LECTURE 3

Difference Approximations

v 1. Five-point difference equation. As was stated in Lecture 2, § 1, numerical
¢ methods have the great advantage of being applicable in principle to linear partial
DE’s with variable coefficients on general domains (but see § 6). This is because
one can approximate such DE’s by difference equations (AE’s); the present lecture
will be devoted to a discussion of such approximating AE’s. As was explained in
the preface, the resulting “difference methods™ (whose discussion will occupy
Lectures 3-5) were used almost exclusively to solve elliptic problems on com-
puters until recently.

We begin with the special case of the Laplace DE. It is classic that, knowing the
values of a function ue C*(R) at the mesh-points (x;,y;) = (ih, jh) of a uniform
square mesh, the Laplacian of u is approximated with O(h?) accuracy by the
second central difference quotient

o1
(0 Viu(x;, y) = ;li[uw 1 F Uiyt ey Uy — du; ;1.

Clearly, Vu = (6,2 + 8,2)u/h?, where 8, and J,* signify second central difference

operators.

©  To compute the truncation error Viu — V2yu, we assume u € C®(R) and expand
in Taylor series, getting

@) WV = (5,2 + 8,Du — (5,* + 8, /12 + O(h°).

Hence, dividing by h? and noting that 5,*u + 8,*u = O(h*), we see that the trunca-
tion error in (1) is O(h?) for any u e C*(R):

A function whioch satisfies V2u = 0 on a uniform mesh is called a “discrete
harmonic function” (see §2). This is evidently equivalent to the condition that
its value at each interior mesh-point is the arithmetic mean of its values at the four
adjacent mesh-points.

More generally, consider the source problem in a bounded plane region R. As
in Lecture 1, § 3, this problem consists in solving the self-adjoint elliptic DE

(3) —V[P(x,}’)vu]'*'q(xd’)“:S(X’J’), P>0,qgo,

for suitable boundary conditions. This DE may be approximated at the. interior
mesh-points of any rectangular mesh by the following five-point central difference
equation (AE):

@ D=Ly y;+ R+ Tiijer + B; i j-1 + i iy + Sij
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where
D;;= Ri,j + Li,j + 7;.1' + Bi,ja with
Ri.j = —[p(xi+1: y]) + p(xh yj)]/z(xi+1 — Xi);

and L;;, T;; and B ; are given by similar formulas [FW, p. 201], [V., p- 1%6]..
As we shall see in § 5, the error in the approximation (4) to the DE (3)is O(h ).1f
a uniform mesh is used, but only O(|Ax,)) if a nonuniform mesh is used. That 1s,
an order of accuracy is lost in passing from the case of constant mesh-length to
the general case of variable mesh-length.

These approximations ‘‘reduce” the analytical source problem defined by the
DE (3) and the Dirichlet boundary condition u(x, y) = f{x, y)on 61_2, the boundary
of R, to an approximately equivalent algebraic problem of solving a sy§tem-of
n simultaneous linear equations in n unknowns, where n is the numbc?r of interior
mesh-points. In vector notation, this algebraic problem consists in solving a
vector equation of the form

ij

@)

(5) Au=b.

Here u is the vector of unknown values of the u; ; at interior mesh-points, while
A and b (the vector of boundary values and source terms) are known._

To solve large systems (5) of simultaneous linear equations efﬁc1e:1tly ar.nd
accurately is not easy; techniques for doing this when A4 is a 10* x 10 m?.trlx,
say, will be the main theme of my next two lectures. The success of such_ techniques
depends basically on a number of special properties of A—and especxal'ly on tl_’xe
fact that A is a Stieltjes matrix whose off-diagonal entries form a 2-cyclic matrix,
in the sense of the following definitions.

DEFINITION. A Stieltjes matrix is a symmetric matrix whose diagonal elel_nent_s
are positive, whose off-diagonal clements are negative or zero, and which 1’s
positive definite [V, p. 85]. Ann x n matrix B is 2-cyclic (or has “Property A”)
when its indices can be partitioned into two nonvoid subsets S and T such that
b, # 0 implies ke S and le T or vice versa. o

We shall now verify that the square matrix 4 = Jlayl of coefficients’ of the
system (5) is symmetric, since

R;;= Livi,j= Ci+12. T;= B;jy1 = Cijri2-
Next, decompose A as follows:
(6) A=D—-E—F, F=ET,

where D is its diagonal component, — E its subdiagonal component, and —F its
superdiagonal component. All three matrices D, E, F are nonnegative. Mqreover,
in particular, (i) 4 has positive diagonal entries and negative or zero oﬁ'-dlagon_al
entries (— A is “‘essentially nonnegative”); also. (ii) 4 is diagonally dominant, 1n
the sense that each (positive) “‘diagonal” coefficient D; ; in (4) is equal to the sum

1 Here each index (k or I) stands for a mesh-point (i, j)-
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of the maghitudes of alf the other coefficients in its row, and greater than this
sum for points where g > 0, and adjacent to points satisfying boundary conditions
u = g(x) or du/on + b(x)u = g(x), b(x) > 0; (iii) A is positive definite, i.c., xAx > 0
unless x = 0; and (iv) it is a Stieltjes matrix with strictly positive inverse; finally,
(v) A is sparse in that it has at most 4 nonzero off-diagonal entries in each row,
and (vi) it is 2-cyclic since one can take for S those k = (i, j) with i + j odd, and
for T the k = (i,j) with i + j even. For a sufficiently fine mesh in a connected
domain with smooth boundary, (vii) the matrix A is also irreducible.

2. Network analogies. Solutions of linear systems having a Stieltjes coefficient-
matrix are of interest not only as approximate solutions of problems of continuum
physics ; they also represent exact solutions to interesting network problems arising
in various branches of physics.

Specifically, let C = |lc,,|| be any Stieltjes matrix. We can construct a D.C. net-
work whose kth node is connected with its /th node by a wire of conductance —c¢y,
if ¢;; < 0, and is not connected with node ! when c;; = 0 (i.e,, otherwise). We let
each jth node have an input lead with controlled current S; and a resistive con-
nection to “‘ground” with conductance ¢;; — Zk ¢ 2 0. Then Kirchhoff’s laws
are equivalent to the vector equation

(7 Sj=;cjk(uj—u,‘)=21jk= =3 L.

The sparseness of C is reflected in a sparseness of links.

By inspection, we find that the S-point difference approximation (4) to
—V . (pVu) = f(x,y) leads to a rectangular D.C. network, whose nodes are the
mesh-points and whose conducting elements are the mesh-segments. In this network
analogy, u; ; is the voltage at the terminal (i,j), R;; = Li+y; = Civ1p2,j in (6) is
the conductance of the wire connecting node (i, j) to node (i + 1,j), s;; is the
current flowing into node (i, j), and so on. As a result of this analogy, one can
"build rectangular networks for solving the difference equations (4) by analogy.

“{Similarly, one can use an electrolytic tank or telegraphic “teledeltos™ paper as
_analogue computer to solve the DE Viu = 0.)

A mechanical analogy is provided by locating taut strings under constant

“tension T on the mesh-lines of a rectangular network, loaded at the mesh-points

where these lines are joined, and looking for static equilibrium (minimum strain

}e_nergy): the stationary state of minimum strain energy, with 6J = 0 for

{8) J = iu, Au) — b-u.

This analogy suggested to Hardy Cross and to R. V. Southwell the idea of solving
the resulting equations (i.e., of minimizing J) by iterative “relaxation” methods
to be described in Lectures 4 and 5, in which J is repeatedly reduced by changing
one u,; at a time.

Though using variable mesh-length and nonrectangular meshes (“irregular
tars” [9]) improve the accuracy of the network analogy in regions where the
xact solution is rapidly varying, they also greatly complicate the writing of
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computer programs for solving the resulting systems of linear algebraic equations.

Discrete harmonic functions. The difference approximation (1) on a uniform
mesh also defines a fascinating class of “discrete harmonic functions” u(i, j),
defined as solutions of the AE

) u(i,j) = Lu( + 1,)) + u(i,j + 1) + u(i — 1,j) + u(i,j — 1)].

