric functions of the x variables we see
that (2) follows from (1), so it is enough to prove (1). Let P(x, y) = II;,1(1-x; y1)-1
and let (x), (y), (z), and (u) be four sets of independent variables. We shall
decompose the product

P = P(x,y)P(x,u)P(z,Y)P(z,u)

in two different ways.
Firstly, from (4.3) and (5.9) we have

(a) P = L sp(x, z)sp(y, u) = E SP/A(x)5P/, (Y)SA(Z)Sl(u)
P P,A,A

On the other hand, using (4.3) and (5.9) we see that

(b) P=P(x,y) F,
a,V.r

=P(x,y) c TS, (x)CTS (y)SA(Z)S,(u)
o, v, r, A,µ

=P(X,y) F, sP'/r(X)SA/,(Y)SA(z)S"(u).

r,A,A

Now compare the coefficients of sA(z)sµ(u) in (a) and (b).)

In view of Example 25 we may say that (1) is obtained from (4.3) by applying the
diagonal map A.

27. (a) By applying the same arguments as in Example 26 to the identities of
Examples 4 and 5 we obtain

(3) F, SP/' = J(1 -X1)-1 J(1 -Xixj)-1 F, SA/
p I i<j r

(4) E Sp/A = fl(1 -xix1)-1 E SA/r,
p even 1 g1 r even

(5)
SP/A= I(1 -X1X1)-1 E SA/r.

p'even I<J r' even
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(b) Likewise, from the identities of Example 9 we obtain

(6) L S,,r/A = F1 (1.+ x, xJ) >. SA YP ,
IT i<j P

(7) ESP/A= fl (1+X,x) SA./,,,
p ttj n

(8) E aoso/A(x) _ fl (1-xi) F1 (1-xix) F, a.sA,/o( -x).
a i<j i<j v

Here, as in Example 9, or runs through partitions of the form (a1 - 1,..., ap -
a1,..., ad in Frobenius notation; p through partitions of the form (a1,..., ap
a1- 1,..., ap -1); o through self-conjugate partitions (al,..., ap I al,..., ap);
and finally ao = (-1)(I°I+p)/2
28. Show that

(a) E gIPISP/A(X)SP/A(y)=J] (1-q')-1 flrl-q,xjyk)_1

P, A

+l
i,k l 1

(b) E gIPISP%A(X)SP/A'(y) = j ((1 _q1) -1 11(1 +gixjyk)

P, A
`

i, k
l I I

1+q2i-1XJYk
(c) EgIPISP/A(x)SP,/A(y)=`f (1+q2i-1)f

1-q21xjYkp, A

(Let F(x, y) denote the left-hand side of (a). Then it follows from equation (1) in
Example 26 that

F(x, y) _ fl (1 - gxjYk)-1. F(gx,Y)

j,k

and hence that

But

F(x,y)_ fl fJ (1-gixjyk) 1.F(O,y).

i>1 j,k

F(O, y) = E gIPISP/A(O)SP/A(y) _ E q1 PI
P,A P

_ fJ (1 - q,)-1
i> I

and (a) is proved.
The identity (b) follows from (a) by applying the involution w to the symmetric

functions of the x's.
Finally, let G(x, y) denote the left-hand side of (c). Again from Example 26 we

obtain

G(x,y) _ fl(1+gxjYk). wyG(gx,Y)
j, /C
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where wy is the involution co acting on symmetric functions in the y variables, and

hence

1 + gxyk
G(x, y) = rj .G(q'x,y).

1,k 1-92'x;yk

The proof may now be completed as in (a) above.)

29. With the notation of Example 3, let

E1(t) _ E e t",
n>O

H1(t) _ F, h
n>0

Both E1(t) and H1(t) map A into A[t], and H(t)w= wE1(t).

(a) Show that E1(t) and H(t) are ring homomorphisms. (Use Example 25(a), (d).)

(b) Since h (h") = h" _ m (with the usual convention that h, = 0 if r < 0) it follows
that

(1)

H1(t)(H(u)) = F, h"_mttu"
m,n>O

_ (1 - tu)-1H(u)

and hence, using (a) above, that

H1(t)(H(u) f) _ (1 - tu)-1H(u)H1(t)f

for all f e A, so that

(2) H1(0 a H(u) _ (1 - tu) H(u) ° H1(t )

where H(u) is regarded as a multiplication operator.
Show likewise that

(3) H1(t) c E(u) = (1 + tu)E(u) c H1(t),

(4) E1(t) o E(u) = (1 - tu)-1E(u) o E1(t),

(5) E1(t) ° H(u) = (1 + tu)H(u) c E1(0.

(c) For all f E A we have

H1(t)f(x1,x2,...) =f(t,x1,x2,...).

(By (a) above, it is enough to prove this when f = h, in which case it follows from
(1).)
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(d) Now define

so that
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B(t)= E Bnt"=H(t)oE1(-t-1),
neZ

B1(t) = E =E( -t-1)o
H1(t),

neZ

Bn= E, (-1)rhn+r°e,
r> 0

Bn = (- 1)rer c hn+r
r> O

Each Bn is a linear endomorphism of A, and B is the adjoint of Bn with respect
to the usual scalar product on A. Also B' _ (-1)"wBn (U for all n E Z.

Since

H(t) = exp-pnt" ,
(n1

1

n

we have

E(t) = expl
(-1)n-1 pntnl,

n>1 n 1

(6) B(t) = expl Pntnl °exp( Pn
t -n

n>1 n n>1 n

More generally, if ti, ... , to are independent variables, let

B(t1,...,tn)=H(t1)...H(tn)E1( -t;')...E1( -tn 1).

Deduce from (5) that

B(t1)...B(tn)= 11(1-ti 1tj).B(t1,...,tn)
i<j

and hence that

(7) B(t1)...B(tn)1= 11 (1-ti 1tj)H(tl)...H(tn).
i<j

Let A be a partition of length
side of (7), show that

and hence by (3.4") that

< n. By equating the coefficients of t' on either

BA1... BA.(1) _ fl (1 -Rij)hA
i<j

sA=BAI...BA(1).
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(e) Let cp(tu) = E" e z t"u". Show that

(8) H(t)E( -u-')cp(tu) = cp(tu)

and deduce from (2), (4), and (8) that

B(t)B1(u) + tuB1(u)B(t) = cp(tu),

or equivalently

Br Bs +Bs1 1Br_ 1 = Srs

97

for all r, s E Z.

30, With the notation of §3, Example 21 define, for any two partitions A and µ

SA/,
=det((pµj-j+'(hA1-pj-i+j))J

i.jtm

where m > max(1(A),1(A)). (Thus iA,,o = iA as defined loc. cit.). Show that 0

unless AD A.

(a) Assume then that A D A, and let 0 = A - A. The function ie = depends not
only on the skew shape 0, but also on its location in the lattice plane. For each
(p, q) a ZZ let Tp,q denote the translation (i, j) - (i + p, j + q). Show that

_ -1-
STO,l(e) - (P S91 ST1,O(B) = se

and hence that

STp'q(e)
q-pSB

In particular, go is invariant under diagonal translation (p = q).

(b) Let B be the result of rotating 0 through 180° about a point on the main
diagonal. Show that ig = e.B, where a is the involution defined by cpshr --> cpl-r-shr.

(c) Let 0' = A' - tz' be the reflection of 0 in the main diagonal. Show that
se. = wig, where o is the involution (§3, Example 21(c)) defined by co((pshr) = cp-ser
for all r, s. Equivalently,

sA/w =
1(eA;

j

(The proof is the same as that of (2.9), using the relation E = H-' of §3, Example
21(a).)

(d) Extend the results of Examples 20, 21, and 22 to the present situation.
(Example 20 goes through unchanged; so does Example 21(a), provided that the
contents 01) of the squares a, b are related by c(b) = c(a) + 1. In Example 21(c),
the matrices H. and E,, should now read

/H = (ipaj+lha,-aj), Ep
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In Example 22(a), the matrices H.,-, and Es, s should now read

97j+1 W-et-1

31. As usual let H(t) = En, o h,,t", and assume that the h are real numbers (with
ho = 1). The power series H(t) is called a P-series if sa = det(ha1_;+j) > 0 for all
partitions A. In particular, the coefficients h" are > 0.

(a) If H(t) is a P-series, so also is H( -t)-1.

(b) The product of P-series is a P-series. (Use (5.9) and the fact that the
coefficients cµ are > 0.)

(c) If H(t) is a P-series and h" = 0 for some n, then H(t) is a polynomial of degree
<n. (For hn+1 < hlhn since s(", l) > 0, and hence hn+1 =0.)

(d) Every P-series has a positive radius of convergence. (We may assume that H(t)
is not a polynomial, hence h,, > 0 for all n > 1, by (c) above. Since s(n2) > 0 we have
hn+1/hn <hn/hn-1, and hence the sequence of positive real numbers hn+1/hn
converges.)

(e) Let En> 1 xn be a convergent series of positive real numbers. Then H(t)
II(1-xnt)-1 is a P-series (by (5.12)).

(f) If a > 0, en` is a P-series. (For s, = aI AI /h(A) > 0, by §3, Example 5.)

From (a), (b), (e), and (f) it follows that any H(t) of the form

1 +xnt
H(t) = en` "-11-y"t

where a > 0 and Exn, Eyn are convergent series of positive terms, is a P-series.
Conversely, every P-series is of this form (but this is harder to prove: see [T3}).

Notes and references

Example 2. The fact that the number of standard tableaux of shape A is
equal to n!/h(A) is due to Frame, Robinson, and Thrall [F8]. For a purely
combinatorial proof, see [F9], and for a probabilistic proof see [G15] or
[S2].

Example 3. The operators e , h were introduced by Hammond [H4],
and the sA by Foulkes [F5], in both cases defined as differential operators.
See also Foulkes [F7].

Example 4. This identity is usually ascribed to Littlewood [L9], p. 238;
however, in an equivalent form it was stated by Schur in 1918 (Ges.
Abhandlungen, vol. 3, p. 456). Bender and Knuth found an elegant combi-
natorial proof (reproduced in [S23], p. 177), using the properties of Knuth's
correspondence.

Examples 5 and 9. These identities are all due to Littlewood [L9]. The
observation that the identities of Example 9 follow naturally from Weyl's
identity for the classical root systems is, I believe, new.
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Examples 13, 14, and 15. Plane partitions were first investigated by

MacMahon [M9], and the generating functions (1), (3), and (4) of Example

13 are due originally to him, but proved differently. The application of
Schur functions to these problems is due to Stanley [S23], who gives more
details and references.

Examples 16 and 17. MacMahon [M9] conjectured the generating func-

tion (Example 17, (4)) for symmetrical plane partitions, but was unable to
prove it. It remained a conjecture until proved by Andrews [A4].

Example 18. For an account of recent developments in the study of
generating functions of plane partitions satisfying prescribed symmetry
conditions, see Stembridge [S31] and the references given there.

Example 19. The generating function (7) was established by Gordon (see
Stanley [S23], p. 265) who did not publish his proof. It too was proved by
Andrews [A4].

Examples 20, 21, and 22. These results are due to A. Lascoux and P.
Pragacz [L2], [L3]. Examples 21(a) and (b) were contributed by A. Zelevin-
sky to the Russian translation of the first edition of this book.

Examples 25, 26, and 27. These examples were also contributed by A.
Zelevinsky. The Hopf algebra structure on A (Example 25) is discussed in
[G6], and it is shown in [Z2] that the whole theory of symmetric functions
can be systematically derived from this structure. The results of Examples
26 and 27 appear to have been discovered independently by various people
(Lascoux, Towber, Stanley, Zelevinsky).

Example 29. The operators B were introduced by J. N. Bernstein (see
[Z21, p. 69).

6. Transition matrices

In this section we shall be dealing with matrices whose rows and columns
are indexed by the partitions of a positive integer n. We shall regard the
partitions of n as arranged in reverse lexicographical order (§1), so that (n)
comes first and (1") comes last. It follows from (1.10) that A precedes µ if
A > µ (but not conversely). A matrix (MAn) indexed by the partitions of n
will be said to be strictly upper triangular if MAµ = 0 unless ,1 > µ, and
strictly upper unitriangular if also MAA = 1 for all A. Likewise we define
strictly lower triangular and strictly lower unitriangular.

Let U (resp. denote the set of strictly upper (resp. lower) uni-
triangular matrices with integer entries, indexed by the partitions of n.

(6.1) U,,, U,,' are groups (with respect to matrix multiplication).

Proof Suppose M, N E U,,. Then (MN)Aµ = E,. MAv is zero unless there
exists a partition v such that k > v > A, i.e. unless .1 > µ. For the same
reason, (MN)AA = MAANAA = 1. Hence MN E U,,.
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Now let M E=- U, The set of equations

(1) L MAµXµ =YA
W

is equivalent to

(2) (M-1)Aµ Yµ =XA.

For a fixed A, the equations (1) for yv where v < A, involve only the xµ for
µ < v, hence for µ < A. Hence the same is true of the equations (2), and
therefore (M-1)Aµ = 0 unless µ < A. It follows that M-1 E

Let J denote the transposition matrix:

__ 11 if A'=µ,
JA" 0 otherwise.

(6.2) M is strictly upper triangular (resp. unitriangular) if and only if JMJ is
strictly lower triangular (resp. unitriangular).

Proof. If N = JMJ, we have NAµ = MA,µ.. By (1.11), A' > µ' if and only if
µ > A, whence the result.

I

If (uA), (VA) are any two Q-bases of A", each indexed by the partitions of
n, we denote by M(u, v) the matrix (MAµ) of coefficients in the equations

UA = MAµvµ;
W

M(u, v) is called the transition matrix from the basis (uA) to the basis (VA).
It is a non-singular matrix of rational numbers.

(6.3) Let (uA), (VA), (W) be Q-bases of A". Then

(1) M(u, v)M(v, w) = M(u, w),

(2) M(v, u) = M(u, V) -1.

Let (ua),(vi) be the bases dual to (uA), (VA) respectively (with respect to the
scalar product of §4). Then

(3) M(u', V') =M(v, u)' =M(u, v)*

(where M' denotes the transpose and M* the transposed inverse of a
matrix M).

(4) M(wu, wv) =M(u, v)

where w: A --> A is the involution defined in §2.
All of these assertions are obvious.

Consider now the five Z-bases of A" defined in §2 and §3: (eA), (fA)'
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(hA), (mA), (sA). We shall show that all the transition matrices relating pairs

of these bases can be expressed in terms of the matrix

K = M(s, m)

and the transposition matrix J.
Since (mA) and (hA) are dual bases, and the basis (sA) is self-dual (4.8),

we have

M(s, h) = K*

by (6.3X3). If we now apply the involution w and observe that

M(A)s, S) = J,

by virtue of (3.8), we have

M(s, e) = M(ws, h) = M(ws, s)M(s, h) = JK*

by (6.3X1) and (4). Finally, by (6.3X3) again,

M(s, f) = M(s, e)* = (JK*)* = JK.

We can now use (6.3X1) and (2) to complete the following table of
transition matrices, in which the entry in row u and column v is M(u, c):

Table 1

e h m f s

e 1 K'JK* K'JK K'K K'J

h K'JK* 1 K'K K'JK K'

m K-1JK * K-1K * 1 K-1JK K-1

f K-1K* K-1JK* K-1JK 1 K'1J

s JK * K* K JK 1

Some of the transition matrices in Table 1 have combinatorial interpre-
tations. From (5.13) it follows that

(6.4) KAµ is the number of tableaux of shape A and weight A. I

The numbers KAµ are sometimes called Kostka numbers. By (6.4) they
are non-negative. Moreover,

(6.5) The matrix (KAN,) is strictly upper unitriangular.

Proof If T is a tableau of shape A and weight µ, then for each r > 1 there
are altogether µ1 + ... + µ, symbols < r in T, which must all be located in
the top r rows of T (because of the condition of strict increase down the
columns of a tableau). Hence µ1 + ... + µ, < Al + ... + A, for all r > 1, i.e.
µ < A. Hence KAµ = 0 unless A > µ, and for the same reason KAA = 1.
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From Table 1 and (6.5) we can read off:

(6.6) (i) M(s, h) and M(h, s) are strictly lower unitriangular.
(ii) M(s, m) and M(m, s) are strictly upper unitriangular.
(iii) M(e, m) = M(h, f) and is symmetric.
(iv) M(e, f) = M(h, m) and is symmetric.
(v) M(e, h) = M(h, e) = M(m, f )' = M(f, m)'.
(vi) M(h, s) = M(s, m)'.
(vii) M(e, s) = M(s, f Y.

In fact (Example 5 below) M(e, h) is strictly upper triangular (and
therefore by (6.6Xv) M(m, f) is strictly lower triangular).

(6.7) (i) M(e, m),AN, = E,, K AK,,.}, is the number of matrices of zeros and ones
with row sums Ai and column sums µj.
(ii) M(h, m)Af, = E,, is the number of matrices of non-negative inte-
gers with row sums Ai and column sums µj.

Proof. (i) Consider the coefficient of a monomial x,' (where µ is a
partition of n) in ea = eA,eA2.... Each monomial in eA, is of the form
[1j x Pi, where each ail is 0 or 1, and E, a; j = A.; hence we must have

1 1 xj'1 = F1 x1"'1

so that Ei ai1 = u,. Hence the matrix (ai) has row sums Ai and column
sums

For () the proof is similar: the only difference is that eA is replaced
by h., and consequently the exponents aij can now be arbitrary integers
, 0.

Remark. From (6.4) and (6.7Xi) it follows that the number of (0,1)-matrices
with row sums Ai and column sums µj is equal to the number of pairs of
tableaux of conjugate shapes and weights A, µ. In fact one can set up an
explicit one-one correspondence between these two sets of objects (Knuth's
dual correspondence [K12], [S23]).

Likewise, there is an explicit one-one correspondence, also due to
Knuth, between the set of matrices of non-negative integers with row sums
Ai and column sums µj, and pairs of tableaux of the same shape and
weights A, µ.

We shall now consider transition matrices involving the Q-basis (pA).
For this purpose we introduce the following notation: if A is a partition of
length r, and f is any mapping of the interval [1, r] of Z into the set N+ of
positive integers, let f(A) denote the vector whose ith component is

f(A)i= E A1,
1(j)-i
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for each i > 1.
Let L denote the transition matrix M(p, m):

(6.8) PA = LAµm

With the notation introduced above we have.

(6.9) LA is equal to the number off such that f (A) = A.

proof On multiplying out p,k = p , ... , we shall obtain a sum of mono-
mials xftl>xf ... , where f is any mapping [1,1(A)] --> N+. Hence

PA = E xfca>

f
from which the result follows, since LAN, is equal to the coefficient of x'` in

PA'

If µ =f(A) as above, the parts µi of µ are partial sums of the A,,
equivalently, A is of the form U i> 1 A0 where each P is a partition of
W,.

We say that A is a refinement of µ, and write A <R A to express this
relationship between A and µ. Clearly, <R is a partial order on the set .9'
of partitions of n, for each integer n > 0.

(6.10) A<R p=A14 µ.

Proof Let It = f([l, k]) for 1 < k < 1(A). Since
that

µi = Ef(j)-i AA, it follows

+ ... + Ak < E µi < µ1 + ... + µk,

l Elk

the last inequality because Ik has at most k elements.

Remark. The converse of (6.10) is false, since for example two distinct
partitions A and µ of n such that 1(A) = l(µ) are always incomparable for
the relation <R, but may well be comparable for < .

From (6.9) and (6.10) it follows that L,A, = 0 unless A <R µ, hence
unless A < µ. The matrix L is therefore strictly lower triangular.

The transition matrices M(p, e), M(p, f ), and M(p, h) may all be
expressed in terms of L:

(6.11) (i) M(p, e) = ezL*,
(ii) M(p, f) = eL,

(iii) M(p, h) = zL*,
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where L* is the transposed inverse of L, and e (resp. z) denotes the
diagonal matrix (ea) (resp. (za)).

Proof. Since the bases dual to (ha) and (pa) are respectively (mA) and
(za'p,A), it follows from (6.3) that

M(p,h) =M(z-'p,m)* = (z-'L)* =zL*.

Hence

M(p, e) = M(wp, we) = M(ep, h) = ezL*,

and

M(p,f)=M(wp,wf)=M(ep,m)=eL.

Finally, we have

(6.12) M(p,s)=M(p,m)M(s,m)-' =LK-'.

We shall see in the next section that M(p, s), restricted to partitions of n,
is the character table of the symmetric group S,,.

Finally, the relations between the six bases e, f, h, m, s, and p are
summarized in the graph below, in which the symbol attached to a directed
edge uv is the transition matrix M(u, v). (In the cases where M(u, v) =
M(v, u), the edge uv carries no arrow.) For the sake of clarity, the
diagonals of the hexagon have been omitted.

K'J K'

K'JK

A
K'K K'K

L'ez L'Z 1

K-'JK

IL

L
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Examples
1 M(h, m)Aµ is equal to the number of double cosets SAwS,, in Sn, where

SAsSA,XSAZX..., Sµ=Sµ1XSµ2X....

2 For certain choices of A or µ there are closed formulas for the Kostka number

KAµ-

(a) For any partition A of n, KA,(1.) is by (6.4) the number of standard tableaux of
shape A, so that by §5, Example 2 we have KA,(1n) = n!/h(A), where h(A) is the
product of the hook-lengths of A.

(b) Let A = (a, 1h) be a hook. Then for any partition 'z of n = a + b we have

KAw =
(1(µ) - 1 }. For the tableaux of shape A and weight µ are determined by
t b f

the entries in the first column, which must all be distinct, and the top entry (i.e. the
number in the corner square of A) must be 1.

(c) Suppose that A and µ are partitions of n such that each part of /c. is > A2. In
any tableau T of shape A and weight µ, the 1's must occupy the first Al squares in
the top row, and hence T is determined by its entries in the remaining rows, which
constitute a tableau of shape v = (A2, A3, ...) and arbitrary weight. Hence it follows

from (5.12) and §3, Example 4 that K,,,, = µ)'- 1
.1J

V

3. The (infinite) matrix K is the diagonal sum of matrices K (n > 0), where
Kn = (KAµ)A, µ E ., We have Ko = K1 = (1), and for n = 2,3,..., 6 the matrices Kn
are shown on p. 111.

The matrices Kn and their inverses have the following stability property, when
their rows and columns are ordered in reverse lexicographical order, as in the
examples on p. 111. Let M = E,, ,12 p(r), where p(r) is the number of partitions
of r; then the principal m X m submatrix in the top left-hand corner of Kn (resp.

is equal to the corresponding principal submatrix of K,, (resp. K,-.1), for all
n' > n.

This is a consequence of the following fact: if jc14 A2, then KAµ KA+(r), µ+(r)
for all r > 1. (Each tableau of shape A + (r) = (Al + r, A2, A3, ...) and weight
µ + (r) _ (µ1 + r, 92, µ3, ...) can be obtained from one of shape A and weight µ
by moving the top row r squares to the right and inserting r 1's in the squares
vacated.)

4. Let Kµ1) denote the (A, µ) entry of the inverse Kostka matrix K-1. Thus
K,(,u 1) is the coefficient of hA in sµ, = det(hµ._;+j), and is also the coefficient of sµ
in mA expressed as a sum of Schur functions. We have KA(µ') = 0 unless A > µ, by
(6.1) and (6.5), and Kaa 1) = 1.

(a) Let r, n be positive integers. Then

K,0µ)b+r-1 b

!(A)-r
r - 1

IAI-n

if µ is of the form (a,1"), where a + b = n; and is zero otherwise. (This follows
from §4, Example 10.)
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(b) Suppose µ = (a,1r") is a hook. Then

K(-ll =
(-1)tU>+uµ) (I(,t) - 1)!

,t' .Aµ
1 1 m.(A)! a

i>1

(By expanding the determinant det(hµ._i+j) along the top row, we obtain

si,,=hae,,, -ha+lem_1 +... +(-1)mha+m

from which it follows that sµ is the coefficient of t" (where n = a + m = µl) in

(1) (-1)mE(-t) Y_ h,tr= (-1)mH(t)-1 F, h,tr.
r>a r>a

Since

r 1

H(t)-1= I 1 + F, hrtr)
r> I

1 (-1)"(F,
hrtrln>O r>I

it follows that (1) is equal to

(-1)m` rF, hrtr) F (-1)1(°) (v ! htlvl,
\ i>1

the right-hand sum being over all partitions v. Now K,(,') is equal to the
coefficient of hA in this expression.)

(c) Suppose µ is a partition of the form (a1,..., a 1m), where r> 1, ai -.ai+1
r - 2 for 1 < i 4 r - 1, and a, > r. Then for any partition A of weight m +
a1+...+a, we have

KAµI)=(-1)I(A)+1(w) (i(A)-r)!
det(i1a-i+j-1+1)i`i,j`r

i>1

(By expanding the determinant of the matrix (hµ._i+j) down the first column, we
shall obtain

r
SN = (-1)'-lha,-i+ 1S('),

is 1



6. TRANSITION MATRICES 107

where
µt') _ (a1 + 1,..., ai -1 + 1, a; + 1, ... , a,,1"'). From this it follows that

Kaw 1) = F, (-1)`-1Ka-cQ,_1+1),w<I>

where
the sum is over integers i = 1, 2, ... , r such that ai - i + 1 is a part of A. and

A - (a1- i + 1) denotes the partition obtained by deleting this part. The formula
may now be proved by induction on r; the starting point r = 1 of the induction is

the formula of (b) above.)

(d) Let µ be a partition of length 1. By expanding the determinant det(hr,,,_;+1)
down the last column, we shall obtain

s, (-1)r-rh,,,+r_rs,,a>

i-1

where v(t) _ (µ1, . , µ;_ 1, µ;+ 1 - 1, ... , µr - 1). These partitions vtr) are all con-
tained in µ, and the skew diagram µ - vt`) is a border strip (or ribbon) of length
µ, + 1- i and height 1- i which starts at the square (r, 1), i.e. intersects the first
column. Hence if we define a special border strip to be one that intersects the first
column, we have

(2) K 9- 1) = E (_ 1)nt(s)

S

summed over all sequences S = ( µt0), µt1), , µt')) of partitions such that r =1(A),
0 = 0) C µ(1) C ... C (') = µ, with each 0 = µt') - µ(r-1) a special border strip,
and such that the lengths of the 0, are the parts of A in some order; and finally
ht(S) = E,_ 1

ht(01).

(e) The combinatorial formula (2) above may be used to derive closed formulas for
KA-1) in certain cases, of which the following is a sample:
(i5 if µ = (a,1'") is a hook (as in (b) above), 01 must be a hook of length A, > a,

and 02, ... , 0, are vertical strips. Hence the formula (2) leads to the result of
(b) above.

(ii) K(n)1 = (- 1)b if µ = (a, lb), and is zero otherwise.
(iii) If A = (a, 1b) with a > 1, then K,(µ 1) is equal to (-1)a +1(b + 1) if µ = (1°+b)).

to (- 1)° -" if (a, 21,1") with a + /3 5 a; and is zero otherwise.
(iv) If A is of the form (rs), then K,tt},') = 0 or ± 1, because there is at most one

choice for S.

5. A domino is a connected horizontal strip, i.e. a set of consecutive squares in the
same row. If A and µ are partitions of n, a domino tabloid of shape A and type µ
is a filling of the diagram of A with non-overlapping dominos of lengths µ1,µ2,..: ,

dominos of the same length being regarded as indistinguishable. Let dAµ denote
the number of domino tabloids of shape A and type µ. Then we have

M(e, h)AA, = M(h, e)A,, =

where as usual ef, _ (-1)11`I-r(µ).
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(Since

E(t) =H(-t
1

= (1 -
(-1)'-'h1t;l-

i> 1 J

= E ( F, (_l)'-1hit')
1Jr> O i>1

it follows that, for each integer n > 0,

e"_F, e,,h.
a

summed over all finite sequences a = (a1.... , a,.) of positive integers such that
E ai = n, where ea = (-1)E(a,-1). Hence for any partition A we have

eA= E _-# hp
0

summed over all sequences p = (/31, ... , /3s) of positive integers that can be
partitioned into consecutive blocks with sums A1, A2,.... Such sequences are in
one-one correspondence with domino tabloids of shape A.)

It follows that M(e, h)Aµ, = 0 unless µ 1<R A, and that M(e, h)AA = eA. Thus the
matrix M(e,h)e is a strictly upper unitriangular matrix of non-negative integers.

6. Since by (6.7Xv) the transition matrix M(f, m) is the transpose of M(e, h), it
follows from Example 5 that the `forgotten' symmetric functions fA are given by

f,1 = eA E dµAmµ
µ

so that ex fA is the generating function for domino tabloids of type A. In particular:

(a) f(1') = E mµ = h, since for each partition µ of n there is just one domino
tabloid of shape µ and type (1").

(b) If A _ (rl"-r) where r > 2 we have

fAcµm
where cµ = µr + µr+ I + ... . For a domino tabloid of shape µ. and type (r1" `) is
determined by the position of the single domino of length r, which can lie in any
row of µ of length µ, > r, and has u, - r + 1 possible positions in that row. Hence
C. =Eµrr i,ci -T+1)=E;>rµi.

7. A domino tableau of shape µ and type A is a numbering of the squares of the
diagram of is with positive integers, increasing along each row, and such that for
each i > 1 the squares numbered i form a domino (Example 5) of length A1. In this
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terminology,
(6.9) may be restated as follows: the number of domino tableaux of

shape a and type A is equal to LA,,. (For each such domino tableau determines a
mapping f : [1, I(A)] -> [1,l(µ)] such that f (A) = µ by the rule that f(i) =j if the
squares numbered i lie in the jth row of µ; and conversely each such mapping
determines a domino tableau of shape µ and type A, in which the A. squares
numbered i lie in row f(i).)

8. The weight of a domino tabloid (Example 5) is defined to be the product of the
lengths of the leftmost dominos in the successive rows. Let wAµ, denote the sum of

the weights of all domino tabloids of shape A and type A. Then we have

(1)

(Since

M(p, h)Aµ = -,AeµWAA-

P(t) =H'(t)H(t)-1

i

L (-1)i ( E hrtr) ( rhrt'-1/
i> O r>1 r>1

it follows that, for each integer n > 1,

P., = E(-1)11a)-I jha
a

summed over all finite sequences a = (a1,..., ar) of positive integers such that
E a; = n, where 1(a) is the length r of the sequence. Hence for any partition A we
have

summed over all sequences 6 = (/31,...,. 6S) of positive integers that can be
partitioned into consecutive blocks (f31, ,13 ), (r3i, + 1, ... , i0j'),... with sums
Al, A2,... ; where up is the product 01 R1,+1 P'2+1- of the first terms in each
block. As in Example 5, such sequences are in one-one correspondence with
domino tabloids of shape k, and up is the weight of the tabloid.)

From (1) and (6.11) it follows that M(p, e)A = e wAIL, M(f, p)A, = -1
!+

IL EAZIL WAIL and
M(m, p)A;L = eAeILzIL 1wµA. Hence

-AfA zµ
1WA,.Pp

FL

is a polynomial in the power-sums with positive rational coefficients. Also eL -1ez
is a matrix of non-negative integers, with (A, µ) entry w,,A.

9. From (6.11) we have M(h, m) = L'z-1L and M(m, f) = L -1eL. Comparison
with Table 1 shows that the matrices K and L are related by

K'K=L'z-1L, K-1JK=L-1eL.
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Hence the matrix X = LK-1 = M(p, s) satisfies

XX'=z, X-1EX=J.

10. For each partition µ let

U,=flmi(p.)!
i>1

and let U denote the diagonal matrix (uµ). Then 1the matrix LU-1 is a strictly lower
unitriangular matrix of non-negative integers.

(Let A, µ be partitions of n and let EAµ denote the set of mappings f: [1,1(A)] -
[1, l( µ)] such that f(A) = µ, so that by (6.9) we have LAµ = IEAµ1. Also let Sµ
115,,,<N,) be the subgroup of S,00 that fixes z. If f EEAY, and w E Sµ it is clear
that wf (=- EAµ, so that Sµ acts faithfully on EAµ. Hence LAµ =IEAµI is divisible by
ISµI = uµ. Finally if A = z we have Eµµ = Sµ, whence Lµµ = uµ.)

The matrix Lu -1 is the transition matrix M(p, in) between the power-sum
products and the `augmented' monomial symmetric functions mµ = uµmµ. We have

mK = F1 xeµ++...X)'

where 1=1(µ) and the sum is over all sequences (i1,...,ii) of pairwise distinct
positive integers. Since Lu-1 is unitriangular, (mµ) is a Z-basis of the subring
Z[P1,P2....I of A.

11. Let A = (A1,..., be a partition of n. Show that

mAEsa
a

summed over all derangements a of A. (Multiply mA(x1,... , x ° by

a8(x 1, ... , Hence Kaµ 1) = r - s, where r (resp. s) is the number of derange-
ments a of A such that s, = sµ (resp. -sµ).

Notes and references

The relations between the various transition matrices contained in Table 1
and (6.6) were known to Kostka [K16], who also computed the matrices K
and K, 1 up to n = 11 [K17]. See also Foulkes [F7]. The formulas in
Example 4(a), (b), and (c) are taken from [K17], and those in (d) and (e)
from [El]. The results in Examples 5-8 are due to Egecioglu and Remmel
[E2]. See also [D6].
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7. The characters of the symmetric groups

In this section we shall take for granted the elementary facts about
representations and characters of finite groups.

If G is a finite group and f, g are functions on G with values in a

commutative Q-algebra, the scalar product of f and g is defined by

(f,g>G= 1 f(x)g(x-').
IGI XEG

If H is a subgroup of G and f is a character of H, the induced character
of G will be denoted by indG (f ). If g is a character of G, its restriction to
H will be denoted by resG(g).

Each permutation w E Sn factorizes uniquely as a product of disjoint
cycles. If the orders of these cycles are pl, P21... , where pi > p2 > .. ,

then p(w) = (pl, p21 ...) is a partition of n called the cycle-type of w. It
determines w up to conjugacy in Sn, and the conjugacy classes of Sn are
indexed in this way by the partitions of n.

We define a mapping 41: Sn -p An as follows:

p(w) =Pp(W)-

If m, n are positive integers, we may embed Sm X Sn in Sm+n by making
S. and Sn act on complementary subsets of {1, 2, ... , m + n). Of course
there are many different ways of doing this, but the resulting subgroups of
`Sm+n are all conjugate. Hence if v E Sm and w E Sn, v x w E Sm+n is
well-defined up to conjugacy in Sm+n, with cycle-type p(v X w) = p(v) U
p(w), so that

(7.1) i/i(v X w) = 4401Aw).

Let Rn denote the Z-module generated by the irreducible characters of
Sn, and let

R= ®Rn,
n>O

with the understanding that S° = (1), so that R° = Z. The Z-module R has
a ring structure, defined as follows. Let f E R", g E Rn, and embed
Sm X Sn in Sm+n. Then f Xg is a character of Sm X Sn, and we define

f.g=indS"XS(fxg),

which is a character of Sm+n, i.e. an element of Rm+n Thus we have
defined a bilinear multiplication Rm X Rn -R' In , and it is not difficult to
verify that with this multiplication R is a commutative, associative, graded
ring with identity element.
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Moreover, R carries a scalar product: if f, g E R, say f = E fn, g = E gn
with f,,, gn E R", we define

<f, g> _ L (.fn,gn)s,,.
n>0

Next we define a Z-linear mapping

ch: R - Ac=A0z C

as follows: if f E R", then

ch(f) = (f, 40s, =
11

E f(w)+y(w)
n WEs

(since 4i(w)= 0(w-1)). If fP is the value of f at elements of cycle type p,
we have

(7.2) ch(f) _ zp 1 f,p,.
IPI-n

ch(f) is called the characteristic of f, and ch is the characteristic map. From
(7.2) and (4.7) it follows that, for f and g in R",

(ch(f).ch(g))_ E zp1fgP=(f,g)s,

IPI-n

and hence that ch is an isometry.
The basic fact is now

(7.3) The characteristic map is an isometric isomorphism of R onto A.

Proof Let us first verify that ch is a ring homomorphism. If f E R' and
g E R", we have

ch(f.g) = (indsmX3. (f Xg), ql)s,,,,

(f X9,ressmxs^(q))s,,,xs'

by Frobenius reciprocity,

= (f,+1)sm(g, 4)s, =ch(f).ch(g)

by (7.1).
Next, let iin be the identity character of S. Then

ch(,q")_ E zv1pp=h"
IPI=n
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by (7.2) and (2.14'). If now A = (A1, A2, ...) is any partition of n, let
,a

denote 71A,. 71A, ..... Then 7)A is a character of Sn, namely the character
induced by the identity character of S. = SAC X SA, X ... , and we have
ch(i7A) = hA.

Now define, for each partition A of n,

(7.4) XA= det(7IA,_ +1)1.,j.Jto eRn,

i.e. X A is a (possibly virtual) character of Sn, and by (3.4) we have

(7.5) ch(X A) = sA.

Since ch is an isometry, it follows from (4.8) that (X A, X"') = SA,, for any
two partitions A, µ, and hence in particular that the XA are, up to sign,
irreducible characters of Sn. Since the number of conjugacy classes in Sn is
equal to the number of partitions of n, these characters exhaust all the
irreducible characters of Sn; hence the X A for I Al = n form a basis of R",
and hence ch is an isomorphism of Rn onto An for each n, hence of R
onto A. I

(7.6) (i) The irreducible characters of Sn are X A(1 AI = n) defined by (7.4).
(ii) The degree of XA is KA,(,.), the number of standard tableaux of shape A.

Proof From the proof of (7.3), we have only to show that X A and not - x A
is an irreducible character; for this purpose it will suffice to show that
X A(1) > 0. Now we have from (7.5) and (7.2)

sA=ch(XA)= F, z; 1Xvpv
P

where XP' is the value of X A at elements of cycle-type p. Hence

(7.7) XP = CSA,Pp)

by (4.7), and in particular

X A(1) = X(i^) = (5A, Pi n>

so that

hi =Pi = F, XA(1)sA
IAI-n

and therefore X'(1) = M(h, s)(1^). A = KA.(1^) from Table 1.

(7.8) The transition matrix M(p, s) is the character table of Sn, i.e.

P, = E XPSA-
A

Hence y,,' is equal to the coefficient of xA+8 in as pp.
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This is a restatement of (7.7).

Remark. From Table 1 in §6 we have

hA = SA + E K,. ASS
µ>A

eA, = SA + F, Kµ, A, sµ.
µ<A

Hence

71A_XA+ F, K,.AX"
/A>A

EA,=XA+ F, K,,XA.
µ<A

These relations give the decomposition of the induced modules H. =
inds-(1) and EA. = inds (e) respectively. It follows that H. and EA. have a
unique common irreducible component, namely the irreducible S"-module
with character XA. This observation leads to a simple construction of the
irreducible S"-modules: see Example 15 below.

Let A, µ, v be partitions of n, and let

1

E XA(w)XA(w)XV(w)
n. wES

which is symmetrical in A, µ, v. Then we have, for two sets of variables
x = (xv x2, ...) and y = (Yl, Y2, ... )

(7.9) sA(xy) = E
IA. V

where (xy) means the set of variables x.y1. (Compare (5.9).)

Proof For all partitions p we have pp(xy) = pp(x)pp(y) and hence from
(7.8)

E XASA(xy) = L. X"X°sµ(x)SV(y)
A µ,V

so that ss(xy) is the coefficient of X A in the right-hand side.
I

Let f, g E A", say f = ch(u), g = ch(v) where u, v are class-functions on
S. The internal product of f and g is defined to be

f*g=ch(uv)
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where uv is the function w - u(w)v(w) on S. With respect to this
product, A" becomes a commutative and associative ring, with identity
element h".

It is convenient to extend this product by linearity to the whole of
and indeed to its completion A (§2); if

f E f (n), g g,n)
n>O n>O

with f (n), g(n) E A", we define

f * g = f(n)
* g(n).

n>O

For this product, A is a commutative ring with identity element 1 = E hn,
and A is a subring (but does not contain this identity element).

If A, µ, v are partitions of n, we have

(7.10) sA * sµ = E yaµs
V

so that by (7.9) and the symmetry of the coefficients yxµ

(7.11) sa(xy) = E sµ(x)(sa * sd(y).
Fi

Also we have

(7.12) PA * Pµ = SAµzAPA

so that the elements zx SPA E AQ are pairwise orthogonal idempotents, and
their sum over all partitions A of n is by (2.14) the identity element h" of
A".

Finally, for all f, g E A we have

(7.13) (f, g) = (f * g)(1)

where (f * g)(1) means f * g evaluated at (xl, x2, ...) _ (1, 0, 0, ... ). (By
linearity it is enough to verify (7.13) when f = pa and g = pµ, and in that
case it follows from (7.12) and (4.7), since pa(l) = 1 for all partitions A.)

Examples

1. X(n) = rln is the trivial character of Sn, and en = e is the sign character.
(Compare (7.10) with (2.14').)

2. For any partition A of n, X" = en X'A. For

XP = (SA. , PP) _ (SA, e8PP) = eP X'

since w(sa.) = sa and w(p,) = --Pp,. Hence the involution w on A corresponds to
multiplication by e,, in R". Equivalently, e,, * f = re(f) for all f e A".
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3.
Corresponding to each skew diagram A - µ of weight n, there is a character

Xx/µ of S,, defined by sxl,,. If I Al = m we have from (5.1) and (7.3)

W 11L, X°)S, _ W, X'` X")Sm+n

_ (ressm+n "X,, X" X X X")s.xs,

by Frobeniu
X

reciprocity, and therefore the restriction of y' to SX S" is

Elµl-m Xx
The degree of X A/" is equal to (sad., ei) = i.e. to the number of

standard tableaux of shape A - A.

4. Let G be a subgroup of S", and let c(G) be the cycle indicator of G (§2,
Example 9). Then c(G) = ch( XG), where XG is the character of S. induced by the
trivial character 1G of G. For ch( XG) _ (XG, ' )s. = (1G, ' I G)G (by Frobenius
reciprocity) = c(G).

If G, H are subgroups of S", (c(G), c(H)) is the number of (G, H) double
cosets in S".

5. From §3, Example 11 and (7.8) we obtain the following combinatorial rule for
computing

XPA

:

(-1)ht(S)XPx= T

S

summed over all sequences of partitions S = (A(0), A(1), , A(')) such that m = l( p),
0 = A(°) C k(') C ... C A() = A, and such that each k(') - A(i-1) is a border strip (§3,
Example 11) of length p,, and ht(S) = E; ht(A(') - A('-1)).

6. The degree f x = X'(1) of X' may also be computed as follows. By (7.8), it is the
coefficient of x" in (E x;)" EW E S. e(w)x". If we put µ = A + S (so that µ; =
A; + n - i, 1 < i < n), this coefficient is

F, e(w)n! fl (µ; - n +w(i))!
WES i=1

which is the determinant n! det(1/( µ, - n +j)!), hence equal to

n!
det(A,(µ;-1)...(N,;-n+j+1))

n! n!=-det(µi 0(µ,,...,µn)
µ! µ!

where µ!=ni µ;! and 0(µ,,...,µ,,)=Fli<j(µ;-µj)
7. Let p = (r,1"-'), so that xP is the value of the character X x of S,, at an r-cycle
(1 < r < n). By (7.8), XP is the coefficient of x+` = xA+s in
(Ex,XEx;) 'EWEs e(w)xW'. From the result of Example 6, this coefficient is

(n-r)!A(A,_.,µ;-r,...,A")
µ,!...(µy-r)!...µ"!



118 I SYMMETRIC FUNCTIONS

and therefore

XA/fA=
(n-r)! V' µ,! VT µ;-µl-r

P h..n! i-1 (µi-r)! j#1 µi - lye

If we put cP(x) = fI (x - µi) and hP = n!/z. = n!/(n - r)!r, this formula become,

n

-r2hpXp/fA= E µi(µi-1)...(µi-r+1)iP(µi-r)/p'(µ,)
i-1

which is equal to the coefficient of x in the expansion of

x(x - 1)... (x - r + 1)QP(x - r)/g(x)

in descending powers of x.
In particular, when r = 2 we obtain

h,XP/fA=n(A')-n(A).

8. If A is a partition of n, let

fA(q) = r-1 (1 - qh(X)).
XE A

Let w E S,, be an n-cycle and let be a primitive complex nth root of unity. Then
for all r > 0 we have

'( ')(l) X A(w') =f

(Since ff(q) = ipn(q)sA(1, q, q2,... ) (§3, Example 2) it follows that

F, ff(q)sA(x)
IAI-n

is equal to the coefficient of to in iPn(q)fl;j1 -xiq'-1t)-1, and hence by the
q-binomial theorem (§2, Example 4) is equal to

F, ga(q)x'
lal-n

where ga(q) = 9.(q)/fIi,1 ipa1(q), and the sum is over all sequences a=
(a 1, a2, . .) of non-negative integers such that I a I = E ai = n. Now ' is a primi-
tive sth root of unity, where n/s is the highest common factor of r and n. Show
that gaq ') = 0 unless each ai is divisible by s, and that if a = s 'G then ga(1.r) is
equal to the multinomial coefficient (n/s)!/fI fii! Deduce that

(2) fA( r')SA(X) _ (E x; )n15 =ps 1'
IAI-n
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on the other hand we have by (7.8)

(3) XA(w')SA(x) =p"/s'
IAI-n

and (1) now follows from comparison of (2) and (3).)

9, (a) Let An, a A" denote the semigroup consisting of the non-negative integral
linear combinations of the Schur functions sA, I Al = n, and let A+ _ en > n An,. If

f e
A, then f E A+ if and only if (f, g) >0 for all g E A+.

By (7.5) and (7.6), An, consists of the characteristics of ordinary (not virtual)
characters of S". From (7.3) it follows that A" . An, c A++" for all m, n > 0, so
that A+ is closed under multiplication as well as addition. (Equivalently, the
coefficients c,. _ <s,, ss,s,,) are non-negative.) In particular, hA and eA lie in A+
for all partitions A. From Examples 2 and 3 it follows that A+ is stable under the
involution w, and that sA,µ E A+ for all partitions k, µ.

(b) Define a partial order on A by letting f > g if and only if f - g E A+. Show that
the following conditions on partitions A, µ of n are equivalent:

(a) hA < hµ; (a') eA < e,,; (b) sA < hµ; (b') SA < ep,; (c) M(e, m)A.,, > 0; (d) A >

(Since A+ is stable under w, we see that (a) « (a') and (b) « (b'). Next, the
relation hA = E KF,,s,, (6.7) shows that sA < hA and hence that (a) - (b). Since
ea, > sA we have M(e, h',) > (s,, h,, ), whence (b) - (c). The next im-
plication (c) - (d) follows from (6.6) (i). Finally, to show that (d) - (a) we may by
(1.16) assume that A = R.1 µ, and then we have

hµ - hA = hp,,+ I hµ)-1) = h,, s(w. w,) > 0,

where v is the partition obtained from µ by deleting Aj and Aj.)

The equivalence (c) - (d) is known as the Gale-Ryser theorem: there exists a
matrix of zeros and ones with row sums A. and column sums µ, if and only if
A'> a (use (6.6)).

Another combinatorial corollary is the following: if A > .c then KBA < KB,, for
any skew diagram 0. (Take the scalar product of both sides of (a) with se, and use
(5.13).) In particular, we have Ka,, > 0 whenever A > c (because KAA = 1).

10. (a) We have

ESA*SA=
fl(1-pk)-1

A k>1

where the sum on the left is over all partitions A. For

SA*SA - EZP I
X'.A PP

P

and

(Xp)2-

Zp
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by orthogonality of characters, so that

Lr SA * SA - ` Pp
IAI-n Ipi- n

which is equivalent to the result stated.

(b) We have

11(1 -x;yjzk)-1 = E SA(x)Sp,(Y)(sA * S,)(z),
i,l,k A,A

11 (1 +Xly;Zk) = F, SA(X)S,,,(Y)(SA * S,,)(Z).
i,J,k A,µ

11. Let (P = EIAI_n X A. If w E S has cycle-type p, then

(P(w) Xp = (SA,Pp) = (S,Pp)
A A

where (§5, Example 4)

s = (1 -x;)-1 1 10 -x;xt)-1.
i<j

By calculating log s, show that

r P
n
P. P

2n
P.,

),us = exp'- + - exp
2nn odd

and hence that (p(w)=r1,-,,a;-1(P)), where a(m) is the coefficient of t'" in

exp(t + Zit2) or exp(Zit2) according as i is odd or even. In particular, cp(w) = 0 if w
contains an odd number of 2r-cycles, for any r > 1.

12. Let Cn be the cyclic subgroup of S,, generated by an n-cycle, and let 0 be a
faithful character of C,. Show that the induced character (Pn = ind'(0) is indepen-
dent of the choice of 0, and that

1
ch(cP) µ(d)Pdldn din

where µ is the M6bius function.
(Let V be a finite-dimensional vector space over a field of characteristic 0, and

let L(V) = ®,,, 0 L'(V) be the free Lie algebra generated by V. Then for each
n > 0, Ln is a homogeneous polynomial functor of degree n, and a(Ln) = cpn in
the notation of Appendix A, (5.4).)

13. For each permutation w and each integer r > 1, let ar(w) denote the number
of cycles of length r in the cycle decomposition of w. The ar are functions on the
disjoint union of the symmetric groups S,,. As such they are algebraically indepen-
dent over Q, for if f is a polynomial in r variables such that f(a1(w), ... , ar(w)) = 0
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for
all permutations w, then f(m1,... , m,) = 0 for all choices of non-negative

integers
mi, and hence f is the zero polynomial. Hence

A = Q[a1, a2, ... ]

is a polynomial ring. (The multiplication in A is pointwise multiplication of

functions:
(fgXw) = f(w)g(w), not the induction product defined in the text.)

(a) For each partition p = (1'"l 2m2 ...) let

(a) 1 1
a, am.)

r> 1 mr, r, i mr!

where a;m') is the `falling factorial'

a(-,)=a,(a,- 1)...(a,-mr+ 1).

Since the a, are algebraically independent, the monomials a " aZ 2 ... form a
a

Q-basis of A, and hence the polynomials
P

form another Q-basis.

Define a linear mapping 0: A --> AQ by

0(f)_ E ch(fIS,)

R
for f EA. If f =

P
then

n>O

ch(f IS")= 1 E (;).! We

If w has cycle-type r = (1", 2"2 ...) we have ar(w) = nr and hence
n

]1 r)
m,r

, which is equal to z,/zPz if z = p U o for some partition

is a subsequence of r) and is zero otherwise. It follows that

BJ(P) ° zP
1zo I

PP Po

-= zP 1pP H,

where

H = F, z-'p. = E h,,.
o n>O

(b) Define a linear mapping cp: A. -->A by

a
cP(pp) =Zp

P
= FT rm.a(m.)

r>1

o (i.e. if P
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for each partition p = (1" 2m2 ... ). From (a) above it follows that Bcp: AQ - A
multiplication by H. The mapping rp is bijective and hence defines a new produQ is

f * g on A by the rule ct

f *g=(P((P-'(f)(P-'(g)).
We have

a a z a
l pVo

p or zpzo pUv

or equivalently

a(m) * a(n) = a(- +n)

for any two finite vectors m = (m1, m2, ... ), n = (n1, n2.... ) of non-negative inte
gers, where a(m) = aim1) and likewise for a(").

(c) Let

P = fl (1 +p,)°'.
r>1

Then 9(f ) = (P, f) for all f E A.
(Introducing variables x = (x1, x2,... ), we have

(1) P(X) = (1 +p,(x))"'
r> I

E (,)prmrr
r>1 m,>0

(a)p,(X).

Let C(x, y) = flo(1-x,y,)-1 = E, zp 1 pp(x)pp(y), as in §4, Example 9. Then it
follows from (1) and the definition of rp that P(x) _ cpyC(x, y), where Spy acts on
symmetric functions in the y's. Hence (loc. cit.)

(P,f) = (Py(C(x,y),f(x)) _ (Pyf(y) ='p(f

14. Let ,i = (,i1, ,i2, ...) be a partition of n and let (N, A) _ (N) U A =
(N, A1, A2,...) where N is any integer > )11. From (7.8) it follows that, for each
w ESN+", X(N'A)(w) is equal to the coefficient of xo in the
product

(1) a8(Xn,x1,...,Xn) rl pr(Xp,x1,...,Xn)a,(w)

r>1

where, as in Example 13, a,(w) is the number of r-cycles in the cycle decomposi-
tion of w. Since the polynomial (1) is homogeneous in x0, x1,. .. , x, nothing is lost
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by setting x0 'n1, which shows that
X

X(N,A)(w) is equal to the coefficient of

n

as(xl,..., xn) fl (1 -x1) fl (1 +p,(xi,..., xn))a,(w)

i-1 r>1

and therefore is equal to the coefficient of sA in

fl (1 -xi) r-I (1 +p,)nr(W).

i>1 r>1

It follows that (as functions on SN+n) we have

(2)

where

and

(3)

X (N' A) = (EP, sA)

E=fl(1-x1)= E(-1)re,
i>1 r>O

P= fl(1+p,)°'= .(aP)pP

r> 1

The scalar product (EP,sA) on the right-hand side of (2) is a polynomial
X A (=-A = Q[al, a2, .... ] called the character polynomial corresponding to the parti-
tion A. It has the property that XA I SN+n = X(N, A) for all N> A1.

There are various explicit formulas for the polynomials XA:

(a) Since by (2.14)

it follows from (3) that

E_ E(-1)1(o)z;1pa

a

(4) AVol PXA= E (-1)t(o)z1XP1\\

IP. Q

summed over partitions p, o such that I P I + I v I = I Al.

(b) Alternatively, we have

XA= E (-1)r(e,P,sA)
r> O

r> O

(- 1)IA-' 1(P,sµ)
/L
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summed over partitions A c A such that A - A is a vertical strip. Hence

(5) XA= E(_ )IA-Al Y XP
(a)A

P

summed over µ as above, and p such that I pl = I µl

(c) Let uA = E1sA = E,, o(- 1)rsA/(1,). From (5.4) it follows that

(6)

1 1 1

hA,-1 hA, hA,+n-1

hA2-2 hA2_1 hA2+n-2

hA

UA =

From Example 13(c) we have

X1 = (EP, sA) _ (P, uA) = Q(UA)

where cp: AQ -*A is the mapping defined in Example 13(b). Hence if we define

(;)EAE
lpi-r

for all r (so that -rr, = 0 if r < 0), it follows from (6) that

(7) X A =

ITA,-n VA

where the asterisk indicates that the multiplication in A is that defined in Example
13(b).

(d) By subtracting column from column in the determinant (7) we obtain

(8) XA = det*(TIA;-I+1)1ti,jtn

where rr, = ar, - a,_ 1, and again the asterisk indicates that the determinant is to be
expanded using the * -product.

15. In general, if A is a ring and x, y (A, then Axy is a submodule of Ay and is
the image of Ax under the homomorphism a - ay (a EA), hence is isomorphic to
a quotient of Ax.

(a) Let A be a partition of n and let T be any numbering. of the diagram of A with
the numbers 1, 2, ... , n. Let R (resp. C) denote the subgroup of Sn that stabilizes

1 1 1

7TA,-1 7A, 7A,+n-1

ITA2-2 7A2-1 7TA2+n-2
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each row (resp. column) of T, so that R - SA and C - SA.. Let A = Q[S,, ] be the
group algebra of S,, and let

a = E e(u)u, s = v.
uEC VER

Then As is the induced module indr(1), isomorphic to HA, and likewise Aa - EA..
Let e = as E A. Since R n C = (1), the products uv (u E C, v (=- R) are all

distinct, and hence

(1) e=1+... 00.

From the observation above, MA =Ae is a submodule of As and is isomorphic to a
quotient of Aa. From the remark following (7.8) it follows that MA is the
irreducible A-module (or Sn-module) with character XA.

(b) Let (p: A -A be right multiplication by e. Then 9(MA) = Me =Ae2 cAe = MA.
Since MA is irreducible, it follows from Schur's lemma that cpl MA is a scalar c E Q,
and therefore e2 = ap(e) = ce. Hence cp2 = ccp, so the only eigenvalues of cp are 0
and c, and the eigenvalue c has multiplicity equal to the dimension of MA. Hence

(2) trace rp = c dim MA = cn!/h(,l)

by (7.6) and §5, Example 2. On the other hand, it follows from (1) above that for
each w E S" the coefficient of w in cp(w) = we is equal to 1; hence relative to the
basis S" of A the matrix of cp has all its diagonal elements equal to 1, and
therefore

(3) trace p = n!

From (2) and (3) it follows that c = h(A) and hence that e = h(,1)-'as is a primitive
idempotent of A affording the character X'.

(c) With the notation of (a) above, let MTEQ[x1,...,x"] denote the monomial
, where d(i) = r - 1 if i lies in the rth row of T, and let fT denote theXi ... xn(")

product FI(x, -xi) taken over all pairs (i, j) such that j lies due north of i in T.
Thus fT is the product of the Vandermonde determinants corresponding to the
columns of T, and mT is its leading term, so that fT = amT.

Let 0: A --> Q[x1,..., xn] be the mapping u -. umT. Since d(i) = d(j) if and only
if i and j lie in the same row of T, it follows that the subgroup of Sn that fixes MT
is the row-stabilizer R, and hence that 0(A) -As. Consequently 01 MA is an
isomorphism, and we may therefore identify MA with its image B(MA) =AasmT =
AamT=AfT. In this incarnation MA is the Specht module corresponding to the
partition k: it is the Q-vector space spanned by all n! polynomials fT, for all
numberings T of the diagram of l, and the symmetric group acts by permuting the
x's.

(d) The dimension of MA is equal to the number of standard tableaux of shape ,l,
by (7.6). In fact the polynomials fT, where T is a standard tableau, are linearly
independent over any field, and hence form a basis of MA.

(Order the monomials xa, a e N" as follows: x" <xd if and only if a precedes
0 in the lexicographical order on N".
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(i) Suppose that i <j and d(i) < d(j) in T, and let w be the transposition ((j).
Then MT < mwT-
(ii) Deduce from (i) that if T is standard then IT = mT + later monomials.

(iii) Let T1,. .. , T, be the standard tableaux of shape A. The monomials mT...... mr
are all distinct, and we may assume that mT, < ... < MT,. Use (ii) to show that the
fr. are linearly independent: if E c; fT, = 0, the coefficient of mT, in the left-hand
side is equal to c1, hence c1= 0; repeating the argument gives c2 = 0, and so on.)

(e) From (d) it follows that each fT is a linear combination of the fT., say
fT = E c1fT1 with coefficients c; E Q. Show that each ci is an integer. (Let m be the
common denominator of the rational numbers c,, and let c, = m;/m where the in.
are integers. Then we have

(4) mfT = E m;fT,.

If m > 1, let p be a prime dividing m, and reduce (4) mod. p. Since not all the M,
are divisible by p, we conclude that the fT. are linearly dependent over the field of
p elements, contrary to (d) above.)

Hence for each permutation w e S the entries in the matrix representing w,
relative to the basis (fT,) of MA, are all integers.

16. For each partition A of n, let RA be an irreducible matrix representation of S,
with character X A, such that RA(w) is a matrix of integers for each w n
(Example 15(c) provides an example.) For each partition p of n, let cP denote the
sum (in the group ring of all elements of cycle-type p in S,,. Then co
commutes with each w e S,,, and hence by Schur's lemma RA(6p) is a scalar
multiple of the unit matrix, say

(1) RA(E) = ld,

where uio is an integer and d = n! /h(,1) is the degree of XA. By taking traces in (1)
we obtain

n! n!_ A _ WA
ZP XP h(A)

and therefore

(2)
A h(A) A

Z(uP =
XP

P

is an integer for all A, p.
Let C denote the centre of the group ring Z[S ]: it is a commutative ring with

Z-basis (EE), P,_,,. For each partition A of n, the linear mapping wA: C,, - Z defined
by w A(5) = uio is a ring homomorphism, since RA(cP e0) = RA(6P)RA(co ). Moreover
the w A, I Al = n, are a Z-basis of Hom(C,,, Z).

17. (a) For each partition A, the `augmented Schur function' sA is defined by

h(A)
SA=h(A)SA= E XAPP= u'vpP

P

ZP

P
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in the
notation of Example 16. Thus ik is a polynomial in the power sums p, with

integer
coefficients, i.e. is E'Y, where 'I' = Z[p1, p2,... ] is the subring of A

generated by the power sums. Moreover, i, is the smallest integer multiple of Sa

that
lies in W, since the coefficient of pi in is is 1.

(b) Let I be a prime number (the letter p being preempted) and let 'Yf denote the
,,bring of 'I' generated by the p, with r prime to 1. Show that is e'I' if and only
if A is an 1-core (§1, Example 8).

(If k is an 1-core, all the hook-lengths in A are prime to 1, and hence all the
border strips of A have lengths prime to 1. From this observation and Example 5 it

follows
that XP = 0 if p has any parts divisible by 1, and hence that is E'F,'.

Conversely, if A is not an 1-core, let A and A* denote the 1-core and I-quotient of A
tb!/h(I,l)h(,1*)

# Oa and
I

hence i
Then fjr the partition p = (011)

§have

Xple 8).

we

(c) Let X be an indeterminate and ex: 'T -+ Z[X] the homomorphism defined by
e,y(pd = X for all r > 1. Then

eX(SA) = ca(X)

where ca(X) is the content polynomial of k (§1, Example 11).

18. Let A be a partition of n, let l be a prime number, and let rc be the 1-core of
A. Then

(1) is =i.(P, -P,)r (mod. 1)

in +y = Z[pl, p2, ... ], where r = (n - I u I)/1 and i, is as defined in Example 17.
The proof of (1) uses some concepts from modular representation theory, for

which we refer to [P4]: namely the notion of the defect group of a block (or
equivalently of acentral character) and the Brauer homomorphism.

Let F denote the field of I elements. For any finite group G, let C(G) denote
the centre of the group algebra F[G]. For each partition A of n we have a
character wA: F of the F-algebra obtained from wa (Example 16)
by reduction modulo 1. Each defect group Da of wA is a Sylow 1-subgroup of the
centralizer of an element of cycle-type (I"') in SiC S,,, where 0 <m <n/I ([J91,
6.2.39). It follows that if Da * (1), then DA contains a subgroup Q of order 1,
generated by an 1-cycle. On the other hand, if Da = {1}, there is a partition p of n
for which both zP and wP are prime to 1, and hence (Example 16) h(A)XP = z, wP
is prime to 1. Consequently h(A) is prime to 1 and therefore (§1, Example 10) A is
an 1-core.

Assume now that A is not an 1-core, so that Da contains Q as above. Let
H= Q X Sn_1 be the normalizer of Q in S. Then the mapping (p: C(H)
=C(Q)OF defined by restriction to H is an F-algebra homomorphism
(the Brauer homomorphism), and w a factors through cp: say TT A = (e ® w 1') u (p,
where µ is some partition of n - 1, and e is the unique (trivial) character of C(Q).

If now p is a partition of n, the conjugacy class cP in S,, meets H only if p is of
the form (11) U o or (1) u o for some partition o of n -1. If p = (11) U o we have
mx(cP) = wµ(co), and if; p = (1) U o we have xw'A(cp) _ (l - 1)& (E) =
-&(E, ). Since wa(E) is the reduction modulo 1 of wP (Example 16) it follows
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that modulo I we have (OP' = &)P if p = (1r) U 0, P o. if p = (l) U o, and
wP = 0 for all other p. Hence

iA = E _P PP oP,) (P - Pr)

so that

5A=i.,(Pi -pi) (mod. 1).

If .e is not an 1-core we may repeat the argument. In this way we shall obtain

(2)
-Pt)q

for some integer q > 1 and some 1-core P. Now apply the specialization CX: p, ,yX
(r > 1) (Example 17(c)): we obtain

(mod.1)

C, (X)

where err = v + (lq) has 1-core v. From § 1, Example 11(c) we now conclude that the
partitions A and it have the same 1-core, so that v = ,c and q = r, completing the
proof.

19. Let A, .e be partitions of n, and let I be a prime number. Then with the
notation of Example 17, iA = i,,, (mod. 1) if and only if A, 1i have the same 1-core
('Nakayama's conjecture'). (If i, =iµ, then cA(X) = cµ(X) by Example 17(c), and
hence A, 1A have the same 1-core by §1, Example 11(c). Conversely, if A, µ have the
same 1-core, then it follows from Example 18 that i, = iµ.)

20. As in §5, Example 25 we shall identify each f ®g r= A ® A with f(x)g(y),
where (x) and (y) are two sets of independent variables. Define a comultiplication

and acounit e*:A-*Zby

0*f=f(xy)

where (xy) is the set of all products x; y,, and

-- *f = M, 0, 0....
for all f E A.

With respect to A* and a*, A is a cocommutative Hopf algebra over Z; both A`
and e* are ring homomorphisms, and (1®e*) 0* is the identity mapping.

(a) Show that, for all n > 1,

(1) A*hn = s, ®SA' a*11 = 1;
IAI-n

(2) 0*en = E SA ®SA,, a*en = Sln;
IAI=n

(3) 0*Pn =Pn ®Pn e*Pn = 1
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Also we have (7.9)

(4) A*SA_ E yµyS"®S
/1,V

(b) As in §5, Example 25 define a scalar product on A 0 A by

<fl ®gi, f2 ®g2) = <fr, f2)(g1, g2)

for fl, f2, g1, g2 E A. With respect to this scalar product, A* is the adjoint of the
internal product: in other words, we have

(5) <A*f, g ®h) = <f, g * h)

for all f, g, h E A. (By linearity we may take f = sk, g = sµ, h = s,,, and then both
sides of (5) are equal to yµ4 by (4) above.)

21. For any commutative ring A, let G(A) denote the set of all unital ring
homomorphisms a: A -A. Each such homomorphism is determined by the formal
power series

aH(t)= Ea(hi)t`EA[[t]]
i>0

with constant term a(ho) = 1, and we may therefore identify G(A) with the set of
formal power series in A[[t]] with constant term equal to 1.

(a) The comultiplication i : A -1- A 0 A defined in §5, Example 25 induces an
abelian group structure on G(A) as follows. If a, f3 E G(A), we define

a + f3=MA o(a(&/3)°

where mA: A ®A -'A is the multiplication in A. We have then (loc. cit.)

(a+ f3)hk = E a(hi) f3(hj)
i+1 k

so that

(a+ f3)H(t) = (aH(t))(f3H(t)),

the product of the power series all(t) and 6H(t) in A[(tll.
Next let w: A -- A be the involution defined by tu(hi) _ (-1)iei (i > 1), so that

on A", a is (-1)"w. Then define

-a=a°m;
we have (-a)H(t) = a(E( -t)) _ (aH(t))-r, so that (-a)(H(t)) is the inverse in
A[[t]] of the power series aH(t).

Finally, the zero element 0 of G(A) is induced by the counit e: namely
0 = eA ° e, where eA: Z - A is the unique homomorphism of Z into A. Since
e(h;) = 0 for each i > 1, it follows that OH(t) = 1.

(b) The comultiplication A* of Example 20 induces a multiplication in G(A) by the
rule

0 =mA°(a0 /3)°0*.
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This product may be described as follows: if we formally factorize the power series
all(t) and Mt), say

all(t) = fl(1+eit), j3H(t)= Fj (1+ qt),

then

(a ,6)H(0 _ fl (1 + 61i jt).
i,i

The element 1 E G(A) defined by

1=eA,e*

with e* the counit defined in Example 20, is the identity element for this
multiplication, and 1(H(t)) _ (1 - t)-1.

(c) With addition and multiplication as defined in (a) and (b), G(A) is a commuta.
tive ring, with zero element 0 and identity element 1. If rp: A - B is a homomor.
phism of A into a commutative ring B, then
G((p) a = rp o a is a ring homomorphism. Thus G is a covariant functor on the
category of commutative rings.

22. Define an internal product on A ® A by

(f1 (& f2) * (g1 (& g2) _ (f1 * g1) (& (f2 * 92)

for f1, f2, g1, g2 E A. Show that 0(f * g)=(if)*(g) for all f, g E A, but that in
general 0*(f * g) # (A*f) * (&g)

23. (a) Let f, g, h A. Then the scalar product (f * g, h) is symmetrical in f, g,
and h.

(b) Let (uA),(vA) be dual bases of A, and let f E A. Then

0*f. E(uA* f)®VA.
A

(For (A*f, g ®uA) = (f, g * uA> = (uA * f, g) by (a) above and Example 20(b).)

(c) Let f, g, h E A and let Ah = E a10 b.. Then

(fg)*h= E(f *a,)(g*bi).

In particular,

(fg)*SA= `(f *SAIµ)(g*Sµ).

µ

(d) Let A, 1A be partitions. Then

hA * Sµ = fl
i>1

summed over all sequences (µ(0), µC1), ...) of partitions such that 0 = µP c µ()
... c µ and I A(') - µ('-1)I = A for each i > 1. (Use (c).)
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(e) If M = (m,1) is a matrix of non-negative integers, let hM = [1;,; If A and µ
are partitions, show that

hA*h, = F, hm

summed over all matrices M of non-negative integers with 1(A) rows and l( p.)
columns and row sums A,, column sums µf.

24, The symmetric group S,, embeds naturally in Sn+l as the subgroup that fixes
n + 1. The union

S. = U Sn
n?0

is the group of permutations of the set of positive integers that fix all but a finite
subset. If w e S. has cycle-type p, where p = (pl, ..., p,) is a partition of length r,
then when regarded as an element of the permutation w has cycle type
(pi, , .. , Pr,1, ... ,1) = p U (1k). We are therefore led to define the modified cycle-type
of w to be the partition (pl - 1, ... , p, - 1). This modified cycle-type is stable
under the embedding of S,, in Sn+k.

For each partition A, let C. denote the set of all w e S whose modified
cycle-type is A. As A runs through all partitions, the CA are the conjugacy classes of
the group S,,. For example, Cps is the class of transpositions, and Co consists of the
identity permutation.

For each n > 0, let Zn denote the centre of the group ring Z[S,], and for each
partition k let cA(n) a Zn denote the sum of all w e S. whose modified cycle-type
is A, i.e. the sum of all w e Sn r1 CA. We have cA(n) # 0 if and only if I Al + 1(A) < n.

Now let A, µ be partitions. The product cA(n)cµ(n) in Z,, will be a linear
combination of the c (n), say

cA(n)cµ(n) _ E

with coefficients a',(n) E N, and zero unless I vl < I Al + I Al. For example, when
A = µ = (1), c(l)(n)2 is the sum of all products (ijxkl) of two transpositions in Sn,
and a simple calculation gives

c(I)(n)2 = 3c(2)(n) + 2ct11I(n) + Zn(n - 1)co(n).

In general (see [F2]) the coefficients a'µ(n) are polynomial functions of n, and are
independent of n if and only if I v I = I AI + I Al. We may therefore, following [F2],
construct a ring as follows. Let R be the subring of the polynomial ring Q[t]
consisting of polynomials that take integer values at all integers (the binomial

coefficients n 0, form a Z-basis of R), and let F be the commutative

with R-basis (CA) indexed by partitions A and multiplication defined by

CACA = FlaAµcy,
v

where aXµ E R takes the value aaµ(n) at the integer n, and the sum is over
partitions v such that I PI < I Al + I Al. If we assign each cA the degree I Al, F is not a
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graded ring, because the right-hand side of (3) is not homogeneous; but it is a
filtered ring: if F' is the subspace of F spanned by the cA such that I AI < r, then
F'. FS c F'+5. We may therefore form the associated graded ring GR = Gr(F): GR
is the direct sum e > o GR, where GR = F'/F'' I, and the multiplication in GR is
induced from that in F. The effect of passing from F to GR is simply to throw out
the terms of lower degree in (3): in GR the multiplication is defined by

(4) cAcµ F, aAV c,-
vI°!AI+If4I

and (as remarked above) the structure constants aaµ such that I v I = I Al + I µI are
non-negative integers. (For example, in GR we have c(i) = 3c(2) + 2c(11), from (2)
above.) It follows that GR = R ®, G, where G is the free Z-module with basis (cA)
and multiplicative structure given by (4).

Let us write c, in place of c(,), r > 1 (co = 1 is the identity element of F and G).
Show that

(a) if IAI+r=m, then

(5) (m)
r (m + 1)r!/ri m;(,1)! if l(A) <r+ 1,

aA(,) = ` i> O

0
where mo(A) = r + 1 -1(A);

(b) if I AI + r= I v I then

(6) aA(,) _ au(

otherwise,

summed over pairs (i, ju) such that µ U v = A U (v1). Deduce that aa(,) = 0 unless
v > A U (r), and that aaj(') > 0

From (b) it follows that, for each partition A = (AI, A2,... ), CA1CAZ ... is of the
form

CA1CA2... _ F, dA,,,cµ
µ>A

with dAA > 0. Hence C1, C2,... are algebraically independent elements of G, and
generate G over Q, i.e. G ® Q = Q[c1, C2.... ]. Moreover, the multiplicative struc-
ture of G is uniquely determined by (a) and (b).

25. Let 41 be the involution on A defined in §2, Example 24. With the notation of
that Example, the h,*, = ly(hA) form a Z-basis of A. Let (ga) be the dual basis, so
that (gA, h*) = SA Equivalently, gA =(mA), where is the adjoint of
relative to the scalar product. We shall show that, in the notation of Example 24
above, the linear mapping lp: A -+ G defined by cp(gA) = cA for all partitions A is a
ring isomorphism.

(a) From §2, Example 24 we have

hn = -h + L, u(n)µhµ
µ<(n)
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for suitable integers and hence ha is of the form

ha = (-1)""hA + F,
µ<A

This shows that the transition matrix M(h*,h) (= M(h, h*)) is strictly upper
triangular, with diagonal elements (-1)1(1). By (6.3X3) we have M(g, m) _
M(h, h*)', hence

µ>A

In particular, -p,,.

(b) Let bal,, = (gAgµ,, h*) be the coefficient of g in gAgµ. Since the -p
generate AQ, in order to prove that co defined above is a ring isomorphism it will
be enough to show that b",, = a' whenever µ is a one-part partition (r), and for
this purpose it will suffice to show that the b's satisfy the counterparts of the two
relations (5) and (6) of Example 24.

Consider first

(1) hai(r)= -(gAPr,hm) _ -(gA,Prrhm)

in the notation of §5, Example 3. From §2, Example 24, h* is the coefficient of t'
in

1 m+1H(t)_,,,-1 1

1
expl -(m+1) L prtr1.

m+ r> 1

Hence -pr h* = is equal to the coefficient of t'° in trH(t)-in-1,
that is to say it is the residue of the differential

(2) trdt/(tH(t))in+1 = r+1 d(tr+1)/um+1

where u = tH(t) as in §2, Example 24. Now

unlr+ltr+1 = ur+1(C' hnJ(F,

(r+ 1)! h*ulAI+r+l

T mi(A)! A

i>o

summed over partitions k of length 1(A) < r + 1, where mo(A) = r + 1 -1(A).
Hence from (2) we obtain

_Pr'
r!(m + 1)

h* _ 7--1 h*
m -

1 mi(A)! A

i>0

summed over partitions A such that 1(A) < r + 1 and I Al = m - r. From (1) it now
follows by comparison with relation (5) of Example 24 that barj

=
a(") whenever

CAI+r=m.



134 1 SYMMETRIC FUNCTIONS

(c) Finally consider

bA(r)= -(gAPr,hv)= -(gA,Prlhv

Since pr1 = r d/d pr is a derivation (§5, Example 3) we have

Pr1 h* = hv<0Pr1 hv,,

where vW _ (v i ) and the sum is over i > 1 such that v < r. Hence

(3) bA(r) F, (gA, h*(,)p hv,)

in which the scalar product on the right-hand side is the coefficient of ha in
h*(i)Pr h*r, hence is zero unless A = U µ for some partition µ, i.e. J AU v = A U
(v; ); and then is equal to the coefficient of hµ in p; h*_, which is (gµ, p; h*.)
-b, by (1). Hence (3) takes the form

bA(r) = L.+ bw(r)

summed over pairs (i, µ) such that µ U v = A U (vi). We have thus established the
counterpart of relation (6) of Example 24, and the proof is complete.

26. Let S: R -> R ®R be the comultiplication on R that corresponds to .: A -+
A 0 A (§5, Example 25) under the characteristic map (so that (ch 0 ch) c 6 = 0 c ch).
If f e R,,, show that

Sf= ® fISPxSq.
p+q-n

Notes and references

The representation theory of finite groups was founded by Frobenius in a
series of papers published in the last years of the nineteenth century, and
reproduced in Vol. 3 of his collected works; in particular, he obtained the
irreducible characters of the symmetric groups in 1900 [F10], and our
exposition does not differ substantially from his.

The internal product f * g occurs first (as far as I am aware) in the 1927
paper of Redfield [Ri], and later in [L11]. (Littlewood calls it the inner
product: we have avoided this terminology, because inner product is
sometimes taken as synonymous with scalar product.)

Example 5 is due to Littlewood and Richardson [L13], but is commonly
known as the Murnaghan-Nakayama rule ([M18], [Ni]). Examples 6 and 7
are due to Frobenius (loc. cit.). Example 9 was contributed by A. Zelevin-
sky.

Examples 13 and 14. Character polynomials occur already in Frobenius'
1904 paper [F11]. The formulas (7) and (8) are due to Specht [S19].

Examples 24 and 25. For proofs of Example 24(a), (b) see [F2]. A better
proof of the result of Example 25 will be found in [G9].
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8. Plethysm

In this section we shall study briefly another sort of multiplication in A,
called plethysm or composition, and defined as follows. Let f, g E A, and
write g as a sum of monomials:

g= E uaxa.
a

Now introduce the set of fictitious variables yi defined by

(8.1) fJ (1 + yit) = [1 (1 + x at)u*
a

and define

(8.2) f°g=f(y1,y2,...)
If f e Am and g E An, then clearly f ° g E Amn. Also el acts as a two sided
identity: f ° e, = el ° f =f for all f E A.

From the definition (8.2) it is clear that

(8.3) For each g e A, the mapping f H f ° g is an endomorphism of the ring
A. I

By taking logarithms of both sides of (8.1) we obtain

P0(y) = F, ua(xa)n (n > 1)
a

so that

(8.4) Pn ° g = g ° P. = g(xi, xZ, ... )

for all g E A. In particular,

(8.5) Pn0Pm=Pm°P,1 Pmn-

From (8.4) it follows that

(&6) For each n > 1, the mapping g H pn ° g is an endomorphism of the
ring A. I

_ Plethysm is associative: for all f, g, h E A we have

(8.7) (f°g)°h=f°(g°h).
Proof. Since the p,, generate AQ (2.12), by virtue of (8.3) and (8.6) it is
enough to verify associativity when f = pm and g = p,,, in which case it is
obvious from (8.4) and (8.5). 1
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For plethysm involving Schur functions, there are the following formu-
las: from (5.9) it follows that

(8.8)

s°(g+h)=

(sa/µ°g)(s,,°h)
µ

and from (7.9) that

(8.9) sa ° (gh) Y ;,(s, ° g)(s ° h).
µ, v

The sum in (8.8) is over pairs of partitions µ, v c A, and in (8.9) over
pairs of partitions µ, v such that I Al = I v1= I Al.

Finally, let A, µ be partitions. Then sa ° sµ is an integral linear combina-
tion of Schur functions, say

(8.10) sa ° s,, a" s
ir

summed over partitions it such that for I = I At . I µl. We shall prove in
Appendix A that the coefficients a" are all > 0.

Remarks. 1. We have observed in (3.10) that to each f E A there corre-
sponds a natural operation F on the category of ,1-rings. In this correspon-
dence, plethysm corresponds to composition of operations: if f, g E A
correspond to the natural operations F, G, then f ° g corresponds to
F°G.
2. Plethysm is defined in the ring R of §7 via the characteristic map: for
u, v E R, u ° v is defined to be ch-'(ch u ° ch v). If u (resp. v) is an
irreducible character of S. (resp. S"), then u ° v is a character of S,,,"
which may be described as follows: if U (resp. V) is an Sm-module with
character u (resp. an S"-module with character v), the wreath product
S,, - Sm (which is the normalizer of Sn = S" X ... X S,, in Sm") acts on U
and on the mth tensor power Tm(V), hence also on U ® Tm(V); and u ° v
is the character of the Sm"-module induced by U ® Tm(V). See Appendix
A to this Chapter.

Examples

1. (a) Let f r= Am, g E A". Show that

w(f ° g)
((of)-((og)

f ° (cog) if n is even,
if n is odd,
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and that

f °( -g) = ( -1)m(c0f)°g.

(b) If A, µ are partitions, let A o µ( = µ ° A) denote the partition whose parts are
Ai µJ. Then we have

PA °pit =P;4 ° PA= PA.

(c) Show that to (h, ° ps) -1)'(s-1)e, ° ps.

2. Since salr, = sµ (sA) in the notation of §5, Example 3, it follows from (8.8) that

f°(g+h)= E((sf) °g)(sµ,°h)

for all f, g, h E A. Also

3. We have

11

f ° (gh) ((s,, * f) ° g)(ss, ° h).

hn°(fg)_
IAI-n

(sA°f)(sA°g),

en ° (fg) _
IAI-n

(sA ° f)(sA, ° g).

These formulas are particular cases of (8.9) (and are consequences of (4.3) and
(4.3')).

4. Let A be a partition of length < n, and consider (sA 0 sin _ 1))(x1, x2). By
definition this is equal to sA((xi -',x'-2X2,i ... , xz -1), i.e. to

x2n-1)lAlsA(gn-1,qn-2 1)

where q =x1x21. On the other hand, by the positivity of the coefficients in (8.10),
(sA ° sn_ 1Xx1, x2) is a linear combination of the s"(x1, x2) with non-negative
integer coefficients, where it = (Ir1, Ir2) and 1T1+ 7r2=(n- 1)I AI = d say. Now

s"(x1,x2) =xi 1x22 +xi 1-1x22+1 + ... +xi 2x21

=xZ(q"' +q"'-1 +... +q"2).

Hence sA(gn-1,gn-2,...,1) is a non-negative linear combination of the poly-
nomials q'i + q"1-1 + ... +q"2, where 7r1 > Ir2 and Irl + ore = d. It follows that
sA(gn-l,qn-2' 1) is a unimodal symmetrical polynomial in q, i.e. that if a1 is the
coefficient of qi in this polynomial, for 0 < i < d, then ai + ad-! (symmetry) and

an < a1 < ... < a[d12]

(unimodality).



138 I SYMMETRIC FUNCTIONS

From §3, Example 1, it follows that the generalized Gaussian polynomial

1 - qn-O(x)

1 - qh(x)

is symmetrical and unimodal for all n and A.

5. Let G be a subgroup of S,n and H a subgroup of S,,, so that G - H is a
subgroup of the wreath product S. - Sn C Sn,. Then the cycle-indicator 42
Example 9) of G - H is

c(G - H) = c(H) o c(G).

6. Closed formulas for the plethysms h, o h2, h, o e2, e, o h2, e, o e2 may be derived
from the series expansions of §5, Examples 5 and 9:

(a) h, o h2 = Eµ sµ, summed over all even partitions µ of 2r (i.e. partitions with all
parts even).

(b) h, o e2 = Eµ summed over even partitions µ, as in (a).

(c) e, o e2 = E, s summed over partitions it of the form (a1 -1,..., ap -11
a1) ...,ap),where a1> ...>ap>0 and a1+ ...+ap=r.

(d) e, o h2 = E s,,., summed over partitions ir as in (c).

7. Let h;,') = pr o hn = hn o pr, so that

hn')(x1, x2,...) - hn(xi, x2,...

which is the coefficient of tn' in

-T 7--(1 -xit') 1_ 1 (1 -xi Wjt) ,1 1
i>1 i>1 j-1

where w = emit'. By (4.3) this product is equal to

,Sp(x)sp,(1,W,..., W'-1)t1µ1

Now (§3, Example 17)

µ

sa,,(1,W,...,W'-1)=tr,(µ)= ±1

if l( j.) < r and µ is an r-core, and sµ(1, W, ... , W'-1) = 0 otherwise. It follows that

pro h,, = E, t7,(µ)5µ

summed over r-cores µ such that 1(µ) < r and I µ1 = nr.

8. More generally, if p is any partition, let h;, p) =pp o h0, so that

h(p)_ 1I(p ohn)_ h(Pi)n
j>1

pi j>1
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is the
coefficient of t"P = t i P1 t2 P2 ... in

(1)

Pi

1-x O)
i.j i,j k-1

where of = exp(21ri/pj). By (4.3) this product is equal to

(2) L Sµ(X)SP(t1 y(1), ... , t," y("')

summed over partitions µ of length < I pl, where y(j) denotes the sequence
(Wj )i k.Pj, and m is the length of p.

gy (5.11) we have

m

(3) Sµ(t, y(1), ... , tm y('")) _ fl v(i ))jSvu)/v(i-))(y(j))
j-1

summed over all sequences (v(o), v(1),..., v(m)) of partitions such that 0 = v(0) c
1,A) C ... C v("') = A. Now from §5, Example 24(b) we have

(4)

v (v(i)/v(i-1)) if v(j) = VU-1),
Pj Pi

0 otherwise.

From (1)-(4) we can pick out the coefficient of each s,, in h;, P). The result may
be stated as follows: define a generalized tableau of type p, shape j., and weight
tip = (n p1, nP2) .... n p,,) to be a sequence T = (v(0), ... , v(')) of partitions satisfy-
ing the following conditions:
(i) 0= v(O)(:: v(1) ... C

(ii) Iv(j) - v(i-1)1-npj for 1 <j <m;
(iii) v(i)=Pi v(j-1) (1 <j <m). (§5, Example 24.)
(When p = (1m) these are tableaux in the usual sense, of weight (nm).)

For such a tableau T let

and define

m
Q(T) _ H QPj(v(j)/v(j-1)) = f 1,

j-1

KKP,),P= a(T)
T

summed over all generalized tableaux T of type p, shape tz, and weight n p. The
integers K (P) may be regarded as generalized Kostka numbers.

With these definitions, we have

p- h= h(P)= rK(P) s
P

summed over partitions tc such that I µI = nl pi and l(µ) < I p1.
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9. Since

S,= zp-1XP pP

P

it follows from Example 8 that

SA°hn= zP 1XPPP°hn
P

E (L zP 1XP Kµ?n
P

) Sµ

the outer sum being over partitions µ such that I Al = nI aI and 1(µ) < I AI.

(a) When I Al = 2 we have (Example 7)

h;,2> = L v2 ( µ)Sµ
µ

summed over I µI = 2n, 1(µ) < 2, so that
(-1)j, and therefore

j=0

From (1) and (2) it follows that

h2-h,= E S(2.-j,j),
jcvcn

jodd

By duality (Example 1) we obtain

h2°en= S(n+k,n-k)',
k even

n

h(2)n
j-0

µ=(2n -j,j); o2(µ)=sµ(1, -1)=

(2n-j,j)

n

h(12) = h22 = S(2n-j, j)'

e2 ° en = S(n+k,n-k)'.
k odd

(b) When 1 AI = 3 we have

number of tableaux of shape µ and weight (n3)

=1+m(µ)
where m( µ) = min( fc1 - µ2, µ2 - µ3), and l( µ) 5 3.
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Next, since h(3) = hry (mod 3), it follows that

K jn)=1+m(A)(mod3)

and since K 3n) = 0 or ± 1, it is determined by this congruence.
Finally,

n
h(21) -1)'S(2n-J,j)hn

j-0

from which we obtain

K(21

(-W'
0 if m(µ) is odd,

µ(2n, n) - if m(µ) is even.

From these values we obtain

h3°hn= E([6m(µ)]+e(µ))s
µ

S21ehn= (3m(p)}S,,

e3 o hn = E ([-6!m( AA + e( µ) - ( -1)")Sµ,

141

summed in each case over partitions µ such that I µI = 3n and 1(µ) < 3, where
e(µ) = 1 if m( µ) and µ2 are even or if m( Ea) = 3 or 5 (mod 6), and e(A) = 0
otherwise; and where (x) = -[ -x] is the least integer >x.

10. Foulkes conjectured that hn, a hn < hn a h,n whenever m < n, with respect to
the partial ordering on A defined in §7, Example 9(b). The results of Example 6
and Example 9(a) show that this is true for m = 2 and all n > 2.

11. From §5, Example 4 it follows that

EsA= Eh,(hs°e2)= Ee,(hsOh2).
A r,s r,s

On passing to representations of Sn, these formulas give

(1) E X E'flr('Is°e2)= er(71so712)
IAI-n

where r + 2s = n in the second and third sums. Now 71s o e2 is the character of S23
induced from the sign character of the wreath product S2 - S, (the hyperoctahe-
dral group of rank s), hence rl,(7ls o e2) is the character of S,, induced from the
character fir X (fis G e2) of the group Sr X (S2 - Ss), which is the centralizer in Sn of
an involution of cycle-type (2s1'), i.e. a product of s disjoint transpositions. It
follows that

E XA=E
IAI-n C
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where c runs over the conjugacy classes of elements w e S such that w2 = 1, and
6, is the induced representation from the centralizer of an element w e c just
described. The other sum in (1) may be interpreted analogously.

Notes and references

Plethysm was introduced by D. E. Littlewood [L9]. His notation for our
sA ° sµ is { N,} ® (A). Many authors have computed (or have described
algorithms to compute) sA o sµ for particular choices of either A or A. For
their work we refer to the bibliographies in Littlewood [L9] and Robinson
[R7], and to [C2]. Examples 9(a) and 9(b) are due to R. M. Thrall [T5]. For
the next case (I Al = 4) see H. 0. Foulkes [F6] and R. Howe [H10].

9. The Littlewood-Richardson rule

If µ and v are partitions, the product sµs is an integral linear combina-
tion of Schur functions:

SAsV = cµAv

SA

A

or equivalently

(9.1) SA/µ = c sy .

V

The coefficients cA are non-negative integers, because by (7.3) and (7.5)
cµ _ (X A, X µ . X ° is the multiplicity of X A in the character X A . X "; also
we have cµ = 0 unless J kJ = I µl + I v I and µ, v c A.

This section is devoted to the statement and proof of a combinatorial
rule for computing cµ, , due to Littlewood and Richardson [L13].

Let T be a tableau. From T we derive a word or sequence w(T) by
reading the symbols in T from right to left (as in Arabic) in successive
rows, starting with the top row. For example, if T is the tableau

1

1

2

4

1

3

2 3

w(T) is the word 32113241.
If a word w arises in this way from a tableau of shape k - µ, we shall

say that w is compatible with A - A.
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A word w = a,a2 ... aN in the symbols 1, 2,..., n is said to be a lattice
Permutation if for 1 < r < N and 1 < i < n - 1, the number of occurrences
of the symbol i in a,a2 ... a, is not less than the number of occurrences of
i+1.

We can now state the Littlewood-Richardson rule:

(9.2) Let A, µ, v be partitions. Then cµ, is equal to the number of tableaux T
of shape A - µ and weight v such that w(T) is a lattice permutation.

The proof we shall give of (9.2) depends on the following proposition.
For any partitions A, µ, ar such that A C µ, let Tab(A - µ, err) denote the
set of tableaux T of shape A - µ and weight it, and let Tab°(A - µ, Tr)
denote the subset of those T such that w(T) is a lattice permutation. From
(5.14) we have

(9.3) ITab(A - µ,7r)I =KA_µ (saIµ,h

We shall prove that

(9.4) There exists a bijection

Tab(A - µ, Tr) LI (Tab°(A - v) x Tab(v, ar)).
V

Before proving (9.4), let us deduce (9.2) from it. From (9.4) and (9.3), we
have

(sa,,,,h F, ITab°(A-p,v)I(s,,,h,,,)
V

for all partitions it, and therefore

salµ = E ITab° (A - µ, v) Is,,.
V

Comparison of this identity with (9.1) shows that cµ,, = ITab°(A - µ, v) I.

To construct a bijection as required for (9.4), we shall follow the method
of Littlewood and Robinson [R5], which consists in starting with a tableau
T of shape A - µ and successively modifying it until the word w(T)
becomes a lattice permutation, and simultaneously building up a tableau
M, which serves to record the sequence of moves made.

If w = a,a2 ... aN is any word in the symbols 1, 2,..., let m,(w) denote
the number of occurrences of the symbol r in w. For 1 < p < N and r > 2,
the difference m,(a1... a,,) - m,_ 1(a, ... a,,) is called the r-index of av in
w. Observe that w is a lattice permutation if and only if all indices are
<0.
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Let m be the maximum value of the r-indices in w, and suppose that
m > 0. Take the first element of w at which this maximum is attained
(clearly this element will be an r), and replace it by r - 1. Denote the
result of this operation by Sr_ r, r(w) (substitution for r - 1 for r). Observe
that S,_ 1,r(W) has maximum r-index m - 1 (unless m = 1, in which case it
can be - 1).

(9.5) The operation Sr_ 1,r is one-to-one.

Proof. Let W' = Sr_ 1,r(w). To reconstruct w from w', let m' be the
maximum r-index in w'. If m' > 0, take the last symbol in w' with r-index
m', and convert the next symbol (which must be an r - 1) into r. If m' < 0,
the first symbol in w' must be an r - 1, and this is converted into r. In
either case the result is w, which is therefore uniquely determined by w'
and r. I

(9.6) Let w' = Sr_ 1,,(W)- Then w' is compatible with A - µ if and only if w is
compatible with A -

Proof Let w = w(T), w' = w(T'), where T and T' are arrays of shape
A - µ. They differ in only one square, say x, which in T is occupied by r
and in T' by r- 1.

Suppose that T is a tableau. If T' is not a tableau there are two
possibilities: either (a) the square y immediately to the left of x in T is
occupied by r, or (b) the square immediately above x is occupied by r - 1.

In case (a) the symbol r in square y would have a higher r-index in
w(T) than the r in square x, which is impossible. In case (b) the square x
in T will be the left-hand end of a string of say s squares occupied by the
symbol r, and immediately above this string there will be a string of s
squares occupied by the symbol r - 1. It follows that w(T) contains a
segment of the form

(r - 1)s...rs

where the unwritten symbols in between the two strings are all either > r
or < r - 1, and the last r is the one to be replaced by r - 1 to form W.
But the r-index of this r is equal to that of the element of w immediately
preceding the first of the string of (r - 1)'s, and this again is impossible.
Hence if T is a tableau, so also is T'.

The reverse implication is proved similarly, using the recipe of (9.5) for
passing back from w' to w.

Suppose now that the word w has the lattice permutation property with
respect to (1, 2,.. ., r - 1) but not with respect to (r - 1, r), or in other
words that all the s-indices are < 0 for 2 < s < r - 1 but not for s = r. This
is the only situation in which we shall use the operator Sr_ ,,. The effect of
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replacing r by r - 1 in w as required by S,_ 1,, may destroy the lattice
permutation property with respect to (r - 2, r - 1), i.e. it may produce
some (r - 1)-indices equal to + 1. In this case we operate with S,_ 2,,-l to
produce

Sr-2,r(W) = Sr-2,r-ISr-1 r(W).

At this stage the (r - 1)-indices will all be < 0, but there may be some
(r - 2)-indices equal to + 1, and so on. Eventually this process will stop,
and we have then say

S.,r(W) = Sa,a+1 ... Sr-1,r(W)

for some a such that 1 < a < r - 1, and the word S, ,,,(w) again has the
lattice property with respect to (1, 2, ... , r - 1), and maximal r-index strictly
less than that of w.

At this point the following lemma is crucial:

(9.7) If w, Sa,r(w) = w' and Sb,r(W') = w" all have the lattice property with
respect to (1,2,...,r- 1), then b <a.

Proof Let w =x1x2x3.... We have to study in detail the process of
passing from w to w'. This starts by applying Sr_1,r, i.e. by replacing the
first symbol r in w with r-index m, where m is the maximum of the
r-indices, by r - 1. Suppose that this happens at xpo. Then for each s > 1,
the (r - 1)-index of xs is unaltered if s < po, and is increased by 1 if
s > po. The element on which Sr_ 2 r_ 1 operates is therefore in the pith
place, where p1 is the first integer >po for which xp, has (r - 1)-index in
w equal to 0. Likewise the element on which Sr_ 3,r_ 2 operates is in the
p2th place, where P2 is the first integer >p, for which x,,2 has (r - 2)-index
zero, and so on.

In this way we obtain a sequence

PO <P1 < <Pr-a-1

with the property that, for each i > 1,
x12

is the first element not preceding
xp -' for which the (r - 0-index is 0. Observe that in w' the element in the
pith place still has (r - i)-index zero, for each i > 1 (though it will no
longer be the first with this property).

Now consider the passage from w' = y1 y2 y3 ... to w". In w' the maxi-
mum r-index is m - 1 (which by assumption is still positive) and occurs
first at say yqo, where q0 < po. (This is because the r-index can by its
definition only go up or down in single steps, and therefore the r-index
m - 1 occurs first in w at some element to the left of x ; and the
elements to the left of the poth are the same in w' as in w.5 In w' the
(r -1)-index of yp, is zero, and is therefore + 1 in Sr_ 1,,(w'). Hence
Sr-i,r(W') admits the substitution Sr_2,r_1, which will operate on the
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element in the q,th place, where q1 is the first integer > q0 for which the
(r - 1)-index of yq, in w' is 0, so that q0 < q, < p1. Continuing in this way
we get a sequence

q, <p1 for all i > 0, and w' admits the operator Sa,r.
If Sa,r(W') = w", then b = a; if not, then S.,r(W') admits further substi-

tutions Sa _ 1, a, ... , until w" = Sb, r(W') is attained, so that b < a in this
case. In either case we have b < a, as required. I

We shall now describe the algorithm of Littlewood and Robinson which
constructs from a tableau T of shape A - µ and weight 7r, where A, a, 7r
are partitions, a pair (L, M) where L E Tab°(A - µ, v) for some partition
v, and M E Tab(v, it ).

If A is any array-not necessarily a tableau-and a, r are positive
integers such that a <r, we denote by Ra,,(A) the result of raising the
right-hand element of the rth row of A up to the right-hand end of the
ath row.

The algorithm begins with the word w1 = w(T) and the array M,
consisting of ir1 1's in the first row, r2 2's in the second row, and so on
(i.e. M1 is the unique tableau of shape 7r and weight jr).

Operate on w1 with S12 until there are no positive 2-indices, and
simultaneously on M1 with R12 the same number of times: say

w2=S12(W1), M2=R 2(M,)

Next operate on w2 with S23 or S13 as appropriate until there are no
positive 2- or 3-indices, and simultaneously operate on M2 with R23 or
R13: say

W3 = ... Sa2,3Sal 3(W2), M3 = ... Ra2,3Rai.s(M2)

where each a1, a2 is 1 or 2.
Continue in this way until we reach (w,, M,), where I = l(ar). Clearly

from our construction w, is a lattice permutation. From (9.6) it follows that
w, is compatible with A - µ, so that w, = w(L) where L E Tab°(A - µ, v)
for some partition P. Next, it is clear from the construction that at each
stage the length l,(M,) of the ith row of the array Mr is equal to the
multiplicity m,(w,) of the symbol i in the corresponding word wr, so that
the final array M = M, has shape v and weight ir.

We have to show moreover that M, is a tableau. For this, we shall prove
by induction on r that the first r rows of Mr form a tableau. This is clear
if r = 1, so assume that r > 1 and the result is true for r - 1.
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Consider the steps that lead from Mr_ 1 to M,: we have, say,

Mr=Ram ,...Ray r(Mr_1);

let us put

Mr_I,i =Ra;,r... Raj,,(Mr-1) (1 <i <m)

and likewise

Wr-l,i = Sa, r ... Sal,r(Wr-1),

where each word wr_ 1'i has the lattice property with respect to (1, 2,...,
r - 1). Each array Mr_ 1, i is obtained from its predecessor Mr_ 1, i-1 (or
M,_ I

if i = 1) by moving up a single symbol r from the rth row to the a,th
row. By our construction the length 1,(M,-,,,) of the jth row of M,_ I i is
equal to the multiplicity mj(wr_1,i) of j in wr_1,i, for each j > 1; and since
each word w,_ 1, i has the lattice property with respect to (1, 2,..., r - 1), it
follows that

1i(Mr-1.i) > ... > lr-1(Mr-1,i)

Also, by (9.7), the integers ai satisfy a1 > ... > am. It follows that no two
symbols r can appear in the same column at any stage, and consequently
the first r rows of M, form a tableau.

The algorithm therefore provides a mapping

Tab(A - µ, ir) -- U Tab°(A - µ, v) X Tab(v, a).
V

To complete the proof of (9.4) we have to show that this mapping is a
bijection. For this purpose it is enough to show that, for each r > 1, we can
unambiguously trace our steps back from (wr, M,) to (wr_ 1, Mr_ 1). With
the notation used above, we have

wr = Sam r ... Sal, r(Wr- 1),

and the sequence (a1,..., am) can be read off from the array Mr, since the
ai are the indices < r of the rows in which the symbols r are located in
Mr, arranged in descending order: a1 > a2 > ... > am (by virtue of (9.7)).
Since by (9.5) each Sa,r is reversible, it follows that (wr_ 1, Mr_ 1) is
uniquely determined by (wr, Mr). Finally, by (9.6), if wr is compatible with
A - µ, then so also is wr_ 1, and the proof is complete. Q.E.D.
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Remark. A lattice permutation w = ata2 ... aN of weight v may be de-
scribed by a standard tableau T(w) of shape v, in which the symbol r
occurs in the a,th row, for 1 < r < N (the fact that w is lattice ensures that
T(w) is a tableau). Hence the algorithm described above constructs from a
word w a pair of tableaux T(wo) and Mr of the same shape v, the first of
which is standard and the second of weight IT. It may be verified that this
algorithm coincides with one described by Burge [B9] (see also Gansner
[G1]).

Notes and references

The Littlewood-Richardson rule (9.2) was first stated, but not proved, in
[L13] (p. 119). The proof subsequently published by Robinson [R5], and
reproduced in Littlewood's book ([L9], pp. 94-6) is incomplete, and it is
this proof that we have endeavoured to complete.

Complete proofs of the rule first appeared in the 1970s ([S7], [T4]).t
Since then, many other formulations, proofs and generalizations have
appeared, some of which are covered by the following references: Berg-
eron and Garsia [B4]; James [J7]; James and Peel [J10]; James and Kerber
[J9]; Kerov [K8]; Littelmann [L7], [L8]; White [W3]; and Zelevinsky [Z2],
[Z3].

t Gordon James (J8] reports that he was once told that `the Littlewood-Richardson rule
helped to get men on the moon, but it was not proved until after they had got there. The first
part of this story might be an exaggeration.'



APPENDIX A: Polynomial functors
and polynomial representations

1. Introduction

Let k be a field of characteristic 0 and let sl3 denote the category whose
objects are finite-dimensional k-vector spaces and whose morphisms are
k-linear maps. A (covariant) functor F: 3 --> jB will be said to be a
polynomial functor if, for each pair of k-vector spaces X, Y, the mapping
F:Hom(X,Y) - Hom(FX, FY) is a polynomial mapping. This condition
may be expressed as follows:

(1.1) Let f1: X -' Y (1 < i < r) be morphisms in Z3, and let A ... , Ar E k.
Then F(A1 fl + ... +Ar fr) is a polynomial function of A1,..., Ar, with coeffi-
cients in Hom(FX, FY) (depending on f1, ..., fr).

If F(Al fl + ... + Ar fr) is homogeneous of degree n, for all choices of
f1, ... , fr, then F is said to be homogeneous of degree n. For example, the
nth exterior power A" and the nth symmetric power S" are homogeneous
polynomial functors of degree n.

Each polynomial functor F is a direct sum ®", o F", where F,, is
homogeneous of degree n (§2). We shall show that each F,, determines a
representation of the symmetric group S,, on a finite-dimensional k-vector
space E,,, such that

F,,(X) = (E,, (&X®")s

functorially in X, and that F,, - E,, defines an equivalence of the category
of homogeneous polynomial functors of degree n with the category of
finite-dimensional k[S"]-modules. In particular, the irreducible polynomial
functors correspond to the irreducible representations of symmetric groups,
hence are indexed by partitions.

The connection with symmetric functions is the following. Let u: km -
k' be a semisimple endomorphism, with eigenvalues A1,..., A. (in some
extension of k). Then trace F(u) is a symmetric polynomial function of
A,...... m, say Xm(F)(A1,..., Am), where Xm(F) E Am. As m the
X ,(F) determine an element X(F) E A. If F = Fµ is irreducible (where µ
is a partition), it will appear that X(F,,) is the Schur function sµ.

Notation. If X E T and A E k, we shall denote by AX (or just A if the
context permits) multiplication by A in X.
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2. Homogeneity

Let F be a polynomial functor on T, and let A E k. By (1.1), F(Ax) is
polynomial function of A with coefficients in End(F(X)), say

(2.1) F(Ax) = F, u,,(X)A".
n>O

Since F((Ap)x) = F(Ax µx) = F(Ax)F( µx), we have

E u,,(X)(Aµ)n = (E un(X)A" I( un(X)An
n>0 n>0 / n>0

a

for all A, µ E k, and therefore (because k is an infinite field) un(X)Z
un(X) for all n > 0, and um(X)u,,(X) = 0 if m # n. Also

E un(X) =F(1x) = 1F(x)
n>O

by taking A = 1 in (2.1). It follows that the un(X) determine a direct sum
decomposition

(2.2) F(X)= Fn(X)
n>O

where Fn(X) is the image of un(X): F(X) -> F(X). Since F(X) is finite-
dimensional, all but a finite number of the summands F,,(X) in (2.2) will
be zero, for any given X.

Moreover, if f: X - Y is a k-linear map, we have f.Ax = Ay f for all
A E k, and hence F(f)F(Ax) = F(Ay)F(f ). From (2.1) it follows that
F(f)un(X) = un(Y)F(f) for all n > 0, so that each un is an endomorphism
of the functor F. Hence F(f) defines by restriction k-linear maps
F,,(f ): Fn(X) -> F,,(Y), and therefore each Fn is a functor, which is clearly
polynomial. Consequently we have a direct decomposition

(2.3) F= ® F,,
n>0

in which each Fn is a homogeneous polynomial functor of degree n.

Remarks. 1. The direct sum (2.3) may well have infinitely many non-zero
components, although for any given X E 0 we must have Fn(X) = 0 for
all sufficiently large n. An example is the exterior algebra functor A.

If Fn = 0 for all sufficiently large n, we shall say that F has bounded
degree.

2. F. is homogeneous of degree 0, so that F0(A) = 1 for all A E k, and in
particular F0(0) = FO(1). It follows that for all morphisms f: X --> Y we
have F0(f) = FO(0), which is therefore independent of f and is an isomor-
phism of F0(X) onto FO(Y). Hence all the objects F0(X) are canonically
isomorphic.
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More generally, let r be a positive integer and SX3' ='.23 X ... x SF3 the
category in which the objects are sequences X = (X1,..., Xr) of length r
of objects of 18, and Hom(X,Y) = II; As before, a functor
F: 93' _ 183 will be said to be polynomial if F: Hom(X, Y) --> Hom(FX, FY)
is a polynomial mapping for all X, Y E SSX3'. If F is polynomial and (A) _
(Al,..., A,.) E k', then F((A)X) =F((A1)X,..... (Ar)X) will be a polynomial
function of A1,..., Ar with coefficients in End(F(X)), say

(2.4) F((A)X) = F, Urn, ...m (X1,...,X,)Aj'... Am'.
m1...., m,

Exactly as before, we see that the uml m are endomorphisms of F, and
that if we denote the image of um,...m (X( 1,..., X F) by Fm,...m(,X1,..., X ,)P
then the Fm,... m, are subfunctors of F which give rise to a direct decompo-
sition

F ® Fm,...m,.
m1.... , m,

Each Fm m, is homogeneous of multidegree (m1,...,m,), i.e. we have
A ,) =

Again let F: 0 -. 0 be a polynomial functor. In view of the decomposition
(2.3), we shall assume from now on that F is homogeneous of degree
n > 0. The considerations at the end of §2 apply to the functor F': 923" -> 9.3

defined by F'(X1, ... , X") = F(X1 (D ... ® X"), and show that there exists a
direct sum decomposition, functorial in each variable,

( D

where the direct sum on the right is over all (m1,...,m,,) E N" such that
m1+...+m"=n.

Our main interest will be in the functor Fl'... 1, the image of the
morphism u1 1. For brevity, we shall write LF and v in place of Fl'... l and
u1...1, respectively. We call LF the linearization of F: it is homogeneous of
degree 1 in each variable.

To recapitulate the definitions of LF and v, let Y = X1 ® ... ®X". Then
there are monomorphisms ia:Xa -Y and epimorphisms pa:Y-'Xa
(1 < a < n), satisfying

(3.1) paia=1X, Paip=0 if a#p, iapa=1Y.
a

For each k = (A1, ... , A") E k", let (A)Y or (A) denote the morphism
E Aa ia pa : Y - Y, so that (A) acts as scalar multiplication by Aa on the
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component Xa. Then v(X,,...,X") is by definition the coefficient of
Al ... A" in F((A)1,), and LF(Xl,..., X") is the image of v(X,,..., X,,), and
is a direct summand of F(X1 ® ... ®X").

(3.2) Example. If F is the nth exterior power n", we have

F(Xl ®... (D X") = ® Am'(Xl) ®... (D ^m"(X")

summed over all (ml,..., m") E N" such that ml + ... +m" = n, and hence
LF(Xl, ..., X") = Xl ®... ®X".

4. The action of the symmetric group

Let F as before be homogeneous of degree n > 0, and let

LF)(X) =LF(X,...,X).

For each element s of the symmetric group S", let sx or s denote the
morphism E is(a)pa: X" --> X", where X" =X ED ... ®X, so that sx per-
mutes the summands of X". For any A A") E k" we have from
(3.1)

sx(,1) _ (sa). sx

where s,l = ,1S-and hence

(4.1) F(s)F((A)) = F((sA)). F(s).

By picking out the coefficient of kl ... A" on either side, we see that

(4.2) F(s)v = vF(s)

from which it follows that F(s) defines by restriction an endomorphism
F(s) of L(Fn). Explicitly, if

(4.3) j=jx:LFt(X) -,F(X"),

are the injection and projection associated with the direct summand
L " (X) of F(X"), so that qj = 1 and jq = v, then

(4.4) F(s) = qF(s) j.

From (4.2) and (4.4) it follows that F(st) = F(s)F(t) for s, t e S", so that
s H F(s) is a representation of S,, on the vector space L(F)(X), functorial
in X.
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We shall now show that this representation of S" determines the functor
F up to isomorphism, and more precisely that there exists a functorial
isomorphism of F(X) onto the subspace of Sn-invariants of LF)(X ).

,,ample. In the example (3.2) we have LF)(X) = T"(X), the nth tensor
power of X over k, and the action of Sn on L(F)(X) in this case is given by

F(s)(X1 ® ... ®xn) = e(S)X$-1(1) ® ... ®Xs-1(n)

Where e(s) is the sign of s E Sn. Hence LF)(X)s^ is the space of skew-
symmetric tensors in T"(X), which is isomorphic to K(X) since k has
characteristic 0.

Let i = E ia: X -. X", p = E p.: X" - X. Then we have

vF(ip)v = E F(s)v.
SES

proof. Consider linear transformations f: X" -. X" of the form f =
E,, p

f, ,o l,, pp, with E k; F(f) will be a homogeneous polynomial of
degree n in the n2 variables dap, with coefficients in End(F(X"))depend-
ing only on X (and F). For each s E Sn, let ws denote the coefficient of
Ss(1)1 ...

CC

`6s(n)n in F(f).
We have F(s)v = vF(s)v by (4.2) (since v2 = v), hence F(s)v is the

coefficient of Al ... An Al ... I n in

F((A))F(s)F((p )) =F((A)s( µ)) =FI As(«) Pats(a)P«)
` a

and therefore F(s)v = ws.
On the other hand, vF(ip)v is the coefficient of Al ... An Al ... An in

F((A))F(ip)F((A)) = F((A)ip(A)) = F( F, Aa
µpC, pp

. p

and this coefficient is clearly

E ws = F(s)v.
SES S

We now define two morphisms of functors:

= 4F(i): F -' VF), 77 =F(p)j: LF) - F.

(4.6) We have i = n! (i.e. scalar multiplication by n!) and 677 = Es E s. F(s).
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Proof. TIC= F(p)jqF(i) = F(p)vF(i) is the coefficient of Al... An in
F(p)F((A))F(i) = F(p(A)i). Now p(A)i: X - Y is scalar multiplication by
Al + ... +A,,, so that F(p(A)i) is scalar multiplication by (A1 + ...
and the coefficient of Al... A is therefore n!.

Next, we have C17 = gF(i)F(p) j, so that by (4.3) and (4.5)

jCijq = vF(ip)v = E F(s)v
S

and hence 677 = ES qF(s) j = ES F(s) by (4.4).

Let LF)(X)s" denote the subspace of in LF)(X). From
(4.6) it follows that o = (n!)'l6rr is idempotent, with image LFt(X)s Let

e: L()(X)s" _ LFt(X), 1r: LFt(X) _ LF)(X)s"

be the associated injection and projection, so that ITS = 1 and
From (4.6) we have immediately

(4.7) The morphisms

V = irC: F(X) --LF)(X)s",

17' = ije: LF>(X)s" -F(X)

are functorial isomorphisms such that e'-q' = n! and rt'e' = n!.

SIr - a.

5. Classification of polynomial functors

It follows from (4.7) that every homogeneous polynomial functor of degree
n is of the form X H L(X,... , X )s-, where L: 3" -> 8 is homogeneous of
degree 1 in each variable. The next step, therefore, is to find all such
functors.

We shall begin with the case n = 1, so that L: Z -> T is homogeneous
of degree 1. From (1.1), L is clearly additive: L(f1 + f2) = L(fl) +L(f2).

(5.1) There exists a functorial isomorphism

L(X) =L(k) ®X.
Proof. For each x E X let e(x): k -> X denote the mapping A H Ax. Let Y
be any k-vector space, and define

qjx: Hom(L(X),Y) -* Hom(X,Hom(L(k),Y))

by tpx(f Xx) =f ° L(e(x)). Clearly qix is functorial in X, and to prove (5.1)
it is enough to show that ix is an isomorphism.
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Since L is additive we have L(X1 (D X2) = L(X1) ® L(X2). It follows

that if fix, and 4% are isomorphisms, fix,®XZ is also an isomorphism.
gene it is enough to verify that 'k is an isomorphism, and this is

obvious.

Now let L: 3" ->3 be homogeneous and linear in each variable.

(5.2) There exists a functorial isomorphism

L(X1,..., Xn) =L(")(k) ®X1 ®... ®X"

where LL"k(k) = L(k,... , k).

proof By repeated applications of (5.1),

L(X1,...,X") =L(X,,...,X"-l,k) ®X"

L(X1,...,X"-2,k,k) ®X"-1 ®X"

aL(k,...,k)®Xl ®X2®... ®X

From (5.2) and (4.7) we have immediately

(5.3) Let F be a homogeneous polynomial functor of degree n. Then there
exists an isomorphism of funetors

F(X) _= (L(F)(k) ®T"(X))s",

where T"(X) = X ® ... ® X is the nth tensor power of X.

Let an denote the category of homogeneous polynomial functors of
degree n, and Z3s" the category of finite-dimensional k[Sn]-modules.

(5.4) T h e f u n c t o r s a : R n -> 3 s", P: 9J S. -> Rn defined by

a (F) = (M) (X) = (M ®T"(X)) S.

constitute an equivalence of categories.

Proof We have /3a = 19 by (5.3), and we have to verify that a/3 = 1%S". If
M E3 S. and /3 (M) = F, then

F(XIED ...®Xn)_(M®T"(XI®...®X"))s"
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and therefore

(M®
S"

LF(X1,..., X") = (Xs 1... ®Xst")))
SES"

Hence

a!3(M) =L(F)(k) = (M®k[S"])S" _M. I

It follows that a and f3 establish a one-one correspondence between
the isomorphism classes of homogeneous polynomial functors of degree n,

and the isomorphism classes of finite-dimensional k[S"]-modules.
In particular, the irreducible polynomial functors (which by (2.3) are

necessarily homogeneous) correspond to the irreducible representations of
the symmetric groups S, and are therefore naturally indexed by partitions.

For each partition A of n, let MA be an irreducible k[S"]-module with
character X A. From (5.4) the irreducible polynomial functor FA indexed by
A is given by

(5.5) FA(X) = (MA ®T"(X))S".

Now if G is any finite group and U, V are finite-dimensional k[G]
modules, there is a canonical isomorphism (U* ® V)G a Homk[G](U,V),
functorial in both U and V, where U* = Homk(U, k) is the contragredient
of U. In the present context we have M,* a MA, and therefore

(55) FA(X) a Homk[S"](MA,T"(X))

Consider T"(X) as a k[S"]-module. Its decomposition into isotypic
components is

T"(X) a ® MA ® Homk[S"](MA,T"(X))
A

so that

(5.6)

functorially in X.

T"(X) ®MA®FA(X)
A

6. Polynomial functors and k[ S" ]-modules

We shall need the following facts. Let G, H be finite groups, M a
finite-dimensional k[G]-module, and N a finite-dimensional k[H]-
module. Then M ® N is a k[G X H ]-module, and we have

(A) MG 0 NH = (M 0 N)Gx"
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as subspaces of Me N.
Suppose now that H is a subgroup of G, and let indHN = k[G] ®k[Hj N

be the k[G]-module induced by N, and reS M the module M regarded as
a k[H]-module by restriction of scalars. Then

(B) NH = (indHN)G.

This is a particular case of Frobenius reciprocity:

Homk[HI(reSHM,N) _ Homk(GI(M,indHN)

in which M is taken to be the trivial one-dimensional k[G]-module.
Suppose again that H is a subgroup of G. Then

(C) ind ,(N® res'M) =_ (indHN) ®M.

For both sides are canonically isomorphic to k[G] ®k[HJ N ®k M.
Finally, suppose that H is a normal subgroup of G, that M is a

finite-dimensional k[G]-module and L a finite-dimensional k[G/H]-
module, hence a k[G]-module on which H acts trivially. Then

(D) (L ®MH )GIH = (L ®M)G

as subspaces of L ®M.
For L ®MH = (L 0 M)H since H acts trivially on L, hence

(L 0MH)G/H= ((L ®M)H)G/H= (L ®M)G.

Now let E, F be homogeneous polynomial functors, of degrees m and n
respectively. Then

EOF:X-E(X)®F(X)
is a homogeneous polynomial functor of degree m + n, hence corresponds
as in §5 to a representation of Sm+n

Suppose that E = 8(M), F = /3(N) in the notation of (5.4). Then

(E ®F)(X) _ (M 0 Tm(X))S'" ® (N ®Tn(X ))Sn

(MONO Tm+n(X))S,nxsn by (A)

(indsmXS (MON)
®Tm+n(X))S.+n

by (B) and (C)

so that E ®F corresponds to the

k[Sm+n]-modul/e

(6.1) M. N = inds'" 's (M(9 N)
m n

which we call the induction product of M and N.
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Since tensor products are commutative and associative up to isomor-
phism, so is the induction product.

Consider next the composition of polynomial functors. With E, F as
before we have

(E o F)(X) = E((N ® T"(X ))S")

= (M ®Tm((N ®T"(X))S"))S'

(Me (Tm(N) ®Tm"(X))S" )Sm by (A)

where S,m = S" X ... X S" as a subgroup of Sm". Now the normalizer of Sn
in Sm,, is the semidirect product S X Sm, in which S. acts by permuting
the factors of Sn : this is the wreath product of S with Sm, denoted by
S ~ Sm. Using (D) it follows that

(E ° F)(X) (M ® T' "(N) ® Tm"(X

(inds Sm(M 0 Tm(N)) ®T "n(X)S."

by (B) and (C). Hence E o F corresponds to the k[Sm"]-module

(6.2) M o N= inds":, s.(M ® Tm(N)),

which we call the composition product or plethysm (Chapter I, §8) of M
with N. Plethysm is linear in M:

(6.3) (M1®M2)oN=(M1oN)®(M2oN)

and distributive over the induction product:

(6.4) (M1oN).(M2oN)=(M1.M2)oN.

For the corresponding relation for the functors is

(E1-F) ®(E2-F)=(E1 ®E2)F

which is obvious.

7. The characteristic map

If S1.C is any abelian category, let K(W) denote the Grothendieck group of
a.
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Let a denote the category of polynomial functors of bounded degree
(§2) on X3. From (2.3) and (5.4) it follows that a is abelian and semisimple,
and that

K(R) _ ® K(R,,) _ (D K( S).
n>O n>a

Moreover, =R" in the notation of Chapter I, §7.
The tensor product (§6) defines a structure of a commutative, associa-

tive, graded ring with identity element on K(R). In view of (6.1), this ring
structure agrees with that defined on R = ®R" in Chapter I, §7, so that
we may identify K(a-) with R.

K(R) also carries a scalar product. If E, F are polynomial functors, then
Hom(E, F) is a finite-dimensional k-vector space, and we define

(E, F) = dimk Hom(E, F).

Again by (5.4), it is clear that this scalar product is the same as that
defined on R in Chapter I, §7.

We shall now give an intrinsic description of the characteristic map
ch: R -> A, defined in Chapter I, §7. Let F be a polynomial functor on Q.
For each A = (A1,..., A,) E k', let (A) as before denote the diagonal
endomorphism of k' with eigenvalues A1, ... , A,. Then trace F(W) is a
polynomial function of Al, ... , Ar, which is symmetric because by (4.1)

trace F((sA))=trace F(s(A)s-1) = trace F(s)F((A))F(s)-'

= trace F((A))

for all s E Sr. Since the trace is additive, it determines a mapping

X,:K(R)-ArI

namely X,(FXA1, ..., A,) = trace F((A)); and since the trace is multiplica-
tive with respect to tensor products, X, is a homomorphism of graded
rings. Moreover, it is clear from the definitions that X, = pq,, ° Xq for
q > r, in the notation of Chapter I, §2, and hence the X, determine a
homomorphism of graded rings

(7.1) X: K(R) -> A.

To see that this homomorphism coincides with the characteristic map
ch: R --> A defined in Chapter I, §7, we need only observe that X(M) = e"
and that A" corresponds to the sign representation e" of S. in the,
correspondence (5.4).
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Hence from Chapter I, (7.5) and (7.6) it follows that

(7.2) If FA: -* is the irreducible polynomial functor corresponding to the
partition A, then X(F) is the Schur function sA.

If F is any polynomial functor, the decomposition (2.5) applied to the
functor F': (Xl, ... , X) - F(X1 ® ... ® X,) shows that the eigenvalues of
F((A)) are monomials All l ... A°`-, with corresponding eigenspaces
F,;, m (k, ... , k), and therefore

X,(F) dim Fml...m(k,...,k)xj'...xm,.

From this and the definition of plethysm in Chapter I, §8, it follows that

(7.3) X(E ° F) = X(E) ° X(F)

for any two polynomial functors E, F.
In particular, if A and µ are partitions, the functor Fa ° Fv is a direct

sum of irreducible functors F, so that in K(a) we have

aw Fr
IT

with non-negative integral coefficients a'. By (7.2) and (7.3) it follows that

(7.4)

with coefficients aaµ > 0.

s.°Sµ E aaµsr
ir

Example

It follows from §7 that a polynomial functor F is determined up to isomorphism by
its trace X(F). Hence identities in the ring A may be interpreted as statements
about polynomial functors. Consider for example the identities of Chapter 1, §5,
Examples 5, 7, and 9. From Example 5(a) we obtain

(1) S"(SZV) FF(V)

summed over even partitions µ of 2k, and from Example 5(b)

(2) S"(AZV)= ®
V

summed over partitions v of 2k such that v' is even (i.e. all columns of v have
even length). Likewise Example 7 gives

(3) Sk(V® AZV) ® Fa(V)
a
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summed over partitions A such that I Al + c(A) = 2k, where c(A) (loc. cit.) is the
number of columns of odd length in A, or equivalently the number of odd parts of
A'. Finally from Example 9(a) and 9(b) we obtain

(4) N'(n2V)= (D
ir

summed over partitions IT aP - 11 a1,..., a,,) in Frobenius notation,
and

(5) /f(S2V) - ® FP(V)
P

summed over partitions p = (al + 1, ... , aP + 11 a1,..., a,).

8. The polynomial representations of

G be any group (finite or not) and let R be a matrix representation of
G of degree d over an algebraically closed field k of characteristic 0, the
representing matrices being R(g) = (R;1(g)), g E G. Thus R determines
d2 functions Ri1: G --> k, called the matrix coefficients of R. If we replace R
by an equivalent representation g HAR(g)A-', where A is a fixed matrix,
the space of functions on G spanned by the matrix coefficients is unal-
tered. It follows that if R is reducible, the Ri, are linearly dependent over
k, because in an equivalent representation some of them will be zero.
Again, if R and S are equivalent irreducible representations of G, the
matrix coefficients of S are linearly dependent on those of R.

(8.1) Let R('), R(').... be a sequence of matrix representations over k of a
group G. Then the following are equivalent:

(i) All the matrix coefficients R;!), R; ), ... are linearly independent;

(ii) The representations R('), R(2), ... are irreducible and pairwise inequivalent.

We have just seen that (i) implies (ii). The reverse implication is a
theorem of Frobenius and Schur (see [C5], p. 183).

Now let V = k' and let G = GL(V) = GL,,,(k). Let
x+1

(1 < i, j < m) be
the coordinate functions on G, so that x,1(g) is the (i, j) element of the
matrix g e G. Let

P= ® P"=k[x;1:1<i,j<m]
no

be the algebra of polynomial functions of G, where P" consists of the
polynomials in the xi, that are homogeneous of degree n. A matrix
representation R of G is said to be polynomial if its matrix coefficients
are polynomials in the x+1. Clearly, each polynomial functor F. such that
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1(d) < m (so that FA(V) # 0) gives rise to an equivalence class of polyno,
mial representations Ra of G, in which g E G acts as F1(g) on F,A(V).

We shall show that

(8.2) The representations R A such that 1(A) < m are inequivalent irreducible
polynomial representations of G, and conversely every irreducible polynomial
representation of G is equivalent to some R R.

Proof. By (7.2), the dimension of F1(V) is equal to s,A(xl, ... , xm) evaluated
at x, =xm = 1, and hence by Chapter I, (4.3)

(1) d" _ E (dim F1(V ))2
111-n

is equal to the coefficient of t" in (1 - t)-m', so that

(2) do = dimk P".

On the other hand, the decomposition (5.6)

T"(V)= ® Ma®F1(V)
111-n

shows that the representation of G on T"(V) is equivalent to the diagonal
sum of dim MA copies of R A, for each partition A of n of length < m. Now
the matrix coefficients of T" are the monomials of degree n in the xq,
hence span P". Consequently the R also span P"; but from (1) and (2)
above it follows that the total number of these matrix coefficients is
d" = dimk P". Hence the R j such that I Al = n and 1(A) < m form a k-basis
of P", and it follows from (8.1) that the R'` are irreducible and pairwise
inequivalent.

Finally, if R is any polynomial representation of G, the argument of §2
shows that R is a direct sum of homogeneous polynomial representations.
So if R is irreducible, its matrix coefficients R;1 are homogeneous of
degree say n, i.e. R;1 E P". Hence by (8.1) R is equivalent to some R'`.

In the course of the above proof we have shown that

(8.3) The matrix coefficients R j, where A ranges over all partitions of length
< m, form a k-basis of P. I

If f E A is any symmetric function, we may regard f as a function on G
by the rule

f (x) = f (C.,..., e)

where e ... , bm are the eigenvalues of x E G. For example, e,(x) _
trace(Nx) is the sum of the principal r X r minors of the matrix x, and
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hence is a polynomial function of x. Since each f E A is a polynomial in
the e, it follows that f is a polynomial function on G.

(8.4Xi) The character of the representation R A of G is the Schur function sA.

(ii), A polynomial representation of G is determined up to equivalence by its
character.

proof. (i) From (7.2), sA(x) is the trace of Fa(x) if x E G is a diagonal
matrix, and hence also if x is diagonalizable. Since the diagonalizable
matrices are Zariski-dense in G (because x is diagonalizable whenever
D(x) # 0, where D(x) is the discriminant of the characteristic polynomial
of x) and both sa(x) and trace Fa(x) are polynomial functions of x, it
follows that sa(x) = trace Fa(x) for all x e G.

(ii) This follows from (i), since the Schur functions sA such that 1(A) < m
are linearly independent.

The group G acts on P (and on each P") by the rule

(gp)(x) = p(xg)

for p E P and g, x E G. Hence

gR J(x) =R)(xg) _ F, R (x)R j(g),

so that

r

gRl= F,
r

This equation shows that for each i = 1, 2,..., dA, where dA = dim FA(V) is
the degree of R A, the subspace of P spanned by the RjAj (1 < j < dA) is an
irreducible G-module affording the representation RA, and hence is iso-
morphic to FA(V ). Consequently, if P. is the subspace of P spanned by all
the R j, we have

(8.5) P = ® PA
A

where A ranges over all partitions of length < m, and PA =- FA(V )dA.

Examples

1. (a) Let A be a partition of n and let M. 07, Example 15) denote the Specht
module corresponding to A. It has a basis (f,) indexed by the standard tableaux t
of shape A, where (loc. cit.) f, is a product of Vandermonde determinants on the
columns of t, so that

(1) wf, = e(w) fr

if w E S" lies in the column stabilizer C, of t.
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If v E S,,, then vf, is a Z-linear combination of the fS, say

(2) uftP3(v)fs
S

summed over standard tableaux s of shape k, and the mapping v - (p ,(v)) is an
irreducible representation of S" by integer matrices.

(b) Let X be a k-vector space with basis x1,...,x9. Then T"(X) has a basis
consisting of the tensors

x,=XT(1) ®... (D X,(,)

where z runs through all mappings [1, n] - [1, q]. If w r= S. we have w(xT) =x?.-,,Hence
M,A ®T"(X) has as basis the products f, ®xT, where t is a standard

tableau of shape A, and z: [1, n] --> [1, q]. Now consider FA(X) = (M,, ® T"(X ))s.:
clearly it will be spanned by the elements

(3) xt.T= E w(ft ®xT) = E wft ®xT,,.-1.
WES WE&

Given T as above, we may choose v E S" so that o = TV is an increasing
mapping of [1, n] into [1, q]. We then have

xt,r= E wft ®xaoW-1

= E wvf, ®xaW-l
WES

and hence by (2) and (3) we have

(4) xt,r= Ps" (V)xS,E
S

and therefore F,,(X) is spanned by the elements x,,T such that t is a standard
tableau of shape A and r: [1, n] - [1, q] is an increasing mapping.

(c) We regard a standard tableau t of shape A as a bijective mapping of (the shape
of) A onto [1, n], so that t(i, j) is the integer occupying the square (i, j) E A. Then
T = T c t is a mapping A -4 [1, q], i.e. it is a filling of the squares of A with the
numbers 1, 2, ... , q. If T is increasing, then T is increasing (in the weak sense)
along rows and down columns, and we have x,,, = 0 unless T is a (column-strict)
tableau. For if there are two squares a, b in the same column of A such that
T(a) = T(b), i.e. r(t(a)) = T(t(b)), let w E S" be the transposition that inter-
changes t(a) and t(b). Since w E C, it follows from (1) above that wf, = -f,, and
since also wxT =xT we have w(f, ®xT) = -f, ®xT, and consequently x,,,. = 0.

(d) On the other hand, if T = T o t is a tableau, then z is uniquely determined by
T, because the sequence (T(1),...,7-(n)) is the weight of T (Chapter I, §1). In
general the standard tableau t is not uniquely determined by T: for example, if
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? 1
2 then t can be either a 2 or 2 3. However, if T =rot = T a tl with t, t l

standard tableaux, then t1= vt for some v e S" such that r = r c v, and hence

xgi.r= E w(f 1
®xr)

W r= S.

= L wv(fi ®xr) =x,,r
WES

and we may therefore unambiguously define XT = X,,, when T is a column-strict

tableau.

(e) It follows from (b) and (c) above that FA(X) is spanned by the elements XT,
where T: A -> [1, q] is a column-strict tableau. But now the dimension of FA(X) is
by (7.2) equal to the Schur function sA evaluated at (1') _ (1,...,1), which by
Chapter I, (5.12) is equal to the number of tableaux T as above. Hence the XT
from a k-basis of FA(X).

2. In continuation of Example 1, let Y be a k-vector space with basis y1,...'yp'
and let a: X- Y be a k-linear mapping, say

P
axt = ai;y;,

1-1

so that a is represented by the p X q matrix A = (ail) over k, relative to the given
bases of X and Y. Then a induces T"(a):T"(X) -o T"(Y), given by

(5) T"(a)xr= E aoryo
Cr

where aQ,, = a,(,)r(l) ... a7( )r(") and in the sum or runs through all mappings
[1,n] -> [l, p].

If now A is a partition of n, we have a k-linear mapping FA(a ): FA(X) - F,A(Y ),
say

(6) FA(O)XT = F, asrYs
S

summed over column-strict tableaux S: A-+ [1, p]. We shall now compute the
matrix coefficients aST.

If T = Tot as in Example 1, then

FA(a)xT= F, w(f,) OT"(a)xrw-i
WE S,,

= L w(ff) O E ao,rw-,Yo
WES v

by (3) and (5) above. By replacing o by ow-' in the inner sum above and
observing that a.,-,,TW-' = aD r, we obtain

(7) FA(a)xT= E aveyr,n
a,
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summed over rr: [1, n] -> [1, p]. For each such o,, choose v r= S such that
o v1 is an increasing mapping; then by (4) of Example 1 we have

y1 , = L Pi (v) ys o0

(8)

aoa

F, P,,(v)ys
S

summed over standard tableaux s such that S = oo e s is a tableau. From (7) and
(8) we obtain

Fa(a)xr= Par(U)aoo,,,,Ys

summed over all triples (o0, s, v) such that oo: [1, n] - [1,p] is increasing, s is a

standard tableau of shape k, S = o-a a s is a column-strict tableau, and v E S. runs
through a set of representatives of the cosets Gv of the stabilizer G of vo in S".
Hence finally

asr= PsAr(U)aoou,r
S' V

summed over s, v as above. In particular, this formula shows that asr is a
polynomial in the aid with integer coefficients.

3. As in Chapter I, §7, Example 15, let k be a partition of n and let T be any
numbering of the diagram of d with the numbers 1, 2, ... , n. Let R (resp. C) be the
subgroup of S that stabilizes each row (resp. column) of T, and let

e=eT= E
u.v

summed over (u, v) E C X R. Then (loc. cit.) is a minimal left ideal of the
group algebra k[S"], isomorphic to M,A. Deduce from (5.5') that

FA(V) = eTT"(V )

as G-modules.

4. Let el,... , em be the standard basis of V = k ', so that

m

gel E g. ei
i-1

if g = (g,j) E G. Then T = T(V) has a basis consisting of the tensors e,=
e*(1) ® ... ® e7("), where r runs through all mappings of [1, n] into [1, m]. Let (u,v)
be the scalar product on T defined by (eo, eT) = 88T, and for each u e T let
(P = (Pu: T - P" be the linear mapping defined by

,P(v)(g) = (u,gv)

for v e T and g E G. Verify that P is a G-module homomorphism and deduce that
(in the notation of Example 3) (p(erT) is either zero or is a G-submodule of P"
isomorphic to Fa(V ).
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5. If g = (gij) e G let

(r) - (90g - g,I 1< 1,14 r

for 1 < r _< m (so that g(m) = g), and for any partition k of length < m let

Aa(g) _ fl det(gta't).
i>1

Then Aa is a polynomial function on G. If b = (bi!) e G is upper triangular, we
have

Da(b) = bil ... bmm'

and

da(gb) = A,i(g) da(b)

for all gEG.
Show that the G-submodule of P generated by da is irreducible and isomorphic

to FA(V). (This is a particular case of the construction of Example 4. Take T to be
the standard tableau of shape A in which the numbers 1, 2, ... , n =I Al occur in
order in successive rows, and let u=eT where (z(1),...,T(n)) is the weakly
increasing sequence in which i occurs Ai times, for each i = 1,2,...,m. The
subgroup of S,, that fixes u is the row-stabilizer R = x ... X S,1m of T, so that
EW E R w(u) = ru, where r = I RI = A1! ... A.I. Hence (p(eru) is the function on G
whose value at g E G is

r. F, e(w)(eT,gwe,,) =rAA(g)
WEC

where C is the column stabilizer of T. Hence A. E cp(eTT); since A,, * 0, it follows
that V(eTT) is irreducible and isomorphic to F,1(V).)

6. The Schur algebra of degree n of G (or V) is

Cam" = Endkls,] T"(V).

For each g E G we have T"(g) e s", and G acts on S" by the rule ga = T"(g)o a
for g E G and a E C5".

If a E Cs", let pa be the function on G defined by

(1) pa(g) = trace(ga).

(a) Show that pa E P" and that a N pa: CS" - P" is an isomorphism of G-mod-
ules. (Relative to the basis (eT) of T"(V) (Example 4), each a E CS" is represented
by a matrix (a,) such that aoW,TW = a,, for all w E S. We have trace(gu) _
Eo,, a,,, go, and hence

P. = L. a.. xor
Q.T

where x,,. = fl,"_ 1 xo(j), T(i) = x,,,TW for w e S". It follows that a 9 pa is a linear
isomorphism of Cam" onto P", and it is clear from (1) that hpa =pka for h E G.)
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(b) The T"(g), g E G, span Cam" as a k-vector space. (Suppose not, then there exists
a:# 0 in Cam" such that trace(T"(g)a) = 0 for all g e G, since the bilinear form
(a, J3)'-- on e" is nondegenerate. But then pa(g) = 0 for all g E G, so
that pa = 0 and therefore a - 0.)

Hence the G-submodules of Cam" are precisely the left ideals.

(c) We have

Cam" _ fl Endk(F,(V))
a

as k-algebras, where the product is taken over all partitions A of n of length <m,
(Use (5.6).)

Notes and references

Practically everything in this Appendix is contained, explicitly or implicitly,
in Schur's thesis [S4] and his subsequent 1927 paper [S6]. We have
assumed throughout that the ground field k has characteristic zero; for a
study of the polynomial representations of GL"(k) when k has positive
characteristic, see [G14], and for polynomial functors over k (or indeed
over any commutative ring) see [A2].



APPENDIX B:
Characters of wreath products

1. Notation

If G is any finite group, let G* denote the set of conjugacy classes in G,
and let G* denote the set of irreducible complex characters of G. If
c e G* and Y E G* we shall denote by y(c) the value of y at an element
x e c, and by c the order of the centralizer of x in G, so that the number
of elements in c is Icl =

Let R(G) denote the complex vector space spanned by G*, or equiva-
lently the space of complex-valued class functions on G. We have
dim R(G) = IG*I = IG* I. On R(G) we have a hermitian scalar product

(1.1) (u,V)G =
1

E u(x)v(x)
IGI XEG

relative to which G* is an orthonormal basis of R(G), i.e. y)G = SQ,y

for 1i, y E G*.
Later we shall encounter families of partitions indexed by G* and by

G*. In general, if X is a finite set and p = (p(x))XEx a family of partitions
indexed by X, or equivalently a mapping p: X -'.9a (where .90 is the set of
all partitions), we denote by II pII the sum

11P11 = E I p(x) I
XEX

and by .9 (X) (resp..9' (X)) the set of all p: X -.9a (resp. the set of all
p: X -.3 such that IIPII = n). Finally, if p, o E.9(X ), then p U o is the
function x H p(x) U o(x) for x E X.

2. The wreath product G - S

Let G" = G x ... X G be the direct product of n copies of G. The
.symmetric group S,, acts on G" by permuting the factors: s(g1,...,g")=
(g3-l(1), ... , gs-,(")). The wreath product G" = G - S" is the semidirect prod-
uct of G" with S" defined by this action, that is to say it is the group
whose underlying set is G" X S", with multiplication defined by (g, s)(h, t)

- = (g. s(h), st), where g, h E G" and s, t (= S". More concretely, the ele-
ments of G" may be thought of as permutation matrices with entries in G,
the matrix corresponding to (g, s) having (i, j) element gj Si.s(j), where
g= (g1,..., g").
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When n = 1, G1 is just G. When n = 0, Go is the group of one element.
The order of Gn is IGI". n! for all n > 0.

An embedding of S. x S" in Sm+n gives rise to an embedding of
G. x G" in Gm+n, and any two such embeddings are conjugate in G

3. Conjugacy classes and types

Let x = (g, s) E G, where g = (g1, ..., g,,) E G" and s E S. The permuta.
tion s can be written as a product of disjoint cycles: if z = (i1i2... i,) is one
of these cycles, the element g;,g; -1... g; E G is determined up to conju.
gacy in G by g and z, and is called the cycle product of x corresponding to
the cycle z. For each conjugacy class c E G,, and each integer r > 1, let
mr(c) denote the number of r-cycles in s whose cycle-product lies in c. In
this way each element x E Gn determines an array (m,(c)) 1,1E G. of
non-negative integers such that E,,c rm,(c) = n. Equivalently, if p(c) de-
notes the partition having m,(c) parts equal to r, for each r > 1, then
p = (p(c)), E G. is a partition-valued function on G,, such that II P11 = n, i.e,
p e g' (G,k) in the notation introduced in §1. This function p is called the
type of x = (g, s) E G. Note that the cycle-type of s in Sn is o=
UcEG* p(c).

We shall show that two elements of G" are conjugate if and only if they
have the same type.

(a) If w E Sn, let w = (1, w) E Gn. If x = (g, s) E G,, we have wxw-1=
(wg, wsw-' ). If z = (i1... i,) is a cycle in s, as above, then wzw-1 =

(w(il)...w(i,)) is a cycle of wsw-'; moreover (Kg).(;) =g;a, so that the
cycle-product is unaltered, and therefore x and Mxw-1 have the same type.

(b) Let h = (hl,..., hn) E G". Then hxh-1= (hgs(h-1), s), and hgs(h-')
has ith component h;g;hs-I(1). Hence the cycle-product of hxh-1 corre-
sponding to the cycle z in s is

(hi,gi,h,'j

which is conjugate in G to g, ... g.1. It follows that x and hxh-1 have the
same type.

(c) From (a) and (b) it follows that conjugate elements in Gn have the same
type. Conversely, suppose that x = (g, s) and y = (h, t) in G" have the
same type. Then s, t E S,, have the same cycle-type or = (ol, o,2,...) and
are therefore conjugate in Sn. Hence by conjugating y by a suitable-.
permutation w E Sn we may assume that t = s; then both x and y lie in
the same subgroup Go = Gv, x Got x ... of G,,, and it is enough to show
that they are conjugate in G. This effectively reduces the question to the
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,aSe where s E S,, is an n-cycle, say s = (12... n), and the products g =
ngn-1 ... gl, h = hnhn_ 1... hl are conjugate in G. Now choose un E G
such that un hu, 1, and define u1,. .. , un -1 E G successively by the
equations

gl=ulhlu-n1,g2=u2h2u-,1,...,gn-l=un-lhn-lun-2'

A simple calculation now shows that uyu-' =x, where u = (ul,..., un);
hence x and y are conjugate in Gn, and the proof is complete.

(d) We shall now compute the order of the centralizer in Gn of an element
X.. (g, s) of type p First, the number of possibilities for s E Sn
is

(1) n!/ II rm . m,!
r> 1

where m, = EC mr(c). Next, for each such s and each r> 1 there are

(2) mr!/fl mr(c)!
C

ways of distributing the mr r-cycles among the conjugacy classes of G.
Finally, for each cycle z = (il ... ir) in s such that gi,... g.1 E c, there are

(3)
IGIr-1 ICI =

I GI rI tc

choices for (g11,. .. , .gi ). From (1), (2), and (3) it follows that the number of
elements in Gn of type p is

IGIn

11 ZP(c) 11 Cc1(P(c))
C C

and hence that the order of the centralizer in Gn of an element of type p
is

(3.1)

4. The algebra R(G)

Let

ZP = [ ZP(C) C'C C(P(C)).

cEG.

R(G) = ® R(Gn).
n>O

We define a multiplication on R(G) as follows. Let u E R(Gm), v E R(G,,),
and embed Gm X Gn in Gm+n. Then u X v is an element of R(Gm x Gn),
and we define

(41) uv = indG"XG (u X v)
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which is an element of Thus we have defined a bilinear multipli.
cation R(Gm) x R(G,,) -> and just as in Chapter I, §7 (which
deals with the case G = (1}) It is not difficult to verify that with this
multiplication R(G) is a commutative, associative, graded C-algebra with
identity element.

In addition, R(G) carries a hermitian scalar product; if u, v E R(G), say
u = Eu and v = Ev with u,,, v,, E we define

(4.2) (u,v) = E (u,,,vn)Gn
n>O

where the scalar product on the right is that defined by (1.1), with G.
replacing G.

5. The algebra A(G)

Let p,(c) (r > 1, c E G,) be independent indeterminates over C, and let

A(G)=C[pr(c):r> 1,cEG,k].

For each c e G,k we may think of p,(c) as the rth power sum in a

sequence of variables xC = (x, )1> 1. We assign degree r to Pr(C), and then
A(G) is a graded C-algebra.

If o-= (a-1, o-2.... ) is any partition, let p, (c) = po,(c)p,,(c).... If now p
is any partition-valued function on G,, we define

(5.1) PP= fl pp(c)(c).
CE G.

Clearly the PP form a C-basis of A(G). If f E A(G), say f = EP fpPP (where
all but a finite number of the coefficients fp E C are zero), let

(5.2) J= ElpPp
P

so that in particular Pp = P.
Next, we define a hermitian scalar product on A(G) as follows: if

f=EpfpPp, g=EpgpPp then

(5.3) (f, g) = E fpgpZp
P

with Zp given by (3.1). Equivalently,

(5.3') (PP, P., ) = Sp", Zp

Finally, let SI': Gm -- A(G) be the mapping defined by Vx) = Pp if
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x e Gm has type p. If also y (=- G,, has type then x X y E G. X Gn is
well-defined up to conjugacy in Gm+n, and has type p U c r, so that

(5.4) (x x y) ='(x)(y).

6. The characteristic map

This is a C-linear mapping

ch: R(G) -* A(G)

defined as follows: if f E R(GG) then

Ch(f)=(f, )G

_ E f(x)''h(x).
IGnI xeG

If fP is the value of f at elements of type p, then

(6.2) ch(f) = E Zp' ffPp.
P

In particular, if rp, is the characteristic function of the set of elements
x r= Gn of type p, we have ch((pp) = ZP'PP, from which it follows that ch is
a linear isomorphism.

Let f, g E G. Then from (5.3) and (6.2)

(ch(f),ch(g)) = E ZP'f4 ,,

P

= (f, p)G

from which it follows that ch is an isometry for the scalar products on
R(G) and A(G) defined by (4.2) and (5.3).

If u E R(Gm), v e R(GG), then by (4.2) and (6.1)

ch(uv) = (mdG"XG,(u X v),T>G..

= (U x v,TIGmxG.)(,.xGx

by Frobenius reciprocity,

= (u,' )G,,,(V,T>G, by (5.4)

= ch(u)ch(v).
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Hence we have proved that

(6.3) ch: R(G) - A(G) is an isometric isomorphism of graded C-algebras.

7. Change of variables

For each irreducible character y E G* and each r > 1 let

(7.1) Pr(y) _ be 1Y(C)pr(C)
ce G

so that (by the orthogonality of the characters of G) we have

(7.1') Pr(c) = E y(c)Pr(Y) = E y(C)Pr(y).
'YEG YEW

The pr(y) are algebraically independent and generate A(G) as C-algebra.
From (7.1') we have

Cc 1Pr(C) ®pr(C) E E be 1 y(C)(3(C)pr(y) ®pr(R)
C C A,Y

_ E (13,7>GPr(Y) ®Pr(P)
P,Y

(7.2) _ EPr(Y) ®Pr(Y)

in A(G) ® A(G).
We may regard pr(y) as the rth power sum of a new sequence of

variables yY = (y,7),,1, and we may then define, for example, Schur
functions sµ(y) = s, (y7) for any partition µ, and more generally

(7.3) SA = flSA(Y)(Y)
ye

G.

for any A E.1(G*).

(7.4) (S,,), E--(G ') is an orthonormal basis of A(G).

Proof In view of the definition (5.3') of the scalar product on A(G), it is
enough to show that

(1) ESA®SaF,Zp'Pp®Pp,
A p
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where the sum on the left is over all A E.9(G*), and that on the right is
over all p E.91(G* ). Now the left-hand side of (1) is equal to

I -I* E ji exp
µ 7EG* r>1 r

(2) = exp E _E Pr(y) ®pr(y)
r>1 r yrG*

On the other hand, the right-hand side of (1) is by virtue of (3.1) equal
to

(Ec'z;'p(c)®p(c))= Jj (exp r
cEGP cEGr>1

1

(3) = exp E- E C1Pr(c) ®pr(c)
r>1 r

Now (7.2) shows that (2) and (3) are equal. I

8. The characters

Let Ey be a G-module with character y E G*. The group G" acts on the
nth tensor power T"(E) = Ey ® ... ®Ey as follows: if u1, ... , u,, E Ey and
(g, s) E G, where g = l'g1.... , g,,) E= G" and s E S, then

(g, S)(u1 ® ... (9 U,,) =g1u3-l(1) ®... ®g"u$-l(").

We wish to compute the character 17" = 7%"(y) of this representation of
G. First, if x e Gr and y E G"_r, so that x acts on the first r factors of
T"(E7) and y on the last n - r factors, it is clear that

(8.1) 7J"(x xy) = ?7r(x)71n-r(y).

Hence it is enough to compute i%(g, s) when g e G" and s is an n-cycle,
say s = (12... n). For this purpose let e1,..., ed be a basis of E. and let

gei = E an(g)el
i

so that g H a(g) = (aii(g)) is the matrix representation of G defined by
this basis. Then we have

(g,s)(ei,(& ...®eh)=g1ei,®g2e,,®...®g"ei.-,
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in which the coefficient of ell ® ... 0 ej, is

(1) ai,i,

To obtain the trace we must sum (1) over all which gives

'+1n(g,s) = trace a(gn)a(gn_1)...a(g1)

= trace a(gngn-1 ... g1) = y(c)

if the cycle-product gngn-1 ... g1 lies in the conjugacy class c. From (8.1) it
now follows that if x e Gn has type p, then

(8.2) 77n(y)(x) = fl 7(c)'cocc».

We now calculate:

C

E ch(rin(y)) _ E ZP 1 J[ y(c)'ca(c))pP(c)(c)

n>O p cEG.

Hence

(8.3)

for all y E G* and n > 0.

= (F,(CC-1Y(C)),(0,)Z;,P".(C))r-I
cEG. r

fl expl F,
cEG r>1

1
Cr

'y(c)Pr(c)

= expl F, cy(c)pr(c)
r>1 r

exp F!Pr(Y)
r 1

L hn(y)
n>O

ch('7n(y)) = hn(y)

9. The irreducible characters of Gn

For each partition µ of m and each y E G*, let

by (7.1)

(9.1) X"'(y) = det(,%i_i+;(y)).
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This is an alternating sum of induction products of characters, hence is a
(perhaps virtual) character of G,,,. From (8.3) and (6.3) we have

(9.2) ch( x"(y)) = det(hµ,_r+j(y)) =sµ(y).

Next, for each A E.,a"(G*), define

(9.3) XA= xk(r)(y)
YE G'

which for the same reason is a character of G. From (9.2) it follows that

(9.4) ch(XA) = II SA(r)(y) = SA;
yE

G.

and since ch is an isometry (6.3) it follows from (7.4) that

(X A, X I )G = (SA, SP,) = SA µ

for all A, µ E.9"(G*). Hence the XA are, up to sign, distinct irreducible
characters of G,,; and since 1ffl"(G*)1=19"(G,)1=1(G") *I, there are as
many of them as there are conjugacy classes in G, so that they are all the
irreducible characters of G. It remains to settle the question of sign,
which we shall do by computing the degree of each character XA.

Let XP denote the value of X A at elements of G of type p E.9"(G,).
From (9.4) and (6.2) we have

(9.5) SA = E ZP 1XPPP
P

or equivalently

(9.5') XP = (SA, PP),

(9.5") PP = > XPSA = > XP SA.
A A

Let co E G. be the class consisting of the identity element. The type of the
identity element of G is p where p(co) = (1"), p(c) = 0 if c # co. Hence
PP = pi(c0)", and since pl(co) = E, d7 pl(y), where d7 = y(co) is the degree
of y, it follows from (9.5') that the degree of XA is equal to the coefficient
of S. in (E., d,pl(y))", i.e. to the coefficient of IIY sA(,y)(y) in

n! IA(r)I

IiIA(y)I!
fl1-1 (d7P1(y))
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which by Chapter I, (7.6) is equal to

(9.6) n! 11 (dt,"(Y)1/h(A(y)))

where h(a(y)) is the product of the hook-lengths of the partition A(y).
Since this number is positive, it follows that XA (and not -X'') is an
irreducible character. So, finally,

(9.7) The irreducible complex characters of G = G - S are the X A (A E
defined by (9.3), and the value of X' at elements of type p E.lw,,(G

is

Xp =<S,,,PP).

Moreover the degree of XA is given by (9.6).

Example

The simplest nontrivial case of this theory is that in which the group G has two
elements ± 1. Then G is the group of signed permutation matrices, of order 2"n!,
or equivalently the hyperoctahedral group of rank n. The conjugacy classes and the
irreducible characters of G are each indexed by pairs of partitions (A, µ) such that
JAI+IAI=n.

If the power sums corresponding to the identity (resp. non-identity) conjugacy
class are denoted by p,(a) (resp. p,(b)), and those corresponding to the trivial
(resp. nontrivial) character by p,(x) (resp. p,(y)), the change of variables formula
(7.1') reads

p,(a) =p,(x) +p,(y), p,(b) =p,(x) -p,(y)

and the formula (9.5") reads

pp(a)PQ(b) _ XP,vs,,(x)sµ(y)
a.µ

where XP is the value of the character indexed by (A, µ) at the class indexed by
(p,o)(where JAI+IAI=IpI+IuI=n)

Notes and references

The characters of the wreath products G ^- S,,, where G is any finite
group, were first worked out by W. Specht in his dissertation [S17], and our
account does not differ materially from his. See also [M3].
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HALL POLYNOMIALS

1. Finite o-modules

Let o be a (commutative) discrete valuation ring, p its maximal ideal,
k = o/p the residue field. Later we shall require k to be a finite field, but
for the present this restriction is unnecessary. We shall be concerned with
finite o-modules M, that is to say, modules M which possess a finite
composition series, or equivalently finitely-generated o-modules M such
that p'M = 0 for some r > 0. If k is finite, the finite o-modules are
precisely those which have a finite number of elements.

Two examples to bear in mind are

(1.1) Example. Let p be a prime number, M a finite abelian p-group.
Then p'M = 0 for large r, so that M may be regarded as a module over
the ring Z/p'Z for all large r, and hence as a module over the ring o = Zp
of p-adic integers. The residue field is k = Fp.

(1.2) Example. Let k be a field, M a finite-dimensional vector space over
k, and let T be a nilpotent endomorphism of M. Then M may be regarded
as a k[t]-module, where t is an indeterminate, by defining tx = Tx for all
x e M. Since T is nilpotent we have t'M = 0 for all large r, and hence M
may be regarded as a module over the power series ring o = k[[t]], which is
a discrete valuation ring with residue field k.

Remarks. 1. In both these examples the ring o is a complete discrete
valuation ring. In general, if M is a finite o-module as at the beginning, we
have p'M = 0 for all sufficiently large r, so that M is an o/p'-module and
hence a module over the p-adic completion o of o, which has the same
residue field k as o. Hence there would be no loss of generality in
assuming at the outset that o is complete.
2. Suppose now that k is finite. The complete discrete valuation rings with
finite residue field are precisely the rings of integers of p-adic fields
(Bourbaki, Alg. Comm., Chapter VI, §9), and a p-adic field K is either a
finite extension of the field Q

P
of p-adic numbers (if char. K= 0) or is a

field of formal power series k((t)) over a finite field (if char. K> 0). The
two examples (1.1) and (1.2) (with k finite) are therefore typical.
3. The results of this chapter will all be valid under the wider hypothesis
that o is the ring of integers (i.e. the unique maximal order) of a division
algebra of finite rank over a p-adic field (Deuring, Algebren, Ch. VI, §11).
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Since o is a principal ideal domain, every finitely generated 0-module is
a direct sum of cyclic o-modules. For a finite o-module M, this means that
M has a direct sum decomposition of the form

r

(1.3) M= ®o/P
i-1

where the Al are positive integers, which we may assume are arranged in
descending order: Al > A2 > ... > A, > 0. In other words, A = (A1, ... , A,) is
a partition.

(1.4) Let p = dimk(p `-'M/p `M). Then µ = (µ,, 92, ...) is the conjugate
of the partition A.

Proof. Let x, be a generator of the summand o/p A in (1.3), and let it be
a generator of p. Then p'-'M is generated by those of the 1r'-'xj which
do not vanish, i.e. those for which AJ > i. Hence µj is equal to the number
of indices j such that A, > i, and therefore µ; = A. I

From (1.4) it follows that the partition A is determined uniquely by the
module M, and we call A the type of M. Clearly two finite o-modules are
isomorphic if and only if they have the same type, and every partition A
occurs as a type. If A is the type of M, then IAI = E A. is the length l(M) of
M, i.e. the length of a composition series of M. The length is an additive
function of M: this means that if

0-*M'->M-*M"->0

is a short exact sequence of finite o-modules, then

1(M') -1(M) +l(M") = 0.

If N is a submodule of M, the cotype of N in M is defined to be the
type of M/N.

Cyclic and elementary modules

A finite o-module M is cyclic (i.e. generated by one element) if and only if
its type is a partition (r) consisting of a single part r =1(M), and M is
elementary (i.e. p M = 0) if and only if the type of M is (1r). If M is
elementary of type (1r), then M is a vector space over k, and 1(M) _
dimkM = r.

Duality

Let ir be a generator of the maximal ideal p. If m < n, multiplication by
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On-m is an injective a-homomorphism of o/pm into o/p". Let E denote
the direct limit:

E = lim o/p".
H

Then E is an injective o-module containing o/p = k, and is `the' injective
envelope of k, i.e. the smallest injective o-module which contains k as a

submodule.

If now M is any finite o-module, the dual of M is defined to be

M= Homo(M, E).

;"f is a finite o-module isomorphic to M, hence of the same type as M. (To
see this, observe that M H M commutes with direct sums; hence it is
enough to check that M_ M when M is cyclic (and finite), which is easy.)
Since E is injective, an exact sequence

0-*N-*M-
(where N is a submodule of M) gives rise to an exact sequence

0<-N4-M+-(MINT E-0

and (M/N)^ is the annihilator N° of N in Ad', i.e. the set of all M
such that 4(N) = 0. The natural mapping M - M is an isomorphism for
all finite o-modules M, and identifies N with N00. Hence

(1.5) N H No is a one-one correspondence between the submodules of M, Al
respectively, which maps the set of all N c M of type v and cotype µ onto the
set of all No C :A1 of type p. and cotype v.

Automorphisms

Suppose that the residue field k is finite, with q elements. If M is a finite
o-module and x is a non-zero element of M, we shall say that x has height
r if p'x = 0 and p'-'x * 0. The zero element of M is assigned height 0.
We denote by M, the submodule of M consisting of elements of height

r, so that M, is the annihilator of p' in M.

(1.6) The number of automorphisms ofafinite o-module M of type A is

a,(q) = gJAI+2n(A)1 ?m,(a)(q-1))
i>1

where as usual qCm(t)_(1_tX1_t2)...(1_tm).

The number of automorphisms of M is equal to the number of se-
quences (x1,...,x,) of elements of M such that x, has height A;(1 <i <r)
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and M is the direct sum of the cyclic submodules o xi. To enumerate such
sequences we shall use the following lemma:

(1.7) Let N be a submodule of M, generated by elements of height > r, and
let x c- M. Then the following conditions on x are equivalent:

(i) xhasheightrand oxnN=O;
(ii) x E Mr - (Mr_ I + Nr).
Moreover the number of x e M satisfying these equivalent conditions is

(1.8) qa;+...+x:(1 _qv',-"%)

if v is the type of N.

Proof If x satisfies (i), clearly x c- M,. If x E M,_ I + N then 0 # P- Ix C
Nr c N, so that o x n N # 0, contrary to assumption. Conversely, if x
satisfies (ii), it is clear that height (x) = r. If o x n N # 0, then for some
m < r we shall have p'x c N, and therefore p'- Ix is contained in the
socle N1 of N. Since N is generated by elements of height > r, it follows
that p"-'x=p"-1y for some y E N; hence x - y E Mr_ 1 and therefore
xE(M,-1+N)nMr=Mr_1+Nr.

We have M/M, = p'M, so that
r

l(Mr) =1(M) - l(p'M) _ E '(P'-IM/p'M) = Ai + ... +A;
i-1

by (1.4). Also

l(Mr-1 +Nr) =1(Mr-1) +l((Mr-I +Nr)/Mr-I)

=l(Mr_1)+1(Nr/Nr-1)

which proves (1.8).

The number of automorphisms of M is therefore the product of the
numbers (1.8) for r = AI, AZ, ... , where v = (A1, ... , Ak _ 1) if r = Ak. It is
not hard to see that this product is equal to a,(q) as defined in (1.6).

Example
Let M, N be finite o-modules of types A, µ respectively. Then M ® N has type
A U µ, and M ® N, Hom(M, N), Tor1(M, N), and Extl(M, N) all have type A X µ
(Chapter I, §1).

2. The Hall algebra

In this section the residue field k of o is assumed to be finite.
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Let k, µt1), ... , µt') be partitions, and let M be a finite o-module of type
A. We define

Gµ(1)...µv)(o)

to be the number of chains of submodules of M:

such that M1_1/Mi has type 1P), for 1 <i <r. In particular, Gµ,(o) is the
number of submodules N of M which have type v and cotype A. Since
1(M) = l(M/N) + 1(N), it is clear that

(2.1) G,k,,(o) = 0 unless IAI = l Al + IVI.

Philip Hall had the idea of using the numbers Gµ, (o) as the multiplica-
tion constants of a ring, as follows. Let H = H(o) be a free Z-module on a
basis (uA) indexed by all partitions A. Define a product in H by the rule

E Gµ,,(o)ul.

By (2.1) the sum on the right has only finitely many non-zero terms.

(2.2) H(o) is a commutative and associative ring with identity element.

Proof The identity element is u0, where 0 is the empty partition. Associa-
tivity follows from the fact that the coefficient of ua in either

u )u is just Gµ . Commutativity follows from (1.5), which shows that
GµP = G$4.

The ring H(o) is the Hall algebra of o.

(2.3) The ring H(o) is generated (as Z-algebra) by the elements u(l,) (r> 1),
and they are algebraically independent over Z.

Proof. For convenience let us write v, in place of u(,,), and for any
partition A consider the product

vx.=vaYxz...v.

where X = (At, ..., As) is as usual the conjugate of A. This product vx. will
be a linear combination of the uµ, say

(1) VA _ E a,Aµuµ
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in which the coefficient aAµ is by definition equal to the number of chains

(2) M=MO:5M1:D ...:)M5=O

in a fixed finite o-module M of type µ, such that M1_ 1/M; is of type (1A),
i.e. elementary of length A,, for 1 < i < s. If such a chain (2) exists (that is,
if aA. * 0) we must have p M;_ 1 c M, (1 < i < s) and therefore ,p'M C M.
for 1 < i < s. Hence

1(M/p'M) > 1(M/M; )

which by virtue of (1.4) gives the inequality

t4+...+µ;>Ai+...+A;

for 1 < i < s. Hence 9 > A' and therefore by Chapter I, (1.11), µ < A
Moreover, the same reasoning shows that if µ = A there is only one
possible chain (2), namely M, _ p'M.

Consequently we have aAµ = 0 unless µ < A, and aAA = 1. In other
words, the matrix (aAµ) is strictly upper unitriangular (Chapter I, §6), and
so the equations (1) can be solved to give the uµ as integral linear
combinations of the vA,. Hence the VA, form a Z-basis of H(o), which
proves (2.3).

From (2.3) it follows that the Hall algebra H(o) is isomorphic to the
ring A of symmetric functions (Chapter 1). The obvious choice of isomor-
phism would be that which takes each uc1'> to the rth elementary symmet-
ric function er; however, as we shall see in the next chapter, a more
intelligent choice is to map u(1r) to q-'('-1)/zer, where q is the number of
elements in the residue field of o. Thus each generator uA of H(o) is
mapped to a symmetric function. We shall identify and study these
symmetric functions in the next chapter; the remainder of the present
chapter will be devoted to computing the structure constants Gµv(o).

3. The LR-sequence of a submodule

Let T be a tableau (Chapter I, §1) of shape A -A and weight v
(vi,..., vr). Then T determines (and is determined by) a sequence of
partitions

such that A(O) = µ,

S = (A(°), A(l),..., A('))

A(') = A, and A(')::) A('-1) for 1 < i < r, by the condition
that A(') - A(i-1) is the skew diagram consisting of the squares occupied by
the symbol i in T (and hence is a horizontal strip, because T is a tableau).
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A sequence of partitions S as above will be called a LR-sequence of type

(W,v;A)if
(LR1) A(0) = A, .l(') = A, and A(') :),k('-') for 1 < i < r;
(LR2) A(1) - A('-1) is a horizontal strip of length vi, for 1 < i < r. (These

two conditions ensure that S determines a tableau T.)
(LR3) The word w(T) obtained by reading T from right to left in

successive rows, starting at the top, is a lattice permutation (Chapter 1, §9).

For (LR3) to be satisfied it is necessary and sufficient that, for i > 1 and
k > 0, the number of symbols i in the first k rows of T should be not less
than the number of symbols i + 1 in the first k + 1 rows of T. In other
words, a condition equivalent to (LR3) is

(LR3' )

k k+1

. (A(') - 0-1)) (,k('+1) - k(.`))
1-1 1-1

for all i > 1 and k > 0.

We shall show in this section that every submodule N of a finite
a-module M gives rise to a LR-sequence of type (µ, v'; A'), where A, At v
are the types of M, M/N, and N respectively. Before we come to the
proof, a few lemmas are required. We do not need to assume in this
section that the residue field of o is finite.

(3.1) Let M be a finite o-module of type A, and let N be a submodule of type
v and cotype µ in M. Then µ c A and v c A.

Proof. Since

p'-1(M/N) p'-1M+N pi-1M

pt(M/N) p1M+N pi-1Mn (p1M+N)

and since also p'-1M n (p M + N) D P 'M, it follows that

1(p1-1(M/N)/p1(M/N)) < l(P'-'M/p`M)

and hence that µ'1 < A; by (1.4). Consequently µ C A. By duality (1.5), it
follows that v c k also. I

Let M be an o-module of type A, N an elementary submodule of M.
Then p N= 0, so that N c S where

S = {x EM: px=0)

is the socle of M, i.e. the unique largest elementary submodule of M.

(3.2) The type of M/Sis A=(Al-1,A2-1,...).
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Proof. If M= ®o/ p A , then clearly S= ®p "-' /p a whence M/S
® o/p ai-1.

(3.3) Let M be a finite o-module of type A, and N an elementary submodule
of M, of cotype A. Then A - µ is a vertical strip (i.e. Ai - p, = 0 or 1 for
each i).

Proof We have N C S, hence M/S = (M/N)/(S/N), and therefore A c
µ c A by (3.1) and (3.2). Hence

0<Ai-AiA,-Ai=1
and therefore A - µ is a vertical strip. I

Notice that if µ C A then A - p. is a vertical strip if and only if 11 c µ,

(3.4) Let M be a finite o-module of type A, and let N be a submodule of m,
of type v and cotype A. For each i > 0, let 0) be the cotype of piN. Then the
sequence

S(N) = (A(0)', A(1)',..., A(')')

(where p'N = 0) is an LR-sequence of type (µ', v'; X).