Discrete harmonic functions have been extensively studied by Duffin and others.
Note that (9) is analogous to Gauss’ theorem of the arithmetic mean. Again,

solutions of (9) minimize the “Dirichlet sum” Y (Au)? of the squares of difference

(*jumps” in u between adjacent mesh-points) for given boundary values.

3. Solution by elimination. When the number N of mesh-points is moderate
{when N < 1000, say), it is usually feasible to solve the system of AE’s Av = k
by Gaussian elimination in single-precision arithmetic. However, this_involves
approximately N3/3 multiplications [FW, Chap. 25], as well as storing up to
N2 ~ 10% numerical coefficients.. The situation is very different from that in the
one-dimensional case, in which the 3-point O(h*) approximation leads to only a tri-
diagonal matrix.

If the number of mesh-points on any horizontal line is bounded by M, then the
matrix A4 is a band matrix with bandwidth at most 2M + 1. Gaussian elimination
then requires only about M2N multiplications.?

Alternatively, one can regard the AE (1) (for example) as a two-endpoint problem
for a two-level system of M second order AE’s:

(10) Uy () = du(i) — uy— () —ui + 1) —ufi = 1),

which can then be integrated using “multiple shooting” techniques. These have
been studied by H. B. Keller® and others. However, the DE (10) is unstable, and
this approach may well lead to a need for double precision [FW, loc. cit.].

Optimal elimination. Reduction to minimum bandwidth is only one of several
techniques which have been developed for exploiting the sparseness of matrices
arising from AE’s and network problems. Reduction to minimum bandwidth
does not always minimize the work of achieving exact solutions (in “rational
arithmetic”): it is by no means always optimal. Indeed, the whole subject of
optimizing elimination for sparse matrices is currently a very active research area;
I can only give you a few major references.*

2 For more details, see G. E. Forsythe and C. B. Moler, Computer Solution of Linear Algebraic
Systems, Prentice-Hall, Englewood Cliffs, New Jersey, 1967, pp. 115-119.

3 Two-Endpoint Problems, Blaisdell, Waltham, Massachusetts, 1968.

4See D. V. Steward, SIAM J. Numer. Anal., 2 (1965), pp. 345-365; R. A. Willoughby, editor, Sparse
Matrix Proceedings, RA-1, IBM Res Publ., March, 1969; [4], [8], and Part D of my article to appear in
Proc. SIAM—AMS Symp. IV (1971).
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A very spetidl elimination method, which is brilliantly successful for solving the
Poisson equation —V?u = f in rectangular regions is the Tukey—Cooley fast
Fourier transform on a uniform 2™ x 2" mesh.’ i

However, for most very large problems (N > 10,000, say) in general regions,
and especially for those which involve multiple interfaces such as occur in nuclear
reactors, stable and self-correcting iterative methods seem to be preferable. My
next two lectures will be largely devoted to iterative and semi-iterative methods
for solving large systems of simultaneous linear equations. These have the further
advantage of being more readily adaptable to nonlinear problems.

4. Nonlinear problems. By the simple device of replacing derivatives by
(approximately equal) difference quotients, nonlinear DE’s can also be approx-
imated by (nonlinear) systems of algebrajc equations.

Methods for solving the resulting systems of nonlinear equations are typically
iterative, beginning with Newton’s method, which is the method most commonly
proposed in textbooks. (The usual expositions of this method take for granted the
triviality of solving linear systems, incidentally.)

For this reason, I shall postpone the study of (iterative) methods for solv-
ing systems of nonlinear algebraic equations to Lecture 4 (and to Lecture 8,
§3); their success for large systems usually depends on quite special considera-
tions.

Nonlinear networks. For example, they may depend on variational properties,
such as hold for a wide class of nonlinear networks® analogous to the linear net-
works discussed in § 2. From this principle, one can derive existence and uniqueness
theorems for flows.

5. Local truncation errors. For the rest of this lecture, I shall ignore the practical
difficulties of solving accurately large systems of algebraic equations, and describe
what is known about the accuracy of difference approximations, assuming that
the difference equations can be solved.

As I said in § 1, the 5-point central difference quotient approximation for VZu
on a uniform mesh introduces an error of O(h?) at each mesh-point. Unfortunately,
its generalization (4) to a nonuniform mesh (or even with a uniform mesh unless
(3) has constant coefficients) introduces an error of O(h). Moreover, this order of
accuracy is “best possible”: with only five mesh-points, one cannot match more
than the five coefficients corresponding to u, u,, u,, u,, and u,, in the Taylor
series expansion of u. It is sheer luck when other derivatives have no influence.
Indeed, one cannot express u,, even approximately in terms of the 5 values of u
in (3). For this reason, difference approximations to elliptic problems in which

5R. W. Hockney, J. Assoc. Comput. Mach., 12 (1965), pp. 95~-113; F. W. Dorr, SIAM Rev., 12
(1970), pp. 248-263; B. L. Buzbee et al., SIAM J. Numer. Anal,, 7 (1970), pp. 623-656.
8 G. Birkhoff and J. B. Diaz, Quart. Appl. Math., 13 (1956), pp. 432443 ; see also G. Birkhoff and

R. B. Kellogg, Proc. Symp. Generalized Networks, MRI Symposium Series 16, Brooklyn Polytechnic
Press, New York, 1966, and the references of Lecture 8, footnote 8.
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u,, enter normally use a 9-point formula since, for example,

4
(11) hzuxy = U1 T Uimgjm1 — Witrj-1 ~ impjrr T O(h%).

Instead of using truncated Taylor series to derive difference approx_imations to
derivatives, one can use integral formulas. Careful discussions of this approach
may be found in [FW], [KK], [V] and [W]. o

In either case, the most useful fact to be deduced from such a priori error
estimates is the principle that the error (for a uniform mesh) is typically asymptotic
to Mh" + O(h"*1) for some positive integer n. ‘

Order of convergence. For square meshes with mesh-‘le-ngt.h h, the trun‘c‘:atlon
error is typically of the form MK" + O(h™**) for some positive integer n, the order
of convergence.” More generally, this is true of rectangular meshes with mesh-
length k6, in the x,-direction, and in many other cases. In such cases, the phanges
A ;in computed values when the mesh-length is halved from h to h/2 are apprO)f-
imately proportional to h". Though M is unknown, one can use Richardson’s
method of “deferred approach to the limit” [FW, p. 307] to improve the accuracy
of results obtained by mesh-halving (until roundoff takes over). See also [11].

6. Higher order accuracy. One can always approiimatfe diﬂ‘ereqce qpotients of
very smooth functions with higher order accuracy by using stencﬂs.wnh e,nou.gh
mesh-points ; this follows from Taylor’s formula. In the case of partial DE’s with
constant coefficients and a uniform mesh, the process yields some very ele.gajmt
(and sometimes useful) formulas. I shall mention a few such formulas, giving
references’ and assuming high order differentiability.

Thus, formula (2) leads to a difference approximation

Viu = L [48%u + 5%) + O(H*),
* 6h
where
6%u = [Uipy joy + Uivg,jor + oy jer T Uimgj-1 — du;))

having O(h*) accuracy on a 9-point square of mesh-points (see |;KK, p- 1.79] and
J. Bramble and B. Hubbard [2]). This is not to be confused with the difference

approximation

V2u = §,u + S,u + O(h*),
where .
Opcth = [16(u14 1 + 1) — (ir2 + t-2) — 30u,]/24h?

on a 9-point cross of mesh-points [KK, p. 184], obtained by minimizing the
Dirichlet integral on the piecewise bilinear function interpolated between values

7 A useful compendium is contained in Collatz, Table VI [C, pp. 505-509] ; see also W. G. Bickley et al.,
Proc. Roy. Soc. London, A262 (1961), pp. 219-236.
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of u at these mesh-points.® This '9-point difference approximation with O(h*)
accuracy applies also to DE’s of the form Au,, + Cu,, = 0 and to

Auxx + 2Buxy + Cuyy + Dux + Euy + Fu=20

fA=CorB=0°

One can obtain a difference approximation to V*u having O(h!°) accuracy by
using a 13-point stencil [KK, p. 184], while 17-point stencils for V?u and 25-point
stencils for V*u have also been worked out.!®

Finally, accurate difference-approximations to V2 on triangular and hexagonal
nets have been worked out by various authors.!! Unfortunately, although such
higher order methods are intriguing, the use of the associated larger stencils almost
invariably leads to serious complications near the boundary.

7. Global error bounds. The errors referred to in § 1 and § 6 were discrepancies
between difference quotients (“divided differences”) and derivatives. The question
arises: how are such errors related to those in the values of the functions? If we
write the difference approximation in the form Av = k, then we have Au = k +r,
where r is the vector whose components r; are these discrepancies. The 7; are also
called residuals for-the system Au — k.

For the Laplace equation, and in some other cases, one can achieve higher order
(local) accuracy a posteriori by estimating the r; frotn numerical data (e.g., by
estimating V*u from the computer printout). If ¥ is the estimated dominant error
term, then by subtracting the solution of Av = f as a “differential correction’
from the solution of the difference approximation, one should reduce thé error.
This is Fox’s “method of differential corrections” [5].12

Discrete Green’s function. Alternatively, one can combine remainder formulas
with a priori knowledge of the derivatives of the exact solution, obtained by
analytic considerations (cf. Lecture 2), to bound the residuals r;. Since the actual
error vector e = v — u satisfies e = Gr where G = 4 ~ !, this leads to an a priori
error bound in terms of the norm of G. Here G may be called the Green’s matrix
because it acts like a discrete Green’s function [FW, pp. 315-318] for the source
problem being solved. It is a positive matrix for (4). Finally, again using
analytical considerations discussed in Lecture 2, one can often bound the norm
of G.

8 R. Courant, Bull. Amer. Math. Soc., 49 (1943), pp. 1-27; B. Epstein, Math. Comp., 16 (1962), pp.
110-112,

9J. Bramble and B. Hubbard, Contributions to Differential Equations, 2 (1963), pp. 319-340;
Young and Dauwalder, Rep. TNN-46, Univ. of Texas Comp. Lab.

10 B. Meister and W. Prager, Z. Angew Math. Phys., 16 (1965), pp. 403-410; see'also G. Fairweather

et al, Numer. Math,, 10 (1967), pp. 56-66; A. Hadjimos, Ibid., 13 (1969), pp. 396403 ; and F. D.
' Burgoyne, Math. Comp., 22 (1968), pp. 589-594.

' [KK, pp. 187-188]; R. B. Kellogg, Math. Comp., 18 (1964), pp. 203-210; [C]; [9]; D. N. de G.

‘ Allen, Reldxation Methods in Engineering and Science, McGraw-Hill, New York, 1954. I. Babugka,
& M. Prager and M. Vitasek, Numerical Processes in DE’s, SNTL-Interscience, 1966, § 5.4.2.

12 See also [Az, p. 203], and E. A. Volkov, Vychisl. Mat., 1 (1957), pp. 34-61 and 62-80.
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Using such considerations, global convergence as h '} 0 was first proved for the
Laplace AE on a square mesh by R. G. D. Richardson in 1917 and by Phillips and
Wiener in 1922 ; the aim of these authors was to establish existence theorems for
solutions of the Dirichlet problem for V2u = 0 from algebraic existence theorems
for V2u = 0. In 1927, Courant, Friedrichs and Lewy showed that all difference
quotients of given order converged to the appropriate derivatives, as h | 0.

The maximum principle of Lecture 2, § 3, was applied to the Poisson equation
by Gerschgorin [6] in 1930 to prove O(h) global accuracy. Using linear interpola-
tion on the boundary, Collatz'3 sharpened this result in 1933, under appropriate
differentiability assumptions, to prove O(h?) accuracy.Further work was also
done by Walsh and Young and by Wasow in 1954-5, and by P. Laasonen, who
discussed carefully the loss of accuracy introduced by corners, where local sin-
gularities occur.'* This literature is reviewed in [FW, p. 302], and in [C, pp.
326-327]). When mesh-points on the boundary are extremely close together, errors
can be greatly magnified. A way to resolve this difficulty has been described by
Babuska, Prager and Vitasek (op. cit., p. 274).

The whole subject was carefully reconsidered by Bramble and Hubbard, who
used the Green’s function approach systematically. They published their results in
a series of papers written in 19645, especially in [1]-{2] and the references given
there.!> A significant question is whether or not 4 must be “monotone,” i.e.,
whether the inverse G of A needs to be nonnegative. On this point, see [3] and
recent work by Harvey Price.!® The preceding authors have shown that, by using
higher order differences, one can obtain higher order accuracy (for V2u = f and
V*u = f on a square mesh).

The accuracy of the 5-point difference approximation with variable coefficients
has been studied by Bramble, Hubbard and Thomée,'” under weakened assump-
tions of smoothness on the boundary. For ue CHR) n C*(R), for example, one
obtains O(h?) accuracy. Finally, the O(h?) convergence of all difference quotients
to the appropriate derivatives has been proved for the Laplace DE on a square
mesh by V. Thomée and Achi Brandt.'® Making increased smoothness assump-
tions, Thomée also showed that difference quotients converge at the same rate
as the solution in the interior (giving discrete Harnack-type inequalities).

Many other more general results have been proved. Thus V. Thomée has proved
convergence to order O(h!/?) for simple difference approximations to the Dirichlet
problem for any linear, constant-coefficient equation of elliptic type, and McAllister

131, Collatz, Z. Angew Math. Mech., 13 (1933), pp. 56-57.

14 Gee [7]; J. Assoc. Comput. Mach., 5 (1958), pp. 32-38; also E. Batschelet, Z. Angew Math. Phys,,
3 (1952), pp. 165-193; N. M. Wigley, SIAM J. Numer. Anal,, 3 (1966), pp. 372-383.

15 Including Contributions to Differential Equations, 2 (1963), pp- 229-252; 3 (1963), pp. 319-340;
SIAM J. Numer. Anal,, 2 (1965), pp. 1-14; J. Assoc. Comput. Mach., 12 (1965), pp. 114-123; Numer.
Math., 4 (1962), pp. 313-332; Ibid., 9 (1966), pp- 236-249.

16 1. Price, Math. Comp., 22 (1968), pp. 489-516.

17 BIT, 8 (1968), pp. 154-173. See also N. 5. Bahalov, Vestnik Moskov Univ., 5 (1959), pp. 171-195,
and J. R. Kuttler, SIAM J. Numer. Anal., 7 (1970), pp. 206-232.

18 Math. Comp., 20 (1966), pp. 473-499. See also P. G. Ciarlet, Aequat. Math., 4 (1970), pp. 206-232.

&

19 V. Thomée, Contributions to Differential Equations, 3 (1964), pp. 301-324; G. T. McAllister,
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v X4
has obtained global error bounds for difference approximations to certain mildly
nonlinear elliptic problems.® Finally, Bramble [BV, pp. 201-209] has shown that
by appfopriately smoothing f, one can get improved convergence of difference
approximations to L{u] = f, for. uniformly elliptic L.
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LECTURE 4 -
Relaxation Methods

1. Point-Jacobi method. This lecture and the next will be devoted to iterative
and semi-iterative methods for solving systems oflinear equations (vector equations)
of the form

1 Au=b.
For very large systems involving 10* unknowns, these are usually more efficient
than the elimination methods described in Lecture 3, § 3 (see § 7).

A great variety of such methods have been proposed ; those involving *“relaxation
methods” are especially applicable when A is a Stieltjes matrix of the form

() A=D—-E—-F, F=E"

As was shown in Lecture 3, § 2, such matrices arise naturally from D.C. network
L problems, including those which correspond to the 5-point difference approxima-
tion to a source problem (with or without leakage). As we saw in that section, they
k' also arise from the usual difference approximation to second order self-adjoint
¥ elliptic DE’s of the form —V - (pVu) + qu = f. When applied to such problems,
E many iterative methods are ' suggested by concepts of relaxation or overrelaxation,

which may be motivated as follows.
The solution of (1) is that (column) vector u which minimizes the (positive

L definite) quadratic functional

3) J(u) = uTdu — b-u.

n the loaded membrane physical interpretation, this functional is just the total

potential energy of the system.
* Example 1. For the 5-point discretization of —V?u = f (x) the functional to

e minimized is the sum ;

33wy — e D — w1+ Z/}i,jui.j'

As was explained in § 2 of the previous lecture, one may simplify interpretation

relaxation methods by thinking of J(u) as the * ‘strain” energy of a configuration

whose coordmates u; are “relaxed” cyclically so as to reduce J at each step.