Proof. Clearly A(0) = µ and A(') = A, and A 1 z) A(i-') by (3.1) applied to the
module M/p'N and the submodule pi-'N/p'N.

Hence (LR1) is satisfied.
Since p'-'NIP iN is an elementary o-module, it follows from (3.3) that
,0) - A(i-') is a vertical strip, and hence that A(i)' - A(i-')' is a horizontal
strip, of length equal to l(pi-'N/p'N)= v, (by (1.4)). Hence (LR2) is
satisfied.

As to (LR3'), we have
AJ10' = l(pj-1(M/piN)/p'(M/piN))

(again by (1.4)), so that

k

F Ali)' = 1((M/piN)/pk(M/p'N)) = l(M/(pkM+ piN))
j-1

and therefore

k
/

` 1 A1i)r Ai(i- 1)') = 1(Vki)
j-1

where Vki = (pkM+ pi-1N)/(pkM+ piN). Likewise
k+1
\` (A(i i+1)' - AA')') = l(Vk+1,i+

jL-.1



4. THE HALL POLYNOMIAL 187

Since multiplication by a generator of p induces a homomorphism of Vk,
onto Vk+1,i+1, it follows that 1(Vk;)>1(Vk+1,;+i), and hence (LR3') is

satisfied.

Example

Let V be an n-dimensional vector space over an algebraically closed field k. A flag
in Visa sequence F = (V0, V1,..., of subspaces of V, such that 0 = V0 c V, c

c V = V and dim l' = i for 0 < i < n. Let X denote the set of all flags in V. The
group G = GL(V) acts transitively on X, so that X may be identified with G/B,
where B is the subgroup which fixes a given flag, and therefore X is a (non-singu-
lar projective) algebraic variety, the flag manifold of V.

Now let u E G be a unipotent endomorphism of V. Then as in (1.2) V becomes
a k[t]-module of finite length, with t acting on V as the nilpotent endomorphism
u - 1. Let A be the type of V, so that A is a partition of n which describes the
Jordan canonical form of u, and let X. CX be the set of all flags F E X fixed by u.
These flags F are the composition series of the k[t]-module V. The set Xa is a
closed subvariety of X.

For each F = (V0, V..... E X., let k(i) be the cotype of the submodule V.
of V. Then by (3.1) we have

0=A(° CA(' C ... CA(")=A

and IAt' - A('-'I = 1 for 15 i < n, so that F determines in this way a standard
tableau of T of shape A. Hence we have a partition of X into subsets XT indexed
by the standard tableaux T of shape A.

These subsets XT have the following properties (Spaltenstein [S16]):
(a) XT is a smooth irreducible locally closed subvariety of X,,.
(b) dim XT = n(A).
(c) XT is a disjoint union U = I XT f such that each XT.i is isomorphic to an
affine space and U k . iXT, k is closed in XT, for j = 1,12,..., M.

From these results it follows that the closures XT of the XT are the irreducible
components of X, and all have the same dimension n(A). The number of
irreducible components is therefore equal to the degree of the irreducible charac-
ter X A of S (Chapter I, §7).

If k contains the finite field Fq of q elements, the number XX(q) of Fq-rational
points of X,1 is equal to Q(;.)(q) (Chapter III, §7).

More general results concerning the partial flags may be found in [H8], [S14].

4. The Hall polynomial

In this section we shall compute the structure constants G' (o) of the Hall
algebra. (The residue field of o is assumed to be finite, as in §2.) Let S be
an LR-sequence of type (µ', v'; A'), and let M be a finite o-module of
type A. Denote by Gs(o) the number of submodules N of M whose
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associated LR-sequence S(N) is S. By (3.4), each such N has type v and
cotype µ.

Let q denote the number of elements in the residue field of o, and
recall that n(A) = E(i - 1)A;, for any partition A. Then:

(4.1) For each LR-sequence S of type (µ', v'; A'), there exists a monk
polynomial gs(t) E Z[t] of degree n(A) - n( µ) - n(v), independent of
such that

gs(q) = Gs(o)

(In other words, Gs(o) is a `polynomial in q'.)

Now define, for any three partitions A, µ, v

(4.2) gµv(t) = Li gs(t)
s

summed over all LR-sequences S of type (µ', v'; X). This polynomial is
the Hall polynomial corresponding to A, p, v. Recall from Chapter I (§§5
and 9) that cµ denotes the coefficient of the Schur function sA in the
product svs, ; that cI A = c, ;and that cµ is the number of LR-sequences
of type (µ', v'; X). Then from (4.1) it follows that

(4.3) (i) If cµ, = 0, the Hall polynomial gµv(t) is identically zero. (In particu-
lar, 0 unless I AI = I pl + I v 1 and µ, v c A.)
(ii) If cµ * 0, then has degree n(A) - n(µ) - n(v) and leading coeffi-
cient ck,,.
(iii) In either case, Gµv(o) = g A (q).
(iv) gµY(t) = g µ(t).

The only point that requires comment is (iv). From (2.2) we have
G,,,(o)=G'(o) for all a, hence µ(q) for all prime-powers q,,
and so

The starting point of the proof of (4.1) is the following proposition:

(4.4) Let M be a finite o-module of type A and let N be an elementary
submodule of cotype a in M (so that A - a is a vertical strip, by (3.3)). Let
be a partition such that a c R c A and let Ha.PA(o) denote the number of

submodules P c N of cotype J3 in M. Then

Ha,A(o) = ha$A(q)
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where h.pa(t) E Z[t] is the polynomial

(4.4.1)

in which

(4.4.2)

hapa(t) = td(z $. A) II [ x, _
i>1

d(a,t3,A)= F, (Pr-a,)(',,-As)
r&s

I
and (r, s] is the Gaussian polynomial

r + s
r J (Chapter I, §2, Example 1) if

r,s > 0, and is zero otherwise.

proof. Let B = A - /3, (p = /3 - a. Also let Ni = N n piM. Since

piM/N - (piM+N)/N- p`(M/N)

we have

l(N) = l(pM) - l(p'(M/N))

I>i

by (1.4), or equivalently

(1) n,=1(Ni)_ E(B;+(pj).
I>i

Now let P be a submodule of N, of cotype /3 in M, and let Pi =
Pnp'M=PnNi.Then

P/Pi- (P+piM)/p'M

and therefore

l(Pi-1) - l(Pi) = l(P/Pi) - l(P/Pi-1)

=1((P+ piM)/piM) -1((P + pi-1M)/pi-1M)

=l(pi-1M/p'M) -l((P+ pi-1M)/(P+piM))

=,1;-/3!=O ,

by (1.4). Conversely, if P is a submodule of N such that

(2) l(Pi-1/Pi) = 9, (i > 1)
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then the preceding calculation shows that P has cotype 1 in M.
Suppose that i > 1 and P; are given. We ask for the number

submodules PI-1 of N _ 1 which satisfy (2) and

(3) Pi-1 nN=P1.

of

The number of sequences x = (x1, .... x9.) in P_1 which are linearly
independent modulo Ni is

(4) (qn'-t - gn')(gni-t - qn,+l) ... (qn1-t _ qn,+e;-1).

For each such sequence x, the submodule P;_ 1 generated by P1 and x
satisfies (2) and (3). Conversely, any such P;_ 1 can be obtained in this way
from any sequence x of B; elements of Pi-1 which are linearly indepen-
dent modulo Pi. The number of such sequences is

(5)

where

(6)

(qPr-t - gP,)(gPi-t - qP,+l) ... (qP,-t - qP,+e;-1)

p1=1(P) = E of
pi

by virtue of (2). So the number of submodules P1 of Ni which satisfy
(2) and (3) is the quotient of (4) by (5), namely

gei(n,-t-P,-t)[oj, (Pi](q-1).

Taking the product of these for all i > 1, and observing that n1_ 1 -pi-
Ejcpj (from (1) and (6)) we obtain

Ha,A(D)=gdfl[A'-1i,Pi -al](q-1)

i>1

where

i<i

Now o; is the number of squares of the skew diagram 0 = A - P in the
ith column, and E, > i ipj is the number of squares of (p = Q - a in the same
or later colums, hence in higher rows. It follows that

d= F, (pros=d(a,0,A)
r`s

which completes the proof of (4.4).
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Suppose in particular that N in (4.4) is the socle S of M, so that a = A
by (3.2). Then HaPA(o) is the number of elementary submodules P of
cotype (3 in M, so that

HHPA(o) = Go(p)(o)

where m = 1A - 61 = 1 01 . In this case we have rp = R - A, so that cp; _
, - A, + 1 = 1 - 9;, and the exponent d = d(A, /3, A) is therefore

d= F, (1-9,)9s
r=s

= E (1- o r) o s= E o s- E 9, o s.
r<s r<s r<s

because Or = 0,2 for all r. Since E or = m we have

(4.5) Bros=zm2-iF Br2='-Zm(m-1)
r<s

and hence

d= (s-1)9s- 1m(m-1)=n(A)-n(p)-n(1'").

So from (4.4) we have the formula

G,(140) = qn(A)-n(P)-n(1') j [ A; -,p,, /3 - A;+I ](q-1)

i>1

(because A; = A,+1 for all i > 1). This is valid for any partitions A, /3, where
m = I Al - I /3 I. (If A - /3 is not a vertical strip, both sides are zero.)

Equivalently, if we define

(4.6) gP(I(t)=tn(A)-n(P)-n(1'")TT[Ai P;,/3;
i1>11

then we have Gp(tm)(o).

The next stage in the proof of (4.1) is

(4.7) Let R = (a', /3', X) be a three-term LR-sequence. Then there exists a
monic polynomial FR(t) E Z[t1, depending only on R, of degree n( l3) -

n(a) -
(2n)

where n I /3 - a I, with the following property: if M is a finite

0-modula of type A, and P is an elementary submodule of cotype /3 in M, then
the number of submodules N of cotype a in M such that p N = P is equal to
F (q).
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(Observe that when 6 = A (so that A - a is a vertical strip) we have
P = 0, so that N is elementary and therefore FR(t) = g,' 1.)(t) in this case.)

Proof. Let Q be a submodule of P, and let y be the cotype of Q in M, so
that we have acI3cycA.

Let f(P, Q) (resp. g(P, Q)) denote the number of submodules N of
cotype a in M such that N:) P J Q D p N (resp. N 0 P D Q = P N). The
number we want to calculate is g(P, P). Now f(P, Q) is easily obtained, as
we shall see in a moment, and then g(P, Q) can be obtained by Mobius
inversion [R8].

First of all let us calculate f(P, Q). We have

N D P D Q 0 p N« N D P and N/Q is elementary

S D N P, where S/Q is the socle of M/Q

« N/P c S/P.

By (3.2) S has cotype y in M, and so by (4.4) (applied to the module M/P
and its elementary submodule S/P) we have

G) f(P,Q) =Hyap(o)

if y c a, i.e. if y - a is a vertical strip, and f(P, Q) = 0 otherwise.
Now it is clear that

(ii) f(P, Q) _ F, g(P, R)
RcQ

summed over all submodules (i.e. vector subspaces) R of Q. The equations
(ii) for fixed P and varying Q c P can be solved by Mobius inversion: the
solution is

g(P, Q) _ F, f(P, R)µ(R, Q)
RcQ

where µ is the Mobius function on the lattice of subspaces of the vector
space P, which (loc. cit.) is given by

A(R, Q) = (- 1)dgd(d-1)/2

where d = dimk(Q/R). Hence in particular we have

g(P,P)= F, (-1)mgm(m-1)/2f(P,R)

RcP

where m = dimk(P/R) and the summation is over all subspaces R of P.
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Now for each partition S such that PC S CA, the number of R c P of
cotype 8 in M is H$SA(o ). Hence from (i) and (iii) it follows that

(iv) g(P,P) _ (-1)mgm(m-1)12HpsA(o)Hsap(o)

where the sum is over all S such that /3 C 8 C A and such that S - a is a
vertical strip, and m = 16 - /3 I. So if we define the polynomial FR(t) by

FR(t) = ,(-1)mt"(m-1)/2h$SA(t)hsap(t)

s

summed over partitions S as above, then it follows from (iv) and (4.4) that
g(P, P) = FR(q).

To complete the proof it remains lto1be shown that this polynomial FR(t)

is monic of degree n( /i) - n(a) - 12 I, where n =1 /3 -al.
The degree of the summand corresponding to S in (4.8) is by (4.4.2)

equal to

d = Zm(m - 1) + (cPr s + (1 - 0, - cpr)0s),
r<s

where O=P-a, cp = 8-P and 4i=A-8, and m = I cPI. Each of 0, cp,
is a vertical strip, so that each 0r, cp and qir is 0 or 1: in particular we have
Zm(m - 1) = Er s cpr cps - m by (4.5), so that

(V) d= E (Pr((ps+q/s-Os)+ E(1-Or)9s-Iwi
r<s r<s

Now (a', 3', A') is an LR-sequence. This implies that, for each r> 1, the
number of squares of /3' - a' = 0' in the columns with indices > r is not
less than the number of squares of A' - /3' in the same columns: that is to
say, we have

(vi) OS > ( cps + /s )
sir s>r

for each r > 1. From (v) and (vi) it follows that

d< .(1-Or)0s
r4s

with equality if and only if cp = 0, i.e. if and only if 8 = P. Hence the
dominant term of the sum (4.8) is hiiap(t)=ga 1..)(t), which by (4.6) is

monic of degree n(3) - n(a) - (). This completes the proof.

The proof of (4.1) can nowbe rapidly completed. Let M be an
0-module of type A, and let S = (A(0)',..., A(r) ') be an LR-sequence of type
(µ', v'; A'). Let N be a submodule of M such that S(N) = S, and let
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N1 = pN. Then clearly S(N1) _ (A(1)',..., A(r)') = S1 say. Conversely, if we
are given a submodule N1 of M such that S(N1) = S1, the number of
submodules N such that S(N) 'S and p N = N1 is equal to FR,(q), where
R1= (A(o)', A(1)', A(2)'), as we see by (4.7) applied to the module M/pN1
and its elementary submodule N1/p N1. Consequently

Gs (o) = Gs,(o) FR,(q)

and therefore

r

Gs(o) = fFR,(q)
i-1

where Ri = (A(i- 1)r, A(i)', P+ 1)'). (When i = r we take A(r+1)' = A(r)', so
that as remarked earlier FR,(q) = 8a(1 ^)(9), where a = A('-1)' and m

Hence if we define

(4.9) gs(t) _ FR,(t)

i-1

we have gs(q) = Gs(o), and by (4.7) the polynomial gs(t) is monic of
degree

`E (nc'> - n(A 1))

- (i)) =n(A)-n(µ)-n(v). Q.E.D.

The proof just given provides an explicit (if complicated) expression for
9.1,P), via the formulas (4.2), (4.4), (4.8), and (4.9). If a, b, c, N are
non-negative integers such that b < c, let us define

(4.10) (D (a,b,c;N;t)= E
(-1)`tNr+r(r+1)/2[rl

c - r
r b-rr>0

c-r
where

[ar
] and

L b
- r are Gaussian polynomials in t. (The sum on the

right of (4.10) is finite, since the term written is zero as soon as r>
min(a, b).)

With this notation we have

(4.11) Let S = (a(0), a(1),..., a(')) be an LR-sequence of type (µ', v'; A')
Then

gs(t) = tn(A)-n(µ)-n(v) [1 (D(aij, b.1, cij; N`. t-11
i>i> 1 j
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where

a = a(i+1) - a(i) b.. = au- 1) - a(i),j 1+1 ,+1, , , 1+11

cij = aj i) - ai+)1
N1 = ` (ah-l,i-1 - a,,1).

h<i

(Thus aij is the number of symbols j + 1 in the (i + 1)th row of the tableau
defined by S; cii is the number of columns of a(i) of length i, and
Cii - bii = a_ 1,j-1 is the number of j's in the ith row of S. Finally, Ni is
the excess of the number of j's in the first i rows of S over the number of
(j + 1)'s in the first i + 1 rows, and hence is > 0 by virtue of the lattice
permutation property.)

proof With the notation of (4.7) let R = (a', /3', A') be a three-term
LR-sequence, and let

/ai=Ai+l-p1+l, bi=ai-p1 1, Ci=F'i-Ni+1

As in (4.8) let 8 be a partition such that S c a c /3 c 8 c A, where S; = 8;+ 1
for all i > 1, and let r; = S,+ 1 - Pi+ 1, so that m = 8 - /31= Eri. (Since R is
an LR-sequence we have /3i = S1' = Ai, so that ao = ra = 0; also 0 < r, < a;

ciand0<r,<bi<ci.)
We shall use (4:8) to calculate F.W. From (4.4) we have

(1)
ltm(m-1)/2hPi;A(t)hs,,p(t) = to fl I ri

aiJ(t-1) c;-r;(t-,)
i>1

r

L
bi - ri

in which the exponent of t is

(2) A = Z(Eri)2- Eri+ E((a,-r;)ri+(ci-bi)(bi-rj))

_ -iErj(ri+1)- E1 ri+ E(c;-bi)bi
i<j

where N = E;.4i(ci - ai - bi). Moreover,

E (ci - bi)bi = E( 1- ai)(ai -/3+1)
i<j i<j

which reduces to

(3)

where s=113-aI.

n(/3)-n(a)- Zs(s-1)
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From (1), (2), (3), and (4.8) we obtain

(4) FR(t) = tn(fl)-n(a)-s(s- 1)/2 11 ( D (ai, bi, ci; N; t-' ).
i>1

Since by (4.9)
r

gs(t) = fFR,(t),
1-1

where R1= (a(1-1), a(1), a(j+1)), the formula (4) leads directly to (4.11).
(Since (j + 1)'s appear for the first time in the (j + 1)th row of S, it follows
that ail = 0 if i <j, whence the restriction i >j in the product on the
right-hand side of (4.11). 1

As an example (which we shall make use of later) we shall compute
gµ,,(t) when v = (r) is a partition with only one part r = l A - Al. (The case
when v = (jr) is given by (4.6).) First we have

(4.12) gµ(,)(t) = 0 unless A - µ is a horizontal strip of length r.

Proof. Let M be a finite o-module of type A, and let N be a cyclic
submodule of cotype µ in M. Let N = N n p W. Then since p iM/Ni
(p1M+N)/N= p'(M/N) we have

l(Ni-1/N)=Ai-µi

and since pN_1 = p(Nn pi-1M) c /Nn p'M=N, it follows that

0<Ai-µi<l(N-1/pN-1).

Since N is cyclic, so is N, and hence l(N _ 1 /p N _ 1) < 1. Hence Ai - µi = 0
or 1 for each i 3 1, and therefore A - µ is a horizontal strip. So unless
A - µ is a horizontal strip we have g' )(q) = 0 for all prime-powers q, and
therefore gµ(r)(t) = 0.

Remark. Alternatively (and more rapidly) (4.12) follows from (4.3): we
have 0 unless c'(r) # 0, i.e. unless sA occurs in the product sµhr,
which by Chapter I, (5.16) requires A - µ to be a horizontal strip.

Assume then that A - µ is a horizontal r-strip. Then A' - µ' is a vertical
r-strip, and there is only one LR-sequence S = (a(0), a(1),..., a(')) of type
(µ', (jr); A'), namely that obtained by filling in the squares of the vertical
strip A' - µ' consecutively, starting at the top. For this S we have ail = 0 or
1 for each pair (i, j), and also ci3 - bit = ai-1,1-1 = 0 or.1, since there is at
most one square of A' - µ' in any row. Moreover, if ail = 1 (so that there is
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a square labelled j + 1 in the (i + 1)th row) we have N. j = 0. Hence, from
the definition (4.10) of (1) we find that t(a; j, b; j, c;j; N, j; t) is equal to

1

1-t
(1 - t`'0/(1 - t)

if a1_1,1_1=a;j=0or1;
ifa;_l.j-1=0,a+1-1;
if a;_1,1_1=1,aij=0.

Moreover, in the latter case (i.e. when there is a square labelled j in the
ith row, but none labelled j in the row below), ci j is the number of
columns of A' of length i, that is ci j = m;(A). Putting these facts together,
we obtain

(4.13) Let a = A - µ be a horizontal strip of total length r, and let I be the set
of integers i > 1 such that a, = 1 and Q;+1 = 0. Then

tn(a)-n(µ)
gµ(r)(t) =

1
_ 1 (1 - ttIE!

where m;(A) is the multiplicity of i in A.

Examples
1. Let (x; t),=(1-xXl-xt)... (1-xti-1) for all r>0. Then (D(a, b, c; N; t) is
equal to the coefficient of x' in (xt^'+l;t)Q/(x;t)c_b,,. (Use Chapter I, §2,
Example 3.) Deduce that if N = c - a - b we have

[C_a]
(D (a,b,c;N;t)

b

This applies in particular to the terms corresponding to i =j in the product (4.11),
since

2. Let

E
(a;t)r(/3;t)r rx)= (Y;t)(t;t) xr> 0 r r

in the standard notation for basic hypergeometric series (see e.g. [G5]). In this
notation we have

c
c(a,b,c;N;t)= b[]2i(t0,tb;tc;t_1,t)

so that gs(t) is a product of Gaussian polynomials and terminating 2 (p1's.

Notes and references

The contents of §§1 and 2, together with the theorem (4.3), are due to
Philip Hall, who did not publish anything more than a summary of his
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theory [H3]. The contents of §3, in particular (3.4), are due to J. A. Green
[G13]. Theorem (4.1) was first proved by T. Klein [K10], a student of
Green. Our proof is different from hers.

It should be pointed out that Hall was in fact anticipated by more than
half a century by E. Steinitz, who in 1900 defined what we have called the
Hall polynomials and the Hall algebra, recognized their connection with
Schur functions, and conjectured Hall's theorem (4.3). Steinitz's note [S26]
is a summary of a lecture given at the annual meeting of the Deutsche
Mathematiker-Vereinigung in Aachen in 1900; it gives neither proofs nor
indications of method, and remained forgotten until brought to light by K.
Johnsen in 1982 [J13].

For generalizations of the notion of the Hall algebra, see the papers by
C. M. Ringel [R2], [R3], [R4].



APPENDIX*: Another proof of
Hall's theorem

This Appendix is devoted to a simple proof of the following slightly
weakened form of (4.3) (we shall freely use the terminology and notation
of Chapter II):

(AZ.1) For any three partitions A, µ, v there exists a polynomial gµv(t) E Z[t]
such that =g(q). Moreover, has degree < n(A) - n( µ) -
n(v), and the coefficient of t" ai-"t "`t-"t° is equal to cµ, .

Our proof does not use the Littlewood-Richardson rule (Chapter I,
(9.2)). Therefore, combining it with the arguments of §§3 and 4 of Chapter
II we shall obtain a new proof of the Littlewood-Richardson rule which
makes the appearance of the lattice permutations more natural.

Our proof is based on a combinatorial interpretation of the coefficients
aaµ from the formula (1) of Chapter II, §2. We need some definitions.

A composition is a sequence a= (al, a2, ...) of non-negative integers
with only a finite number of non-zero terms. So a partition is a composi-
tion such that al > a2 > .... The group S. of finite permutations of
N+=(1,2,3,...) acts on compositions by wa=(aW-1(l),aW-1(2),...). We
shall write a - /3 if a and /3 are conjugate under this action: clearly , each
S,,-orbit contains exactly one partition.

As well as partitions the compositions have diagrams: the diagram of a
is formally defined as the set {(i, j) E Z2: 1 <j < a,) and is graphically
displayed as the set of squares containing a, squares in the ith row.

If a and /3 are two compositions, an array of shape a and weight /i is a
numbering of the squares of the diagram of a by positive integers such
that for any i > 1 there are /ii squares numbered by i (more formally, an
array is a function A: a -+ N+ such that Card A- t (i) = /3, for all i > 1; it
will be convenient for us to assume that A is defined on all of N+ X N+ so
that A(i, j) = +- when j> a,). For any x = (i, j) E N+X N+ let x- _
(i, j + 1). An array a will be called row-ordered (resp. row-strict) if
A(x-') >A(x) (resp. AU -) >A(x)) for any x E a. Likewise we define
column-ordered and column-strict arrays.

* This Appendix was written by A. Zelevinsky for the Russian version of the first edition of
this book, and is reproduced here (in English, for the reader's convenience) with his
permission.
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We define a total ordering on N+X N+ by

(i, j) <L (i', j') « either j < j', or j = j' and i > V.

Finally, for each row-strict array A of shape a we let

d(A) = Card((x, y) E a X a : y <L x, A(x) <A(y) <A(x

(AZ.2) Let A, µ be partitions and a, /3 compositions such that a µ and
/3 - A. Then the coefficient aaµ (Chapter II, §2) is equal to

aaµ 4
d(A)

=
A

summed over all row-strict arrays A of shape a and weight /3.

Before proving (AZ.2) we shall derive from it (AZ.1). From (AZ.2) the
polynomial

E td(A) E Z[t],
A

where the sum is the same as in (AZ.2), depends only on A and µ; we
denote it by aaµ(t).

(AZ.3) (a) a,,µ(t) has coefficients > 0.
(b) aµ(1) is equal to the number of (0,1)-matrices with row sums A, , 92, ...
and column sums A1, X2,... .
(c) aaµ(t) = 0 unless µ < A. Moreover, aAA(t) = 1.

Proof. (a) is evident. To prove (b) it is enough to establish a bijection
between row-strict arrays of shape µ and weight A', and (0,1)-matrices
with row sums µl, µ2,... and column sums A1,, A2,.... To do this we assign
to an array A the matrix (ci1), where c.1= 1 if the ith row of A contains j,
and cij = 0 otherwise; this is the required bijection. Finally, (c) follows at
once from (a), (b), and the Gale-Ryser theorem (Chapter I, §7, Example
9).

From (AZ.3Xc), (aaµ(t)) is a strictly upper unitriangular matrix over Z[t].
Hence it is invertible, and its inverse has the same form. Therefore, the
entries in the transition matrices between the bases (VA.) and (uA) in H(o)
are integer polynomials in q. Since the multiplication law in H(o) with
respect to the basis (v,A,) does not depend on q, it follows that the structure
constants in the basis (uA) are integer polynomials in q. This proves the
existence of the Hall polynomials gµv(t) E Z[t]. It remains to find their
degrees and leading coefficients.

(AZ.4) aAµ(t) has degree < n(µ) - n(,1), and the coefficient of t"(µ)-"(a) is
equal to K.A. (Chapter I, §5).
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This follows at once from the next combinatorial lemma:

(AZ.5) For any row-strict array A of shape µ and weight A' let d(A) denote
the number of pairs (x, y) E µ X µ such that y lies above x (in the same
column) and A(x) <A(y) <A(x -). Then
(a) d(A) + d(A) = n( µ) - n(A);
(y) d(A) = 0 if and only if A is column-ordered.

proof (a) Let

D(A) = {(x, y) E µ X µ: y <L x, A(x) <A(y) <A(x")),

N(µ) = {(x, y) E A X : y lies above x},

D(A) = {(x, y) E N(µ): A(x) <A(y) <A(x -')};

then we have

Card D(A) = d(A) + E I A' I = d(A) + n(A),
>1 2

Card N( µ) _ F N' = n( µ),
t>1 2

and

Card D(A) = d(A).

We shall construct a mapping cp: D(A) - N(µ). Let (x, y) E D(A) and
suppose that x = (i1, f1), y = (i2, j2). Clearly i1 # i2; let i = max(i1, i2),
i' = min(i1, i2), j = min(j1, j2) and finally cp(x, y) _ ((i, j), (i', j)). The defi-
nitions readily imply that cp is a bijection of D(A) onto N( µ) - D(A),
whence our assertion.

(b) The `if part is evident. Now suppose that A is not column-ordered:
that is .to say, there are x = (i, j), y = (i', j) E µ such that i > i' and
A(x) <A(y). Choose such a pair with least possible j; clearly it belongs to
D(A), hence d(A) # 0.

Now let d., (t) = t"(µ)-"('`)aaµ(t-'). From (AZ.4) and (AZ.5) we have

(AZ.6) a,,,(t) _ td(A)

A

summed over all row-strict arrays of shape µ and weight A'; in particular,
aA (t) E Z[t]. Moreover, a, µ(0) = KeV. I

Now consider the ring A[t] = Azl,t of polynomials in t with coefficients
from A; we shall write down the elements of A[t] as P(x; t). Clearly, A[t]
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is a free Z[t]-module with basis (eA). From (AZ.3Xc), the matrix (aAµ(t)) is
strictly upper unitriangular. Therefore, the equations

(1) ex = E aAµ(t)P, (x; t)

uniquely determine the elements P,,(x; t) E A[t], and they form a Z[t]-
basis of AN. Let f ,(t) be the structure constants of AN with respect to
this basis, i.e.

P,(X; t)P,(x; t) _ Efµv(t)PA(X; t);
A

it is clear that fµ,,(t) E Z[t] for all A, v.

(AZ.7Xa) gµv(t) = tn(A)-n(µ)-n(v) fA (t'U

V

(b) PA(x; 0)'L") = sA(xW. In particular, f(0) = cµ are the structure constants of
A in the basis (sA).

Proof. (a) follows at once from the definitions. To prove (b) it is enough to
observe that

M(e, s)A'µ = Kµ.k = aAµ(O)

by (AZ.6) and the results of Chapter I, §6. 1

From (AZ.7), gµ,,(t) has degree < n(A) - n( IL) - n(v), and the coeffi-
cient of this power of t is equal to c, . This completes the proof
of (AZ.1).

It remains to prove (AZ.2). For this we reformulate the definitions of an
array and of d(A) in terms of sequences of compositions. If a and J3 are
two compositions, we shall write (3 -1 a if a, - 14 /3, < a1 for any i > 1. If
p a then we define d(a, 83) to be the number of pairs (i, j) such that
/3i =a1, /3j =aj - 1 and (j,aj)<L(i,a,).

(AZ.8) Let a and 13 be two compositions and suppose that (3, = 0 for i > r.
There is a natural one-to-one correspondence between row-strict arrays A of
shape a and weight /3, and sequences of compositions (a(°), a(1),..., a('))
such that 0=a(0)-Ia(1)-1 ... _a(')=a and Ia(')1-Ia('-1)1=/3 fori>1.
Moreover, this correspondence transforms d(A) into E;,1d(a('), a('-1)).

Proof. We attach to an array A the sequence (a(')), where a(')=
A-1 ((1, 2, ... , i)). All our assertions are verified directly. I

Remembering the definition of aAµ (Chapter II, §2) we see that an
evident induction reduces the proof of (AZ.2) to the next statement:
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(&Z.9) Let A, µ be partitions with I AI = I µI + r, and a a composition such
that a - A. Then

Gµ(1.)(0) _ E gd(a.a)
16

summed over all compositions p such that /3 H a and /3 - µ.

proof. Let M be a finite o-module of type A. Recall that Gµ(1r)(o) is the
number of submodules N c M of type (1') and cotype A. The condition
that N has type (1r) means that N is an r-dimensional vector k-subspace
of the socle S of M. Let Gr(S) denote the set of these subspaces. We shall
use the decomposition of Gr(S) into Schubert cells. Recall that if a basis
(vj)i E , of S is given, where I is a totally ordered set, then the correspond-
ing Schubert cells CJ in Gr(S) are parametrized by r-subsets J Cl. The
elements of C. have coordinates (c,1 E k: j E J, i E I - J, j < i); the sub-
space corresponding to (c1) has the basis (v, + Eicijvi)J C. J. It is known
(and easy to prove) that Gr(S) is the disjoint union of the CJ. Moreover,
we have Card (CJ) = qd(J), where d(J) is the number of pairs (i, j) such
that j E J, i E I- J and j<i.

Now we express M in the form M = ® i > 1 o xi, where Ann(x,) p a,. Let
I denote the set of indices i > 1 such that a1 > 0, and for each i E I let
of = VCl,-Ixi, where IT is a generator of p. It is clear that the vi(i E I) form
a k-basis of S. We order I by requiring that j precedes i if and only if
(j, a1) <L (i, ai). Consider the corresponding decomposition of G,(S) into
Schubert cells. The subsets J c I are in natural one-to-one correspondence
with compositions /3 H a: to a subset J there corresponds the composition
/3 such that /3i = ai - 1 for i e J, and /3i = ai for i E I - J. It is clear that
this correspondence transforms d(J) into d(a, /3). Finally, it is easy to
prove that all submodules N E CJ have the same cotype µ, where µ is the
partition such that µ - /3. This completes the proof of (AZ.9). I

Remarks. 1. The polynomials PP(x; t) defined by (1) are called the Hall-
Littlewood functions. They will be studied in detail in Chapter III.

2. It is easy to see that (AZ.9) is equivalent to Chapter II, (4.6): each of
these statements follows at once from the other by means of the following
well-known expression for Gaussian polynomials:

(2) [ r
J

td(J)
L J J

where the sum is over all r-subsets of a totally ordered n-set I, and d(J) is
defined in the proof of (AZ.9) above. The formula (2) follows e.g. from
Chapter I, §2, Example 3. On the other hand, one of the standard ways to
prove (2) is to count the number of points on a Grassmannian over a finite
field in two different ways, which was essentially done above.



III

HALL-LITTLEWOOD SYMMETRIC
FUNCTIONS

1. The symmetric polynomials R.

Let x,..., x,, and t be independent indeterminates over Z, and let A be a
partition of length < n. Define

Xi -RA(xl,... , x,,; t) _ E w Xxl 1 ... x an
wEs i<1 xi -X1

The denominator in each term of the sum on the right-hand side
sign, the Vandermonde polynomial

as= fl(xi-x1)
i<1

is, up to

(Chapter I, §3), and therefore we have

1

(1.1) R,i(xl,...,x,,;t)=as' e(w).w(X
weS i<i l

where as usual e(w) is the sign of the permutation w. The sum on the
right-hand side of (1.1) is skew-symmetric in x1,. .. , x,,, hence is divisible
by a8 in the ring Z[xl,... , x,,, t], and consequently R,, is a homogeneous
symmetric polynomial in x1,..., x,,, of degree At, with coefficients in Z[t].
Hence R. can be expressed as a linear combination of the Schur functions
s,,(xl, ..., x,,), with coefficients in Z[t]. In fact we have

(1.2) R,(xl,..., x,,; t) _ E u,, (t)Sµ(xl,..., x,,)

where u,,,(t) E Z[t], and ua,,(t) = 0 unless JAI = I µl and A> µ.

Moreover, the polynomial ua,,(t) can be explicitly computed. For each
integer m > 0 let

m 1 - t'

Vm(t) = IZ =
t)

tal 1-t
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and for a partition A = (A1,..., of length <n (in which some of the Ai
may be zero) we define

va(t) = 11 vm,(t)
i>O

where mi is the number of Aj equal to i, for each i > 0. Then we have

(1.3) uaa(t) = va(t).

Proof of (1.2) and (1.3). The product Hi <j(xi - txj), when multiplied out, is
a sum of terms of the form

[Jx;'i(-txi)'
i<j

where (rij) is any n x n matrix of 0's and 1's such that

(i) r,,=0, rij+rii=1ifi#j.

For such a matrix (rii), let

(ii) ai=Ai+rii,

(iii) d = E rji.
i<j

Then from (1.1) it is clear that R. is a sum of terms

(_t)d
a,,, as

where as in Chapter I, §3, as is the skew-symmetric polynomial generated
by x s =x" ' ... x,^. Since aa = 0 if any two of the a, are equal, we may
assume that al,..., a,, are all distinct. We rearrange them in descending
order, say

aW(i) =Ai+n - i (1<i<n)

for some permutation w E S and some partition µ = (j,..., A,,). Then
as as ' is equal to e(w)sµ, and to prove (1.2) it is enough to show that

<A.
Let sij = rW(i) W(j). The matrix (sij) satisfies the same conditions (i) as the

matrix (r,1), and from (ii) and (iv) we have

µi+n-i=AW(i) + sij.
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Hence for 1 < k < n

(v)

Now

k n k

Al + ... +µk = .1W(1) + ... +,1w(k) + E F, sij - E (n - i).
i-i j-i i-1

k n k k n

E E Sij = E Sij + F, E sij
i-1 j-i i,j-1 i-1 j-k+1

k

= .k(k -1) + sij
i-1 j>k

< Zk(k -1) + k(n - k)

k

_ (n - i).
i-I

Hence it follows from (v) that

µi+...+Ak</w(1)+...+AW(k)

<,1i+...+Ak

and therefore µ < A. This proves (1.2).
Furthermore, these calculations show that A = A if and only if AW(i) Ai

for 1 < i < n, and sij = 1 for all pairs i <j. It follows that

(vi) E e(w)(-t)d
W

summed over all w E S,, which fix A, where

d = F, rji = E sW-'(n.W-l(i)
i<j i<j

is equal to the number n(w) of pairs i < j in (1,2,. .. , n} such that
w(j) < w(i); this number n(w) is also the number of pairs 1 <k such
that w(k) < w(l), and the signature e(w) is equal to (-1)n(w). Hence from
(vi) we have

uaa(t) _ E tn(w)

WEsA

where S is the subgroup of permutations w E S such that Aw(i) _ Al. for
1 < i < n. Clearly Sn = f1i, 0 S,,,, where as before mi is the number of Al
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equal to i, and hence to prove (1.3) it is enough to show that

(viii) E tn(w) = v,,,(t).
weS,

We prove (viii) by induction on m. Let wi denote the transposition
(i, m), for 1 < i < m (so that wm is the identity). The wi are coset represen-
tatives of 1 in S,,,, and we have

n(w'wi) = n(w') +m - i

for w' E S,,,_ because in the sequence (w'wi(1),...,w'wi(m)) the number
m occurs in the ith place and is therefore followed by m - i numbers less
than m. Consequently

E ta(w)=( E tn(w'))(1+t+...+tm-1)

WES. f

from which (viii) follows immediately. This completes the proof of (1.3).

By taking A = 0 in (1.2) and (1.3) we have

E W 1
7''1 xi - txj

= vn(t),
weS i<j xi - Xi

which is independent of x1,...,x,,.

Next we shall show that

(1.5) RA(x1,..., x,,; t) is divisible by va(t) (i.e. all the coefficients of RA are
divisible by va(t) in Z[t]).

Proof Suppose for example that A1= ... = An > Am+i. Then any w E S
which permutes only the digits 1, 2,..., m will fix the monomial xi ' ... x
and by (1.4) we can extract a factor vm(t)from RA. It follows that

Ra(x1,...,x,,;t)=va(t) w
W E S /s A;>A1 xi -x1(

= va(t)PA(x1, ..., x,,; t), say.

Since R. is a polynomial in x1,. .. , x,,, so also is PA; and since t occurs only
in the numerators of the terms in the sum Pa, it follows that P. is a
symmetric polynomial in x1,...,x, with coefficients in Z[t]. I

It is these polynomials PA, rather than the RA, which are the subject of
this chapter.
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2. Hall-Littlewood functions

The polynomials PA(xl,... , xn; t) just defined are called the Hall-
Littlewood polynomials. They were first defined indirectly by Philip Hall, in
terms of the Hall algebra (Chapter II) and then directly by D. E. Little.
wood [L12], essentially as we have defined them. From the proof of (1.5)
we have two equivalent definitions:

(2.1) P(x x t)= 1 E w{xA ..xA"
x;-'i

P, (x n; U (t) 1 n X - xA wEsn J

7-- x;-tx.
(2.2) PA(xl,...,Xf;t) _ E W XA1...Xn" 1 1

Wr=&/sa AXi -Xl
The PA serve to interpolate between the Schur functions sA and the

monomial symmetric functions mA, because

(2.3) PA(x1,...,xn;0) 5A(x1,...,xn)

as is clear from (2.1), and

(2.4) PA(xl,..., xn; 1) = mA(xl,..., xn)

as is clear from (2.2).

As with the other types of symmetric functions studied in Chapter I, the
number of variables x1,. .. , x,, is immaterial, provided only that it is not
less than the length of the partition A. For we have

(2.5) Let ,1 be a partition of length < n. Then

PA(xl,..., xn,0; t) = PA(xl,..., xn; t).

Proof. From (2.2) we have

x.-Li.
PA(Xl,...,Xn+l;t)= W X1l...xn+11 fl

a A;>A1 X1-XWEsn+l/Sn+l

When we set xn+1 equal to 0, the only terms on the right-hand side which
survive will be those which correspond to permutations w E Sn+1 which
send n + 1 to some r such that Ar = 0; modulo S,'+ 1, such a permutation
fixes n + 1, so that the summation is effectively over S,,IS .

Remark. The polynomials RA(x1,...,x,,;t) defined in §1 do not have this
stability property, and are therefore of little interest.
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gy virtue of (2.5) we may pass to the limit and define P,(x; t) to be the
element of A[t] whose image in An[t] for each n > I(A) is PA(xl,..., x,,; t).The

symmetric function Pk(x; t) is the Hall-Littlewood function corre-
sponding to the partition A. It is homogeneous of degree l Al.

From (1.2), (1.3), and (1.5) it follows that

PA(xl,..., xn;t) _ wa,h(t)sµ(xI,..., xn)

with coefficients wAN,(t) E Z[t] such that w,,,(t) = 0 unless IAI = I µl and
A > p, and wan(t) = 1. Hence

(2.6) The transition matrix M(P, s) which expresses the PA in terms of the sµ s
strictly upper unitriangular (Chapter I, §6).

Since the s. form a Z-basis of the ring A of symmetric functions, and
therefore also a Z[t]-basis of A[t], it follows from (2.6) that the same is
true of the PA:

(2.7) The symmetric functions PA(x; t) form a Z[t]-basis of A[t].

Next we consider P. when A = (jr) and when A = (r). In the first case
we have

(2.8) P(1r)(x; t) = er(x),

the rth elementary symmetric function of the xi.

Proof By stability (2.5) P(1.) is uniquely determined by its image in A,[t]:
in other words, we may assume that the number of variables is r. But then
it is clear from (2.2) that P(1.)(xl, ..., xr; t) =x1... X'. = e,. I

We now define

qr = q,(x; t) _ (1 - t)P(r)(x; t) (r > 1),

qo=go(x;t)= 1.

From (2.2) we have, for r > 1,

n xi - Ix,

gr`xl, ..., xn; t) t) E xi , .

i-1 i,'i xi -xi

The generating function for the q, is
M

(2.10) Q(u) = L qr(x; t)ur =
r-O

= H(u)/H(tu)

1 - xitu

1 -xiu
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in the notation of Chapter I.

Proof. Suppose first that the number of variables xi is finite, and put
z = u-1. By the usual rule for partial fractions we have

n

z - txi n (1-t)xi il x; - txj
= 1+i-1 Z-xi i-1 Z-xi j,#i xi-xj

so that

n 1 - tuxi n xiu xi - try
11 =1+(1-t)Ei-1 1-uxi 1=1 1-xiu jfi xi-X)

in which the coefficient of u', for r 3 0, is equal to q,(x1,... , x,,; t) by (2.9).
Now let n - - as usual.

I

It will be convenient to introduce another family of symmetric functions
QA(x; t), which are scalar multiples of the PA(x; t). They are defined as
follows:

(2.11)

where

(2.12)

QA(x; t) = bA(t)P,A(x; t)

bA(t) _ iU 9mj(A)(t)

Here, as usual, mi(A) denotes the number of times i occurs as a part of A,
and (Pr(t) = (1 - t)(1- t2)... (1 - t'). In particular,

(2.13) Q(r)(x; t) = qr(x; t).

We shall refer to the QA as well as the P. as Hall-Littlewood functions.
They may also be defined inductively, as follows. If f is any polynomial or
formal power series in x1, ... , x,, (and possibly other variables), and 1 < i 4
n, let f (i) denote the result of setting xi = 0 in f. Then if we write QA for
QA(x1, ..., x,,; t), we have

(2.14)

n

- IQ =A 4, g i Q(µ')
i-1

where µ = (,12, ,13, ...) is the partition obtained by deleting the largest part
of A, and

gi=(1-t)f
xi- Lr .

j'i xi -xi
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proof. Let 1 be the length of A. From the definitions of bA(t) and vA(t) we
have

vA(t) = vn-1(t)bA(t)/(1 - t)',

and therefore

(1- t)i
QA(xl,...,xn;t)=

U _ (t)
RA(xl,...,xn;t)

n i

' w(xA ..xA f rl X, - txj

wESn/Sn_1 ia1 j>i Xi -Xj

by (1.4), where Sn -1 acts on x1+ 1, ... , xn. It follows that

QA(Xl,...,xn;t)= E w(xtlg1Qµ(x...... Xn;t))

which is equivalent to (2.14).

Let

1-u

1 - to

= 1 + (tr - tr-1)ur
r> 1

as a power series in u. Then we have

(2.15) Let u1, u2, ... be independent indeterminates. Then QA(x; t) is the
coefficient of u A = ui 1 u?2 ... in

Q(u1,u2,...)= 11 Q(ui)fF(ui'uj)
i>1 i<j

Proof We proceed by induction on the length I of A. When I = 1, (2.15)
follows from (2.13). So let I > 1 and assume the result true for µ =
(A2, A3, .. ).

As before, let Q(')(u) (resp. Q(')(u1, u2, ...)) denote the result of setting
zi = 0 in Q(u) (resp. Q(u1, u2, ... )). From (2.10) we have

Q(i)(u) =F(xiu)Q(u)
and hence

(1) Q(i)(ul, u2, ...) = Q(u1, u2, ...) fT F(xiuj).
j>1
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From (2.14), QA(xl,..., x,,; t) is the coefficient of uA in

rtU1,

E xilgoi,(u2,u3,...)
A1>0 i-1

(2) = Q(u2, u3, ...) E ui1 E xilgi II F(x;uj)
A,>0 i-1 1>2

by (1) above. Let us expand the product FI;> 2 F(x,uj) as a power series in
x;, say

F(x;uj) _ fmx"
J>2 m>0

where the coefficients fm are polynomials in t, u2, u3, .... Then the
expression (2) is equal to Q(u2, u3, ...) multiplied by

Al Al+m Al
U1 fm x1 gi = U1 qAl+mfm

Al>O m>0 i-1 Al,m

= Q(u1) F fmul m
m>0

= Q(ul) fJ F(ul 1uJ)
1>2

and hence finally QA is the coefficient of uA in

Q(ul) F(ul lul) . Q(u2, u3, ...) = Q(u1, u2, u3, ...)
i>2

For any finite sequence a= (al, a2, ...) of integers let

qa=ga(x;t)=IIq (x;t)
i>1

with the convention that q, = 0 if r < 0 (so that q, = 0 if any a; is

negative). The raising operators R, , i <j (Chapter I, §1) act as follows:
R;jq. = qR,;a. Then the coefficient of U° in

F(ui 1ul) fl Q(uk)-(1 + E
k>1 r>1 l 0

is

1 + E (tr - ti-1)R jqa =
1

1

-
-

t

RR,

q..
r>1 U
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It follows that (2.15) may be restated in terms of raising operators:

(2.15' )

for all partitions A.
Hence

1 -R..
QA = 1 - tR qA

1 <j fj

QA= [1(1+(t-1)R,i+(t2-t)R1+...)qA
i <j

and it follows from Chapter I, (1.14) that

QA = E aAµ(t)qu

where the polynomials aAµ(t) E Z[t] are such that aAµ(t) = 0 unless A < µ,
and aAA(t) = 1. By (2.7), the QA form a Q(t)-basis of A ®Z Q(t); and
therefore

(2.16) The symmetric functions qA form a Q(t)-basis of A ®Z Q(t), and the
transition matrix (Chapter I, § 6) M(Q, q) is strictly lower unitriangular.

Examples

1. If we set x, = t'-'(1 < i < n) we have

RA(1, t,..., t"-'; t) =

directly from the definition (1.1), because the only term in the sum which does not
vanish is that corresponding to w = 1. Hence

QA(l,t,...,tn-1;t) =t"(A)(p"(t)/tpmo(t)

where mo = n -1(A). Let n -> cc, then also mo -' and so when x, = t'-' for all
i 31 we have

QA(1,t,t2,...,;t) =t"(A).

2. We can use the inductive definition (2.14) to define QA for any finite sequence
(A1, A2,..., A,) of non-negative integers, not necessarily in descending order. The
formula (2.15') will still be valid and can be used to extend the definition of QA to
any sequence (Al, A2, ... A,) of integers, positive or negative. If A/ <0, clearly
QA=0.

To reduce QA when the A, are not in descending order to a linear combination
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of the Qu where µ is a partition, we may proceed as follows: since interchange
of.

xl and x2 transforms

xix2(x2 - tr1)(x1 - a2)

into

xixz(x2 - tx1)(x1 - tx2)

it follows that

Q(r, s + 1) - tQ(r + 1, s) (Q(s,r+1)-tQ(s+1,r))

or, replacing r by r - 1, that

Q(s, r) = tQ(r, s) - Q(r- 1, s+ 1) + tQ(s+ 1, r- 1).

Assuming s <ri this relation enables us to express Q(,,,.) in terms of the Q(r_i s+i)
where 0 < i < [ i (r - s)] = m say. The result is

m
Q =tQ + (ti+1-ti-1)Q

i-1

if r - s = 2m + 1, whereas if r - s = 2m the last term in the sum must be replaced
m-1by (tm - t ) Q(r-m, s+m)

For simplicity we have stated these formulas for a two-term sequence (s, r): but
the same holds for any two consecutive terms of a sequence A.

3. The definitions (2.1) and (2.2) of PA can be written in terms of lowering
operations Rji(i <i):

PA = u,,(t)-1 [1 (1 - tRji)sA
i<j

_ fl (1 - tRji)sa
A,> a1

Hence, for example,
n

P(n) _
1 (1 - tRj1)s(n)
1=2

_ E(-t)IJI[TRjls(n)

J JEJ

summed over all subsets J of (2,3,..., n). The only J for which n j e j R jl s(,):* 0
are J = {2, 3, , ... , i} (2 < i < n), and therefore

n-1

P(n) a E (- t)rS(n - r

F- 0
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The Hall algebra again

By (2.7), the product P,,P of two Hall-Littlewood functions will be a
linear combination of the Pa, where I Al = I Al + I v I (A, µ, v being parti-
tions) with coefficients in Z[t]: that is to say, there exist polynomials
fµv(t) E Z[t] such that

PP(X; t)P,(x; t) _ E f""' W PA (X; t).
A

When t = 0 we have by (2.3)

(3.1) (0) = c 11,Up

the coefficient of sA in ss,,. Likewise, from (2.4), is the coefficient
of mA in the product mum when expressed as a sum of monomial
symmetric functions.

In order to connect the symmetric functions PA with the Hall algebra,
we need to compute the polynomial ffv(t) in the case v = (im).

Recall that

n
r J =

(Pn(t)l
ar(t)

qpn_,.(t)

0 otherwise, whereif 0 < r < n and that r

(3.2) We have

cp,(t) _ (1-t)(1-t2)...(1 -tr).

f16 m) (t FI
A; -

tal i-lei

(and therefore f 1.p) = 0 unless A - µ is a vertical m-strip).

Proof We shall work with a finite set of variables x1,. .. , x,,, where
n > I(µ) + m. We have to multiply Pµ, given by the formula (2.2), by P (j.),
which by (2.7) is equal to the mth elementary symmetric function em. Let
k = A, be the largest part of µ, and split up the set {x1,..., xn} into subsets-
Xu, ... , Xk (some possibly empty) such that xj E X, if and only if Aj = i, so
that Al = mi, the multiplicity of i as a part of µ. Let er(X,) denote the
elementary symmetric functions of the set of variables X,. Since

n k

fl (1 +x,t) = II fl (1 +x,t)
i!1 J-O X.EX,
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it follows that

(1) en,(xl,...,xn) _ E er,(Xo)...erk(Xk)
r

summed over all r = (ro, ... , rk) E Nk+ 1 such that ri < mi for each
ri=m.
To each such r there corresponds a partition A defined by

i and

Ai=;Zi+ri_1 (1 <i<k+1).

Clearly A - µ is a vertical m-strip, and conversely every partition k such
that A - µ is a vertical m-strip arises in this way.

Each eri(Xi) on the right-hand side of (1) is equal to P(lr;)(Xi; t) by (2.7),
and hence by (2.1) can be written as a sum over the symmetric group 5,,,
acting on the set X. In this way (1) takes the form

(2) en,(xl,...,xn) _ cA µ(x1,...,xn;t)

summed over all partitions A D µ such that A - µ is a vertical m-strip,
where

(DA = W xjl-Al ...xn,.-µn
xi-txJ

WES. i<j xi -xi
Ai°jlj

and

k

CA,µ(t) _ Vr;(t)Vm;- ,(t).
i=0

If we now multiply both sides of (2) by Pµ(x1.... , xn; t) as given by (2.2)
we shall obtain

PNe,n = L
CA.µ(t)RA

A

from which it follows that the coefficient of P. in Pe,n is

fµ(1m)(t) =
UA(t)CA.µ(t)-]

which easily reduces to the expression given. I

If we now compare (3.2) with Chapter II, (4.6) we see that

(3.3) Gµ(lm)(0)=qn(A) ntµ) n(lm)fµt1M)(q-1)
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,',prom this we deduce the following structure theorem for the Hall algebra

(3.4)
Let a/: H(o) Oz Q - A. be the Q-linear mapping defined by

s(uA) = q-n(A)PA(x; q-1).

Then 0 is an isomorphism of rings.

proof By (2.7), 4 is a linear isomorphism. Since H(o) is freely generated
(as Z-algebra) by the u(11) (Chapter II, (2.3)), we may define a ring
homomorphism ii': H(o) ® Q --> A Q by

q1(u(11)) = q-r(r-1)/2er.

We shall show that 41' = 11r, which will prove (3.4). To do this we shall
prove by induction on the partition A that cli'(uA) = Ii(u,). When A = 0,
this is clear from the definitions. Now assume that A * 0, and let A be the
partition obtained from A by deleting the last column. Suppose that this

,,(140)last column has m elements. Then from Chapter II, (4.6) we have GA
=1, and Gµ(14o) = 0 unless v J A and v - µ is a vertical m-strip.
Moreover, if v - µ is a vertical m-strip, it is easy to see that v < A. Hence

(1) UAU(11) = UA + E GG(l ,)(o)uv
v<A

and likewise

(2) PPP(1'^) = PA + E fµ(1m)(q-1) pv

v<A

where Pµ stands for PP(x; q-1), and so on. If we now apply 0' to both
'sides of (1) and recall that P0.) = en, by (2.7), and compare the result with
(2), taking as inductive hypothesis that q-n(v)P for all v < A, then
it follows from (3.3) that l/i'(uA) = q-n(A)PA = P(u,).

Remark. This proof depends on the identity (3.3), which appears as merely
a happy accident. It is possible to give a proof of (3.4) which does not
depend on an apparent miracle: see the notes at the end of Chapter V.

From (3.4) it follows that

(3.5) qn(A)-n(µ)-n(v) fA (q-1 )

for any three partitions A, µ, v, and therefore by Chapter II, (4.3) the
polynomials f, are related to the Hall polynomials gµ of Chapter II as
follows:

(3.6) 9µv(t) = tn(A)-n(Fa)-n(v) fAv(t-1 J.
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In particular:

(3.7) (i) If 0, then ffk(t) is identically zero.
(ii) f , (t) = 0 unless I AI = I AI + I v I and µ, V C ,1.

The results of Chapter II, §4 (especially (4.2) and (4.11)) provide an
explicit formula for namely

(3.8) fA,(t) _ E fs(t)
s

summed over LR-sequences of type (µ', v'; X), where in the notation of
Chapter II, (4.10) and (4.11)

(3.9) fs(t) _ Fj 4)(aij, bij, cij; Nj; t).
i>i

In particular:

(3.10) If A A 'and 0=,k - u is a horizontal r-strip, then

f r)(t) = (1 - t)-1 J (1 - tmi(A))
iEI

where I is the set of positive integers i such that 0; > Bi+1 (so that 6j = 1 and
B,+ 1 = 0) and m;(A) is the multiplicity of i as a part of A. In all other cases

f (r)(t) = 0.

In view of (3.6), this is simply a transcription of Chapter II, (4.13).

Remark. We have arrived at this result (which we shall later make use of)
by an indirect route, via the Hall algebra. It is also possible to derive (3.10)
directly from the definition of the PA(x; t): see Morris [M13].

Examples

1. Let A be a partition. Then for each m > 0,

E G(,-)(o)

is the number of elementary submodules E of type (1'n) in a fixed o-module M of
type A. All these submodules E lie in the sock S of M, which is a k-vector space
of dimension 1=1(A), and the sum above is therefore equal to the number of
m-dimensional subspaces of an 1-dimensional vector space over a finite field with q

elements, which is I m 1(q). Hence by (3.3) we obtain

r tn(µ) f lm)(t) = tn(A)-m(m-1)/2[ 1 ] (t-1).

1



3. THE HALL ALGEBRA AGAIN

w let yCbe an indeterminate. Then

tn(li)pµ) (r,emym) = E ymtn(u)fii(l, )(t)PA
m A, m

Eymt-m(m-1)/2I 1(A)l (t-1)= L tn(A)PA J
A M

IL M

(1)

1(A)

tn(A)PA11 (1 +11-iy)

A j-1

219

by the identity of Chapter I, §2, Example 3. In particular, when y = -1 we obtain

(tnoiP)(E(_l)mem) = 1
m

and therefore

(2)
E tn(FL)p =hn.

lµl-n

Hence the identity (1) takes the form

1(A)

(3) rJ (1 +x1y)/(1 -xi) tn(A) 1-1 (1 + t1-1y) . PA(x; t).
1>1 A f-1

2. (a) Let

PA=g-n(A)P(x;qQA=gIAI+n(A)QA(x;q-1)

`so that QA = aA(q)PA, where by Chapter II, (1.6) aA(q) is the order of the
automorphism group Aut MA of an o-module of type- A. From §2, Example-1 it
follows that the specialization x, H q-'(i > 1) maps each QA to 1 and hence PA to
a,5(q) -1. Hence from (3.4) the mapping uA -+ IAut MAI of the Hall algebra H(o)
into Q is multiplicative, i.e. is a character of H(o ).

(b) From Example 1 above we have

E PA=h.
IAI-n

and therefore, specializing as above,

F, (AutMI-1=hn(q-1,q-2,...).

IAI-n

Hence

F, IAutMAI-1= fJ(1-q-i)-1= Eq-IAI
A i>1 A
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or equivalently

IAut MI-1= E IMAI-1

A A

as convergent infinite series.

(c) More generally, the identity (3) of Example 1 above leads to

(x; q)t(A) 1 -xq-
_;

IAut MAl j>1 1 - q

where (x; q)" _ (1 - xX 1 - qx) ... (1 - q"-1x).

3. (a) Let µ = (µ(1), ... ,1P)) be any sequence of partitions, and let

uµ(MA) = gµ')... (,)(q)

be the number of chains of submodules

MA=M0DM1 D ... Z)Mr=O

such that M1_ 1/M, has type µ('), for 1 < i < r. Show that

V ,(M,,) r

(1) IAut MAI
= [ IAut MN`)I-

In particular, if u(MA) is the number of composition series of MA, then

F
V(MA) 1

IAI=r IAut MAI (q - 1)r

(Specialize the identity

µ(r)(q)UA = Uµ(1) ... Uµ(r)
A

as in Example 2 above.)

(b) Let H = (H1, ... , Hr) be any sequence of finite abelian groups, and for each
finite abelian group G let vH(G) denote the number of chains of subgroups

G=Ga>G1 i ... >Gr=0

such that G; _ 1/G; - H, for 1 < i < r. Show that

UH(G) r
= 1( IAut GI -

j j IAut Hl-

where the sum on the left is over all isomorphism classes of finite abelian groups.
(Split G and the H1 into their p-primary components, and use (a) above.)
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4 The fact (Example 2 (a)) that uA- a.,(q)-1 is a character of the Hall algebra
,q(o) is equivalent to the following relation:

(1) E aA(q) t af,(q)a,,(q)gµ,,(q)

for all partitions µ, P. This may be proved directly as follows.
Fix o-modules L, M, N of respective types A, µ, v, and let E 1N denote the set

of all exact sequences

E(a,O-,, N LM-+0.
In such an exact sequence, N' =a W is a submodule of L of type v, with
L/N' a M of type µ; hence the number of choices for N' is gµ (q). Given N',
there are a (q) choices for a, and aµ(q) choices for p, and therefore

eMN = I EMNI = aµ(q)av(q)gµv(q)

Hence (1) is equivalent to

(2)
E-1 L

aL eMN=1
(L)

where aL = IAut LI and the sum is over isomorphism classes of finite o-modules L.
The group AutL acts on EMLN by gPE(a,,B) =E((pa, /3(p-1), and it is not

difficult to verify that cp E Aut L fixes E(a,. J3) if and only if (P = 1 + a6(3, where
B E Hom(M, N). Hence the orbits are all of size aL/h, where h = HHom(M, N)I,
and the number of them is therefore aL le, fNh.

On the other hand, the orbits of Aut L in E, IN, for all L, are the equivalence
classes of extensions of M by N (see e.g. [Cl], Chapter XIV) and are in one-one
correspondence with the elements of Extl(M, N). Now Ext1(M, N) and
Hom(M, N) are finite o-modules of the same type µ X v (Chapter II, §1, Example)
and in particular have the same order h(= q11`1). Hence we have

E aI leMNh = h
(L)

which proves (2) and therefore also (1).

5. Let µ = (µt,... , µ,) be a partition of length r, and for a finite 0-module M let
wµ(M) denote the number of chains of submodules

M=M0Z)MI D ... DM,=O

such that IM,_1/M;I =qµ' for 1 <i <r. Thus

wµ(MA) _ E

summed over all sequences (v(1),..., v(`)) of partitions such that v(')I = µ; for
1 < i < r. From Example 2 it follows that

wµ(MA)PA=hµ
A
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and hence that

w(MA)
(1)

IAutMAI

Since (Chapter I, §2, Example 4)

h,(q-1, q-2, ...) =q-r/,, (q-1)

= gr(r-1)/2/(q - 1) ... (q' -1),

we may rewrite (1) in the form

(2) E
wµ'(MA) =gn(7rj(q+-1)-µ.

A IAutMAI ,>1

In particular, when r = 2 and µ = (n - k, k), wµ(MA) is the number of submod
ules of MA of order q". More particularly still, when E,c = (n - 1, 1), wµ(MA) is the
number of submodules of MA of order q. These all lie in the socle, which is

a

k-vector space of dimension 1(A), so that wµ(MA) _ (q (A) - 1)/(q - 1) when
(n -1,1). Deduce that

q'(A)t1 Al 1 + t

IAut MAI 17 (1 - q-'t)
i>1

where the sum on the left is over all partitions A.

Notes and References

The identities of Examples 2(b) and 3(a) are due to P. Hall [Hi], [H2]. See
also [M4].

4. Orthogonality

We shall now generalize the developments of Chapter I, §4 by giving three
series expansions for the product

F1 (1 - tx;y1)/(1-x1y;).

The first of these is

(4.1) 1T (1 - txiyi)/(1-x;y;) _ E zA(t)-1pA(x)pA(y)
i,1 A

summed over all partitions A, where

ZA(t) =ZA. I1 (1 - tA')-1
i>1
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,of We have

log [J (1 - txiyj)/(1 -xiyj) = E (log(1- txiyj) - log(1 -xiyj))
i,j i,j

1-tm
(xiyj )

i,j m-1 m

d therefore

i,j

A

Next we have

(1 -txiyj)/(1 -xiyj) _ E qa(x; t)mA(y)
i,j A

summed over all partitions A.

Proof From (2.10) it follows that

_ mA(x)gA(y;t)
A

(1 - txiyj)/(1 -xiyj) _ f qr(x; t)yj'
i.J j r1-0

and the product on the right, when multiplied out, is equal to

qA(x; t)mA(y).
A

Likewise with the x's and y's interchanged.

-- From (4.2) it follows that

;4.3) The transition matrix M(q, m) is symmetric.

1-tm

m=1 m

m

Pm(x)Pm(Y),

- t
(1 - txiyj)/(1 -x;yj) _ exp

1
( pm(x)pm(y))

M-1 m'
00 00 (1 - tm)r,,,

E r ! Pm(x)rmPm(y)rmM-
rm' 0 m rm

_ F ZA(t)-1PA(x)PA(Y).
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Next, in generalization of Chapter I, (4.3) we have

(4.4) fl (1 - txiyj)/(1 -xiyj) _ PA(x; t)QA(y;t)
i.j

_ b(t)PA(x; t)P,(y; t).
A

Proof. Consider the transition matrices

A=M(q,Q), B=M(m,Q), C=M(q,m)

and let D = B'A. By (2.16), A-' is lower unitriangular, hence so is A. Also
B is upper triangular, because

B-' =M(Q,P)M(P,s)M(s,m)

and M(Q, P) is diagonal by (2.11), M(P, s) is upper triangular by (2.6), and
M(s, m) is upper triangular by Chapter I, (6.5). It follows that D is lower
triangular. On the other hand, D = B'CB, and C is symmetric by (4.3);
hence D is symmetric as well as triangular, and is therefore a diagonal
matrix, with diagonal elements equal to those of B, so that D = M(P, Q)
and therefore DAA = ba(t)-'.

Hence

E qA(x; t)mA(y) _ E AAKBAPQK(x; t)Q,(y; t)
A K. v

_ bb(t)-'QN,(x;t)QN,(y;t)

EP'(x;t)Qµ(y;t)
K

and so (4.4) follows from (4.2).

Remark. There is yet another expansion for II(1 - txiyj)/(1 -xiyj). Let us
define

(4.5) SA(x;t) = det(gA,-i+j(x;t))

for any partition A, so that

(4.6) SA(x; t) = (1-Rij)q =F1 (1 - tRij)QA
i<j i<j

by Chapter I, (3.4") and (2.14'). If we introduce a set of (fictitious) variables

Si by means of

11 (1 - txi y)/(1 -xiy) = II (1 - 6iy)-'

i i
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then q,(x; t) = and therefore SA(x; t) = by Chapter I, (3.4).
Hence from Chapter I, (4.3) we have

(4.7) fl(1-txiyy)/(1-xly,)= SA(x;t)sA(y)
t.l A

_ S,(x)SA(y; t)
A

We now define a scalar product on A[t] (with values in Q(t)) by
requiring that the bases (qA(x; t)) and (mA(x)) be dual to each other:

(4.8) (qa(x; t), mµ(x)) = SAµ.

The same considerations as in Chapter I, §4, applied to the identities (4.1),
(4.4), and (4.7) show that

(4.9) (P,,(x; t), Q'(x; t)) = SAµ,

(4.10) (SA(X;t),sµ(X)>=SAµ,

(4.11) (PA(x),Pµ(X)>=ZA(t)6Aµ.

(4.12) The bilinear form (u, v) on A[t] is symmetric.

When t = 0, this scalar product specializes to that of Chapter I, because
PA(x; 0) = QA(x; 0) = s,(x). When t = 1 it collapses, because bA(l) = 0 and
therefore QA(x; 1) = 0 for all partitions A * 0.

Remark. Since zA(t) = zApA(1, t, t2, ...), it follows from (4.11) and Chapter
I, (7.12) that the scalar product (4.8) is given by

(4.13) (f, g> _ (f * g)(1, t, t2, ... )

for all f, g E A[t], where f * g is the internal product of f and g defined in
Chapter I, §7.

Examples

1. By taking y, = t -1 for all i > 1 in (4.4) and making use of §2, Example 1, we
obtain

E tn(A)PA(x; t) = F1 (I -x,)-1,
A

so that

E tn(A)P,(x;t)=h,,(x).
IAIan

(See also §3, Example 1.)
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2. By applying the involution w (Chapter I, §2) to the y-variables in (4.7) we obtain

E Sk(x; t)sA.(y) = fl (1 +x,yj)/(1 +tx,yj).
A i.)

Now take y, = t`-1 for all i > 1; then (Chapter I, §3, Example 2)

sa.(y) = t"(A')HA(t) -1

and therefore

t)t"(A')HA(t)-1 = 1 (1 +x,).
A

3. For each integer n 3 0, under the specialization

Pr'. (1 - t"')/(1 - t') (r 3 1)

QA(x; t) specializes to

1(A)

IM(A) [1 (1 - t"-i+1)
i-i

(§2, Example 1). Since this is true for all n 3 0, we may replace
indeterminate u: under the specialization

Pr' (1- u')/(1- t') (r 3 1)

QA(x; t) specializes to

1(A)

t"(A)rl (1 - tl-'u).
i-1

t" by an

By applying this specialization to the y-variables in (4.4), we obtain another proof
of the identity (3) of §3, Example 1.

Notes and references

The identity (4.4) is equivalent to the orthogonality relations for Green's
polynomials 07). The proof given here is due to Littlewood [L12].

5. Skew Hall-Littlewood functions

Since the symmetric functions P. form a basis of A[t], any symmetric
function u is uniquely determined by its scalar products with the PA: for by
(4.9) we have

u = (u, PA)QA
a
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In particular, for each pair of partitions A, µ we may define a symmetric
function QA/µ by

(5.1) (QA/" Pv) = (QA, PµPV) = f

or equivalently

(5.2) QA/N,=
Ef,Av(t)Qv.

V

Since f,,,v(t) = 0 unless µ C ,1(3.7), it follows that

(5.3) QA// = 0 unless µ C A.

From (5.1) we have (QA/,,, u) = (QA, P. u) for any symmetric function u.
In particular, when µ = 0 it follows that QA/o = QA. When t = 0, QA/µ
reduces to the skew Schur function sA/,,.

Likewise we define P/µ by interchanging the P's and Q's in (5.1):

(5.1') (PA/N,,Qv) = (PA,Q,,QP)

for all partitions v. Since Q. = bA(t)PA it follows that

(5.4) QA/FL = bA/µ(t)PA/,

where bA/,,,(t) = bA(t)/bA(t).

From (5.2) it follows that

F, QA/,.(x; t)PA(y; t) = E fµv(t)Qv(x; t)PA(y; t)
A A, V

_ Q,,(x; t)P, (y; t)Pv(y; t)

and therefore by (4.4)

1 -
QA/µ(x; t)PA(Y; t) = Pµ(y, t)

tx;y;fl
1i xi.yA ,j j

From this we have

E QA/µ(x; t)PA(Y; t)Q,,(Z; t)
A,µ

_ PP(y; t)Q,(Z; t) fl
1 - tx, yj

r.1 1 - x; yj

F1
1- tx, yj

F1
1- tyj Zk

i,j 1 -XjYj j,k 1 -yjZk
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which by (4.4) again is equal to

E QA(x, z; t)PA(Y; t).
A

Consequently,

(5.5) QA(x, Z; t) = QA/µ(X; t)Q,,,(Z; t)
A

where by (5.3) the summation is over partitions µ c A. Likewise,

(5.5') PA(x, Z; t) = E PA/f,(x; t)Pµ(z; t).

Just as in Chapter I, §5, these formulas enable us to express the
symmetric functions P/µ and QA/µ as sums of monomials. Since (mv) and

are dual bases for the scalar product (4.8), it follows that

(5.6) QA/µ - E ( QA/µ y qv) m v
v

_ E (QA, Pµgv)mv

Now from (3.10) we have

(5.7) 1',.q,= E SPA/µ(t)PA
A

summed over all partitions A such that 6 = A - µ is a horizontal r-strip,
where

(5.8) SPA/µ(t) _ 11 (1 - t-;"))

in which I is the set of integers i > 1 such that 6, > Bi±1 (i.e. Bi = 1 and
9,+1 = 0).

We shall use (5.7) to express P,,,q,,, where µ and v are any partitions, as
a linear combination of the PA. Let T be a tableau (Chapter I, §1) of shape
A - µ and weight v. Then T determines (and is determined by) a sequence
of partitions (A(0), ... , A(')) such that A = A(0) C A(1) c ... c A(') = A
and such that each A(') - A('-1) is a horizontal strip. Let

PPT(t) =' (PA(0/A(!-1)(t),

E ( E l'T(t))PA



5. SKEW HALL-LITTLEWOOD FUNCTIONS 229

summed over all partitions A D u such that JA - ul = Ivj, the inner sum
being over all tableaux T of shape k - µ and weight v. This is a direct
consequence of (5.7) and induction on the length of v.

From (5.6) and (5.10) it follows that

(5.11) QA/µ = E (PT(t)xT
T

summed over all tableaux T of shape A - µ, where as in Chapter I, (5.13) XT

is the monomial defined by the tableau T.

There is an analogous result for PA/µ. First, when A - 0 is a
horizontal strip, we define

r
(5.8') 4, (t) = 1 j (1 - tm,(µ))

j e J

where J is the set of integers j > 1 such that 9 < 9J+1 (i.e. 0 = 0 and
Oi+1 = 1), and then we define

(')/A(,-1)(t)(5.9') WT(t) El1 YiA

for a tableau T as above. It is easily verified that

(5.12) A/µ(t)/YA/µ(t) = bA(t)/bµ(t)

and hence that

(5.13) SvT(t)/1PT(t) = bA(t)/bµ(t)

if T has shape A - µ. From (5.4), (5.11), and (5.13) it follows that

(5.11') PA/,, _ E (PT(t)xT
T

summed over all tableaux T of shape k - A.

Also, in place of (5.7) we have

II,,(5.7') Qµgr = ` 4'A/µ(t)QA
A

summed over all A D µ such that k - µ is a horizontal r-strip, by virtue of
(5.7) and (5.12).

Remarks. 1. Whereas the skew Schur function sA/µ depends only on the
difference A - µ, the symmetric functions PA/µ and QA/µ depend on both
A and µ; this is clear from (5.11) and (5.11').
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2. In the case where there is only one variable x, we have

(5.14) QA/µ(x; t) = (PAjµ(t)xIA-µI

if A - µ is a horizontal strip, and QAZµ(x; t) = 0 otherwise. Similarly

(5.14') P,,1 (x; t) _ 0A/,'(t)xIA-µl

if A - µ is a horizontal strip, and PAIµ(x; t) = 0 otherwise.
These are special cases of (5.11) and (5.11).

Examples

Several of the formal identities given in the Examples in Chapter I, §5 can be
generalized.

1. E PA(x; t) = F10 -xi)-1 [1 (1 - trixj)/(1 -xixx),
A i i<j

summed over all partitions A.
It is enough to prove this identity when x = {x1, ... , x ), the sum on the left

being over all partitions of length < n. By induction on n, it is therefore enough to
prove that

1 " 1-trig
EPA(xIY;t) EPP(x;t)
A -y i- 1 1 -xiy v

where we have written y in place of xi+1. Now by (5.5') and (5.14') we have

PA(x,Y;t) = E PA/w(Y;t)Pj(x;t)
ACA

E WA/µ(t)YIA- 1P'(x;t),
µcA

summed over partitions µ C A such that A - i is a horizontal strip. On the other
hand, by (2.9),

" 1-txiY
II E P,,(x; t) = E t)q,(x; t)yr,i_1 1-xiy v v,r

and

PP(x;t)gr(x;t)yr= E (P/v(t)P,y(x;t)yl"-°I,
ADV

by (5.7), the summation being over all µ D v such that µ - v is a horizontal r-strip.
Hence we are reduced to proving that

(1) E O'A/w(t)YI A-WI = (1 - y)-1 E Owlv(t)yl w-VI
A::> A PC /j,

for any partition µ, where A - µ and µ - v are horizontal strips.
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For each subset I of [1,µl] consider the partitions A Du and v C A such that

(w) [I (1 - tmi(µ)).
iEI

Iet i1, i1 + i2,..., i1 + ... +ir be the elements of I in ascending order. Then it is
easily seen that the contribution to the left-hand side of (1) from the partitions A
satisfying (2) is

(3)
(1+y+...+yi1-1)(Y+y2+...+yi2-1)...(y+...+yi,-1).y(l-y)-1

and likewise that the contribution to the right-hand side of (1) from the partitions
v satisfying (2) is

(1 -y)-1(y+y2+ ... +yi')(y +y2 + ... +yi2-1)... (y+ ... +yi'-

which is visibly equal to (3). Hence the two sides of (1) are indeed equal, and the
proof is complete.

When t = 0, this identity reduces to that of Chapter I, §5, Example 4.

2. E P,,(x; t) _ M i-4)_' fl (1- txixj)/(1-xixj)
A i i<j

summed over all partitions µ with all parts even.
In view of Example 1 it is enough to show that

EP,,(x;t) E em(x)= EP,(x;t)
µ m>0 A

where the sum on the right is over all partitions A. Now each partition A
determines uniquely an even partition p. by decreasing each odd part of A by 1, so
that a, - µ'i = 0 if i is even and = mi(A) if i is odd. It follows from (3.2) that
f 1)(t) = 1, where m = I A - Al, and hence that the coefficient of P. in Puem is 1.

3. E c (t)P (x; t) _ 1J(1- txixj)/(1 -xixj)
i<j

where the sum is over all partitions v with all columns of even length, and
IIi,1(1 - tXl - t3)...(1- t"''-1), where mi = mi(v).

From Example 1 it follows that

1-1 (1-txixj)/(1-xixj) _ (E PA(x;t))(E(-1)mem(x)

I

i<j A m /

_ E (-1)MEfA(IV)(t)Pu(x;t),
A' M µ

from which and (3.2) the coefficient of P,(x; t) (µ any partition) in

i li<j(1- txixj)/(1 -xixj) is equal to

m;(µ)
r mi(ll)II E (-1);

i>1 r.-0 ri



232 III HALL-LITTLEWOOD SYMMETRIC FUNCTIONS

Now (see [A2], Theorem 3.4) the inner sum is 0 if mi(µ) is odd, and is equal to
(1- txl - t3)... (1 - t-1(w)-1) if mi(µ) is even. Hence the result.

Since cv(t) = bv(t)/bv/2(t2), where v/2 is the partition defined by mi(v/2)
_ ?mi(v) for all i, the identity just proved can be restated in the form

E by/2(t2)-1Q,,(x; t) = fJ (1 - trixj)/(1 -xixj)
P i<j

again summed over partitions v with all columns of even length, i.e. partitions in
which each part occurs an even number of times.

1 - txi 1 - txixj 1

4. _ L da(t) Q, (x; t)
i 1- Xi i<j 1 -xixj

A

summed over all partitions A, where

[mi/2]

da(t) _ (1 - t2J)
i>1 j-1

in which mi = mi(A).
From Example 3 and (2.10) we have

n1-txin
i 1-Xi i<i

1 -
m= E qr(x; t) E

(X;
t)1I -Xjxj r-O l

4a/(t)
_

bv/2(t2)
QA(x;t)

by (5.7'), where the summation is over all v with all columns even and all A D v
such that A - v is a horizontal strip. Each partition A determines a unique such v,
by removing the bottom square from each column of odd length in A. If A - v = 0,
this means that 0, = 1 or 0 according as A; is odd or even. We have mi(v)=
mi(A) - 0, + 0 +1, and r/ra/v(t) is the product 11(1 - taken over
those i > 1 for which 8 = 0 and O,+1 = 1. It follows that by/2(t2)/,y,1/v(t) = d,(t) as
defined above.

5. Let

(D(x1,..., xn; t) = fl (1 -xi)-1 Fl(1- txixj)/(1 -xixj)
i-1 1<1

_ P,(x1,...,X.;t)
a

(Example 1). Let u be another indeterminate, then the formal power series

S(u) = E PA(XI,...,Xn; t)uao
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where the sum is over all A0 > Al > ... > An > 0, and A = (.11, ... , An), is equal to

1 ,..., n

1 - uIlx;'-E')/2

over all s=(e1,..., en) where each e; is ± 1 (hence a sum of 2n terms).

Let X denote the set of variables x1,..., xn, and for any subset E of X, let p(E)
denote the product of the elements of E. (In particular, p(O) = 1.)

Suppose A = (A1, ... , An) is of the form ( pit, 42, ... , µkk ), where µt > I12 > ... >
,k > 0, and the ri are positive inegers whose sum is n. Then from (2.2) we have

(1) Pa(x1,...,xn;t)= E P(}`1(1))µ'...p(f 3(k))Pk
xi - tx i

f f(x,)<f(x1) xi -xi

summed over all surjective mappings f:X- (1,2,...,k) such that I f-1(i)I =ri for
l,i<k.

Each such f determines a filtration of X:

. 0=F0cF1c... cFk=X
(all inclusions strict) according to the rule

xEF,-f(x)<r.
Conversely, such a filtration .9 of length k determines a surjection f: X-+
{1,2,...,k} uniquely. From (1) it follows that

k

(2) S(u) = E iryE u",11 p(Fi-Fi-1)µr

g i-i
where the outer sum is over all filtrations .s = Vol. .. , Fk) of X (with k arbitrary)
and the inner sum is over all integers µ0, All ... , 9k such that µo > µ1 > A2 >
... > µk > 0, and finally

1Tr= II
xi - txl

f(x1)<f(xf) xi -X1

where f is the function X -a (1, 2,..., k} defined by ,5r

Now let vi = pi- Aj+ 1 (0-<i-<k- 1), vk = Ak, so that V01>0, vk > 0 and v, > 0
for 1 < i < k - 1. Then the inner sum in (2) is

-k7 v
1 k-1 p(Fi)u 1uvo+...+Vk1

1 p" =
va vk

i_1 1-u i_1 1-p(F)u 1-p(X)u

= (1 - u)-1 Ay(u), say,

and hence from (2) we have

cs1 X ^; t(X

(3) S(u) = (1- u)-1 E 2rsA,(u),
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summed over all filtrations 5r of X as before.
Observe that

S(u)(1 - u) _ PA(xl,..., xn; t)uA'
A

and hence that S(uxl - is equal to (D(xl,..., x,,; t), so that

(4) (D (x1,...,x,,;t)= E ir,,A,(1).
9'

The formula (3) shows that S(u) is a rational function of u (with coefficients in
Q(x1,..., xn, t)). The denominators on the right-hand side of (3) are products of
factors of the form (1 -p(Y)u), where YcX. We may therefore express S(u) as a
sum of partial fractions: say

(5) S(u) _ E
a(Y)

YCX 1-P(Y)u

To compute a(Y), we have to decompose (1- u)-1A9.(u) into a sum of partial
fractions in the usual way, for each filtration Jr which contains Y, and then add
together the results. The reader will not find it difficult to verify, using (4), that for
each YCX we have

(6) a(Y) =Cx",...,x;t)
where e, = -1 or + 1 according as x, r= Y or xi 0 Y. Since

n

P(Y) = fl xi = F1 Xi1-ej)12
x,EY i=1

this gives the stated result.

6. Show that

qn(A) 1 + q-'
1

A IAutMA1

=(1-q-
)i

1

1-q-

gn(Fi) 1

-r '
µeven IAut Mµ1 i2 1 - q

where (as in Chapter TO MA is a finite o-module of type A, and q is the cardinality
of the residue field of o. (Apply the specialization xi H q-`(i > 1) to the identities
of Examples 1 and 2 above, bearing in mind §3, Example 2(a).)

7. (a) Let Q'A(x; t) = QA(x'; t) where the x' variables are the products xitj-1(i, j
1). (In A-ring notation, Q'A(x; t) = QA(x/(1- t); t). From (4.4) it follows that

(1) EPA(x;t)QA(Y;t)_ J(1-xiyj)-1
i.1
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equivalently that (Q'A) is the basis of AN dual to (PA), relative to the scalar
product of Chapter I, P.

Now let n be a positive integer and = exp 2rri/n, and set xj _ C'-1 (1 <j S

n) Aj =
0 for j > n. From §2, Example 1, if A is a partition of length S n we have

(2) PA(11"(A)9nM/I Pmj(0,
i> O

where mj = mj(A) for j > 1, and mo = n - 1(,1).- The right-hand side of (2) will
contain 1 - C" in the numerator, and hence will vanish, unless m, = n for some s,
that is to say unless A = (s"); and in that case, since n(A) = Zn(n - 1)s, we have

(3) P'0'r '...,r-1;S )=C"(A)=(-1)s(n-1)

From (1), (2), and (3) it follows that

E (-1)s(n-1)Q(s")(Y; C) _ fl (1-y, )-1
s>0 j>1

c-so that

(4)

where yn =(YIn, Yzn, )

(b) From (5.7') we have

Q(s^)(Y; ) = (-1)s(n-1)hs(Yn)

(5) Q' (x; y)q,(x; y) _ E'A/µ(S)QA(x; S )
A

(where q' = Q(r)) summed over partitions d µ such that A - µ is a horizontal
strip, where opA/µ is given by (5.8'). It follows that, for each s > 1,

(6) ?CµV (s")(x; y)gr(x; y) = p,/,(S )Q V (s")(x, y )
A

with the same coefficients 411k/µ as before.
Let gyp,: Ac - Ac denote the linear mapping defined by

Ps(Qµ(x; )) = 1Cµv(s^)(x; )

From (4) we have (p,(1) (-1)s(n-1)h,(x"). The equations (5) and (6) show that cp,

commutes with multiplication by q;, for each r > 1, and hence that cp, is Ac-linear.
It follows that V,(f) = f(p,(1) for all f e Ac, i.e. that

Q'V(s^)(x; S ) =
(-1)s(n-1)Qµ(x;

S)IIs(x").

(c) Deduce that the symmetric functions Qa(x; C) enjoy the following factorization
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property: let m;(,1) = nq; + r; where 0 < r1 < n - 1, and let (1g12g2 ... )

(1r12r2 ... ). Then
P

Q (x; y) _ (-1)(n-11IwIQ',(x; C)h,,(xn)

In particular, when n =1 (so that t = 1) we have P,A(x; C) = mA, and p = 0, µ = A,
so we recover the fact that (ha) is the basis of A dual to (mx).

8. As in Chapter I, §5, Example 25, let 0 denote the diagonal map (0 f = f(x y))
Also, for each f E AN, let f denote the adjoint of multiplication of f, relative to
the scalar product (4.8), so that (f -g, h) = (g, fh) for all g, h e A[t].

(a) Show that 0 is the adjoint of the product map, i.e. that

(1) (Af,g(& h)=(f,gh)

for all f, g, h E A[t]. (Use (5.5) and (5.1).)

(b) We have

(2) qn = qr 0 qs
r+s-n

and hence by (a) above

(gn,gh)= E (gr,g)(gs,h)
r+san

for all g, h e A[t]. By taking g = q,n deduce that

1 (1 - t)gn_m if m > 1,
9mgn=

qn if m=0.

If we define

Q1(u) _ E q. u-, Q(v) _ E q,,0
m30 n>0

where u, v are indeterminates, this last relation may be written in the form

(3) Q'(u)(Q(v)) = Q(v)F(uv)-1

where F(uv) = (1 - uv)/(1- tuv) as in §2.

(c) Show that Q(u): A[t] -> A[t, u] is a ring homomorphism. (We have

(qn (fg),h) _ (fg,gnh)

_ (f ®g,O(gn)A(h))
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by (1) and the fact that 0 is a ring homomorphism,

E ((qrf)®(q g),Ah)
r+s-n

by (2) and (1) again.
Hence

_ E ((grf)(gsg),h)
r+s-n

gn(fg) _ L (q,.
r+s-n

It now follows from (3) that

(4) V(u)- Q(v) = F(uv)-1Q(v) o Q'(u)

as operators on A[t], where Q(v) is regarded as a multiplication operator, i.e.
`:Q(v)f = En> 0 gnfvn

(d) Let Q(u)-1 = Ernun =R(u) and let

R1(u) _

From (4) we have

R(v) ° Q1(u) = F(uv)-1Q1(u) a R(v)

and hence, on taking adjoints,

(5) R1(v) o Q(u) = F(uv)Q(u) a R1(v).

(e) Now define operators B,, (n a Z) by

B,, = gn+iri1

i> O

or collectively

(6) B(u) _ Bnun = Q(u)° R1(u-1).

Since

it follows that

n

1 -tn
Q(u) = exP E

n
pnun

n>1

r 1-tn
)oexp(_B(u) = exPl Pnunn>1

n n>1

1-tnpn u-n
n
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Also define

(7) B(u1i..., un) = Q(ul)-... Q(un)R1(u1 ') ... R1(un1)

where u1, ... , un are independent indeterminates. Deduce from (5) that

(8) B(u)B(v) =B(u,v)F(u-'v)

and hence by iteration that

(9) B(u1)... B(un) =B(u1,..., u,,) f F(ui 1uj)
i<j

From (9) it follows that

B(u1) ... B(un)(1) = Q(u1)... Q(un) rj F(ui 1uj)
i<j

= Q(u1,..., un)

in the notation of (2.15). Hence for all partitions A = (Al, ... , An) of length < n we
have

QA(x; t) =B,A1... BA (1).

(f) Deduce from (8) that

B(u)B(v)(u - tv) = B(v)B(u)(tu - v)

and hence that

B.-1Bn-tBmBn_1 =tBnBm-1 -Bn-1Bm

for all m, n E Z.

Notes and references

Example 7 is due to Lascoux, Leclerc, and Thibon [L6].
Example 8. The expression B(u) is a `vertex operator': see Jing [J12].

6. Transition matrices

We have met various (integral or rational) bases for the ring A[t] of
symmetric functions with coefficients in Z[t]: in particular (§4)

(6.1) (QA) are dual bases,

(ma) are dual bases,

(S.), are dual bases,

with respect to the scalar product of §4.
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gy (2.6) the transition matrix

K(t) = M(s, P)

torn the Schur functions s,A(x) to the Hall-Littlewood functions PP(x; t) is
sttictly upper unitriangular. For any t, u we have

(6.2) M(P(x; t), P(x; U)) = K(t) -' K(u);

also K(O) is the identity matrix, and K(1) is the Kostka matrix K of
Chapter I, §6. Also from (6.1), (6.2), and Chapter I, (6.1) we have

M(Q, q) = M(P, m)* = (K(t)-'K) * = K(t)'K*

where * denotes transposed inverse. Since (Chapter I, §6) K* is the matrix
of the operator Ili < j(1 - Rte), it follows from (2.15) that

(6.3) K(t)' is the matrix of the operator fl; < ,(1- tRi,)-'.

Moreover, the rule (5.11') for expressing t) as a sum of monomials
shows that

(6.4) (K(t)-1K)aµ = OT (t)
T

summed over all tableaux T of shape A and weight µ.

The table of transition matrices between the six bases listed in (6.1) is
now easily calculated, and is as shown on p. 241 (b(t) denotes the diagonal
matrix whose entries are the ba(t)).

For n < 6 the matrices K(t) are given below.

4 31 22 212

2

12

2 12

t

1

5

41

32

312

221

213

15

3

21

13

3 21 13

1 t t
1 t+t2

5 41 32 312 221

4

31

22

212

14

14

1 t t2 t3 t6

1 t t+t2 t3+t4+t5
1 t t2 + t4

1 t+t2+t3
1

213 15

1 t t2
t3 t4 t6 t10

1 t t+t2 t2+t3 t3+t4+t5 t6+t'+t8+t9
1 t t+t2 t2+t3+t4 t4+t5+t6+t7+t8

1 t t+t2+t3 t3+t4+2t5+t6+t7
1 t+t2 t2+t3+t4+t5+t,

1 t+t2+t3+t4
1
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5
1

4
2

4
1
2

3
2

3
2
1

3
1
3

2
3

2
2
1
2

21
4 1
6

2
3

2
1
2

4
6

1
t

r
2

t
3

t
3

t
4
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These tables suggest that the polynomials Ks (t) have all their coeffi.
cients > 0. Since KAµ(1) = KAµ is (Chapter I, (6.4) the number of tableaux
of shape A and weight µ, Foulkes [F7] conjectured that it should be
possible to attach to each such tableau a positive integer c(T) such that

KA,L(t) _ E t`(T),
T

the sum being over all tableaux T of shape l and weight µ. Such a rule
has been found by Lascoux and Schiitzenberger ([L4]; see also [B10]), and
goes as follows.

We consider words (or sequences) w =a, ... a,, in which each ai is a
positive integer. The weight of w is the sequence µ = (µ1, µ2, ...), where
µ, is the number of a equal to i. Assume that Al > µ2 > ... , i.e. that A is
a partition. If µ = (1"S (so that w is a derangement of 12... n) we call w a
standard word.

(i) Suppose first that w is a standard word. Attach an index to each
element of w as follows: the number 1 has index 0, and if r has index i,
then r + 1 has index i or i + 1 according as it lies to the right or left of r.
The charge c(w) of w is defined to be the sum of the indices.

(ii) Now let w be any word, subject only to the condition that its weight
should be a partition µ. We extract a standard word from w as follows.
Reading from the left, choose the first 1 that occurs in w, then the first 2
to the right of the 1 chosen, and so on. If at any stage there is no s + 1 to
the right of the s chosen, go back to the beginning. This procedure selects
a standard subword wl of w, of length µi. Now erase wl from w and
repeat the procedure to obtain a standard subword w2 (of length µ2), and
so on. (For example, if w = 32214113, the subword wl is 2143, consisting of
the underlined symbols in w: 32214113. When w1 is erased, we are left with
3211, so that w2 = 321 and w3 = 1.)

The charge of w is defined to be the sum of the charges of the standard
subwords: c(w) = E c(wi). (In the example above, the indices (attached as
subscripts) are 21104231 for w1, so that c(w1) = 4; 322110 for w2, so that
c(w2) = 3; and 10 for w3, so that c(w3) = 0: hence c(w) = 4 + 3 + 0 = 7.)

(iii) Finally, if T is a tableau, by reading T from right to left in
consecutive rows, starting from the top (as in Chapter I, §9), we obtain a
word w(T), and the charge c(T) of T is defined to be c(w(T)).

The theorem of Lascoux and Schiitzenberger now states that

(6.5) (i) We have

KA,(t) = E tc(T)
T

summed over all tableaux T of shape A and weight A;
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(ii) If A > µ, KAµ(t) is monic of degree n( µ) - n(A). (If A A, we know
already (2.6) that K,,µ(t) = 0.)

For the proof of (6.5) we refer to [LA], [B10]. (6.5)(ii) is an easy
consequence of (6.3) (see Example 4).

Examples

1. K(n)N,(t) = t"(+`) for any partition js of n. This follows from the identity

h tn(A)p
µ

(§3, Example 1; §4, Example 1). Alternatively, use (6.5).

2. KA(tn)(t) = t"(A')(pn(t)HA(t)-1 for any partition k of n, where

HA(t) = 1-10 - th(x))
XEA

is the hook-length polynomial. This follows from §4, Example 2, since KA(1.)(t) is
the coefficient of SA(x; t) in t) = Cpn(t)en(x).

From Chapter I, §5, Example 14, it follows that

Ftc(T)

T

summed over all standard tableaux T of shape A, where c'(T) is the sum of the
positive integers i < n such that i + 1 lies in a column to the right of i in T.

3. Tables of the polynomials KA,(t) suggest the following conjecture: if the lowest
power of t which is present in KAN,(t) is t a(-, µ), then a(A, µ) = a( A', ,k').

4. Let e1,..., en be the standard basis of Z" and let R+ denote the set of vectors
ei - e j such that 1 < i < j < n. For any _ !n) E Z" such that E i = 0, let

P(C;t)= t£-",
(mo.)

summed over all families (me,),, a R of non-negative integers such that ; = E mn, a.
The polynomial P(t:; t) is non-zero if and only if 6= si+1), where the
r)i are >0, and then it is monic of degree E 7Ii. Since rli = I 1 + ... + 6i (1 < i < n -
1), the degree of P(6; t) is

F, (n-0) i=(f,5)

where as usual S = (n - 1, n - 2, ... ,1, 0) and the scalar product is the standard
one.

Now by (6.3), K(t)AN, is the coefficient of sA in

fl (1+tRij+t2Rj+...)s',

1<i<j<n
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hence is the coefficient of a,,+ 8 in

L t£m°aµ+8+£m,.a
(me)

or equivalently the coefficient of xA+s in

L.+ e(w) E
WE S, (ma)

It follows from this that

(1) F, e(w)P(w-1(A+ S) - (µ+ 8); t).
WE S

Now

(w-1(A+8)-(µ+ 8),8>=(A+8,ws)-(µ+8,8)
c(A+8,8)-(µ+8,8)
=n(µ)-n(A)

and equality holds if and only if w = 1. Hence the dominant term in the sum (1) is
that corresponding to w = 1, and therefore K(t )A, is monic of degree n( A) - n(A).

From (1) it follows that K,µ(t) is equal to the coefficient of xl` in
det(xx 1-'+i)/II; < J(1- tx; 1x) (P. Hoffman).

5. From the tables of this section and Chapter I, §6, we have

M(e, P) = M(e, s) M(s, P) = K'JK(t)

or equivalently

(1) M(e, P)Aµ = K(t )V K,,,A,.
V

On the other hand, the formula (1) in the Appendix to Chapter II shows that

(2) M(e, P)Aµ = E td(A),
A

where the sum is over-all row-strict arrays of shape µ and weight A, and d(A) is
defined in Chapter II, Appendix (AZ.5).

From (1) and (2) we conclude that Foulkes's conjecture is equivalent to the
following combinatorial statement: for any two partitions k, ,a there exists a
bijection cp between pairs of tableaux (T, T') of conjugate shapes and respective
weights µ and k, and row-strict arrays of shape µ and weight k, such that
d(q (T, T')) does not depend on T'.

Indeed, letting c(T) = d(1'(T, T')), we have

K(t)Aw=rt (T)
T
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summed over all tableaux T of shape k and weight A. It would be interesting to
give an explicit construction of such a bijection cp.

6. The polynomials KAU(t) have the following geometrical interpretation, due to G.

j usztig [L151. Let V be an n-dimensional vector space over an algebraically closed
`field k. The conjugacy classes of unipotent operators on V are parametrized by the
Partitions of n: the class cA consists of operators with Jordan blocks of sizes
Al A2'- -- . The closure cA of cA is an algebraic variety (singular, in general) of
dimension 2n(A'), and we have

CA = U cµ.
µ<A

yet x E c,, c cA, let H(i;A) denote the Deligne-Goreski-MacPherson cohomology
sheaves on cA (see, for example, [L15]), and let Ht(i , )x be the stalk of H`(i;A) at x.
Then He(cA) = 0 for i odd, and

E t` dim H2e(CA)s = tn(A)-n(A)KAU(t-
i> O

This gives another proof of (6.5) (ii) and of the fact that all coefficients of KAU(t)
are > 0. It would be interesting to give a geometrical interpretation of the
yascoux-Schiitzenberger theorem (6.5) (i).

7, If a = (a(0), a(1), a(2), ...) is any finite sequence of partitions, let

n
E(aik-1)-2ajk)+a?k+1))

i-1

for k, n > 1, and

ank- 1) - ank)C(a)= 2
k,n>1

a+b
Also let [a, b] denote the Gaussian polynomial

b
. Then

KAµ(t) =E tC(a) 1 1 [Pn (a), ank) - (kH)]

a k,n>1

where a runs through all sequences of partitions such that a(0) = µ' and I a(k)I =
Ak+1 + Ak+2 + for k > 1. (This is a consequence of (6.5Xi); for the proof, see
[K9].)

S. Let NA(o) denote the number of submodules of a finite o-module of type A,
where (as in Chapter II) o is a discrete valuation ring with finite residue field k.
'Then

NA(o) = qn(A) ( Al - 92 + 1)KA(q-1)

summed over partitions g > A of length c 2, where q is the cardinality of k.
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(We have

NA(o) = E gµ(0)

=qn(A) E q-n(k)-n(v)f
ALv (q-1)

µ,v

=qn(A) E q-n( )k)-n(°)(QA(q_1))
A, 1,

= gn(A)(QA(q-1), (F, hn)2).

Now

(F,
hn)2

_ fl (1-X;)-2 = E Sp,(X)sp,(1,1)

_ (Al-A2+1)S,(X),

summed over partitions µ of length < 2. Hence

NA(o) =gn(A)E(/.L1 -/A2+ 1)(QA(q-1),sµ)
A

= qn(A) E (Al - µ2 +
A

Notes and references

Examples 5 and 6 were contributed by A. Zelevinsky. Example 7 is due to
Kirillov and Reshetikhin [K9].

7. Green's polynomials

Let X(t) denote the transition matrix M(p, P) between the power-sum
products pp and the Hall-Littlewood functions PA:

(7.1) pp(x) = F, Xp (t)PA(x; t)
A

(so that p is the row-index and A the column-index). By (2.7), XP (t) E Z[t],
and is zero unless 1 AI = I pl. When t = 0 we have PA(x; 0) = sA(x), so that by
Chapter I, (7.8)

(7.2) XP(0)=XP,

the value of the irreducible character X A of Sn at elements of cycle-type p.
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From (4.1) and (4.4) we have

F, zz(t)pp(x)pp(y) _ E b,(t)PP(x; t)P,(y; t).
I PI-n IAI-n

Substituting (7.1) in this relation, we obtain

'(7.3) X'(t)z(t)-' X(t) = b(t)

247

`where X'(t) is the transpose of X(t), and b(t) (resp. z(t)) is the diagonal
matrix with entries ba(t) (resp. za(t)). An equivalent form of (7.3) is

(7.4) X(t)b(t)-1X'(t) =z(t).
In other words we have the orthogonality relations

(7.3') E z(t)1X(t)X(t) =
I PI-n

(7.4') F, bA(t) 1Xp(t)XX(t) = SPozp(t)
IAI-n

J

which when t = 0 reduce to the orthogonality relations for the characters
of the symmetric group S,,.

Since X(t)-' = b(t)-'X'(t)z(t)-' by (7.3), we can solve the equations
(7.1) to give

(7.5) QA(x; t) _ E z (t)-'Xp (t)pp(x).
P

Next, since M(s, P) = M(p, s)-'M(p, P), we have K(t) = X(0)-'X(t),
so that

(7.6) X(t) =X(0)K(t)

or more explicitly, using (7.2),

(7.6') XP (t) = L.i XP KA (t) .

Since K.,µ(t) is monic of degree n(N.) - n(A) < n(p..) (6.5), it follows that the
dominant term on the right-hand side of (7.6') is t"l µ) (§6,
Example 1), so that

(7.7) Xp (t) is monic of degree n(µ).

Green's polynomials Qp(q) are defined by

(7.8) QP(q) = gn(A)X, (q-1).
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In terms of these polynomials, the orthogonality relations (7.3')
and(7.4') take the forms

(7.9)

I PI-n
YP(q)-'QP(q)QP (q) = 6AµaA(q),

(7.10)
IAl=n

aA(q)-1QP(q)Q' (q) = 6p,yp(q),

where aA(q) = gIAl+2n(A)b (q-' ),
YP(q) = q-I Plzp(q (Chapter II, (1.6)).

Also (7.6') now becomes

(7.11) QP (q) = XP J (q)
A

where KA,.(q) = gn('`)KAµ(q-1) = qn(A) + terms of higher degree by (6.5).

Examples

1. XP")(t) = 1 for all partitions p of n. This is a particular case of (7.7). Equiva.
lently, QPf)(q) = 1.

2. tn(A)Soi()_ 1(t-1), or equivalently (p1(A)-,(q). This follows from
the identity (3) of §3, Example 1:

1(A)

(1-xiY)/(1-x,) = E tn(') F1 (1 - t1 -jy) . PA(x; t).
i>1 A j-1

Divide both sides by 1 -y and let y --> 1: since

1 1 - x;y x!

y n 1 1-y 1-xi -1+_E 1-x; n1Pn(x)
we obtain

1(A)- 1

pn(x) _ E tn(A) r l (1 - t-')PA(x; t)
IAI-n '

which gives the result.

3. XPl")(t) = Z"'- 1(t` - 1)/flj,1(t Pi - 1), or equivalently QPl")(q) = cpn(q)/
I1., > 1(1 - q Pi). This follows from (7.5) with A = (1n): since Q(1")(x; t) =
we have

F, Zp(t)-1X,1")(t)pp(x) = (pn(t)en(x)
P

!pn(t) F, EpZP lpp(x)
P

so that XP(")(t) = EPzp'z (t),&(t), which is equivalent to the result stated.
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X(1 ")(t) _ (1 - t)-MET cpT(t), summed over all standard tableaux T of shape A.
(t) was defined in (5.9).)
or by (7.1) we have

X(,.)(t) _ (QA,pi) _ (1 - t)-M(Qa,gi )

_ (1 - t)E (PT(t)
T

`'by (4.8) and (5.11).

c5 By taking x; = ti-1 in (7.5) we obtain by §2, Example 1

tn(A) _ E z
P
-IXPA(t)

P

or in terms of Green's polynomials,

zP IQo (q) = 1
Ip1-n

for all partitions d of n.

;i 6; XP (1) _ (pp, hA) (for the scalar product of Chapter I), hence is the value of the
induced character at elements of type p.
7. Let w be a primitive rth root of unity (r> 2), and consider the effect of
replacing the parameter t by w. Let Kr = Q(w) be the rth cyclotomic field,
L)r=Z[w] its ring of integers. By (2.7) the PA(x; w) form an er basis of A ®zC)r
On the other hand, the definition (2.12) of bA(t) shows that bA(w) and therefore
also QA(x; w) is zero if m;(rl) > r for some i, that is to say if the partition d has r
or more equal parts. Let Pa(r) denote the set of partitions A such that m;(rl) <r for
all i, and let A(r) denote the sCr submodule of A ®ZCr generated by the PA(x; w)
with ,1 Then A(r) is an O; subalgebra of A ®z0r.

Let A(r) = A(r) ®o Kr, which is the Kr-vector space generated freely by the
QA(x; w) such that A E,ga(r). Since zp(w)-1 =zo '11,, 1(1- w 0) is zero if any pi is
divisible by r, it follows from (7.5) that A(r) is contained in the Kr-algebra B(r)
generated by the power sums p,, such that n is not divisible by r. Now if Air), B(r)
are the components of degree n of A(r), B(r) respectively, it follows that

(r) . uM is the generating function for partitions l with no part repeatedo dim A'
more than r - 1 times, so that

F, dim A(nr). uM = r l (1 + u` + ... +U(r-1)i)

n>0 i>1

{1) _ 1J (1 - Ur`)/(1- U`),
i>1

and En> 0 det Be). uM is the generating function for partitions p none of whose
parts is divisible by r, so that

(2) E dimB"uM= fJ (1-ui
n>0 i>1

i:0(r )
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From (1) and (2) it follows that dim A(") = dim B(r) and hence that A(r)
hence A(r) is a K,.-algebra and therefore A(r) is an C); algebra, as asserted.

The scalar product defined in §4 is non-degenerate on A(,), and the orthogonal.
ity relations (7.3'), (7.4') are now orthogonality relations for the matrix
where A runs through partitions of n which have no part repeated r times or more
and p through partitions of n which have no part divisible by r.
8. Let us write

(1) QP (q) = E pµ.i( p)q' (I1.Ll=iPk-n)_

where the coefficients 0 may be regarded as class-functions on S,,. Hotta and
Springer [H9] have shown that 8111,' is a character of S, for each partition µ of n:
they define an action of S on the rational cohomology H*(X,) of the varietyX
(Chapter II, §3, Example) and show that µ

0 e(w)trace (w-1, H2i(Xµ))

where as usual e(w) is the sign of w c- S".
If

(2) 01A,' kAµ)
X A

A

is the decomposition of 0 1,' as a sum of irreducible characters, it follows from (1)
and (2) and (7.11) that

K,i,(q) _ F, kaIlq'
i

with coefficients k( '9 ) integers > 0.
When p = (1"), Qrr)(q) is the Poincare polynomial of the variety X. When q is

a prime-power, we have Qrr)(q) = I Xv,(q)I, the number of Fq-rational points of X,,.
The representations 0 µ'' and their generalizations are studied in a number of

recent papers. We mention the paper of W. Borho and R. MacPherson [B6], where
is explained their relationship with the Deligne-Goreski-MacPherson sheaves on
closures of unipotent classes (§6, Example 6).

Notes and references

The polynomials Qp(q) were introduced by Green [G11], who proved the
orthogonality relations (7.9), (7.10). For tables of these polynomials see
Green (loc. cit.) for n < 5, and Morris [M12] for n = 6, 7.

8. Schur's Q-functions

We have seen in §2 that when t = 0 the Hall-Littlewood function P (x; t)
reduces to the Schur function sa, and when t = 1 to the monomial.,
symmetric function ma; and in §3 that when t = q-1, q a prime power, the
PA(x; t) have a combinatorial significance via the Hall algebra. There is at
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least one other value of t that is of particular interest, namely t = - 1: the
's,ymmetric functions QA(x; -1) were introduced in Schur's 1911 paper [S5]
on the projective representations of the symmetric and alternating groups,

.where
they play a role analogous to that of the Schur functions in

connection with the linear representations of the symmetric groups
(Chapter I, §7).

To simplify notation, we shall write q,., PA, QA for qr(x; - 1),
PA(x', -1), Q,A(x; - 1), respectively. As in §2, let

Q(t) = E grtr

r> O

(the symbol t now being available again), then from (2.10) we have

1 +tx.
(8.1) Q(t) _ ' 1 - ai = E(t)H(t)

from which it follows that

that is to say

(8.2)

Q(t)Q(-t) = 1

1)"q,,q, = 0
r+s-n

for all n > 1. When n is odd, (8.2) tells us nothing. When n is even, say
n = 2m, it becomes

m-1
(8.2') qzm = E (-1)r lgrgzm -r+ 2 (-1)m-1qm,

r-1

which shows that qzm E Q[ q1, q2, ... q2.-,] and hence (by induction on
m) that

(8.3) qzm EQ[g1,g3,q5,...,qzm-1].

Another consequence of (8.2') is the following. Recall (Chapter I, §1,
Example 9) that a partition is strict if all its parts are distinct.

(8.4) Let A be a partition of n. Either A is strict, or qa = q,,q,2 ... is a
Z-linear combination of the qµ such that µ is strict and µ > A.

Proof We proceed by induction, assuming the result true for all µ > A.
(The induction starts at A = (n), which is strict.) If A is not strict then for
some pair i <j we have A; = A. = m, say. The relation (8.2') then shows
that qa is a Z-linear combination of the qµ where µ = R , A, 1 < r < m. By
Chapter I, (1.14) each such tc is > A, and so (8.3) is true for µ. This
completes the induction step.

I
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Let IF denote the subring of A generated by the qr:

F=Z[g1,g2,q3,...].

I' is a graded ring: F 0 r", where r" = I n A" is spanned by the qa
such that I Al = n.

Also let IQ = F ® Q = Q[q1, q2, q3, ... ]. From (8.3) it follows that I'Q is
generated over Q by the qr with r odd. In fact these elements are
algebraically independent. For from (8.1) we have

Q'(t) E'(t) H'(t)
( )+P(- )

Q(t)
t tE(t) + H(t) =P

= 2 E P2r+1t2r,

and therefore

r> O

rqr = 2(P1gr-1 +P3gr-3 + ... ).

The series on the right terminates with pr_ 1q1 if r is even, and with pr if r
is odd. Hence these equations enable us to express the odd power sums jr,
terms of the q's, and vice versa. Since (Chapter I, §2) P1, p3, ... are
algebraically independent over Q, it follows that

(8.5) We have

rQ=Q[pr:rodd] =Q[gr:rodd]

and the qr (r odd) are algebraically independent over Q.

A partition A is odd if all its parts are odd. For each n > 1, the number
N" of odd partitions of n is equal to the number of strict partitions of n,
because the generating function for odd partitions is

2r
1 1-t

A1 =t1 _ =H(1+tr ),
Aodd r>1 1 2r-1

r31 1 -tr r>1

which is the generating function for strict partitions.

(8.6) (i) The q, A odd, form a Q-basis of I'Q.
(ii) The qA, A strict, form a Z-basis of F.

Proof. (i) follows from (8.5), and shows that the dimension of I'Q is N".
From (8.4) it follows that the qA, where A is a strict partition of n, span F"
and hence also F. Since there are N" of them, they form a Q-basis of F.
Hence they are linearly independent over Q, and therefore also over Z,
which proves (ii). I
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Consider now P. = PA(x; -1) and Q. = QA(x; - 1). The symmetric func-
tions PA are well-defined and non-zero for all partitions A, and since the
transition matrix M(P, m) is unitriangular, it follows that the P. form a
Z-basis of A. On the other hand, bA(-1) = Hi,1 1) will vanish if
any mi(A) > 1, that is to say if the partition A is not strict. If A is strict, we
have bA(- 1) = 24A), and hence

21(A)PA if A is strict,
0 otherwise.

From (2.15), with t = - 1, we have

(8.8) Let k be a strict partition of length < n. Then QA is equal to the
coefficient of to = t" 1t22 ... in

n

[1 Q(ti)f F(t; 1tj)
i-1 i<j

where

F(y) = 1
y

= 1 + 2 F ,
(

1+y r>1

As in §2, (8.8) is equivalent to the raising operator formula

(8.8') QA

1 -Rij
qA= F1i<j 1 +Rij

From (8.8') it follows that QA is of the form

QA = qA + E aAliq,
µ>A

with coefficients a;,,, E Z. If A is strict, it follows from (8.4) that we have

QA=gA+ E aaµgµ
µ>A

where now the sum on the right is restricted to strict partitions µ > A.
From (8.6) (ii) it now follows that

-(8.9) The QA, A strict, form a Z-basis of F. I

We come next to Schur's definition of QA. From (8.8) it follows that
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Q(r,S) (where r > s > 0) is the coefficient of trus in Q(t, u)
Q(t)Q(u)F(t-1u), so that

(8.10)

S

Q(r,s)=grgs+2F, (-1)'qr+iqs-i
i-1

If r < s we define Q(r, s) by this formula. Then it follows from (8.2) that
Q(s,r) = -Q(r,s)

Now let A be a strict partition, which we may write in the form
_ (A1, A2,..., A20 where Al > ... (> A2n > 0. Then the 2n X 2n matrix

is skew-symmetric, and Schur's definition of QA (which for us is a theorem)
reads:

(8.11) QA = Pf(MA)

where Pf(MA) is the Pfaffian of the skew-symmetric matrix MA. (We recall
that if A = (aid) is a skew symmetric matrix of even size 2n X 2n, its
determinant is a perfect square: det(A) = Pf(A)2, where

Pf(A) = E e(w).aw(1),W(2)...a,(2n-1)w(2n)
w

summed over w E Stn such that w(2r - 1) < w(2r) for 1 < r < n, and
w(2r- 1)<w(2r+ 1) fort<r<n-1.)

Proof of (8.11). From abovve,,Pf(MA) is a sum of terms of the form

-L.Q(111,l+2) Q(A2n-1, IL2n)

where (µ1, .... µ20 = (A11,..., A.2,) is a derangement of (A1,..., A20. By
(8.8) the term just written is equal to the coefficient of t a = t11 t2, 2 ... in

f Q(t1) ... Q(t2n)F(ti, 1ti2) ... F(t-'n

and consequently Pf(MA) is the coefficient of t'' in

(1) Q(t1)...Q(t2n)Pf((F(ti 1ti))).

Now F(ti 1 t) = (ti - t)/(ti + t), and it is well-known that

(2)
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From (1) and (2) it follows that Pf(MA) is the coefficient of t A in

Q(tl) ... Q(t2n) [1 F(t; 'tj) = Q(tl, ..., t2n)
i <j

hence by (8.8) is equal to QA. I
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(For a proof of (2) (which is a classical result) see Example 5 below; and
for an extension of (8.11) to skew Q-functions QA/ ' see Example 9.)

Next, the scalar product of §4 is not well-defined on all of A when
t = -1, because zA(t) has a pole at t = -1 if any part of A is even. But if A
is odd it follows from the definition of zA(t) that zA(-1) = 2 -'(")z,, and
hence the restriction to F of the scalar product is well defined and positive
definite. We have

(8.12) (i) <QA, Qµ> = 2!(')8Aµ if A, µ are strict.
(ii) (pA,pµ) = 2-(A)zA6Aµ if A, µ are odd.
These correspond to the series expansions

rI
1 +xiyj

1(A)(8.13) = F, 2- QA(x)QA(y)
- xi yj A strict

2'(A)zA'pA(x)pA(y),
A odd

obtained by setting t = -1 in (4.4) and (4.1).

Let A, µ be partitions such that µ is strict, A D µ and A - µ is a
horizontal strip. Then mi(A) < 2 for each i > 1, and hence the formula
(5.8) shows that

(8.14) 2a(A-µ) if A is strict,
0 otherwise,

where a(A - µ) is the number of integers i > 1 such that A - IL has a
square in the ith column but not in the (i + 1)st column. Hence from (5.7)
we have

(8.15) Pµ4!- 2°(A-µ)pA

A

for a strict partition µ, where the sum is over strict A D µ such that A - µ
is a horizontal strip.

This result may be more conveniently rephrased in terms of shifted
diagrams. As in Chapter I, §1, Example 9, let S(A) be the shifted diagram
of a strict partition A, obtained from the usual diagram by shifting the ith
row (i - 1) squares to the right, for each i > 1. The effect of replacing



256 III HALL-LITTLEWOOD SYMMETRIC FUNCTIONS

A - µ by S(A - µ) = S(A) - S(µ) is to convert the horizontal strip into a
disjoint union of border strips, and a(A -A) is just the number of
connected components of S(A µ), i.e. the number of border strips of
which it is composed.

We are therefore led to define a shifted tableau T of shape S(A - u)
S(A) - S(µ), where A and µ are strict partitions, to be a sequence of strict
partitions (A(°), A(l),..., A(')) such that µ = A(O) C A(') C ... CA(r) = A, and
such that each S(O) - A('-')) is a disjoint union of border strips; or,
equivalently, as a labelling of the squares of S(A - µ) with the integers
1, 2,..., r which is weakly increasing along rows and down columns and is
such that no 2 X 2 block of squares bears the same label, so that for each i
the set of squares labelled i is a disjoint union of border strips. If we
denote by b(T) the number of border strips of which T is composed, then
it follows from (8.14) and (5.11) that, for A and µ strict partitions, we have

(8.16) QA/µ = E 2b(T)xT

T

summed over shifted tableaux of shape S(A - µ), where as usual XT is the
monomial defined by the tableau T.

Remarks. 1. The diagonal squares (i, i) in S(A) - S(µ) must all lie in
distinct border strips, so that b(T) > 1(A) -1(µ) for each tableau T of
shape S(A) - S( µ).
2. The formula (8.16) shows that QA/w, like s,/µ but unlike QA/µ(x; t) for
arbitrary t, depends only on the skew diagram A - I.L.

For later purposes it will be convenient to rephrase (8.16). Let P' denote
the ordered alphabet (1' < 1 < 2' < 2 < ... ). The symbols 1',2', ... are
said to be marked, and we shall denote by Ial the unmarked version of any
a E P'. Let A and µ again be strict partitions such that A D A. A marked
shifted tableau T of shape S(A -A) is a labelling of the squares of
S(A - µ) with symbols from P' such that (compare Chapter I, §5, Example
23):

(Ml) The labels increase (in the weak sense) along each row and down
each column.
(M2) Each column contains at most one k, for each k > 1.
(M3) Each row contains at most one k', for each k > 1.
The conditions (M2) and (M3) say that for each k > 1, the set of squares
labelled k (resp. k') is a horizontal (resp. vertical) strip.

The weight (or content) of T is the sequence (al, a2, ...) where ak, for
each k > 1, is the number of squares in T labelled either k or V.

Let ITI be the (unmarked) shifted tableau obtained from T by deleting
all the marks, i.e., by replacing each a E P' by its unmarked version lal
The conditions (Ml)-(M3) ensure that no 2 X 2 block of squares can bear
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the same label in ITI, so that ITI is a shifted tableau as defined above.
Moreover, in each border strip 8 in ITI, each square of which is labelled k,
it is easy to see that the conditions (Ml)-(M3) uniquely determine the
assignment of marked and unmarked symbols (k' or k) to the squares of

Io, with the exception of the square (i, j) E 8 nearest the diagonal (i.e.
such that (i + 1, j) 0,6 and (i, j - 1) e,8), which can be marked or un-
marked. Call this square the free square of P.

From this discussion it follows that the number of free squares in ITI is
b(ITI), and hence that the number of marked shifted tableaux T arising
from a given (unmarked) shifted tableau ITI is 2b(III)Consequently (8.16)
may be restated as

(8.16' ) QA/µ
ExlTJ
T

summed over marked shifted tableaux of shape S(A - µ).
Equivalently:

(8.16") QA/µ = L.r

where Ka-,, v is the number of marked shifted tableaux T of shape A - µ and
weight v.

Remarks. 1. From (5.2) we have

rrQA/µ- Lrfµv(-1)Qv
V

Since f, ,(t) E Z[t], this shows that QA/,L is a Z-linear combination of the
Q. (where we may assume v strict, otherwise Q = 0). Hence it follows
from (8.8) that QA/µ E I' for all A, µ.

}2. The formula (8.16) or (8.16') may be taken as a combinatorial definition
of the Q-functions, and the same remarks apply as in the case of the Schur
functions (Chapter I, §5). In particular, it is not at all obvious from this
definition that QA/µ is in fact a symmetric function of the xi.

To conclude, we shall mention without proof two positivity results, and
.their combinatorial interpretations.

(8.17) (i) If µ, v are strict partitions and

P``Pv
>f, PA
A

then fµ,, > 0 for all A.
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(ii) If A is a strict partition and

PA gAµsµ

then gAg > 0 for all A.

Since the P. (for all partitions k) form a Z-basis of A, the coefficients
f(=f(- 1), in the notation of §3) are integers; and since Pµ, P E I'Q by
virtue of (8.7) and (8.9), we have f = 0 if k is not strict.

In (8.17Xii), the matrix (gA,) is strictly upper unitriangular, and is the
inverse of the matrix K(-1) 06). Hence (8.17Xii) says that the matrix
K(-1)-' has non-negative (integer) entries; or again, in the notation of
Chapter I, §7, Example 9, that PA E A+ for all strict partitions A.

There are at least three ways of proving both parts of (8.17). One is to
interpret the coefficients fµ and gAµ in terms of the projective represen.
tations of the symmetric groups, in the same sort of way that the Little-
wood-Richardson coefficients cµ,, can be shown to be non-negative by
reference to the linear representations of the symmetric groups. Another
way is to interpret the QA as cohomology classes dual to Schubert cycles in
the Grassmannian of maximal isotropic subspaces in C2" relative to a
skew-symmetric bilinear form of rank n. The third method, which we shall
describe below, provides a shifted analogue of the Littlewood-Richardson
rule for fµ,,, and likewise for gAµ. A fourth possibility, which as far as I
know has not been investigated, would be to interpret the P. (A strict) as
traces of polynomial functors on an appropriate category, in analogy with
Schur's theory (Chapter I, Appendix A).

Let T be a marked (shifted or unshifted) tableau, that is to say a
labelling of the shape of T with symbols from the alphabet P', satisfying
the conditions (Ml)-(M3) above. As in Chapter I, §9, T gives rise to a
word w = w(T) by reading the symbols in T from right to left in successive
rows, starting with the top row. Let w be the word obtained from w by
reading w from right to left, and then replacing each k by (k + 1)' and
each k' by k, for all k > 1. For example, if w = 11'2'12'2, then w =
3'22'212'.

Suppose T contains altogether n symbols, so that w is of length n; then
ww is of length 2n, say ww =a, a2 ... a2n. For each k > 1 and 0 <p < 2n,
let mk(al ... ad denote the number of k's among al,... , a p. The word
w = w(T) is said to have the lattice property if, for each k and p as above,
whenever mk+l(al ... aP) = mk(al ... ap), we have lap+1I # k + 1 (i.e. ap+1
is neither k + 1 nor (k + 1)').

With this explained we can now state
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(g 18) (i) Let A, µ, v be strict partitions. Then the coefficient f of PA in

is equal to the number of marked shifted tableaux T of shape S(A - µ) ad
weight v such that
(a) w(T) has the lattice property;
(b) for each k > 1, the last (i.e. rightmost) occurrence of k' in w(T) precedes
the last occurrence of k.

(j) Let A, µ be partitions, A strict. Then the coefficient g;,µ of sµ in P. is
equal to the number of (unshifted) marked tableaux T of shape t and weight
A satisfying (a) and (b) above.

These theorems are due to J. Stembridge [S28].

Examples
1. The formula (2.1) for PA(x,, ... , x,,; t) no longer makes sense at t = -1, even if
,l is strict (unless 1(A) - n or n - 1), because va(t) vanishes at t = -1 if 1(A) < n - 1.
But the alternative formula (2.2) does make sense at t = -1, and for a strict
partition A of length 1 < n it gives

A x; +x
,k(xl, Xn) E W x

x1-x3

where acts on and the product on the right is over pairs (i, j)
such that 1 < i < I and 1 < i <j < n. This leads to the following expression for
Q,A(xl,... , xn ): let i r denote the linear operator on the ring L = Z[ xi 1, ... , x, i ]
of Laurent polynomials defined by

F, w(fxa/as)
w E $

where 8 = (n - 1, n - 2,...,1,0) and a8 = flip j(x, -x). Then we have, for a strict
partition A of length 1 < n,

QA(xl,..., xn) =

where f, = fI(1 +xi lxj), the product being taken over pairs (i, j) such that
14i<land j>i.
2. Suppose A is a strict partition of length n or n - 1. Then in n variables
xl,...,x we have Px=sa_ass, where 8=(n-1,n-2,...,1,0). (Use (2.1) with
t= -1, and observe that fI1< 1(xi+xj)=fI1<1(x?-xf)/(x1-x1)=s8.)
3. (a) Let w be the involution on A defined in Chapter I, §2. From (8.1) we have
wqn = q,, for all n i% 1, hence w fixes each element of the ring IF, and in particular
wQa = Qx and wPA = PA for each strict partition A.

(b) We have P8 = s8 for any `staircase' partition S = (n - 1, n - 2, ... ,1, 0). (For P.
is of the form

P8 = L.+ g5µsµ
µt8
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with g88 = 1; from (a) above it follows that g8µ = g,,,, and since µ c S implies
> 8 (Chapter I, (1.11)) it follows that g8µ = 0 unless µ = S.

4. Let A = (aij) be a `marked matrix', i.e. with entries aij e P' U (0}. The matrix
IAA _ (Iaijl) obtained by deleting the marks is a matrix of non-negative integers.
Deduce from (8.13) and (8.16) that for any two partitions µ and v the number

of
marked matrices A such that JAI has row sums µi and column sums vi is equal to
the number of pairs (S, T) of marked shifted tableaux of the same (shifted) shape,
such that S has weight µ, T has weight v, and the main diagonal in T is
unmarked.

5. Let P(t1,...,t,,,), where m is even, denote the Pfaffian of the m x m matrix M
whose (i, j) element is (ti - tj)/(ti + tj). From the definition of the Pfaffian it
follows that

m

(1) P(t1,...,tm)= E (-1)`P(t1,ti)P(t2,...,li,...,tm).
i-2

Also it is clear that

U(t1, ... , tm) = P(t1, ... , tm) JT (ti + tj)
i<j

is a homogeneous polynomial in the ti, of degree Zm(m - 1). Now P2 = det M
vanishes whenever two of the tj are equal, hence the same is true of the polynomial
U, and therefore U is divisible by V = fI; < j(ti - tj). Since U and V have the same
degree, we conclude that U = cmV for some constant cm depending only on m, and
hence that

C.
tt --I t -t

Pf ` ' =ti+tj i<j ti+tj

It remains to show that cm = 1. From the relation (1), on multiplying both sides by
II; j(ti + t) and then comparing the coefficients of t;'- It2 -2 ... tm_ on either
side, we obtain

m

Cm= E (-1)iCm_2=Cm_2

i-2

and hence cm = cm_ 2 = ... = c2 = 1.

6. (a) Show that

Q(t) = expl E 2prt'/r)
\r odd I

and hence that

E4»
Zv 12icp)pn.-

p odd
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fib) Let V be a vector space (over a field of characteristic zero) with basis
, ..,v,, and let Sn act on V by permuting the v;. Then S acts on the exterior

algebra A V: if the character of this representation is cpn, then

ch(cpn) = qn

(We have cpn(w) = F1IL 1(1 + e;), where the 4i are the eigenvalues of w (-= Sn acting

on V (i.e. of the permutation matrix corresponding to w). To each r-cycle in w
there correspond r eigenvalues 4!, namely the rth roots of unity. The correspond-
ing product 17(1 + fi) is zero if r is even, and is equal to 2 if r is odd. It follows
that cpn(w) = 0 if w has any cycles of even length, and that (pn(w) = 21 if w consists
of I cycles of odd length. The result now follows from (a) above.)

(c) From (8.1) we have

qn = F, erhs = F, 2s(alb)
r+s=n a+b-n-1

by Pieri's formula (Chapter I, (5.16)).

7. (a) Let

SA = SA(x; - 1) = det(gA._;+J)

as in (4.5). In the notation of Chapter I, §5, Example 23, SA = sA(x/ - x).
(loc. cit.) we have

Hence

T5,= F
T

summed over all (unshifted) marked tableaux of shape A.

(b) From the definition, S. is of the form

(1) SA = qA + F, cµgµ
µ>A

with integer coefficients cAµ. (The transition matrix M(S, q) is the same as
M(s,h), hence is the transposed inverse of the Kostka matrix K (Chapter I, §6).)
Hence SA E F for all partitions A, and if A is strict it follows from (8.4) that

`(2) SA = qA + E caµgµ
L>A

where the sum is now over strict partitions µ > A. Hence from (8.6) (ii) it follows
that the SA, A strict, form another Z-basis of the ring IF.

(c) Show that

SA = E z1 2'(P)X, ApP
p odd

=sA*qn=ch(XA9n)

where (Example 4 (b)) cpn is the character of the exterior algebra representation of
Sn.
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8. For each f e F, let fl : r - I denote the adjoint of multiplication by f, so that

(f`g,h) = (g,fh)
for all g, h e IF. Let

Q1(t) _ E qR tn,
n>0

then (§5, Example 8) we have

(1) Q1(t)Q(u) =F(-tu)Q(u)Q1(t)

as operators on r, where t and u are commuting indeterminates, Q(u) is
operator of multiplication by Q(u), and F(y) = (1 -y)/(1 +y) as in (8.8).

(a) Define operators B,n: r - r for each m e Z by

Bm=gm-qm+1q1 + qm+2q2

(where q,n = 0 if m < 0, and q0 = 0). Collectively we have

B(t)= Bmtm = Q(t)Q1(-t-1).
meZ

More generally, if t1, ... , to are commuting indeterminates, let

(2)

7--
B(t1,...,tn)= 11Q(tt)JJQ1(-ti 1).

i=1 i=1

From (1) it follows that

(3) B(t)B(u) =F(t-1u)B(t,u)

and hence by iteration that

(4) B(t1)...B(tn)=B(t1,...,tn)J]F(ti 1t1).
i<j

Since Q1(tx1) = 1, it follows from (2) and (4) that

B(t1)... B(tn)(1) = Q(t1,...,tn)

in the notation of (8.8), and hence that

(5) Qa = Bal ... B,,(1)

if A is a strict partition of length 1.

(b) Let

90,u) = rp(u, t) = F(t-1u) +F(tu-1)

= 2 (-1)nt-nun,

nEZ

the

a formal Laurent series in t and u.
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i= Show that

(6) Q(t)Q(u)w(t, u) = w(t, u).

(The coefficient of trus on the left-hand side is

ars= E(-1)agagb

summed over a, b E N and c E Z such that a + c = r and b - c = s, so that
a+b=r+s; hence

(-1)rars= E (-1)agagb=s0,r+s
a+b-r+s

since Q(t)Q(-t) =1.)
From (6) it follows by taking adjoints that

Q1(t)Q1(u) (P (t, u) = rp (t, u)

and hence that

(7) B(t, u)cp(t, u) = (p(t, u).

Finally, from (3) and (7) we have

(8) B(t, u) + B(u, t) = B(t, u) (p(t, u) = cp(t, u).

Explicitly, (8) says that for all r, s e Z:
'(Cl) Br Bs = -BS Br if r + s # 0, and in particular B; = 0 if r # 0;
(C2) BB-, + B _ r Br = 2(-1)r if r # 0, and Bo = 1.
'(c) Let a = (al,..., a") E Z" be any sequence of n integers. We define Qa to be
the coefficient of to = ti ... t,°^ in the Laurent series Q(t1,..., t"), or equivalently

Qa = Ba, ... Ba^(1).

Use the commutation rules (Cl), (C2) to show that
(i) if 1 al ., ... , . a" I are all distinct, then Qa is skew-symmetric in a (i.e. Q,,,=
e(W)Qa for all w E S"), and Q. = 0 if any ai is negative.
(ii) If a, = a;+1 for some i, then Q. = 0.
(iii) If a, = - ai+ 1 = r # 0, then Q,, = 0 if r > 0, and Q. = 2(- 1)"Q0 if r < 0,
where /3 is the sequence obtained from a by deleting a, and a,+1.

Deduce that, for each a (=- Z", Q. is either zero or is equal to ±2TQ,a for some
integer r > 0 and strict partition A [H7].
9. Let A = (Al, ... , Am) and µ = (µl, ... , 1L,,) be strict partitions such that Al >
... > Am > 0 and µl > ... > µ" > 0. Since we allow µ" = 0 we may assume that
m + n is even. Then we have

Qa/µ = Pf(MA,,L)

where Ma, is the skew-symmetric matrix of m + n rows and columns

-( Ma NAI,

Ma'µ. I` -Ns,,
0 )
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in which MA = (Q(A,, A1)) as in (8.11), and NA, µ is the m X n matrix (q,,-
(With the notation of Example 8, we have

QA/µ = 2-1(µ)Qµ (QA)

and by (8.8) Qµ (QA) is the coefficient of t Au µ in

F1 Q1(Uk)1 fl Q(t)) O F(ti 1t/l/ F(uk 1U1)
k ` i i<j k<1

which by use of Example 8, formula (1) is equal to

r-I Q(ti) F1 F(ti 1 tj) ]1 F(uk1u1) fl F(-tick).(1)
i i<j k<1 i,k

The product of all the F's in this expression can be written in the form

1I F(vr1v,)
r<s

where (V1, V2, u -U2_ 1 -U1 t j,..., Hence the same1+ 2+ "'+ m+n n + + 1 + ar-
gument as in the proof of (8.11) shows that the expression (1) is the Pfaffian of the
matrix

(arasF(v, 1vs))

of m + n rows and columns, where ar = 1 if r < n, and a, = Q(v,) if r > n. On
picking out the coefficient of t Au µ, we obtain the result.)

10. Define a ring homomorphism cp: A -> r by

cp(en) =qn (n > 1).

(a) Show that
(i) (p(hn) = qn,

(ii) 9(pn) = 2pn if n is odd, and 1p(pn) = 0 if n is even,
(iii) cp commutes with the involution co,
(iv) (P(S(alb-1)) =,I(gagb+Q(a,b)).

(b) Let A, µ be strict partitions of lengths m, n respectively, such that A D A. Let
D(A) = (A1,..., AmIA1 -1,..., Am - 1) be the `double' of A (Chapter I, §1, Example
9), and define D(µ) similarly as the double of tc. Then we have

A/µ(P(SD(A)/D(µ)) = 2n-mQ2

(From Chapter I, §5, Example 22 we have

W CA HA, µ 1
=(- det -

SD(A)/D(µ) 1)
EA.µ 0

where CA = (s(A,1))+ HA,,, _ (hA._ µ1) and EA, µ = (eAJ_,LI). By use of (a) it follows
that

(P(SD(A)/D(µ)) = 2n-m det(MA µ+B)
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where MA, P, is the matrix defined in Example 9, and B = (b;;) is given by

RA;RA; if 1 i, j gym,
b, j =

0 otherwise.

From Example 9 it now follows that

V(sD(A)/D(µ)) = 2n-mQA/µ det(1 +BM )

and since rank (B) = 1,

det(1 +BMA-µ) = 1 + trace(BMA-µ) =1

because MAµ is skew-symmetric.)

(c) By applying (p to both sides of the identity of Chapter I, §5, Example 9(b), we
obtain

E 2-'(A)QA(x)2 = (1 +x,x!)/(1 -x,xj)
A i.j

(i.e. (8.13) with x; = y, for each i).

ii. (a) With the notation of Example 8, show that for r odd

(1)

(Use (8.12) (ii).)
From Example 6(a) we have

1 a
pr r-

2 apr

(2) qn = E 2'(P )ZP) pp

P

summed over odd partitions p of n. Deduce from (1) and (2) that

(3)

for all n 3 1; equivalently,

(3')

Deduce that

prgn = qn - r

Pr Q(t)=trQ(t)

(4) prQ(t,,..., tn) =pr(t1,..., tn)Q(t1,..., tn).

(Observe that pr1 is a derivation, by (1) above.) More generally, for any odd
partition p,

(5) pP Q(ti,...,tn) =pP(tj,...,tn)Q(tj,...,t).

Hence pp' QA (A a strict partition) is equal to the coefficient of t' in the right-hand
side of (5).
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(b) Let A be a strict partition of length l and let r > 1 be odd. From (4) above we
have

(6)

i

Pr QA E QA - rej
i-1

where A - rei = (A1, ... , Ai - r,..., A,). From Example 8(c) it follows that QA - re - 0
unless either (i) Ai > r and the numbers Al, ... , Ai - r.... , Ai are all distinct, or (ii)
r = Al. + AA for some j > i.

In case (i), either A, > Ai - r > AA + 1 for some j < m, or else Am > Ai_ r, and
QA-rcj=(-1)i-'Q,, where A=(A1...... A1,Ai-r,...). The shifted

diagram S(µ) of µ is obtained from S(A) by removing a border strip /3 of length r,
starting in the ith row and ending in the jth row, and hence of height (Chapter 1,
§1) ht(p) =j - i. Define e(/3) _ (-1)ht(t3 ).

In case (ii) we have

(7) QA-re,=
(-1)J-i-1+Ai2Qµ

where now µ is the strict partition obtained from A by deleting Ai and Aj. To
express this in terms of shifted diagrams, we define a double strip S to be a skew
diagram formed by the union of two border ships which both end on the main
diagonal. A double strip S can be cut into two non-empty connected pieces, one
piece a consisting of the diagonals in S of length 2, and the other piece Q
consisting of the border strip formed by the diagonals of length 1. Define e(S)
(-1)d, where d = II a I + ht( P). From (6) and (7) we now have

(8) Pr QA= E e(y)Q,

summed over strict partitions µ e A such that I AI - I µi = r and y = S(A - µ) is
either a border strip (case (i)) or a double strip (case (ii)).

(c) From (8) we obtain the following combinatorial rule for computing X( -1) _
(QA, pp >, where A is strict and p is odd:

Xp (-1) = E e(S)
S

summed over all sequences of strict partitions S = (At0>, A(-)) such that
m =1(p), 0 = A(O) C :,k() e ... CA(-) = A, and such that each S(P) -,k('- 1)) = yi is
a border strip or double strip of length pi, and e(S) = II =1 e(yi). (Compare
Chapter I, §7, Example 5.)

12. From Example 11(c) (or from §7, Example 4) it follows that if A is a strict
partition of n, then X(i.)(-1) is equal to the number gA of shifted standard
tableaux of shape S(A), obtained by labelling the squares of S(A) with the numbers
1, 2, ... , n, with strict increase along each row and down each column.

Just as in the case of ordinary standard tableaux (Chapter I, §5, Example 2)
there is a formula for gA in terms of hook-lengths. For each square x in S(A), the
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hook-length h(x) is defined to be the hook-length at x in the double diagram
D(A) _ (Al - 1, A2 - 1, ... I A1, A2, ... ). Then we have

(1) gA=n!/ 11 h(x).
xeS(A)

This formula is equivalent to one due to Schur [S5]:

n ! A, - ,1j
A

(2) 9 F1

where A! = Al! A2! .... The equivalence of (1) and (2) follows from the fact that the
numbers h(x) for x in the ith row of S(A) are A. + A,+1, A, + A,+2, ... and
A1, A, - 1,..., 2,1 with the exception of A, - Ai+1, A, - A.+2, - .

Since the gA clearly satisfy the recurrence relation

gA = E gAa)
i>1

where A(') is the partition obtained from A by replacing A, by A, - 1, the proof of
(2) reduces to verifying the identity

A, + Aj. A, - A3 -1

i i 1#i A,+Aj -1 A, - Aj

which may be proved by considering the expansion into partial fractions of the
function

(2t-1) (t + A,)(t - A, -1)
(t+A,-1)(t-A1)*

13. Let A denote the skew-symmetric matrix

((x, -x3)/(x,+xx))1., 1, j.,

1nd for each strict partition A = (A1, ... , A,) of length I < n let BA denote the n X I
matrix (x; i ). Let

A BA

-Ba 0

which is a skew-symmetric matrix of n + I rows and columns.
Now define

.o be the Pfaffian of AA(x1,..., if n +I is even, and to be the Pfaffian of
1A(x1, ... , x,0) if n + I is odd. (In the latter case, the effect of introducing the
;xtra variable x,, +1 = 0 is to border A with a column of 1's and a row of -1's.
ihow that

PA(xl,..., xR) = PfA(x1,...,xn)/Pfo(xl,..., x).



268 III HALL-LITTLEWOOD SYMMETRIC FUNCTIONS

(Multiply both sides of the formula (1) of Example 1 by

I-I (x; -xj)/(x; +x,).
i<j

This formula for P. may be regarded as an analogue of the definition (Chapter I,
(3.1)) of the Schur function as a quotient of alternants.

Notes and references

As explained in the preface, we have stopped short of describing the role
played by Schur's Q-functions in the construction of the projective repre.
sentations of the symmetric groups. Apart from Schur's original paper [S5]
of 1911, there are several recent accounts available: the monograph [H7]
of Hoffman and Humphreys, and the papers of Jozefiak [J15] and Stem-
bridge [S28].

It has become clear in recent years that Schur's Q-functions arise
naturally in other contexts: as (up to scalar factors) the characters of
certain irreducible representations of the Lie superalgebra Q(n) [S+1]; as
the cohomology classes dual to Schubert cycles in isotropic Grassmannians
[J16], [P2]; as the polynomial solutions of the BKP hierarchy of partial
differential equations [Yl]; and as generating functions for the zonal
spherical funptions (Chapter VII, §1) of the twisted Gelfand pair
(S2i,, Hn, ), where H is the hyperoctahedral group, embedded in the
symmetric group S2,, as the centralizer of a fixed-point free involution, as
in Chapter VII, §2, and is the composition of the sign character of S,,
with the projection Hn -> Sn [S29].

A combinatorial theory of shifted tableaux, parallel to that for ordinary
(unshifted) tableaux, has been developed independently by Sagan [Si] and
Worley [W4]; it includes shifted versions of the Robinson-
Schensted-Knuth correspondence, Knuth's relations, jeu de taquin, etc. In
particular, (8.17) (ii) (originally conjectured by R. Stanley) is due to Sagan
and Worley (independently), and Stembridge's proof of (8.18) relies on
their theory. Finally, we may remark that setting t = - 1 in Chapter II,
(4.11) will provide another expression for fµ = f A (- 1).

Example 3(b) is due to R. Stanley.
Example 8. The operators Bn are the analogues, for Schur's Q-func-

tions, of Bernstein's operators (Chapter I, §5, Example 29). See [H7] and
[Jill.

Examples 9 and 10. These results are due to Jozefiak and Pragacz [J17].
Our proof of the Pfaffian formula for QA/ (Example 9) is somewhat
different from theirs.

Example 13 is due to Nimmo [N2].



IV

THE CHARACTERS OF GLn OVER A
FINITE FIELD

1. The groups L and M

Let k be a finite field with q elements, k an algebraic closure of k. Let

F:x_Xq
be the Frobenius automorphism of k over k. For each n > 1, the set kn of
fixed points of F" in k is the unique extension of k of degree n in k.

Let M denote the multiplicative group of k, and M" the multiplicative
group of kn, so that Mn = MF".

If m divides n, the norm map Nn m: Mn 4 Mn defined by

d-1

Nn,m(x) =,X(q"-1)/(q'"-1) = F1 Fmix ,
i=0

where d = n/m, is a surjective homomorphism. The groups Mn and the
homomorphisms Nn, m form an inverse system. Let

K= limMn

be their inverse limit, which is a profinite group. The character group of K
is therefore a discrete group

K=L=limMn

where Llln is the character group of Mn. Whenever m divides n, Mm is
embedded in Mn by the transpose of the norm homomorphism Nn, m.

Both groups L and M are (non-canonically) isomorphic to the group of
roots of unity in C of order prime to p = char. k.

The Frobenius map F: eq acts on L. For each n > 1 let Ln = Lr"
be the group of elements L fixed by F", so that L = U n I 1 Ln, and
Lm cLn if and only if m divides n. The canonical mapping of tlln into L is
an isomorphism of Mn onto Ln. By identifying Mn with Ln by means of
this isomorphism, we define a pairing of Ln with Mn:

(S,X)n = 6(x)

for 6 E L. and x c Mn. (The suffix n is necessary because these pairings
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(for different n) are not coherent: if m divides n and 6 E L,,,, x E Mm we
have (6, x)" = ((6, x)m)"/m.)

Finally, let t denote the set of F-orbits in M. Each such orbit is of the
form {x, x9, ... ,

x4d-'}
where

xqd
=x, and the polynomial
d-1

f = fl (t -x9')
i-O

belongs to k[t] and is irreducible over k. Conversely, each irreducible
monic polynomial f E k[t], with the single exception of the polynomial t,
determines in this way an F-orbit in M. We shall therefore use the same
letter f to denote the polynomial and the orbit consisting of its roots in k,
and the letter (P to denote the set of these irreducible polynomials.

Remark. For each n > 1 let p, = (Z/nZX1X ) be the group of nth roots of unity
in k, and let

Z(1)(k) = lim A"

with respect to the homomorphisms µ" -b µ x _,.x"/, whenever m divides n
([D2], §2). We have

Z(1) (k) =K=L,

the character group of L, so that L is a Z-module, where

Z = lim (Z/nZ) _ fl ZpF p

(direct product over all primes p).
Let M be the character group of M. Then we have

k a Homi(L, Z),

L - Hom1(M,Z)

and therefore Af = Z(-1X ).
Moreover,

Ms (Q/Z) e L = (Q/Z)(1)(k),

L a (Q/Z) ® Al (Q/Z) (- 1)(k).

2. Conjugacy classes

Let G denote the group GL"(k) of invertible n X n matrices over the
finite field k. Each g E G acts on the vector space k" and hence defines a
k[t]-module structure on k", such that t. v = gv for v e V. We shall
denote this k[t]-module by Vg. Clearly, two elements g, h E G" are conju-
gate in G" if and only if Vg and Vh are isomorphic k[t]-modules. We may
therefore write V, in place of Vg, where c is the conjugacy class of g in
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C,n. The conjugacy classes of G are thus in one-one correspondence with
,the isomorphism classes of k[t]-modules V such that (i) dimk V= n, (ii)
tb, = 0 implies v = 0.

Since k[t] is a principal ideal domain, V= V, is a direct sum of cyclic
modules of the form k[t]/(f )m, where m > 1, f E 1 and (f) is the ideal in
k[t] generated by the polynomial f. Hence V assigns to each f E (D a
partition µ(f) = (141(f), 142(f) ....) such that

(2.1) V=- ® k[t]/(f)&,(f>

f,i

In other words, V determines a partition-valued function µ on (D. Since
dimk k[t]/(f) w(f) = d(f)Aj(f ), where d(f) is the degree of f, it follows
that µ must satisfy

(2.2) IIILII = E d(f) iµ(f )I = n.
f E't

Conversely, each function µ: c -.9, where .9 is the set of all partitions,
which satisfies (2.2) determines a k[t]-module V of dimension n by (2.1),
and hence a conjugacy class cµ in G. We shall write Vµ in place of Vcµ.

For each f E 4 let V (f) denote the f-primary component of V= Vµ, i.e.
the submodule consisting of all v E V annihilated by some power of f. In
the notation of (2.1),

(2.3) Vf,= ® k[t]/(fY"f)The
V (f) are characteristic submodules of V, and V is their direct sum.

'Hence if Latt(M) denotes the lattice of submodules of a module M, and
Aut(M) the automorphism group, we have

Latt(V) - fl Latt(V f)),
fE4b

Aut(V) - II Aut(V )).
fEOP

Let k[t]( f) denote the localization of k[t] at the prime ideal (f), i.e. the
ring of fractions u/v where u, v E k[t] and v (f). Then k[t]( f) is a
discrete valuation ring with residue field kf = k[t]/(f ), of degree d(f )
over k, and V (f) is a finite k[t](f)-module of type µ(f), by (2.3). Hence
from Chapter II, (1.6) we have

(2.6) IAut(Vf))I = a,,(f)(qf)

where q f = Card(kf) = qd(f), and for any partition A

a,(q) = gIAI+2n(A)bb(q-1).
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For any g E G, the automorphisms of the k[t]-module Vg are precisely
the elements h E G which commute with g, i.e. Aut(Vg) is the centralizer
of g in G. Hence, from (2.5) and (2.6), the centralizer of each g E cµ in
G has order

(2.7) aµ = ]] aµ(f)(gf)
ft (D

Examples

1. For each f E c1, say f = t d - ,-I ail'-', let J(f) denote the `companion matrix'
for the polynomial f:

l0 1 0 0)

J(f)=
0 0 1 0

0 0 0 1

a1 a2 a3 ad

and for each integer m > 1 let

J(f) 1d 0 0

Jm(f) =
0 J(f) 1d 0

0 0 0 J(f)

with m diagonal blocks i(f). Then the Jordan canonical form for elements of the
conjugacy class cµ is the diagonal sum of the matrices JJ.(f)(f) for all i > 1 and
fE(D.

2. Sometimes it is more convenient to regard µ: (D --*.,9 as a function on M, i.e. we
define µ(x) for each x E M to be the partition µ(f ), where f is the F-orbit of x
(or the minimal polynomial of x over k). We have then

11w11= E d(f)Ip(f)I= E Iw(x)I
fE-D XEM

and p. o F = p.. With this notation, the characteristic polynomial of any element
gECIL is

r j f 1µ(f)1= 1J (t -x)lµ(x)I

fE4) xEM

so that in particular

trace(g) = E Ip.(x)I x,
XEM

det(g) _ xlµ(x)l.
XEM
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3. The support Supp(µ) of µ: b ->.9 is the set of f e b such that µ(f)
e cµ. Then

(i) g is unipotent a Supp(p.) is the polynomial t - 1.

0 0. Let

(ii) g is primary Supp(p.) = (f) for some f e (D.
(iii) g is regular µ(f) has length < 1, for each f E (D.
(iv) g is semisimple « µ(f)' has length < 1, for each f e (D.
(v) g is regular semisimple 4* µ(f) = 0 or (1) for each f e (D.

4. Let k be the unique extension of k of degree n, and let a: k --> k" be an
isomorphism of k-vector spaces. For each x E Mn, multiplication by x defines an
invertible k-linear map k" --+ kn, hence an element T(x) E G": namely r(x)v =
a(x(a-'v)) for v E k". The mapping T: M" -> G" so defined is an injective
homomorphism, so that T. = T(M") is a subgroup of G. isomorphic to M. If we
change the isomorphism a, we replace T" by a conjugate subgroup. Each T(x) E=- T"
is semisimple, with eigenvalues Fix (0 c i S n - 1). Hence if fx is the minimal
polynomial of x, the conjugacy class of T(x) in G" is cµ, where µ(f,) _ (1n Id) and
;µ(f) = 0 for f # fx, and d = d(fx).

Now let v = (vi,..., v,) be any partition of n. Then T, = T X ... X T is a
subgroup of G,1 X ... X G,,, hence of G", and is well-defined up to conjugacy in
G,,. Let N be the normalizer of T., and W. = N/T,,. Then W is isomorphic to the
-centralizer of an element of cycle-type v in the symmetric group Sn. In particular,

11', is cyclic of order n, and is obtained by transporting Gal(k"/k) via the
isomorphism a.

The groups T (up to conjugacy in G") are the `maximal tori' in G. Every
semisimple element of G" lies in at least one such group.

5. Let be the set of orbits of W. in T. Then the number of conjugacy
-classes in G" is equal to

E I \ Tv I .
Ivl=n

We may identify T with M X ... X M,,, and hence an element t e T, with a
sequence (x1, ... , x,), where xi E M,,1 (1 < i < r). Given t, we define a function
p = p(t):'1 -3' as follows: for each f E 1, the parts of p(f) are the numbers
v,/d(f) for all i such that xi is a root of f. We have IIp(t)II = n, and p(t) depends
only on the W, orbit of t in T,,. Conversely, given µ: 1 -+.90 such that Ilµ11 n, let v
be the partition of n whose parts are the non-zero numbers d(f) I µ(f)I, f E (D.
Then µ determines a unique W,-orbit in T,,.

3. Induction from parabolic subgroups

Let n = n1 + +n,, where the n; are positive integers, and let V(') be
the subspace of V = k" spanned by the first nl + ... +ni basis vectors. Let
F denote the flag

0= V°>c V(1) C: ... cV(')=V.
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The parabolic subgroup P of elements g E G which fix F consists of all
matrices of the form

g11 g12 glr
0 g22 g2

g=

1 0 0

r

grr

where gii E G. (1 < i < r).
Let u; be a class-function on (1 < i < r). Then the function

defined by
u

u(g) = 11 ut(gtt)t-1

is a class function on P. Let u1 ° u2 ° ... ° Ur denote the class-function on
G obtained by inducing u from P to G,,:

U1 ° ... ° ur = indP^(u).

If each u; is a character of then u1 ° ... ° Ur is a character of G.
Let G = U ; tip be a left coset decomposition for P in G. For any

xEG we have

(u1 ° ... ° ur)(x) = F, u(t, 'xt1)

with the understanding that u vanishes outside P. Now t-1xt belongs to P
if and only if it fixes the flag F, i.e. if and only if x fixes the flag tF, or
equivalently tF is a flag of submodules of the k[t]-module VX. If we put
tV(') = W(') and

t-'xt =

hl, h12 ... hlr
0 hz2 .. h2r

0 0 hrr

then the module W°/W° ') is isomorphic to Vh+, (1 < i < r). Hence

(3.1) Let u; be a class function on (1 < i < r). Then the value of the class
function u1 ° ... ° ur at a class cµ in G is given by

(u1 ° ... ° ur)(c ) gµ(+) ...µ(.)u1(Cµ(i))... ur(Cµ(r))

summed over all sequences where cv) is a conjugacy class in
G , (1 < i < r), and gµct) , is the number of sequences

0 =W(0) C: W(1) c ... cW(r)=Vµ
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=`afsubmodules of Vµ such that W(`)/W('-1)=Vµm (1 <i <r).

In particular, let irµ be the characteristic function of the class cµ, which
takes the value 1 at elements of cµ, and 0 elsewhere. Then from (3.1) we
have

(3.2) 7rµ(J) ° ... ° 1lµ(r) _

Also from (2.7) it follows that

Gµ(1(3.3) gµp)...µ(r) =
fe (P

where the G's on the right have the same meaning as in Chapter II.

Now let An denote the space of complex-valued class functions on G,,:
this is a finite-dimensional complex vector space having the characteristic
functions 7 r µ such that II i II = n as a basis. It carries a hermitian scalar
product:

1
(u, v) _ E u(g)v(g).

IGJ gEG,,

Let

A = A
n>O

(with the understanding that Go is a one-element group, so that A0 = C).
The induction product u ° u defined above defines a multiplication on A,
and we extend the scalar product to the whole of A by requiring that the
components An be mutually orthogonal.

From (3.2), (3.3), and Chapter II, §2 it follows that

(3.4) A=Hoz C

where H is the tensor product (over Z) of the Hall algebras H(k[t](f)) for
all f E ($. In particular, A is a commutative and associative graded ring,
with identity element the characteristic function 7ro of Go.

Next let Rn CA, be the Z-module generated by the characters of G.
The irreducible characters of G form an orthonormal basis of R, and
A = R,, Oz C. Let

R= ® R,,;
n>O

since the induction product of characters is a character, R is a subring of
A, and we have A = R Oz C.
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4. The characteristic map

Let X,, f (i > 1, f E (I) be independent variables over C. If u is any
symmetric function, we denote by u(f) the symmetric function u(Xf)
u(XI, f, X2, f.... ). For example, en(f) is the nth elementary symmetric
function of the variables X,, f (i > 1, f fixed), and pn(f) = E, X,^

Let

B=C[en(f):n> 1, fe1]

be the polynomial algebra over C generated by the en(f ). We grade B
assigning degree d(f) to each X,, f, so that en(f) is homogeneous
degree n . d(f ).

For each partition A and each f E (D let

PA(f)=gfn(A)PA(X1,gf

QA(f) = of I+n(11QA(Xf; gf 1)

= aA(gf)PA(f ),

by

of

where PA, QA are the symmetric functions defined in Chapter III, and
q f = q d(f ). For each Tp.: c -43 such that II III < - let

Pµ f Pµ(f)(f ), Qµ = fl 1 Qµ(f)(f) = aµ1fl

(almost all terms in these products are equal to 1, because IIµII is finite).
Clearly P. and Q. are homogeneous elements of B, of degree 11µ1j. By
Chapter III, (2.7), (Pµ) and (Qµ) are C-bases of B. We define a hermitian
scalar product on B by requiring that these should be dual bases, i.e.

(P" Q,>=sµv
for all p., v.

Now let ch: A - B be the C-linear mapping defined by

ch(vrµ)=PL

where as before irµ is the characteristic function of the conjugacy class cµ.
This map ch we call the characteristic map, and ch(u) is the characteristic
of u EA.

(4.1) ch: A -> B is an isometric isomorphism of graded C-algebras.

Proof. Since the ir, form a basis of A and the Pµ a basis of B, ch is a
linear isomorphism, which clearly respects the gradings. It follows from
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(3.2) and Chapter III, (3.6) that ch is a ring homomorphism, and from (2.7)
that it is an isometry. I

From Chapter III, (4.4) we have

E gIAIPA(x; q-')QA(y; q-1) _ 1](1-x,yi)/(1-gxiyi).
A i.l

If we replace x, by X1, f ® 1, yi by 10 Xj, f, and q by qf, this identity takes
the form

PP(f) ®Qa(f) = fl (1 - Xi.f® Xi.f)/(1 -gfXi,f ,Xj,f).
A i,i

Hence, by taking the product over all f E 1 on either side, we obtain

(4.2) Pµ®Qµ= 11 fJ(1-Xi,f®Xi,f)/(1-g1Xi,f®Xi.f).
µ fed i,i

Now take logarithms:

l.

(qf - 1)X,nf®Xinf
nil n fed i.i

so that

(4.3) log( E Pµ ®Qµ)
1

E (qf - 1)Pn(f) ®pn(f ).
µ n>1 n fedb

It is convenient at this stage to modify our notation for the power sums
p,,(f ). Let x e M and let f E 1 be the minimal polynomial for x over k
(or, equivalently, the F-orbit of x (§1)). Define

I Pn/d(f) if n is a multiple ofd = d(f ),
Pn(x) =

1 0 otherwise,

so that fin(X) E Bn, and fin(X) = 0 unless x E Mn. In this notation (4.3)
takes the form

(4.4) logl Pµ (& Qµ) _
E qn - 1

p(x)
1 n; I n xeM
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Now define, for each e E L,

.F,
(S,x)npn(x)

(4.5) Pn(e)= xeM
if

0 if eLn.

Since =Pn(y) if x, y are in the same F-orbit in M, it follows that
P,(6) = P,,(71) if 4, 71 are in the same F-orbit in L.

Let 0 denote the set of F-orbits in L. For cp E 0 we denote by d(p) the
number of elements of cp, and for each r > 1 we define

Pr('P) =Prd(e )

where 6 is any element of (p, and d = d(cp). We regard the pr(ep) as the
power-sums of a set of variables Y, ,P, each of degree d(g). We can then
define other symmetric functions of the Y,

1P
by means of the formulas of

Chapter I, in particular Schur functions sA(cp) by the formula (7.5) of
Chapter I.

For each function A: 0 ->.9 such that

IIAII=
.Pee

let

Sx = [1 Sx((,)(w)
riles

which is a homogeneous element of B, of degree Ilk II.
Now let S be the Z-submodule of B generated by the S. Since the

Schur functions form a Z-basis of the ring of symmetric functions, it is
clear that S is closed under multiplication and that the S,, form a Z-basis
of S. Hence S is a graded subring of B. The equations (4.5) can be solved
for the P,,(x) in terms of the P ( ), namely

pn(x) _ (-1)n-1(qn - 1)-1 C' (6,x)jjn
)eL

for x E M, by orthogonality of characters of the finite group Mn. Hence
we have S oz C = B.

The point of setting up this machinery is that the S. such that Ilk II = n
will turn out to be the characteristics of the irreducible characters of
Gn = GL,,(k).

To complete this section, we shall show that the S. form an orthonor-
mal basis of S.
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If u is any element of B, we may write u = E uµ15µ with coefficients
uµ E C, and we define u to be Euµ15µ. Now from Chapter I, (4.3) we have

log(F, sA(x)SA(y)) _ F, log(1-xiyj)-'
A i,j

1

_ E -pn(x)pn(y)
n>1 n

for two sets of variables xi, yj, and therefore

log ESa®Sa = E - E Pn(ip)®pn((P)
x n>1 n (pe®

= F,
n>1 1:EL

E Me)

But from (4.5) we have

F, P,Q)®pn(;)= .E
E (6,x),,< ,y)npn(X)®pn(y)

fEL X,yEM

_ (qn - 1) fin(x) ®Pn(x)
XeM

by orthogonality of characters of the finite group Mn. It now follows from
(4.4) that

(4.6)
X

If S,, = Eµ [4µPµ = Eµ UAµOµ, it follows from (4.6) that E uAµvAv =
Sµy, and therefore also

E UKµvXµ = SKA
µ

In other words, (SK, Sa) = S..., so that

(4.7) The S form an orthonormal basis of S.

Example

Let u be any class function on Gn. Then the value of u at elements of the class cµ
is

u(cµ) = (ch(u), Qµ).

For u(cµ) = aµ(u, irµ) = (ch(u), ch(aµit, )) _ (ch(u), Qµ) by (2.7) and (4.1).
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5. Construction of the characters

Fix a character 0 of M, the multiplicative group of T.

(5.1) Let G be a finite group and let p: G -* GLn(k) be a modular representa.
tion of G. For each x E G let u,(x) (1 < i < n) be the eigenvalues of p(x). Let
f e Z[tl, ... , tn1s- be a symmetric polynomial. Then the function

X: X H f(0(ul(x)),..., 0(un(X)))

is a character of G, i.e. an integral linear combination of characters of
complex representations of G.

We defer the proof to the Appendix. We shall apply (5.1) in the case
that G = Gn, p is the identity map and f is the rth elementary symmetric
function er (0 < r < n). We shall also assume that 0: M --* C* is injective,
i.e. an isomorphism of M onto the group of roots of unity in C of order
prime to p = char. k. Then (5.1) asserts that

Xr: g H er(0(xl),..., 0(xn)),

where xi E k are the eigenvalues of g E G, is a (complex) character of G.
Now the characteristic polynomial of g is (§2, Example 2)

ftµU)1= fT(t-x,)
fE4 i-i

where µ: c -. is the partition-valued function determined by g.
For each f e 1, say f = Mt -yi), we shall write

f= fl (1 +yit)

and

0(f)= [1(1+0(y,)t).
Then since

n

E Xr(g)tr = fl (1 + 0(X,)t)
r-O

we have
n

1µ(f)1
(5.2) E Xr(g)tr = 1I 0( f) .

r-0 fed'

We need to calculate the characteristic of Xr. Since

Xr = L Xr(c L)irµ
µ
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Where X,(cµ) is the value of X, at any element of the class cµ, it follows

from (5.2) that

n
)i

I I`UE ch(X.)t`= L J-1 0(f)
r-p µ fE(D

summed over all µ: 4) -_9 such that h uhI = n.
Now from Chapter III, §3, Example 1 we have

F` t"(')PA(x; t) = h n(x)
IAII-gym

and therefore

(5.4) F, Pa(f)=hm(f)
IAI-m

for each f E (D. It follows that the sum on the right-hand side of (5.3) is
equal to

a(f)
E 1 e(f) ha(f)(f )
a f'-= (D

summed over all a: 'F -> N such that Ef d(f)a(f) = n, and hence is equal
to the coefficient of u" in

H(t, u) = Fj rl (1 - B(f )Xi fud(f))
fE4' i>1

Hence

(5.5) ch( X,) is equal to the coefficient of tru" in H(t, u).

To get H(t, u) into a usable form, we shall calculate its logarithm:

1log H(t, u) log(1 - 9(f) Xi, fud(f) )
fE4' i.1

9(f)mpm(f)umd(f)

m31 rn fEd'

Now if x is any root of f, we have

d-1

9(f) = 11 (1 + tO(Fix))
i-O
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where d = d(f ), and therefore (since Fdx = x)

and-1
9(f)

M
= rj (1 + t9(Fix)).

i-O

Consequently,

m m-1
log H(t, u) _ F, -, F, pm(x) 1] (1 + t9(F`x)).

m>1 m XEMm i-o

Now F` (0 4 i < m - 1) acting on km are the elements of the Galois
group gm = Gal(km/k). Hence the inner sum above may be rewritten as

E pm(x) fT (1 +t9(yx)) = F, t111 F, pm(x) fT 9(yx)
XEM,,, YE g. Icg,,, XEM,,, YEI

IC g,,,

by (4.5), where 9m,I is the character x H fl E, 9(yx) of Mm, identified
with its image in Lm. So we have

(5.6) log H(t, u) _
(- 1)m- lum

E I
m>1 m /cg.

The group gm acts by multiplication on the set of all subsets I of If
the stabilizer of I is trivial, we shall say that I is primitive and that the pair
(m, I) is an index. In that case all the translates yI (y E gm) are distinct,
and it follows that the F-orbit of 9m, I consists of m elements. If I is not
primitive, the stabilizer of I in g is a non-trivial subgroup Ij of g,,,,
generated by say Fs, where s divides m. Since I is stable under multiplica-
tion by elements of lj, it is a union of cosets of b in gm, say I = b J where
J=I/Ij may be regarded as a subset of g/Ij = gs = Gal(ks/k). More-
over, by construction J is a primitive subset of gs, i.e. (s, J) is an index,
and it is clear that 9m, I = Bs, j G Nm,s, where Nm, s: Mm --> Ms is the norm
map 01), so that °m, I and 9s J define the same element of L. Since (s, J)
is an index, the F-orbit (ps J of 0,,j in L has s elements, and therefore
Iim(em,1) =Pm/s((Ps,J)

Hence the formula (5.6) now becomes

. (-1)n-1 n

logH(t,u)= F, F, Pn((Ps,1)(t1'1us) ,

(s,J) n-1 n

the sum being over all indices (s, J), where two indices (s, J) and (s, J') are
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to be regarded as the same if J' is a translate of J, i.e. if cp,, J = co,, ... Now
the inner sum above is by Chapter I, (2.10') equal to

log E e..
('ps,J)VJIus)m

m>0

and therefore we have proved

(5,7) For each pair of integers r, n such that 0 < r < n, the coefficient of t"u'

H(t,u) = Ii (E em('P,,J)(tlhIus)m)
(s, J) m>0

the characteristic of a character of G.

We shall use (5.7) to prove

(5.8) Let 'p be an F-orbit in L, let d = d((p) and let n > 0. Then a"(cp) is the
characteristic of a character of G"d.

proof. By induction on the pair (n, d) ordered lexicographically: (n, d) <
(n', d') if either n < n', or n = n' and d < d'. The result is true when

d = 1, because then (p = { ) where a L1 is a character of Gl = M1,
and

el(f)=pi(e) _ E (x)p1(x) = ch( )
XE G,

(since ch(rrx) =p1(x) for x E G1, irX being the characteristic function of
(x)).