Einding this minimum by successively ‘“relaxing’ components u; at u, so as to

aduce J(u), is a simple way of looking at relaxation methods. This was also the
29
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idea of Poincaré’s “méthode de balayage” for solving the Dirichlet problem,
which likewise reduces the Dirichlet integral at each sweep.*

If one “scales” the quantities b;, replacing them by di 'b; = k;, the equation (1)
is premultiplied by the diagonal matrix D™, which transforms it to the equivalent

vector equation
u=D"YE+ Fju+ Db,

This suggests the iterative process
4 u"* = p-YE 4 Fu™ + p~1p,

which is the point-Jacobi method, also called the “method of simultaneous djs-
placements.”

If A is a Stieltjes matrix, the point-Jacobi method always converges [V, Theorems
3.3 and 3.6]. In particular, it converges for the matrix problems associated with
any connected (irreducible) network, except when the current is specified at all
boundary nodes, and there is no leakage.

2. Rate of convergence. Not only the fact of convergence but the rate of con-
vergence is of crucial importance for an iterative method. For (4), this depends
on the spectrum of D~ }(E + F), which may also be written as

B =D"YE + F) = D™Y2[D~VY¥(E 4 F)p-vz)p-12,
In this notation, (4) simplifies to
%) u* = By 4 k. B = D"YE+ F), k=D"1p.

Since B is similar to a symmetric matrix D~/ *E + F)D™12 (js “symmetrizable”),
all eigenvalues of B are real.

In general, the matrix A underlying the point-Jacobi method for any well-
designed difference approximation to a self-adjoint elliptic boundary value prob-
lem should be symmetric. Hence it and B should be similar to a real diagonal matrix.

Spectral radius. We now consider in some detail the questions of the convergence
and the asymptotic rate of convergence of the point-Jacobi iterative method 4).
The relevant concept is the spectral radius of B, p(B). This is defined as
the maximum of the magnitudes (absolute values) of the eigenvalues A; of
B:p(B).= max |1(B)|.

By considering the Jordan canonical form J=PBP~! of B (P nonsingular),
which is real and diagonal in the present case, it is easy to prove that (5) gives for
any u® a sequence of u™ which converge as n — oo to the (unique) solution u.
In fact, the error e™ = u™ — y satisfies e — B"e©®. When p(B) < 1, the norm
of the error thus tends to zero, asymptotically like [p(B)]". Hence, the asymptotic
rate of convergence as n — oo is asymptotically proportional to —log p(B) if
p(B) < 1;%if p(B) = 1, the method fails to converge.

! H. Poincaré, Amer. J. Math,, 12 (1890), pp. 216-237; [K, p. 283).
% In the sense that, asymptotically, the error decreases by a factor e every 1/(—log p(B)) iterations
(cf. [FW, p. 218]).

o +" RELAXATION METHODS 31

Remark. In some cases, one can interpret (4) as the Cauchy polygon method for
integrating u, = — Au + k with a small time step (see [V, § 8.4]). Thus, this is true
for the usual 5-point approximation to —V?u = f on a uniform mesh; in this
case, the point-Jacobi method (4) gives the Schmidt process for integrating the
heat equation with source, u, = V?u + f.

More generally, all eigenvalues of A4 are positive for suitable mathematical
models of most source problems, “passive” D.C. electrical networks, and other
conservative or dissipative physical systems in the linear (small amplitude) range,
including those of elasticity. Hence, u* D = u® 4 Ag4u® — k) is convergent for
sufficiently small A¢. If one takes the eigenvectors of 4 for coordinate axes, one
can interpret (4) as integrating the system dv/dt = —Ap; + g,, where the A; are
the (positive) eigenvalues of A.

The optimum At depends on the ratio Amax/Amin- In general, this is not easy to
estimate, but see § 4.

3. Gauss-Seidel method. The point-Jacobi method yields every component of
u* D the (n + D)st approximation to the solution vector of (1), as a (linear)
function of components of u™, which are nearby in the case of difference schemes.

Thus, for the 5-point approximation to the Laplace DE, the point-Jacobi
scheme at interior mesh-points is

© WD = 4, ],
Alternatively, sweeping through the components cyclically, one can use improved
values as soon as available. Thus, for the natural ordering of mesh-points, one can
use

(7) WD = Hul w4 uflty].

The resulting method is called the Gauss—Seidel method (also the method of

“successive displacements”). In general, the (point) Gauss—Seidel method is
defined for (4) by

' () u"* = (D — E)"1Fu®™ 4 (D — E)~1p.

It requires only half as much storage as point-Jacobi.
Stein-Rosenberg theorem. A very general theorem, due to Stein and Rosenberg,

L asserts that the preceding Gauss—Seidel method converges at least as fast as the

()

point-Jacobi method. The proof depends only on the fact that the iteration matrix
¥ B is nonnegative with zero diagonal entries; thus B need not be symmetrizable for

. The stopping problem. With iterative methods, a basic question is when to stop
ferating. Criteria may be given in terms of either [[u®* — u®| (in any norm)
1, better, of the residual lAu — bj| and the rate of convergence of the process.
e shall not enter into this question, beyond noting that, for ill-conditioned
atrices, roundoff can pose surprising problems with Gauss—Seidel iteration.
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Thus Wilkinson (J. Assoc. Comput. Mach., 8 (1961)) takes

[ 96326 —.81321] b_[ .88824]
» L —.74968]

T | -.81321  .68654
0 ) ..
7| Then, to five decimal digits,

X = x® — ... = |: .33116:|’
—.70000

with the initial trial x*V = [

39473 ...

]. Professor Moler kindly called this’ example to my
—.62470...

yet A='b = [

attention.

4. Rates of convergence. Although the spectral radius p(B) plays a central role
in the theory of the rate of convergence of iterative methods, it is very hard to
compute accurately. In practice, p(B) must usually be estimated from numerical
experiments (see § 7). However, there are a few exceptional “model problems” in
which not only p(B) but the entire spectrum is known.

Example 2. The eigenfunctions of the Laplace and Poisson equations in the
rectangle [0, a] x [0, b] are sin(jrx/a) sin(kzy/b). If this rectangle is subdivided by
a uniform mesh into M x N subrectangles, the values of any of the above eigen-
functions at mesh-points define an eigenvector for the 5-point difference approx-
imation to — V2. The case of a square (and the approximation —V?) is typical ;
the eigenvalues forj=1,---,M —landk=1,---, N — 1) are

4[sin’(jn/2M) + sin*(kn/2N)];

they range from A, = 4{sin’*(n/2M) + sin?*(n/2N)] to 2 — A, Those of B range
from A, — 1 to 1 — A_;,; hence the spectral radius of the corresponding point-
Jacobi iteration matrix is

p(B) = {[cos(n/M) + cos(n/N)] = 1 — sin?(n/M) — sin?(n/N)

and the eigenvalues of 4 correspondingly are n%[(j/a)* + (k/b)*),j=1,---, M,
k =1,---, N. Hence the eigenvalues of A range from sin?(n/M) + sin*(n/N) = A,
to sin? [(M — 1)a/M] + sin?[(N — Da/N] = 2 — Apin-

Similar formulas can be written whenever 4 = A’ ® A" is a tensor product of
tridiagonal matrices: A, (4) = 1,(4)4(A"), and the eigenvalues of tridiagonal
matrices can be estimated as in Example 2 of Lecture 2. Moreover, the eigenvalues
of A depend monotonically on its coefficients and the domain, so that comparison
theorems can be invoked.? Finally, in diffusion problems with absorption, when
the diffusion length is only a few mesh-lengths (e.g., when h%a/p > 0.1, say, for
the DE V (pVu) — ou = s(x, y)), and more generally when D strongly dominates
E + F in (2), the spectral radius can be estimated from this fact alone.

~

3 See P. R. Garabedian, Math. Tables Aid. Comput., 10 (1956), pp. 183-185.
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Example 3. For a uniform mesh on a square and Dirichlet (clamped plate)
boundary conditions, the eigenfunctions of ¥* and the fourth order central differ-
ence approximation V§ = (V2)? to it can again be found by inspection. Using the
results of Example 2, we can verify that the eigenvalues of V3 satisfy

Hmin = A‘l%ﬁn é Hy é 2 — Hrmins

where A;, = 2sin? h, whence p,;, = 4 sin? h. Although the matrix A associated
with the operator V} is not a Stieltjes matrix, one can apply to it the block over-
relaxation methods to be discussed in § 7.

5. Point SOR. More generally, we can define peint SOR for any ‘“relaxation
factor” w as follows (SOR is an acronym for ‘‘successive overrelaxation”):
(8) (D — wEu™* Y = {1 — w)D + oFju™ + wb.
Setting L = D™'E and U = D~ 'F, this becomes
8) u®* ) = (1 — wL) {1 — o) + @UTu™ + (1l — wL)" D~ 'b.

When this method is applied over a complete cycle of mesh-points, the errors are
transformed linearly in conformity to the formula

) et = (1 - wL)" Y1 — 0)] + wU}e",
which we rewrite as
©9) et =L [e™], L,=(1~ L) (l - w)l + oU}.

For Stieltjes matrices, the Ostrowski-Reich theorem [V, p. 77] asserts -that
p(L,) < 1 (in other words, point SOR converges) if and only if A is positive
definite and 0 < w < 2.

Kahan’s thesis. In his unpublished thesis, W. Kahan (1958) extended to general
Stieltjes matrices, in less sharp form, many of the results on point SOR which
had been obtained by Young for the 2-cyclic case. Specifically, he showed that
Young’s best optimal overrelaxation factor w, was still good. We summarize
his results as follows (for details, see [V, Theorems 4.9 and 4.12]).4

Let Ax = b, where A is a Stieltjes matrix. Then we can rescale the known b;
S0 as to get an equivalent system

(10) D 'Ax=¢, ¢=D"'b, D=diagA.
Though D~ !4 is of course similar to the Stieltjes matrix
DI/ZADI/Z = D_I/Z(DA)D”z,

it is not itself generally a Stieltjes matrix. Both D™'A4 and D/24D*/? have 1’s on
the main diagonal. Now rewrite (1) in the form

(11) x=Bx+c, B=1-D"14,

*We also thank David Young for the exposition abstracted here (personal communication).
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most suitable for iteration. Let u = p(B) be the spectral radius of B:
u = p(D?AD'?* — 1) < 1

by § 4. Apply successive point-overrelaxation (point SOR) to (11), with the particular
(over)relaxation factor .

(12) wp =2/ + /1 =) =1+ + /1 -

Kahan has proved that for this w,,

wp — 1 2 p(Ly,,) £ o, — 15

hence this w, is a good relaxation factor, since p(L,) = w, ~ 1 for any relaxation
factor. For p(B) = 1 — ¢, where ¢ is small, the asymptotic convergence rate
y = —log p(L,,,) therefore satisfies

(13) J2e = ~}log(w, — 1) Sy < log(w, — 1) = 2,/26.

Rates of convergence, By combining the preceding considerations with those of
§ 4, one can show that the rate of convergence of SOR is O(h) for second order and
O(h?) for fourth order elliptic problems (see again [V], [9]).

Two-cyclic case. The original and simplest class of applications of point SOR
was to the case of 5-point difference approximations to self-adjoint elliptic problems
on a rectangular mesh. In this case, the matrix B for the point-Jacobi method is
(weakly) 2-cyclic, in the sense that for an appropriate ordering of the entries
(indices), it has the form sketched below:

O C
5[0 €]

This is most easily visualized by interpreting the nodes as forming a checkerboard
of red and black squares, such that no link (nonzero entry of B) joins two squares
of the same color. The matrix displayed above is obtained by listing first all red
squares and then all black squares. Although this ordering gives Gauss-Seidel and
SOR their optimal (minimum) spectral radius, it is complicated as regards transfer
of data from tape to core; this is handled better by a straightforward row-by-row
(or column-by-column) sweep of mesh-points.

However, the 2-cyclic form of B displayed can be made to yield a significant
economy: it suffices to store values at red mesh-points during even cycles (half-
iterations) and values at black mesh-points during odd cycles. In symbols, write
u = v + w, where v and w are the vectors whose components are the values of u
at red and black mesh-points, respectively (see [V, p. 150]). Thenv®*? = CCv™,
and data transfer becomes efficient if one sweeps through all red mesh-points
row-by-row, and then all black mesh-points row-by-row.

Optimum overrelaxation parameters. In the 2-cyclic case which he originally con-
sidered, Young gave an exact formula for the optimum overrelaxation factor w,:

(14) w, = 2/[1 + /1 = p*(B)] [V, p. 110]
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and the asyn{’ptotig rate of’éonvergence [V, p. 106], in terms of the optimum SOR
parameter w,. The eigenvalues y of point SOR are related to those 4 of the point-
Jacobi method by

15) (A + o — 1)? = dwp? [V, (4.18)].

They lie on a circle in the complex plane which is mapped 2-1 and conformally
onto the slit of real eigenvalues of B.

To illustrate the effectiveness of the SOR method, consider the case when Aisa
2-cyclic Stieltjes matrix and p? = .9999. For this problem the Gauss-Seidel
method. would require an average of 25,000 iterations (neglecting roundoff) to
get an extra decimal place of accuracy, whereas the SOR method, using optimum
o, would require only 115 iterations. However, to achieve this rapid convergence
the overrelaxation parameter , or equivalently p?, must be estimated accurately.
For the above example, if an estimate of .999 were used for p? in computing w, the
SOR method would require 704, instead of 115, iterations to reduce the error by a
factor of ten. When p? is close to unity, small changes in the estimate for p? can
drastically affect the rate of convergence, especially if w is underestimated.

In practice, two different numerical schemes have been widely used to obtain
estimates for p? (or equivalently w,). One approach is to attack the eigenvalue
problem directly and calculate p? prior to starting the main SOR iterations (see,
for example, [4]). The second approach is to start with the SOR iterations with
some w < , and then obtain new estimates for w based on numerical results.’
The second approach is of the “semi-iterative” type to be discussed in Lecture 5.

p-cyclic matrices. Varga has generalized many properties of 2-cyclic matrices
(matrices having “Property A” in Young’s terminology) to p-cyclic matrices, such
as arise in the “outer iterations” of the multigroup diffusion equations [V, Chap. 4].
In particular [V, Theorem 4.5], the spectral radius of SOR is again 1 — O(h) with
the optimum overrelaxation parameter e,. However, it is the case p = 2 which
arises most frequently in applications.

6. Richardson’s method. There are several variants of SOR which have approxi-
mately the same rate of convergence. One of these is the second order Richardson’s
method,® a two-step method of “simultaneous displacements” which expresses
u®* 1 in terms of u® and u®~ Y, It has the disadvantage of requiring twice as much
storage as SOR.

After setting v(@ = Bu‘® + k, one can replace (1) by the following larger system
[V, pp. 142-143]:

(16a) u* D = [Bv™ + k — u®] 4 u®,

(16b) vyt w[Bu("+1) + k — v("):] + V("),

5 See [V, Chap. 9]; Hageman and Kellogg [4]; and J. K. Reid, Comput. J., 9 (1966), pp. 200-204.

6 L. F. Richardson, Philos. Trans. Roy. Soc. London Ser. A, 210 (1910), pp. 307-357; see [V, p. 159].
Richardson did not use the 2-cyclic concept.
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which is 2-cyclic even if B is not. For the choice w = w, = 2/{1 + (1 — p%(B))Y4],
one achieves a rate of convergence which is about half the optimal rate, as in
Kahan’s analysis.