'Let Xn,d denote the coefficient of t"u"d in H(t, u). By (5.7) X",d is the
-haracteristic of a character of G"d, and we have

X",d= E
v (s, J)

,ummed over all N-valued functions v on the set of indices such that

E IJI v(s, J) = n, E sv(s, J) = nd.
(s, J) (s, J)

?ach index (s, J) that actually occurs has v(s, J) < n, and s < d if
Ks, J) = n, so that (v(s, J), s) < (n, d), with equality if and only if v(s, J)
= n (so that IJI = 1) and s = d. Hence X",d has `leading term'
vhere 1 is the identity element of gd, and (Pd (1) is the F-orbit of 0 1 Md.

Jow we can choose 0 so that the F-orbit of 0 I Md is cp, and then we have

X".d=e"(cp)+...
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where the terms not written are products of two or more e's, which by the
inductive hypothesis are characteristics of characters of groups G,,,d"where (n', d') < (n, d). Hence en((p) is the characteristic of a character

of
Gnd I

6. The irreducible characters

We can now very quickly obtain all the irreducible characters of the groups
Gn = GLn(k). Since each Schur function sA is a polynomial in the e's with
integer coefficients, it follows from (5.8) that each sA((p) and hence each
S. is the characteristic of a character X A of Gn (where n = II xII).

By (4.1) and (4.7) we have (X K, X'') = 6K A and therefore each )('` such
that IIX II = n is, up to sign, an irreducible character of G. Moreover, the
rank of the free Z-module Rn generated by the irreducible characters of
Gn is equal to the number of conjugacy classes in G, i.e. the number of
functions µ: 1 -.00 such that IIµII = n. Since the groups L, M are isomor.
phic, this is also the number of functions X: O ->.9' such that Ilk II = n, and
consequently the X' form an orthonormal basis of Rn. Hence the
characters ±X'' exhaust all the irreducible characters of G.

It remains to settle the question of sign, which we shall do by computing
the degree d,, = X''(1n) of X'.

Let Xµ denote the value of X'` at elements of the class c Then

XW W

summed over all p.: (D -'.9' such that IIµII = IIx1I, and therefore

(6.1) S), Xµ Pµ

which shows that Xµ = (S),, Q.), and hence by (4.7) that

(6.2) 0.,_ EXµSa.
a

Now suppose that cµ is the class of the identity element In E G, and let
fl denote the polynomial t - 1. Then p.(fl) = (1n) and µ(f) = 0 for f # f 1.
Hence

Qµ= Q(l")(fl) = qn(n+1)/2ipn(q-')p(1")(Xf
; q-1)

= ijin(q)en(fl)
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by Chapter III, (2.8), where

41n(q) = 1T(g1-1).
i-1

Hence from (6.2) we have

(6.3) 0n(q)en(ft) _ daSa.
IIMMI-n

Now let 6: B -> C be the C-algebra homomorphism defined by

0 if X0 1,
(6.4) 6(Pn(x)) = (-1)n-1/(qn - 1) if x - 1.

From (4.6) and (4.4) it follows that

logl S(Sk)SA) =log( E S(i OIL
µ

) )
` 1

(- 1)n-1
_ pn(

n
1)

n>1

=logfl(1+Xi11)
i

and therefore

F, en(fl) = E 6(S1,)91i
n > O

so that

285

en(f1)= E S(S,,)5,,.
Ilall-n

By comparing this formula with (6.3), we see that

(6.5) dt, = iyn(q)6(S1,).

To calculate the number S(SA), observe that from (6.4) and the defini-
tion (4.5) of pn( ) we have

S(PnQ)) = (qn -1)-1

for E Ln, and hence for all 'p E 0

S(Pn('p)) _ (q; - 1)-1 q;in,
i>1
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where q. = qd("). In other words, 6(pn((p)) is the nth power sum of the
numbers q,,' (i > 1), and hence from Chapter I, §3, Example 2 we have

6(sA((p)) = sA(gw 1, q-P 2, ...

= q IAI-n(A) F j (1 - q;
X4=-A

h(x))

where h(x) is the hook-length at x E A. Since

F, h(x) = JAI + n(A) + n(A')

(Chapter I, §1, Example 2) it follows that

(6.6)

where

grnn(AI )HA(q,)

HA(q,) _ F1 -1).
xEA

From (6.5) and (6.6) we obtain

(6.7) da = (q) gn(a(P)V (q )
n w (w) w

QEA

which is clearly positive. Hence X-' (and not -X'') is an irreducible
character of G. To summarize:

(6.8) The functions X A defined by ch(X) = SA, where A: O -->.S and
II X I I = n, are the irreducible characters of the group Gn = GLn(k). The degree
d,, of x A is given by (6.7), and the character table of Gn is the transition
matrix between the bases (S.) and (Pµ).

Examples

1. Let v = (v, ..., v,) be a partition of n, and let 0, be a character of the `maximal
torus' T, (§2, Example 4). If we identify T with M x ... X M, , 9 may be
identified with where ; (14 i < r). Then II; 1 p,(l:;) is the
characteristic of an (in general reducible) character B(B,,) of G,,, which depends
only on the F-orbits (pi of f;, i.e. B(0,) depends only on the W, orbit of 9^ in the
character group f, The distinct characters BM, where 0 E U (W \ t,), are
pairwise orthogonal in An; and since by §2, Example 5 there are exactly as many of
them as there are conjugacy classes in G, they form an orthogonal basis of the
space An of class functions on G. Green [G11] calls the B(B) the basic characters.
B(O,,) is irreducible if and only if d(rp;) = vj (1 < i < r), that is to say if and only if
B is a regular character of T. (i.e. its stabilizer in W. is trivial).
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The value of at a unipotent element of type A is (§4, Example 1) equal to
(n Pv,( ;), Qa(fi)), where f1 = t - 1. By (4.5) this is equal to

(-1)"-'(")QV(q)

Where Q;, (q) is the Green polynomial (Chapter III, §7).
Also vanishes at regular semisimple classes which do not intersect the

-torus T,,.

As in §2, Example 2 it is sometimes more convenient to regard X: 0 -+_60 as a
function on L, i.e. we define X(f) for 6 E L to be the partition X((p), where (P is
the F-orbit of f. With this notation let

,&()t)= Fj eIA(eN EL1.
fEL

`Let a E k* = M1. Then

(*) Xx(a.l") a)1 Xx(1n).

.This can be shown by the method used in the text to compute using the
homomorphism 8a: B - C defined by Sa(pn(x)) = (- 1)" -1/(q" - 1) if x = a, and
Sa(pn(x)) = 0 if x # a. Then Xx(a.1n) = gin(q)SQ(Sx), and 8a has the effect of
replacing the rp-variables Y;,, by (r, a)d. where 6(= and d = d(cp). The
formula (*) now follows easily.

3. Let U" be the set of unipotent elements in G. Then for every irreducible
character X x of G" we have

E Xx(u) _ (-1)a(x)gnr(x)X x(ln)

UE U.

where

a(k) =n - E, Ix(0I and N(7t) = Zn(n - 1) + E,, -n(X((p)')).

Let ex = E E U X x(u). Then we have

ex=IG I E aF,(q)-1(S),QP(fl))

Ipl-n

where f 1 = t - 1, and hence from (5.4)

ex = IGnK(S), hn(f1))

so that

qn(n-1)/2in(q)hn(f1) = E e.g..
Ilxll - n

Let e: B - C be the C-algebra homomorphism defined by e(pn(1)) _ (q" - 1)-1,
e(pn(x)) = 0 if x # 1. Then as in the text we find that

hn(f1) = E e(Sx)Sx
IlkIl - n
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so that ex = qn(n-1)/2in(q)e(S)), and e(SA) can be computed in the same way
as

S(SA) in the text.

4. Let 41 be a non-trivial additive character of k, and X A an irreducible character
of Gn. We shall compute

wA=XA(1n) F, (trace g)XA(g)
gEG,,

(see [K14], [M2]). For this purpose we introduce the following notation: if x E k,
let I/ln(x)=1Jr(tracek./k(x)), and for 6eLn let "

xEM

If f c= c1, let ip(f) denote 4td(x), where d = d(f) and x is a root of f. If (p E 0, let
T((p) = Td(6 ), where d = d(g) and e E V.

If g E cµ, we have trace(g) = ExEMM Iµ(x)I x (§2, Example 2) and therefore

4/ (trace g) -F1 ,(f)IP(f)I = µ say.
fe4

We have

X1'(1n)wA = IG"I E aµ 1Xµ'fµ
II &ll-n

and since x = <SA, Qµ) it follows that

(1) E µPµ=IGnI-1 F, XA(1n)wASA.
µ A

Now define a C-algebra homomorphism e: B - C by e(X;, f) = i/i(f )q f ', for all

f r= 1 and i > 1. Then from Chapter III, §2, Example 1 it follows that e(Qµ) = Oµ,
and hence from (1) and (4.6) we obtain

(2) e(SA) =IGI-1 XA(1n)wx.

For each x E Mn, we have e(pn(x)) = tJn(x)/(q" - 1), and therefore

(-1)"-1
e(pn(y))= n E

(SC+x)"4VX)

q - 1 xEM

=Tn(y)/(q"-1)

for 6 E Ln. Now the Hasse-Davenport identity (see e.g. [WI]) states that
TnQ)d for all d 1, and hence we have e(pn((p)) = r((p)n/(q; - 1), where q,p=
qd("), so that the effect of the homomorphism a is to replace the (p-variables Y,,,,,
by r((p)gp i. Consequently

e(SA) T((p)IA(*)I. S(SA)

tPE9
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where S is the homomorphism defined in (6.4). From (2), (3), and (6.5) we obtain

ws =q"("-1)/2 F I T(OIA(w)I
(P e0

5. In this example we shall compute the sum of the degrees of the irreducible
representations of G,,. Since (6.5) dl, = qr"(q)S(Sl,), we need to compute

IIxII_"
S(Sl,). For this purpose we shall compute the sum of the series

S = S(sX)tllali
A

where t is an indeterminate, and then pick out the coefficient of t".
We have

S = F1 S(SA(rp))tlald(w)
W a

and since the homomorphism S replaces the variables Y, 9 by qIP 1 (i > 1), it
follows from Chapter I, §5, Example 4 that

E S(sa(rp))tlald(q') = J-1 (i - (tq-,)d(w)1-1 (1- (t2q-i-;)d(w))

A
i 1 i<j 1

and hence that

(1) log S =
(

log(l - (tq-i)d(w))-1 + E log(l - (t2q-i-j) d(,o)`-11

y i i<j 1 J

Let dm denote the number of F-orbits with cardinality d((p) = m, for each
m > 1; then we have

(2) qm-1= rdr
rim

from considering the action of F on the group Lm. We can then rewrite (1) as

logs= E dm E
(tq-,)mr

+
1: Y" (t2q--,)mr

m>1 i>1 r>1 r i<j r>1 r

-+ d tmr `

1L r - i (1 + E tmrq-2imrJI
mr `

m>1 r>1 q i>1

which by use of (2) is equal to

tIV t2Nq-2iN

N> 1 N

i;01

N
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It follows that

1 1
S= 1-t , 1-t2q-2i

=(1+t)iO
1-t2q-2r

1 >O

m>0

(Chapter I, §2, Example 4). On picking out the coefficient of t", and multiplying by
q,"(q), we obtain

F, d,, _ (q - 1)g2(g3 - 1)g4(gs - 1) ...
Ilall-n

(n factors altogether). This number is also equal to the number of symmetric
matrices in G,,, or equivalently to the number of non-degenerate symmetric
bilinear forms on k".
6. A calculation analogous to that of Example 5 shows that

E dµ - (q -1)g2(g3 - 1)q4... (q2" - 1)

where the sum on the left is over p such that IIFLII = 2n and the partition p.((p)' is
even for each (p. This number is equal to the number of non-degenerate skew-sym-
metric bilinear forms on k2". In fact we have

X' = indG2.(1)

summed over µ as above, where C" = Sp2,,(k) is the symplectic subgroup of
G2n = GL2n(k).
7. Let N" denote the subgroup of upper unitriangular matrices in G". For each
sequence b = (b1,..., b,) of positive integers with sum n, define a character "b of
N,, by the formula

4'b((hit)) _ 4,(E h,.,+1)

where 41 is a fixed non-degenerate additive character of k, and the sum is over the
indices i other than bl, b1 + b2,..., bl + ... +b,_ 1. Then the multiplicity of each
irreducible character X' in the induced character ind '(,/ib) is equal to

E F1 KA(c).a(,)+
a 4pE0

where the sum is over all functions a: © -> (Z+)` such that E,, b, and
a((p)+ denotes the partition obtained by rearranging the sequence a((p). (For a
proof, see [Z2].) In particular, ind (rfi(n)) = E X", summed over v such that for
each (p the partition v((p) has length < 1 (this result is due to Gelfand and
Graev).

Notes and references

The result of Example 4 is due to T. Kondo [K14], and the results of
Example 5 to A. A. Kljacko [K11] (also to R. Gow [G10] in the case of
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example 5(a) with q odd). Example 7 was contributed by A. Zelevinsky.

Appendix: proof of (5.1)

Since f is a polynomial in the elementary symmetric functions e it is
enough to prove the proposition for f = e, (1 < r < n). Replacing p by its
exterior powers, it follows that we may assume that f = e1= t1 + ... +t,,.

(1) Suppose first that g = IGI is prime to p = char(k). Then q mod. g is
a unit in Z/(g), hence g divides q' - 1 where r = (p(g) (Euler's function).
Since ui(x)g = 1 for all x E G and 1 < i < n, it follows that all the eigen-
values u1(x) lie in Mr, and hence only the restriction of 9 to M, comes
into play. Since Mr is a cyclic group it is enough to prove the proposition
for a prescribed generator 0 of Mr, for then we have 91 Mr = 9 say, and
we can apply the proposition (supposed proved for 90) to the symmetric
function f(ti,...,tn).

Let o be the ring of integers of the cyclotomic field generated by the
(q' - 1)th roots of unity in C, and let p be a prime ideal of o which
contains p. Then o/p = k and p is the reduction mod p of a representa-
tion o of G with coefficients in o. Let U be the group of (q' - 1)th roots
of unity in o. Reduction mod p defines an isomorphism of U onto Mr, and
we take 90: Mr -+ U to be the inverse of this isomorphism. If the eigenval-
ues of o (x) are v,(z) (1 < i < n), each vi(x) is a complex gth root of unity,
hence lies in U, and its reduction mod p is u,(x) (for a suitable numbering
of the v,(x)). Hence X(x) = E 00(u,(x)) = E vi(x) is the trace of 0,U).

(2) Now let G be any finite group. By a famous theorem of Brauer (see
for example Huppert, Endliche Gruppen I, p. 586), it is enough to prove the
proposition in the case that G is an elementary group, i.e. the direct
product of a cyclic group (x) and an l-group,, where l is a prime which
does not divide the order of x. Then G is the direct product of a p-group
P and a group H of order prime to p. If y E P, the eigenvalues of p(y) are
p-power roots of unity in k, hence are all equal to 1, and since y
commutes with each x E H the matrices p(x) and p(y) can be simultane-
ously put in triangular form; hence the eigenvalues of xy are the same as
those of x, whence X(xy) = y(x). But X I H is a character of H, by the
first part of the proof, hence X is a character of G.

I

Notes and references

Our account of the character theory of follows Green's paper
[G11] in all essential points. For another account, oriented more towards
.the structure theory of reductive algebraic groups, see Springer [S20].
Another approach to the characters of GL (k), based on the theory of
Hopf algebras, is developed in [Z2] and [S21].



V

THE HECKE RING OF GLn OVER A
LOCAL FIELD

1. Local fields

Let F be a locally compact topological field. We shall assume that the
topology of F is not the discrete topology, since any field whatsoever is
locally compact when given the discrete topology. A non-discrete locally
compact field is called a local field.

Every local field F carries a canonical absolute value, which can be
defined as follows. Let dx be a Haar measure for the additive group of F.
Then for a E F, a # 0, the absolute value Ial is defined by d(ax) = Ial dx.
Equivalently, for any measurable set E in F, the measure of aE is lal
times the measure of E. To complete the definition we set 101 = 0. Then it
can be shown that la + bl < lal + IN for any a, b E F, and that the distance
function d(a, b) = I a - bl determines the topology of F.

There are now two possibilities. Either the absolute value lal satisfies
the axiom of Archimedes, in which case F is connected and can be shown
to be isomorphic to either R or C: these are the archimedean local fields.
The other possibility is that the absolute value lal is non-archimedean, in
which case F is totally disconnected (the only connected subsets of F are
single points): these are the non-archimedean local fields.

The classification of the non-archimedean local fields can be simply
described. If F has characteristic 0, then F is a finite algebraic extension
of the field Qp of p-adic numbers, for some prime p. If F has characteris-
tic > 0, then F is a field of formal power series in one variable over a
finite field.

From now on, let F be a non-archimedean local field. Let o =
I and p = {a e F: lal < 1}. Then o and p are compact open

subsets of F; moreover o is a subring of F, and p is an ideal in o. The
ring o is the ring of integers of F; it is a complete discrete valuation ring,
with F as field of fractions; p is the maximal ideal of o, and k = o/p is a
finite field (because it is both compact and discrete). Let q denote the
number of elements in k, and let IT be a generator of p. We have
larl = q-', and hence the absolute value lal of any a # 0 in F is a power
(positive or negative) of q. The normalized valuation v: F* --> Z is defined
by

v(x) = n «x = ua"
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with u a unit in o (i.e. but = 1).

2. The Hecke ring H(G, K)

Let F be a non-archimedean local field, and let G = GLn(F) be the group
of all invertible n X n matrices over F. Also let

G+= G

be the subsemigroup of G consisting of all matrices x E G with entries

xi1
E o, and let

K= GLn(o) = G+n(G+)-'

so that K consists of all x E G with entries x;! E o and det(x) a unit in 0.
We may regard G as an open subset of matrix space Mn(F) = Fn2,

whence G inherits a topology for which it is a locally compact topological
group. Since o is compact and open in F, it follows that G+ is compact
and open in G, and that K is a compact open subgroup of G.

A Haar measure on G is given by the formula

dx = (Li dx,l)/Idet xIn

and is both left- and right-invariant. In particular, we have dx = dx', where
x` is the transpose of x.

Let dx henceforth denote the unique Haar measure on G for which K
has measure 1.

Next, let L(G, K) (resp. L(G+, K)) denote the space of all complex-
valued continuous functions of compact support on G (resp. G+) which
are bi-invariant with respect to K, i.e. such that

f(k,xk2)=f(x)

for all x E G (resp. G+) and k,, k2 E K. We may and shall regard
L(G+, K) as a subspace of L(G, K).

We define a multiplication on L(G, K) as follows: for f, g e L(G, K),

(f *g)(x)= fGf(xy"')g(y)dy.

(Since f and g are compactly supported, the integration is over a compact
set.) This product is associative, and we shall see in a moment that it is
commutative. Since G+ is closed under multiplication it follows immedi-
ately from the definition that L(G+, K) is a subring of L(G, K).
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Each function f E L(G, K) is constant on each double coset KxK in G.
These double cosets are compact, open and mutually disjoint. Since f has
compact support, it follows that f takes non-zero values on only finitely
many double cosets KxK, and hence can be written as a finite linear
combination of their characteristic functions. Hence the characteristic
functions of the double cosets of K in G form a C-basis of L(G, K). The
characteristic function of K is the identity element of L(G, K).

If we vary the definition of the algebra L(G, K) (resp. L(G+, K)) by
requiring the functions to take their values in Z instead of C, the resulting
ring is called the Hecke ring of G (resp. G+), and we denote it by H(G, K)
(resp. H(G+, K)). Clearly we have

(2.1) L(G, K) s H(G, K) ®Z C, L(G+, K) = H(G+, K) ®Z C.

Our first aim is to show that the Hecke ring H(G, K) is closely related
to the Hall algebra H(o) of the discrete valuation ring o.

Consider a double coset KxK, where x E G. By multiplying x by a
suitable power of it (the generator of p) we can bring x into G+. The

theory of elementary divisors for matrices over a principal ideal domain
now shows that by pre- and post-multiplying x by suitable elements of K
we can reduce x to a diagonal matrix. Multiplying further by a diagonal
matrix belonging to K will produce a diagonal matrix whose entries are
powers of zr, and finally conjugation by a permutation matrix will get the
exponents in descending order. Hence

(2.2) Each double coset KxK has a unique representative of the form

TrA= diag(zrAt,..., ira^)

where Al > A2 > ... > An. We have An > 0 (so that A is a partition) if and
only if x E G+.

I

Let ca denote the characteristic function of the double coset Kir AK.
Then from (2.2) we have

(2.3) The cx (resp. the ca such that An > 0) form a Z-basis of H(G, K) (resp.
H(G+, K)). The characteristic function co of K is the identity element of

H(G, K) and H(G+, K). I

We can now prove that H(G, K) (and hence also H(G+, K), L(G, K)
and L(G+, K)) is commutative:

(2.4) Let f, g e H(G, K). Then f * g = g * f.

Proof Let t: G - G be the transposition map: t(x) = x`. Clearly K is
stable under t, and since by (2.2) each double coset KxK contains a
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diagonal matrix, it follows that KxK is stable under t. Hence f a t =f for
all f E H(G, K), and therefore

(f * g)(x) = f f(xy)g(y-') dy

G

= fG f(ytxr)g((yr)-')

dyt

= (g * f)(x`) = (g * f)(x).

(2.5) H(G, K) = H(G+, K) [C(i >] .

Proof Since Tr(1n) = 7T I,, is in the centre of G, an easy calculation shows
that, for any A and any integer r, we have

CA * C(r") = CA+(r")

where A + (r") is the sequence (Al + r,.. . , A" + r). In particular it follows
that C(1.), the characteristic function of Kir(1")K= 7TK, is a unit in H(G, K)
and that its rth power is C(r.), for all r E Z. (2.5) now follows directly. I

In view of (2.5), we may concentrate our attention on H(G+, K), which
by (2.3) has a Z-basis consisting of the characteristic functions CA, where A
runs through all partitions (A1, ... , A,,) of length < n.

Let µ, v be partitions of length < n. The product Cµ * c will be a linear
combination of the CA. In fact

(2.6) CFL * C" gµy(q)CA
A

summed ' over all partitions A of length < n, where g"(q) is the `Hall
polynomial' defined in Chapter II, §2.

Proof Let h'" denote the coefficient of CA in cµ * c". Then

hµ" = (CN, * c")(inz) = f dy.
G

Since c"(y) vanishes for y outside Kin "K, the integration is over this
double coset, which we shall write as a union of right cosets, say

Kir"K= U Kyy (yy (=- ,r"K)
1

Likewise let

KirI`K= U Kx,, (xi E 7r ILK)
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both unions being disjoint. Then we have

hµV = v' f c,,(,7r ay-1) dy
Ky,

_ E f c,(-7r Ay). 1k) dk
i

= E C"(Ir Ay; 1 )
i

since K has measure 1.
Now

cµ(ir Ay, 1) s 0 Tr aye' E Kri for some i,

arA E Kxiyi for some i.

Hence h; ,, is equal to the number of pairs (i, j) such that

7rA=kxiyj

for some k e K (depending on i, j).
Let L denote the lattice o" in the vector space F". Let be the

standard basis of F", and let G act on F" on the right (i.e. we think of the
elements of F" as row-vectors rather than column-vectors). Then Lira is
the sublattice of L generated by the vectors 7r a, (1 < i < n), and therefore
M = L/L,r A is a finite o-module of type A (Chapter II, §1).

Consider Lx,. Since x; a Tr µK we have Lx, = LTr µk for some k E K,
hence L/Lx, = L/Lrr'`, and is therefore a finite o-module of type g.
Next, consider N = Lxi/La A = Lxi/Lx, yj. Since y1 E ar °K it follows as
before that N is of type v. Hence for each pair (i, j) such that ira EKx,yj
we have a submodule N of M of cotype a and type v. Conversely, each
submodule N of M with cotype a and type v determines a pair (i,j) such
that ar A E=- Kx,y1. Hence hµ = g' (q).

From (2.6) it follows that the mapping ua H cA is a homomorphism of
the Hall algebra H(o) onto H(G+, K) whose kernel is generated by the uA
such that 1(A) > n. Hence from Chapter III, (3.4) we obtain a structure
theorem for H(G+, K) and L(G+, K):

(2.7) Let A"[q-1 ] (resp. A",c) denote the ring of symmetric polynomials in n
variables x1,...,x,, with coefficients in Z[q-1] (resp. C). Then the Z-linear
mapping 0 of H(G+, K) into A"[q-1] (resp. the C-linear mapping of
L(G+, K) into A".c) defined by

0(ca) = q-n(A)pa(x1, ..., xn; q-1)
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for all partitions A of length < n, is an injective ring homomorphism (resp. an
isomorphism of C-algebras).

Remark. From (2.7) and Chapter III, (2.8) we have

9(c(1R)) = q-n(n-1)/2x1x2 ... xn.

Hence from (2.5) it follows that 0 extends to an injective ring homomor-
phism of H(G, K) into the algebra of symmetric polynomials in

X. 1 with coefficients in Z[q-1 ], and to an isomorphism of L(G, K)
onto the algebra of symmetric polynomials in xi 1, ... , x, 1 with coeffi-
cients in C.

In the next section we shall need to know the measure of a double coset
K,7r AK. This may be computed as follows. For f E L(G+, K), let

µ(f)= fGf(x)dx.

Then p.: L(G+, K) -+ C is a C-algebra homomorphism, and clearly

(2.8) µ(ca) = measure of Kir AK.

In view of (2.7) we may write µ = µ' o 9, where µ': A",c - C is a C-algebra
homomorphism, hence is determined by its effect on the generators e,
(1 < r < n). Since e, = P(1.)(x1, ... , xn; q-1) (Chapter III, (2.8)) it is enough
to compute the measure of K,rr AK when A = (jr) (1 < r< n).

Now the measure of Kir aK is equal to the number of cosets Kxi
contained in Kir AK. For each of these cosets we have a sublattice Lxi of
L = o" such that L/Lxi is a finite n-module of type A. Hence the measure
of Kir AK is equal to the number of sublattices L' of L such that L/L'
has type A. In particular, if A. (jr), each such L' will be such that
ir(L/L') = 0, i.e. arL cL'. Now L/irL = k" is an n-dimensional vector
space over the finite field k, and L'/vrL is a vector subspace of codimen-
sion r. The number of such subspaces is equal to the Gaussian polynomial

n
r[](q) (Chapter I, §2, Example 3) and therefore

µ(c(1.)) _
[n

r ] (q) (1 < r < n).

From (2.7) it follows that µ'(er) = qr(r- 1)/2[

r
](q), which (loc. cit.) is the

rth elementary symmetric function of q'-', q" - 2, .. ,1. Hence µ' is the
mapping which takes xi to q"-1(1 < i < n). It follows therefore from (2.7)
and (2.8) that the measure of Kir AK is q-"(')PP(q"-1, qn-2, )

1; q-1),

which by Chapter III, §2, Example 1 is equal to

(q-n(A)/vx(q-1))gE(n-i)A'vn(q-1).
\
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Hence we have the formula

(2.9) measure of K-IrAK=q (fl_2i+>)a,vf(q-1)/v (q-1),

=g2<A.v>vf(q-1)/v (q-1)

where p= 2(n-1,n-n).

3. Spherical functions

A spherical function on G relative to K is a complex-valued continuous
function w on G which satisfies the following conditions:
(a) co is bi-invariant with respect to K, i.e. w(k,xk2) =w(x) for x E G and
k1, k2 K;
(b) co * f = Afcv for each f E L(G, K), where Af is a complex number: in
otherwords, w is an eigenfunction of all the convolution operators defined
by elements of L(G, K);
(c) w(1) = 1.

From (b) and (c) the scalar A f is given by

Af= ((o * f)(1) = fGf(x)m(x-1) dx.

Regarded as a function of co, Af is called the Fourier transform of f and is
written f(w). Regarded as a function of f for fixed co, it is written 01)(f).

For f, g E L(G, K) we have from (b)

Af.gw=w*(f. *g)=(w* f)*g=,kf,kgco

and hence A1 . g = Af- Ag, or equivalently

(3.1) Ei(f * g) = (10(f) Wi(g)

Also it is clear that co * co = w, where co is the identity element of
L(G, K) (the characteristic function of K). Hence i (co) = 1 and therefore
(3.1) shows that

(3.2) w: L(G, K) --> C is a C-algebra homomorphism.

Conversely, it can be shown that all the C-algebra homomorphisms
L(G, K) - C arise in this way from spherical functions, so that the set
fl(G, K) of spherical functions on G relative to K may be identified with
the complex affine algebraic variety whose coordinate ring is L(G, K).
From the remark following (2.7), L(G, K) is isomorphic to the C-algebra
C x t 1 x t 1]s-; now C[x t 1 x f 1] is the coordinate ring of (C*)n,[ 1 n 1 n
and therefore f1(G, K) may be canonically identified with the nth symmet-
ric product of the punctured affine line C*. Hence the spherical functions
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may be parametrized by n-tuples z = (z1, ..., zn) of non-zero complex
numbers, the order of the components zi being immaterial. However, it
will be more convenient to take as parameter s = (s1,:.., sn), where
Yi = qF(n-1)-s, (so that si E C (mod. 2iriZ/log q).)

Let w, denote the spherical function with parameter s. We have
m, = w,,,, for all w E Sn.

(3.3) The Fourier transform of the characteristic function cA is given by

cA((o,) = q<A.P>P,1(q-st,..., q-s"; q-1).

Proof From the discussion above and (2.7) it is clear that W, is the
composition of 0 with the specialization xi H zi = ql(n-1)"

(1 < i < n).
The result therefore follows from (2.7).

Now we have

CA(w,)= JG CA(x)w,(x-1)dx

= w, (lr A) x measure of Kvr AK.

From (3.3) and (2.9) it follows that

q-(A P>
w,(r -A) = Un(q-1) vA(q-')P q-s"; q-1)

and therefore, from the definition (Chapter III, §2) of the symmetric
functions PA, we have (always under the assumption that Al > ... > A, )

(3.4) w,(7Y A) =
q- <A.1>

E
W(q-(A

s)
q-s, S q-(s1+1)

vn(q ) "r 4 ' - q-s'

Since w, is by definition constant on each double coset of K in G, the
formula (3.4) gives the value of the spherical function w, at each element
of G.

In particular, when s = p, we have wp(ir A) = 1 for all A, so that wp is
the constant function 1 (the trivial spherical function).

From (3.4) it follows easily that

(3.5) w,(x-1) = w_,(X)

for all x E G.

Example

w, is bounded a Re(s) lies in the convex hull of the set S,, p = (wp; w E Sn).
Let o= Re(s), i.e. o; = Re(s;) (1 <i <n). We may assume, since w,,, = w, for all
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w E S, that of 3 ... 3 on. Then the leading term in (3.4) is q-(A.s+P)with
absolute value q-(A.a+P). Hence w, is bounded if and only if q_(a,a+P>

< 1 for all
A such that Al 3 ... 3 A,,, that is to say if and only if (A, o+ p) > 0 for all such A
and it is easy to see that this condition is equivalent to o E Conv (S p).

4. Hecke series and zeta functions for GL,,(F)

For each integer m 3 0 let

G,, = {x E G+: v(det x) = m)

where v is the normalized valuation on F (§1). The set G,n is the disjoint
union of the double cosets Kir AK, where A runs through all partitions of
m of length < n. In particular, Go = K. Let T,,, denote the characteristic
function of G,+, so that

T. = E CA.
IAI-m

The Hecke series of (G, K) is by definition the formal power series

(4.1) T(X)= F, TmXm EH(G+,K)[[X]].
m-0

The results we have obtained enable us to calculate T(X) with no
difficulty. For by (2.7) we have

O(Tm)= F, q-n(A>PA(x1,...,xn;q-1)
IAI-m

=hm(X1,...) Xm)

by Chapter III, §3, Example 1. Hence

(4.2)

Since

n

E 0(TM)X" = fl (1 -x;X)-l.

n n

(1 -x1X) = r (-1)rerXr
r-0
n

= F, (-1)rP(1r)(xl,...,xn;q 1)Xr
r-0

n
(-1)rgr(r-1)120(C (lr))Xr

r-0
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by (2.7) again, it follows from (4.2) that

1 (4.3)
n

1
1

(- 1)rgr(r-1)12C(11)Xr lT (X) _ (F
r-0

a formula first obtained by Tamagawa [T2].
Now let w be a spherical function on G relative to K, and let s be a

complex variable. The zeta function C(s, w) is defined by

(4.4) (s, w) = fG w(x)II xII w(x-') dx

where as usual dx is Haar measure on G, normalized so that JK dx = 1; w
is the characteristic function of G+, and 411 = Idet(x)I = q-°(ae` x) For the
moment we shall ignore questions of convergence and treat s (or rather
q-J) as an indeterminate. We have

y (S, w) = E q-ms r Tm(x) w(x-') dx
m-0 JG

(Tm)q-ms

m-0

n

E (-1)rgr(r-1)/21, (01 )q-rs

r-0
by (4.3).

If w = w,, it follows from (4.2) that

(4.5)
n

(1 - q2(n- 1)-si-s)
i-1

Y1

These formal calculations will be valid, and the integral (4.4) will
converge, provided that Ig1("-1)-s;-sl < 1 for 1 <i n, i.e. provided that s
lies in the half-plane Re(s) > moo, where

n-1
0,0 = max

2
- Re(sd

1<i<n

In this half-plane the integral (4.4) defines a meromorphic function of s,
given by (4.5), which is the analytic continuation of (s, w) to the whole
s-plane.

In particular, for the trivial spherical function wp = 1 we have si =
1(n + 1) - i, and therefore

F1 (1 - qi-
i-1
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5. Hecke series and zeta functions for
In this section we shall show how knowledge of the spherical functions for

GLn(F) enables us to compute explicitly the Hecke series for the group of
symplectic similitudes GSp2n(F), thereby completing a calculation started by
Satake in [S3], to which we refer for proofs.

Let i denote the n X n matrix with 1's along the reverse diagonal and zeros
elsewhere, and let

__ 0 i
j -i 0

The group of symplectic similitudes G = GSp2n(F) is the group of matrices
x e GL2n(F) such that xjx' is a scalar multiple of j, say

xjx`=µ(x)j

where µ(x) e F*. Let

K=GSp2n(o) = G n GL2n(o),

G+=GnM2n(o).

Then G is a locally compact group, K is a maximal compact subgroup of G and is
open in G, and G+ is a subsemigroup of G. The Hecke rings H(G, K), H(G+, K)
and the C-algebras L(G, K) = H(G, K) ®Z C, L(G+, K) = H(G+, K) ®z C are de-
fined as in §2. The characteristic functions of the double cosets KxK c G form a
Z-basis of H(G, K). Also H(G, K) is commutative, for the same reason as in the
case of GL,,(F) (2.4).

Spherical functions w on G relative to K are defined as in §3, and are in
one-one correspondence with the C-algebra homomorphisms i : L(G, K) - C. The
spherical functions are parametrized by vectors s = (so, s1, ... Is, ) E Cn+1 ([S3],
Chapter III).

Define ei: C"+1 -' C"+1 (1 < i < n) by

Ei(SO,S1,.... SO _ (SO+Si,S1,...,S1-1, -Si,Si+1....,Sn).

The 6i generate a group E of order 2". Also the symmetric group Sn acts by
permuting sl,..., sn. Let W c GLn+1(C) be the group generated by E and S,,,
which is the semidirect product E X Sn. Then we have [S3]

for all w e W, where ws is the spherical function on G = GSp2n(F) with parameter
S.

Now let

G,n={xeG+:v(µ(x))=m)
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for all n > 0, and let T,,, denote the characteristic function of G,,',. The Hecke
series T(X) and the series z(s, X) are defined as in §4:

T(X) = E TmXm,
m-0

7(S, X) _ F, T,"((OS)X-.
m-0

Now from [S3], Appendix 1 we have the following expression for Tm(ws):

(5.1) 7m(C0s) - F, q-<A.C)cA(w$,)gm(N-so)
A

;'where s= s0,s,...,5"), S'=(Sl,...,s,), N=.n(n+1); cA(wS) has the same
meaning as in §3, and the summation is over all partitions A such that Al <m.
From (3.3) and (5.1) it follows that

T,,,(WS) _
PA(q-s',...,q_S..; q-1)gm(N-so)

A

and hence that

(5.2) 7(s,X) _ E PA(q-s'r...,q-s";q-1)(qN-soX)m
m,A

summed over m Al ... > A" > 0.
Now the sum on the right-hand side of (5.2) is one that we have calculated in

Chapter III, §5, Example 5. Hence we obtain the following expression for z(s, X)
as a sum of partial fractions:

(5.3) 7(s,X)= F, w((D(q-s',...,q'; q-1)(1-qN-soX)-1)

weE

where

"
c(xl,..., x"; t) = rj (1-xi)-1 fl (1 - 1xixj)(1-xix;)-1.

i-] i<j

From (5.3) it follows that z(s,X) is a rational function f(X0)/g(X0) where
X0 = qN-soX, with denominator

g(X0) = [J (1 - q-s'XO),
I

the product being over all subsets J of (1,2,..., n), and sI = Ei a Isi. Also it is not
difficult to show that the degree of the numerator f(X0) is 2" - 2.

Finally, we can attach to the spherical function wS a zeta function as in §4: we
define as before

(S, ws) = fG q(x)IIxIV ws(x-1) dx
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where s is a complex variable, rp is the characteristic function of G+, and
Ilxll = I µ(x)I. Then we have

t(s, ws) _ E 7m(ws)q's
m-0

T (s, q-s)

and therefore from (5.3) we obtain the following formula for this zeta function:

(5.4) (s, ws) = w(ID( sl -s,,. 1 N-sp-s -1).
WEE

Notes and references

For background on algebraic groups over local fields, their Hecke rings
and spherical functions, we refer to [Ml] and [S3] and the references given
there.

We have derived the formula (3.4) for the spherical function by exploit-
ing our knowledge of the Hall algebra. It is possible to obtain (3.4) directly
by computing the spherical function from an integral formula. This is done
in [Ml], Chapter IV in much greater generality, and in the case of GL
provides a more natural (though less elementary) proof of the structure
theorem (Chapter III, (3.4)) for the Hall algebra.

The formula (3.4) was also obtained by Luks [L141.



VI

SYMMETRIC FUNCTIONS WITH TWO
PARAMETERS

1. Introduction

The Schur functions sA (Chapter I, §3) are characterized by the following
two properties:

(a) The transition matrix M(s, m) that expresses the Schur functions in
terms of the monomial symmetric functions is strictly upper unitriangular
(Chapter I, (6.5)), that is to say sA is of the form

sA = mA + E KA,,m,,
µ<A

for suitable coefficients KA,, (the Kostka numbers).
(b) The sA are pairwise orthogonal relative to the scalar product of

Chapter I, §4, which may be defined by

(1.1) (PA,PN,) = 6Aµ'ZA

Again, the Hall-Littlewood functions PA(x; t) (Chapter III, §1) are
characterized by the same two properties (a) and (b), except that in (b) the
scalar product is now that of Chapter III, §4, defined by

1(A)

(1.2)
(PA, Pµ) = 6AµzA(t) = 6AµzA II (1 -t",-1).

i-1

Another example is provided by the zonal polynomials (Chapter VII).
Up to a scalar factor they are characterized by the same properties (a) and
(b), but with a different choice of scalar product, namely

(1.3) (PA,P > =21(A)zA6A, .

More generally, Jack's symmetric functions (§10 below) are character-
ized by (a) and (b), the scalar product now being defined by

(1.4) (PA,Pµ) = a1(A)z,6"

where a is a positive real number. They reduce to the zonal polynomials
when a = 2, and to the Schur functions when a = 1.
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In this Chapter we shall study a class of symmetric functions PA(x; q, t)
depending rationally on two parameters q and t, which include all the
examples above as particular cases. They will be characterized by the same
two properties (a) and (b), relative now to the scalar product defined by

1(A) 1_qA,
(1.5) (AA,P)_(PA,P >q,I=SAµZAli-Il 1-tAi

When q = t, they reduce to the Schur functions sA, and when q = 0 to the
Hall-Littlewood functions PA(x; t). To obtain Jack's symmetric functions,
we set q = t a and let t - > 1, so that (1- q')/(1- t') - a for each r 3 1;
and hence in the limit the scalar product (1.5) becomes that given by (1.4).

Example

Let F be a field of characteristic zero, and let ( , ) be a non-degenerate
symmetric F-bilinear form on AF with values in F, such that the homogeneous
components AF of AF are pairwise orthogonal. If (u,),(v,) are dual bases of AF
(i.e. (u,,v1) = 5,,) then

T,,(xly) = F, u,(x)v,(y)

is independent of the choice of dual bases (so that in particular

T (xl y) = y)
n>0

(the `metric tensor').
Let A: AF - AF ® AF be the diagonal map (or comultipliction) defined by

A f = f (x, y) (Chapter I, §5, Example 25).

A family (aA) of elements of a commutative monoid, indexed by partitions A, will
be called multiplicative if aaµ = aA µ for each pair of partitions k, µ. Equiva-
lently, aA = aAIaA2 ... for each partition A = (Al, A2, ... ), where a,. = a(r) for each
integer r > 1, and ao = 1. For example, the bases (eA), (hA) and (pA) of AF are
multiplicative.

Show that the following conditions on the scalar product ( , ) are equivalent:

(a) A is the adjoint of multiplication, i.e.

(Af,g ®h) = (f,gh)

for all f, g, h e AF.

(b) There exists a multiplicative family (VA) in F* such that

(PA,Pµ) = SAµzAVA

for all partitions A, µ.
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(c) There exists a character (i.e. F-algebra homomorphism) X: AF --> F such that
X(pn) # 0 for all n > 1 and

(f,g) =X(f *g)

for all f, g e AF, where f * g is the internal product defined in Chapter I, §7.

(d) The basis of AF dual to (ma) is multiplicative.

(e) The metric tensor T satisfies

T(xly, z) = T(xly)T(xlz).

(Let px = za 'pa for all partitions A. Then

APAEPa®P,9

summed over pairs of partitions (a, /3) such that a U P = A. Hence (a) implies that

(1) (PA,PpPo)= E(P*,P')(P;,Pc)

summed over (a, p) such that I al = I p l, 1,6 1 = I o I and a U /3 = A.
By iterating (1) we obtain

.(2) F, (p*(-),PXPaa),Pµ2)...

summed over all sequences (a(1), a(2), ...) of partitions such that Ia(')I = µ, for
each i > 1, and U at't = A. The sum on the right-hand side of (2) will be zero
unless the partition A is a refinement of !z (Chapter I, § 6), hence (pa, pµ) = 0
unless A S µ, and therefore also (by symmetry) unless p 5 A. Thus (pa, p), ) = 0
unless A = fe,, in which case (2) gives

(Pa ,Pa) = II (Pa ,Pa,)
i>1

Hence if we define v,, = (p*, for each n 3 1 (and vo = 1) we have

(PA,P4) = SA"ZAVA

where va = vaIva2 .... Thus (a) implies (b).
Next, since (Chapter I, (7.12)) pA * Saµ za pa, it follows easily that (b) and (c)

are equivalent, the character X being defined by v for all n 31.
To show next that (b) implies (d), observe that it follows from (b) that the bases

(pa) and (za'va 'pa) of AF are dual to each other, so that

T(xly)= za lva'pa(x)pa(y)
a

v
= exp E

,,

Pn(x)Pn(Y) .

n>1 n
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Let

then we have

-'
exp

U

-Pnt") _ E qnt",
n>1 n n>O

T(xl y) _ fl (E gn(x)yi )
i n>0

E q (x)m,i(y)
A

where qA = q k,qA, . This shows that the basis of AF dual to (mA) is (qA), which is
multiplicative. Conversely, if (q,) is multiplicative then we have

T(xly) _ 1J T(xl yi)
i

and so (d) implies (e).
Finally, to show that (e) implies (a), let (uA), (VA) be dual bases of AF, indexed by

partitions, and let

(3)

Then

(4)

and on the other hand

VA(y,z)= E
14,V

T (xl y, z) _ E uA(x)vA(y, z)
A

A, µ,v

(5) T(xly)T(xlz) = E
A, 1,

Since the right-hand sides of (4) and (5) are equal, we conclude that

(6) u, u _ E
A

From (3) and (6) it follows that

(AUA, u,, aµv = (VA, u,,uv )

which completes the proof.)

The scalar products considered in the text all satisfy these conditions: we have

X(Pp) =1, (1 - t")-1,2, c, (1 - q")/(1- tn) (n > 1)

corresponding to (1.1), (1.2), (1.3), (1.4), (1.5) respectively.
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tes and references

i earlier account of the symmetric functions PA(x; q, t) appeared in [M6].
r some indications of the historical background, see the notes and
erences at the end of this Chapter.

Orthogonality

;t q, t be independent indeterminates, let F = Q(q, t) be the field of
tional functions in q and t, and let AF = A F denote the F-algebra of
rnmetric functions with coefficients in F. If we define

t<A) 1 _ q
.1) za(q,t) = z fl A ,

ie scalar product (1.5) takes the form

1.2) (PI, P,) = (PA,P, )q,I

)n each homogeneous component AF of AF, this scalar product differs
only by a scalar factor from that defined by the parameters q-', t-'. For
ue have

za(q-',t-1) _ (q-'t) IAIzA(q,t)

mnd hence

(2.3) (f,g)q-',t-' _ (q-1t)"(f,g)q't

for f, g E AF.
If a is an indeterminate we denote by (a; q) the infinite product

W

(2.4) (a; q)m = fl (1 - aqr)
r-O

regarded as a formal power series in a and q.

Let now x = (x1, x2, ...) and y = (yl, y21 ...) be two sequences of inde-
pendent indeterminates, and define

(Lxiyj; q)m
(2.5) 11 (x,y;q,t)= iij

(x,),

1, q),

Then we have

(2.6) n(x, y; q, t) _ E za(q, t)-1Pa(x)P.,(y).
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Proof We calculate

log II (x, y; q, t) = E E (log(1 - grtxlyj) - log(1- grxiyj))
i,j r>0

from which it follows that

E
1

= E E -(1 - tn)(grxfyj)n
i, j r>O n>1 n

1 1 - to n_ E E - n (xiyj)
i,jn>1n 1-q

1 1 -tn
nE1 n 1 - gn

pn(x)pn(y)

1 1-t"
11 (x, y; g, t) = fl exp

n 1 - qn
pn(x)pn(y)

which as in Chapter III, (4.1) is seen to be equal to the right-hand side of
(2.6).

(2.7) For each n > 0, let (uA), (VA) be F-bases of AF, indexed by the partitions
of n. Then the following conditions are equivalent:

(a) (uA, v,,) = SAµ for all A, µ;

(b) E uA(x)vA(y) = U, y; q, t).
A

Proof The proof is almost the same as that of Chapter I, (4.6). Let
pA =zA(q,t)-1pA, so that (p*, pµ) = SAC. If

uA= aAPPP, vµ= Lb,p..

then we have

P or

`UA, v,.> = E aAP bP
P

so that (a) is equivalent to

(at) E aAPb p = SAA.

P

On the other hand, by virtue of (2.6), the condition (b) is equivalent to

E uA(x)uA(y) = E pp* (x)PP(Y)
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and hence to
r(b') + a,PbAo= 4,C.

A

Since (a') and (b') are equivalent, so are (a) and (b).

Now let g"(x; q, t) denote the coefficient of y" in the power-series
expansion of the infinite product

(2.8) il (1xiy;
q)m = E gn(x; q, t )yn,j>1 (xi y; q) n>O

and for any partition A = (Al, A2, ...) define

ga(x; q, t)= [I ga,(x; q, t)
i>1

Then we have

(2.9) gn(x; q, t) _ E z,(q, t)-'pa(x)
IAl-n

by setting y2 = y3 = ... = 0 in (2.6), and hence

H(x, y; q, t) _ UI (E gn(x; q, t)yi )
1 n>0

(2.10) E ga(x; q, t)m,l(y).
A

It follows now from (2.7) that

(2.11) (g,(x; q, t), mJ,,(x)) = Saµ

so that the ga form a basis of AF dual to the basis (m,A). Hence

(2.12) The g" (n > 1) are algebraically independent over F, and AF =
F[g1, 92, ... ]. I

Next we have

(2.13) Let E: AF - AF be an F-linear operator. Then the following condi-
tions on E are equivalent:
(a) E is self-adjoint, i.e. (Ef, g) = (f, Eg) for all f, g c= AF;
(b) E H(x, y; q, t) = EyH(x, y; q, t), where the suffrx x (resp. y) indicates
operation on the x (resp. y) variables.

Proof For any two partitions A,,u let

eAµ = (Em,,, mA>. V"'
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Then (a) is equivalent to

(c)

Next, from (2.11) we have

eAµ = e,,A.

EmA = F , eAµgµ

and since by (2.10)

11(x, y; q, t) _ E mA(x)gA(y) _ mA(y)gA(x)
A A

it follows that (b) is equivalent to

F, eAµg,,(x)g(A`y) = E eAµg,,(y)gA(x)
A, µ A, li

and hence to (c).

For u, v e F such that v # ± 1, let m,,,,, denote the F-algebra endomor-
phism of AF defined by

(2.14) Wu,u(Pr) _ 1 - pr Pr

for all r > 1, so that

1(A) 1 - u
(2.14') wu,v(pA) = 6APA Ai-11-v'
for any partition A, where eA = (-1}IAI-uA> Clearly

wv,u = wu,v

(if u # ± 1), and m,,, u is the involution w of Chapter I, §2.

From (2.9) and Chapter I, (2.14') it follows that

(2.15) q, t)) = e,, W,

the nth elementary symmetric function.

The endomorphism w,,,,, is self-adjoint:

(2.16) (wu,uf, g> = (f, wu,ug>

for all f, g e AF. By linearity it is enough to verify this for f = pA
g =pp,,, where it is immediate from the definitions.

4

and
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Also we have

(2.17) (w,,gf,g)q,I= (wf,g)

for f, g E AF, where the scalar product on the right is that of Chapter I.
Again we may take f =pA and g = pµ, where the result becomes obvious.
From (2.17) it follows, for example, that (s)) and ((0,,gs,A.) are dual bases of

AF.

Finally, it follows from (2.6) and Chapter I, (4.1') that

(2.18) wq,,H(x, y; q, t) = fl (1 +x;yj)
i,1

where wq,, acts on the symmetric functions in the x variables.

So far we have worked in the algebra AF of symmetric functions in
infinitely many variables x1, x2, ... , with coefficients in F. However, in the
next section we shall need to work temporarily in A,,, F = F[ x1, ... , xn ]s^,
and to adapt the scalar product (1.5) to An. F. The original definition (1.5)
no longer makes sense in the context of An. F, because when x = (x1, ... , xn )
the power sum products pA(x) (for all partitions A) are no longer linearly
independent. We therefore proceed as follows.

(2.19) The gA(x; q, t) such that 1(.t) < n form an F-basis of An,F.

Proof Suppose first that q = t = 0. Then gA becomes hA in the notation of
Chapter I, §2, and from Chapter I, §6 we have

(1) hµ(x) _ E KAµsA(x).
A

Now in the ring A the Schur function sA(x) is zero if 1(.1) > n, and the
sA(x) with 1(,1) < n from a Z-basis of A. Since the matrix (KAf,) is
unitriangular, so is its principal submatrix (KAµ),(A) ,(µ)<n. Hence it follows
from (1) that the hA(x) such that 1(,l) < n form a Z-basis of An.

Now let q, t be arbitrary. Since the monomial symmetric functions
mµ(x) with 1(µ) < n form a Z-basis of An, we may write

(2) gA(x; q., t) _ F, b,,,(q, t)m,,(x)

with coefficients bb',(q, t) E F. From above, the matrix B(q, t) =
%µ(q, t))1(A), r(µ), n is well-defined and nonsingular when q = t = 0. Hence
its determinant, which is a rational function of q and t, cannot vanish
identically. In other words, the matrix B(q, t) is invertible over F, and
hence (2) shows that the gA(x; q, t) with 1(.1) < n form an F-basis of An,F,
as required. I
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We now define a (symmetric) scalar product on An,F by requiring that
the bases (901(A)-In and (ma)t(x)-4 n be dual to each other:

(2.20) (gA, mµ) = Saw

whenever A, µ are partitions of length < n. With the obvious modifica-
tions, (2.7) remains valid for this scalar product, since by virtue of (2.8) we
have

(2.21) 1l (x, y; q, t) _ E ga(x; q, t)mjy)
t(A)cn

when x=(xl,...,xn) and y=(yl,...,yn).

Examples

1. For each integer m > 0 let

m-I
(a; 4)m = F j (1- aqr)

r-0

_ (a; q),,/(aqm; q),0

and for any partition µ = (µl, A2, ...) let

(a;q)A= fl(a;q)µ1.
i> l

Then we have

gn(x;q,t)= E
((tt;

;

g)
q)

µmµ(x).
1µi-n

This follows from the identity

(ty; q)W (t; q)m
m

(y; q)m m >O (q; q)m
y

which is a particular case of Chapter I, §2, Example 5 (with a, b, t there replaced
by 1, t, y respectively).

Since (q; q)./(q; q)v, is a polynomial in q for all partitions µ of n (because it is
a product of Gaussian polynomials), it follows that (q; q)ngn(x; q, t) is a linear
combination of the monomial symmetric functions with coefficients in Z[q, t], i.e. it
lies in the subring A[q, t] of AF.

2. Show that

wq,tgr(x;0; t-I) _ (-t)-rgr(x;0, q).
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3. The operators D,,

In this section we shall work with a finite set of variables x = (x1,. .. , xn),
and we shall define F-linear operators

D,;A.,F- An,F

for each integer r such that 0 < r < n. It will appear in §4 that the
symmetric functions PA(x; q, t) are simultaneous eigenfunctions of these
operators.

For each u E F and 1 < i < n we define the `shift operator' T.,,,, by

(3.1) (T,,,x1 f)(x1,..., xn) = f(xl,..., uxi,...,

for any polynomial f E F[x1,... , xn]. Next, let X be another indetermi-
nate, and define

n

(3.2) D,,(X; q, t) = aa(x) e(w)x"s fl (1 +Xt(Ws),T,,x4)
WES.

where as usual S = (n - 1, n - 2,..., 1,0), as(x) is the Vandermonde deter-
minant (Chapter I, §3), e(w) = f 1 is the sign of w E S, and (wS)i is the
ith component of wS.

For r = 0,1, ... , n let D,,' denote the coefficient of X r in D (X; q, t):

(3.3)

We have D,0, = 1, and

(3.4)

where

n

D,(X; q, t) _ E D,,X'.
r-0

n

i-1

A1(x; t) = as(x)-1 E e(w)t(Ws),xW6
WES.

=a s(x)-1T,x,as(x)

so that

r txi - xj
(3.5) A1(x; t) _ f

j#i xi -xi
More generally, for any r = 0,1, ... , n we have

(3.4),
D"= EAI(x;t)fl Tq,x,

- I iEI
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summed over all r-element subsets I of (1, 2,..., n), where

A,(x;t)
=as(x)-1(JJ

Tr x;)as(x)
tEl

(3.5)r =tr(r-1)/211
tx, - xi

iEI xi -xj
jeI

Each of the operators D;, maps symmetric polynomials to symmetric
polynomials, and hence is an F-linear endomorphism of A", F. To establish
this fact we shall compute D"(X; q, t)mA(x), where A = (A1, ..., a") is any
partition of length < n. First of all, for any v E N" we have from (3.2)

n

D"(X; q, t)xv = F, E(w1) 11 (1 +Xt(w,8)1gv')xw,8+v,
W1ES, i=1

since T., x(x") = q ',x ". Now replace v by w2 A, where w2 E S, and sum
over w2. We shall obtain

ISnID"(X;q,t)mA(x)

n

= a8(x)-1 E E(w1) [J (1 +Xt(W,8);q(w2A)i)xw,8+w2A,
W1,W2 i-1

where S is the subgroup of S" that fixes A.
In the sum on the right, let us put w2 = w1w. Then it becomes

n
a8(x)-1

E e(W1) [J (1 +Xtn-iq(wA)1)xw1(wA+B)

W,W1 i-1

n
E r l (1 +Xtn-iq(wA)i)swk(x),

Wes i-1

so that finally we have

n

(3.6) D"(X; q, t)mA(x) = E 11(1 +Xt"-igai)s,(x)
a i-1

summed over all derangements a E N" of A.

From this formula we see that each operator Dn is a degree-preserving
F-linear endomorphism of A" F. Moreover, since each Schur function s"
that occurs on the right-hand side of (3.6) is either zero or else is equal to
tsµ for some partition A< A (unless a= A), and since the transition
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matrix M(s, m) is strictly upper unitriangular (Chapter I, (6.5)) we con-
clude from (3.6) that

q, t)mA = E q, t)m,
u<A

with coefficients aA,, e Z[X, q, t], and in particular
n

(3.8) aAA(X; q, t) _ 11 (1 +Xtn-iqA,)

-:Thus the matrix of each operator Dn, relative to the basis of An,F formed
by the monomial symmetric functions, is strictly upper triangular, and its
eigenvalues are the coefficients of X' in the polynomials (3.8). In particu-
lar, we have

(3.9) DDmA = CAµ(q, t)m
µ<A

with coefficients cA. E Z[q,t], and the eigenvalues of D,', are
n

(3.10) cAA(q, t)
=

E gA,tn-i,

i-1

which are visibly all distinct.

The second basic fact about the operators Dn is

(3.11) Each operator D, is self-adjoint for the scalar product (2.20), that is to
say

(D,f, g)n = (f, D'g)n

for all f,gEAn,F and 0<r<n.

It follows from (2.13) that (3.11) is equivalent to the identity

(3.12) Dn(X; q, t)xn(x, y; q, t) = DD(X; q, t)yn(x, y; q, t)

where II(x, y; q, t) is the product (2.5) (with i, j running from 1 to n) and
the suffix x (resp. y) indicates operation on the x (resp. y) variables.

To prove (3.12) we observe that from the definition (2.5) of II =
fI(x, y; q, t) we have

n 1 -x;y,
II-1Tq,x,n = fl

f-1 1-tx;yj

which is independent of q. It follows now from (3.2) that

11-'D(X; q, t)xH
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is independent of q. Hence to prove (3.12), or equivalently (3.11), we may
assume that q = t.

Now for any polynomial f(xl,..., xn) and w E S" we have

xwst(Wo)iTt, z;f = Tt,x;(xM8f )

and therefore
n n

xWs [1 (1 +Xt(Ws) Tt,xr) f = 17 (1 +XTt,xr)(xWaf ),
i-1 i-1

so that
n

Dn(X; t, Of = as1 rj (1 +XTt,x) (asf ).
i-1

In particular, therefore,
n

Dn(X; t, t)sA = as 1 j1 (1 +XTt,xr)aA+a
i-1

= jZ (1 +XtA'+n-i)SA
i-1

for any partition A of length < n.
Now the Schur functions sA such that l(A) < n form an orthonormal

basis of An,F relative to the scalar product (2.20) when q = t, by virtue of
the Cauchy formula (Chapter I, (4.3)). Hence we have (Dn(X;t,t)sA,sµ)n
= 0 if A # µ, and therefore

(Dn(X; t, t)SA, Sµ)n = (SA, Dn(X; t, t)SN,)n

for all A, µ of length < n. This shows that each operator Dn is self-adjoint
when q = t, and completes the proof of (3.11).

Examples

1. (a) The coefficient of mµ in D,,(X; q, t)mA is explicitly
n

a,, ,(X; q, t) _ F, fl (1 +Xq" t"-')
i-1

summed over all triples (w, a, a) where w E Si,, a E N" is a derangement of A, and
ar is a partition, such that a + S = w(ir + S); and is a Kostka number
(Chapter I, §6).

(b) Suppose that A1 µ1. Deduce from (a) that

aAµ(X;q,t) = (1+XgArtn-1)a,.,,.(X;q,t)

where A* _ (A2, A3, ... ), A* - (µz, µs, )
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2. (a) Show that, if r 3 0 and x = (xl,... , xn),

(t - 1) E Aj(x; t)x; = t"gr(x; 0, t-1) - 80r.
i-1

(Express the product
n tX-xi
1i iX-xi

as a sum of partial fractions.)

(b) Let II = II(x, y; q, t), where x = (x1, ... , x") and y = (y1,. .. , yn), and let
a)q,tII = 11(1 +xiy;) (2.18). Then

II-1Tq,x,H= E gr(Y;O,t-1)trxj,
r> O

1101Tq.x,110 (- 1)rgr(y;O,q)xi.
r> 0

(c) Let E = Eq,j = t-"(1 + (t - 1)Dn). Deduce from (a) and (b) that

II-1EII= F, gr(x;O,t-1)gr(Y;O,t-1)tr,

r> O

IIo1EII0= E (-1)rgr(x;O,t-1)gr(Y;O,q),

r> O

where in each case E acts on symmetric functions in the x variables.

(d) Deduce from (c) and §2, Example 2 that

wq II-1Eq ,II) = 101E,-'.q-iIIo

where wq,, acts on the x-variables, and hence that

wgtEq,=E,-' q-1wq,.

3. Let a be a positive real number, X an indeterminate and let
n

D"(X;a)=a8(x)-1 E e(w)xwsfl(X+(w5)i+ax1D1)
weS i=1

in the notation of (3.2), where D. = d/dxi. We have
n

DD(X; a)
=

E X"-rDD
r-0

say, where the Dr, are linear differential operators on functions of x1,..., x,. In
particular, when a = 1, we have

D"(X;1)f = as 1 JJ (X+xiDi)(asf )
i-1
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for a function f = f(x1,..., x").

(a) Show that if A is a partition of length < n, then
n

D"(X; a)ma(x) = E fl (X+n -i +a/3;}s,6 (x)
Q t-1

summed over all derangements P E=- N" of A.

(b) Show that each operator D,, is self-adjoint with respect to the scalar product
defined by the metric tensor (§1, Example) T(xly) = f1;,j(1 -xiyj)-".
(The proofs of (a) and (b) are analogous to those of (3.6) and (3.11).)

(c) Let Y= (t - 1)X- 1. Then

Y+ t(wa);TQ x; 1 1 - T ,.x, I- q
=X+ +t(wat-1 1-t 1-q - 1-t

If (q, t) -. (1,1) in such a way that (1 - q)/(1- t) --> a (for example, if q = t" and
t -+ 1), then this operator tends to X+ (wS)i + ax1D;. Hence D"(X; a) is the limit
of (t - 1)""Y"D"(Y"1; q, t).

(d) If f is a homogeneous polynomial of degree r, show that

Dnf=f,

(ar+2n(n - 1))f,

Dnf=a2U-aVn+cn)f,
where

n

Un -
-1

2
Flxi

Di2Z
and

cn =
2

a 2r(r - 1) + 2 am(n - 1) + In (n - 1)(n - 2)(3n -1).

(e) The Laplace-Beltrami operator ," is defined by

,"f=(aUn+V"-(n-1)r)f
for f homogeneous of degree r, as in (d) above. Thus

where c' = cn - a(n - Or.
Let E," be the operator defined by

E,"f = a. 1""U"(aa%f) - (aa 1/"Unaa"") f.

Show that

E,"= Un+ a-1V".
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Notes and references

Example 3. The differential operators D (depending on a) were intro-
duced by Sekiguchi [S9] and later by Debiard [D1]. See also [M5].

4. The symmetric functions PA(x; q, t)

The operators D,,: An,F - An,F defined in §3 are (for fixed r and varying
n) not compatible with the restriction homomorphisms pm,n: Am,F - An,F
of Chapter I, §2. However, at least when r = 1 (which will be sufficient for
our purposes) it is easy to modify them. Let En be the operator on An, F
defined by

n

(4.1) En = t-n D - t-
i-1

If A = (A1, ... , ,ln) is a partition of length < n, we have

mA= E,sa
a

in A, where the sum is over all distinct derangements a E Nn of A, as one
sees by multiplying mA = E xa by as = E E(w)x" and rearranging (Chapter
I, § 6, Example 11). Hence it follows from (3.6) that in An,F we have

n

(4.2) EnMA = E E((qa_1)t_i)sa
a i-1

summed over derangements a of A as above.
This formula shows that

pn,n-1 ° E. =En-1 ° pn,n-1

where pn,n -1: An, F -* An -1, F is the homomorphism defined by setting
xn = 0 (observe that sa (xl, ... ) xn _ 1) 0) = 0 if an # 0). Hence we have a
well-defined degree-preserving operator

(4.3) E=Eq,,= limEn:AF AF

such that for each partition A

(4.4) EmA = E ek,,,m,,
µ<A

with coefficients eAµ E Z[q, t-1 ], and in particular

(4.5) eAA = (qA, - 1)t-i.
i1
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Since D,', is self-adjoint for the scalar product (f, g) (3.11), so is
hence

(4.6) E is self-adjoint for the scalar product (1.5) on AF-

We come now to the main result of this section.

E, and

(4.7) For each partition A there is a unique symmetric function PA
P,(x; q, t) E AF such that

(a) PA = L uAµ mµ
µ<A

where uAµ E F and uAA =1,

(b) (PA,Pµ)=O ifA#µ.

Proof We shall construct the PA as eigenfunctions of the operator E. If Pa
satisfies (a) above and

(c) EPA =eAA PA

then by (4.4) we have

eAAuAV = L.+ uAµeµv
v<µ<A

for all pairs of partitions v, A such that v < A, or equivalently

(1) (eAA - evv)uAv - E uAµeµv
v<µ<A

Since by (4.5) we have eAA # e, if v # A (i.e. the eigenvalues of the
operator E are all distinct), this equation determines uAv uniquely in terms
of the uAµ such that v < µ < A. Hence symmetric functions PA exist
satisfying the conditions (a) and (b). But then we have by (4.6)

eAA(PA, Pµ) = (EPA, Pµ)

= (PA, EPµ) = eµµ(PA, Pµ)

and since e,,, #eµµ if A # µ, it follows that the PA satisfy condition (b).
Finally, to show that the P. are uniquely determined by (a) and (b), let A

be any partition and assume that P. is determined for all µ < A. Then by
(a), PA must be of the form

PA = mA + E VAµ Pµ;
µ<A
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taking the scalar product of each side with Pµ, we obtain

v = -(mA,P,)/(Pw,P,)

and hence P. is uniquely determined. (Note that (Pµ, Pµ) # 0, because
when q and t are taken to be real numbers between 0 and 1 the scalar
product (1.5) is positive definite.) I

Remark. In fact, conditions (a) and (b) of (4.7) overdetermine the symmet-
ric functions PA. For if we arrange the partitions of each positive integer n
in lexicographical order (so that (1") comes first and (n) comes last), we
can use the Gram-Schmidt orthogonalization process to derive a unique
basis (PA) of AF satisfying (a') and (b), where

(a') PA = mA + a linear combination of the mµ for µ preceding A in
lexicographical order.

If we replace the lexicographical ordering by some other total ordering
compatible with the natural partial ordering A > µ, and apply
Gram-Schmidt as before, we shall obtain the same basis (PA): this is the
content of (4.7).

From (4.7) (a) we have in particular

(4.8)

(since m(l) = e,). Also

P(1r) e,

(q; g).
(4.9) P(r) _ (t

; q)r
gr.

For by (2.11), gr is orthogonal to mµ for all partitions µ # (r), hence to all
Pµ except for µ = (r). It follows that gr must be a scalar multiple of P(r),
and the scalar factor is given by §2, Example 1.

Next we have

(4.10) PA(xl,...,x";q,t)=0 ifn<1(A).
Proof If µ < A, then µ' > A' (Chapter I, (1.11)), so that

1(µ)=µ,>Ai1(A)>n,
and hence x") = 0 for each µ < A. I

Let

(4.11) bA = bA(q, t) = (PA, PA)''

and

(4.12) QA = bAPA,
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so that we have

(PA, Q,) = BA,

for all A, µ, i.e. the bases (PA),(QA) of AF are duals of each other for the
scalar product (1.5). Hence by (2.7) we have

(4.13) PA(x; q, t)QA(Y; q, t) = n(x, y; q, t).
x

We shall next consider some particular cases.

(4.14) (i) When q = t we have

PA(x;t,t) =QA(x;t,t) =sA(x)

(Chapter I, (4.8) and (6.5)).

(ii) When q = 0 we have

PA(x;0,t)=PA(x;t),

QA(x;0,t)=QA(x;t),

the Hall-Littlewood symmetric functions studied in Chapter III. This
follows from Chapter III, (2.6) and (4.9).

(iii) Let q = t a and let t -> 1. The resulting symmetric functions are Jack's
symmetric functions, which we shall consider in §10 below.

(iv) From (2.3) and (4.7) it follows that

PA(x; t-1) = PA(x; q, t),

QA(x; t-1) _ (qt_ 1)IAIQA(x; q, t).

(v) When t = 1, we have

PA(x; q,1) = mA(x).

For it follows from (3.2) that D (X; q, 1) = II 1(1 +XTq,x.), so that
q,1)mA =11(1 Hence the mA are the eigenfunctions of

D,1 and hence of E, when t = 1, which proves the assertion.
(vi) When q = 1, we have

PA(x,1, t) = eA.(x)

for all t. We defer the proof of this statement to §5.

(4.15) If x = (x1, ... , and l(A) < n, we have
n

q, t)PA(x; q, t) _ 11 (1 +XgA1t"-`)P(x; q, t).
i-1
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proof. As µ runs through the partitions of length < n, the mN, form a
basis of An F; hence so do the Pµ, by (4.7) (a), and therefore also the Qµ.
Hence Dn(X; q, t)PA is of the form

DD(X; q, t)PA = E vAN,(X; q, t)Qµ.

By (4.7) and (3.7), the matrix (vAµ) is strictly upper triangular, and by (3.11)
it is symmetric, hence diagonal. It follows that Dn(X; q, t)PA is a scalar
multiple of PA, and by (3.7), (3.8) the scalar multiple is

n

fl (1 +Xq'itn-i).
I

i-1

(4.16) The operators of D,(0 < r < n) on An, F commute with each other.

For by (4.15) they are simultaneously diagonalized by the basis (PA).

(4.17) Let A be a partition of length n. Then

=X1...XnPg(X1,...rXn;q,t)

where µ = (Al 1, ... , An -1).

Proof We have

T9 s,(x1 ... xnP,,,) = qx1 ... xnTq x.(PN,)

and therefore

D,',(x1...xnPµ)=gx1...xnD,(PP )

n
µl n-iq q t x1 ...xnPµ

i-1

I

by (4.15). Hence both P. and x1... xn Pµ are eigenfunctions of the opera-
tor D,', for the eigenvalue E qAlt n- i. Since the eigenvalues of D are all
distinct, it follows that PA and x1 ... xnP can differ by at most a scalar
factor; but they both have leading term x A, and so they are equal. I

Examples

1. For any partition A, the coefficient of xi ' in PA(x; q, t) is equal to PA.(x*; q, t),
where A* = (A2, A3, ...) and x* _ (x2, x3, ... ). (With the notation of (4.7), the
coefficient of xi' in PA is equal to

E
V
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summed over partitions v < A such that v1 = A1, where v" = (v2i V3, ... ) Hence ithas to be shown that u,A = uA.,,. for all such partitions. The coefficients
uA,. are

determined recursively by the equations (1) in the proof of (4.7). From §3, Example
1(b) it follows that eA.,,,. = teA,,, if µ < A, and CA.A. - e,,.,,. = t(eAA - e, ). Hence
uA,, = uA.,,., as required.)
2. From §3, Example 3(a) it follows that

D,,(X; a)mA(x) = F, cAµ(X; a)mµ(x)
µ4A

with coefficients cAµ a Z[X, a] and
n

CAA=fl(X+aAi+n-i).
i-1

Since a > 0, the sequence (aA, + n - i)14 i < n is strictly decreasing, and therefore
CAA#Cµµ if A*1L.

(a) Let C denote the matrix (cAµ). Show that there is a unique strictly upper
unitriangular matrix U such that UCU-1 is a diagonal matrix. For each partition A
of length < n define

(1) PA°(x) _ E uAµm,,,(x)
µ6A

where x = (x1,..., xn). Show that
(2) Dn(X; a)PA"=cAA(X; -)PA"

and deduce from §3, Example 3(b) that

(3) (PAS, P % = 0

if A#µ.
(b) The symmetric polynomials PA(x) so defined are characterized by the proper-
ties (1) and (3). Hence the coefficients uAµ can be computed recursively by the
Gram-Schmidt process. Deduce that the uAµ are rational functions of a, indepen-
dent of X and of n. The symmetric functions P,, so defined are Jack's symmetric
functions 010 below).
(c) The differential operators Dn defined in §3, Example 3 commute with each
other. (By (2) above, they are simultaneously diagonalized by the PA.)
3. Let ' be the Laplace-Beltrami operator (§3, Example 3(e)) acting on sym-
metric polynomials in xl,...,xn.
(a) If p = pn,,, -1: A,, - An-1 is the restriction homomorphism, show that for
f e A we have

P(Unf) = U"-1( Pf),

p(Vnf) = (Vn-1+r)(pf)

and hence that p o , = °_ 1 e p. It follows that

°` = lim , `
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is a well-defined operator on AF, where F = Q(a ).

(b) Show that

D P,' =eA(a)PA°`

where eA(a) = n(A') a - n(A).
If A>.a we have n(A)<n(µ) and n(A')>n(µ'), hence eA(a) eN,(a).

(c) Show that, if A is a partition of length n,

mA=eA(a)mA+ E (Ai - A) E m(A-rei+rei)+
1<i<jen r.l

where (A - rei + rej)+ is the partition obtained by rearranging the sequence
(Al,..., Ai - r,..., Aj+r,..., An), and in the inner sum r runs from 1 to [Z(A1- Aj)].
(d) Let uAµ denote the coefficient of mµ in P°, as in Example 2 above. Deduce
from (b) and (c) that if µ < A we have

UAµ = (eA(a) - eµ(a )) _ 1 F, (pi - µj + 2T)uA,(µ+rej-rei)+

summed over (i, j, r) satisfying 1 < i <j < 1(µ) and r > 1, such that (µ + re, - rej)+
is a partition <A.

The coefficients uaµ may be computed recursively from this formula. In particu-
lar, it shows that uaµ is a rational function of a whose numerator and denomina-
tor are polynomials in a with positive integral coefficients.

5. Duality

The effect of the involution w (Chapter I, §2) on the Schur functions is
given by

COSA = SA,

(Chapter I, (3.8)). This result is generalized in the following proposition, in
which wq i is the automorphism of AF defined in (2.14):-

(5.1) We have

CUq,,PA(x; q, t) = Q,, (x; t, q),

a)q,1QA(x; q, t) = P., (x; t, q).

Since o), q = o , these two assertions are equivalent.

Clearly (5.1) is equivalent to

(wq,1PA,(q, t), PN,(t, q))!,q = SAµ

and hence by (2.17) to

(5.1') (wPA,(q, t), P, (t, q)) = SAµ
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in which the scalar product is that of Chapter I. Next, let

A(q, t) = M(P(q, t), s),

the transition matrix from the P's to the Schur functions. Then (5.1') is
equivalent to

(5.1") JA(q, t)JA(t, q)' = 1

where J= (8A.µ) is the conjugation matrix and At, q)' is the transpose of
A(t, q).

To prove (5.1") we introduce the matrix of scalar products

U(q,t)=((sa,sµ)A.t)

which has the following properties:

(5.2) (a) U(q, t) = U(t, q)-1,
(b) U(q, t) = JU(q, t)J,
(c) D(q, t) =A(q, t)U(q, t)A(q, t)' is a diagonal matrix.

Proof. Let X = (XP) be the matrix of characters of S,, (Chapter I, §7).
Then the (p, µ) entry `of XU(q, t) is

L XP (s,,sv,>e,c= (PP,Sµ)y.t
A

1-qa,
-X°W

1-tpi
from which it follows that XU(q, t)X-1 is a diagonal matrix whose inverse
is XU(t,q)X-1. This proves (a), and since XJ= eX, where a is a diagonal
matrix of f 1's, it also proves (b). Finally, (c) expresses the orthogonality of
the PA(q, t). I

Now the matrix A(q, t) is strictly upper unitriangular, and hence

B =JA(q, t)JA(t, q)'

is strictly lower unitriangular. We now compute

C=D(t,q)B-1 =D(t, q)A(t,q)r-1JA(q,t)-'J

=A(t, q)U(t, q)JA(q, t)-' J by (5.2)(c)

=A(t,q)JU(q,t)-'A(q,t)-'J by (5.2)(a),(b)

=A(t, q)JA(q, t)'D(q, t)-' J

= B'JD(q, t)-'J.

by (5.2)(c)
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So the matrix C is lower triangular (because B-' is) and upper triangular
(because B' is), hence diagonal. It follows that B = 1, which proves (5.1")
and hence also (5.1).

In particular, we may take q = 1 in (5.1'). Then P,L(t,1) = mµ by (4.10v),
and hence (5.1') shows that wPA.(1, t) = hA, or equivalently PA,(1, t) = eA, as
stated in (4.14Xvi).

From (5.1) and (4.12) it also follows that

(5.3) bA(q, t)bA.(t, q) = 1,

and by applying mq,, to both sides of (4.13) that

(5.4) fl (1 +xi yi) _ Pa(x; q, t)P,.(x; t, q)
i'i A

_ F, QA(x; q, t)QA,(x; t, q).
A

Finally we have

(5.5) Q(.)(x;q,t)

by (2.13), (4.8), and (5.1).

Examples

1. If A is any partition let

fA(q, t) t) E (qAi - 1)t`-'.
i> 1

(a) Show that

ff(q,t) =fA-(t,q)

where A' is the conjugate partition.

(b) The eigenvalues of the operator (t - 1)E (4.3) are ff(q, t

2. We shall use Example 1 above and §3, Example 2(d) to deduce another proof of
the duality theorem (5.1). The operator f of §3, Example 2 is equal to 1 + (t - 1)E,
and hence

t,1',-1 wq,,PA(q, t) = wq.,Eq,,PA(q, t)

= (1 +fA(q,t-'))wq,,PA(q, t)

_ (1+ff,(t-',q))wq,,PA(q,t).
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It follows that wq,,PA(q,t) is an eigenfunction of with eigenvalue
1 + fa.(t , q), and hence must be a scalar multiple of P,(t- , q- ) = P,,(t, q), To
complete the proof of (5.1) it remains to show that

((oq,,PA(q,t),PA,(t,q)),,q = 1

or equivalently (2.17) that

(1) <41Pa(q,t),Pk,(t,q)) = 1

with respect to the scalar product of Chapter I. Finally, prove (1) by expressing
Pa(q, t) and Px.(q, t) as linear combinations of Schur functions, and using the fact
that 41Sµ = Sµ,.

3. Let a be a positive real number, let F = Q(a) and let oa be the F-algebra
automorphism of AF defined by

"aPr=
(-1)r-larPr

for each r 1.

(a) Show that

4)a "41.- l = -a a
where " is the operator defined in §4, Example 3(a). (Verify that

S,

=((n-1)IAI-n(A'))pi+S',

where U, V,, are the operators defined in §3, Example 3(d) and S (resp. S') is a
linear combination of power-sum products pµ such that I ul = I Al and 1(µ) =1(A) -1
(resp. 1(µ) =1(A) + 1). Hence show that

4)a)P'=0

for all partitions A.)

(b) Let Qa = o, 1Pa ' 04, Example 2(b)). Deduce from (a) that Qa is an
eigenfunction of " with eigenvalue (§4, Example 3).

(c) Show that (Qa) is the basis dual to (Pa") for the scalar product (1.4). (Let
a,,,, _ <Pr, Qµ ). By expressing Pa" and Pµ as linear combinations of Schur
functions, show that the matrix (aaµ) is strictly upper unitriangular, so that axx
and aaµ, = 0 unless A > A. Finally, if A > µ use the self-adjointness of " and the
fact that eA(a) # e, (a) (§4, Example 3) to conclude that a,,,,, = 0.)

Notes and references

The proof of the duality theorem (5.1) in the text was suggested by A.
Garsia. See [G3].
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6. Pieri formulas

For any partition µ and positive integer r we have (Chapter I, (5.16))

SAS(,) E sA
A

summed over all partitions A D µ such that A - µ is a horizontal r-strip,
and dually

SµS(n - SA

summed over partitions A D µ such that A - µ is a vertical r-strip. In this
section we shall generalize these facts to the symmetric functions PA(x; q, t).

For each partition µ of length < n, define a homomorphism (or
specialization)

UA:F[x1,-,xn] -+ F

by u,,(xi) = q'"t n-i(1 < i < n). We extend uµ to those elements of the field
F(x1, ... , xn) for which the specialized denominator does not vanish. In
particular,

u0(f)= f(tn-1,tn-2,...,t,1)

for any polynomial f E F[xl,... , xn ].
In this notation (4.15) takes the form

(6.1) DnPA = uA(e,)PA

for 0 < r < n and A of length < n. Hence by (3.4), we have

(6.2) uA(e,)PA= EA,(FIT,,x) PA
1 tEl

summed over all r-element subsets I of {1, 2,..., n}, where

Al=as 1(fl T,,.,)a.
iEI

1<i<j<n

xite'-xltej
xi - x1

where 0. = 1 if i E I, and Bi = 0 otherwise. Hence for a partition µ of
length < n we have

e+-
u(A)=1I

gµ,tn , - gµjtnj ji

µ I . i<1 .
q'4,tn-i - gj+jtn-j
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(6.3) uµ(AI) # 0 if and only if µ + 9= (µl + 01,...,µn + 9n) is a partition,

Proof Suppose that uµ(AI) = 0. Then there exist i <j such that µ, = N,
and i - j = 9i - 9j. Since 19i - 0jl < 1, it follows that j = i + 1, 9_ 0, and
9j = 1, so that µi = µi+ 1

and µi + 9i < Aj+ 1 + 9i+ 1, which means that
µ + 0 is not a partition.

Conversely, if µ + 9 is not a partition there exists i < n - 1 such that
Ai = Ai+1, 0j=0, and 9it1= 1, whence uA(AI) = 0.

Now let µ, v be partitions of length < n such that v D µ and 0 = v - µ
is a vertical strip, and define

(0;,I) B = tn(v)-n(p) T 1 -gµrµjtj-i+ei-ej

vµ 1=i<j<n
1-qµ.-*tl-i

so that u,,(AI) where I = (i: 9i = 1). Then by applying uµ to (6.2) we
obtain

(6.5) uA(e,)uµ(PA) _ E By/µu,(P,)

where by virtue of (6.3) the sum is over partitions v µ of length < n such
that v - µ is a vertical r-strip.

Observe next that uo(PA) is not identically zero, because when q = t we
have uo(PA) = uo(sA) = sA(tn- 1, tn- Z, ... ,1) which is not zero (Chapter I, §3,
Example 1). Let us temporarily write

PA = PA/uo(PA).

We shall now prove simultaneously

(6.6) (Symmetry) For all partitions A, µ of length < n we have

UA(PP) = Uµ(PA).

(6.7) (Pieri formula) For all partitions a of length < n and all positive
integers r we have

PQ er = F, B,,/., P,

summed over partitions v D o of length < n such that v - o, is a vertical
r-strip.

Proof. We shall proceed by induction. First of all, (6.6) is true for all A
when µ = 0, because uA(Po) = uA(1) = 1 and uo(PA) = 1. So let µ be a
non-zero partition of length < n, and assume as inductive hypothesis that
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(6.6) is true for all A and for all 7r such that either I7r I < I Al, or 17r I = I Al
and 7r < p..

Let r > 1 be such that µ, > µ,+ 1 and let ci be the partition defined by
o-, = µ; - 1 for 1 < i < r, and o-i = µ; for i > r. We shall show that (6.7) is
true for this v.