SSOR overrelaxation. Another variant of SOR is Sheldon’s “‘symmetric”” SOR
(or SSOR), in which sweeps are alternately made in the forward and backward
directions of the ordering.” This is about as efficient as SOR. However, it has the
advantage over SOR of having real eigenvalues and can be combined with semi-
iterative methods (see Lecture 5) so as to achieve O(h'/?) order of convergence with
the 5-point approximation to the Dirichlet problem,® and D. M. Young has
obtained a formula for the optimum overrelaxation factor (unpublished result).

Consistent ordering. In a similar vein, it has been shown that having a “‘consistent
ordering” does not dramatically improve the rate of convergence [81,° and that all
consistent orderings have exactly the same asymptotic rate of convergence.

7. Line and block overrelaxation.!® The convergence of iterative methods can
often be accelerated by using elimination to obtain a whole string of improved
values at once. This is especially easy to achieve.in the case of line or, more generally,
k-line groupings of values on a rectangular network (2-cyclic case). The factor of
acceleration for k-line overrelaxation is \/E [6], but not an ordér of magnitude
(as h | 0). More important, such groupings make difference approximations block
tridiagonal for sufficiently large k, permitting the use of block SOR.

In general, one can prove for (irreducible) Stieltjes matrices the much weaker
result that block Gauss—Seidel converges more rapidly than point Gauss—Seidel;
the proof involves “regular splittings™ of matrices [V, p. 78]. More .important,
matrices arising from higher order problems such as the biharmonic equation of
-Example 3, § 4, have block tridiagonal form relative to suitable k-line groupings
of the mesh-lines. By applying block SOR to the resulting system, one can reduce
the rate of convergence for the biharmonic equation from O(h*) to O(h?), for
example.!!

A much more intimate combination of partial elimination with iteration has
been recently used by H. L. Stone and others'? on problems arising from S-point
difference approximations to source problems. The basic idea is to construct a
matrix B such that 4 — B is readily factored, as A — B = LU, into lower (resp.

7J. W. Sheldon, Math. Tables Aid. Comput., 9.(1955), pp. 101-112; J. Assoc. Comput. Mach,, 6
(1959), pp. 494-505.

8 G. J. Habetler and E. L. Wachspress, Math. Comp., 15 (1961}, pp. 356-362.

9 See also C. G. Broyden, Numer. Math., 12 (1968), pp. 47-56.

10 gee [V, §6.4], [3], and the references given there. Early relevant papers include J. Schroder,
Z. Angew Math. Mech., 34 (1954), pp. 241-253; R. J. Arms, L. D. Gates and B. Zondek, J. Soc. Indust.
Appl. Math,, 4 (1956), pp. 220-229; J. Heller, Ibid., 8 (1960), pp. 150-173.

11 Gee §. V. Parter, Numer. Math., 1 (1959), pp. 240-252, and [6]; also J. Assoc. Comput. Mach,,
8 (1961), pp. 359-365 and [V, p. 208].

12 See [7]; also J. E. Gunn, SIAM J. Numer. Anal, 2 (1964), pp. 24-25; T. Dupont, Ibid., 4 (1968),
pp. 753-782.

|
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upper) triangular matrices L and U, and then to iterate
LUu"*Y = Bu® + k.

Such “strongly implicit” iterative approaches deserve further study partly because
of their potential adaptability to the variational formulations with piecewise
polynomial approximations to be discussed in Lectures 7 and 8.
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LECTURE 5

Semi-iterative Methods

1. Chebyshev semi-iteration. In Lecture 4, I discussed purely iterative methods
for solving Du = (E + F)u + b, which can be reduced to u = Bu + k with
symmetrizable B by “scaling.” These methods consist in applying repeatedly the
linear inhomogeneous (affine) operator L:u — Bu + k, i.e, in “iterating”

1) u” = Liu"" 1],

where (for example) we might have L[u] = Bu + k. In practice, optimal methods
are seldom purely iterative, because numerical information obtained from pre-
vious iterations can usually be used as “‘feedback” to improve on L.

This leads to the study of semi-iterative methods of the more general form

(1,) u(r) = Lr[u(O)i u(l), tt u(r— 1)]'

Specifically, we shall consider in this section the rate of convergence of methods of
the form

(2) v = z c;ll(j),

j=0
where u¥? = BuY~ " + k. To measure this, we define the error of an approximate
solutionvofu = Bu + kase = v — u, where uis the exact solution ofu = Bu + k.
We shall consider only “solution preserving” methods such that v¥ = u implies
v®) = u; hence e = v*) — u = 0, for all » > 0. For this,

%=1
p, j=0
" is necessary and sufficient. We shall then have
3) e = Y BT = pB)[e], plx)= Y .
j=0 j=0

E For a general (random) initial u® = v(%, the spectral radius of p,(B) provides the
E best measure of the rate of convergence. This leads one to ask : What choice of the
¢ C; (i.c., of p,(B)) will minimize the spectral radius of p,(B), among all polynomials p,
£ with p,(1) =1 (ie, ) _,¢f=1)?

J

Since the eigenvalues of B are real and on [— p(B), p(B)], the Chebyshev poly-

e nomial

' (4) Colx/BYCalB™Y), B = p(B)

39
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has the desired property. This was shown by L. F. Richardson, Lanczos 5], and
Stiefel [8]. (Here C,(t) = cos(mcos™'t) on (—1,1).) Moreover, from classic
recursion formulas for the Chebyshev polynomials, it follows that!

® 1 = 0, {Bu’" D + k —u"" D} + u¢" D,
where the rth relaxation factor is
o, =1+ C,_,(1/p)/C(1/p), p = p(B).
Furthermore, as was first observed by Golub and Varga (Lecture 4, [2]),
lim, ., @, = @, = 2/[1 + (1 — p*(B)*2].

More generally, “for very large numbers of iterations, there is very little difference”
between SOR and Chebyshev [V, p. 143], and Chebyshev “‘requires an additional
vector of storage,” which makes semi-iterative Chebyshev by itself asymptotically
no better than SOR, as r — 0.

This additional storage can be eliminated by the semi-iterative cyclic Chebyshev
methods which will now be described.? Recall that the semi-iterative method of
(5) works whenever B is convergent (p(B) < 1) and Hermitian. When B is also
weakly 2-cyclic, i.e., when
(5a) B = |:27T 0F:|, F Hermitian,
u®”

we can partition the u® of (5) as |: !
u

(r)] , corresponding to the splitting of B in
2

(5a). Furthermore, taking appropriate components of the u®, the iteration of (5)
reduces to

sy DT P =T 0 mz
UE™ D = gy oFTUE™TY + ey — U™} + U™, mz0,

*om,
where w, is as before, with o, =4 and where u{" = Fu{® + k,. This semi-
iterative cyclic Chebyshév method of Golub and Varga (Lecture 4, [2]) then
requires no extra vector storage, and retains the superior norm characteristics of
the cyclic Chebyshev method.

For very large systems of linear equations, combinations of multiline and block
techniques with this semi-iterative cyclic Chebyshev method are probably the most
effective methods in widespread use today. Here by multiline techniques, we mean
direct inversion on sets of k adjacent lines.® Such multiline techniques permit one
to adapt the cyclic Chebyshev method to the biharmonic and other higher order

t See A. Blair, N. Metropolis, et al, Math. Tables Aid. Comput., 13 (1959), pp. 145-184.
2 The following exposition was kindly supplied by Professor Varga.
3 E. Cuthill and R. S. Varga, J. Assoc. Comput. Mach., 6 (1959), pp. 236-244.

o
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difference equations,* as well as to variational methods using piecewise poly-
nomial approximations with patch bases (see Lecture 8).

2. Matrices H and V. A much more novel family of semi-iterative methods for,
solving plane elliptic problems is provided by alternating direction implicit (ADI)
schemes, to which most of this lecture will be devoted. o

As in Lecture 3, let the self-adjoint elliptic partial DE

0 0 0 0
© G, Y)u 5;[A(x, y)%] - 5[C(x, y)a—ﬂ = 5(x,)

be approximated by the 5-point difference equation

) H+V+Zu=bh,

where, for a uniform rectangular mesh with mesh lengths h and k, we have
(@)  Hu(x,y) = —alx,y)ulx + h,y) + 2b(x, yyu(x,y) — c(x, y)u(x — b, y),
©)  Vulx,y) = —alx, p)U(x, y + h) + 2B(x, y)ulx, y) — ¥(x, y)ulx, y — k).
The most common choices for a, b, ¢, a, B, y are

a = kA(x + h/2,y)/h, ¢ =kA(x — h/2,y)/h, 2b =a+c,
o= hC(x,y + k/2)/k, y=hC(x,y — k/2)/k, 2B=0a+y.

These choices® make H and V symmetric matrices acting on the vector space of
functions u = u(x;, y;) defined on interior mesh-points.

We shall assume that 4 and C are positive functions in (6) which makes the DE
elliptic, while G is nonnegative. The matrix X is then a nonnegative diagonal
matrix with diagonal entry hkG(x;, y;) at (x;, y;). The vector b is computed by
adding to the source terms hkS(x;, y;) the terms in (8)—(9) associated with points on
the boundary of the domain.

Our concern here is with the rapid solution of the vector equation (7) for large
networks. For this purpose, it is essential to keep in mind some general properties
of the matrices Z, H and V.

As already stated, T is a nonnegative diagonal matrix. Moreover, H and V have
positive diagonal entries and nonpositive off-diagonal entries. Because of the
Dirichlet boundary conditions for (6), the diagonal dominance of H and V implies
that they are positive definite [V, p. 23]; as in Lecture 4, such real symmetric and
positive definite matrices with nonpositive off-diagonal entries are called Stieltjes
matrices.

If the network Z(h, h) = &, of interior mesh-points is connected, then H + V
and H + V + X are also irreducible: it is known® that if a Stieltjes matrix is
irreducible, then its matrix inverse has all positive entries.

(10)

4J. Heller, J. Soc. Indust. Appl. Math,, 8 (1960), pp. 150-173; and S. V. Parter, Numer. Math., 3
(1961), pp. 305-319; see also Hageman and Varga (Lecture 4, [3]).

5 See [1, § 2] for choices of a, b, ¢; also [W, pp. 70-74], Spanier [7, Part d] derives the appropriate
difference approximations in a cylindrical or (r, z)-geometry.

6 See [V, § 3.5]; irreducibility is defined in [V, § 1.4].
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The matrices H and V are also diagonally dominant, by which we mean that the
absolute value of the diagonal entry in any row is greater than or equal to the sum
of the off-diagonal entries. For any 6 = 0, the same is true a fortiori of H + 0Z,
V + 0%, and for 6,H + 6,V + 02 if 6, > 0, 0, > 0. The above matrlces are all
diagonally dommant Stieltjes matrices.- i

By ordering the mesh-points by rows, one can make H tridiagonal; by ordering
them by columns, one can make V tridiagonal. That is, both H and V are similar
to tridiagonal matrices, but one cannot make them both tridiagonal simultaneously.

3. Basic ADI operators. From now on, we shall consider only the iterative
solution of the vector equation (7). Since it will no longer be necessary to distinguish
the approximate solutions u from the exact solution u(x, y), we shall cease to use
boldface type, and will write u, instead of u®™.

Equation (7) is clearly equivalent, for any matrices D and E, to each of the two
vector equations

(11) (H+Z+Du=k—(V—Du,
(12) (V+X+Eu=k—(H— Eu.

This was first observed by Peaceman and Rachford in [6] for the case ¥ = 0,
D = E = pl a scalar matrix. In this case, (11) and (12) reduce to

H+phu=k—V —phu, (V+ phu=k—(H— plv.

The generalization to X # 0 and arbitrary D = E was made by Wachspress and
Habetler [8].

For the case £ = 0, D = E = pl which they considered, Peaceman and Rach-
ford proposed solving (7) by choosing an appropriate sequence of positive num-
bers p,,and calculating the sequence of vectors u,, u, , ;, defined from the sequence
of matrices D, = E, = p,I, by the formulas

(13) (H +Z+ Dn)un+ 12 = k — (V - Dn)um
(14) (V+Z+E)uys, =k —(H—E,,p.

Provided that (H + X + D) and (V + X + E) are nonsingular, and that the
matrices to be inverted are similar under conjugation by permutation matrices
(and scaling) to tridiagonal Stieltjes matrices, each of the equations (13) and (14)
can be rapidly solved by Gauss elimination. The aim is to choose the initial trial
vector uy and the matrices D,, E;, D,, E,, --- so as to make the sequénce {u,}
converge rapidly.

Peaceman and Rachford considered the iteration of (13) and (14) when D, and
E, are given by D, = p,I and E, = p,I. This defines the Peaceman—Rachford
method: ¢

(15) Upr 12 = H+Z+ p,,I)—l[k = (V = pDu,],
(16) Uy = (V +X+ ﬁnl)_l[k - (H - ﬁnI)un+1/2]'
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The rate of convergence will depend strongly on the choice of the iteration para-
meters p,, Pp.

An interesting variant of the Peaceman—Rachford method was suggested by
Douglas and Rachford [3, p. 422, (2.3)], again for the case £ = 0. It can be defined
for general £ = 0 by

(17) Upt1j2 = (Hl + pnI)_l[k - (Vl - pnI)un]:
(18) Upry = (Vs + p )" [ Vithy + punsry2]s

where H, and V; are defined as H + 4% and V + 4Z, respectively. This amounts
to setting D, = E, = p,] — X in (13) and (14) and making some elementary
manipulations. Hence (17) and (18) are also equivalent to (7) if u, = 4,4 1/ = U4 1.

For higher-dimensional ADI methods, see J. Douglas, Numer. Math., 4 (1962),
pp. 41-63, and J. Douglas, B. Kellogg and R. S. Varga, Math. Comp., 17 (1963),
pp- 279-282.

4. Model problems. The power of ADI methods is greatest for model problems
in which the preceding difference equations involve permutable operators, so that’

(19) HV =VH, HX =%XH, and VX =ZV.

This is the case if (1) reduces to the (modified) Helmholtz equation in a rectangle:
ou — V2u = S(x, y). More generally, H and V are permutable when the variables
x and y are “separable” (in the sense discussed in Lecture 2, § 1) for the given
elliptic problem.

If (19) holds, one can achieve an order-of-magnitude gain in the rate of conver-
gence with the ADI methods described in § 3 by letting the p, and §, be distributed
in the intervals containing the (real) eigenvalues of (H + Z + p,[)~! (V — p,l)
and (V + X + p,I)"! (H — p,I) with equal proportionate spacing (see [7, g]).
As the mesh-length h decreases, the number of (semi-) iterations required to reduce
the error by a prescribed factor is (asymptotically and neglecting roundoff) only
O(log h™1), as compared with O(h~') for SOR using the optimum relaxation
parameter w,, or O(h~?) as with Gauss—Seidel (or point-Jacobi).

A very interesting precise determination of the optimum parameters for such
model problems has in fact been made by Jordan, in terms of elliptic funct1ons we
shall omit the details.®

Unfortunately, it seems to be impossible to make rigorous extensions of the
preceding theoretical results to most problems with variable coefficients or in
nonrectangular regions {1], [2]. Whereas the theory of SOR applies to the 5-point
approximation to general source problems, the experimentally observed success of
ADI is in general hard to explain and even harder to predict.

7 For discussions of (19), see [2, Part II], and R. E. Lynch, J. R. Rice and D. H. Thomas, Bull. Amer.
Math. Soc., 70 (1964), pp. 378-384.