Consider the product P,e,. The leading monomial in P, is x`, and the
leading monomial in e, is xl ... x,. Hence the leading monomial in P, e, is
xµ, and therefore we have

(1) e, by Pv
V<µ

for suitable coefficients b,,. Next, from (6.5) we have, for any partition IT,

(2) u,,r(er)uc(fir ) = L Bv/,uv(P'n)
V

summed over partitions v D v such that v - o- is a vertical r-strip.
Suppose that I7r I = I µl and 7r < µ. By the inductive hypothesis we have

u., = u (P,

because Io I< I µl, and

for all v < A (this is assured by the inductive hypothesis if either 7r < µ or
v < µ, and the only other possibility is 7r = v = µ). Hence (2) now takes the
form

(3) u,,,(e,P,) = E Bvi,u r(Pv)-
V

On the other hand, by applying u to both sides of (1) we obtain

(4) u,r(erP,) = E bvu,r(Pv)-
v<µ

At this point we require

(6.8) v 4 µ # 0.

Assuming this for the moment, it follows from comparison of (3) and (4)
that by = BI,, if v - o, is a vertical r-strip, and that b,, = 0 otherwise, so
that (1) becomes

(5) e, P, _ BVI, Pv

which is (6.7).



334 VI SYMMETRIC FUNCTIONS WITH TWO PARAMETERS

Now let A be any partition of length < n, and apply uA to both sides of
(5):

(6) uA(e,)uA(PQ) _ B.,/vuA(P.).
V

By the inductive hypothesis we have uA(PU) = u,, (PA) since I I < I µl, and
uA(P") = u"(PA) if v # A. Hence (6) takes the form

(7) UA(e,)U., (PA) =Bµ/QUA(Pµ) + By/vUy(PA).
V<µ

On the other hand we have from (6.5)

(8) UA(e,)Uo(PA) =Bµ/UUµ(PA) + E B,,/QUv(PA).
v<µ

Since Bµ/, # 0, comparison of (7) and (8) shows that uA(Pµ) = uµ(PA), and
completes the induction step.

Thus it remains only to prove (6.8). In the determinant we may replace
P by P and then by m, since the transition matrix M(P, m) is unitrian-
gular. So it is enough to show that

0.

Regarded as a polynomial in t, the dominant term in is
q<",1'>t<",s>. Hence it is enough to show that

det(q< >)",n<, # 0.

which is a particular case of Example 1 below.

We can restate (6.7) in the form

(6.7') Pµe, = Fr fYa/µ Pa
A

summed over partitions A D µ (of length < n) such that A - µ is a vertical
r-strip, and

(6.9) Y'.1,/µ = BAIAUo(P))/Uo(PP).

When A =,A + (1'), consideration of the coefficient of x A on either side of
(6.7') shows,that 1, and hence

(6.10) uo(PA) =BA/uo(PP)

when A = µ + (1').
Since BA/µ is given explicitly by (6.4), we can use (6.10) to compute

uo(PA) and then (6.9) to compute the coefficients opk'l, in the Pieri formula
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(6.7'), thus making it fully explicit. To state the result, we define

A+= A+( 0= rI (xixl 1; q)
n q'

1<i<j<n (txixj 1;q)

Then we have, for any partition A of length < n,

(6.11) uo(PA) = PA(1,t,...,tn-'; q, t)

= tn(A)uA(A+)/u0(A+
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Proof Since (6.11) is true when A = 0 (both sides being equal to 1) it is
enough by (6.10) to verify that

(1) uA(A+)/uµ(A+) = t"(µ)-n(A)BA/µ

when .L = (A1 - 1, A2 - 1, ...) is the partition obtained from A by remov-
ing the first column. Both sides of (1) are products of terms of the form
(1 - gatb),', and to verify (1) and similar identities we shall encounter
later it is helpful to switch to additive notation.

Thus, if P is any (finite or infinite) product of the form

P= rl (1-qatb)",b
a,b>0

with exponents nab E Z we define

(6.12) L(P) = E nabgatb E Z[[q, t]l.
a,b>0

The mapping L is injective, so that if P and Q are two such products and
L(P) = L(Q), we may conclude that P = Q.

For example, if P = (gatb; q), we have

qatb

L(P)=gatb(1+q+q2+...)= 1- q

Hence

1-t
L(uA(A+)/uµ(A+)) _ E (uA(xix, 1) - uµ(xixj 1)) 1 _ q

1<i<j<n

and since

UA(xixj 1) - u,,(xixj 1) _ (qAi-Aj - qA,-A,)tJ-i

qµ'(q-1)tj-i if i<r<j,
0 otherwise,
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where r =1(A), it follows that
r n

(2) E E gµ'tj-i(t - 1).
i-1 j-r+l

On the other hand, from (6.4) we have

(3) L t"(µ)-n(A)BA/µ qµ'-µit 1 (ta'-al - 1)
1<i<j<n

where Bi = 1 if 1 < i < r, and 0i = 0 if i > r. The right-hand sides of (2) and
(3) are visibly equal, and therefore (1) is established.

Next, from (6.9) and (6.11) we have

1 - t
L(i/a/µ) = L qµ`-µ1t1-'(ta'-aj - 1) - E qµi-µ1t1-'(q a'-aj - 1)

1-q

qµ- µ/tl-' (ta'-a/-1)-(qai-ej-

t

q

all sums being o+er pairs (i, j) such that 1 < i < j < n. The pairs (i, j) such
that 0. = 0j give a zero contribution, and so do the pairs (i, j) such that
Bi = 1 and Oj = 0. When 0, = 0 and Bj = 1, the expression in braces above is
equal to

(t-1 -1) - (q-1 - 1)(1- t)/(1- q) = t-1 +q-1t - 1 - q-1,

and hence we have

,II,, "1 (1 -qµi-µ1t1-i-1)(1 -qA,-Ajtj-i+1)

(6.13) WA/µ = 1 1 (1- qµi-µjtj-')(I - q A,-Ajtj-i )

where the product is taken over all pairs (i, j) such that i < j and Ai = µi,
Aj = µj + 1.

When q = t, the formula (6.11) reduces to the formula

(1) SA(1,t,.... tn-1)=tn(A) fI
1<i<j<n

1 - tA;-Aj-i+j
1 - tj-i

of Chapter I, §3, Example 1. Now (loc. cit.) this can also be written in the
form

(2) SA(1, t,..., to-1) = tn(A) F1
SEA

1 - to+c(:)

1 - ti'(s)

where c(s) is the content and h(s) the hook-length of the square s E A. In
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the first version (1), the dependence on n appears only in the range
< i <j < n of the product, whereas in the second version (2) it appears as

an exponent in each factor.
There is a corresponding reformulation of (6.11) that reduces to (2)

when q = t. For each square s = (i, j) in the diagram of a partition A, let

,(6.14)

a(s) = aA(s) = Ai -j, a(s) =j - 1,

1(s) = lA(s) = A'j - i, 1'(s) = i - 1,

so that 1'(s), 1(s), a(s), and a'(s) are respectively the numbers of squares
in the diagram of A to the north, south, east, and west of the square s. The
numbers a(s) and a'(s) may be called respectively the arm-length and the
arm-colength of s, and 1(s), 1'(s) the leg-length and the leg-colength. The
hook length h(s) is thus a(s) + 1(s) + 1, and the content c(s) is a'(s) -1'(s).

With this notation established, we have

(6.11')

1 - ga'(s)tn-l'(s)

Pa(1,t,...,tn-1,q,t)=tn(A)F1
a(s)tl(s)+t

S E A
g

Proof. By use of the operator L (6.12) we reduce to showing that

(6.15) E (ga'(s)tn-i'(s) - ga(s)tl(s)+1) =
1 - t

E (qA,-Aj - 1)tj-i
SEA -q I<i<j<n

for a partition A of length < n. First we have
r

r` ga(s)tn-!'(s)= C` (1+q+...+qA;-")tn-i+1
SEA i-I

1

where r =1(A), so that

(1)

n
(1 - q) E ga'(s)tn-!'(s) _ (1 - gA,)tn+l-i

SEA i-1

Next consider the sum ESEAga(s)tl(s)+1 The contribution to this sum
from the squares in the ith row of A is

r
E (qAI-Ai + ... +qAi-Aj-+I)tj-i+1

j-i
r

q)
- I E (qAi- Aj - qA,-Ai+1)tj-i+I

j-i
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Summing for i = 1, 2,..., r we obtain

(2)
n

(1-q) E ga(s)t1(s)+1 (t -gA,tn+1-i) - (1 - t) qA'-atti-i

SEA i-1 1

and (6.15) follows from (1) and (2) without difficulty. I

Now let u be an indeterminate, and define a homomorphism

e t:AF -->F

by

(6.16)
ur

6u't(pr)
1 - tr

for each integer r > 1. In particular, if u is replaced by t" we have

1 - tnr
Et".t(Pr)= 1-tr =pr(l,t,...,tn-1)

and hence for any f E AF

previously denoted by u0(f). We now have

(6 17) e P. = VE
tr'(s) - ga'(s)u

u't A .A 1-q°(s)ti(s)+1

Proof By (6.11'), this is true when u = t" for any n > l(A), because
LSEA l'(s) = n(A). Both sides of (6.17) are polynomials in u with coeffi-
cients in F, and agree for infinitely many values of u, hence are identically
equal.

I

Next, recall ((4.11), (4.12)) that

QA(q, t) = bA(q, t)PA(q, t)

where

bA(q, t) = (PA, PA)-1.

We shall now compute bA(q, t). For this purpose we require

(6.18) Let f E AF be homogeneous of degree r. Then

eu.t wt, 9(f) = (-q)-reu.9-i(f ).
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Proof Since both e,, t and mr,q are algebra homomorphisms it is enough
to verify this when f = p , in which case it follows directly from the
definitions (6.16), (2.14). 1

We now calculate

e,,,,PA(q, t) = eu,t (Ot gQA,(t, q)

=(-q)-Uleu q-1QA,(t,q)

(-q)-IAIbA,(t, q)e,,,q-'PA.(t-1, q-1)

by (5.1), (6.18), and (4.14) (iv). From this it follows that

(-q)IAIeu 1PA(q,t)
bA,(t'q)

au. q-' PA,(t-', q-')

in which, by (6.17),

q" (s) - t-a (s)ue uP,-1,q-1q
SEA'

1-t-a(S)g-I(s)-i

tl'($) -qa'(S)
U

_ (-q)IAIS 1 - qa(s)+ltl(S)

(since ESEA a(s) = ESEA a'(s) and ESEA l(s) = ESEA l'(s)). Hence we obtain

1 - qa(s)+ ltl(s)

AI ,
q sex 1 - q a(s)t!(s)+ 1

or, on replacing (A, q, t) by (A', t, q),

(6 19) b ( t) _ Ti
1 - ga(s)tl(s)+ I

A q, SEA 1-qa(s)+1t1(s)
.

Remark. When q = t we obtain bA(t, t) = 1, in agreement with (sA, sA) = 1.
When q = 0, the denominator in the product (6.19) is 1, and the only s E A
that contribute to the numerator are those for which a(s) = 0, i.e. the end
squares of each now. Thus we obtain

m;(A)

bA(0, t)= fl [1 (1- t')
f>1 j-1

in agreement with Chapter III, (2.12).

Let us now return to the Pieri formula (6.7'), in which the coefficients
were computed explicitly in (6.13). We shall now give an alternative
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expression for For this purpose we define, for each partition A and
each square s,

1- gaA(S)tiA(S)+1

(6.20) ba(s) = bA(s; q, t) = 1 - gag(s)+ItlA(S)
if s E A,

1 otherwise.

If s=(i,j)EA, let s' =(j,i)EA'. Then

(6.21) aA(s) = lA.(s'), lA(s) = aA.(s'),

so that

(6.22) bA(s; q, t) = b., W; t, q)-1

Furthermore, if A and µ are partitions such that A µ, let CA/µ (resp.
RA/µ) denote the union of the columns (resp. rows) that intersect A - A.
Then we have

(6.23)
ba(s)

YA/µ
SECA/W-RA/Y

lA'
b (s)

Proof. From (6.13) we have

L(4,A/µ) = (t - q) E qµ+-µJ-1 (tj-` -ti-i-1)

summed over all pairs (i, j) such that i < j, Ai = µ, and Aj = µj + 1. To
each such pair we associate the square s = (i, A) E CA/jk- RA/µ. The
contribution to L(0 A'1,) from the pairs (i, j) such that (i, A1) = s is easily
seen to be equal to

(t - q)gaA(s)(tIA(s) - tI" (s))

and hence Lira/,) is the sum of these expressions, for all s E
µ n (CA/µ - RA/N,). But this is precisely the image under L of the product
(6.23).

By applying duality to (6.7') we shall obtain Q,,g, as a linear combina-
tion of the QA. Altogether there are four `Pieri formulas':

(6.24) Let µ be a partition and r a positive integer. Then

(1) Pµgr = El (P.AI/, PAI

(11) Qµ91 = EA WA//QA,

(iii) Qµer = EApA/µQA'

(iv) Pµer = LA .I //µ PA.
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ln: (i) and (ii) (resp. (iii) and (iv)) the sum is over partitions A such that A -

a horizontal (resp. vertical) r-strip, and the coefficients are given by

bx(s)
:0 ri

A/u
b,

F1
bµ(s)

SERA/.-CA/,, bx(s)

b (s)µ

(Px/µ = SEFE b (s)A/µ .

(iv)
ba(s)

x/µ = F1
SECA/u-RA/LL

b,
(s)

"Proof. Equation (iv) is a restatement of (6.7') and (6.23). By applying
duality (5.1) to (iv) we obtain (ii), with coefficients

4,x/µ(q, t) q)

which by virtue of (6.21) and (6.22) shows that is given by (ii) above.
Finally the coefficients in (i) and (iii) are

(Px/µ = bx bµ qix/µ

and (6.19) shows that they are given by the formulas above.

Remarks. 1. When q = 0, P. (resp. QA) is the Hall-Littlewood symmetric
function denoted by the same symbol in Chapter III, and (6.24) (i), (ii), and
(iv) reduce respectively to the formulas (5.7), (5.7'), and (3.2) of Chapter
III.
2. We have

(Pa/µ(q, t) = (px'/µ'(t, q), /a/µ(q, t) = q).

Examples

1. Let vl,...,v,, be distinct vectors in a real vector space V equipped with a
positive definite scalar product (u, v). Then

E(v1-vQ(1),Vi -vQ(;))>0

for any permutation or* 1 in S,,, and hence

E(v;,v;)> E(v;,vP(;)).

Deduce that det(q(",°i>) is not identically zero as a function of the real variable q.
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2. (a) Let A, µ be partitions such that A z) µ and A - µ is a horizontal strip. Then

t- 9 ,(qAi-Aj-qAi-µ;-qµi-Aj+,+qµi-µ;+,)tj-iL((pA/µ)= 1
9

summed over 1 < i <j < 1(A), and hence

f(qA,-Ajtj-i) {(qµi-µ;+ttj-i)
41A/µ

lciclj<l(A) f(gAi-µ;tl-i) f(gµi-Aj+,tj-i)

where f(u) _ (tu; q)./(qu; q)-.

(b) With A, Fc as in (a) we have

t-q
1_ (qK,-"j _gA,-µ;_gµ,-Aj+,+gAr-Aj+,)ti-+

4

summed over 1 < i < j < 1(µ), and hence

f(gKi-µ;tj-i) f(gAi-Aj+,tj-i)
A/µ=

14icjcl(µ) f(gAi-"it'-i) f(gµi-Aj+,tj-.i)
.

(c) Let A, µ be partitions such that A Z) t.c and A - .t is a vertical strip. Then

L((pa/µ) = (t-q)Fgµi-µ,(tj-i -tj-i-1)

summed over all pairs (i, j) such that 1 < i < j < and Ai > p,, Aj = µj. Hence

(1-qAi-Ajtj-i-1)(1-gµi-µ;tj-itl)
(PA/µ- 11 (1-qAi-A;tj-')(1-q i 4itj-i)

the product being taken over the same set of pairs (i, j).

3. Let A = (Al, A2, ...) be a partition, thought of as an infinite sequence, and let

(1 -qAi-Ai)tj-i-1.GA(q,t) (1 -t)2 F
lci<j<m

Then

4°(')ti(') =
GA(q, t)

(1-q)(1-t)SEA

and hence GA(q, t) = GA.(t, q).

4. Let A be a partition of length < n and let

vA(q, t) = Fl (qAi-Ajtj-i; q)k
1ci<jcn

vA(q,t)= 11 (qAi-Aj+ltj-i-l;q),,
1ci<jcn
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when t = q k. Then

and

5. Show that

and

7" (utl-i; q)A,
e,, ,(P tn(A)UA(9, t)1 1

i-1 (t;q)A;+k(n-i)

7-"- (ut1-'; q) A,
ep,,(QA) =t"(A)UA(q,t) 1 1

j-1 (q;q)A,+k(n-i)

n(A) 11
(ti-i+1;9)A;-Ai

(PA(q,t))=t
1<i<j<n (ti-i; q)A,-A,

n(A)
(qti-i;9)A;-Ai

1<j<jtn (qt ,q)A;-A1

if A is a partition of length < n.
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Notes and references

Proposition (6.6), together with the proof of (6.6) and (6.7) given in the
;text, is due to T. Koornwinder [K15].

7. The skew functions PA/,,,, QAIA

For any three partitions A, p., v let

(7.1) fµ.,=fµjq,t) = (QA,PPV) EF.

Equivalently, fµv is the coefficient of PA in the product P, P,,:

(7.1') P, P. E f11111 PA
A

In particular:

(7.2) (i) fµy(t, t) is the Littlewood-Richardson coefficient cµ _ (sA, S,,, S, )
(Chapter I, §9).
(ii) t) is the Hall polynomial fµv(t) (Chapter III, §3).
(iii) fµ (q, 1) is the coefficient of xA in m,m,,.
(iv) f A (1, t) = 1 if A = µ + v, and is zero otherwise.
(v)

;L&'
(q, t)=fµY(q-',t-').

These assertions are all consequences of (4.14). As to (iv), when q = 1
we have Px = et,, hence P,4P = eµ.u,,. = e(+),.
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By applying coq,, to each side of (7.1') and using duality (5.1) we obtain

Qµ (t, q)Qv-(t, q) t)QA.(t, q)
A

or equivalently

QF,(q, t)= E q)QA(q, t).
A

Comparison of this relation with (7.1') yields

(7.3) f,w(q, t) = f A:,,.(t, q)bA(q, t)/b,(q, t)bv(q, t)

by (4.12).

Clearly, fµv vanishes unless I Al = I µl + I v 1, for reasons of degree. More-
over

(7.4) fµv=0 unless A3µ and A3v.

Proof. For each partition A, let I,, denote the subspace of AF spanned by
the PA such that A 3 µ. The Pieri formula (6.24Xi) shows that grIf, cI, for
all r > 1. Since by (2.12) the gr generate A. as an F-algebra, it follows
that I is an ideal in AF. Hence PP,, E I,,, n I,,, which proves
(7.4). 1

Now let A, µ be partitions and define QA/µ E AF by

(7.5) QA/µ = L.r fv Qv

so that

(7.6) (QA/,,,,PV)=(QA,P},PV)

(and hence, by linearity, (QA/µ, f) = (QA, Pm f) for all f r= AF. From (7.4)
it follows that

(7.7) (i) QA/J, = 0 unless A 3 Ft,;
(ii) If A µ, QA//, is homogeneous of degree I Al - I ul.

Likewise we define P,,/f, by interchanging the P's and Q's in (7.6):

(7.6') (PA/,,Qv) _ (PA,QvQV).

Since QA = bAPA it follows that

(7.8) QA /v = bAb.'PA/A
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From (7.5) we have

E QA/µ(X)PA(Y) - E.fµvQv(x)PA(y)
A A, v

_ E Qv(X)PP(y)PP(Y)
V

=Pw(Y)11(x,Y)

by (4.13), where H(x, y) = H(x, y; q, t). Consequently

QA/u(x)PA(y)Q,(Z) _ PK(y)QN,(z)II(x,Y)
A, W !l

= II(x, y)H(y, z)

which by (4.13) again is equal to

QA(x, z)PA(y).
A
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It follows from this that

(7.9) QA(x, Z) _ QA/u(X)Qµ(z)

where the sum on the right is over partitions µ C A, by (7.7). Likewise we
have

- (7.9') PA(x, Z) _ E PA/µ(X)Pµ(Z)..
A

All of this parallels exactly the developments of Chapter I, §5 (for the
Schur functions) and Chapter III, §5 (for the Hall-Littlewood functions).
Just as in those cases, the formulas (7.9) and (7.9') enable us to express the
symmetric functions PA/µ and QA/v, explicitly as sums of monomials. Since

and (g,,) are dual bases of A F (2.11), it follows that

QA/µ (QA/K, 9v)MP

Now we can use (6.24) (i) to express Pµg,, as a linear combination of the
P. Let T be a (column-strict) tableau of shape A -µ and weight v,
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thought of as a sequence of partitions A(')) such that µ = A(0) C
A(l) C ... C A(') = A and such that each P) - A('- 1) is a horizontal strip.
Let

(7.11)

r
SoT(q, t) _ Fj (PA(,)/A(,-1)(q, t),

i-1

then iteration of (6.24) (i) shows that

(7.12) Pµ8,. _ E (F, (PT) PA

summed over all partitions A such that IA - µl = v, the inner sum
being over all tableaux T of shape A - µ and weight v.

From (7.10) and (7.12) it follows that

(7.13) QAlN, _ F, ggT(q, t)xT
T

summed over all tableaux T of shape A - µ, where (as in Chapter I, (5.13))
xT is the monomial defined by the tableau T.

Likewise, if we define

(7.11')

r
Or (q, t) n(q, t)

i-1

for a tableau T as above, we have

(7.13') P = O r(q,t)xTA/µ
T

summed over tableaux T of shape A - µ, as before.

Remarks. 1. In the case where there is only one variable x, (7.13) gives

(7.14) QA/µ(x; q, t) = (p l,,,(q, t)xIA-µl

if A - µ is a horizontal strip, and QAlµ(x; q, t) = 0 otherwise. Likewise,
from (7.13'), we have

(7.14') PA/µ(x; q, t) = +GAl,,(q, t)x1A-µl

if A - µ is a horizontal strip, and PA/µ(x; q, t) = 0 otherwise.

2. If x = (x1,..., it follows from (7.13) that
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(7.15) QA/µ,(x1,... , x,,; q, t) = 0 unless 0 < A, - µ'i < n for each i > 1.

For if A; - µ; > n for some i, there is no tableau of shape A - µ formed
with the symbols 1, 2,..., n.

3. Duality (5.1) extends to the skew functions Pa/µ and QA/µ: namely

(7.16) Wq.IPA/µ(q, t) = QA'/,.'(t, q),

(7.16') wq,,QA/µ(q, t) = PA,/µ,(t, q).

For we have

wq,,QA/µ(q, t) _ F, t)P,,,(t, q)
V

by (7.5) and (5.1), and by (7.3) this is equal to

A
b .(t, q)

E fµ,,.,(t, q) , q) Q,,(t, q)bA" t

bµ,(t, q)
=

, (t, q) Qx/µ'(t, q) = PA./µ,(t, q

This proves (7.16'), and (7.16) follows by replacing (q, t, A, µ) by
(t, q, A', µ').
4. The explicit calculation of the structure constants fµ,,(q, t) for arbitrary
A, µ, v remains an open problem. (The cases where µ or v is a single row
or a single column are covered by (6.24).) For example, it is not known to
the author whether the vanishing of the Littlewood-Richardson coeffi-
cient c, implies the vanishing of fµ (q, t).

Examples

1. In this and the following examples we shall sketch an alternative approach to
the results of §6. We shall not, therefore, make use of any result in §6 (with the
exception of the elementary fact (6.18) in Example 2).

Let µ be a partition of length n, and let r be a positive integer. Then Qµg, is a
linear combination of the QA, say

(1) Qµ(x;q,t)g,(x;q,t) +GA/µ(q,t)QA(x;q,t)

with certain (as yet undetermined) coefficients l'A/µ E F. By duality (5.1) we obtain

(2) Pµ.(x;t,q)e,(x) _ E 4'A1µ(q,t)PA,(x;t,q).
A

(a) Suppose that (pA/ # 0. By considering the leading monomials in (1) and (2),
show that A 44 µ + (r and that A' < µ' + (10, and hence that l(A) = n or n + 1.
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(b) Suppose first that 1(,1) = n, and let x = (x1,..., Use §4, Example 1 to show
that

(3) Y'A/µ = 4,A'/µ bA. b/bAbY,..

where A* _ (A1- 1, A2 - 1, ...) and A* _ (A, - 1, µ2 - 1, ...).
(c) Suppose next that 1(A) = n + 1, and consider the coefficient of xi on either
side of (2). Use §4, Example 2 to show that

(4)

(d) Deduce from (b) and (c) that iPA/µ = 0 unless A µ and A -,u is a horizontal
strip.

2. In this example we shall indicate an alternative proof of the specialization
formula (6.17). Let

'A(u;q,t) = e,,,,PP(x;q,t)

which is a polynomial in u with coefficients in F, of degree <, 1 Al.
The developments of §7 use from §6 only the result of Example 1(d), as the

reader may easily verify. In particular, we have from' (7.9') and (7.14')

(1) PA(x;q,t)= Y'A/,(q,t)x1A-µlPµ(x*;q,t)

where x" = (x2, x3, ... ).

(a) By setting x = (1, t.... , t"-1) in (1), where n is any positive integer, deduce that
the relation

(2) (I (u;q,t)= A/µ(q,t)tlµlq>µ(t-lu;q,t)

is true for u = t, t2, ... and hence identically.

(b) Use duality (5.1) together with (6.18) to show that

(3) (DA(u;q,t) _ (-q)-IAIbA,(t,q)cI' (u; t' 1,q-1).

(c) The polynomial IA(u; q, t) vanishes for u = 1, t,. .. , t'(")- 1 by (4.10). Deduce
from (3) that 'I(u; q, t) is divisible in F[u] by fl; .1(qj-1 u - 1).
(d) In each partition µ on the right-hand side of (2) we have Al > ILI > A2
since A - µ is a horizontal strip (Example 1(d)). Hence by (c) above each summand
on the right of (2) is divisible by the product fl;:1(gj- 1u - t), and therefore
'A(u; q, t) is also divisible by this product. By repeating this argument, conclude
that (D. is divisible in F[u] by

1(A) Ai

(qj-1 u - t'-1) (qd (S)u - l t'(s)).
j-1 sEA

(e) Since the degree in u of (Pa is at most Al, it follows from (d) that

(4) 'a(u; q, t) = v ,(q, t) 1-1 (ga'(s)u - tl'(s) )
SEA
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for some vA(q, 0 E F. If l(A) = n it follows from §4, Example 1 that

(5) (DA(tn; q, t) = tn(n-1)/2(D,. (t'; q,t),

where A* An - 1). Deduce from (4) and (5) that

n

vA(q, t) = v.,. (q, t) 1 1
(qAi-ltn-i+1 - 1)-1

i-1

and hence that

(6) vA(q, t) = TJ (ga(s)tl(s)+1 - 1)-l.
SEA

3. From (3), (4), and (6) of Example 2 we can now obtain the formula (6.19) for
bA(q, t). Then, knowing bA, we can derive the formula (6.24Xii) for by
induction from the relations (3) and (4) of Example 1.

4. For each partition A, let

bk' = fJ bA(s), boa a = fJ ba(s)
SEA SEA

i(s) even a(s) odd

(the superscripts el and oa stand for `even legs' and `odd arms' respectively). Then
we have

(i) E bv1Pv =
IT

1
(tX1x1; q),

,i<j (xixj; q)m

(tcj; q). (txixj; q)
(ii) E b.'PA = rl 11

A i (xi, q)0 i<j (xixj, q)
(,qt-x,?;, q2). (tr,xj; q).

oa _
b P

=
K µ

(xZ; q2) <j (xixj; q),µ

(iv) baaPA =
(qtr ; q').

z

(tx,xj; q).

A
i (1 -xi)(q

x2

i ; 9 )W i<j (xixj; q)m

In these sums, A runs through all partitions, it through all even partitions (i.e. with
all parts even), and v through all partitions such that v' is even (so that all the
columns of v are of even length).

We shall prove (i) first, and then deduce the other three identities from (i). It is
enough to prove (i) for a finite set of variables x1,. .. , x,,. By induction on n, it is
enough to show that if c(x) denotes the left-hand side of (i), then

n (tx.Y; q)m
(1) 4)(x1,...,xn,Y)=Vx1,...,xn)I]

j- 1 (xiY;q).

Now the left-hand side of (1) is

by

(7.9') and (7.14') equal to

(2) E bA1 A/µPµ(x1,...,xn)YIA-ILI

A, W
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summed over pairs of partitions A, µ such that A' is even, A D A and A - µ is a
horizontal strip. Again, the right-hand side of (1) is by (2.8) and (6.24) equal to

elb,
v,r

e Iµ-p1
I.

summed over pairs of partitions µ, v such that v' is even, µ D v and µ - v is a
horizontal strip.

For a given partition A of length < n both the partitions A and v are uniquely
determined: we have A' = v'= fl'i 'i if N''i is even, and A'i = fl'i ' + 1, rv = N-'i - 1 if 'i N'i is
odd. Hence I A - Al - I µ - vl, and a column contains a square belonging to A -.U
if and only if it contains a square belonging to µ - v: the condition in either case is
that it should be a column of odd length in µ.

To prove that (2) and (3) are equal therefore reduces to showing that

(4) ba W,/µ = bV''siv

For this purpose it is convenient to introduce the following notation: if k is any
partition and S is any set of squares, then bA(S) denotes the product of the bA(s)
for s e S. With this notation, if C (resp. C) denotes the union of the columns of
odd (resp. even) length in µ, we have rps,,, = bs(C)/b,,(C) and 4r,1A = bs(C)/bA(C)
by (6.24). Let R1 (resp. R2) denote the union of the odd (resp. even) numbered
rows, and let Ci = C fl Ri, C, = C n Ri. Then bA' = bA(R2) and b," = b (R2), since
all the columns of A and v have even length. We may therefore rewrite (4) as

bA(R2)bs(C)b (C) =

or, since C = C1 U C2, C = Cl U C2, R2 = C2 U C2 (the unions in each case being
disjoint) as

(5)

For each square s c- C fl A we have lA(s) = ls(s) =1,,(s); for each square s E
R1 n A we have aA(s) = as(s), and for each s E R2 n µ we have as(s) = a (s).
Hence we have

(6) bA(Cl) = bµ(Cl), bs(C2) =

Furthermore, for each square s e C2 n A let t e C1 be the square immediately
above s. Then we have aA(s) = as(t) and 1A(s) = ls(t); also as(s) = a (t) and
!s(s) and therefore

(7) bA(C2)=bs(CI), bs(C2)=b,,(CI).

These relations (6) and (7) together imply (5), and complete the proof of (i).

Next consider (ii). By (2.8) and (i), the right-hand side of (ii) is equal to

(8)
be I Pp g,be'rQA/pp

v,r s,v
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summed over partitions µ D v such that v' is even and p. - v is a horizontal strip.
From the proof of (i) above we have

b,`,

b,L(C2)/b,,(C1)

= bµ(Cl)b,,(CZ) = bµ'

by (6) and (7). Hence (8) is equal to Eµ bµ'P,, summed over all partitions p,, which
proves (ii).

Finally, (iii) and (iv) are obtained from (i) and (ii) respectively by duality, i.e. by
operating on both sides with wq,, and applying (5.1).

When q = 0, so that PA becomes the Hall-Littlewood symmetric function, the
identities (i)-(iv) above reduce to Examples 3, 4, 2, 1 of Chapter III, § 5,
respectively.

5. For partitions A, p., it such that A m µ and I AI =I µI + Iw I, let

AA/µ.,r = 'PT
T

summed over all (column-strict) tableaux T of shape A - µ and weight ar, so that
by (7.13) we have

(1) QA/ AA/µ. * m,

and hence

(2)

` from which it follows that

(3)

From (2) and (3) we have

it

AA/µ,,r - <QA/µ 9 gn )

g,r = E AY,,

P

= E
P

= E Ava flv.

The matrix (A,,,,) is strictly lower triangular and invertible; if its inverse is (B,,,,) we
have

A _
fµv AA/µ,,r Bnv

IF

and hence the structure constants f, are in principle computable in terms of the
'PT, which are given explicitly by (7.11) and (6.24).
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6. Let A, µ be partitions. Then

(a) FPp/a(x;q,t)QP/w(y;q,t)= [1(x,y;q,t)I:PI.(x;q,t)QA/Q(y;q,t).
p o

The proof is the same as that of Chapter I, §5, Example 26.

(b) By applying wq,, to the symmetric functions of the x variables in (a) we obtain

F, Qp/A'(x;t,q)Q/W(y;q,t) = H0(x,y) E Qµ'/o'(x;t,q)QA/o(y;q,t),
p

where IIo(x, y) = rl;,,(i +x,y;).

(c) Likewise

F,
P

Notes and references

Examples 1-3. The results of these Examples, in the context of Jack's
symmetric functions, are due to R. Stanley [S25].

Example 4(i). This identity, again in the context of Jack's symmetric
functions, is due to K Kadell.

8. Integral forms

For each partition A we define

(8.1) cA(q, t) = [I (1- ga(S)tr(S)+1),
SEA

(8.1') cA(q, t) = [I (1 - qa(s)+Itl(s)),

so that

(8.2)

and by (6.19)

Now let

SEA

c' (q, t) = cA.(t, q)

bA(q, t) = cA(q, t)/c' (q, t).

(8.3) JA=JA(x;q,t)=cA(q,t)PA(x;q,t)=cA(q,t)QA(x;q,t).

The symmetric functions J. are in some sense `integral forms' of the P. (or
QA). It seems likely that when they are expressed as linear combinations of
the monomial symmetric functions, the coefficients are polynomials, not
just rational functions, in q and t. We shall make a more precise conjec-
ture later in this section.
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(8.4) Remarks.

(i) When q = t we have

CA(t, t) = C, (t, t) th(s)
SEA

the hook polynomial of A, denoted by HA(t) in Chapter I, §3, Example 2.
Hence JA = HA(t)sA when q = t.

(ii) When q = 0 we have c'(0, t) = 1 and cA(0, t) = bA(t), so that JA(x; 0, t) is
the Hall-Littlewood function QA(x; t).

(iii) When q = 1,

CA(1, t) = 1 1 a - tl(s)+1) = (t; t)a,
SEA

in the notation of §2, Example 1, and hence by (4.14) (vi)

JA(x;1, t) = (t; t)A,eA.(x).

(iv) When t = 0, JA(x; q, 0) = PA(x; q, 0).

(v) When t = 1 we have cA(q,1) = 0 if A 0, so that J. = 0.

(vi) Let q = t" and let t - 1. The symmetric functions

JA (x; t", t)
J(a)(x) = lim

t-*1 (1 - t)IAI

are the integral forms of Jack's symmetric functions (see §10 below).

We have

CA(q-1, t- 1) _ II (1 - q-a(s)t-!(s)- 1)
SEA

since

(8.5)

= (- 1)IAIq-n(A )t-"(A)-IAIcA(q, t),

ESEA a(s) = n(A') and ESEA 1(s) = n(A), and hence

JA(x; q-t-1) _ (-1)IAIq-n(A')t-`(A)-IAIJA(x; q, t)

by virtue of (4.14) (iv).

Next, duality (5.1) now takes the form

(8.6)

and we have

Wq,tJA(q, t) = JA, (t, q)

(8.7) (JA, JA)q,t = cA(q, t)cx(q, t) = (JA., JA')t,q
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The specialization formula (6.17) gives

EU,IJA(x; q, t) _ qa'(s)u)

(8.8)
SEA

(t'-1 _qj-lu)
(i,j)EA

As in Chapter III, (4.5) let SA(x; t) denote the Schur functions associated
with the product 11(1-tri)/(1 -x,), so that (Chapter I, §7)

(8.9) SA(x; t) = > zP 1XP pp(x; t)
P

where
1(p)

(8.10) pP(x;t)=pp(x)fl(1-t ").
i-1

The SA(x; t) form an F-basis of AF, and hence we may express the
JN,(x; q, t) in terms of them, say

(8.11) JK(x; q, t) _ E KAK(q, t)SA(x; t).
A

,,,,(x; q, t) = QK(x; t) (8.4 (ii)), henceWhen q = 0 we have J

(8.12) KA1,(O, t) = KA,(t )

where the KA,,,(t) are the polynomials defined in Chapter III, §6. In
particular,

(8.13) KAK(0,0) = SAK, KAK(0,1) = KAK,

where the KAK are the Kostka numbers defined in Chapter I, §6, so that
KAK is the number of (column-strict) tableaux of shape A and weight µ.

From (8.9) and (8.10) it follows that SA(x; t-1)=( _0 -IAI SA,(x; t) and
hence by (8.5) that

(8.14) KAK(q,t)=q"(K')tn(K)KA,K(q-1,t-1).

Again, it follows from (8.9) that

wq,,SA(x; t) _ z, 1XPepp(x; q)
P

= SA,(x; q)

and hence by (8.6) that

(8.15) KAK(q, 0 = KA,K,(t, q).
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For each integer n > 0, let K"(q, t) denote the matrix (K,,,(q, t)) where
A and µ run through the partitions of n. Unlike the matrices K"(t) =
K"(0, t) of Chapter III, the matrices K"(q, t) (for n > 1) are not upper
triangular; indeed, it follows from (8.15) that K,,(q, 0) = KA.p.(q), so that
K"(q, 0) is lower triangular.

Another special case in

(8.16) KAµ(1,1) = X(") = n!/h(A)

(where A, µ are partitions of n).

Proof From (8.9) and (8.11) we have

JJ(x; q, t) _ E KAp,(q, t) E zp lXP pp(x; t)
A P

On setting q = t we obtain from (8.4Xi)

H,,,(t)sµ(x) = F, zp'XPKA,(t, t)pp(x; t).
A,p

But also (Chapter I, §7)

and therefore

EKAK

A

so that we obtain

(8.17) KAp,(t, t) = F, zp'XP XP HK(t)/ J-1 (1- t ")
P

by orthogonality of the characters of the symmetric group S. Now let
t -> 1, and we obtain

KAp,(1,1) = X(l")

since the only term that survives on the right-hand side of (8.17) is that
corresponding to the partition p = (1").

The matrices K"(q, t) have been computed for n < 8. The results
suggest the conjecture

sp,(X) _ E z 'XP pp(x)
P

(t,t)xp =xpHK(t)/fI(1-tP')

(8.18?) KAµ(q, t) is a polynomial in q and t with positive integral coefficients.
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Some further partial evidence in favour of this conjecture is contained in
the Examples at the end of this section. In particular, we know from the
theorem of Lascoux and Schutzenberger (Chapter III, (6.5)) that KAµ(0, t)
is a polynomial in t with positive integral coefficients. By (8.15) the same is
true of KKP,(q, 0).

Since t) is a linear combination of the monomial symmetric func-
tions mA(x) with coefficients in Z[t] (see the table of transition matrices in
Chapter III, §6), the conjecture (8.18?) would imply that the J. are linear
combinations of the mµ with coefficients in Z[q, t].

On the assumption that (8.18?) is true, the number of monomials gatb
in Kxµ(q, t) would by (8.16) be equal to the number of standard tableaux
of shape A. One may therefore ask whether there is a combinatorial rule
that attaches to each pair (T, µ), where T is a standard tableau containing
n symbols and µ is a partition of n, a monomial ga(T.µ)tb(T.µ), so that
K,µ(q, t) is the sum of these monomials as T runs through the standard
tableaux of shape A.

Finally, we shall introduce generalizations of the polynomials XP (t) of
Chapter III, §7. For each pair of partitions A, p we define Xv (q, t) E F by

(8.19) JJ(x; q, t) _ zo'XP (q, t)p,(x; t)
P

(so that Xo (q, t) = 0 unless I AI = I p1). By (8.4) (ii) and Chapter III, (7.5) we
have

XP (0, t) =Xp (t).

From (8.9) and (8.11) it follows that

J,(x; q, t) _ Kµa(q, t) E zP'XP pP(x; t)
P

and hence that

(8.20) XP(q,t) = E Xo KPA(q,t).

W

By orthogonality of the characters of the symmetric group, this relation is
equivalent to

(8.20') KK,(q, t) _ zP- 'X"' XP '(q, t).
P
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The conjecture (8.18?), together with (8.20), would imply that XP(q, t) E
Z[q, t], since the Xp are integers.

From (8.14) and (8.15) we deduce that

(8.21) XP(q-1)t-1) = EPq-n(A')t-n(A)XP (q, t),

(8.22) XP (t, q) = eeXP'(q, t).

The XP(q, t) satisfy orthogonality relations that generalize those of
Chapter III, §7. Namely, from (2.6), (4.13), and the definition (8.3) of J. we
have

E zP(q, t)-'pp(x)pp(y) _ F, c,l(q, t)-'cA(q, t)-'JJ(x; q, t)JJ(y; q, t).
P A

If we now substitute (8.19) in the right-hand side of this relation, and
compare the coefficients of pP(x)po(y) on either side, we shall obtain

(8.23)
IAkn

where

(8.24)

1(p)

P(q,t) =zPF1 (1 -qPi)-'(1 -tPi)
i-1

An equivalent statement is

(8.25) E t'p(q, t)-1 XP(q, t)XP (q, t) = alµcl(q, t)ca(q, t).
IPI-n

Finally, it follows from (8.16) and (8.20) that

Xp(1,1)_ Xpx( )

and therefore by orthogonality of the XP (Chapter I, §7)

(8.26) XPa(111)
/n! if p=(1n),

0 otherwise.
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Remark (8.27). Let V= Z[S,,] be the regular representation of Sn, and for
each partition A of n let M. be an irreducible Sn-module with character
X A, so that in particular M(1.) is the one-dimensional module affording the
sign character e. Then the conjecture (8.18?), together with (8.26), would
imply that for each partition µ of n there is a bigrading of the regular
representation

V= ®Vh,k
h,k µ

where 0 < h < n( µ) and 0 < k < n( µ'), such that for each A the multiplic-
ity of Mx in Vµh,k is equal to the coefficient of thgk in K,N,(q, t). By (8.14)
and (8.15) these bigradings would satisfy

Vh,k®M(ln)V ,kV,h,

where h'=n(µ)-h and k'=n(µ')-k.
Recently Garsia and Haiman [G4] have put forward a conjecture in this

direction. Let A=Z[xl,...,xn,y1,...,yn], where the x's and Y's are 2n
independent indeterminates. The polynomial ring A is bigraded: A =

h, k > 0 Ah,k, where Ah, k consists of the polynomials f E= A that are
homogeneous of degree h (resp. k) in the x's (resp. y's). The symmetric
group S,, acts diagonally on A:

wf (x1, ... , xn, Y1, ..., yn) = f (xW,(1), ... ) Xw(n) 9 Yw(1)' ... , Yw(n))

for w E S,, and f E A, and this action respects the bigrading.
Now let µ be a partition of n and let (p1, q1), ..., (p,,, q,,) denote the set

of pairs {(i - 1, j - 1): (i, j) E µ) arranged in lexicographical order. We
have Ep; = n( µ) and Eq, = n( µ'). Let

Ali(x, y) = det(xjiye,1)1Gi,jGn EAn(µ),n(µ ).I

Clearly, w&µ = e(w)D, for w E S,,. Let Hµ CA be the linear span of all
the partial derivatives of 0µ(x, y) of all orders with respect to the x's and
y's. Then Hµ is stable under the action of Sn, and moreover

Hµ= H,"
h,k

where Hµ " k = Hµ t1 Ah, k is Sn-stable. Let Pµ , k denote the character of the
S,,-module Hµ k, and for each partition A of n let

t) = E (Xa, cµ ,k)thgk

h,k
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where as in Chapter I, §7 the X A are the irreducible characters of S,,.
Then Garsia and Haiman conjecture (loc. cit.) that

CAN,(q, t) = Kx,,,(q, t- 'W(A).

In particular they have verified that this is so for all pairs (A, µ)
partitions of n < 6, and in other special cases.

The matrices K(q, t)', n < 6

2

1

1

4

31

22

212

1°

5

41

32

312

221

213

15

2

121

4

1

t

31

12

q

1

22

3

21

13

3 21 13

1 q + q2 q3

t 1+qt q

t3 t + t2 1

212 1°

1 q + q2 + q3 q2 + q4 q3 + q4 + q5 q6

t 1 + qt + q2t q + q2t q + q2 + q3t q3

t2 t + qt + qt2 1 + g2t2 q + qt + q2t q2

t3 t + t2 + qt3 t + qt2 1 + qt + qt2 q

t6 t3 + t4 + t5 t2 + t° t + t2 + t3 1

5

41

32

312

221

213

15

5 41 32

1 q + q 2 + q
3 + q 4 q 2 + q3 + q4 + q5 + q6

t 1 + qt + q2t + q3t q + q2 + q2t + q31 + q4t

t2 t + qt + qt2 + g2t2 1 + qt + q2t + g2t2 + g3t2

t3 t + t2 + qt3 + g213 t + qt + qt2 + g2t2 + q 2t3

t° t2 + t3 + qt3 + qt4 t + t2 + qt2 + qt3 + g2t4

16 13 + t4 + t5 + qt6 t2 + t3 + t4 + qt4 + qty

t10 t6 + t7 + 18 + t9 t° + t5 + t6 + t7 + 18

312 221 213 15

q3+q4+2q5+q6+q7 q4 + q5 + q6 + q7 + q8 q6+q7+q8+q9 q'°

q + q2 + q3 + q3t + q4t + q5t q2 + q3 + q° + q4t + q5t q3 + q° + q5 +q 6t q6

q + qt + 2g2t + q3t + q 3t2 q + q2 + q2t + q3t + q4t2 q2 + q3 + q3t + q 4 t q4
1 + qt + q2t + qt2 + g2t2 + g3t3 q + qt + q2t + g2t2 + g3t2 q + q2 + q3t + g3t2 q3

t+qt+2gt2+qt3+g2t3 1 +qt+qt2+g2t2+g2t3 q+qt+q2t+q2 t2 q2

t + t 2 + t 3 + qt3 + qt4 + qt5 t+t2+qt2+qt3+ql4 1+qt+qt2+qt3 q

t3+t4+215+16+17 t 2 + t 3 + t 4 + t 5 + t 6 t+12+t3+t° 1

of



III+JIZ+61Z+81£+LI£+91Z+SIZ+V1 
sib+LlbZ+9ibZ+91+5ibZ+SlZ+Vlb+61Z+EIZ+ZI 

91zb + 51zbZ + slb + Vizb + Vib£ + £;b£ + l + ;b + ZiZ + I 
51Eb + slzb + ylEb + v1ZbZ + ylb + ElzbZ + E1bZ + z1 zb + zlbZ + Z1 + 1b + 1 

51£b + 1 Zb + V1£b + e;zbZ + Vlb + Elzbz + E1bZ + z1 zb + z1bZ + ZI + lb + 1 

vlvb + E1£b£ + £1zb + ZlEb + zlzby + z1b + Izb + lb£ + I 
E1sb + EIVb + ztsb + zlvbZ + Z1£bZ + ZIZb + ivb + 1EbZ + 1Z1Z + 1b + zb + b 

Elsb + E4b + zlsb + Z)VbZ + zi£bZ + z1Zb + 1Vb + 1EbZ + 1ZbZ + lb + zb + b 

Z19b + zlcbZ + zlvb + 156 + IVbE + IEb£ + I z 
b + Eb + zbZ + b 

18b+ILbZ+19bZ+15bZ+lvb+9b+SbZ+9bZ+bZ+b 
fib+aibZ+6bZ+8b£+Lb£+9bZ+SbZ+b 

IZ£ 

Z[1 + 011 + 61 + 81 + 91 Z11 + i11 + o1IZ + 61Z + 81Z + L1 + 91 

81b + LI + 91b + 51 + PI 61b + Bib + LIb + LI + 91b + 91 + 51Z + Vl + E1 

91zb + 5lb + y1b + vI + ZI 91Zb + 9lb + slbZ + ;b z + V1 + £ib + E1 + Z$ 

91£b + V1b + E1b + £i + z1b sizb + 51b + V1Zb + v1bZ + E1zb + EIbZ + El + zJb 

sizb+Vlzb+Vlb+El+zIb 91Eb+5lZb+9lb+vlzb+ylb+Elzb+£16+EI+Z1+1 
'IEb + E1zb + Zlzb + z1b + I VIEb + E1£b + E1ZbZ + Elb + zlZb + z$bZ + 1b + 1 

E1Eb + zlvb + z1Eb + zlZb + I E1£b + z1 vb + z1EbZ + z1 ZbZ + z$b + 1£b + Izb + lb 

IlEb + zIVb + z1Zb + izb + ib Elsb + E1vb + E$Eb + ZlEb + zlzb + zIb + 0 + Izb + 1b + I 
zlsb + zl£b + 1Eb + Izb + b z1 sb + zI vb + ZlEb + Jvb + 1EbZ + IzbZ + lb + b 

19b+I5b+0 +9b+zb 1Lb+19b+1sbZ+lvb+1Eb+9b+Eb+zb+b 
6b+Lb+9b+5b+Eb 6b+8b+LbZ+9bZ+5bZ+vb+Eb 

Z£ ZTb 

Ell+ZT1+IIIZ+oil+61Z+81+L1 Y11+£E1+Z11+I11+Ilil Sit 

61b+81b+81+L1b+Ll+91Z+51+v1 0Iib+61+81+L$+91 Oil 

L1zb + 9Ib + SIbZ + SI + ylb + VI + £1Z Llb + 91b + 91 + S1 + 1 L1 

91zb+slzb+5lb+Vtzb+qlb+Vl+EIb+E1+zt 91b+5Ib+51+V16+VI 9I 

9)Zb + slzb + cIb + Vlzb + Vlb + VI + £1b + E1 + z1 91zb + 91b + S1 + V, + EI 91 

VIEb + VIZb + E1zbZ + EIb + Z1bZ + ZI + I V1Zb + V1b + £1b + £I + Z1 `1 

Etvb + E1Eb + E1zb + ZlEb + z1Zb + zib + Izb + lb + I E1zb + EIb + Z1Zb + ZIb + z1 El 

Elvb + £1£b + E1zb + ZlEb + Zlzb + ZIb + Izb + lb + 1 E1Eb + Elzb + EIb + Z1 + I EI 

ZIVbZ + ZlEb + Z1zb + 1Eb + 1ZbZ + lb + I z1£b + zlzb + Zib + lb + I ZI 

19b+I5b+IbZ+7Eb+Izb+Eb+zb+b Ivb+ILb+Izb+16+ I 1 

sb+Lb+9bZ+5b+bZ+Eb+zb Sb+Vb+Eb+Zb+b T 

Z4 TS 9 

S2I3.L31 V 1Vd OMI HJAM SNOI.LJNft i DIUI.L3V1FJAS IA 09£ 
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313

361

23

q6+q7+2q8+2q9+2q'o+qll+q12 q6 + q8 + q9 + q1o + q12

q3+q4+2q5+q6+q7+q6t+q7t+qet+q91 q4+q5+q7+ q6t+q8t
q2 + q3 + q4 + q3t + 2q 4t + 2g5t + q6t + q 6t2 q2 + q4 + q4t + q5t + q 6t2

q + q2 + q3 + q3t + q4t + q5t + g3t2 + g4t2 + g5t2 + g6t3 q3 + q2t + q4t + g4t2 + g5t2

q3 + q2t + 2q3t + 2q4t + q5t + q3t2 + q4t2 + q5t 2 q3 + q2t + q3t + q4t + g1t3

q + qt + 2q 2t + q3t + g2t2 + 2g312 + q3t3 + q 4t3 q + q2t + g2t2 + q 3t2 + g4t3

1 + qt + q2t + qt2 + g2t2 + qt3 + g2t3 + g3t3 + g3t4 + g3t5 qt + qt2 + g2t2 + g3t3 + g2t4

qt + q2t + qt2 + 2g212 + qt3 + 2q2t3 + q 3t3 + g214 1 + g2t2 + q 2t3 + g3t3 + q 2t4

t+qt+2gt2+2gt3+g2t3+qt4+g2t4+g2t5 t+qt2+qt3+g 2t3+g2t5
t + t2 + t3 + qt3 + t4 + qt4 + 2815 + qt6 + qt7 t2 + qt3 + t4 + qty + qt6

t3 + t4 + 215 + 2t6 + 217 + t8 + t9 t3 + t5 + t6 + t7 + t9

6

51

42

412

32

.321

313

23

2212

214

16

2212

q7 + q8 + 2q9 + q1o + 2811 + q12 + q13 q1o + q11 + q12 + q13 + q14 q15

q4+q5+2q6+q7+q8+q7t+q8t+q9t q6+q7+q8+q9+g10t q1o

2q3 + q4 + q5 + q4t + 2g5t + q6t + g7t2 q4 + q5 + q6 + q61 + q7t q7

q2 + q3 + q4 + q3t + q4t + q5t + g4t2 + g5t2 + g6t2 q3 + q4 + q5 + q6t + g6t2 q6

q2+q3+q4+q3t+q4t+q5t+g4t2+9512+9612 q4+q5+q4t+q5t+q6t q6

q + q2 + 2g2t + q3t + 2g3t2 + g4t2 + g4t3 q2 + q3 + q3t + q4t + g4t2 q4

q + qt + q21 + qt2 + q 2t2 + g312 + q 2t3 + g3t3 + g314 q + q2 + q3t + g3t2 + g3t3 q3

q + qt + q2t + qt2 + g2t2 + g3t2 + g2t3 + g3t3 + g3t4 q2 + q2t + q3t + g1t2 + 8312 q3

1 + qt + 2gt2 + g2t2 + qt3 + g2t3 + 2g2t4 q + qt + q21 + g2t2 + g2t3 q2

t+t2+qt2+t3+qt3+2g14+qt5+qt6 1 + qt + qt2 + qt3 + qt4 q

t2 + t3 + 2t4 + t5 + 2t6 + t7 + t8 t + t2 + t3 + t4 + t5 1

214 16

Examples

1. We have

1 -tx,qj-1

8n(x; q, t)
n>o i,i 1

-xr91-1

_ sa(1, q, q2, ... )SA(x; t)
A

F, gn(z)Ha(9)_1Sa(x; t)
A
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by Chapter I, (4.3) and Chapter I, §3, Example 2, where HA(q) = ek(q) q) is the
hook-length polynomial. Hence

J(,,)(x; q, t) = (q; q)ngn(x; q, t)

gn(A)(q; q)n
HA(q)

SA(X;t)

IAI-n

and therefore

KA(n)(q, t) = gn(A)(q; q)n/HA(q)

= F, qr(T)
T

(Chapter I, §5, Example 14); the sum is over all standard tableaux T of shape A,
and r(T) is the sum of the positive integers k such that k + 1 lies in a lower row
than k in T.

By duality (8.15) it follows that

KA(1.)(q, t) = t n(")(t; On 1H,(1).

2. Let k = (r + 1, Is) _ (ris) in Frobenius notation. For each partition µ of n =
r + s + 1, t) is the coefficient of us in the polynomial

fJ (ti-1 +qj-1u)
(i.j)

where the product is over all (i, j) e u, with the exception of (i, j) _ (1, 1).
This can be proved by applying the specialization to both sides of (8.11).

By (8.8) we have

e-w,,Jµ(x; q,!) = II (ti-1 +qj-lu)

and

1(p)

E_u ,SA(X; t) = Ez 1XP rI (1 - (-u)Pi)
P i-1

which is the Schur function sA corresponding to the series E
(1 + uy)/(1- y), so that sA = 0 unless A is a hook, and sA = (1 + u)us if A = (rls).
It follows that

(,) [1 (ti-l+qj-1u)= F, K(r,s)µ(q,1)(1+u)us,
(i,j)eA r+s-n-1

which gives the result stated.

3. Consider the functions KA,,,(q, t) when q = t. We have then J. = H(t)s(x), so
that

HN,(t)s,(X) _ KA,(t, t)SA(X; t).
A
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Since (sa(x)) and (SA(x; t)) are dual bases for the scalar product (u, u)o,t, it follows
that

KA,(t,t) =H, (t)(SA,s,>o,l.

Now

1(P)

(SA,Sµ)0,L.,ZP1x,x U(1-tP,)
P

(SA* Sµ)(1,t,t2, ...)

where sA * sµ is the internal product defined in Chapter I, §7.
If XP # 0, the polynomial II(1- t P,) divides Hµ(t) (Stanley [S24]), from which it

follows that KAP,(t, t) E Q[t]. But also SA * sµ is of the form E,, with coeffi-
cients a,, (=- N, so that

sA, sµ)0,, = L, avt"(Y)Hv(t)-1 E Z[[t]]
V

Hence KAF,(t, t) E Q[t] t1 Z[[t]] - Z[t].
Also

XP(t,t)=XPHA(t)/II(1-to')EZ[t].

4. Let A be a partition. For each square s in the positive quadrant define

CA(S) = 1 -gaA(s)t1A(s)+1,

CA(s) = 1-gaA(s)+It1A(s)

if s E A, and cA(s) = c' (s) 1 otherwise. If S is any set of squares, let

ca = F I cA(s). 1 1 CA(S).
SES SIES

With this notation we have by (6.24)

... JJ(r) = L 17A/µ JA
A

summed over partitions A A such that A -A is a horizontal strip of length r,
where

%/µ(q, t) = (q; q)res(q, t)/ca (q, 0,

and S is the union of the columns that contain squares s E A - µ.
In particular

(1 - grts)J(r)J(1,) _ (1 - ts)J(rjS_ 1) + (1- gr)J(r_ 11s)

'ifr,s>1.
5.-Let µ = (21"-2) and let A be a partition of n. Then

KAµ(q, t) = K;, ,(0, t) + qt"('L)KA.µ(0, t-1).



364 VI SYMMETRIC FUNCTIONS-WITH TWO PARAMETERS

(From the last equation of Example 4 above, when r = 1 we have

(1 - t")Jµ = (1- qt"-1)J(1)J(1.-1) - (1 - q) J(1.).

By replacing (q, t) by (0, t) and then by (0, t-'), and eliminating ele" _ 1 and e
from the three resulting equations, we obtain

JJ(q, t) = Jµ(0, t) + (-1)"qt1+"(" -1)/2 Jµ(0, t-1),

from which the result follows by picking out the coefficient of SA(x; t) on either
side, and bearing in mind that SA(x; t-') _ (-t)-IAISA.(x; t).)

6. We have

where

For

det K"(q, t) _ fl FF(q, t)
JAI="

FA(q, t) = (1 - ga(3)tl(S)+1).
SEA

a(s)> 0

K(q, t)' = M(J(q, t), S(t))

= M(J(q, t), P(q, t))M(P(q, t), m)M(S(t), m)

where M(J, P) is diagonal, with determinant IIA cA(q, t); M(P, m) is unitriangular,
hence has determinant 1; and (Chapter III, §6) M(S, m) has determinant
r[A bA(t) = IIA cA(0, t). It follows that

det K"(q, t) _ fI cA(q, t)/cA(0, t)
IAI-"

which is equivalent to the result stated.

7. When q = 1 we have Pµ = eµ., so that

(1) Jµ(x;1, t) = (t; t)µ.eµ.(x).

Moreover, it follows from Chapter I, §3, Example 2 and Chapter I, (4.3') that

(2) e,(x)= E SA(x; t)t"(A)/HA(t).
IAI-r

Let us write

(3) uA(t) = t"(A')(t ; t)/HA(t)

for A a partition of r. By Chapter I, §5, Example 14 we have

(4) uA(t) _ E taT)
T

summed over the standard tableaux T of shape A, where p(T) is the sum of the
entries k in T such that k + 1 lies in a column to the right of k. In particular,
therefore, uA(t) is a polynomial in t with positive integral coefficients.
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From (1), (2), and (3) we have

.Jµ(x; 1, t) _ 1 (E, UAi(t)SAi(x; t))
ia1

where the inner sum is over partitions A' of µi'. It follows that

(5) KAµ(1, t) = E CA1AZ... UAl(t)UA2(t)...

(where the c's are Littlewood-Richardson coefficients), and hence that KAµ(1, t) is
a polynomial in t with positive integral coefficients. Dually, by (8.15), KAµ(q,1) is a
polynomial in q with positive integral coefficients.

A closer examination of the equation (5), in the context of the `algebra of
tableaux' [S7] shows that

(6)

MAIL

summed over all standard tableaux T of shape .1, where

p(T, µ) = F, p(p,T )
i> 1

and p1T is the restriction of T to the ith segment of [1,n], of length 4,
determined by the partition µ' = (µ'1, µ2, ... ). An equivalent formulation is

(7) KAP(1, t) = t`(T,µ)
T

summed as before over the standard tableaux T of shape A, where

c(T, µ) = E c( p1T)

and c( pET) is the charge (Chapter III, (6.5)) of the skew standard tableau piT.

It can also be shown that if w E S,, is a transposition,

dal,
(1, 1) =

Z
( X A(1) + X A(w))n(,u),

8. (a) Since

it follows that

KAP(1,t) = F taT,µ)
T

dq
(1,1) = Z( X A(1) - XA(w))n( µ).

uP) t Pi

J(n)(x;q,t)=(q;q)n E zPlpp(x)f 1-qP;'
IPA-n

X, ')(q,t) = (q; q)nl l (1
-qPi)-'
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for all partitions p of n. Dually,

Xal")(q, t) = eo(t; t) [J (1 - t P+)

(b) Another special case is

X(,)(q,t) _ fT (t-1 -qj-1)
(i,j)

where the product is over all (i, j) E A with the exception of (1, 1). For by (8.20) we
have

X(n)(q, t) _ X(n)KAµ(q, t)

and x(1,",) is zero unless µ is a hook (r I s), in which case it is equal to (-1)s. The
result now follows by setting u = -1 in the formula (*) of Example 2.

(c) We have

ca(q, t)
X1")(q,t)

(1
-t)n 9T(q,t)

T

summed over the standard tableaux T of shape A.

9. JA(l, t, t2,...; q, t) = t"(A).

(Set u = t" in (8.8), and then let n - oo.)

10. For each partition A, let EA(x; q) denote the Schur function sA in the variables
xjgj-1(i, j > 1). Then (1A(x; q)) is the basis of AF dual to the basis (SA(x; t)), and
hence

KA,(q, t) = (1a(x; q), J, (x; q, t)).

We can now define

K,/,,µ(q, t) = q), JP,(x; q, t))

where A v and I Al = I Iil + I PI (otherwise it is zero). Since

IA/v = CvAar L'aY.

IT

where the c's are Littlewood-Richardson coefficients, hence are integers > 0, it
follows that

K At) = cv"K"µ(q,t)
ir

which will be a polynomial with positive integer coefficients if (8.18?) is true.
Since X A/v = E cA,,, X", it follows from (8.16) that KA1,,,µ(l,1) = X A/''(1), the

number of standard tableaux of shape A - P.



8. INTEGRAL FORMS 367

We have

KV,,,, (t, q) = Ka,/Y', IL, (q, t),

KA/v,p(q-1,t-1)

Ll. In'this example we shall assume the truth of (8.18?).
a) Let

JA(x; q, t) = E t)m,,(x)
µ<A

Chen (1- t) -1(v`)vvp.(q, t) E Z[q, t ]
We have already observed that (8.18?) implies that vAµ E Z[q, t]. On the other

land, we have

JA(x;q,t) _ KPA(q,t)SP(x;t)

1(P)

_ EK,A(q,t)F, zo 1XPpPfl(1-t"),
A P

end

Pp= E LPom

vith coefficients LP, E N. Hence

1(p)

vA., (q,t)= EKPA(q,t) F, zP 1XPLP,rj(1-tPi),
W P<o 1=1

and since p 5 o implies that l( p) > 1(0), every term in the inner sum is divisible
)y

(1 - t)1(°).

b) For any three partitions A, µ, v we have

E Z[q, t]

-again on the assumption that (8.18?) is true. For this it is enough to show that
SA, E Z[q, fl, and hence it is enough to show that <SA, SP) E Z[q, fl. But

1(p)

(SA,Sµ)= zP 1XPXP(I-gPi)(1-t Pi)
p i- l

='P(SA*s )

vhere sA * sP, is the internal product defined in Chapter I, §7, and rp is the
pecialization defined by rp(p,) _ (1 - q'X l - t') for r > 1. We have then

(1 - qu)(1 - tu)

rE
`p(h,)u' _ (1- u)(1- qtu)
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so that rp(h,) a Z[q, t] for all r 3 0, and hence successively <p(s,k) for all d and
(p(sa * sµ) for all A, A, lie in Z[q, t].

Notes and references

For other cases in which Kav,(q, t) can be shown to be a polynomial, see
[S32].

9. Another scalar product

In this section we shall work with a finite number of variables x =
(x1, ... , x,,). We shall also assume, for simplicity of exposition, that t = qk
where k is a non-negative integer (see, however, the remarks at the end of
the section).

Let L =F[x: ',..., x 1] be the F-algebra of Laurent polynomials in
x1, ... , xn (i.e. polynomials in the x, and xi ' ). If f = f (xl, ... , xn) (=- L,,, let
f = f(xi',..., xn') and let [ f ]1 denote the constant term in f. Also recall
from §3 that Ty,,f(x1,...,xn)=f(xl,.... gxj,...,xn).

(9.1) Let f, g E Ln. Then

[(Tq.x;f)g]1 = [(Tq.x;g)/j1.

Proof Since both sides are linear in each of f and g, we may assume that
f and g are monomials, and then the result is obvious. I

Now let

A=A(x;q,t)_'J-1 (xix) 1; q)

(1 - q'xix,- 1)

i-Af r-O

since t = qk. Clearly A E L, and is symmetric in x1, ..., xn. We define a
scalar product on Ln as follows:

1
(9.3) (f,g)'=(f,g)n=n,[J ]1.

(9.4) Let f, g c= An, F. Then

(Dnf, g)' = (f, Dng)'.

where D is the operator defined by (3.4).
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Proof Let

A+= fl (xix; '; q) ,/(txix; 1; q),,
i<j

so that A = A+O+. Then we have

_ n 1 - tx1x- 1
A+'Tq,x,A+= II _, =A1(x; t)j=2 1 -xlxj

in the notation of §3, so that

(A1(x; t)Tq,xl f )A+= Tq,x,(.fA+)

for all f e An, F, and therefore

[A1(x;t)(Tq,x,f)gA]1 = [Tq,x,(fA+)gA+J1

which by (9.1) is symmetrical in f and g. By interchanging x1 and x,, it
follows that

[ A,(x; t)(Tq,xj)gA]
1

is symmetrical in f and g for each i = 1, 2,..., n. Hence [(D,', f )kA 1, is
symmetrical in f and g, which establishes (9.4). 1

(9.5) The polynomials PA(x; q, t), where x = (x1,. .. , and l(A) < n, are
pairwise orthogonal for the scalar product (9.3).

Proof. Since D,1, PA = cAAPA by (4.15), where

n
qA;tn-i

CAA = ,

i-1

it follows from (9.4) that

CAA(PA,Pµ) =Cµµ(PA,P,>'.

Since CAA # cµµ if A # µ, the result follows.

Remarks. 1. It follows from (9.5) that each of the operators D, defined in
§3 is self-adjoint for the scalar product (9.3). For the PA are simultaneous
eigenfunctions of these operators, by (4.15). Alternatively, this result can
be established by direct computation, using the expression (3.4)r for D,;.

2. When q = t (but not otherwise) the two scalar products (f, g) (2.20)
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and <f, g );, coincide. For 0(x; t, t) = rl;,,j(1 - x;x,-.1) = as aa, where a8 =
rI; < 1(x1- xj) (Chapter I, §3), and therefore

CsA,sµ)n- sASµasa8J1n i.

1

= n! [aA+8aµ+8]1 = SAµ

On the other hand, when q=t the scalar product (f, g)n is that of
Chapter I, so that CsA, sµ)n = SAµ by Chapter I, (4.8).

It remains to calculate the scalar product <PA, PA )'. One form of the
answer is, with the notation of (6.14)

/ 1 - ga'(s)tn-1'(s)

(9.6) (PA,QA)n =Cns 1 -qa'(s)+1tn-1'(s)-1
e,k

where 1(A) < n and

(9.7)

1
77Cl = C1,1)n =

n!

Proof. We shall prove (9.6) by induction on I Al. Let A, µ be partitions of
length < n such that A D A and A - µ consists of a single square s. Also
let v = µ + (1n), so that v D A and v - A is a vertical strip of length n - 1.
Since en =x1 ... x,, we have enen = 1 and hence from the definition (9.3) of
the scalar product

PA, e1Qµ)' = Cele,, PA, e,,Qµ)'.

But elen = en _ 1, and en Qµ = bµenPµ = bµP,, (4.17). Hence

(1) CPA,e1Qµ)'

On the other hand, by (6.24) and (9.5) we have

(2) (PA, elQµ)' = cpA/,(PA, QA)',

(3) Cen_1PA,QV)' = +Gv/AbP(PP,PV),

and

(4) CP P >' = Ce1P,, e1P,)' = CPµ, Pµ)' = bµ 1 (Pµ, Qµ)'.

From (1)-(4) we obtain

/,(5) cRA/,CPA, QA), = 4,/A(PN,, Qµ)'.
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Now from (6.24) we have

,K/A= [I b,(o-)/bA(o,),
ac =R

(PA/W = F1 bW(a-)/bA(o,)
oeR

where R is the row containing the unique square s e A - A. Hence

fl b,,(o,)/bW(a-).
oeR

Since v = µ + (1") it follows that if o E R n µ and r is the square immedi-
ately to the right of a-, we have a ('r) = aW(o,) and 1,(,r) = 1,,(o,) and
therefore bW(o-). Hence

(6) by (o j )

where o1 is the leftmost square in the row R. For this square we have
a,,(o-1) = a'(s) and l,,(cr1) = n - 1 - l'(s). Hence it follows from (5) and (6)
that

(TA , QA >'
1 - ga'(s)tn-Y(s)

(P" QW )' 1 - ga'(s)+1tn-1'(s)-1

and the proof of (9.6) is complete.
I

Another (equivalent) formula for the scalar product (PA, PA );, is given in
Example 1 below.

We shall now renormalize the scalar product (9.3), and define

(9.8) f,g)n =Cn 1(.f,g)n

for f, g e An,F, so that (1,1)' = 1. The original scalar product (1.5) is then
the limit of the scalar product (9.8) as n -- oo. Precisely, we have

(9.9) Let f, g E AF and let pn: AF --> AF n be the canonical homomorphism
(Chapter I, M. Then

g>Pn f, MY,,

as n where the scalar product on the right is that defined by (1.5).

Proof It is enough to verify this when f = Pa and g = QW. If A both
scalar products are zero, by (9.5) and (4.7). If on the other hand A = µ, it
follows from (9.6) that (PA, QA)n -> 1 as n -> oo. I
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Remark. We have assumed throughout this section that t = qk where k is
a non-negative integer. This restriction is not essential, and may be
avoided as follows. Assume that q is a complex number such that Iqi < 1,
so that the infinite product (z; q) converges for all z e C, and define

(9.10) (f,gY
n!

fTf(z)g(z)O(z;q,t)dz

where T = {z = (z1, ..., z,,) E C": Izil = 1, 1 < i < n} is the n-dimensional
torus, and dz is normalized Haar measure on T. The integrand in (9.10) is
a continuous function on T, provided that Iti < 1.

When t = qk, k E N, this definition agrees with (9.3), since for a Laurent
polynomial f e L,, the integral of f over T is equal to the constant term of
f.

Examples

1. (a) Let x = (XI,..., xn) and let

1

O'(x;q,t)=A(x;q,t)f
1 - txix

i<j 1 -xix1

J_j k

1 1 (1 -grxixT 1)(1 -gr_1x7 1xj
)1Gi<j<n r=1

if t = qk. The constant term in 0' is [Zl] equal to

,I Lk J

where the square brackets denote q-binomial coefficients (Chapter I, §2, Example
3).

(b) From Chapter III, (1.3) we have

1-tzixj 1 "- 1-t'
W 7-

Wer ; 1-xix- 1 - 1 2 1-t

(c) Deduce from (a) and (b) that the constant c" of (9.7) is given by

n 1k-1
" fl[k-1]

and hence that

t)(1 - qt-1) t j i

1 - q i<j

where L is the operator (6.12).
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(d) From (c) and (9.6) we have

L((PA, PA);,) = L(cn) + (1 - qt-1)F, (ga'(s)tn-"(s)- ga(s)ti(s)+1)

which by (6.15) is equal to

(1-t)(1-qt-1
1-q

Hence

sEA

E qA'-A;tj-i

i<j

7-7 (g
,

AI iti - i. Al-Aj+lti-i )

A)n-11
g).(q ,q W

(PA,P
i<. (g

A`-A;tj-i+1.
q) (qA+-Aj+1ti-i-1 1

q)m

k-1 1 - qA,-AI+rtl-i

1 - gAi-Aj-rtl-ii<j r-l

373

if t= qk.
2. (a) Let 0 < q < 1 and let f be a function defined on the closed interval [0,1].
The q-integral of f is defined to be

f 1f(x) dqx = (1- q) E grf(gr)
r-0

for all f such that the series on the right converges. Thus it is the limit as n --> of
the Riemann sums of f corresponding to the subdivisions of [0,1] at the points
q,q2,..., q" (provided that xf(x) --> 0 as x - 0). More generally, if f(x) _
f(x1,..., xn) is a function of n variables defined on the unit cube Cn = [0,1]n, the
q-integral of f is defined to be

f f(x)dgx=(1-q)n E glalf(ga)
C" aEN"

where a=(a1,...,a.),IaI=a,+...+a,, and f(qa)=f(ga',...,ga").
(b) Let r, s be positive integers (or, more generally, positive real numbers). Then

(1) f0 1xr-'(qx; q),-1 dqx = r'q(r)r'q(s)/r'q(r+s)

= Bq(r,s)

where rq(r) _ (q; q)r-1/(1- q)r-' is the q-gamma function. The formula (1) is a
,q=analogue of Euler's beta integral, which is the limiting case as q -b 1. (It is
equivalent to Chapter I, §2, Example 5, which may be rewritten in the form

m (qm+l; q)m _ (b; q),(q; q)m
>o a

(a-'bqm; q)m (a; q)m(a-'b; q).

If we set a = qr and b = qr+s, then this sum, multiplied by 1 - q, is just the
q-integral (1).)
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3. Let x = (xl,... , x"), let t = qk and define

(1)

k-t
0*(x; q, t) - fl fl (xi - grxj)(xi - q-rxj)

1<i<j4n r-O

(-1)Aq'(xl ... x")k("-1)i(x; q, t)

where A = Zkn(n - 1) and B = 4k(k - 1)n(n - 1). In this example we shall evalu-
ate the multiple q-integral

1

IA= - f PA(x;q,t)A*r,s(x;q,t)dgxn! C.

where
n

O*,,3(x; q, t) = A* (x; q, t) fl x -1(4x1; q),-1,
i-1

and A is a partition of length -< n. (When A = 0, Ia is a q-analogue of Selberg's
integral.)

(a) For this purpose we shall expand PA* as a sum of monomials, say

(2) PAA* _ cAax

R

summed over f. a N" such that 113 I = I Al + kn(n - 1). Then we have

n!IA a E cAs f FIx(qx;; q),-1 dgxi
C. i - 1

n Fq(T+Qi)I'9(S)
CAS i fq(r+S+,Si)

by Example 2(b), so that

(3) n!IA = Bq(r, s)" F, cAq (qr; q)d/(qr+s; q)P

P

where (as in §2, Example 1) (a; q)p means II(a; q)p..

(b) To evaluate the sum in (3) we shall apply the specialization C.,, (§6) to the
y-variables in the Cauchy formula (4.13). In this way we obtain

(4)

n (uxi; q),,
Ld e i(Qµ)PN,(x) fl
A i-1 (xi;q)m

Let µ = (µl, ... , Nc") be the partition defined by µi = Ai + (n - 1)k + a (1 ' i n),

where a is a positive integer to be determined later. From (4) we have

7'n7 (ux ; q). P)

(5) en r(Qµ)CPF )' = C j j
i-1 (xi; q).
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By (4.17) the right-hand side of (5) is the constant term in

1 n (uX-1. q),,i
1n. i-i (x ;q),,

which by (1) and (2) is equal to

1-(
-1)AgB(xl...Xn)aCA$X0ll (

i11;q)

n! 6 ;- 1 (Xi ; q).

Now the constant term in xi +s'(ux; 1; 1; q). is the coefficient of xa+O, in
(uxi; q),,/(xi; q),,, which is (Chapter I, §2, Example 5)

(u; q)a+s, (u; q). (uqa; g)9;

(q; q)a+B, (q; q). (qa+1; q)8,

Hence from (5) we have

(6)

1 (u; q)a (uqa; q)p
e, ,(Qµ)(Pµ, Pµ)' = n (-1)"qB

(q; g)a
caa (qa+1; q)p

(c) The left-hand side of (6) can be evaluated by use of Example 1 above and §6,
Example 4. We thus obtain

1 c (uqa;q)p -(-1)" B+kn(µ)U ( (q;q)a(ugk(1-');q)w
AP a+1., q a g 11n. (g g)9 i- 1 (q; g)µ,+k(n-;)(U; q)a

where (§6, Example 4)

v,(q, t) = JI (qai-a;ti-,; q)k,
1Gi<jGn

Sinte,

and

(ugk(I-'); q)µ, _ (ugk(1-'); q)k(i-1)(u; ) (U a

k(1-i). k(i-1) C -1.(uq ,q)k(i-1)=(-u) q- '(gu r9)k(i-1)e

where C, =
2(i

-1)k((i - 1)k + 1), it follows that

1 (uqa;q)s _ n (qu-1;q)k(;-1)(uga;q)A;+k(n-i)
(7)

R?
E CAB (qa+1. q)p = UAgEv (q, t) (qa+1; q).1,+k(2n-i-1)
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where the exponent of q is
n

E_-B+kn(p)- EC,
i-1

=kl n(,1)+a(2)111J +2k2(' ).

(d) Finally, if we now set a = r `+ s - 1 and u

=

q1

_'
in (7), we shall obtain from (3)

and (7) the desired result:

" r(Ai+r+k(n -i))I'q(s+k(i - 1))
IA

qF i-1 1

a

r'g(A;-Aj+k(j-i+1))
x

1 t<n Fq(Ai-Aj+k(j-i))<i<

where F = k(n(A) + qm(n - 1)) + 3k2n(n - 1Xn - 2).

(e) Deduce from (d) and §6, Example 4 that

IA/10 = eU,t(PA)e,,,t(PA)/EW,,(PA),

where u =grin-1, v=t", and w=q'+,t2n-2.

Notes and references

The relationship (9.9) between the two scalar products was first remarked
by Kadell, in the context of Jack's symmetric functions. Likewise, Example
3 is a q-analogue of an integral formula due to Kadell.

In the definition (9.2) of A, and in the scalar product formula of
Example 1, the structure of the root system of type A"_ 1 is clearly visible.
In fact, this aspect of the theory generalizes to other root systems: see the
last section of [M6].

10. Jack's symmetric functions

In this section we shall summarize the main properties of Jack's symmetric
functions. As we have already observed in §1, they are obtained from the
preceding theory by means of the specialization

q=t", t-+ l.

Here q and t are to be thought of as real variables, and a as a positive
real number.

More generally, let

(10.1) (q,t)
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mean that (q, t) --> (1, 1) in such a way that (1 - q)/(1 - t) - a. (For
example, q = to as above, or again q = 1 - all - t).) Then for any real
numbers a, b, c, d (such that ca + d # 0) we have

(10.2)

as (q, t) - a (1, 1).

(10.3) We have

1 -q"tb as+b
1 -q`td ca+d

(tx; q).1 (x; q), --> (1
-x)-i/'

as (q, t) -a (1, 1).

This statement, and others of the same sort that will occur later, is to be
interpreted in the sense of termwise convergence of formal power series.
The coefficient of x" in (Ix; q) is (Chapter I, §2, Example 5)

(t; q)n n-1 1 - qrt

(q; q)" - o 1- qr+1

and by (10.2) this tends to the limit

n-1 ra+1 1/a
l o (r+1)a =(-1)"(

n

which is the coefficient of x" in (1 -x)-1/°.

Again, from (10.2) we have

1(A) 1 -q A,
- ZzA(q,t)=zA

A A
a'(A)

'i-1 1t
as (q, t) -,, (1, 1), for all partitions A. Hence the scalar product (f, g)q,t
defined by (1.5) becomes in the limit the scalar product (f, g)a on AF
(where now F = Q(a)) defined by (1.4):

(P" P'). = SAµaI(A)ZA.

By (10.3), the product H(x, y; q, t) defined in (2.5) is replaced by

fl(x, y; a) = rj (1 -xiyj)
i,;

In place of (2.7) we have
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(10.4) For each n > 0, let and be F-bases of AF, indexed by the
partitions of n. Then the following conditions are equivalent:
(a) (u.,, vµ )a = 8aµ for all A, µ;
(b) E,, u,,(x)ua(y) = II(x, y; a).

The specialization of gn(x; q, t) (2.8) is gna)(x), defined by the generat-
ing function

gna)(x)yn = fl (1-x, y)
n>0 +

As in §2, we define

g(Aa)(x) _ fl g(a)(x)
r>

for any partition A = (A,, A2, ...). By specializing (2.9) and (2.11) we obtain

(10.5) g(na) _ E ZA la-'(A)pa
IAI-n

and

a
(g$ , mµ)a = S,,µ

so that the gaa) form a basis of AF dual to the basis (ma). Hence the
gna), n > 1, are algebraically independent over F = Q(a), and A. =

a a
F[gi ,gz --J

For each real number /3 let wq denote the F-algebra endomorphism of
AF defined by

(10.6) ap(Pr) _ 1)" pp.
for r > 1. We have wo' = w -1 if /3 # 0, and w, is the involution w of
Chapter I. From Chapter I, (2.14)/' we have

(10.7) wa(gna)) = en

and it follows directly from the definitions (1.4) and (10.6) that wp is
self-adjoint, i.e.

(10.8) (wsf,g)a=(f,wsg)a

for all f, g E AF. Moreover we have

(10.9) (wa-if,g)a=(wf,g>i.
Consider next the behaviour of P,,(x; q, t) as (q, t) -*a (1, 1). From (7.13'),

the coefficient of mµ(x) in PA(x; q, t) is

uaµ(q, t) _ E 1I1T(q, t)
T
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summed over tableaux T of shape A and weight p., where 4T is given
explicitly by (7.11'), (6.24), and (6.20). These formulas show that /'T(q, t) is
:a product of terms of the form (10.2), and hence has a well-defined limit
0T°`) as (q, t)

Explicitly, the limit of bA(s; q, t) (6.20) is

aaA(s) + lA(s) + 1
(10.10) ba°)(s) =

aaA(s) +lA(s) + a'

and the limit of (iA,,A(q, t) (6.24) is

[1 b°)(s)/ba°)(s)
SERA/K - CA/k

where (loc. cit.) C.I. (resp. RAE,,) is the union of the columns (resp. rows)
that intersect A - A. Hence (7.11')

r

(10.12) ora) 11 O A 4 l -'
i-1

where 0 = A(0) C A(1) C ... C A(r) = A is the sequence of partitions deter-
mined by the tableau T (so that each skew diagram is a
horizontal strip).

Hence the limit of uA,(q, t) as (q, t) --*. (1, 1) is

U(Aµ) _r°)
T

summed as above over tableaux T of shape A and weight µ, and therefore

(10.13) PA(a) = mA + uAµ)mA
µ<A

is the limit of P(q, t) as (q, t) (1,1). We have

(10.14) (P(°), P,(a))a = 0

whenever A* µ.

The Pa0) are Jack's symmetric functions. They are characterized by the
properties (10.13), (10.14). From (10.10)-(10.12) it is clear that uAµ) is a
sum of products of the form (a a + b)/(ca + d) where a, b, c, d are non-
negative integers. Also PJ') is the Schur function sa, so that u(') is the
Kostka number KA., hence is positive whenever A > µ (Chapter I, §7,
Example 9). Hence

(10.15) We have uA;A) > 0 whenever A > µ and a > 0.
I
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Another proof of the existence of the P(a) is indicated in §4, Example
2.

See also §4, Example 3(d).

Let (Q(1)) be the basis of AF dual to the basis (P(a)), so that

b(A a)P(a)

where b a) _ (P(a), P(a))a 1 E F, so that from (6.19) and (10.2) we have

ba«) _ fT b,(a)(s)

(10.16)

SEA

aa(s) + l(s) + 1

In particular we have

SEA aa(s) + l(s) + a
= 11

P(a) = e(1') r,
(«) _ (a)

Q(r) 8r

Also it follows from (4.14) that the p(a) are well-defined at a= 0 and
a = oo, and that

P(0)=eA. , P(1) = Q,(11) =
S A

P(°°) = mA.

The duality theorem (5.1) becomes

(10.17) '°aP(a) = Q(a ').

Next, let f, (a)t denote the coefficient of p(a) in the product P(a)P(a),
so that

fA
(a) p(a)p(a)Ky(a) = (QA , µ y )«

This is a rational function of a that remains finite at a = 0 and a = . By
(7.4) it vanishes identically unless I Al = I Al + I v I and A 3 µ, A 3 v.

The skew functions P(7), Q,(") are defined as in §7 by

Q(a) _ fA (a)Q(«) = IbA«)/b(«))P(«)Alt µy y \ t+ /µ '
y

They are zero unless A 3 p., in which case they are homogeneous of degree
I Al - I µI. For a finite number of variables x = (x1, ... , we have by (7.15)

(10.18) Q,(,jµ(x1,..., Xd = 0

unless 0 < X, - µ'< < n for each i > 1.

t There is a conflict here with the notation fµ (t) of Chapter III, §3, but it should cause no
confusion.
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Duality (10.17) generalizes to give

(10.19) co, P(% = QA'/

Next, let X be an indeterminate and let

eX:AF - F[X]

be the F-algebra homomorphism defined by Ex(pr) = X for all r > 1, so
that ex(pA) = X'("). If X is replaced by a positive integer n, then ex(f) =
f(1, ... ,1) (with n 1's) for f E AF. The specialization theorem (6.17) then
gives

(10.20) eXP(a) =
X + aa'(s) - 1'(s)

SEA aa(s) + l(s) + 1

Let

(10.21)

cA(a) = fl (aa(s) +l(s) + 1),
SEA

cA'(a) _ fl (aa(s) +1(s) + a)
SEA

be respectively the numerator and denominator of baa) (10.16). We have

c,'A(a) = alAlcA.(a-1).

Now define

(10.22) JA(a) = cA(a)P(a) = ca(a )Q(a)

By comparison with (8.1) and (8.3) it is clear that

(10.23) J,(a)(x) is the limit, as (q, t) -4a (1, 1), of

(1 - t)-IAIJA(x; q, t).

For the Jr), duality (10.17) and specialization (10.20) take the forms

(10.24) WaJ,;a) = a1A1Jaa-'),

(10.25) egJaa)= 11 (X+a'(s)a-l'(s)).
SEA

For each partition A, let mA = uAmA denote the `augmented' monomial
symmetric function corresponding to A, where (as in Chapter I, §6,
Example 10)

UA= fl m,(A)!.
i>1
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The transition matrices M(J("), m)n have been computed up to weight
n = 7, and suggest the conjecture

(10.26?) The entries in M(J("), m) are polynomials in a with positive integral
coefficients.

Next, let 0 s(a) denote the coefficient of pP in J("):

(10.27) J(")= E OA(a)p,.
P

From (8.19) and (10.23) it follows that

XPA(q' t) t(P)
(10.28) OA(a)= lim n H(1-tP').

(q, t)-.,(1,1) (1-t) zP i-1

In particular,

1

n7
X(1)(1,1)

and hence by (8.26) (or also from (10.25))

(10.29) B(1.)(a) = 1

for all partitions A of n.

From (10.24) it follows that

(10.30) ep (a) = ePan-1(P)0P '(a-1)

if A, p are partitions of n.

The BP (a) satisfy the orthogonality relations

(10.31) E zPai(P)BA(a)9 (a) = SAP,cA(Of )ca(a),
P

(10.32) E cA(a)-1cA(a)-1BA(a)96(a) = SP0zP 1a-'(P),
A

For (10.31) follows from (10.26) and the orthogonality of the jr), and
(10.32) is equivalent to (10.31).

(10.33) Remark. Since the augmented monomial symmetric functions thA
form a Z-basis of the subring II = Z[p1, p21 ... ] of A, it would follow from
the conjecture (10.26?) that 9,(a) E Z[ a ] for all A, p, and hence that
(J("), J")Jv "))" E Z[ a ] for all A, µ, P. Stanley [S25] makes the apparently
stronger conjecture that this scalar product should be a polynomial in a
with non-negative integer coefficients.
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Finally, the function A defined in (9.2) is replaced by

(10.34) i1(x; a) _ fl (1 -x,x,. 1)1/"

where x = (x1,..., x,,). As in §9 we define a new scalar product on An,F by

(10.35) (f, g) = 1 f f(z)g(z)i(z; a) dz
n! T

in the notation of (9.10). From (9.5) we have

(10.36) The polynomials P(")(xl, ... , xn), where l(A) < n, are pairwise or-
thogonal for the scalar product (10.35).

Also from (9.6) we have, on passing to the limit as (q, t)

7'' n +a'(s)a-l'(s)
(10.37) PA"), QA") );,=C ,, k n+(a'(s)+1)a-l'(s)-1
where

1
c,, = - f z(z;a)dz.

n! T

Equivalently, by §9, Example 1(d),

r(C.- 6) +k)r(6,- 6 -k+1)
(10.38) (P("), P("));, _

1<i<j<n
r(-;)r(i- + 1)

where k= a-1 and 6j= .t, + k(n -0, 1 < i < n.

As in §9, the formula (10.37) shows that the scalar product (1.4) is the
limit as n - - of the scalar product cn 1(f, g);, _ (f, g);,/(1,1);,.

Examples

1. (a) Since Jan')) = n!ang,(,"), it follows from (10.5) that

i

B(n)(a) =
n.

n-,(P)
P Z

P

and hence by (10.30) that also

Bll")(a) = een!/zp.

(b) Deduce from (10.25) that

B(on)(a)= J(a(j-1)-(i-1))
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where the product is over the squares (i, j) E A with the exception of (1, 1), and
that

0(z1n-2)(a) =n(A')a-n(A).

2. (a) Suppose that f(q, t) E Z[q, t] is such that for some positive integer m the
limit

f(g,t)
L = lim ,,,

(q,,)-'a (1,1) (1 - t)

exists. Then L e Z[a]. (We may write f in the form

f (q, t) _ F, a,(1-q)"(1-t)"
r,s>O

with coefficients ars E Z, from which it follows that ars = 0 if r + s < m and that
r.)L = I:r+s-m ars a

(b) From (8.19) and (10.27) we have

) = uA 1 lim
XA (q, t)

BvA(a - P

(q,1)-.,(1,1) (1 -t)n-1(v)

if A and p are partitions of n, where uA = IIm;(A)! Hence the conjecture (8.18?),
which implies that X,, (q, t) E Z[q, t], also implies that 0,"(a) E Q[ a ].

(c) Let

Ja°)=EvA (a)mµ
W

so that, in the notation of §8, Example 11(a) we have

VA'(a) = lim
vAµ(q,t)

(q,t)-.a(1,1) (1 - t)

Since (8.18?) implies that vAµ,(q, t) a Z[q, t], it also implies that vAµ(a) E Z[ a J.

(d) If A, µ, v are partitions such that I AI = I Al + I v I = n, we have

(J(a),J(a)J(°)) = lim
(JA,JN,Jv)g,

v
(q,1)- (1,1) (1 -

t)2n

Since (8.18?) implies that a Z[q,t] (§8, Example 11 (b)), it also implies
that (JA(' J(°)Jv°)) E Z[a].

3. (a) The coefficient of mµ in J(;,j) is

cµ fl (aµ(s)a + 1)
seµ

where a,,,(s) is the arm-length at s E µ, and cµ is the number of decompositions of
a set of n elements into disjoint subsets containing µl,µ2, ... elements, as in
Chapter I, §2, Example 11.
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(b) The coefficient of m(1") = n!en in J(°) is equal to 1, and the coefficient of
m(21"-2) in JA is

an(A') -n(A) + i n(n - 1).

4. (a) From §8, Example 4 it follows that

(ar+s)J(;j)JO =1)+raJ(,?j13).
Deduce that

J(rI)=D(1,2,...,s, -ra, -(r- 1)a,..., -a)

where in general D(a1, a2, ... , a,,) denotes the determinant

Pi

P2

a1 0 0 0

P1 a2 0 0

Pn Pn-1 Pn-2 P1 an

Pn+1 P. P.-1 P2 P1

(b) Another formula for is the following, due to P. Hanlon. Fix a standard
tableau T of hook shape (r Is) and let R, C denote respectively the row and column
stabilizers of T (so that R = Sr, 1 and C = S,,j). Then

= (v)ar+1-c(u)Y'(UV)J(rals)) Fl-- l(

summed over (u, v) e R X C, where c(u) is the number of cycles in u, and is as
in Chapter I, §7.

5. If A. (2r15) is a partition with two columns, the coefficient of mµ in J(°),
where µ = (2r-'15+2i) and i > 0 is

()(a+s+i+1)...(a+s+r).

6. Let A: AF -+ AF be the derivation defined by

AP,=rPr+1

for all r > 1. Show that

and that

4.0)) _ (PI + aA)n(1)

J(1°)) = (pl - O)n(1).

7. As (q, t) -a (1,1), the q-integrals of §9, Examples 2 and 3 become ordinary
(Lebesgue) integrals. It follows that (with k = 1/a) the value of the integral

1 (1/k)
Ia=- f PA (x)ab(x)2k 1x,-1(1-x')5-1dx,

n! C. i-1
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where C _ (0,1]", x = (x1, ... , and dx = dx1... is

" r(Ai+r+k(n -i))r(s+k(n -i))
IA - v,1(k) rj

i-1 r(A,+r+s+k(2n-i-1))

where

r(Ai-Aj+k(j-i+1))
va(k) s

1ti<j4" r(A,-AA+k(j-i))

(a) By making the change of variables y, = ux, and then letting u - -, deduce that

1-f ...f dy
n! 0 0

"
vA(k) fl r(A,+r+k(n -i)).

i-1

(b) By making the change of variables y, = It, in (a), multiplying by N'e-` and
integrating from 0 to - with respect to t, show that

f ... f p(1/k)(x)aa(X)2k(x1... Lxi)a-sdx

r(s) "

r(a+s) vA(k)jj r(A,+r+k(n -i))

where a - I Al + nr + n(n -1)k.

(c) In the integral of (b) above put x, = y,/(1- Ey1) (14 i < n), so that 1 + Ex, _
(1 - Eyi)-1 = u say. We have

dx;/dy; = 45,,u +y,u2

and therefore

det(dx,/dye) = u2 det(S;; +y,u)

=u"(1+uEy;)=u"+1

Deduce from (b) that

1 P(1/k)( 2k r 1 s t d
n, fo a y)a8(y) (y1... y

r(s)
r(a +s) vA(k) rj r(A,+r+k(n -i))

where a - I Al + nr + n(n - 1)k as before, and D is the simplex in R" bounded by
the hyperplanes x; - 0 (1 < i < n) and xt + ... +x =1.
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8. Let

1 n

JA (JC) I PAAl/k1(X)P('/k)(x)a8(x)Zkri Xj-1(1 -Xi)k-1 dx,
n! c. i-'

where (as in Example 7) C _ [0,1]", x = (XI, ... ) dx = dxl ... dx is Lebesgue
measure, and A, A are partitions of length 4 n. Then

JA,,(k) - uA(k)v(k)(I'(k))n fl (A; + µj + r + (2n - i - j )k)k
t, j-'

where VA, vµ are as in Example 7, and (X)k = F(x + k)/r(x). (See [K6] for a proof.)

Notes and references

Jack's symmetric functions were first defined by the statistician Henry Jack
in 1969 ([J1], [J21). He showed that when a = 1 they reduce to the Schur
functions, and conjectured that when a = 2 they should give the zonal
polynomials (Chapter VII). Later, H. 0. Foulkes [F7] raised the question
of finding a combinatorial interpretation of Jack's symmetric functions.
About ten years ago the author began to investigate their properties,
taking as a starting point the differential operators of Sekiguchi [S9] (see
§3, Example 3), and showed in particular [M5] that they satisfy (10.13),
(10.14), and (10.17) (duality). Shortly afterwards R. Stanley [S25] advanced
the subject further, and established the scalar product formula (10.16), the
Pieri formula, the explicit expression as a sum over tableaux, and the
specialization theorem (10.20). (Stanley worked with J,(') rather than
Pa a).)

At about the same time, K. Kadell was investigating generalizations of
Selberg's integral [S10] and its extension by Aomoto [A6]: in this way he
was led to introduce as integrands a family of symmetric polynomials,
depending on a parameter k and indexed by partitions, which he called
Selberg polynomials, and which turned out to be precisely Jack's symmetric
functions, with parameter a =1/k [K5]. (The integral formula generalizing
Selberg's integral is that given in Example 7 above.) In a different
direction, R. Askey [A7] had proposed a q-analogue of Selberg's integral,
and Kadell ([K3], conjecture 8) was led to conjecture the existence of
`q-Selberg polynomials' which would feature in a q-analogue of the inte-
gral formula above. In the event it turned out that these q-Selberg
polynomials are our PA(x; q, t), and the q-integral formula is that of §9,
Example 3.

For another method of construction of the PA(x; q, t), see B. Srinivasan
[S22].



VII

ZONAL POLYNOMIALS

1. Gelfand pairs and zonal spherical functions

Let G be a finite group and let A = C[G] be the complex group algebra of
G. If f EA, say f = Ex EGf(x)x, we may identify f with the function
x H f(x) on G, and hence A with the space of all complex-valued functions
on G. From this point of view, the multiplication in A is convolution:

(fg)(x) _ E f(y)g(z)
yz=x

and G acts on A by the rule (xf X y) = f (x-1 y). The centre of A consists
of the functions f on G such that f(xy) =f(yx) for all x, y E G, and has
the irreducible characters of G as a basis. The scalar product on A is

(f, g)c = 1 E f (x)g(x).
IGI XEG

Let K be a subgroup of G and let

e=eK= 1 F, k,
IKI kEK

so that e2 = e. As a function on G, we have e(x) = I KI -' if x E K, and
e(x) = 0 otherwise. If x1,... , x,. are representatives of the left cosets xK of
K in G, the elements x,e are a basis of the left A-module Ae, and the
corresponding representation 1K of G is that obtained by inducing the
trivial one-dimensional representation of K, or equivalently: it is the
permutation representation of G on G/K= (x;K:1 < i < r). Since e is
idempotent, the endomorphism ring EndA(Ae) is anti-isomorphic to eAe,
the anti-isomorphism being cp H cp(e). Now eAe as a subalgebra of A
consists of the functions f on G such that f(kxk') =f(x) for all x e G and
k, k' E K, that is to say the functions constant on each double coset KxK
in G. We shall denote this algebra by C(G, K).

An A-module V (or equivalently a representation of G) is multiplicity-free
if it is a direct sum of inequivalent irreducible A-modules, that is to say if
the intertwining number <V, U) = dim HomA(V1 U) is 0 or 1 for each
irreducible A-module U. By Schur's lemma, V is multiplicity-free if and
only if the algebra EndA(V) is commutative. Hence
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(1.1) For a subgroup K of G, the following conditions are equivalent:
(a) the induced representation 1K is multiplicity free;
(b) the algebra C(G, K) is commutative.

I

If these equivalent conditions are satisfied, the pair (G, K) is called a
Gelfand pair.

(1.2) Suppose that KxK= Kx-1K for all x E G. Then (G, K) is a Gelfand
pair.

Proof. We have f(x) = f(x-1) for all f E C(G, K) and x e G. Hence if f,
g E C(G, K),

(fg)(x) _ f(y)g(y-1x) = E g(x-1y) f(y-1)

yEG yEG

= (gf)(x-1) = (gf)(x)

which shows that C(G, K) is commutative.

Assume from now on that (G, K) is a Gelfand pair. Then with the
notation used above, Ae is a direct sum of non-isomorphic irreducible
A-modules, say

S

Ae=®V.
i-I

Let Xi be the character of V and let

wi=Xie=eXi

where Xi is the complex conjugate of Xi. Thus

1 1

(1.3) wi(x) = - F X (xk) = - E
IKI kEx JK1 kEx

(1 <i <s)

The functions wi are the zonal spherical functions of the Gelfand pair
(G, K).

Let di = dim V = Xi(1).

(1.4) (i) wi(1) = 1 and wi(x-1) = wi(x) for all x E G.
(ii) wiEC(G,K)nV.
(iii) wi w]. = did ci wi, where ci = I GI/di.
(iv) (wi, wj)G = 8ijdi 1.
(v) (w1,..., wc) is an orthogonal basis of C(G, K).
(vi) The characters of the algebra C(G, K) are f - (wi f)(1), for 1 < i < s.
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Proof (i) From the definition (1.3) we have

wi(1)=(X;IK,1K)K=(Xi,1K)c

by Frobenius reciprocity. Hence wi(1) is the multiplicity of V in the
A-module Ae, hence is equal to 1. The relation wi(x-1) = wi(x) follows
from (1.3).
(ii) It is clear from (1.3) that wi(kx) = wi(xk) = wi(x) for x e G and k e K,
so that wi E C(G, K). On the other hand, the V-isotypic component of A
is AXi, hence the V-isotypic component of Ae is AeXZ =Awi. Thus
A wi = V and consequently co, E Vi.
(iii) Since Xi Xj = Sijci Xi it follows that

wiwj=XieXje=XjXje2=XjXje= Sijc1 ,e= 5,1ciwi.

(iv) Since wj(x) = wj(x-1) we have

1 1
(wi, wj>G =

IGI
wiwj(1) = GI Sijciwi(1) = Sijdi i

by (iii) and W.
(v) It follows from (ii) that the wi are linearly independent elements of
C(G, K). On the other hand, Schur's lemma shows that the dimension of
C(G, K) = EndA(Ae) is equal to s. Hence the wi form a basis of C(G, K),
and they are pairwise orthogonal by (iv).
(vi) Let 0 be a character of C(G, K). From (iii) we have 0(wi)0(wj) = 0 if
i # j, and 0(w)2 = ci0(wi). Hence for some i we have 0(wj) = Sijc; _
(wi wjXl), and hence by linearity 6(f) = (coif Xl) for all f E C(G, K).

Let V be an irreducible G-module (i.e. A-module) with character X,
and let VK be the subspace of vectors in V fixed by K. The dimension of
VK is the multiplicity of the trivial one-dimensional K-module in V
regarded as a K-module, so that

dimVK = (XI K,1x)K= (X, 1K >G

by Frobenius reciprocity. Since 1K is multiplicity-free it follows that, with
the previous notation,

(1.5) dim VK = f
1 if V = Vi for some i,
0 otherwise.

Moreover, if V= Vi, then co, is the unique element of the one-dimen-
sional space such that wi(1) = 1, by (1.4Xi) and (ii). The zonal spherical;K
functions co, are therefore distinguished generators of the irreducible
components Vi of the induced representation Ae =1K.
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Now let V be an irreducible G-module such that VK * 0. Then the
zonal spherical function w corresponding to V may be constructed as
follows:

(1.6) Let <u, v) be a positive-definite G-invariant Hennitian scalar product
on V, and let v E VK be a unit vector (i.e. (v, v) = 1). Then

w(x) = (v, xv>
for all x E G.

Proof. Choose an orthonormal basis v1,. .. , v,, of V such that vl = v. For
each x e G, xv1 is a linear combination of the vi, say

n

xvj _ E R,1(x)vi,
i-1

and x H (R11(x)) is an irreducible matrix representation of G afforded by
V. Moreover (vi, xvv> = Rid (x), so that in particular (v, xv) = R11(x).

Now the space U spanned by the Rid is the V-isotypic component of the
G-module A, and eUe is one-dimensional, generated by to. Since v is fixed
by K it follows that R11(xk)=R11(x) and that

R11(kx) = (U, k v) = <k-1 U, xv) = R11(x)

for all k E K and x E G. Hence R11 E eUe and is therefore a scalar
multiple of w. But R11(1) _ <v, v> = 1 = w(1), hence R11 = w.

A function f E A is said to be of positive type if

E f(x-'y)g(x)g(y)
x,yEG

is real and > 0 for all functions g E A.

(1.7) Let f r=- C(G, K). Then f is of positive type if and only if
s

f= aiwi
i=1

with real coefficients ai > 0.

Proof If w is one of the wi then with the notation of (1.6) we have
w(x-1 y) _ (v, x-' yv) = (xv, yv) and therefore

E &)(X-' y)g(x)g(y) _ (u, u> > 0
x,yEG

where u = Ex E Gg(x)xv. Hence each wi is of positive type and therefore
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so also are all non-negative linear combinations of the (oi.
Conversely, if f E C(G, K) is of positive type, we may write

with coefficients a, E C. Taking g = to, in the definition, (wi fwi)(1) is real
and > 0. But by (1.4) (iii), wi fwi = aiWis = aicZwj, so that (wi fwi)(1) = aic,.
Hence a, is real and > 0.

(1.8) Let (G, K) and (G', K') be Gelfand pairs such that G' is a subgroup of
G and K' is a subgroup of K, and let w be a zonal spherical function of
(G, K). Then the restriction of w to G' is a non-negative linear combination
of the zonal spherical functions of (G', K').

Proof. By (1.7), wIG' is of positive type and belongs to C(G', K'). Hence
the result follows from (1.7).

The zonal spherical functions of a Gelfand pair (G, K) may be charac-
terized in other ways:

(1.9) Let w be a complex-valued function on G. Then the following condi-
tions are equivalent:
(a) w is a zonal spherical function of (G, K).
(b) (i) w E C(G, K); (ii) w(1) = 1; (iii) for all f E C(G, K), fw = Afw for
some Af E C (depending on f ).
(c) w # 0 and

1

w(x)w(y) _ - E w(xky)
IK1 kEK

for all x, y E G.

Proof. (a) (b). Conditions (i) and (ii) follow from (1.4). As to (iii), if
f r= C(G, K), say f = Eat wj, then f wi = Eat wj wi is a scalar multiple of wi
by (1.4Xiii).
(b) - Q. Let

1
wy(x) _ - E w(xky).

JK1 kEK

From (i) it follows that wy (=- C(G, K). Next, for each k E K and f E
C(G, K) we have

Afw(y) = Afw(ky) = (fw) (ky)

E f(x-1)w(xky)
xEG
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and hence, on averaging over K,

(1) Afw(y)= (fwy)(1) =IGI(wy,f*)G,

where f *(x) = f (x-' ). On the other hand,

(2) Af= Afw(1) = (fw)(1) = IGI(w,f*)G.

From (1) and (2) it follows that

(Coy -w(y)w,.f*)G=0

for all f (=- C(G, K), from which we conclude that wy = w(y)w, i.e.

1
E w(xky) = w(y)(o (x)

IKI keK

for all x, y E G.

(c) - (a). If f, g E C(G, K) we have

(4g)(1) _ E w(xy)f(y-')g(x-1)
x,yEG

_ L w(xky)f(y-')g(x-i)

x,yEG

for all k E K, and hence on averaging over K we obtain

(4g)(1) _ E w(x)w(y)f(y-,)g(x-,)
x,yeG

_ (wf)(1)(wg)(1).

Since w 0, this shows that f - (w f X1) is a character of C(G, K), and
hence w is a zonal spherical function of (G, K) by (1.4Xvi). I

Let K1, K21 .... KS be the double cosets of K in G, and let fi(1 < i < s)
be the functions on G defined by

Cfi(x) 1/IKI if x E Ki,

0 otherwise.

They form a basis of C(G, K). Hence fi f is a linear combination of the
fk, say

fifj = . aijkfk
k
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If x E Kk, then

aijk = IKlfifj(x)

= IKI E fi(y)fj(y-'x)
y4=-G

Now fi(y)fj(y-'x) is zero unless y EKi nxKi-', so that

aijk=1KinxK;'I/IKI.

Since both Ki and xK,-.' are unions of cosets gK of K in G, it follows that
the structure constants aijk are integers > 0. We shall use this to prove

(1.10) Let w be a zonal spherical function of (G, K), and let x E G. Then
I KxK/KI w(x) is an algebraic integer.

Proof. Let 4) be the character of C(G, K) corresponding to w, so that
)(f) = (fwxl) by (1.4Xvi). Then we have

4) (f) (1, (f) = E aijk0) (fk)
k

from which it follows that the set of s linear equations (in s unknowns
xl.... ) xs)

(f) xj = E aijkxk
k

has a non-trivial solution xj = W(fj). Hence

det(w(fi) sjk - aijk)j,k = 0.

On expanding the determinant, we see that 6(f,) is an algebraic integer,
since the aijk are integers. But if x E Ki we have

,)(fi) _ (fi w)(1) = IKYK/KI w(x-' ).

Examples

1. If w is a zonal spherical function of (G, K), then I w(x)I < 1 for all x E G. (Use
(1.6) and the Cauchy-Schwarz inequality.)

2. The constant function equal to 1 on G is always a zonal spherical function of
(G, K). (Use (1.5).)

3. If w is a zonal spherical function of (G, K), then so also is its complex conjugate
u,. (If w = e, we have (x,1K )G = 1, hence also (X,1K )G = 1.)
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In the notation of (1.4), suppose that all the characters X; are real-valued. Then
each w; is real-valued and hence w1(x-1) = w.(x) for 1 <i <s and all x f-= G. It
follows that f(x-1) -f(x) for all f e C(G, K), and hence that KxK= Kx-1K for all
x e G. This is a partial converse of (1.2).

4. Let (G, K) be a Gelfand pair, let f1= (W1,..., w3} be the set of zonal spherical
functions of (G, K), and let C(f1) denote the algebra of all complex-valued
functions on 11, with pointwise multiplication: (fgX w;) = f(w;)g(w;). If f E-=
C(G, K), the spherical transform (or Fourier transform) of f is the function Sf on fl
defined by

(Sf)(w;) = (fw;)(1) = F, f(x)w,(x).
xEG

Show that S is an algebra isomorphism of C(G, K) onto C(f1), with inverse S
given by

1
(1) S

IGI E. p(wj)d;w,

for N E C(11), in the notation of (1.4). (From (1.4Xiv) and (v) it follows that

1

f= (f,w;)Gd;w;=
IGJ

(Sfw;)d;wi

for f E C(G, K), whence S is a linear isomorphism whose inverse S-' is given by
the formula (1). That S(fg) = (Sf XSg) follows from (1.4Xvi).)

5. If (G, K) and (G', K') are Gelfand pairs with zonal spherical functions w;(1 <
i < s), wj(1 < j < t) respectively, then (G X G', K X K') is a Gelfand pair with zonal
spherical functions w; X W .

6. (a) Let G be a finite group and let o be an automorphism of G such that
02 = 1. Let K= (x E G: ox =x) and let P= {x E G; ox =x-'}; K is a subgroup of
G, but P is not, in general. If G = KP, show that (G, K) is a Gelfand pair. (Let
xEG, say x=kp where kEK, pr=P. Then ox=kp-1 =kx-1k, so that
o(KxK) = Kx-'K and hence f(ox) = f(x-1) for all f e C(G, K). Hence for f, g E
C(G, K) we have

(fg)(x) _ f(xy-1)g(y) _ f(o(yx-1))g(0'(Y-1))
yeG yEG

= (gf)(ox-') =gf(x)

which shows that C(G, K) is commutative.)

(b) Suppose that G = KA where K, A are subgroups of G, K nA = {1}, and the
subgroup A is abelian, normal, and of odd order. Define o-: G -+ G by o(ka) =
ka-1, where k EK and a EA. Clearly 0-2 is the identity. Moreover, o is a
homomorphism, because if x = k,a1 and y = k2a2 are any elements of G, where
k1, k2 e K and a1, a2 EA, then xy = k1a1k2a2 = ka where k = k1k2 E K and
a = (k21a1k2)a2 = a2(k21a1k2) (because A is abelian); and hence o(xy) = ka-1 =
k1k2(k2'ai'k2)a21 = (klai'Xk2a21)= o(x)o(y). Since A has odd order, the
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subgroup of G fixed by o, is precisely K; also A cP = {x e G: ox =x-'}, so that
G = KP. Hence (G, K) is a Gelfand pair, by (a) above.
(c) As an example of (b), let V be a finite-dimensional vector space over a finite
field of odd characteristic, and let Ko be any subgroup of GL(V) ). Since Ko acts on
V we can form the semidirect product G = V X K0, whose elements are pairs
(v, k) E V X Ko, with multiplication defined by (u, kXv', k') = (v + ku', kk'). The
elements (v, 1) form a normal subgroup of G isomorphic to V, hence abelian and
of odd order, and the elements (0, k) form a subgroup K of G isomorphic to K0.
By (b) above, (G, K) is a Gelfand pair.
7. In the situation of Example 6(b), every x E G can be uniquely written in the
form x = k(x)a(x), where k(x) e K and a(x) E A, and we have KxK = Ka(x)K.
The group K acts on A by conjugation, hence also on the character group A of A.
The double cosets of K in G are in one-one correspondence with the K-orbits in
A, the double coset KxK corresponding to the K-orbit of a(x).

For each character a e A let wa be the function on G defined by

1
(1) wa(x)=- E a(ka(x)k-').

IK1 keK

Show that wa is a zonal spherical function of (G, K). (Verify that W. satisfies the
functional equation of (1.9)(c).)

It is clear from (1) that wa = wo if a,,p E A are in the same K-orbit. If S is a set
of representatives of the K-orbits in A, the w,,, a E S are linearly independent
(because the characters a EA are linearly independent), and hence are all the
zonal spherical functions of (G, K).
8. If f, g E C(G, K) let f g denote the pointwise product of f and g: (f gX x) _
f(x)g(x). Show that the coefficients aj defined by

wi'wj=Eakwk

k

(where the co, are the zonal spherical functions of (G, K)) are real and > 0. (We
may identify G with its image in G X G under the diagonal map x.- (x, x). By
Example 4, the zonal spherical functions of (G X G, K X K) are wi X (w3, and wi wj
is the restriction of wi X wj to G. Hence the result follows from (1.8).)
9. Let G be any finite group and let Xi (1 < i < r) be the irreducible characters of
G. Let G* = {(x, x): x E G} be the diagonal subgroup of G X G. The irreducible
characters of G X G are Xi X Xj: (x, y) -+ Xx(x)Xj(y) (1 < i, j < r) and we have

(XixXj,1c*G)GXG=((Xixxj)IG*, 1G*)G*

1

Xx(x)Xj(x) _ (Xi, Xj)G
IGI xe G

which is equal to 1 if Xi = Xj, and is zero otherwise. Hence the induced representa-
tion 1G: G is multiplicity-free, with character

Xi X Xi.

i=1
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Consequently (G X G, G*) is a Gelfand pair, and the zonal spherical functions are
wi (1 < i _< r), where

1

wi(x, y) _ GI E Xi(gX)Xi(gY)
9e G

1

FGJ gEG `

1

IGI Xi2(x-'y) =d7 'Xi(x-'y)

where d; = Xi(1). Hence wiK1 X G) = di 'Xi.

The functional equation (1.9Xc) for zonal spherical functions in this case
becomes the functional equation for characters:

Xi(x)x (y) =
X(1)
IGI E

gEG

for all x, y E G.

10. Let G be a finite group, A the complex group algebra of G; also let K be a
subgroup of G and cp a linear character of K (i.e. a homomorphism of K into C*).
Let

e 1
Y_ 9(k-')k

IKI keK

so that e22 = eP and the A-module Aep affords the induced representation ipG =
indK cp. Let C"(G, K) = e,, Aeq,, which is anti-isomorphic to the endomorphism
algebra EndA(Ae9,). As an algebra of functions on G, C"(G, K) consists of the
functions f eA that satisfy f(kx) = f(xk) = ip(k-')f(x) for all keK and x E G.
The representation ipG is multiplicity-free if and only if C`P(G, K) is commutative.
If these equivalent conditions are satisfied, as we shall assume from now on, the
triple (G, K, (p) is called (illogically) a twisted Gelfand pair.

The A-module Aew is a direct sum of inequivalent irreducible A-modules, say

Ae,P= ® V.i-i
Let Xi be the character of V and let

wi"=,Tie,-el,
or explicitly

1

K, kEK
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The functions wjv(1 < i < s) are the (p-spherical functions of the triple (G, K, (p). All
the reults in the text, appropriately modified, remain valid in this more general
context.

(a) Show that (1.4Xi)-(vi) remain valid if w; is replaced by w;`P and C(G, K) by
CIP(G, K) throughout.

(b) If V is an irreducible G-module, let

V`P=(vEV:kv=cp(k)v for all kEK}.

Then dim Vw = 1 if V = V, for some i, and dim VP = 0 otherwise. The rp-spherical
function (of is the unique element of l' such that w,'(1) = 1.

(c) If V is an irreducible G-module such that VP :o 0, let (u, v) be a positive-defi-
nite G-invariant scalar product on V, as in (1.6), and let u E V1, be a unit vector.
Then the cp-spherical function corresponding to V is given by co (x)= V, X0 for
all xEG.
(d) The functions f E C °(G, K) that are of positive type are the non-negative
linear combinations of the wi`°.

(e) Show that the following conditions are equivalent, for a complex-valued
function w on G:
(a) w is a gyp-spherical function for (G, K, (p).
(/3) (i) w E C`°(G, K); (ii) w(1) = 1; (iii) for all f E C'(G, K), we have f ca = A fw
for some A f E C.
(y) w # 0 and

1
w(x)w(y) _ - E

IKI keK

for all x, y E G.

11. In continuation of Example 10, let e be a linear character of G. Then the
mapping 0: A -4A defined by o(x) = e(x)x for x E G (or, in terms of functions, by
(of Xx) = e(x)f(x)) is an automorphism of A and induces an isomorphism of
C"°(G, K) onto C °(G, K), where is the character k ti e(k)cp(k) of K. Hence
if (G, K, 9) is a twisted Gelfand pair so also is (G, K, e(p), and the spherical
functions of (G, K, e(p) are the images under 0-1 of the spherical functions of
(G, K, 9).

In particular, if (G, K) is a Gelfand pair, and p is a linear character of K which
extends to a linear character of G, then (G, K, (p) is a twisted Gelfand pair.

12. Let G be a finite group, K a subgroup of G. Let cp be the character of a (not
necessarily irreducible) representation of K, and let cpG = indKcp. We regard cp as
a function on G, vanishing outside K. Let y be an irreducible character of G, and
let

w(x) _
SKI

E X(x-'k)(p(k-') _
SKI

X(P(x-').

kCK

(a) We have

w(1)=(XIK,cP)K=(X,(PG)G
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(b) w(x)= w(x-1) for all x r= G.

(c) w2 = cw for some positive scalar c (because X, 9 are positive scalar multiples
of commuting idempotents).

It follows that

1 c
(w, w)G =

I

w2(1) _ GI w(1)
IG

and hence that w # 0 if and only if X occurs in the induced representation ipG.

13. Let m, n be positive integers such that m < n, and let G = Sm+n, K = Sm X S.
Then (Chapter I, §7)

m

ch(1X) = hmhn = E S(m+n-i,i)
i-0

which shows that 1X is multiplicity free, with character

m
E X(m+n-i,i).
i-0

Consequently (G, K) is a Gelfand pair, dim C(G, K) = m + 1, and the zonal
spherical functions are

w, = X(m+n-i,i)ex (0 <i <m).

Let E = (1, 2,..., m), F = (1, 2, ... , m + n). Under the mapping w - wE, where
w r= G = Sm+n, the cosets wK of K in G are in one-one correspondence with the
m-element subsets of F. Let

ip(w)=IE-wEI=m-IEnwEI

for w E G. The function (p lies in C(G, K) and takes the values 0,1, ... , m, and the
double cosets of K in G are the fibres K, = (p- 1(r) of. (p. In particular, Ko = K,

hand IK,I/IKI _
(rm)(rn)

for 0 < r < m. If w,(r) denotes the value of w, at
elements of K,, the orthogonality relation (1.4Xiv) takes the form

m m n h(m+n-i,i)\(
E ( r) r) w;(r)w,(r) =

m!n! 3ij,

where h(m + n - i, i) is the product of the hook-lengths of the partition
(m + n - i, i). The numbers wi(r) can be calculated explicitly (see e.g. [B1], p. 218):
if

Qi(x) _ E (-1),.91,5 S

530 (X),
`where

9i,5=(i)(m+n+1-i)/(m)(n)
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so that Qi(x) is a polynomial of degree i, then wi(r) = Q.(r) for 0 < i, r < m.

14. Let V be a vector space of dimension m + n over the field Fq of q elements,
and let U be a subspace of V of dimension m, where m < n. Let G = GL(V) =
GLm+n(Fq), and let K= (g E G: gU= U), which is a maximal parabolic subgroup
of G. The induced representation 1K is the permutation representation of G on
the Grassmannian G/K= Gn, n, whose points are the m-dimensional subspaces of
V.

For each g E G let

ip(g) =m - dim(UngU)

in analogy with Example 10. Then (p E C(G, K) and takes the values 0, 1, ... , m
and the double cosets of K in G are the fibres K, = (p-'(r) of (p: in particular,
Ko = K. Since Mp(g) = 9(g- 1) it follows that K, = K,' for 0 < r < m and hence
(G, K) is a Gelfand pair, by (1.2).

Let k, = IK,I/IKI, so that k, is the number of m-dimensional subspaces U' of V
such that dim(U n U') = m - r. Then we have

k,=q,2[m][r]

I

m rn
where r and I r are q-binomial coefficients (Chapter I, §2, Example 3). (Let

E = U n U' and F = U + U', so that E is an (m - r)-dimensional subspace of U,
and F/U is an r-dimensional subspace of V/U. The number of choices for E is

m m
I. Moreover, U'/E is a

I m - r = r and the number of choices for F is r
complement of U/E in F/E; since dim(U'/E) = dim(U/E) = r, it follows that for
each choice of E and F there are q'2 possibilities for U'.)

From Chapter IV it follows that

m

ch(1K) =hm(1)hn(1) _ S(m+n-i.i)(1)
i-0

and hence the character of 1K is E 0 Xi, where Xi is the character of G whose
characteristic is s(m+n-i,i)(1). Hence the zonal spherical functions of (G, K) are
wi = XieK (0 < i < m). If wi(r) denotes the value of wi at elements of K the
orthogonality relations (1.4Xiv) take the form

'n

E q`2[
rm] In]

i(r) j(r) = d- 1 [
m

m
+ n

]Si,,

where di is the degree of Xi, which by Chapter IV, (6.7) is

di =q'im+n(q)/ fl (qh(x) - 1)
XEA

where A is the partition (m + n - i, i), and i/i,(q) = II;_ ,(q' - 1).
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Notes and references

The theory of Gelfand pairs and zonal spherical functions was originally
developed in the context of the representation theory of locally compact
groups, and in particular Lie groups (see, for example, [H6], Chapter IV).
The prototype example is that in which G = SO(3) and K = SO(2), so that
G/K may be identified with the 2-sphere, and the zonal spherical func-
tions are the `spherical harmonics' or Legendre polynomials (loc. cit., p.
404).

2. The Gelfand pair (S2n, Hn)

Let t E S2n be the product of the transpositions (12), (34),..., (2n - 1, 2n),
and let H,, be the centralizer of t in S2n. The group H,, is the hyperocta-
hedral group of degree n, of order 2"n!, and isomorphic to the wreath
product of S2 with Sn.

To each permutation W E S2n we attach a graph I'(w) with vertices
1, 2, ... , 2n and edges e., we; (1 < i < n), where e, joins 2i - 1 and 2i. If
we think of the edges e; as red and the others as blue, then each vertex of
the graph lies on one red edge and one blue edge, and hence the
components of r(w) are cycles of even lengths 2p1, 2P21 ... , where pl
P2 > .... Thus w gives rise to a partition p = (pl, P21 ...) of n, called the
coset-type of w. This terminology is justified by the following proposition:

(2.1) (i) Two permutations w, w1 E S2,, have the same coset-type if and only if
WI E H,, wH,.
(ii) w, w-1 have the same coset-type.

Proof (i) The permutations w, w1 have the same coset-type if and only if
their graphs are isomorphic, that is to say if and only if there is a
permutation h E S2n that preserves edge-colours and maps I'(w) onto
F(w1). Since h permutes the red edges e;, it follows that h (=- H,,; and since
the blue edges w1e1 of F(w1) are a permutation of the blue edges hwe; of
hf(w), the e1 are a permutation of the wi'hwei, whence wi'hwEH,, and
consequently w1 E H,,wH,,.
(ii) Since wF(w-') = F(w), the graphs NO and I'(w-') are isomorphic,
hence determine the same partition of n. I

From (2.1Xii) and (1.2) it follows that

(2.2) (S2n, Hn) is a Gelfand pair.
I
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From (2.1)(i), the double cosets HnwH,, of H = H,, in S2,, are indexed by
the partitions of n. Let

HP = HwH

if w E S2,, has coset-type p. Then we have

(2.3) IHPI =
IH,I2/z2p

= IH,I2/2'(P)zp.

Proof If w has coset-type p then

IHPI=IHwHI=IHwHw-'I=IHI-IwHw-'I/IHf1wHw-1I

so that

(1) IHPI = IHI2/IH f1 wHw-' I.

Now H r) wHw-1 is the group of colour-preserving automorphisms of
the graph r(w). On a given cycle in F(w) of length 2r, it acts as the
dihedral group of order 2r, from which it follows that

IHnwHw-1I=z2p

which together with (1) completes the proof.

From (2.2), the induced representation 1Hrt of S2,, on the cosets of H is
multiplicity-free. In fact

(2.4) We have
1.1- = MH 2A

IAIan

where M2A is an irreducible S2,,-module corresponding to the partition 2A =
(2A1,2A2, ...).

Proof. With the notation of Chapter I we have

ch( 1 )=c(H,)=c(S2_Sn)=C(Sn)°c(S2)

=hn°h2= E S2A
IAI-n

by use of Chapter I, §7, Example 4 and §8, Examples 5 and 6(a).

From (2.4) and (1.5) it follows that

(2.5) Let µ be a partition of 2n and let Mµ be an irreducible S2n-module
corresponding to µ. Then dim M,,,- = 1 if p. is even (i.e. A = 2 A), and
M µ ^ = 0 otherwise. I
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From (2.4), the zonal spherical functions of the Gelfand pair (S2n, Hn)
are indexed by the partitions of n: they are

A 2A-(v =X en

where X2A is the character of MZA, and

1
en = IHnI hE h.

Explicitly, since X2A is real-valued, we have

(2.6) co'(s)
1

E X2A(sh)
IHnI heH

for s E Sen. Since X2A is integer-valued, cA(s) is a rational number for all
partitions A of n and all s E Sen.

For each integer n > 0, let

C. = C(S2n, Hn)

be the space of complex-valued functions on Stn that are constant on each
double coset HP, and let

C = ® Cn.
n>O

We define a bilinear multiplication in C as follows: if f E C. and g E Cn,
then f X g is a function on S2r,, X Stn c S2(m+n) (where S2in permutes the
first 2m symbols and Stn the last 2n symbols), and we define

(2.7) .f * g = em+n(f X g)em+n

Thus f * g is obtained from f X g by averaging over H,,+n on either side,
and lies in C,n+n.

For each partition p of n let

(PP = enwp en

where wp E HP. Thus (pp, (w) = IHif w E HP, and cpp(w) = 0 otherwise.
Clearly the (pp such that I PI = n form a basis of Cn, and we have

(2.8) (PP * wo = (PP U 0'

for any two partitions p, o-.

Proof Let I pI = m, I o- I = n, and let u E HP, v E H. Then I'(u x v) is the
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disjoint union of NO and f(v), hence u x v has coset-type p U v. Now
calculate:

(Pp *'Po=em+n((emuem) x (enven))em+n

= em+n(em X en)(u x v)(em x en)em+n

' m+n(u X v)em+n = (PpU o,

because em+nh = hem+n em+n for h E Hm+n, and hence em+n(em x en)

(em X en)em+n = em+n'

From (2.8) it follows that the multiplication (2.7) makes C into a
commutative and associative graded C-algebra.

For each w E Stn let p(w) denote the coset-type of w, and let

4" (W) =PP(W)

in analogy with Chapter I, §7, cycle-type being replaced by coset-type.
Note that p'(w) = p'(w-1), by (2.lXii). Now define a C-linear mapping

ch': C - Ac

as follows: if f e C,,, then

ch'(f) _ f(w)ii'(w).
WES21,

From this definition it is clear that

ch'('Pp) =pp

for all partitions p, and hence it follows from (2.8) that

(2.9) The mapping ch': C -> Ac is an isomorphism of graded C-algebras.

Next, we shall define a scalar product on C: if f, g e C, say f = E fn,
g = Egn with fn, gn E Cn, we define

(f, g) = E (fn, gn)
n>O

where

(2.10) (fn, gn) _ E f,,(W)gn(W)
WE S2,

(i.e. the usual scalar product, multiplied by 1S2,I = (2n)!). On the other
hand, we have a scalar product (u, v) on Ac, defined by

(2.11) (pp, P') = Sp,z2p =5P, 21(P)zp
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as in Chapter VI, (1.3). For these scalar products, the mapping ch' is
almost an isometry:

(2.12) For each n > 0, the mapping

f-' IHnI-1ch'(f )

is an isometry of Cn onto A.

Proof Let p and r be partitions of n. Clearly (fpp, cpo) = 0 if p 96 c r, and

I.
(PP)

= I HpI
-t =

IH,I-2z2p

by (2.3). Hence

(q'', cpo) = IHnI-2(ch'(pp,ch'q )

for all p, o,, which proves (2.12). 1

Now define, for each n > 0 and each partition A of n,

Za=IHnI-' ch'wA

I'=IHnI-' E to'(s)t/'(s)
S E Stn

i.e.

(2.13) ZA=IHnI Z 1 &)Wpp

Ipl=n

where top is the value of to' at elements of the double coset H. The
symmetric functions Z. are called zonal polynomials.' Since the &)A form a
C-basis of C, the Z. form a C-basis of Ac.

(2.14) ZA E Z[ p 1, p2, ...] for all partitions A.

Proof We have to show that

IHnI Z-
t,'p =IHnI-1IHpi&jP

is an integer for all .1, p. It is certainly a rational number, by (2.6), and it is
an algebraic integer by (1.10). hence it is indeed an integer.

I

t `tonal symmetric functions' would perhaps be a more logical name; but the present
terminology is universally used, and I have therefore not sought to change it.



406 VII ZONAL POLYNOMIALS

If A, µ are partitions of n, it follows from (1.4Xiv) that

((DA, w'`) = 8AP,(2n)1/X2A(1)

or

(2.15) (wA, m'`) = 6Amh(2A)

where h(2 A) is the product of the hook-lengths of the partition 2 A. Hence
the matrix (wP) satisfies the orthogonality relations

(2.15') F, Z-IO)PA )P =
P

(2.15") E h(2A)-'w,mo =

from which and (2.12) we have

(2.16)
A

Hence if we define

_ IH"I

CA h(2 A)
ZA

the relation (2.16) takes the form

(2.16') PP = E
(''P CP

P

and in particular

(2.16") Pi = E CP.
P

This renormalization of the zonal polynomials is often preferred by
statisticians.

Next, from (2.12) and (2.15) it follows that

(2.17) (ZA,ZZ) = 5Aµh(2A).

(2.18) We have

(1-x,yj)-112 = h(2 A)-'ZA(x)ZA(y).
'.J A

Proof. By (2.17), (ZA) and (h(2A)-'ZA) are dual bases of AQ for the scalar
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product (f, g), and so also are (pp) and (z2 p pp) by definition (2.11). It
follows (cf. Chapter I, (4.6)) that

F, h(2A)-1ZA(x)ZA(y) = E z2ppp(x)pp(y)
A p

= T T
__ 'kr>1 2r

which in turn is equal to

exp flog fl (1 -xiyy)-1 = fl (1 -xiy1)-1/2.

By considering the hook-lengths at (i, 2j - 1) and (i, 2j) in the diagram
of 2A, where (i, j) E A, it follows that

h(2A) = h1(2A)h2(2A)

where

(2.19) hi(2A) = fJ (2a(s) +1(s) +i) (i =1,2)
SEA

in the notation of Chapter VI, (6.14). From the results of Chapter VI, §10
it follows that the ZA satisfy the same orthogonality relations as the Jack
symmetric functions Jam) with parameter a = 2. In fact, ZA = j(2) for all A,
as we shall now show.

For each integer n > 0, let

(2.20)

gn =
IHnI-1Z(n)

-1
ZZP Pp

I pt-n

since ,,(n) = 1 for all p. If now A = (Al, A2, ...) is any partition, let
gA =gA,gAZ . Then we have

(2.21) (gA, mN) = SAµ

for all A, A.

Proof The generating function for the g is

E gn(X)yn = E Z2ppp(x)yIPI
n>O p

= fl(1-xiy)-1,12
i>1
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as in the proof of (2.18). It follows that

(1 -x;yj)-1,2 = ga(x)ma(y)
A

and hence that (ga), (mA) are dual bases for the scalar product (f, g).

(2.22) The transition matrix M(Z, m) is strictly upper triangular.

Proof The coefficient of mN, in the expansion of Z. as a linear combina-
tion of monomial symmetric functions is equal to (ZA, gµ) by (2.21), hence
we have to show that (ZA, gµ) = 0 unless A > A. From the definition of gµ
and from (2.9) it follows that

gµ=cµch'(Bµ)

where cµ is a positive scalar, whose exact value need not concern us, and
OIL = W(µi) * W(µ2) * .... Hence by (2.12) it is enough to show that (o)', 0
= 0 unless A > A.

Now 0 A= enr)en, where n = I Al and 17 is the trivial one-dimensional
character of the subgroup S2µ = S2µ, X S2µ, X ... of S2n. Since left and
right multiplications by in are self-adjoint for the scalar product (2.10), we
have

(NA, Bµ) = (en X2A, enl7en) = (en X2A, 77)

_ (en X2Ar7)(1).

Now the element of the group algebra of S2n generates the X2A-
isotypic component of the induced representation 7152", which, in the
notation of Chapter I, §7, is r2µ. Hence X2A occurs in
r2µ; and since

( X2A, r12µ> = (s2A,h2µ) =K2A 2µ

(Chapter I, §7) is zero unless 2 A > 2 µ, i.e. unless A > A, it follows that
X 2A77 = 0 and hence (to, 0 µ) = 0 unless A > µ. I

From (2.17) and (2.22) it follows (cf. Chapter VI, §1) that ZA is a scalar
multiple of Ja2), for each partition A. But by (2.13) and Chapter VI, (10.29),
the coefficient of p' in each of ZA and J(2) (where n = I Al) is equal to 1,
and therefore

(2.23) ZA = j(2) 2) for all partitions A.
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For each partition A, let c denote the polynomial

(2.24) cA(X) = 11 (X + 2a'(s) -1'(s))
SEA

= fT (X-i+2j-1)
(i,I)EA

Then if Z,(1,,) denotes the value of ZA(xl,..., xn) at x1= ... =x,, =1, we
have

(2.25) CA(n)

by (2.23) and Chapter VI, (10.24). For an independent proof of (2.25), see
(4.15) below.

(2.26) The coefficient of x' in ZA(x) is

h1(2A) = JJ (2a(s) +l(s) + 1).
SEA

This follows from (2.23) and the definition (Chapter VI, (10.22)) of jA' ).
For another proof, see §3, Example 1 below.

(2.27) If µ < A, the coefficient of x " in ZA(x) is a positive integer divisible by
uµ = fI,>>m,(la)t.

Proof The `augmented' monomial symmetric functions mµ = u
A

m
A

are a
Z-basis of the subring Z[ p1, p2, ... I of A (Chapter I, §6, Example 10).
Hence it follows from (2.14) that the coefficient of x µ (or of mK) in ZA is
an integer divisible by u,L; moreover it is positive by virtue of (2.23) and
Chapter VI, (10.12).

I

(2.28) Let A,, u, v be three partitions. Then (ZA, Z,Z") is an integer a 0,
and is positive only if c2µ,2 = <s2A, s2µs2,,) (Chapter I, §9) is positive.

Proof The definition (2.11) of the scalar product shows that it is integer-
valued on the subring ZIP I I P21 ... ] of A. Hence it follows from (2.14) that
(ZA, Z,,Z") is an integer. To show that it is non-negative, it is enough by
(2.9) and (2.12) to show that (to', co µ * w") 3 0.

Let I µl = m, I v I = n, I Al = p. We may assume that m + n = p, otherwise
the scalar product is certainly zero. We have

(NA, w"` * w") = (GA, ep(wIL X w")ep)

=(GA,tv1`Xw")
which up to a positive scalar factor is the coefficient of w µ X w" in the
restriction of wA to S2,n X Stn, and hence is non-negative by (1.8).
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Finally, since

l(wA, X w") _ (epX2A,(em X en)( X2µ X X2'))

= eP x 2A( X2µ X 'y 2p)(1),

for (ZA, ZµZ,,) to be positive we must have X2A( X2µ X X2v) # 0, which
implies that X2A occurs in the character obtained by inducing X2µ X X2v
from S2m X Stn to S2p, i.e. that (s2A, s2µs2v) > 0.

Remark. It seems to be an open question whether (ZA, ZMZV) > 0 if and
only if cµv = (sA, sµ sv) > 0.

Examples

1. If A = (r1 s) = (r + 1, is) is a hook, then ZA is equal to the determinant

D(1,2,...,s, -2r, -2r+2,..., -2)
in the notation of Chapter VI, §10, Example 4(a).

2. There are explicit formulas for some of the entries in the matrix (WP A).

(a) wp = 1 if A = (n) or p = (1").

(b) When ,1= (1"),

ZA = n !en = n ! E ec zV 1pp
P

(Chapter I, (2.14')) and hence

1") _ (-1)fl 1(P)/2n-!(P)
P

(c) From (2.25) it follows that

IH,, F, z2 10) X 1(P) = CA(X )
P

and hence, on equating coefficients of X on either side,

1
w(n) IHn-1I `f J'(2a'(s) - l'(s))

where the product omits the square (1,1) (for which a'(s) =1'(s) = 0). Hence
w(-) = 0 if A D (23).

A 2n(A') - n(A)
(d) w(21"-2) n(n - 1)

where n(A) _ A2 + 2A3 + ... = (Same method as in (c): equate coeffi-
cients of X"- 1 .)
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(e) Let rp: AQ - A Q be the automorphism defined by (p(p,) = T 'p, for all r :% 1.
Use Example 1 to show that Z( _ 1,1) is the image under (p of

1,1) +h1S(n_ 1))

where fµ = h( µ)sµ for any partition µ, and deduce that

O)(n-1 1) _ (2n - 1)ml( p) -n
2n(n - 1)

where m1(p) is the number of parts of p equal to 1.

(f) Show that

21-2) (1")
(n + 1)m1( p) - 2n

1

=10° n(n-1)
(Same method as in (e).)

3. Let
n

E x;D?+ E(x1-xf) 1x1D1Z
i*j

where D. = d/dxi (Laplace-Beltrami operator). Then

DfZA(X1,...,XR) = (2n(A') -n(A))ZA(xl,...,xn)

for partitions of A of length 5 n. (Chapter VI, §3, Example 3(e).) The coefficients
a.µ in

ZA = E aAµm
µcA

may be computed recursively in terms of aAA by means of this equation (Chapter
VI, §4, Example 3(d)).

4. Let A: A -+ A 0 A be the comultiplication defined in Chapter I, §5, Example 2.5.
Show that

(f, g) = W, Ag)

for all f, g E A, where the scalar product on the right is that defined loc. cit.

5. Let X denote the set of all graphs with 2n vertices 1, 2, ... , 2n and n edges, one
through each vertex. If x, y E X, the connected components of x U y are cycles of
even lengths 2pl > 2P2 3 .... Let p(x, y) denote the partition (p1, P21 ...) of n so
defined.

Show that the eigenvalues of the matrix

(pv(=.y)):,yex

are the zonal polynomials ZA such that I Al = n, and that the multiplicity of ZA as an
eigenvalue is X2A(1) _ (2n)!/h(2A).
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6. Let e denote the sign character of S2n, and let e" denote its restriction to 1,[n
From §1, Example 11, the induced character e.zn is multiplicity-free, so that
(S2n, Hn, en) is a twisted Gelfand pair, and

ensz. = E X21 L X(21)

IAI-n IAI-n

Hence the irreducible characters that appear in en 2n are those corresponding to
partitions of 2n with all columns of even length. The e-spherical functions are

,r A' = X(2 A) 'en

where e = IHnI-lee is the idempotent corresponding to en.

(a) For each f c= C, = C(S2,,, Hn) let f, be the function defined by f `(s) = e(s) f(s)
for s E S2n. Then the mapping f -f' is an isometric isomorphism of C. onto
C, = CE(S2n, H,,), the algebra of functions f on S2n that satisfy f(hs) =f(sh) _
e(h)f(s) for all S E S2n and h E Hr. Under this isomorphism, the zonal spherical
function wA E Cn Ais mapped to it E C:.

(b) Let

eC-= ® Cn
n>0

and define a bilinear multiplication on C6 by the rule

f * g = e;n+n(f Xg)em+n

if f E C,;, and g E C,,. Then the mapping f --> f E defined above extends to a graded
C-algebra isomorphism of C onto C8. The functions (pp form a C-basis of C8, and
cpP * op, = (pp, o for any two partitions p, o,.

(c) Define an embedding w - w* (which is not a homomorphism) of S. into S2n as
follows. For each cycle c = (i1,..., i,) in the cycle-decomposition of w E Sn, let c*
denote the 2r-cycle (2i1- 1,2i1,2i2- 1,2i2,...,2i,- 1,2i,), and let w* be the
product of these c*. If w has cycle-type p, then w* has cycle-type 2p and
coset-type p, and e(w*) _ (- 1)'(P) _ (- 1)"--(w). For each f E C,;, let f * be the
function on S,, defined by f *(w) =f(w*), which is a class function on S,,.

Now define a C-linear mapping

ch`: CE -* Ac

as follows: if f E C,;, then chs(f) = (-1)"IH,I2ch(f *), where ch is the characteris-
tic map of Chapter I, §7. We have che(Cp0 )= ep2l(P)PP, from which it follows that
ch` is an isomorphism of graded C-algebras.

(d) Define a scalar product (u, v)' on Ac by

(PP,Pq)' = 6PQ2-r(P)zp.

Then f -+ IHnI-1ch`(f) is an isometry of C onto An,c for each n > 0.

7. In continuation of Example 6, define

Za = IHnI-'chs(vrA)
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if A is a partition of n. Since

7.A(W*) = e (W *) 0) '(W E'
_11'

if w e S,, has cycle-type p, it follows that

(1) ZA' =JH,IE --,Z apv
P

which is the image of ZA., under the automorphism of Ac which maps each power
sum p, to (-1)'-' 2p and hence pv to ev 2l(P)pv for each partition p. From
Chapter VI, (10.24) it follows that

(2) Za = 2"J,(112

if A is a partition of n.
(a) From (1) and (2.15') it follows that

(ZA,Z,')' =h(2A')8A,.

(b) From Chapter VI, (10.24) we have

[1 (2n +a'(s) - 21'(s)).
SEA

(c) From Chapter VI, (10.22) the coefficient of xA in ZZ(x) is

U (a(s)+21(s)+2).
SEA

(d) We have (compare (2.18))
IT(1-x;y;)_2

= h(2A')-1Za(x)Za(y).

Notes and references

The zonal polynomials were introduced by L.-K. Hua [H11] and A. T.
James [J4] independently, around 1960. There is a large literature devoted
to them, mostly due to statisticians: see for example [F3], Chapters 12 and
13, and [M17]; also Takemura's monograph [Ti] and the bibliography
there.

The proof of (2.23) presented here is due to J. Stembridge [S29]. The
formula (2.25) was first proved by A. G. Constantine [C4], and (2.26) is due
to A. T. James [J5]. Proposition (2.28) is due to N. Bergeron and A. Garsia
[B3].

Example 2. These formulas are due to P. Diaconis and E. Lander [D4].
Example 3. This method of calculating the zonal polynomials is due to

A. T. James [J6].
Example 5. I learnt this combinatorial definition of the zonal polynomi-

als from R. Stanley.
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The zonal polynomials Z. have been calculated up to weight lai = 12:
see [P1].

3. The Gelfand pair (GLn(R), O(n))

Let V = R", with standard basis of unit vectors el, ... , e,,, and let G =
GL(V) = acting on V as follows:

n

ge; _ g;; e;

if g = (g;1). Let

P(G) _ ® Pm(G)
m>0

be the space of all polynomial functions on G, as in Chapter I, Appendix
A, §8: Pm(G) is the subspace of P(G) consisting of the polynomial
functions that are homogeneous of degree m. The group G acts on P(G)
by the rule

(3.1) (gp)(x) =p(xg)

for p e P(G) and g, x e G, and under this action P(G) decomposes as a
direct sum

(3.2) P(G) = ® Pµ,
w

where µ ranges over all partitions of length < n, and Pµ is the subspace of
P(G) spanned by the matrix coefficients R! of an irreducible polynomial
representation R µ of G corresponding to the irreducible G-module Fµ(V ),
in the notation of Chapter I, Appendix A. Moreover we have

(3.3) Pµ = F(V)d.

where dµ is the dimension of FF(V).

Now let K = 0(n) be the compact subgroup of G consisting of the
orthogonal matrices, and let ex, ex be the operators on P(G) defined by

(exp)(x) = fKp(kx)dk,

(e'X p) (x) =
fxp(xk)

dk

where the integration is with respect to normalized Haar measure on the
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compact group K. Clearly eK (but not e'K) commutes with the action (3.1)
of G. Since

eKR fi(x) = f R l(kx) dk
x

_ (fRk)dk)Rx)

it follows that eKPP CPµ for each p., and a similar calculation shows that
eKP. CPµ.

Next, we have eK p(kx) = eK p(x) for all k E K, by the invariance of
Haar measure, and therefore

(eKP)(x) = fK eK p(kx) dk =
fK

eKP(x) dk = eK p(x)

which shows that eK is idempotent, and likewise eK is idempotent. More-
over, the two operators eK, eK are related by

(3.4) eK = reKr

where r is the involution of P(G) defined by rp(x) = p(x'), where x' is
the transpose of the matrix x E G.

Let

(resp.

P(K\G) = ® Pm(K\G)
m>0

P(G/K) _ ® Pm(G/K),
m>0

P(G, K) = ® Pm(G, K))
m>0

denote the subspace of P(G) consisting of the functions constant on each
coset Kr (resp. each coset xK, each double coset KrK) of K in G. In each
case the superscript m denotes the subspace of functions that are homoge-
neous of degree m. Since -1 E K we have p(x) = p(-x) for p in any of
these spaces, and hence Pm(K\G), Pm(G/K), and Pm(G, K) are all zero
if m is odd. Also, by (3.1), Pm(G/K) is the same thing as Pm(G)K.

(3.5) (i) For each partition µ, eK Pµ and e'' P. are subspaces of Pµ of the
same dimension.
(ii) eK (resp. e'K) projects P(G) onto P(K\G) (resp. P(G/K)).

Proof. (i) From (3.4) it follows that eK and eK, are isomorphic projections,
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so that their restrictions to each Pµ have the same rank, i.e. dim(eKP,)
dim(e'KP)).
(ii) If p E eKP(G) then clearly p(kx) =p(x) for all k c= K and x E G.
Conversely, if p(kx) = p(x) for k c- K and x E G, we have eK p =p and
hence pEeKP(G). Hence eK P(G) = P(K\ G), and likewise e'KP(G)
P(G/K).

Next we have

(3.6) EndGP(K\G) = P(G, K).

Proof. The proof is best expressed in terms of the Schur algebra Cam'"
Ends.Tm(V) (Chapter I, Appendix A, §8, Example 6), with G-action
ga = Tm(g)a (g c- G, a E C5'"). The mapping a Hp,, defined by p,,(g)
trace(ga) is a G-isomorphism of Camm onto Pm(G), and since

trace(kga) = trace(Tm(k)Tm(g)a) = trace(gaTm(k))

it follows that

(eKpQ)(g)= fK trace(kga)dk

= trace(gaeK)

where

eK= f Tm(k)dkE25"'.
K

Hence eK per. = pasK, and therefore Pm(K\G) = eKPm(G) is the image of
C5'"eK under the isomorphism a H pQ. Likewise Pm(G/K) (resp.
P'' (G, K)) is the image of eK S "' (resp. eK S 'eK ). Now eK is idempotent,
and therefore

EndG Pm(K\G) = EndG(G'"eK) = Endsm(SmeK)

OK G'"eK=P"'(G,K).

Consider now the double cosets of K in G. We have

(3.7) If x e G, there exists a diagonal matrix = 4") such that
x e KCK, and the eigenvalues of x'x are C,.

Proof. The matrix x'x is symmetric and positive definite, hence can be
brought to diagonal form by conjugating with an orthogonal matrix, say
x'x = k'yk where k e K and y is a diagonal matrix whose diagonal entries
yi are the eigenvalues of x'x, and hence are positive real numbers. So if e,
is a square root of yi for each i, and e = diag( ... , 6" ), we have
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x'x = k' 62 k, which shows that k, = xk-11-' is orthogonal and hence

From (3.7) it follows that the polynomial functions p E P2m(G, K) are
determined by their values on the diagonal matrices, and that p(x) _

2'...' & 2) where the i2 are the eigenvalues of x'x, and p* is a
symmetric polynomial in n variables, homogeneous of degree m. We
conclude that

(3.8) The mapping p - p* is an isomorphism of P2m(G, K) onto An R for
each m > 0. f

Next, let I denote the space of real symmetric n X n matrices, and let

P(Y-) _ ®Pm(Y-)
m>0

denote the space of polynomial functions on 1, where Pm(s) consists of
the functions that are homogeneous of degree m. The group G acts on
P(s) by

(gp)(Q) =A(g'o'g)

for g E G, P E PM, and or E =-F..
Also let T = T2m(V) be the 2mth tensor power of V. The group G acts

diagonally on T:

g(v1®...®U2m)=gu1 ®...0 gv2m

and the symmetric group S2m acts on T by permuting the factors:

W(U1 ®... ® V2m) = UW-1(I) ®... ®Ux,-1(2m)

where g E G, W E S2m, and u,, ... , v2m E V

Let (u, v) be the standard inner product on V for which (ei, ei) = Si j,
and let (p:T --> Pm(s) denote the linear mapping defined by

mp(u®®... ® V2m)(O') =F1 (v2i-1,
i-1

Clearly cp commutes with the actions of G on T and on Pm(s), and since
(u, a v) = (o-u, v) = (u, vu) it follows that cp(ht) = ap(t) for t E T and h
in the hyperoctahedral group H=Hm. Since (e,, o"ij is the (i, j)
element of v E Y., it follows that p is surjective. Hence if

TH==(tET:ht=t forallhEH)

is the subspace of T fixed by H, we have
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(3.9) The mapping (p restricted to T" is a G-isomorphism of TH onto
Pm(Y.).

From Chapter I, Appendix A, §5, we know that T decomposes under the
action of S2m X G as follows:

(3.10) T = ® Tµ

where
µ

Tµ-Mµ®F,(V).

Here µ ranges over the partitions of 2m of length < n, and Mw, is an
irreducible S2m-module corresponding to A. Hence by (2.5) we have

(3.11) TH- (D F2A(V)
A

as G-module, where A ranges over the partitions of m of length < n.

If p E NY.), the function f defined by

fi(x) =p(x'x)
is a polynomial function on G, and the mapping p - fi commutes with the
actions of G on P(s) and P(G). Moreover, it doubles degrees: if p E
Pm(s.) then fir= P2m(G).

(3.12) The mapping p - fi defined above is a G-isomorphism of Pm(1) onto
P2m(K\G), for each m > 0.

Proof Since k'k = 1 for k E K, we have fi(kx) = P(x) for all k E K and
x E G, and hence fi E P2m(K\G). Next, each positive definite matrix v
can be written in the form o, = x'x for some x E G. Since the positive
definite matrices form a non-empty open subset I+ of $, a polynomial
function p E Pm(>) that vanishes on $+ must vanish identically, from
which it follows that the mapping p - fi is injective.

Now from (3.9) and (3.11) we have

(1) Pm(X) ® F2A(V)
A

where A runs through the partitions of m of length < n; and since eK is a
G-homomorphism it follows from (3.3) that eKPµ is isomorphic to the
direct sum of say mµ copies of Fµ(V ), for each partition µ, so that

(2) P2m(K\G) _ ® eKPN, = FN.(V)m",

where µ runs through the partitions of 2m of length < n. We have
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already shown that Pm(s) is isomorphic to a submodule of P2m(K\G),
and hence from (1) and (2) we have m, > 1 if µ is even (i.e. µ = 2A).

From (2) we have

F m2A = dim EndG PZm(K\G)
µ

= dim P2m(G, K) by (3.6),

which by (3.8) is equal to the number of partitions A of m of length < n. It
follows that m,, = 1 if µ = 2A is even, and mµ = 0 otherwise. Hence (1)
and (2) show that Pm(s) and P2m(K\G) have the same dimension, and
the proof is complete. I

Remark. Let v1,..., v,, E V be the columns of the matrix x e G, so that
the (i, j) element of x'x is the scalar product (v,, v,> = v; v. of v; and v,.
Then (3.12) says that any polynomial function f(v,,..., such that
f(kvl,... , f(vl, ... , for all k e K-that is to say, any polynomial
invariant of n vectors v1, ... , v under the orthogonal group-is a polyno-
mial in the scalar products (v,, vj ). In this form it is part of the `first main
theorem' of invariant theory for the orthogonal group ([W2], Chapter II,
W.

As a corollary of the proof of (3.12) we record

(3.13) (i) The G-module eK P, is isomorphic to F, (V) if µ is even, and is zero
otherwise.
(ii) We have

eKP(G) =P(K\G) F2A(V)
A

where A ranges over all partitions of length < n.

Hence the G-module eKP(G) is multiplicity-free. The situation is quite
analogous to that of §1, except that the groups G, K involved are now
infinite, and the space of all functions on a finite group is replaced by the
space of polynomial functions on G. Thus (G, K) may be called a Gelfand
pair.

(3.14) Let µ be a partition of length < n. Then

dim F, (V )K =
1 if A is even,
0 otherwise.

Proof. From (3.3) we have

(1) dim P,, =d,, dimFµ(V)'
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and on the other hand, from (3.5) and (3.13),

dim Pµ = dim e'' P,, = dim eKPµ

(2) _ dµ if µ is even,
0 otherwise.

The result follows from (1) and (2). 1

For each partition µ of length < n, let

P,(G, K) = Pµ n P(G, K) = (eKPµ)K.

(3.15) PN,(G, K) is one-dimensional if µ is even, and is zero otherwise.
Moreover

P(G, K) _ ® P2A(G, K)
A

summed over all partitions A of length < n.

This follows from (3.13) and (3.14).

If f E AR we may regard f as a function on G:

f (X) = f( J 1 I ... I W

where are the eigenvalues of x E G. For example,

(3.16) pr(x) = trace(x')

since the eigenvalues of x' are e;', and

(3.17) er(x) = trace(A'x) (r> 1).

Since each f E AR is a polynomial in the er, it follows that f is a
polynomial function on G that satisfies

(3.18) f(xy) = f(yx)

for all x, y E G (because xy and yx = y(xy)y-' have the same eigenvalues).
In particular (Chapter I, Appendix A, §8), the character of the irre-

ducible representation R µ of G is the Schur function sµ:

sµ=ER;;EP.

as a function on G. From (3.13) we have eKSµ = 0 unless µ is an even
partition:

(3.19) fx sµ(xk) dk = 0
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for all x E G, unless p. is an even partition.

Let fl, = eKS2A, or explicitly

(3.20) fZA(x) = f s2A(xk) dk = f s2A(kx) dk
x x

for any partition A of length < n.

(3.21) (i) flA(1) = 1.
(ii) fZA E P2 A(G, K) and generates the irreducible G-submodule eK P2 A of
P(K\ G).

Moreover, fZA is characterized by these two properties.

Proof. (i) We have

flA(1) = fxS2A(k) dk = dim F2A( V)K
= 1

by (3.14).
(ii) Since s2A E P2A, it is clear from (3.20) that fl, E P2A n P(G, K) _
P2A(G, K); and since fl, # 0 (by (i) above) it follows that fZA generates the
irreducible G-module eKPZA.

Conversely, any f r=- PZA(G, K) must be a scalar multiple of 1 A, by (3.15);
if also f(1) = 1, then f = fA. I

The function f1A is the zonal spherical function of (G, K) associated with
the partition A.

We return now to the S2,n X G-module T = T2,(V), where m < n =
dim V. From (3.10) and (3.14) we have

TK = TZA ° ® M2A
A A

as S2,n-module, where A ranges over all partitions of m. From (2.4) it
follows that TK is isomorphic to the induced module 1 j ". Now the tensor

n

S= E e;®ei
i=1

is fixed by K, and hence en = S ® ... ® S (m factors) lies in TK. Since the
subgroup of SZ,n that fixes S®" is precisely H, it follows that S®m
generates TK as S2.-module. Hence by (1.5) the space

TZ xK=(TZ )H=(TZ )K
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is one-dimensional, generated by

(3.22)
WAS®m= F, WA(W).WS®m.

W E s2m

We need now to compute the image of this element of TH under the
isomorphism cp: TH - Pm(s) (3.9). This is given by

(3.23) w(ws"m) =PP

where p is the coset-type of w.

Proof. Let f,, = cp(wS®m). For any h E H we have f, = f,, since h S®m =
5m; also fhw =f, since cp(ht) = p(t) for all t E T. Hence fW depends only
on the double coset HP to which w belongs. By taking w to be the product
of consecutive cycles of lengths 21, 2 p2, ....we reduce to the case where
w is the 2m-cycle (1,2,...,2m). Since

m=Ee;,0e;,®...®e,m®e, ,

it follows that

and hence that

w3om = E ej® ® e,, 0 et1 0 ... 0 elm-t 0 e,m

fw(o) = E O'i.-Ii.

= =pm(°) I

We can now express the zonal spherical function lA in terms of the
zonal polynomial Z. defined in §2:

(3.24) We have

f1A(X) = ZA(X'x)/ZA(1")

for all x e G.

Proof. Let cpA = cp(wAA'®m), and define A E P(G) by !pA(x) = coA(x'x). It
follows from (3.12) that A is a generator of the one-dimensional space
P2A(G, K) that is the image of T2 "K under the composite isomorphism

TH -> P'(1) -> p2m(K\G).

Hence, by (3.21), 11A is a scalar multiple of A, namely

(1) S1A(X) = (pA(X'X)/OA(1")
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since fl, (1) = 1. On the other hand, it follows from (3.22) and (3.23) that

(2) 9A= EIHPI ),p,HmIZA
P

by (2.3) and (2.12). The result now follows from (1) and (2).

Examples
1. (a) Let A be a partition of length n and let (A1 - 1, ... , An - 1). If x E G we
have

fZA(x) = fKS2A(xk) dk

= f (det xk)2s2µ(xk) dk
K

_ (det x)2fZµ(x)

and hence if e= diag(e1,..., fn) is a diagonal matrix we have

ZA(e) Z(6)
(1)

ZA(1)
_ 61...

n µ n

(b) Let aA denote the coefficient of f A in ZAQ). From (1) above we have

as/aµ = Z,(1,,)/Zµ,(1,,) = C,A(n)/C,(n)

by (2.25). If s is the square (i, A,) at the right-hand end of the ith row of A, and t is
the square (i,1) at the left-hand end of the same row, we have a'(s) = a(t) and
n -1'(s) = 1(t) + 1, from which it follows that

cA(n)/cµ,(n) =h1(2A)/h1(2µ)

and hence, by induction on I Al, that aA = h1(2 A) (2.26).

2. Show that if t e R and x e G,

tI2AI

fxexp(t trace xk) dk = E
h(2A)

f1A(x).
A

(We have

(Chapter I, §7), hence

pln = Sµ
I I-m h(µ)

(1) fK(trace xk)m dk = h(1
fKsµ(xk) dk

µ

summed over the partitions A of m. The integral on the right is zero unless A= 2A
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for some partition A, hence the integral (1) is zero if m is odd; and if m = 2r is
even it is equal to

(2r)!

E h(2A)
IAI-r

3. For each partition µ of length 5 n, the irreducible G-module FF(V) has a basis
indexed by the column-strict tableaux T of shape µ, such that relative to this basis
a diagonal matrix x = diag(x...... x,,) E G is represented by a diagonal matrix
R µ(x) with diagonal entries xT (Chapter I, Appendix A, §8, Example 2). Hence

si,(xk) = trace R'`(x)R, (k)

_ E xTRfT(k)
T

and therefore

flA(x) = fKS2A(xk) dk

_ F xTf RTAT(k) dk
T K

summed over the column-strict tableaux T of shape 2,1 that can be formed with
the numbers 1, 2, ... , n. Each monomial x T in this sum belongs to a monomial
symmetric function m,,(xl, ... , where 2 , k , and hence fA(x) is a linear
combination of these, since it is symmetric in x1,..., x,,. But SlA(x) is unaltered by
replacing any xi by -xi, and hence is a symmetric polynomial in xi , ... , X2n'
Consequently only the m such that v is even, say v = 2µ, will occur, and so ,(lA(x)
is of the form

SlA(x)= F, aAµm,,,(x',...,x2),
A<A

since 211 _< 2A if and only if µ < A. This gives an independent proof of (2.22) and
hence of (2.23).

Notes and references

The material in this section is due to A. T. James [J4].

4. Integral formulas

(4.1) Let f E P(G), f # 0. Then f is a zonal spherical function of (G, K) if
and only if

f f(xky)dk=f(x)f(y)K

for allx,y G.



4. INTEGRAL FORMULAS 425

Proof. Let A be a partition of length < n, and let

py(x) =
fx

fZA(xky) dk

=
fKfKS2A(xkykl) dk, dk

by (3.16). Since s2A, as a function on G, lies in P2A it is clear that
cpy e P2, n P(G, K) = P2A(G, K), and hence by (3.15) and (3.17) it follows
that cpy = cflA for some c E R. Since f1.,(1) = 1, we have

c = cpy(1) = f (i,(ky) dk = fZA(y)
K

and hence

(1) fKfZA(xky) dk = fZA(y)fZA(x)

for all x, y e G.
Conversely, suppose that f E P(G) is such that f 0 0 and

fxf(xky)dk=f(x)f(y)

for all x, y e G. By choosing y such that f(y) * 0 we see that f(xkl) =f(x)
for all x E G and k, E K, and likewise that f(kl y) = f(y) for all y e G and
kl e K. Hence f e P(G, K), say

f = aAflA

A

by (3.15) and (3.21). We have then

f(x)f(y) = f f(xky)dk= aA fxfa,, (xky)dk
A

and hence by (1)

F,aAfZA(x)f (y) = E aAfZA(x)fZA(y).
A

Since the fZA are linearly independent, it follows that aA(f -1l) = 0 for all
A. Since not all the aA are zero, we conclude that f = aA for some A. I

(4.2) Let A be a partition of length < n. Then

ZA(Q)ZA(T)
dk =K

Z (1 )A n
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for all o', r E 1.

Proof. Both sides of (4.2) are polynomial functions of o and r, hence we
may assume that o, and T are positive definite, say o = x'x and T = yy
Then okrk' =x'xkyy'k', and hence by (3.18) and (3.24)

(4.2) now follows from (4.1).

Let dx = M,j_ 1 dx,, be Lebesgue measure on G = and let

dv(x) = (27r)-"z/2 exp(-
?

trace x'x) dx,

the `normal distribution' of the statisticians. Since trace x'x = E;, 1x . and
W

e-t2/2 dt = (21r)'/',f
it follows that

fG
dv(x) = 1.

The measure v is K-invariant, that is to say

dv(k1xk2) = dv(x)

for k1, k2 E K. For if y = k1xk2 we have trace y'y = trace x'x and dy = dx.

(4.3) For each integer m > 0 and all o,, r E I we have

fG(trace o
xrx')mdv(x) = 2mm! E

ZA Q ZA T

W A)CAI-m

where h(2 A) is the product of the hook-lengths of the partition 2 A.

Proof. We may write

r=k''rlk2

where = diag(h1,... , and rl = diag(r11...... are diagonal matrices,
and k1, k2 E K. Then

trace oxrx' = trace k, ek1xk''rlk2x'

= trace eyrly'

where y = k1xk', and hence by K-invariance of v

f (trace rxrx')m dv(x) = f (trace xgx')m dv(x)
C G
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which is the coefficient of t'"/m! in

(1) fGexp(t trace exi7x') dv(x).

Now

t trace xTjx' - 1 trace x'x = - z F, (1 - 2tl:;T7j)x j.

i.i
Hence the integral (1) is equal to

fl (1 - 2tf;Tj7)-112
1.1

which by (2.18) is equal to

(2)
A

since ZA(o') = ZAQ) and ZA(T) = ZA(77). The result now follows from
equating the coefficients of t'n in (1) and (2).

(4.4) Let o-, T E 1. Then

faZA(o xTx) dv(x) = ZA(o')ZA(T)

for all partitions k of length < n.

Proof Let IA( o , T) denote the integral on the left. Then we have

IA(o ,T) = fxl I dk

- fGl f ZA(vkxrx'k')dk dv(x)

dv(x)
fG ZA(ln)

by (4.2). Hence

IA(o,,T) =
ZA(ln)

I'(1. "r)

ZA(o)ZA(T )
ZA(ln)x

IA(1n,ln)

by repeating the argument.
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On the other hand we have from (2.16)

Pi = 2mm! F, h(2A)-'ZA
IAI-m

and therefore

f (trace o'xTx')m dv(x) = 2mm! E h(2A)-'IA(cr,T)
G JAI- m

=2- 1 7 ZA(o)ZA(T)

IAIsm h(2A) ZA(ln)2
.

It now follows from (4.3) that

ZA(ln)2

and hence from (1) that IA(0,T)=ZA(u)ZA(T).

By taking T = 1 in (4.4) we have

(4.5) fGZA(x'o-x) dv(x) =ZA(l,)ZA(o ).

In other words, the ZA are eigenfunctions of the linear operator U,,: A -i'
A defined by

(4.6) (U f)(Q) =
fG

f(x'o- x) dv(x)

and the eigenvalue of U corresponding to ZA is

As in Chapter I, Appendix A, §8, Example 5, for each partition µ of
length < n let A. be the polynomial function on G defined by

Aµ(x) _ 11 det(x00)
rai

for x = (x,l) E G, where X(') _ (Xij)1 <i f., for 1 < r < n. Then (loc. cit.)
the G-submodule Eµ of P(G) generated by A,, is irreducible and isomor-
phic to F,,(V ). We have

(4.7) t (xb) = AN,(b'x) = Aµ(b)Aµ(x)

if b E G is upper triangular.

Now let B+ be the subgroup of G consisting of the upper triangular
matrices (b;j) with positive diagonal elements bi;. If x e G, Gram-Schmidt
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orthogonalization applied to the successive columns of the matrix x shows
that

(4.8) x = kb

with k e K and b e B+; moreover, this factorization of x is unique, since
Kn B+= (1).

(4.9) We have

eKO2A(x) = CA&A(x'x)

where cA is a positive constant, independent of x e G.

Proof If x = kb as above then

eK1IZA(kb) = fK. 2A(klkb)dkl

= z2A(b) fx z2A(kl)dk,

= cAIA(b'b) = cAIA(x'x)

by use of (4.7), where

CA = f A2A(k) dk
K

is positive, since A2A = Da is > 0 on G, and is > 0 on a dense open subset
Iof K.

(4.10) We have

fKOA(k'v k) dk =

for Q E E.

Proof We may assume that v is positive definite, say v = x'x (x E G),
since both sides of (4.10) are polynomial functions on $. From (4.9) it
follows that the function x - zA(x'x) generates the irreducible G-module
P2A(K\G) = F2A(V), and hence that

fKOA(k'x'xk) dk = SZA(x)

= ZA(x'x)/ZA(l,,)

by (3.24).
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(4.11) We have

fc Ax(x'o-x) d v(x) = ZA(o,)

for o E 1.