8 See [W, p. 185], or E. Wachspress, J. Soc. Indust. Appl. Math., 10 (1962), pp. 339-350; 11 (1963),
pp- 994-1016. Also C. de Boor and John Rice, Ibid., 11 (1963), pp. 159-169 and 12 (1964), pp. 892-896;
and R. B. Kellogg and J. Spanier, Math. Comp., 19 (1965), pp. 448—452.
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5, Iterative ADL Even purely iterative (or “stationary’’) ADI methods using
a single parameter p have the same order of convergence as optimized SOR
(2, Theorem 20.1]. More generally [9, Theorem 1], simple iteration of the Peace-
man-Rachford method (15)-(16) is always convergent if one chooses D = E
= pl — Z/2, where p is a positive number. This makes D + Z/2 positive definite
and symmetric and H + V + I positive definite. A few sample proofs will be
sketched below (see [1] and [2] for more details).

As in Lecture 4, we define the error vector as the difference e, = u, — u,, between
the approximate solution u, after the nth iteration and the exact solution u,, of (7).
For simplicity, we set D = E = pl. A straightforward calculation shows that, for
the Peaceman—Rachford method, the effect of a single iteration of (15)—(16) is to
multiply the error vector e, by the error reduction matrix 7, defined by

(20) T,=(V + X + pl)"{H — pI)(H + = + pI)~X(V — pI).

Likewise, the error reduction matrix for the Douglas—Rachford method (18)—(19)
with all p, = p is given by

W, = (V; + pD)™'H, + pD)™'(H,V; + p°1) -

@V = (Vs + pVs + Hy) + o217 (HyVy + p°1).

If one assumes that D, = —X/2 + pI = E, also for the generalized Peaceman-—
Rachford method (13)—(14), then from (15), we have

(22) T, = (Vi + pI)"'(H, — pD)(H, + pI)™' (Vs — pI),

and the matrices W, and T, are related by

(23) 2W, =1+T,.

We next prove a lemma which expresses the algebraic content, of a theorem of
Wachspress and Habetler [9, Theorem 1].

LeMMA 1. Let P and S be positive definite real matrices, with S symmetric. Then
Q= (P —S)P + S)"! is norm-reducing® for real row vectors x relative to the
norm ||x|| = (xS~ 1xT)1/2,

Proof. For any norm | x|, the statement that @ is norm-reducing is equivalent
to the statement that ||(S — P)y|? < ||(S + P)y|* for every nonzero vector
y=(P+ 8) 'x. In turn, this is equivalent for the special Buclidean norm
x| = (xS~ 1xT)}2 to the statement that

(24) VP + SS™HPT + STHT > pP — §)SHP — TYT

for all nonzero y. Expanding the bilinear terms, cancelling, and dividing by two:
this is equivalent to the condition that WP + PT)yT > 0 for all nonzero y. But this
is the hypothesis that P is positive definite.!®

COROLLARY. In Lemma 1, p(Q) < 1.

2 The phase “norm-reducing” here refers to Euclidean norm only in special cases.
10 Note that P is not gssumed to be symmetric, but only to be such that xT(P + PT)x > 0, for all real
x #0.
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This follows from Lemma 1 and tHe following general result on matrices:
p(M) < max =, (IMx|/llx]) for any norm | -||.

Actually, p(M) is the infimum of max(|Mx|/|x|) taken over all Euclidean (inner

product) norms.

THEOREM 1. Any iterative ADI process (13)-(14) with all D, = D and all E, = E
is convergent, provided ¥ + D + E is symmetric and positive definite, and
2H + % + D — E and 2V + £ + E — D are positive definite.'!

Proof. It suffices to show that p(T) < 1. But since similar matrices have the same
eigenvalues and hence the same spectral radius, the error reduction matrix

(29) T=(WV+ZXZ+E YH—-EH+Z+D Y (V-D)

of (13)—(14) has the same spectral radius as

T=(V+Z+ETV+ZX+E!
=[(H—-E)H+Z+ D)"'J[(Vv-D)V+ X+ D) !].

By Lemma 2, both factors in square brackets reduce the norm [xT(Z + D
+ E)"'x]? = ||x|, provided £ + D + E = 2§, Ry =[H + 2/2 + (D — E)/2]

(26)

‘and Ry, = [V + X/2 + (E — D)/2] are positive definite, and £ + D + E is also

symmetric.

It is easy to apply the preceding result to difference equations (8)—(9) arising from
the Dirichlet problem for the self-adjoint elliptic differential equation (6). In this
case, as stated in § 2, H and V are diagonally dominant (positive definite) Stieltjes
matrices. The same properties hold a fortiori for 6,H + 6,V + ;X ifall §, = 0
and 6, + 6, > 0.

Hence the hypotheses of Theorem 1 are fulfilled for D = pI — 0%, E = pI — 6=
for any p, p> 0 and any 6, 8 with 0 < 6, § < 2. Substituting into (13)—(14), we.
obtain the following result. -

COROLLARY 1. If p,p, >0 and 0 < 0,0 < 2, then the stationary ADI method
defined with ¢ =2 — 0 by
27 (H + 6Z/2 + pDuyyyyp = k= (V + 0Z/2 — pDu,,

(28) V+60Z2+ plhu,,y =k —(H+ 0Z/2 — pDuyy )y

is convergent.
In fact, it is norm-reducing for the norm defined by

%1% = xTE + D + E)"'x = xT[(p + p)I + (6 + 6)z/2]" 'x.

6. Final remarks. One of the most interesting treatments of a reasonably general
case is that of Guilinger [4]. Utilizing the smoothness of solutions of elliptic DE’s
(see Lecture 2), Guilinger proved that the Peaceman—Rachford semi-iterative
method could be made to-reduce the error by a given factor in a number of steps
which was independent of the mesh-length.'>

11 This result, for D — E = 0, was first given in [9]. For the andlogous result on W, see [1].
12 See also R. E. Lynch and J. R. Rice, Math, Comp., 22 (1968), pp. 311-335.
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Also, Widlund [10] has obtained some theoretical results for ADI with variable
p (ie., as a semi-iterative method) in the noncommutative case. Moreover, Spanier
[7] and Kellogg!? have applied ADI methods to AE’s on nonrectangular meshes.

Fimally, the reader’s attention is called to the existence of a carefully
documented'* HOT-1 code, written at the Bettis Atomic Power Laboratory,
whose relation to the theoretical principles described in this chapter has been
the subject of a careful and lucid exposition by Spanier [7].
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LECTURE 6

Integral Equation Methods

1. Introduction. The last three lectures were devoted to difference methods.
These quickly reduce elliptic problems to an approximately equivalent algebraic
form by elementary considerations from analysis; the main job is to solve the
resulting system of algebraic equations.

The next three lectures will make much deeper use of classical analysis, including
especially more sophisticated approximation methods (in Lecture 7) and varia-
tional methods (in Lecture 8). The present lecture will introduce the subject by
describing briefly a number of numerical techniques which are especially closely
related to the results from classical analysis reviewed in Lecture 2.

These techniques are especially applicable to homogeneous linear elliptic
DE’s with constant coefficients, such as V?u = 0 or V*u = 0. One of the most
powerful classical techniques consists in expanding in series. We already saw in
Lecture 2 how effective this technique was for solving the Dirichlet problem in the
unit disc (by Fourier series). In §2, we shall discuss its extension on to other
domains.

A related but more sophisticated approach consists in expressing functions in
terms of definite integrals of their boundary values or other quantities (e.g., their
normal derivatives on the boundary). This approach will be discussed in § 3 and
§4.

Both techniques rely essentially on the principle that any (discrete or con-
tinuous) superposition (linear combination or integral) of solutions of a given homo-
geneous linear DE is again a solution. Hence, if one has a basis of elementary
solutions, one can take the coefficients w; or weight-function w(s) as unknowns
in an expression for the general solution

u(x) = Tw;p,(x) or u(x)= f (s, xX) dw(s),

respectively, and then try to obtain enough equations on the w; or on w(s) to deter-
mine which of them represents the solution.

This lecture and Lecture 8 will contain several illustrations of ways to obtain
numerical results by implementing the above principle. In general, one must use
(approximate) numerical quadrature to obtain such results, although in excep-
tional cases formal integration may be possible.

2. Superposition of elementary solutions. By the maximum principle, any har-
monic function u(x) which is uniformly approximated on the boundary dR of a
47