Proof. Since the measure v is K-invariant we have

fGO,A(x'vx)dv(x) =1(fGA,(k'x'oxk)dv(x)) dk

=
fc(fx&,(k'x'o xk)dk) dv(x)

fGZ.(x'Qx)dv(x)

=ZA(T)

by Fubini's theorem, (4.10), and (4.5).

In particular (o, = 1")

(4.12) ZA(1") = f D,(x'x)dv(x).
G

We shall now calculate this integral directly, using the factorization
x = kb (4.8). Let

db = rj dbij
i<j

be Lebesgue measure on B+, and let

dv(b) = (21r)-"("+O/4 exp(- i trace b'b)db.

The measures dx, dk, db on G, K, B+ respectively are related by

dx = c"OS(b) dk db

where 8 = (n - 1, n - 2,..., 1, 0) and c" is a positive real number depend-
ing only on n (see [B7], Chapter VII, §3, or Example 2 below). Since
x = kb we have x'x = b'b and hence

(4.13) d v(x) = c',,As(b) dk dv(b)

wherec;, = (21r)-"("-1)"4c".
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From (4.7), (4.12), and (4.13) it follows that

ZA(1n) = C ' . , DA(b)2OS(b) dv(b)

= c',, [1
(2a)-1/2 b /2 dbii

i-1 0

(4.14)

n

_ (2zr)-n/2c, 2a,+(n-i-1)/2r(Ai +'-2(n - i + 1)).
i-1

Since Zo = 1 we obtain

ZA(ln) r( A, + 2(n - i + 1))
Za(ln)=

z0(1n)
-i-1 2a,

r(2(n-i+1))
n ai

=21A1IZ rj(2(n-i+1)+j-1)
i-1 j-1

or equivalently

(4.15) ZA(ln) _ fT (n + 2a'(s) - l'(s)) = c,A(n)

in agreement with (2.25).

Examples

1. If k = (kij) E K, let

SEA

n

Wij(k) _ F, k,, dkrj,
r- 1

431

a differential 1-form on K.

(a) Since E,k,ik j - 8ij, it follows that w,j + wji = 0.

(b) If a is a fixed element of K then w,j(ak) = w,j(k), i.e. the w,j are left-invariant
'differential forms on K.

(c) Hence

WK= A -,j
1>j

is a left-invariant differential form of degree Zn(n - 1) = dim K (defined only up to
'sign, because we have not specified the order of the factors in the exterior
product); moreover it is not identically zero, since A,> j dk,j. Hence (see
e.g. [D5], (16.24.1)) WK determines a Haar measure d*k on K. Since Haar measure
is unique up to a positive scalar multiple, it follows that

d*k = cndk
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for some c,, > 0 depending only on n. The constant c is calculated in Example
2(d) below.
2. (a) For x = (xij) E G let

wa(x) = A dx;i
i.i

be the differential form on G (defined only up to sign, as in Example 1) that
corresponds to Lebesgue measure dx. If a E G we have

wG(ax) = f WG(xa) = t (det On wG(x).

(b) For b = (b,l) E B+, let

wB+(b) = A dbij
iGl

be the differential form on B+ that corresponds to Lebesgue measure db. If
a E B+ we have

wB+(ba) = ±(det a)"Da(a)-1 wB+(b),

wB+(ab) = ±(det a)As(a)wB+(b).

(c) From the factorization x = kb (4.8) we have

(dx) = (dk)b + k(db)

where (dx) denotes the matrix of differentials (dx,1), and likewise for (dk) and
(db). Hence

k'(dx)b-' =k'(dk) + (db)b',
in which the matrix k'(dk) = (wi,) (Example 1) is skew-symmetric, and the matrix
(db)b-' is upper triangular. Deduce from (a) and (b) above that

WG = ± wK A As WB+

and hence that

dx = d*k. 0a(b) db

= c"Da(b) dk db.

(d) Deduce from (4.14) (with A = 0) that

C"=v1v2...v"

where v, = 21r'/2/I'(. r) (which is the `area' of the unit sphere in R': vI= 2,
v2=2ar,v3=41r.... ).
3. Let A be the group of diagonal matrices 6 = diag(f 1, ... , i") with diagonal
elements e, > 0, and let VC :1 be the cone of positive definite symmetric
matrices. Orthogonal reduction of a real symmetric matrix shows that each Q E Y. +

can be written in the form

(1) Q=kek'
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with k E K and ?; E A. The 6, are the eigenvalues of o, and hence the diagonal
matrix ,` is unique up to conjugation by a permutation matrix. Moreover, if the 1=i
are all distinct, the columns of K are unique up to sign. From this it follows that
the fibre over o E I+ of the mapping K X A - I+ defined by (1) is a finite set of
cardinality 2"n! = I H"I whenever the discriminant of v does not vanish, hence
almost everywhere on

From (1) we have

(do) = (dk) Ck' +k(df)k' +k,=(dk)'

where (do) denotes the matrix of differentials (do,j), and likewise for (dk), (dr;).
Hence

k'(do)k =k'(dk)C+ (dC) + 6(dk)'k,

the (i, j) element of which is the differential 1-form

Wyitj+Sijd?;i+?;iwji=(yj-l;i)Wji+Sijd6i

in the notation of Example 1. Hence if

wE+= Ad oij, WA = A d?;i
i<j i-i

(defined only up to sign, as in Example 2) we have

(2) w += ± wK A as wA

where as(,`) = U,. <j(Si - Sj). It follows that

1
do=

2".n! lab(?;)Idk*de

(3)

c"
= 2" n! las(i;)Idkde.

4. Let m > n and let X =M m "(R) be the vector space of all real matrices x = (xij)
with m rows and n columns. Also let Y.m (resp. Y.") denote the space of real
symmetric matrices of size m x m (resp. n x n).

If x, y E X we have trace(xy') = trace(y'x), and more generally

e,(xy') = trace A'(xy') = traceAK(x) A'(y')

= trace A'(y') A'(x) = e,(y'x)

for all r > 1, so that

(1) f(xy') =f(y'x)
for all f c= A and x, y c= X.

Now let dx = 11,.j dxij be Lebesgue measure on X, and let

dv(x) = (2a)-m",' 2 exp(- i trace x'x) dx

be the normal distribution. Let o E Y.m and T E Y.". Then
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(a) We have

o
fX(trace oXrX,)r dv(x) = 2'r! E

ZA(h1)ZA T

IAI-r

(same proof as (4.3)).

(b) We have

I ZA(oXTX')dv(x)=ZA(o)ZA(T)

if 1(A) <n. (Same proof as (4.4).) In particular,

fXZA(xx')dv(x)= j ZA(x'x)dv(x)=ZA(1,n)ZA(ln).

(c) Let Um n: A. - Am be the operator defined by

(Um,nf)(o) - fff(x'ox)dv(x)

where o (=-Im. Then

U,n.nZA =ZA(1n)ZA

for all partitions A of length n. (Set T= 1n in (b) above.) Hence pm,n a Um,n
U. ° Pm,n+ where pm,,,: Am - A. is the restriction homomorphism (Chapter I, §2).

5. Let x, y E G. Then

(a) fc fl,(=y) dv(z) = SZ1(x)"A(y)ZA(1n)

if 1(A) 6 n. (Use (3.24), (4.1), and (4.5).)

(b) fcs21(xzy) dv(z) _ f'A(yX)Z1(1n)

if 1(A) < n. (Use (3.20) and (a) above.)

6. Let p. be a positive K-invariant measure on the cone X+ of positive definite
symmetric n X n matrices, such that

ff(o,)du.(o) <oo

for all f E An. Define an operator E: A,, - A,, by

(Ef)(o) = f , f(or)dµ(T).

Then each ZA such that 1(A) <n is an eigenfunction of E, with eigenvalue

ZA(1n)-1 fZA(T)du(T)



4. INTEGRAL FORMULAS 435

(Use (4.2).)

7. (a) Let d o - 111,1 d o be Lebesgue measure on 1. If x E G, the Jacobian of
the linear transformation u -x'Qx is the symmetric square S2(x) of x. If the
eigenvalues of x are fl, .... fn, those of S2(x) are f; ej (14 i < j < n), whence
det(S2x) _ (det x)n+1 Hence

d(x'ox) _ Idet x1"+1 do,

and therefore

d*o.= (det o, ) -'n +')/2 do,

is a G-invariant measure on I (and on +).

(b) Let m > n and let X= Mm (R), as in Example 3. The group G acts on X by
right multiplication, and we have

d(xg) = Idet gltm dx

if g E G. Hence

d*x = (det
x'x)_m/2

dx

is a G-invariant measure on X.

(c) Hence the linear functional

f-+ f f(x'x)d*x
x

defines a G-invariant measure on V. Since G-invariant measures on homoge-
neous spaces (when they exist) are unique up to a positive scalar multiple, it follows
from (a) that

(1) f
for some real number c,,,,,, > 0 independent of f.

If we take

f(o) _ (21r)-m"/2
exp(-'- trace o)(det 0,),/2 g(o )

in (1), we shall obtain

(2) fxg(x'x)dv(x) = fE+g(Q)d(o )

where

dµm.n(o) = cm.,, exp(-
Z

trace Q)(det 0,)(m -n - 1)/2
do,

and cm,,, = (210-mn/2cm,rt

(d) Each matrix o E I + is uniquely of the form v = b'b, with b E B+, and the
mapping b - or is a diffeomorphism of B+ onto V. The Jacobian matrix
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(ao,j/abk,), with rows and columns arranged in lexicographical order, is lower
triangular, so that its determinant is equal to

fl (ao,j/abij) = 1-1 (1 + 8ij)bii.
iGj 14j

Hence

(3) do= 2n(det b)Da(b)db.

(e) By taking f (o,) = exp(- or trace o) (det o,), in (1) and using (3), deduce that
n

c,,,,,, - 2 n Vm_i+1
i.1

where v,=29r'/2/I'(Zr) as in Example 2(d).
8. In this example and the following we shall use the abbreviations

etr(o) = exp(trace o,), lo, I= det o

for a square (not necessarily symmetric) matrix o.
Let f = fa, A be the function on I+ defined by

f(o)=1o1°ZA(o)

where a 3 Zn and 1(A) < n.
(a) Show that

( *-o)f(o)d o=ZA(1n)r,,(a,A)fF ' etr

where d*o = 10,1-(, +1)/2 do as in Example 7, and

I'n(a, A) = f etr(-o)IoI°DA,(o)d*o

7-n-1

n(n-1)/41 r(a+Ai - 2(i-1)).
i-1

(Use (4.10) and Example 7 above.)
(b) Let r c- E+ and let

Show that

g(T) = fI+ etr(-uT)f(o)d*o.

g(T) = I'n(a, A)f (T-1).

(Let r'12 be the positive definite square root of T. Under the change of variables
o,+ T1/2QT1/2 we obtain

g(T)
=IT1-"fm

+ etr(-o)IUI°ZA(oT ')d*o.

Now replace o by kok'(k a K), integrate over K and use (4.2) and (a) above.)
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This calculation shows that the Laplace transform of the function f4+1)/2,A is
the function r .+ r"(a, A) fQ, A(T 1).

(c) More generally, if p, ,r E=- I+ show that

f etr(-po)lol°ZA(oT) d*o= r"(a, A)I PI-`ZA(P-1T).

9. (a) Let a, b 3 In and let A be a partition of length < n. Show that

(1) f ZA(uT)Iur°-PIl" - QIb-P do =
F,,(a +b, A)

ZA(T)

for r r= I+, where p = Z(n + 1) and the integral is taken over 3+n(1" - I+)
(Let f(T) denote the left-hand side of (1). By replacing o by kok', where

k e K, and then integrating over K and using (4.2), it follows that

(2) f(T) =

Next, from Example 8(a) we have

(3) r"(a, f etr(-o- T)IoIo PITIb-PZA(o)do, dr

integrated over E+x V. Let

71 = o+ T, Q1 = Tl 1/2071 1/2,

where rl "2 is the positive definite square root of Tl; then I u 1= I o11IT1I and
Iii =11 - o11IT11, and do1dr1 =1T11-Pdodr. Hence the integral (3) is equal to

f etr(-71)I711"+b-Pf(T1)dT1

which by (2) above and Example 8(a) is equal to r"(a + b, A)ZA(1") fA(1"). Hence

{ r (a, A)r (b,0)
!A(ln) _ "r"(a + b, A)

which together with (2) completes the proof.)

(b) Show that

f ZA(6)Ifr°-PI1" _ 6Ib-Plas(C)Idi:

2"n!

C" b, A)
Z'(%)

where the integral is taken over i; = diag(61, ... , a") such that 0 < , < 1 for
1 < i < n. (Use (a) above and Example 3.)

This integral is the case a = 2 (i.e. k = Z) of the Selberg-type integral of Chapter
VI, §10, Example 7.
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10. Let A be a partition of length < n, and let m > n + 2,11. Then in the notation
of Example 7(c) we have

f Z (v 1T)d
ZA(-T)

+ A µm,"(O)= c (n-m+l)A

for T E 1, where cA is the polynomial defined in (2.24) or (4.15). (Let f(T) denote
the integral above. By replacing o by ko k', where k E K, and then integrating
over K, it follows from (4.2) that f(T) = cZA(T), where

ZA(v 1)
C= fya

ZA(1")
dµ,,,,"(O) = I AA(O

by (4.10). Evaluate the latter integral by setting o = bb', where b E B+.)

11. Let x and f be elements of G, where r; = diag(f 1, ... , i") is a diagonal matrix.
Then the coefficient of 61 ... 6, in det(x',`x)(') is (det x('))2, and hence if 1(A) < n
the coefficient of 6A in !sA(x'ex) is AA(x)2 = A2A(x). From (4.10) and (2.26) it
follows that

fGO2A(x)dv(x) =h1(2A),

the coefficient of C A in ZAQ).
Deduce that

fx O2A(k) dk = hl(2A)/ZA(1").

(Write x = kb with k E K and b E B+, and use (4.13) and (4.14).)

12. Let A be a partition of length 5 n. Show that

h1(2 A)ZA(x'x)

(a) ftcxtc
.2A(klxk2)dkldk2=

ZA(1 )2
n

(Let fA(x) denote the integral on the left. Clearly fA E P(G, K), hence is a linear
combination of zonal polynomials, and we may assume that x = f= diag(f")
is a diagonal matrix. Now the leading term in det(k1 r; k2)t'>, as a polynomial in the
fi, is (det kj')Xdet e,, and hence the leading term in A2A(kl f k2) as a
polynomial in 1,..., & is A2A(kl)O2A(k2)62A. Hence fA(x) is a scalar multiple of

ZA(x'x), and the scalar multiple is given by Example 11.)

(b) Show that

hl(2A)ZA(x'x)

Z' (1 )A n

ffxG A2A()
dv(y) dv(z) =hl(2A)ZA(x'x).

(Use (a) above and (4.5).)
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13. Let x 1, ... , x, E G. Then

'12A(yoxlylx2...yr-lxryr)dv(yo)... dv(y,)=hl(2A)J 1 Z,A(x'x;)Gr+I t_1

if 1(A) < n, where G'+ 1 = G X ... X G to r + 1 factors. (Induction on r: the case
r =1 is Example 12(b). If we denote the integral above by fA(xl,..., x,) we have

fA(x1,...,xr+1)= f !A(xlyx2,x3,.... x,+1)dv(y)
G

if r > 1, and the inductive step is completed by (4.5).)

14. Let µ be a positive measure on G such that dµ(kx) = dµ(xk) = dµ(x) for all
k c= K, and such that

fGf(x)dµ(x) <x

for all polynomial functions f on G. If 1(A) n, show that

fG AA(x'Ux) dµ(x) = uAZA(v )

for all o E 1, where

UA=ZA(ln)-l f SZA(x)dµ(x).
G

(Use (4.10) and (4.2).)

15. Let All 92 be positive measures on G satisfying the conditions of Example 14.
Show that

JGx G
A2A(yXz) dµl(y) dµ2(2) = vASZA(x),

where vA = (Replace y by kl yk3 and z by k4zk2,
where k1,. .. , k4 E K; integrate first with respect to k l and k2, and then with
respect to k3 and k4, using Example 12(a) and (4.1).)

Notes and references

Most of the integral formulas in this section are to be found in Takemura's
monograph [Ti]. In particular, Proposition (4.1) is a classical criterion for
zonal spherical functions, due originally to Gelfand [G7], and (4.2), (4.3)
are due to James [J5]. Takemura (loc. cit.) essentially takes (4.6) as his
definition of the zonal polynomials (the eigenvalues where A runs
through the partitions of a fixed number r, will be all distinct provided n is
large enough). Proposition (4.10) is a particular case of a well-known
formula of Harish-Chandra (see, for example [H6], p. 418), and (4.11) is
due to Kates [K7] (see [Ti], p. 34). Example 7 deals with the `Wishart
density' (see e.g. [173], p. 53), and Example 8 is due to Constantine [C4].
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5. The complex case

In this section let G = GL (C) and let K be the unitary group U(n). We
shall show that (G, K) is a Gelfand pair in the sense of §3, and that the
associated zonal spherical functions may be identified, up to a scalar
factor, with the Schur functions sA, where A is a partition of length < n,

A polynomial function on G is by definition the restriction to G of a
(complex-valued) polynomial function f on the space of complex n X n
matrices, regarded as a real vector space of dimension 2n2. Thus f is a
polynomial in the 2n2 algebraically independent functions Xii, XXi, where
X,1(g) = gij and X,j(g) = gi1 if g = (g,J) E G.

Let

P(G) = ® Pm(G)
m>0

be the space of all polynomial functions on G, where Pm(G) is the
subspace of P(G) consisting of the p E P(G) that are homogeneous of
degree m (as polynomials in the X,j and X,j). The group G acts on P(G)
by the rule

(5.1) (gp)(x) =p(xg)

for p E P(G) and g, x e G. If p E P(G) then the function p: x H p(x) is
also in P(G).

Let Q(G) = C[X,j:1 < i, j < n]. Then we have

P(G) = Q(G) ®Q(G)

and

Q(G) _ (1) PA
A

where k ranges over all partitions of length < n, and PA is the subspace of
Q(G) spanned by the matrix coefficients R of an irreducible polynomial
representation RA of G (Chapter I, Appendix A). Hence

(5.2) P(G) _ ®PA.µ
A,µ

where k, µ are partitions of length < n, and PA µ is the subspace of P(G)
spanned by the products R 'K"

We can now define the operators eK, eK as in §3 (K now being the
unitary group), and propositions (3.3)-(3.8) will remain valid in the present
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context, provided that the transposed matrix x' is replaced by the conju-
gate transposed x* =x V. Correspondingly, . is now the space of hermitian
n X n matrices, and

P(Y.) _ ® Pm(I+)
m>0

the space of polynomial functions on I (regarded as a real vector space of
dimension n + n(n - 1) = n2). The group G acts on P(.) by the rule

(gp)(o-) =p(g*ffg)

forgEG,pEP(l),and

Let V (resp. V) be a complex vector space of dimension n, with basis
e1,...,e (resp. el,...,en). The group G acts on V and V by

n-++

gej = L g11ei,
isl

gej = gijei
i=1

if g = (gi) E G.
The tensor space T2m(V) of §3 is here replaced by T =Tm(V) ® Tm(V);

the group G acts diagonally, as before, and (in place of the symmetric
group S2,,,) the group Sm X Sm acts by permuting the factors in T.

Let (u, v) be the bilinear form on V X V for which (ei, ej) = 5ij. We
have then

(gu,u)=(u,g*v)

forgEG,uEV,and DEF.
Let (p:T --> Pm(I) denote the linear mapping defined by

7m

(p(ul®...®um®U1 ® ...®Um)(V')= 11(ui,o'Ui).
i=1

From our definitions it follows that (p commutes with the actions of G on
T and Pm(I). The place of the hyperoctahedral group Hm in §3 is taken
here by the diagonal subgroup i = i m = ((w, w): w c Sm) of Sm X Sm, and
it is clear from the definition of cp that (p(ht) = (p(t) for t e T and h E A.
If T° is the subspace of T fixed by 0, we have as in §3

(5.3) The mapping cp is restricted to T° is a G-isomorphism of T° onto
P-(4). I
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From Chapter I, Appendix A, §5 it follows that T decomposes under the
action of (Sm X Sm) X G as follows:

T =
TA,µ

A,

where

TA,µ = (MA ®Mµ) ® (FA(V) ®FF(V)).

Here A and µ are partitions of m of length < n, and M. (resp. Mµ) is an
irreducible Sm-module corresponding to A (resp. p,). Since (Chapter I, §7)

dim(MA ®M ) _ (X AX 1)sm

_ (XA, Xl')Sm = SAµ

it follows that

(5.4) T° = ® (FA(V) ®FA(V))

as G-module, where A ranges after the partitions of m of length < n.
Now the G-modules FA(V) ® FA(V ), and more generally FA(V) ® F,07/)

for any two partitions A, µ of length < n, are irreducible. For the matrix
coefficients R E Q(G) are linearly independent (Chapter I, Appendix A,
(8.1)), and likewise the Rk, E Q(G) are linearly independent; hence the
products RRkl'l are linearly independent functions on G, which (loc. cit.)
proves the assertion.

If p e P(I), the function p defined by

p(x) =p(x*x)

is a polynomial function on G, and the mapping p p commutes with the
actions of G on P(I) and P(G). Moreover, it doubles degrees: if p E
Pm(I,) then p E P2m(G).

(5.5) The mapping p - p defined above is a G-isomorphism of Pm(s) onto
P2m(K\G), for all m > 0.

The proof is the same as that of (3.12), and just as in the real case has
the following consequences:

(5.6) (i) The G-module eK PA, µ is isomorphic to FA(V) ®FA(V) if A = µ, and
is zero otherwise.
(ii) We have

eKP(G) =P(K\G) _ ® (FA(V) aFA(V))
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where A ranges over all partitions of length < n.

(5.7) Let A, µ be partitions of length < n. Then

=µ,
dim(FA(V) (9 F,,(V ))

x
=

1 if A

0 otherwise.

(5.8) PA. µ(G, K) = PA. µ n P(G, K) is one-dimensional if A = µ, and is zero
otherwise. Moreover,

P(G, K) PA. A(G, K)
A

summed over all partitions A of length < n.

In these statements, P(K\G), P(G, K) etc. are defined exactly as in the
real case (§3). In particular, it follows from (5.6Xii) that the G-module
P(K\G) is multiplicity-free, so that (G, K) is a Gelfand pair.

As in §3, we regard each symmetric function f e Ac as a polynomial
function on G: if x E G has eigenvalues , ... , ,, then f (x) = f ( ... , &).
Then the character of the irreducible G-module FA(V) (9 Fµ(V) is sAs E

PA. µ, and hence by (5.6) we have eK (sAs) = 0 unless A = µ:

(5.9) fK(sASK)(xk) dk = 0

for all xEG, unless A=µ. I

Let RA = eK(sASA), or explicitly

(5.10) flA(x) =
fxsA(xk)sA(xk)dk

where A is a partition of length < n. As in §3 we have

(5.11) (i) fA(1) = 1.
(ii) 1ZAEPA A(G, K) and generates the irreducible G-submodule eKPA,A of
P(K\ G).

Moreover, 1A is characterized by these two properties.

These functions SZA are the zonal spherical functions of the pair (G, K).
In order to compute them we return to the (S,,, X 5,,,) X G-module T =
Tm(V) ®Tm(V), where m <n.

From (5.7) we have

TK= (j)TA"- ®(MA®MA)
A A
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as 5,,, x Sm-module. Hence Tx is isomorphic to the induced module
lem"Sm. Now the tensor

S= e;®ejEV®V
i-i

is fixed by K, and hence

5,,,= e;,®...®ejm®e;l®...®e;m

lies in TK. Since the subgroup of Sm X Sm that fixes Sm is precisely A, it
follows that Sm generates Tx as S. X Sm - module. Hence by (1.5) the
space

TA ,"A x = (TKA)A = (T'A)x

is one-dimensional, generated by COASm where WA is the zonal spherical
function of the Gelfand pair (Sm X Sm, 0) corresponding to the partition A.
From §1, Example 9 we have

wASm =XA(1) 1 E XA(UW-1).(v X W)Sm
V, W E Sm

n!
XA(w)(wX1)S

XA(1) WESm

where X A is the character of MA, since (v x w)Sm = (vw-' X.1)Sm.
From the definitions of S. and the mapping cp: T -> Pm(s) (5.3) it

follows easily that

(P ((W X 1)Sm) =Pp

where p is the cycle-type of w e Sm, and hence

cp(COAS.) =CAE Zp IXpPp=CASH
P

in the notation of Chapter I, §7, where CA = (n!)Z/X A(1). From this it
follows, as in (3.24), that

(5.12) We have

fl,A(X)

for all xEG.

Another proof of (5.12) is given in Example 1 below.
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Examples

1. (a) Let p E Q(G). If pI K = 0 then p = 0. (Each g E G can be written as
g = k1xk2, where k1k2 E K and x is a diagonal matrix, say x = diag(x1,... , x"). For
fixed k1, k2 e K let q(x1, ... , x") = p(klxk2); then q is a polynomial function of n
complex variables x1,..., x which vanishes whenever Ix,I 1. Deduce
that q = 0 and hence that p(g) = 0 for all g c= G.)

(b) For each partition A of length < n, the G-module F,,(V) remains irreducible as
a K-module. (Consider the matrix coefficients of FA(V ), and use (a) above.)

(c) If g H (R j(g)) is a matrix representation of G afforded by F,(V), we have

(1) sa(xk) _ RJ (x)R (k)

and

I.j

s,,(xk) =sa(zk) =sA(k-'x*)

(2) = ER s(k-')Rs (x*)
r,s

The matrix coefficients satisfy the orthogonality relations [S121

(3) f Rj(k)R,.(k-')dk=da'S;sSjr
x

where d,, = dim F,,(V) = s,,(1"), since by (b) above the matrix representation k -->
(R j(k)) of K is irreducible.

Deduce from (1), (2), and (3) that

SZa(x) = f (s,,s,,)(xk) dk = da 'sa(xx*).
K

2. Let f E P(G). Then f is a zonal spherical function of (G, K) if and only if f # 0
and

fxf(xky)dk=f(x)f(y)

for all x, y E G. (Same proof as for (4.1).)

3. Let 01, z E 1. Then

fxsA(QkTk-')dk =s,,(v)s,,(T)/s,,(1").

In view of (5.12), this follows from Example 2.

4. Let dx be Lebesgue measure on G and let

d v(x) _ (2a) -"Z exp(-'z trace x*x) dx

so that d v(xk) = d v(kx) = d v(x) for k e K, and fG d v(x) = 1.
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Let o,, r E E. Then

f (trace vxrx*)"'dv(x)=2mEsA(o)sA(-r)
G A

summed over partitions A of m. (The proof follows that of (4.3).)
5. Let r, r E 1. Then

f
for all partitions A of length <n, where h(,1) is the product of the hook-lengths of
A. (The proof follows the same lines as that of (4.4).)
6. Let A be a partition of length < n, and let DA be as in §4.
(a) Show that

eKI DA(x)I2 = cADA(x*x)

for x E G, where ca = fxIOA(k)IZ dk.

(b) If cr E E, show that

and that

In particular,

fKAA(k-Vk) dk =

fGoA(x*vx)dv(x) = 21'1h(A)sA(cr).

f DA(x*x)dv(x)=2I FI (n+c(s))
G SEA

where c(s) = a'(s) -1'(s) is the content of s r= A. (These formulas are the counter-
parts of (4.9)-(4.12), and may be proved in the same way.)

Notes and references

James [J5] was aware that the complex zonal polynomials are essentially
the Schur functions (5.12). See also Farrell's paper [F3], and [T1], Chapter
V.

All the integral formulas of §4 have their complex counterparts, and
Examples 2-6 are merely a sample.

6. The quaternionic case

In this section let G = the group of non-singular n X n matrices
over the division ring of quaternions, and let K = U(n, H) be the quater-
nionic unitary group. We shall show that (G, K) is a Gelfand pair in the
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sense of §3, and that the associated zonal spherical functions may be
identified, up to a scalar multiple, with the Jack symmetric functions
(Chapter VI, §10) with parameter a = 12

If x = a + bi + cj + dk E H in the usual notation for quaternions (i2 =
j 2 = k2 = -1, if = -ji = k, etc.), where a, b, c, d c- R, let

(6.1) 6(x)= a+bi c+dil
c + di a - bi

so that x H 6(x) embeds H in the algebra of complex 2 X 2 matrices. More
generally, if g = (gr,) E G = GL,,(H), let

(6.2) 0(g) = (B(grs))1<r,s<n

so that 0 is an injective homomorphism of G into the complex general
linear group Gc = GL2n(C). Observe that 0(g*) = 9(g)*, where the aster-
isks denote the conjugate transpose. We shall usually identify G with its
image 0(G) in Gc.

A polynomial function f on G is by definition the restriction to G of a
(complex-valued) polynomial function on the matrix space Mn(H), re-
garded as a real vector space of dimension 4n2. In view of (6.1) and (6.2), f
is a polynomial in the 4n2 algebraically independent functions

(6.3)

1 1

2 (X2r-1,2s-1 +X2r,2s), Zi (X2r-1,2s-1 -X2r,2s),

2 (X2r-1,2s -X2r,2s-1), Zl (X2r-1,2s +X2r,2s-1)

for r, s = 1, 2,..., n, where Xpq (1 < p, q < 2n) are the coordinate func-
tions on Gc (i.e. Xpq(g) = gpq for g = (gpq) E Gc).

Let P(G) denote the algebra of polynomial functions on G, generated
over C by the functions (6.3), and let P(Gc) denote the algebra C[Xpq:
1 <p, q < 2n] of polynomial functions on Gc.

(6.4) (i) The restriction map f H f l G is an isomorphism of P(Gc) onto P(G).
(ii) Each irreducible polynomial representation of Gc remains irreducible on
restriction to G.

Proof. (i) Each f E P(Gc) is uniquely expressible as a polynomial in the
4n2 functions (6.3). If f IG = 0, then f vanishes for all real values of these
4n2 functions, hence is identically zero.

(ii) Suppose that R: g H (R;j(g)) is a polynomial representation of Gc
whose restriction to G is reducible. By replacing R by an equivalent
representation, we may assume that for some r such that 1 < r < d, where
d is the degree of R, we have R;1(g) = 0 for all (i, j) such that i > r and
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j < r, and all g E G. By (i) above, it follows that this is so for all g E GC,
and therefore R is reducible.

In view of (6.4), we may identify P(G) and P(Gc). As in §3, G acts on
P(G) by the rule

(gp)(x) =p(xg)

where p E P(G) and g, x ca G, and under this action P(G) = P(Gc) de-
composes as a direct sum

P(G) _ Pµ,
IL

where µ ranges over all partitions of length < 2n, and Pµ is the subspace
of P(G) spanned by the matrix coefficients R i of an irreducible polyno-
mial representation R µ of G (or Gc) corresponding to the irreducible
G-module FF(CZ"), in the notation of Chapter I, Appendix A.

Now let

K=U(n,H)=(gEG:gg*=1).

Since 0(K) = 0(G) rl U(2n), it follows that K is a bounded closed sub-
group of G, and hence is compact. The set-up is now entirely analogous to
that of §3, and we need only pay attention to those points in the
development that differ from the real case. Propositions (3.3)-(3.8) remain
valid in the present context, provided that the transpose x' (x E G) is
replaced by x*.

Next let I denote the space of quaternionic hermitian n X n matrices
(i.e. matrices u such that o * = o-), and let

P( ) ® Pm(s)
m.0

denote the space of polynomial functions on I (regarded as a real vector
space of dimension n + 2n(n - 1)), where P"'(l) consists of the functions
that are homogeneous of degree m. The group G acts on P(s) by

(gp)(u) =p(g*yg)

for g E G, p E P(), and o f E.
Also let V= C2", the elements of V being regarded as column vectors

of length 2n. The group G acts on V via 0: gu = 0(g)v for g E G and
v e V. (Let J = 0(jl"), so that J is the diagonal sum of n copies of the

matrix - 0 1), and let

(6.5) (u,u)=u'Jv
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for u, v E V. The bilinear form so defined on V is skew-symmetric, and we
have

(6.6) (gu,v)=(u,g*v)

for all g E G. For it follows from (6.1) and (6.2) that 9(g)'J=J9(g*), and
hence that

(gu, v) = u'6(g)'Jv = u'JB(g*)v

_ (u, g*v).

Let T = T2-(V) be the 2mth tensor power of V. As in §3, the group G
acts diagonally on T, and the symmetric group Stn, acts by permuting the
factors. Let cp:T --> Pm(s.) denote the linear mapping defined by

7M

.cp(v®®... ® v2..)(0-) = 1 1 (v2i-1, 0'v2)
i-1

Clearly qp commutes with the actions of G on T and Pm(%), and since by
(6.6) we have

(u, a-v) = (o-u, v) (v, a-u)

for o, e I, it follows that

cp(ht) = e(h)cp(t)

for t e T and h E H = H where a is the sign character of S2in. Finally, if
e1,..., e2n is the standard basis of V= C2" and of , ... , e2,, is the dual basis,
so that (e ' , ej) = Sid, then (e*, o eq) is the (p, q) element of O(o,), from
which it follows easily that cp is surjective. Hence if

TEH=(tET:ht =e(h)t for all h EH)

we have (compare (3.9)):

(6.7) The mapping cp restricted to T _,H is a G-isomorphism of T ,H onto
P"(I). I

Under the action of S2,n X Gc, T decomposes as

T= (D Tµ

where

µ

T. -M®Fµ(V).

Here µ ranges over the partitions of 2m of length < 2n, and Mµ is an
irreducible S2,n-module corresponding to A. By (6.4Xii), Fµ(V) remains
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irreducible as a G-module. Since (§2, Example 6) M' is one-dimensional
if µ' is an even partition (or equivalently if µ = A U A for some partition A
of m) and is zero otherwise, it follows that

(6.8) TeH = ® FAU A(V)
A

as G-module, where A ranges over the partitions of m of length < n.

If p E P(l), the function p defined by

p(x) = p(x*x)

is a polynomial function on G, and the mapping p H p commutes with the
actions of G on P(s) and P(G). Moreover, it doubles degrees: if p E
Pm(s) then p E p2,n(G).

(6.9) The mapping p H p defined above is a G-isomorphism of P'"(I) onto
PZm(K\G), for all m > 0.

The proof is the same as that of (3.12), and just as in the real case has
the following consequences:

(6.10) (i) The G-module eKPN, is isomorphic to F,,(V) if µ' is even, and is
zero otherwise.
(ii) We have

eKP(G) =P(K\G) = ® Fau,k(V)
A

where A ranges over all partitions of length < n.

(6.11) Let µ be a partition of length < 2n. Then

dim F(V )K 1 if µ' is even,
0 otherwise.

(6.12) Pµ(G, K) is one-dimensional if µ' is even, and is zero otherwise.
Moreover,

P(G, K) _ ®PAU A(G, K)
A

summed over all partitions A of length < n.

In these statements, eK, P(K\G) etc. are defined exactly as in the real
case.

As in §3, we may regard each f c= Ac as a polynomial function on Gc: if
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x E Gc has eigenvalues G..., S2n, then f(x) = f(e1,..., 62n). With this
understood, we have as in (3.19)

(6.13) f s,,(B(xk)) dk = 0
K

unless µ' is an even partition.

Let A be a partition of length < n, and- define f1 E P(G) by

(6.14) OA(x) = fx sAU (O(xk)) dk

for x E G. Then as in (3.21) we have

(6.15) (i) 11A(1) = 1.

(ii) f1a E PA A(G, K) and generates the irreducible G-submodule eKPAI
A

of
P(K\ G).

Moreover, CCA is characterized by these two properties.

The function HA is the zonal spherical function of (G, K) associated with
the partition A.

We return now to the S2m X G-module T=T2m(V), where m <n. We
have (compare §3)

T"= TK= MAMA
A A

as S2m-module, where A ranges over all partitions of m. From §2, Example
6 it follows that TK is isomorphic to the induced module --Hz-, where eH is
the restriction to H of the sign character of S2m. As before, let e1, ... , e2n
be the standard basis of V= C2n, and let e* , ... , e2n be the dual basis,
such that (ep*, eq) = Spq for 1 <p, q < 2n. We have e*,_ 1 = -e2r and
e2r = e2,_ 1 for 1 < r < n.

The tensor

2n 2n

(6.16) E ep* ®ep = - E ep ®ep*

P-1 P-1

is fixed by K, by virtue of (6.6), and hence b'®m = 5 ® ... ® 6 (m factors)
lies in TK. From (6.16) it follows that h S®m = e(h)6®m for h E H, and
hence just as in the real case that 8" generates TK as S2m-module. Hence
(§2, Example 6) the space

TAUA
(TuA)eH=(TAUA)K
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is one-dimensional, generated by

(6.17) -rras®m =
WE S2,

We have now to compute cp(1r as®m) E Pm(Y.). For this purpose we need
to interpret symmetric functions as polynomial functions on 1. If v E 1,
then trace(o,) E R, because the diagonal elements of o, are real. More
generally, trace(o,') E R for each r > 1, since v' E $. If now p =
(PI, p2, ...) is any partition, we define

pp(a) = trace(o i)
ial

thus defining pp, and hence by linearity any symmetric function, as a
polynomial function on 1. Since by (6.1) and (6.2) trace(6(o,)) = 2trace(o-),
it follows that

(6.18) Pp(9(cr)) = 2J(P)pp(o,).

In place of (3.23) we now have

(6.19) e(w)cp(ws®m) = --p21(P)PP

as functions on 1, where p is the coset-type (§2) of w E S2m, and ep =
(- 1)m-1(p).

Proof Let e(w)cp(ws®m). For any h E H we have f,,,h = fy, since
hs®m = e(h)8®m; also fhw = fW, since cp(ht) = e(h)cp(t) for any t E T. Hence
fk, depends only on the double coset Hp = HwH. As in the proof of (3.23),
we are reduced to the case where w is the 2m-cycle (1,2.....2m). Since

s®m= Ee*®e;l®...®em®el,,

summed over il,...,im running independently from 1 to 2n, we have

ws®m= e;m®e* ®e, ®... ®e, ®e

and hence (since e(w) _ -1)

(1) fW(o')= - (e,, cie*)...(e1 ,vem).

Since

(e1,oe*)=(cie1,a*)= -(e*,oel)= -9(i)j1
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it follows from (1) that

f"(°) _ (-1)^' F, 0(o-);,,,m...0(0-),m;m-,

_ (-1)'"-'trace(9(o )m)

_ (-1)'_'2trace(o )

and hence that fw = (-1)"` - 12p, which completes the proof.

453

We can now express the zonal spherical functions fx in terms of the
symmetric functions ZA introduced in §2, Example 7:

(6.20) We have

fl,(x) = ZA(x*x)/ZA(1 )

for all x E G.

Proof. Let cpa = cp(w and define a e P(G) by i"pA(x) = (PA(x *X). It
follows from (6.9) that a is a generator of the one-dimensional space
PAu A(G, K) that is the image of TeHIK under the composite isomorphism
TEy . P"'(y) -> pZm(K\G). Hence by (6.15)(ii) ax is a scalar multiple of
spa, namely

(1) HA(x) =

since 1.

On the other hand, from (6.17) and (6.19) we have

SPA- L-r IHPIEPWp2'(P)J,

P

=IHmIZ EPZP 1WPpp
P

and therefore (§2, Example 7)

(2) (PA = IH.IZA.

The result now follows from (1) and (2).

Examples

1. Let f e P(G). Then f is a zonal spherical function of (G, K) if and only if f # 0
and

fK f(xky) dk =f(x)f(y)

for all x, y E G. (Same proof as for (4.1).)
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2. In this and the following Examples we define pr,, for each partition p, as a
function on G by the rule (6.18)

PP(X) =2-'(v>po(B(x)).

By linearity this defines each symmetric function f E A as a polynomial function
on G, such that f(xy) =f(yx) for all x, y E G. With this definition we have

fKZ;,(vk-rk*)dk
Za(o-)Za(r)

= Z'(1,)A

for all z E 1. In view of (6.20), this follows from Example 1.

3. Let dx be Lebesgue measure on G and let

dv(x) = (21r)exp(-
i trace x*x) dx,

so that d v(kx) = d v(xk) = d v(x) for k E K, and fG d v(x) = 1. Let 6, 71 E G be real
diagonal matrices. Then trace(t;x1)x*) is a real number for all x (-= G, and we have

f (trace fxi)x*)m dv(x) = 2mm! E
ZA(y)ZA(?])

C' IAI=m
h(2A')

(The proof follows that of (4.3), using §2, Example 7(d).)

4. Let o', z E 1. Then

(1) fZA'(oxrx*) dv(x) =G

In particular,

(2) fZZ(x*o-x) dv(x) = 21AIZA(1n)Za(o ).

(Let 'A( o , rr) denote the integral on the left-hand side of (1). We may assume
without loss of generality that o and r are real diagonal matrices 6, i. Since

Pi =m! E h(2A')-'Z,'
IAI- m

(§2, Example 7) it follows that

f (trace fxi)x*)mdv(x) =m! F, h(2A')-'IA(e,ii).
G IAI-m

On the other hand, Example 2 shows that IA(e, rl) is a scalar multiple of
and hence the result follows from Example 3.)

5. (a) If x e G, then det 0(x) is real and positive. (Let x = vb where b = (b;j) is
upper triangular and v is lower unitriangular. Then det 0(v) = 1 and det 0(b) _
fI,"_1Ib;;12. Since elements of the form x=vb are dense in G, the result follows.)

Define det x to be the positive square root of det 0(x).
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(b) If x = (x,,.) E G (resp. Gc), let P) _ (x,1)1 ;,j", for 1 <r <n (resp. 1 <r< 2n).
Then 9(x(')) = 9(x)(2r) and hence

det 0(x)12r) = (det x('))2.

(c) If x e=- G (resp. Gc) and µ is a partition of length < n (resp. 2n) let

0µ(x) = fl (det xt'O).
1;P 1

Then we have

all A(B(x)) = A2A(x)

for x e G and l(,1) < n.

(d) Show (as in (4.9)) that

eKO2A(x) = cAiA(x*x)

where ca is a positive constant, and deduce that

fK AA(k*ok) dk =

for o e $.

6. (a) Let A be a partition of length < n. Show that

fGDA(x*ox)dv(x) = 21A[ZA(0-)

for v e 1. (Use Examples 5(d) and 4.) In particular,

(1) 2-1A1fG DA(x*x) dv(x).

(b) Let B+ be the subgroup of G consisting of upper triangular matrices (b,l) with
positive real diagonal elements b,,. Each x E G factorizes uniquely as x = kb,
where k E K and b e B+, and we have

(2)

dk is normalized Haar measure on K, db is Lebesgue measure on B+, and
6 = On - 1, 4n - 5,..., 3), and c is a positive constant. By evaluating the integral
(1) show that

F j (2n + a'(s) - 21'(s))
SEA

in agreement with §2, Example 7(b).

(c) Show that the constant c,, in (2) is given by

C. = U4V 8 ... V4.

where v, = 2ar',12/r(Zr) as in §4, Example 2(d). (Use (2) to evaluate fG dv(x) = 1.)
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Notes and references

As far as I am aware, the quaternionic analogue of James's theory 03),
and in particular the identification of the quaternionic zonal polynomials
with the Jack symmetric functions with parameter a = '-z, announced in
[M5], has not been worked out in print before. See however [G16], where
the three cases (real, complex, quaternionic) are handled simultaneously.

As in the complex case, all the integral formulas of §4 have their
quaternionic analogues, and Examples 1-6 provide a sample of these.



BIBLIOGRAPHY

Al. Aitken, A. C. (1931). Note on dual symmetric functions. Proc. Edin. Math.
Soc. (2) 2, 164-7.

A2. Akin, K., Buchsbaum, D. A., and Weyman, J. (1982). Schur functions and
Schur complexes. Advances in Math. 44, 207-78.

A3. Andrews, G. E. (1976). The theory of partitions. Encyclopaedia of mathematics
and its applications, Vol. 2. Addison-Wesley, Reading, Massachusetts.

A4. Andrews, G. E. (1977). MacMahon's conjecture on symmetric plane partitions.
Proc. Natl. Acad. Sci. USA, 74, 426-9.

AS. Andrews, G. E. (1979). Plane partitions (III): the weak Macdonald conjecture.
Inv. Math., 53, 193-225.

A6. Aomoto, K. (1987). Jacobi polynomials associated with Selberg integrals. SIAM
J. Math. Anal., 18, 545-9.

AT Askey, R. (1980). Some basic hypergeometric extensions of integrals of Selberg
and Andrews. SIAM J. Math. Anal., 11, 938-51.

B1. Bannai, E. and Ito, T. (1984). Algebraic combinatorics I. Association schemes.
Benjamin-Cummings, Menlo Park, California.

B2. Berele, A. and Regev, A. (1987). Hook Young diagrams with applications to
combinatorics and to representations of Lie superalgebras. Advances in Math.,
64, 118-75.

B3. Bergeron, N. and Garsia, A. M. (1988). Zonal polynomials and domino
tableaux. Preprint.

B4. Bergeron, N. and Garsia, A. M. (1990). Sergeev's formula and the
Littlewood-Richardson rule. Linear and MultilinearAlg., 27, 79-100.

B5. Berthelot, P. (1971). Generalites sur les A-anneaux. In SGA6 (Seminaire de
Geometrie Algebrique du Bois-Marie, 1966/7). Springer Lecture Notes, 225.

B6. Borho, W. and MacPherson, R. (1981). Representations of Weyl groups and
intersection homology of nilpotent varieties. C.R. Acad. Sci. Paris, 292, 707-10.

B7. Bourbaki, N. (1967). Integration, Chapters VII and VIII. Hermann, Paris.
B8. Bourbaki, N. (1968). Groupes et algebres de Lie, Chapters IV, V, and VI.

Hermann, Paris.
B9. Burge, W. H. (1974). Four correspondences between graphs and generalized

Young tableaux. J. Comb. Theory (A) 17, 12-30.
B10. Butler, L. M. (1986). Combinatorial properties of partially ordered sets

associated with partitions and finite abelian groups. Thesis (M.I.T.).
Cl. Cartan, H. and Eilenberg, S. (1956). Homological algebra. Princeton University

Press.
C2. Chen, Y., Garsia, A. M., and Remmel, J. (1984). Algorithms for plethysm, in

Combinatorics and Algebra, Contemporary Math., 34, 109-53.
C3. Comtet, L. (1970). Analyse combinatoire (2 vols.). Presses Universitaires de

France, Paris.



458 BIBLIOGRAPHY

C4. Constantine, A. G. (1963). Some non-central distribution problems in multi-
variate analysis. Ann. Math. Stat., 34, 1270-85.

C5. Curtis, C. W. and Reiner, I. (1962). Representation theory of finite groups and
associative algebras. Interscience, New York.

D1. Debiard, A. (1983). Polynomes de Tchebychev et de Jacobi dans un espace
euclidien de dimension p. C.R. Acad. Sci. Paris (sir. I), 296, 529-32.

D2. Deligne, P. (1972). Les constantes des equations fonctionelles des fonctions L.
Springer Lecture Notes, 349, 501-97.

D3. Diaconis, P. (1988). Group representations in probability and statistics. Inst. of
Math. Statistics, Hayward, California.

D4. Diaconis, P. and Lander, E. (1992). Some formulas for zonal polynomials. In
preparation.

D5. Dieudonne, J. (1972). Treatise on Analysis, Vol. III. Academic Press, New
York.

D6. Doubilet, P. (1972). On the foundations of combinatorial theory, VII: Symmet-
ric functions through the theory of distribution and occupancy. Studies in Appl.
Math., 51, 377-96.

El. Egecioglu, O. and Remmel, J. (1990). A combinatorial interpretation of the
inverse Kostka matrix. Linear and MultilinearAlg., 26, 59-84.

E2. Egecioglu, O. and Remmel, J. (1991). Brick tabloids and the connection
matrices between bases of symmetric functions. Discrete Appl. Math., 34, 107-20.

F1. Farahat, H. K. (1956). On the blocks of characters of symmetric groups. Proc.
London Math. Soc., (3) 6, 501-17.

F2. Farahat, H. K. and Higman, G. (1959). The centres of symmetric group rings.
Proc. Roy. Soc. (A), 250, 212-21.

F3. Farrell, R. H. (1980). Calculation of complex zonal polynomials, in Multivariate
Analysis V (ed. Krishnaiah). North Holland, Amsterdam.

F4. Farrell, R. H. (1985). Multivariate calculation: use of the continuous groups.
Springer-Verlag, New York.

F5. Foulkes, H. O. (1949). Differential operators associated with S-functions. J.
London Math. Soc., 24, 136-43.

F6. Foulkes, H. O. (1954). Plethysm of S-functions. Philos. Trans. Roy. Soc. (A),
246, 555-91.

F7. Foulkes, H. O. (1974). A survey of some combinatorial aspects of symmetric
functions, in Permutations. Gauthier-Villars, Paris.

F8. Frame, J. S., Robinson, G. de B., and Thrall, R. M. (1954). The hook graphs of
S,,. Can. J. Math., 6, 316-24.

F9. Franzblau, D. S. and Zeilberger, D. (1982). A bijective proof of the hook-length
formula. J. Algorithms, 3, 317-43.

F10. Frobenius, F. G. (1900). Uber die Charaktere der symmetrischen Gruppe.
Sitzungsberichte der Koniglich Preussischen Akademie der Wissenschaften zu Berlin
(1900) 516-34 (Ges. Abhandlungen, 3, 148-66).

Fli. Frobenius, F. G. (1904). Uber die Charaktere der mehrfach transitiven
Gruppen. Sitzungsberichte der Koniglich Preussischen Akademie der Wissenschaften
zu Berlin (1904) 558-71 (Ges. Abhandlungen, 3, 335-48).

G1. Gansner, E. R. (1978). Matrix correspondences and the enumeration of plane.
partitions. Thesis, M.I.T.

G2. Garsia, A. M. (1985). Gelfand pairs in finite groups. Preprint.



BIBLIOGRAPHY 459

G3. Garsia, A. M. (1992). Orthogonality of Milne's polynomials and raising opera-
tors. Discrete Math., 99, 247-64.

G4. Garsia, A. M. and Haiman, M. (1996). Some natural bigraded and
q,t-Kostka coefficients. Electronic J. Combinatorics, 3, R24, 60; also The Fuata
Festschrift, Impruinene Louis-Jean, Gap, France, pp. 561-620.

G5. Gasper, G. and Rahman, M. (1990). Basic hypergeometric series. Encyclopae-
dia of mathematics and its applications, Vol. 35. Cambridge University Press.

G6. Geissinger, L. (1977). Hopf algebras of symmetric functions and class func-
tions. Springer Lecture Notes, 579, 168-81.

G7. Gelfand, I. M. (1950). Spherical functions on symmetric spaces. Dokl. Akad.
Nauk USSR, 70, 5-8.

G8. Giambelli, G. Z. (1903). Alcune propriety delle funzioni simmetriche caratter-
istiche. Atti Torino, 38, 823-44.

G9. Goulden, I. P. and Jackson, D. M. (1994). Symmetric functions and Macdonald's
result for top connection coefficients in the symmetric group. J. Alg.,166, 364-78.

G10. Gow, R. (1983). Properties of characters of the general linear group related
to the transpose-inverse involution, Proc. London Math. Soc., (3) 47, 493-506.

G11. Green, J. A. (1955). The characters of the finite general linear groups. Trans.
Am. Math. Soc., 80, 402-47.

G12. Green, J. A. (1956). Les polynomes de Hall et les caracti res des groupes
GL(n, q). Colloque d'algebre superieure, 207-15 (Brussels).

G13. Green, J. A. (1961). Symmetric functions and p-modules (lecture notes,
Manchester).

G14. Green, J. A. (1980). Polynomial representations of GL,,. Springer Lecture
Notes, 830.

G15. Greene, C., Nijenhuis, A., and Wilf, H. S. (1979). A probabilistic proof of a
formula for the number of Young tableaux of a given shape. Advances in Math.,
31, 104-9.

G16. Gross, K. I. and Richards, D. St. P. (1987). Spherical functions of matrix
argument I: algebraic induction, zonal polynomials and hypergeometric func-
tions. Trans. Am. Math. Soc., 301, 781-811.

Hl. Hall, P. (1938). A partition formula connected with abelian groups. Comm.
Math. Helv., 11, 126-9.

H2. Hall, P. (1940). On groups of automorphisms. J. reine angew. Math., 182,194-204.
H3. Hall, P. (1959). The algebra of partitions. Proc. 4th Canadian Math. Congress,

147-159. Banff.
H4. Hammond, J. (1883). On the use of certain differential operators in the theory

of equations. Proc. London Math. Soc., 14, 119-29.
H5. Hanlon, P. (1988). Jack symmetric functions and some combinatorial proper-

ties of Young symmetrizers, J. Comb. Theory (A), 47, 37-70.
H6. Helgason, S. (1984). Groups and geometric analysis. Academic Press, New York.
H7. Hoffman, P. and Humphreys, J. F. (1992). Projective representations of

symmetric groups. Oxford Mathematical Monographs.
H8. Hotta, R. and Shimomura, N. (1979). The fixed point subvarieties of unipotent

transformations on generalized flag varieties and the Green functions. Math.
Annalen, 241, 193-208.

H9. Hotta, R. and Springer, T. A. (1977). A specialization theorem for certain



460 BIBLIOGRAPHY

Weyl group representations and an application to the Green polynomials of
unitary groups. Inv. Math., 41, 113-27.

H10. Howe, R. (1987). (GL,,, GL,,)-duality and symmetric plethysm. Proc. Indian
Acad. Sci. (Math. Sci.), (1987), 85-109.

Hil. Hua, L.-K. (1963). Harmonic analysis of functions of several complex vari-
ables in the classical domains, AMS Translations, Vol. 6.

H12. Humphreys, J. F. (1986). Blocks of projective representations of the symmet-
ric groups. J. London Math. Soc., (2) 33, 441-52.

J1. Jack, H. (1970). A class of symmetric polynomials with a parameter. Proc. R.
Soc. Edinburgh (A), 69, 1-18.

J2. Jack, H. (1972). A surface integral and symmetric functions. Proc. R. Soc.
Edinburgh (A), 69, 347-63.

J3. Jacobi, C. G. (1841). De functionibus alternantibus.... Crelle's Journal, 22,
360-71 (Werke, 3, 439-52).

J4. James, A. T. (1961). Zonal polynomials of the real positive definite matrices.
Annals of Math., 74, 456-69.

J5. James, A. T. (1964). Distributions of matrix variates and latent roots derived
from normal samples. Ann. Math. Stat., 35, 475-501.

J6. James, A. T. (1968). Calculation of zonal polynomial coefficients by use of the
Laplace-Beltrami operator. Ann. Math. Stat., 39, 1711-18.

J7. James, G. D. (1978). The representation theory of the symmetric groups.
Springer Lecture Notes, 682.

J8. James, G. D. (1987). The representation theory of the symmetric groups. Proc.
of Symposia in Pure Math., 47 part 1, 111-26.

J9. James, G. D. and Kerber, A. (1981). The representation theory of the symmet-
ric groups. Encyclopaedia of mathematics and its applications, Vol. 16.
Addison-Wesley, Reading, Massachusetts.

J10. James, G. D. and Peel, M. (1979). Specht series for skew representations of
symmetric groups. J. Algebra, 56, 343-64.

Jll. Jing, N. (1991). Vertex operators, symmetric functions and the spin group 1',,.
J. Algebra, 138, 340-98.

J12. Jing, N. (1991). Vertex operators and Hall-Littlewood symmetric functions.
Advances in Math., 87, 226-48.

J13. Johnsen, K. (1982). On a forgotten note by Ernst Steinitz. Bull. London Math.
Soc., 14, 353-5.

J14. Jozefiak, T. (1988). Semisimple superalgebras. Springer Lecture Notes, 1352,
96-113.

J15. Jozefiak, T. (1989). Characters of projective representations of symmetric
groups. Expositiones Math., 7, 193-247.

J16. Jozefiak, T. (1991). Schur Q-functions and cohomology of isotropic Grassman-
nians. Math. Proc. Camb. Phil. Soc., 109, 471-8.

J17. Jozefiak, T. and Pragacz, P. (1991). A determinantal formula for skew Schur
Q-functions. J. London Math. Soc., (2) 43, 76-90.

Kl. Kac, V. G. (1980). Simple Lie groups and the Legendre symbol. Springer
Lecture Notes, 848, 110-23.

K2. Kac, V. G. (1983). Infinite-dimensional Lie algebras. Birkhauser, Boston.
K3. Kadell, K. W. J. (1988). A proof of some analogues of Selberg's integral for

k = 1. SIAM J. Math. Anal., 19, 944-68.



BIBLIOGRAPHY 461

K4. Kadell, K. W. J. (1988). The q-Selberg polynomials for n = 2, Trans. Amer.
Math. Soc., 310, 535-53.

K5. Kadell, K. W. J. (1992). The Selberg-Jack symmetric functions. Preprint.
K6. Kadell, K. W. J. (1996). An integral for the product of two Selberg-Jack sym-

metric polynomials. Comp. Math., 87, 5-43.
K7. Kates, L. K. (1980). Zonal polynomials. Thesis, Princeton Univ.
K8. Kerov, S. V. (1984). On the Littlewood-Richardson rule and the

Robinson-Schensted-Knuth correspondence (in Russian). Uspekhi Mat. Nauk,
39, 161-2.

K9. Kirillov, A. N. and Reshetikhin, N. Yu. (1988). The Bethe Ansatz and the
combinatorics of Young tableaux. J. Soviet Math., 41, 925-55.

K10. Klein, T. (1969). The Hall polynomial. J. Algebra, 12, 61-78.
K11. Kljacko, A. A. (1981). Models for complex representations of GL(n, q) and

Weyl groups. Soviet Math. Dokl., 24, 496-9.
K12. Knuth, D. E. (1970). Permutations, matrices and generalized Young tableaux.

Pacific J. Math., 34, 709-27.
K13. Knutson, D. (1973). A-rings and the representation theory of the symmetric

group. Springer Lecture Notes, 308.
K14. Kondo, T. (1963). On Gaussian sums attached to the general linear groups

over finite fields. J. Math. Soc. Japan, 15, 244-55.
K15. Koornwinder, T. (1988). Self-duality for q-ultraspherical polynomials associ-

ated with the root system A. (Unpublished manuscript.)
K16. Kostka, C. (1882). Uber den Zusammenhang zwischen einigen Formen von

symmetrischen Funktionen. Crelle's Journal, 93, 89-123.
K17. Kostka, C. (1908). Tafeln fur symmetrische Funktionen bis zur elften Dimen-

sion. Wissenschaftliche Beilage zum Programm des konigl. Gymnasiums and Real-
gymnasiums zu Insterberg.

L1. Lascoux, A. (1978). Classes de Chern d'un produit tensoriel. C.R. Acad. Sci.
Paris, 286A, 385-7.

L2. Lascoux, A. and Pragacz, P. (1984). Equerres et fonctions de Schur. C.R.
Acad. Sci. Paris (serie I), 299, 955-8.

L3. Lascoux, A. and Pragacz, P. (1988). Ribbon Schur functions. Eur. J. Combina-
tories, 9, 561-74.

L4. Lascoux, A. and Schiitzenberger, M. P. (1978). Sur une conjecture de H. O.
Foulkes. C.R. Acad. Sci. Paris, 286A, 323-4.

L5. Lascoux, A. and Schiitzenberger, M. P. (1985). Formulaire raisonne de fonc-
tions symetriques. Publ. Math. Univ. Paris, VII.

L6. Lascoux, A., Leclerc, B., and Thibon, J.-Y. (1992). Fonctions de Hall-Lit-
tlewood et polynomes de Kostka-Foulkes aux racines de l'unite. Institut Blaise
Pascal, Paris.

L7. Littelmann, P. (1990). A generalization of the Littlewood-Richardson rule. J.
Algebra, 130, 328-68.

L8. Littelmann, P. (1992). A Littlewood-Richardson rule for symmetrizable
Kac-Moody algebras. Preprint.

L9. Littlewood, D. E. (1950). The theory of group characters (2nd edn). Oxford
University Press.

L10. Littlewood, D. E. (1951). Modular representations of symmetric groups. Proc.
R. Soc., A, 209, 333-53.



462 BIBLIOGRAPHY

L11. Littlewood, D. E. (1956). The Kronecker product of symmetric group repre-
sentations. J. London Math. Soc., 31, 89-93.

L12. Littlewood, D. E. (1961). On certain symmetric functions, Proc. London
Math. Soc., 43, 485-98.

L13. Littlewood, D. E. and Richardson, A. R. (1934). Group characters and
algebra. Philos. Trans. R. Soc., A, 233, 99-141.

L14. Luks, E. M. (1966). Spherical functions on GL over p-adic fields. Thesis,
M.I.T.

L15. Lusztig, G. (1981). Green polynomials and singularities of unipotent classes,
Advances in Math., 42, 169-78.

M1. Macdonald, I. G. (1971). Spherical functions on a group of p-adic type. Publ.
Ramanujan Inst. No. 2, Madras.

M2. Macdonald, I. G. (1980). Zeta functions attached to finite general linear
groups. Math. Annalen, 249, 1-15.

M3. Macdonald, I. G. (1980). Polynomial functors and wreath products, J. Pure
Appl. Algebra, 18, 173-204.

M4. Macdonald, I. G. (1984). The algebra of partitions, in Group Theory: essays for
Philip Hall (ed. Gruenberg and Roseblade) pp. 315-33. Academic Press, London.

M5. Macdonald, I. G. (1987). Commuting differential operators and zonal spheri-
cal functions. Springer Lecture Notes, 1271, 189-200.

M6. Macdonald, I. G. (1988). A new class of symmetric functions. Publ. I.R.M.A.
Strasbourg, Actes 20e Seminaire Lotharingien, 131-71.

M7. Macdonald, I. G. (1991). Notes on Schubert polynomials. Publications du
LACIM, Montreal.

M8. Macdonald, I. G. (1992). Schur functions: theme and variations. Publ.
I.R.M.A. Strasbourg, Actes 28e Seminaire Lotharingien, 5-39.

M9. MacMahon, P. A. (1915, 1916). Combinatory Analysis I, II. Cambridge Univer-
sity Press. (Reprinted by Chelsea, New York, 1960.)

M10. Mead, D. G. (1993). Generators for the algebra of symmetric polynomials.
Am. Math. Monthly, 100, 386-8.

M11. Mills, W. H., Robbins, D. P., and Rumsey, H. (1982). Proof of the Macdonald
conjecture. Inv. Math., 66, 73-87.

M12. Morris, A. O. (1963). The characters of the groups GL(n, q). Math. Zeitschrift,
81, 112-23.

M13. Morris, A. O. (1964). A note on the multiplication of Hall functions. J.
London Math. Soc., 39, 481-8.

M14. Morris, A. O. (1965). The spin representation of the symmetric group. Can.
J. Math., 17, 543-9.

M15. Morris, A. O. (1971). Generalizations of the Cauchy and Schur identities. J.
Comb. Theory (A), 11, 163-9.

M16. Morris, A. O. and Yaseen, A. K. (1986). Some combinatorial results involving
shifted Young diagrams. Math. Proc. Camb. Phil. Soc., 99, 23-31.

M17. Muirhead, R. J. (1982). Aspects of multivariate statistical theory. Wiley, New
York.

M18. Murnaghan, F. D. (1937). The characters of the symmetric group. Am. J.
Math., 59, 739-53.

N1. Nakayama, T. (1940). On some modular properties of irreducible representa-
tions of a symmetric group I, H. Jap. J. Math., 17, 165-84 and 411-23.



BIBLIOGRAPHY 463

N2. Nimmo, J. J. C. (1990). Hall-Littlewood symmetric functions and the BKP
equation. J. Physics (A), 23, 751-60.

P1. Parkhurst, A. M. and James, A. T. (1974). Zonal polynomials of order 1
through 12. Selected tables in math. statistics, Vol. 2. American Math. Society,
Providence, Rhode Island.

P2. Pragacz, P. (1991). Algebro-geometric applications of Schur S- and Q-poly-
nomials, Seminaire d'Algebre Dubreil-Malliavin 1989-90. Springer Lecture Notes,
1478, 130-91.

P3. Pragacz, P. and Thorup, A. (1992). On a Jacobi-Trudi formula for supersym-
metric polynomials. Advances in Math., 95,-8-17.

P4. Puttaswamaiah, B. M. and Dixon, J. D. (1977). Modular representations of finite
groups. Academic Press, New York.

R1. Redfield, J. H. (1927). The theory of group reduced distributions, Am. J.
Math., 49, 433-55.

R2. Ringel, C. M. (1990). Hall polynomials for the representation-finite hereditary
algebras. Advances in Math., 84, 137-78.

R3. Ringel, C. M. (1990). Hall algebras and quantum groups. Inv. Math., 101,
583-91.

R4. Ringel, C. M. (1991). Hall Algebras, in Topics in Algebra, Banach Centre Publ.
26, Warsaw.

R5. Robinson, G. de B. (1938). On the representations of S,,, I. Am. J. Math., 60,
745-60.

R6. Robinson, G. de B. (1948). On the representations of the symmetric group, IlI.
Am. J. Math., 70, 277-94.

R7. Robinson, G. de B. (1961). Representation theory of the symmetric group.
Edinburgh University Press.

R8. Rota, G: C. (1964). On the foundations of combinatorial theory I: Theory of
M6bius functions. Z. Wahrscheinlichkeitstheorie, 2, 340-68.

R9. Ryser, H. J. (1963). Combinatorial mathematics. Wiley, New York.
S1. Sagan, B. E. (1987). Shifted tableaux, Schur Q-functions and a conjecture of R.

Stanley. J. Comb. Theory (A), 45, 62-103.
S2. Sagan, B. E. (1991). The symmetric group. Wadsworth and Brooks, Pacific

Grove, California.
S3. Satake, I. (1963). Theory of spherical functions on reductive algebraic groups

over p-adic fields. Publ. Math. IHES, 18, 5-70.
S4. Schur, I. (1901). Uber ein Masse von Matrizen die sich einer gegebenen Matrix

zuordnen lassen. Dissertation, Berlin (Ges. Abhandlungen 1, 1-72).
S5. Schur, I. (1911). Uber die Darstellung der symmetrischen and der alternieren-

den Gruppe durch gebrochene lineare Substitutionen. Crelle's Journal, 139,
155-250 (Ges. Abhandlungen, 1, 346-441).

S6. Schur, I. (1927). Uber die rationalen Darstellungen der allgemeinen linearen
Gruppe. Sitzungsberichte der Preussischen Akademie der Wissenschaften, (1927),
58-75 (Ges. Abhandlungen, 3, 68-85).

S7. Schutzenberger, M. P. (1977). La correspondance de Robinson, in Combina-
toire et representations du groupe symetrique, Strasbourg 1976. Springer Lecture
Notes, 579, 59-135.

S8. Schutzenberger, M. P. (1978). Proprietes nouvelles des tableaux de Young.



464 BIBLIOGRAPHY

Seminaire Delange-Pisot-Poitou, 19' annee, 1977 / 8, no. 26. Secretariat
Math6matique, Paris.

S9. Sekiguchi, J. (1977). Zonal spherical functions on some symmetric spaces. Publ.
RIMS, Kyoto Univ., 12, 455-9.

S10. Selberg, A. (1944). Bemerkninger om et multipelt integral. Norsk Mat.
Tidsskrift, 26, 71-8.

S11. Sergeev, A. N. (1985). The tensor algebra of the identity representation as a
module over the Lie superalgebras gl(n, m) and Q(n). Math. USSR Sbornik, 51,
419-27.

S12. Serre, J.-P. (1967). Representations lineaires des groupes finis. Hermann, Paris.
S13. Serre, J.-P. (1970). Cours d'arithmetique. Presses Universitaires de France,

Paris.
S14. Shimomura, N. (1980). A theorem on the fixed point set of a unipotent

transformation on the flag manifold. J. Math. Soc. Japan, 32, 55-64.
S15. Shimura, G. (1971). Introduction to the arithmetic theory of automorphic

functions. Publ. Math. Soc. Japan, No. 11, Princeton Univ. Press.
S16. Spaltenstein, N. (1976). On the fixed point set of a unipotent transformation

on the flag manifold. Proc. Kon. Akad. v. Wetenschappen, 79, 452-6.
S17. Specht, W. (1932). Eine Verallgemeinerung der symmetrischen Gruppe.

Schriften Math. Seminar Berlin, 1, 1-32.
S18. Specht, W. (1935). Die irreduziblen Darstellungen der symmetrischen Gruppe.

Math. Z., 39, 696-711.
S19. Specht, W. (1960). Die Charaktere der symmetrischen Gruppe. Math. Z., 73,

312-29.
S20. Springer, T. A. (1970). Characters of special groups. Springer Lecture Notes,

131, 121-56.
S21. Springer, T. A. and Zelevinsky, A. V. (1984). Characters of GL(n,Fq) and

Hopf algebras. J. London Math. Soc., (2) 30, 27-43.
S22. Srinivasan, B. (1992). On Macdonald's symmetric functions. Bull. London

Math. Soc., 24, 519-25.
S23. Stanley, R. P. (1971). Theory and application of plane partitions I, II. Studies

in Appl. Math., 50, 167-88 and 259-79.
S24. Stanley, R. P. (1984). The q-Dyson conjecture, generalized exponents, and the

internal product of Schur functions. Contemporary Math., 34, 81-93.
S25. Stanley, R. P. (1989). Some combinatorial properties of Jack symmetric

functions. Advances in Math., 77, 76-115.
S26. Steinitz, E. (1901). Zur Theorie der Abel'schen Gruppen. Jahresbericht der

DMV, 9, 80-5.
S27. Stembridge, J. R. (1985). A characterization of supersymmetric polynomials.

J. Algebra, 95, 439-44.
S28. Stembridge, J. R. (1989). Shifted tableaux and the projective representations

of symmetric groups. Advances in Math., 74, 87-134.
S29. Stembridge, J. R. (1992). On Schur's Q-functions and the primitive idempo-

tents of a commutative Hecke algebra. J. Alg. Combinatorics, 1, 71-95.
S30. Stembridge, J. R. (1995). The enumeration of totally symmetric plane partitions.

Advances in Mathematics, 111, 227-43.
S31. Stembridge, J. R. (1994). Some hidden relations involving the ten symmetry

classes of plane partitions. J. Comb. Theory Series A, 68, 372-409.



BIBLIOGRAPHY 465

S32. Stembridge, J. R. (1994). Some particular entries of the two-parameter Kostka
matrix. Proc. Amer. Math. Soc., 121, 367-73.

Tl. Takemura, A. (1984). Zonal polynomials. Inst. of Math. Statistics Lecture Notes
-Monograph Series, Vol. 4. Hayward, California.

T2. Tamagawa, T. (1963). On the 3-functions of a division algebra. Ann. Math., 77,
121-56.

T3. Thoma, E. (1964). Die unzerlegbaren, positiv-definiten Klassenfunktionen der
abzahlbar unendlichen symmetrischen Gruppe. Math. Z., 85, 40-61.

T4. Thomas, G. P. (1974). Baxter algebras and Schur functions. Thesis, Swansea.
T5. Thrall, R. M. (1942). On symmetrized Kronecker powers and the structure of

the free Lie ring. Am. J. Math., 64, 371-8.
T6. Thrall, R. M. (1952). A combinatorial problem. Michigan Math. J., 1, 81-8.
Wl. Weil, A. (1949). Number of solutions of equations in finite fields. Bull. Am.

Math. Soc., 55, 497-508.
W2. Weyl, H. (1946). The classical groups. Princeton Univ. Press.
W3. White, D. (1981). Some connections between the Littlewood-Richardson rule

and a construction of Schensted. J. Comb. Theory (A), 30, 237-47.
W4. Worley, D. R. (1984). A theory of shifted Young tableaux. Thesis, M.I.T.
Yl. You, Y. (1989). Polynomial solutions of the BKP hierarchy and projective

representations of symmetric groups, in Infinite-dimensional Lie algebras and
groups, pp. 449-464, Adv. Ser. Math. Phys., 7. World Science Publishing, Tea-
neck, New Jersey.

Y2. Young, A. (1901-1952). Quantitative substitutional analysis I-IX. Proc. Lon-
don Math. Soc.

Zl. Zeilberger, D. and Bressoud, D. (1985). A proof of Andrews' q-Dyson conjec-
ture. Discrete Math., 54, 201-24.

Z2. Zelevinsky, A. V. (1981). Representations of finite classical groups: a Hopf
algebra approach. Springer Lecture Notes, 869.

Z3. Zelevinsky, A. V. (1981). A generalization of the Littlewood-Richardson rule
and the Robinson-Schensted-Knuth correspondence. J. Algebra, 69, 82-94.





Notation

Chapter I

I(A) length of a partition A: I, 1
Al weight (= sum of parts) of a partition A: I, 1

the set of partitions of n: I, 1
the set of all partitions: I, 1

m,(A) multiplicity of i as a part of A: I, 1
A' conjugate of a partition A: I, 1

n(A) E(i-1)Ai= 2 I, 1

(a 1 6) Frobenius' notation for a partition: I, 1
ADA A,>µ,foralli>1:I,1
A - µ skew diagram: I, 1
A + µ partition with parts A. + Al: I, 1
A U µ partition whose parts are those of A and of µ: I, 1
Aµ partition with parts A. µi: I, 1
A x µ partition with parts min(A,, µ): I, 1
A> µ Al+...+A,>,µl+...+µ, for all i>l:I, 1
R;j (i <j) raising operator: I, 1
S symmetric group on n symbols: I, 1
3 (n-1,n-2,...,1,0):I,1
h(x) hook length at x e A: I, 1, Example 1
c(x) content of x E A: I, 1, Example 3
o,(t) (1 - tX1- t2) ... (1 - t'): I, 1, Example 3
A" p-quotient of A: I, 1, Example 8
A p-core of A: I, 1, Example 8
A y A, µ have the same p-core: I, 1, Example 8
h(A) product of the hook-lengths of A: I, 1, Example 10
ca(X) content polynomial of A: I, 1, Example 11
An I, 2
A ring of symmetric functions: I, 2
AA AAA (A a commutative ring): I, 2Xxr x22 ...: I, 2
ma monomial symmetric function generated by x': I, 2
e, rth elementary symmetric function: I, 2
E(t) E e,t' = FIG + x,t): I, 2

eA e,,ea2 ...: I, 2
h, rth complete symmetric function: 1, 2
H(t) E h,t' = II(1 -x;t)-': I, 2
hA hx,haz ...: I, 2
W involution of A which interchanges er and h,: I, 2
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fA `forgotten' symmetric function co(ma): I, 2
Pr rth power sum: 1, 2
P(t) Eprtr-1: I, 2
PA PA, Pat .: I, 2

EA I, 2

ZA ni> 1 imi(A) mi(A)!: I, 2
[n q-binomial coefficient I, 2,
r Example 3

c(G) cycle indicator of a subgroup G of S,,: I, 2, Example 9
6(w) sign of w e S,,: I, 3
a. skew-symmetric polynomial generated by x": I, 3
SA Schur function: I, 3

[n]
generalized q-binomial coefficient: I, 3, Example 1

HA(q) hook polynomial fSEA(1 - qh(s)): I, 3, Example 2

`YA generalized binomial coefficient: I, 3, Example 4

SA(X/Y) `supersymmetric' Schur function: I, 3, Example 23
SA/µ skew Schur function: I, 5

cµ coefficient of sA in s,,s,,: I, 5

KA-,<. v (sA,,,,, h ): I, 5
fJ adjoint of multiplication by f E A: I, 5, Example 3

diagonal map A --, A ® A: I, 5, Example 25
M(u, u) transition matrix: I, 6
K Kostka matrix M(s, m): I, 6
L M(p, m): I, 6
A <R µ A is a refinement of µ: I, 6
XA irreducible character of S,,: I, 7
XP value of XA at elements of cycle-type p: I, 7
f * g internal product of f, g E A: I, 7
MA Specht module: I, 7, Example 15
f o g plethysm (f, g E A): I, 8
FA irreducible polynomial functor: I, Appendix A, 5

Chapter II

o a discrete valuation ring: II, 1
P maximal ideal of o: II, 1.
k residue field o/p: II, 1
1(M) length of a finite o-module M: II, 1
aA(q) number of automorphisms of a module of type A: II, 1
G' (o) number of submodules N of an o-module M of type A,

such that N has type v and M/N has type µ: II, 2
H(o) Hall algebra of o : II, 2
gs(t), Hall polynomials: II, 4
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Chapter III

RA(xl,... , x"; t) symmetric polynomials defined in III, 1
Vm(t) Som(t)/(1 - t)"': III, 1

VA(t) F11 > 0 Vmj(A)(t): III, 1
PA(x;t) Hall-Littlewood symmetric function: III, 2
qr(x; t) (1 - t)PF,t(x; t) (r > 1): III, 2
bA(t) fI,> 1 (Fm,{A (t): III, 2
QA(x; 1) bA(t)PA(x; t)): III, 2
qA(x; t) qA,(x; t)gA2(x; t)...: III, 2

coefficient of PA in PµP, : III, 3
zA(t) zA 11(1- tAj)-1: III, 4
SA(x; t) det(gA,_,+J(x; t)): III, 4
QA/µ!, PA/µ skew Hall-Littlewood functions: III, 5
A/µlt), IA/W(t), 'PT(t), IT(t): III15
K(t) transition matrix M(s, P): III, 6
XP 11(t) coefficient of PA(x; t) in pp(x): III, 7
QP(q) q"(A)XP (q-1) (Green's polynomials): III, 7
r Z[ql, q2, q3,...1: III, 8
Pf(A) Pfaffian of a skew-symmetric matrix A: III, 8

Chapter IV

k finite field: IV, 1
q number of elements in k: IV, 1
k algebraic closure of k: IV, 1
F Frobenius automorphism x _ x4: IV, 1
k" extension of k of degree n contained in F. IV, 1
M multiplicative group of k: IV, 1
M. multiplicative group of k": IV, 1
N",m norm homomorphism MM --*-Mn (where m divides n):

IV, 1
L lim M": IV, 1

L" subgroup of L fixed by F": IV, 1
(6,x)" pairing between L" and M": IV, 1
4) set of F-orbits in M, identified with the set of monic

irreducible polynomials (other than t) in k[t]: IV, 1
d(f) degree of f E ': IV, 1
G" GL"(k): IV, 2
It partition-valued function on t : IV, 2
Ilµll EfEo d(f)lµ(f)I: IV, 2
cµ conjugacy class parametrized by µ: IV, 2
of gd(/): IV, 2
aµ fI fEF arc f)(qf) = order of centralizer of any element of

cµ: IV, 2
U1 0 ... 0 Ur induction product of class functions: IV, 3

ITµ
characteristic function of cµ: IV, 3



470

An
A
R
R
B

PA(f)

QA(f)
Pw

Qw
ch

fin(x)
fin(f)
O

pr((P)
SA((P)
X

Ilall
Sa
S

XX

X k

Chapter V

F
lal
0

k
q
IT

V

G
G+
K
L(G, K) (resp.

L(G+, K))
f*g
H(G, K) (resp.

H(G+, K))

NOTATION

space of class functions on G,,: IV, 3
®n>OA,,: IV, 3 .

Z-module generated by the characters of G,,: IV, 3
®n> 0 Rn: IV, 3
polynomial algebra over C generated by independent
variables en(f) (n > 1, f E'): IV, 4
of n(A)PA(Xf; of 1): IV, 4

aA(q f)fA(f ): IV, 4

II fEro PP(f)(f ): IV, 4

fl y, Q,U)(f) = a, Pµ : IV, 4
characteristic map: IV, 4
P,,/d(f) (x r= f, n a multiple of d = d(f )): IV, 4
(-W1ExEM(f,x)npn(x): IV, 4
set of F-orbits in L: IV, 4
number of elements of cp E O: IV, 4
Prd(f) (f E (P, d = d(cp)): IV, 4
Schur function in the p-variables: IV, 4
partition-valued function on O: IV, 4
E,PEe d((p)IX(cP)I: IV, 4
I1 E8 S,((P)((P): IV, 4
Z-submodule of B generated by the S,,: IV, 4
irreducible character of Gn: IV, 6
value of X X at the class cw: IV, 6

non-archimedean local field: V, 1
absolute value of a E F: V, 1
ring of integers of F: V, 1
maximal ideal of o: V, 1
(finite) residue field o/p: V, 1
number of elements in k: V, 1
generator of p: V, 1
normalized valuation on F*: V, 1

G V, 2
V, 2

space of complex-valued continuous functions
of compact support on K\G/K (resp. K\G+/K): V, 2
convolution product in L(G, K): V, 2

Hecke ring of (G, K) (resp. (G+, K)): V, 2
diag(7r A, , ... , IT A-): V, 2
characteristic function of Kir AK: V, 2
Z(n-1,n-3,...,1-n): V,2

spherical function on G relative to K: V, 3
Fourier transform of f E L(G, K) by w: V, 3.
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G,
Tm

T(X)
C(s, W)

Chapter VI

F
z,,(q, t)
(a; q)W
II(x,y;q,t)
8"(x;q,t)
gA(x;q,t)

T.,.'
D"(X; q, t)
Dn
A;(x; t)
D"(X; a)

13"a

PP(x; q, t)
bA(q, t)

Q,,(x;q,t)
wQ

a(s), a'(s)
1(s),1'(s)

Eu,1

bA(s;q,t)

fµv(q, t)
P,,/,,(q,t), QA/,,(q,t)

cA(q,t)

ca(q,t)
JA(x; q, t)
KA (q,t)
ppx; t)
X, (q, t)

f
[f}1
A(x; q, t)
(q,t)-. (1,1)
gna)(x)
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spherical function with parameter s = (s1, ... , s"): V, 3
{x e G+: v(det x) = m}: V, 4
characteristic function of G, : V, 4
Hecke series Em TmXm: V, 4
zeta function defined by w: V, 4

the field Q(q, t): VI, 2
za n(1 - q Ai)/(1- t A,): VI, 2
no(1- aq'): VI, 2
IIi,i(tx+y1; q)m/(x,yt, q),: VI, 2
coefficient of y" in I7(tx1y; y; q),: VI, 2
II ga,(x; q, t): VI, 2
the endomorphism of AF defined by
P. ` (-1)'-'P.(1 - u')/(1 - v) (r > 1): VI, 2
f(x1,.. ,x")-*f(x1,...,1fx;,.. ,x"): VI, 3
see VI, (3.2)
coefficient of X' in D"(X; q, t): VI, 3
fj 0 j(tx1 -x1)/(x; -x1): VI, 3
see VI, 3, Example 3
Laplace-Beltrami operator: VI, 3, Example 3(e)
symmetric functions defined by VI, (4.7)
<PA,PA)-1: IV, 4
bb(q, t)PA(x; q, t): IV, 4
the automorphism of AF defined by
p, H (-1)'-1a'pr: IV, 5, Example 3

coefficients in Pieri formulas: VI, (6.24)
arm length and colength of s E A: VI, 6
leg length and colength of s E A: VI, 6
specialization pr ti (1 - u')/(1- I,): VI, 6
(1 - ga(s)tt(s)+ 1)/(1- qa(3)+ 1t1(s)): VI, 6

coefficient of PA in P,P,,: VI, 7
skew functions: VI, 7

fSEA(1 -ga(s)tl(s)+1)): VI88

ns E A(1- qa(s)+ ltus)): VI, 8
cA(q, t)PA(x; q, t): VI, 8
coefficient of SA(x; t) in Jµ(x; q, t): VI, 8
po(x)II(1- tA'): VI, 8
coefficient of zP 1pp(x; t) in JA(x; q, t): VI, 8

t t1]f(xi
1,...,xn 1) if f =f(x1,...,x"): VI, 9

constant term in f E L": VI, 9
r{;, j(xix71; q)./(tx,xP 1; q)m: VI, 9
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